1 /* 8139cp.c: A Linux PCI Ethernet driver for the RealTek 8139C+ chips. */
3 Copyright 2001-2004 Jeff Garzik <jgarzik@pobox.com>
5 Copyright (C) 2001, 2002 David S. Miller (davem@redhat.com) [tg3.c]
6 Copyright (C) 2000, 2001 David S. Miller (davem@redhat.com) [sungem.c]
7 Copyright 2001 Manfred Spraul [natsemi.c]
8 Copyright 1999-2001 by Donald Becker. [natsemi.c]
9 Written 1997-2001 by Donald Becker. [8139too.c]
10 Copyright 1998-2001 by Jes Sorensen, <jes@trained-monkey.org>. [acenic.c]
12 This software may be used and distributed according to the terms of
13 the GNU General Public License (GPL), incorporated herein by reference.
14 Drivers based on or derived from this code fall under the GPL and must
15 retain the authorship, copyright and license notice. This file is not
16 a complete program and may only be used when the entire operating
17 system is licensed under the GPL.
19 See the file COPYING in this distribution for more information.
23 Wake-on-LAN support - Felipe Damasio <felipewd@terra.com.br>
24 PCI suspend/resume - Felipe Damasio <felipewd@terra.com.br>
25 LinkChg interrupt - Felipe Damasio <felipewd@terra.com.br>
28 * Test Tx checksumming thoroughly
31 * Complete reset on PciErr
32 * Consider Rx interrupt mitigation using TimerIntr
33 * Investigate using skb->priority with h/w VLAN priority
34 * Investigate using High Priority Tx Queue with skb->priority
35 * Adjust Rx FIFO threshold and Max Rx DMA burst on Rx FIFO error
36 * Adjust Tx FIFO threshold and Max Tx DMA burst on Tx FIFO error
37 * Implement Tx software interrupt mitigation via
39 * The real minimum of CP_MIN_MTU is 4 bytes. However,
40 for this to be supported, one must(?) turn on packet padding.
41 * Support external MII transceivers (patch available)
44 * TX checksumming is considered experimental. It is off by
45 default, use ethtool to turn it on.
49 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
51 #define DRV_NAME "8139cp"
52 #define DRV_VERSION "1.3"
53 #define DRV_RELDATE "Mar 22, 2004"
56 #include <linux/module.h>
57 #include <linux/moduleparam.h>
58 #include <linux/kernel.h>
59 #include <linux/compiler.h>
60 #include <linux/netdevice.h>
61 #include <linux/etherdevice.h>
62 #include <linux/init.h>
63 #include <linux/interrupt.h>
64 #include <