iwlwifi: fix skb usage after free
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / drivers / hwmon / asb100.c
blob7dada559b3a19a85815002ce1ff76727306d4a23
1 /*
2 asb100.c - Part of lm_sensors, Linux kernel modules for hardware
3 monitoring
5 Copyright (C) 2004 Mark M. Hoffman <mhoffman@lightlink.com>
7 (derived from w83781d.c)
9 Copyright (C) 1998 - 2003 Frodo Looijaard <frodol@dds.nl>,
10 Philip Edelbrock <phil@netroedge.com>, and
11 Mark Studebaker <mdsxyz123@yahoo.com>
13 This program is free software; you can redistribute it and/or modify
14 it under the terms of the GNU General Public License as published by
15 the Free Software Foundation; either version 2 of the License, or
16 (at your option) any later version.
18 This program is distributed in the hope that it will be useful,
19 but WITHOUT ANY WARRANTY; without even the implied warranty of
20 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
21 GNU General Public License for more details.
23 You should have received a copy of the GNU General Public License
24 along with this program; if not, write to the Free Software
25 Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
29 This driver supports the hardware sensor chips: Asus ASB100 and
30 ASB100-A "BACH".
32 ASB100-A supports pwm1, while plain ASB100 does not. There is no known
33 way for the driver to tell which one is there.
35 Chip #vin #fanin #pwm #temp wchipid vendid i2c ISA
36 asb100 7 3 1 4 0x31 0x0694 yes no
39 #include <linux/module.h>
40 #include <linux/slab.h>
41 #include <linux/i2c.h>
42 #include <linux/hwmon.h>
43 #include <linux/hwmon-sysfs.h>
44 #include <linux/hwmon-vid.h>
45 #include <linux/err.h>
46 #include <linux/init.h>
47 #include <linux/jiffies.h>
48 #include <linux/mutex.h>
49 #include "lm75.h"
51 /* I2C addresses to scan */
52 static const unsigned short normal_i2c[] = { 0x2d, I2C_CLIENT_END };
54 static unsigned short force_subclients[4];
55 module_param_array(force_subclients, short, NULL, 0);
56 MODULE_PARM_DESC(force_subclients, "List of subclient addresses: "
57 "{bus, clientaddr, subclientaddr1, subclientaddr2}");
59 /* Voltage IN registers 0-6 */
60 #define ASB100_REG_IN(nr) (0x20 + (nr))
61 #define ASB100_REG_IN_MAX(nr) (0x2b + (nr * 2))
62 #define ASB100_REG_IN_MIN(nr) (0x2c + (nr * 2))
64 /* FAN IN registers 1-3 */
65 #define ASB100_REG_FAN(nr) (0x28 + (nr))
66 #define ASB100_REG_FAN_MIN(nr) (0x3b + (nr))
68 /* TEMPERATURE registers 1-4 */
69 static const u16 asb100_reg_temp[] = {0, 0x27, 0x150, 0x250, 0x17};
70 static const u16 asb100_reg_temp_max[] = {0, 0x39, 0x155, 0x255, 0x18};
71 static const u16 asb100_reg_temp_hyst[] = {0, 0x3a, 0x153, 0x253, 0x19};
73 #define ASB100_REG_TEMP(nr) (asb100_reg_temp[nr])
74 #define ASB100_REG_TEMP_MAX(nr) (asb100_reg_temp_max[nr])
75 #define ASB100_REG_TEMP_HYST(nr) (asb100_reg_temp_hyst[nr])
77 #define ASB100_REG_TEMP2_CONFIG 0x0152
78 #define ASB100_REG_TEMP3_CONFIG 0x0252
81 #define ASB100_REG_CONFIG 0x40
82 #define ASB100_REG_ALARM1 0x41
83 #define ASB100_REG_ALARM2 0x42
84 #define ASB100_REG_SMIM1 0x43
85 #define ASB100_REG_SMIM2 0x44
86 #define ASB100_REG_VID_FANDIV 0x47
87 #define ASB100_REG_I2C_ADDR 0x48
88 #define ASB100_REG_CHIPID 0x49
89 #define ASB100_REG_I2C_SUBADDR 0x4a
90 #define ASB100_REG_PIN 0x4b
91 #define ASB100_REG_IRQ 0x4c
92 #define ASB100_REG_BANK 0x4e
93 #define ASB100_REG_CHIPMAN 0x4f
95 #define ASB100_REG_WCHIPID 0x58
97 /* bit 7 -> enable, bits 0-3 -> duty cycle */
98 #define ASB100_REG_PWM1 0x59
100 /* CONVERSIONS
101 Rounding and limit checking is only done on the TO_REG variants. */
103 /* These constants are a guess, consistent w/ w83781d */
104 #define ASB100_IN_MIN ( 0)
105 #define ASB100_IN_MAX (4080)
107 /* IN: 1/1000 V (0V to 4.08V)
108 REG: 16mV/bit */
109 static u8 IN_TO_REG(unsigned val)
111 unsigned nval = SENSORS_LIMIT(val, ASB100_IN_MIN, ASB100_IN_MAX);
112 return (nval + 8) / 16;
115 static unsigned IN_FROM_REG(u8 reg)
117 return reg * 16;
120 static u8 FAN_TO_REG(long rpm, int div)
122 if (rpm == -1)
123 return 0;
124 if (rpm == 0)
125 return 255;
126 rpm = SENSORS_LIMIT(rpm, 1, 1000000);
127 return SENSORS_LIMIT((1350000 + rpm * div / 2) / (rpm * div), 1, 254);
130 static int FAN_FROM_REG(u8 val, int div)
132 return val==0 ? -1 : val==255 ? 0 : 1350000/(val*div);
135 /* These constants are a guess, consistent w/ w83781d */
136 #define ASB100_TEMP_MIN (-128000)
137 #define ASB100_TEMP_MAX ( 127000)
139 /* TEMP: 0.001C/bit (-128C to +127C)
140 REG: 1C/bit, two's complement */
141 static u8 TEMP_TO_REG(long temp)
143 int ntemp = SENSORS_LIMIT(temp, ASB100_TEMP_MIN, ASB100_TEMP_MAX);
144 ntemp += (ntemp<0 ? -500 : 500);
145 return (u8)(ntemp / 1000);
148 static int TEMP_FROM_REG(u8 reg)
150 return (s8)reg * 1000;
153 /* PWM: 0 - 255 per sensors documentation
154 REG: (6.25% duty cycle per bit) */
155 static u8 ASB100_PWM_TO_REG(int pwm)
157 pwm = SENSORS_LIMIT(pwm, 0, 255);
158 return (u8)(pwm / 16);
161 static int ASB100_PWM_FROM_REG(u8 reg)
163 return reg * 16;
166 #define DIV_FROM_REG(val) (1 << (val))
168 /* FAN DIV: 1, 2, 4, or 8 (defaults to 2)
169 REG: 0, 1, 2, or 3 (respectively) (defaults to 1) */
170 static u8 DIV_TO_REG(long val)
172 return val==8 ? 3 : val==4 ? 2 : val==1 ? 0 : 1;
175 /* For each registered client, we need to keep some data in memory. That
176 data is pointed to by client->data. The structure itself is
177 dynamically allocated, at the same time the client itself is allocated. */
178 struct asb100_data {
179 struct device *hwmon_dev;
180 struct mutex lock;
182 struct mutex update_lock;
183 unsigned long last_updated; /* In jiffies */
185 /* array of 2 pointers to subclients */
186 struct i2c_client *lm75[2];
188 char valid; /* !=0 if following fields are valid */
189 u8 in[7]; /* Register value */
190 u8 in_max[7]; /* Register value */
191 u8 in_min[7]; /* Register value */
192 u8 fan[3]; /* Register value */
193 u8 fan_min[3]; /* Register value */
194 u16 temp[4]; /* Register value (0 and 3 are u8 only) */
195 u16 temp_max[4]; /* Register value (0 and 3 are u8 only) */
196 u16 temp_hyst[4]; /* Register value (0 and 3 are u8 only) */
197 u8 fan_div[3]; /* Register encoding, right justified */
198 u8 pwm; /* Register encoding */
199 u8 vid; /* Register encoding, combined */
200 u32 alarms; /* Register encoding, combined */
201 u8 vrm;
204 static int asb100_read_value(struct i2c_client *client, u16 reg);
205 static void asb100_write_value(struct i2c_client *client, u16 reg, u16 val);
207 static int asb100_probe(struct i2c_client *client,
208 const struct i2c_device_id *id);
209 static int asb100_detect(struct i2c_client *client,
210 struct i2c_board_info *info);
211 static int asb100_remove(struct i2c_client *client);
212 static struct asb100_data *asb100_update_device(struct device *dev);
213 static void asb100_init_client(struct i2c_client *client);
215 static const struct i2c_device_id asb100_id[] = {
216 { "asb100", 0 },
219 MODULE_DEVICE_TABLE(i2c, asb100_id);
221 static struct i2c_driver asb100_driver = {
222 .class = I2C_CLASS_HWMON,
223 .driver = {
224 .name = "asb100",
226 .probe = asb100_probe,
227 .remove = asb100_remove,
228 .id_table = asb100_id,
229 .detect = asb100_detect,
230 .address_list = normal_i2c,
233 /* 7 Voltages */
234 #define show_in_reg(reg) \
235 static ssize_t show_##reg(struct device *dev, struct device_attribute *attr, \
236 char *buf) \
238 int nr = to_sensor_dev_attr(attr)->index; \
239 struct asb100_data *data = asb100_update_device(dev); \
240 return sprintf(buf, "%d\n", IN_FROM_REG(data->reg[nr])); \
243 show_in_reg(in)
244 show_in_reg(in_min)
245 show_in_reg(in_max)
247 #define set_in_reg(REG, reg) \
248 static ssize_t set_in_##reg(struct device *dev, struct device_attribute *attr, \
249 const char *buf, size_t count) \
251 int nr = to_sensor_dev_attr(attr)->index; \
252 struct i2c_client *client = to_i2c_client(dev); \
253 struct asb100_data *data = i2c_get_clientdata(client); \
254 unsigned long val = simple_strtoul(buf, NULL, 10); \
256 mutex_lock(&data->update_lock); \
257 data->in_##reg[nr] = IN_TO_REG(val); \
258 asb100_write_value(client, ASB100_REG_IN_##REG(nr), \
259 data->in_##reg[nr]); \
260 mutex_unlock(&data->update_lock); \
261 return count; \
264 set_in_reg(MIN, min)
265 set_in_reg(MAX, max)
267 #define sysfs_in(offset) \
268 static SENSOR_DEVICE_ATTR(in##offset##_input, S_IRUGO, \
269 show_in, NULL, offset); \
270 static SENSOR_DEVICE_ATTR(in##offset##_min, S_IRUGO | S_IWUSR, \
271 show_in_min, set_in_min, offset); \
272 static SENSOR_DEVICE_ATTR(in##offset##_max, S_IRUGO | S_IWUSR, \
273 show_in_max, set_in_max, offset)
275 sysfs_in(0);
276 sysfs_in(1);
277 sysfs_in(2);
278 sysfs_in(3);
279 sysfs_in(4);
280 sysfs_in(5);
281 sysfs_in(6);
283 /* 3 Fans */
284 static ssize_t show_fan(struct device *dev, struct device_attribute *attr,
285 char *buf)
287 int nr = to_sensor_dev_attr(attr)->index;
288 struct asb100_data *data = asb100_update_device(dev);
289 return sprintf(buf, "%d\n", FAN_FROM_REG(data->fan[nr],
290 DIV_FROM_REG(data->fan_div[nr])));
293 static ssize_t show_fan_min(struct device *dev, struct device_attribute *attr,
294 char *buf)
296 int nr = to_sensor_dev_attr(attr)->index;
297 struct asb100_data *data = asb100_update_device(dev);
298 return sprintf(buf, "%d\n", FAN_FROM_REG(data->fan_min[nr],
299 DIV_FROM_REG(data->fan_div[nr])));
302 static ssize_t show_fan_div(struct device *dev, struct device_attribute *attr,
303 char *buf)
305 int nr = to_sensor_dev_attr(attr)->index;
306 struct asb100_data *data = asb100_update_device(dev);
307 return sprintf(buf, "%d\n", DIV_FROM_REG(data->fan_div[nr]));
310 static ssize_t set_fan_min(struct device *dev, struct device_attribute *attr,
311 const char *buf, size_t count)
313 int nr = to_sensor_dev_attr(attr)->index;
314 struct i2c_client *client = to_i2c_client(dev);
315 struct asb100_data *data = i2c_get_clientdata(client);
316 u32 val = simple_strtoul(buf, NULL, 10);
318 mutex_lock(&data->update_lock);
319 data->fan_min[nr] = FAN_TO_REG(val, DIV_FROM_REG(data->fan_div[nr]));
320 asb100_write_value(client, ASB100_REG_FAN_MIN(nr), data->fan_min[nr]);
321 mutex_unlock(&data->update_lock);
322 return count;
325 /* Note: we save and restore the fan minimum here, because its value is
326 determined in part by the fan divisor. This follows the principle of
327 least surprise; the user doesn't expect the fan minimum to change just
328 because the divisor changed. */
329 static ssize_t set_fan_div(struct device *dev, struct device_attribute *attr,
330 const char *buf, size_t count)
332 int nr = to_sensor_dev_attr(attr)->index;
333 struct i2c_client *client = to_i2c_client(dev);
334 struct asb100_data *data = i2c_get_clientdata(client);
335 unsigned long min;
336 unsigned long val = simple_strtoul(buf, NULL, 10);
337 int reg;
339 mutex_lock(&data->update_lock);
341 min = FAN_FROM_REG(data->fan_min[nr],
342 DIV_FROM_REG(data->fan_div[nr]));
343 data->fan_div[nr] = DIV_TO_REG(val);
345 switch (nr) {
346 case 0: /* fan 1 */
347 reg = asb100_read_value(client, ASB100_REG_VID_FANDIV);
348 reg = (reg & 0xcf) | (data->fan_div[0] << 4);
349 asb100_write_value(client, ASB100_REG_VID_FANDIV, reg);
350 break;
352 case 1: /* fan 2 */
353 reg = asb100_read_value(client, ASB100_REG_VID_FANDIV);
354 reg = (reg & 0x3f) | (data->fan_div[1] << 6);
355 asb100_write_value(client, ASB100_REG_VID_FANDIV, reg);
356 break;
358 case 2: /* fan 3 */
359 reg = asb100_read_value(client, ASB100_REG_PIN);
360 reg = (reg & 0x3f) | (data->fan_div[2] << 6);
361 asb100_write_value(client, ASB100_REG_PIN, reg);
362 break;
365 data->fan_min[nr] =
366 FAN_TO_REG(min, DIV_FROM_REG(data->fan_div[nr]));
367 asb100_write_value(client, ASB100_REG_FAN_MIN(nr), data->fan_min[nr]);
369 mutex_unlock(&data->update_lock);
371 return count;
374 #define sysfs_fan(offset) \
375 static SENSOR_DEVICE_ATTR(fan##offset##_input, S_IRUGO, \
376 show_fan, NULL, offset - 1); \
377 static SENSOR_DEVICE_ATTR(fan##offset##_min, S_IRUGO | S_IWUSR, \
378 show_fan_min, set_fan_min, offset - 1); \
379 static SENSOR_DEVICE_ATTR(fan##offset##_div, S_IRUGO | S_IWUSR, \
380 show_fan_div, set_fan_div, offset - 1)
382 sysfs_fan(1);
383 sysfs_fan(2);
384 sysfs_fan(3);
386 /* 4 Temp. Sensors */
387 static int sprintf_temp_from_reg(u16 reg, char *buf, int nr)
389 int ret = 0;
391 switch (nr) {
392 case 1: case 2:
393 ret = sprintf(buf, "%d\n", LM75_TEMP_FROM_REG(reg));
394 break;
395 case 0: case 3: default:
396 ret = sprintf(buf, "%d\n", TEMP_FROM_REG(reg));
397 break;
399 return ret;
402 #define show_temp_reg(reg) \
403 static ssize_t show_##reg(struct device *dev, struct device_attribute *attr, \
404 char *buf) \
406 int nr = to_sensor_dev_attr(attr)->index; \
407 struct asb100_data *data = asb100_update_device(dev); \
408 return sprintf_temp_from_reg(data->reg[nr], buf, nr); \
411 show_temp_reg(temp);
412 show_temp_reg(temp_max);
413 show_temp_reg(temp_hyst);
415 #define set_temp_reg(REG, reg) \
416 static ssize_t set_##reg(struct device *dev, struct device_attribute *attr, \
417 const char *buf, size_t count) \
419 int nr = to_sensor_dev_attr(attr)->index; \
420 struct i2c_client *client = to_i2c_client(dev); \
421 struct asb100_data *data = i2c_get_clientdata(client); \
422 long val = simple_strtol(buf, NULL, 10); \
424 mutex_lock(&data->update_lock); \
425 switch (nr) { \
426 case 1: case 2: \
427 data->reg[nr] = LM75_TEMP_TO_REG(val); \
428 break; \
429 case 0: case 3: default: \
430 data->reg[nr] = TEMP_TO_REG(val); \
431 break; \
433 asb100_write_value(client, ASB100_REG_TEMP_##REG(nr+1), \
434 data->reg[nr]); \
435 mutex_unlock(&data->update_lock); \
436 return count; \
439 set_temp_reg(MAX, temp_max);
440 set_temp_reg(HYST, temp_hyst);
442 #define sysfs_temp(num) \
443 static SENSOR_DEVICE_ATTR(temp##num##_input, S_IRUGO, \
444 show_temp, NULL, num - 1); \
445 static SENSOR_DEVICE_ATTR(temp##num##_max, S_IRUGO | S_IWUSR, \
446 show_temp_max, set_temp_max, num - 1); \
447 static SENSOR_DEVICE_ATTR(temp##num##_max_hyst, S_IRUGO | S_IWUSR, \
448 show_temp_hyst, set_temp_hyst, num - 1)
450 sysfs_temp(1);
451 sysfs_temp(2);
452 sysfs_temp(3);
453 sysfs_temp(4);
455 /* VID */
456 static ssize_t show_vid(struct device *dev, struct device_attribute *attr,
457 char *buf)
459 struct asb100_data *data = asb100_update_device(dev);
460 return sprintf(buf, "%d\n", vid_from_reg(data->vid, data->vrm));
463 static DEVICE_ATTR(cpu0_vid, S_IRUGO, show_vid, NULL);
465 /* VRM */
466 static ssize_t show_vrm(struct device *dev, struct device_attribute *attr,
467 char *buf)
469 struct asb100_data *data = dev_get_drvdata(dev);
470 return sprintf(buf, "%d\n", data->vrm);
473 static ssize_t set_vrm(struct device *dev, struct device_attribute *attr,
474 const char *buf, size_t count)
476 struct asb100_data *data = dev_get_drvdata(dev);
477 data->vrm = simple_strtoul(buf, NULL, 10);
478 return count;
481 /* Alarms */
482 static DEVICE_ATTR(vrm, S_IRUGO | S_IWUSR, show_vrm, set_vrm);
484 static ssize_t show_alarms(struct device *dev, struct device_attribute *attr,
485 char *buf)
487 struct asb100_data *data = asb100_update_device(dev);
488 return sprintf(buf, "%u\n", data->alarms);
491 static DEVICE_ATTR(alarms, S_IRUGO, show_alarms, NULL);
493 static ssize_t show_alarm(struct device *dev, struct device_attribute *attr,
494 char *buf)
496 int bitnr = to_sensor_dev_attr(attr)->index;
497 struct asb100_data *data = asb100_update_device(dev);
498 return sprintf(buf, "%u\n", (data->alarms >> bitnr) & 1);
500 static SENSOR_DEVICE_ATTR(in0_alarm, S_IRUGO, show_alarm, NULL, 0);
501 static SENSOR_DEVICE_ATTR(in1_alarm, S_IRUGO, show_alarm, NULL, 1);
502 static SENSOR_DEVICE_ATTR(in2_alarm, S_IRUGO, show_alarm, NULL, 2);
503 static SENSOR_DEVICE_ATTR(in3_alarm, S_IRUGO, show_alarm, NULL, 3);
504 static SENSOR_DEVICE_ATTR(in4_alarm, S_IRUGO, show_alarm, NULL, 8);
505 static SENSOR_DEVICE_ATTR(fan1_alarm, S_IRUGO, show_alarm, NULL, 6);
506 static SENSOR_DEVICE_ATTR(fan2_alarm, S_IRUGO, show_alarm, NULL, 7);
507 static SENSOR_DEVICE_ATTR(fan3_alarm, S_IRUGO, show_alarm, NULL, 11);
508 static SENSOR_DEVICE_ATTR(temp1_alarm, S_IRUGO, show_alarm, NULL, 4);
509 static SENSOR_DEVICE_ATTR(temp2_alarm, S_IRUGO, show_alarm, NULL, 5);
510 static SENSOR_DEVICE_ATTR(temp3_alarm, S_IRUGO, show_alarm, NULL, 13);
512 /* 1 PWM */
513 static ssize_t show_pwm1(struct device *dev, struct device_attribute *attr,
514 char *buf)
516 struct asb100_data *data = asb100_update_device(dev);
517 return sprintf(buf, "%d\n", ASB100_PWM_FROM_REG(data->pwm & 0x0f));
520 static ssize_t set_pwm1(struct device *dev, struct device_attribute *attr,
521 const char *buf, size_t count)
523 struct i2c_client *client = to_i2c_client(dev);
524 struct asb100_data *data = i2c_get_clientdata(client);
525 unsigned long val = simple_strtoul(buf, NULL, 10);
527 mutex_lock(&data->update_lock);
528 data->pwm &= 0x80; /* keep the enable bit */
529 data->pwm |= (0x0f & ASB100_PWM_TO_REG(val));
530 asb100_write_value(client, ASB100_REG_PWM1, data->pwm);
531 mutex_unlock(&data->update_lock);
532 return count;
535 static ssize_t show_pwm_enable1(struct device *dev,
536 struct device_attribute *attr, char *buf)
538 struct asb100_data *data = asb100_update_device(dev);
539 return sprintf(buf, "%d\n", (data->pwm & 0x80) ? 1 : 0);
542 static ssize_t set_pwm_enable1(struct device *dev,
543 struct device_attribute *attr, const char *buf, size_t count)
545 struct i2c_client *client = to_i2c_client(dev);
546 struct asb100_data *data = i2c_get_clientdata(client);
547 unsigned long val = simple_strtoul(buf, NULL, 10);
549 mutex_lock(&data->update_lock);
550 data->pwm &= 0x0f; /* keep the duty cycle bits */
551 data->pwm |= (val ? 0x80 : 0x00);
552 asb100_write_value(client, ASB100_REG_PWM1, data->pwm);
553 mutex_unlock(&data->update_lock);
554 return count;
557 static DEVICE_ATTR(pwm1, S_IRUGO | S_IWUSR, show_pwm1, set_pwm1);
558 static DEVICE_ATTR(pwm1_enable, S_IRUGO | S_IWUSR,
559 show_pwm_enable1, set_pwm_enable1);
561 static struct attribute *asb100_attributes[] = {
562 &sensor_dev_attr_in0_input.dev_attr.attr,
563 &sensor_dev_attr_in0_min.dev_attr.attr,
564 &sensor_dev_attr_in0_max.dev_attr.attr,
565 &sensor_dev_attr_in1_input.dev_attr.attr,
566 &sensor_dev_attr_in1_min.dev_attr.attr,
567 &sensor_dev_attr_in1_max.dev_attr.attr,
568 &sensor_dev_attr_in2_input.dev_attr.attr,
569 &sensor_dev_attr_in2_min.dev_attr.attr,
570 &sensor_dev_attr_in2_max.dev_attr.attr,
571 &sensor_dev_attr_in3_input.dev_attr.attr,
572 &sensor_dev_attr_in3_min.dev_attr.attr,
573 &sensor_dev_attr_in3_max.dev_attr.attr,
574 &sensor_dev_attr_in4_input.dev_attr.attr,
575 &sensor_dev_attr_in4_min.dev_attr.attr,
576 &sensor_dev_attr_in4_max.dev_attr.attr,
577 &sensor_dev_attr_in5_input.dev_attr.attr,
578 &sensor_dev_attr_in5_min.dev_attr.attr,
579 &sensor_dev_attr_in5_max.dev_attr.attr,
580 &sensor_dev_attr_in6_input.dev_attr.attr,
581 &sensor_dev_attr_in6_min.dev_attr.attr,
582 &sensor_dev_attr_in6_max.dev_attr.attr,
584 &sensor_dev_attr_fan1_input.dev_attr.attr,
585 &sensor_dev_attr_fan1_min.dev_attr.attr,
586 &sensor_dev_attr_fan1_div.dev_attr.attr,
587 &sensor_dev_attr_fan2_input.dev_attr.attr,
588 &sensor_dev_attr_fan2_min.dev_attr.attr,
589 &sensor_dev_attr_fan2_div.dev_attr.attr,
590 &sensor_dev_attr_fan3_input.dev_attr.attr,
591 &sensor_dev_attr_fan3_min.dev_attr.attr,
592 &sensor_dev_attr_fan3_div.dev_attr.attr,
594 &sensor_dev_attr_temp1_input.dev_attr.attr,
595 &sensor_dev_attr_temp1_max.dev_attr.attr,
596 &sensor_dev_attr_temp1_max_hyst.dev_attr.attr,
597 &sensor_dev_attr_temp2_input.dev_attr.attr,
598 &sensor_dev_attr_temp2_max.dev_attr.attr,
599 &sensor_dev_attr_temp2_max_hyst.dev_attr.attr,
600 &sensor_dev_attr_temp3_input.dev_attr.attr,
601 &sensor_dev_attr_temp3_max.dev_attr.attr,
602 &sensor_dev_attr_temp3_max_hyst.dev_attr.attr,
603 &sensor_dev_attr_temp4_input.dev_attr.attr,
604 &sensor_dev_attr_temp4_max.dev_attr.attr,
605 &sensor_dev_attr_temp4_max_hyst.dev_attr.attr,
607 &sensor_dev_attr_in0_alarm.dev_attr.attr,
608 &sensor_dev_attr_in1_alarm.dev_attr.attr,
609 &sensor_dev_attr_in2_alarm.dev_attr.attr,
610 &sensor_dev_attr_in3_alarm.dev_attr.attr,
611 &sensor_dev_attr_in4_alarm.dev_attr.attr,
612 &sensor_dev_attr_fan1_alarm.dev_attr.attr,
613 &sensor_dev_attr_fan2_alarm.dev_attr.attr,
614 &sensor_dev_attr_fan3_alarm.dev_attr.attr,
615 &sensor_dev_attr_temp1_alarm.dev_attr.attr,
616 &sensor_dev_attr_temp2_alarm.dev_attr.attr,
617 &sensor_dev_attr_temp3_alarm.dev_attr.attr,
619 &dev_attr_cpu0_vid.attr,
620 &dev_attr_vrm.attr,
621 &dev_attr_alarms.attr,
622 &dev_attr_pwm1.attr,
623 &dev_attr_pwm1_enable.attr,
625 NULL
628 static const struct attribute_group asb100_group = {
629 .attrs = asb100_attributes,
632 static int asb100_detect_subclients(struct i2c_client *client)
634 int i, id, err;
635 int address = client->addr;
636 unsigned short sc_addr[2];
637 struct asb100_data *data = i2c_get_clientdata(client);
638 struct i2c_adapter *adapter = client->adapter;
640 id = i2c_adapter_id(adapter);
642 if (force_subclients[0] == id && force_subclients[1] == address) {
643 for (i = 2; i <= 3; i++) {
644 if (force_subclients[i] < 0x48 ||
645 force_subclients[i] > 0x4f) {
646 dev_err(&client->dev, "invalid subclient "
647 "address %d; must be 0x48-0x4f\n",
648 force_subclients[i]);
649 err = -ENODEV;
650 goto ERROR_SC_2;
653 asb100_write_value(client, ASB100_REG_I2C_SUBADDR,
654 (force_subclients[2] & 0x07) |
655 ((force_subclients[3] & 0x07) << 4));
656 sc_addr[0] = force_subclients[2];
657 sc_addr[1] = force_subclients[3];
658 } else {
659 int val = asb100_read_value(client, ASB100_REG_I2C_SUBADDR);
660 sc_addr[0] = 0x48 + (val & 0x07);
661 sc_addr[1] = 0x48 + ((val >> 4) & 0x07);
664 if (sc_addr[0] == sc_addr[1]) {
665 dev_err(&client->dev, "duplicate addresses 0x%x "
666 "for subclients\n", sc_addr[0]);
667 err = -ENODEV;
668 goto ERROR_SC_2;
671 data->lm75[0] = i2c_new_dummy(adapter, sc_addr[0]);
672 if (!data->lm75[0]) {
673 dev_err(&client->dev, "subclient %d registration "
674 "at address 0x%x failed.\n", 1, sc_addr[0]);
675 err = -ENOMEM;
676 goto ERROR_SC_2;
679 data->lm75[1] = i2c_new_dummy(adapter, sc_addr[1]);
680 if (!data->lm75[1]) {
681 dev_err(&client->dev, "subclient %d registration "
682 "at address 0x%x failed.\n", 2, sc_addr[1]);
683 err = -ENOMEM;
684 goto ERROR_SC_3;
687 return 0;
689 /* Undo inits in case of errors */
690 ERROR_SC_3:
691 i2c_unregister_device(data->lm75[0]);
692 ERROR_SC_2:
693 return err;
696 /* Return 0 if detection is successful, -ENODEV otherwise */
697 static int asb100_detect(struct i2c_client *client,
698 struct i2c_board_info *info)
700 struct i2c_adapter *adapter = client->adapter;
701 int val1, val2;
703 if (!i2c_check_functionality(adapter, I2C_FUNC_SMBUS_BYTE_DATA)) {
704 pr_debug("asb100.o: detect failed, "
705 "smbus byte data not supported!\n");
706 return -ENODEV;
709 val1 = i2c_smbus_read_byte_data(client, ASB100_REG_BANK);
710 val2 = i2c_smbus_read_byte_data(client, ASB100_REG_CHIPMAN);
712 /* If we're in bank 0 */
713 if ((!(val1 & 0x07)) &&
714 /* Check for ASB100 ID (low byte) */
715 (((!(val1 & 0x80)) && (val2 != 0x94)) ||
716 /* Check for ASB100 ID (high byte ) */
717 ((val1 & 0x80) && (val2 != 0x06)))) {
718 pr_debug("asb100: detect failed, bad chip id 0x%02x!\n", val2);
719 return -ENODEV;
722 /* Put it now into bank 0 and Vendor ID High Byte */
723 i2c_smbus_write_byte_data(client, ASB100_REG_BANK,
724 (i2c_smbus_read_byte_data(client, ASB100_REG_BANK) & 0x78)
725 | 0x80);
727 /* Determine the chip type. */
728 val1 = i2c_smbus_read_byte_data(client, ASB100_REG_WCHIPID);
729 val2 = i2c_smbus_read_byte_data(client, ASB100_REG_CHIPMAN);
731 if (val1 != 0x31 || val2 != 0x06)
732 return -ENODEV;
734 strlcpy(info->type, "asb100", I2C_NAME_SIZE);
736 return 0;
739 static int asb100_probe(struct i2c_client *client,
740 const struct i2c_device_id *id)
742 int err;
743 struct asb100_data *data;
745 data = kzalloc(sizeof(struct asb100_data), GFP_KERNEL);
746 if (!data) {
747 pr_debug("asb100.o: probe failed, kzalloc failed!\n");
748 err = -ENOMEM;
749 goto ERROR0;
752 i2c_set_clientdata(client, data);
753 mutex_init(&data->lock);
754 mutex_init(&data->update_lock);
756 /* Attach secondary lm75 clients */
757 err = asb100_detect_subclients(client);
758 if (err)
759 goto ERROR1;
761 /* Initialize the chip */
762 asb100_init_client(client);
764 /* A few vars need to be filled upon startup */
765 data->fan_min[0] = asb100_read_value(client, ASB100_REG_FAN_MIN(0));
766 data->fan_min[1] = asb100_read_value(client, ASB100_REG_FAN_MIN(1));
767 data->fan_min[2] = asb100_read_value(client, ASB100_REG_FAN_MIN(2));
769 /* Register sysfs hooks */
770 if ((err = sysfs_create_group(&client->dev.kobj, &asb100_group)))
771 goto ERROR3;
773 data->hwmon_dev = hwmon_device_register(&client->dev);
774 if (IS_ERR(data->hwmon_dev)) {
775 err = PTR_ERR(data->hwmon_dev);
776 goto ERROR4;
779 return 0;
781 ERROR4:
782 sysfs_remove_group(&client->dev.kobj, &asb100_group);
783 ERROR3:
784 i2c_unregister_device(data->lm75[1]);
785 i2c_unregister_device(data->lm75[0]);
786 ERROR1:
787 kfree(data);
788 ERROR0:
789 return err;
792 static int asb100_remove(struct i2c_client *client)
794 struct asb100_data *data = i2c_get_clientdata(client);
796 hwmon_device_unregister(data->hwmon_dev);
797 sysfs_remove_group(&client->dev.kobj, &asb100_group);
799 i2c_unregister_device(data->lm75[1]);
800 i2c_unregister_device(data->lm75[0]);
802 kfree(data);
804 return 0;
807 /* The SMBus locks itself, usually, but nothing may access the chip between
808 bank switches. */
809 static int asb100_read_value(struct i2c_client *client, u16 reg)
811 struct asb100_data *data = i2c_get_clientdata(client);
812 struct i2c_client *cl;
813 int res, bank;
815 mutex_lock(&data->lock);
817 bank = (reg >> 8) & 0x0f;
818 if (bank > 2)
819 /* switch banks */
820 i2c_smbus_write_byte_data(client, ASB100_REG_BANK, bank);
822 if (bank == 0 || bank > 2) {
823 res = i2c_smbus_read_byte_data(client, reg & 0xff);
824 } else {
825 /* switch to subclient */
826 cl = data->lm75[bank - 1];
828 /* convert from ISA to LM75 I2C addresses */
829 switch (reg & 0xff) {
830 case 0x50: /* TEMP */
831 res = swab16(i2c_smbus_read_word_data(cl, 0));
832 break;
833 case 0x52: /* CONFIG */
834 res = i2c_smbus_read_byte_data(cl, 1);
835 break;
836 case 0x53: /* HYST */
837 res = swab16(i2c_smbus_read_word_data(cl, 2));
838 break;
839 case 0x55: /* MAX */
840 default:
841 res = swab16(i2c_smbus_read_word_data(cl, 3));
842 break;
846 if (bank > 2)
847 i2c_smbus_write_byte_data(client, ASB100_REG_BANK, 0);
849 mutex_unlock(&data->lock);
851 return res;
854 static void asb100_write_value(struct i2c_client *client, u16 reg, u16 value)
856 struct asb100_data *data = i2c_get_clientdata(client);
857 struct i2c_client *cl;
858 int bank;
860 mutex_lock(&data->lock);
862 bank = (reg >> 8) & 0x0f;
863 if (bank > 2)
864 /* switch banks */
865 i2c_smbus_write_byte_data(client, ASB100_REG_BANK, bank);
867 if (bank == 0 || bank > 2) {
868 i2c_smbus_write_byte_data(client, reg & 0xff, value & 0xff);
869 } else {
870 /* switch to subclient */
871 cl = data->lm75[bank - 1];
873 /* convert from ISA to LM75 I2C addresses */
874 switch (reg & 0xff) {
875 case 0x52: /* CONFIG */
876 i2c_smbus_write_byte_data(cl, 1, value & 0xff);
877 break;
878 case 0x53: /* HYST */
879 i2c_smbus_write_word_data(cl, 2, swab16(value));
880 break;
881 case 0x55: /* MAX */
882 i2c_smbus_write_word_data(cl, 3, swab16(value));
883 break;
887 if (bank > 2)
888 i2c_smbus_write_byte_data(client, ASB100_REG_BANK, 0);
890 mutex_unlock(&data->lock);
893 static void asb100_init_client(struct i2c_client *client)
895 struct asb100_data *data = i2c_get_clientdata(client);
897 data->vrm = vid_which_vrm();
899 /* Start monitoring */
900 asb100_write_value(client, ASB100_REG_CONFIG,
901 (asb100_read_value(client, ASB100_REG_CONFIG) & 0xf7) | 0x01);
904 static struct asb100_data *asb100_update_device(struct device *dev)
906 struct i2c_client *client = to_i2c_client(dev);
907 struct asb100_data *data = i2c_get_clientdata(client);
908 int i;
910 mutex_lock(&data->update_lock);
912 if (time_after(jiffies, data->last_updated + HZ + HZ / 2)
913 || !data->valid) {
915 dev_dbg(&client->dev, "starting device update...\n");
917 /* 7 voltage inputs */
918 for (i = 0; i < 7; i++) {
919 data->in[i] = asb100_read_value(client,
920 ASB100_REG_IN(i));
921 data->in_min[i] = asb100_read_value(client,
922 ASB100_REG_IN_MIN(i));
923 data->in_max[i] = asb100_read_value(client,
924 ASB100_REG_IN_MAX(i));
927 /* 3 fan inputs */
928 for (i = 0; i < 3; i++) {
929 data->fan[i] = asb100_read_value(client,
930 ASB100_REG_FAN(i));
931 data->fan_min[i] = asb100_read_value(client,
932 ASB100_REG_FAN_MIN(i));
935 /* 4 temperature inputs */
936 for (i = 1; i <= 4; i++) {
937 data->temp[i-1] = asb100_read_value(client,
938 ASB100_REG_TEMP(i));
939 data->temp_max[i-1] = asb100_read_value(client,
940 ASB100_REG_TEMP_MAX(i));
941 data->temp_hyst[i-1] = asb100_read_value(client,
942 ASB100_REG_TEMP_HYST(i));
945 /* VID and fan divisors */
946 i = asb100_read_value(client, ASB100_REG_VID_FANDIV);
947 data->vid = i & 0x0f;
948 data->vid |= (asb100_read_value(client,
949 ASB100_REG_CHIPID) & 0x01) << 4;
950 data->fan_div[0] = (i >> 4) & 0x03;
951 data->fan_div[1] = (i >> 6) & 0x03;
952 data->fan_div[2] = (asb100_read_value(client,
953 ASB100_REG_PIN) >> 6) & 0x03;
955 /* PWM */
956 data->pwm = asb100_read_value(client, ASB100_REG_PWM1);
958 /* alarms */
959 data->alarms = asb100_read_value(client, ASB100_REG_ALARM1) +
960 (asb100_read_value(client, ASB100_REG_ALARM2) << 8);
962 data->last_updated = jiffies;
963 data->valid = 1;
965 dev_dbg(&client->dev, "... device update complete\n");
968 mutex_unlock(&data->update_lock);
970 return data;
973 static int __init asb100_init(void)
975 return i2c_add_driver(&asb100_driver);
978 static void __exit asb100_exit(void)
980 i2c_del_driver(&asb100_driver);
983 MODULE_AUTHOR("Mark M. Hoffman <mhoffman@lightlink.com>");
984 MODULE_DESCRIPTION("ASB100 Bach driver");
985 MODULE_LICENSE("GPL");
987 module_init(asb100_init);
988 module_exit(asb100_exit);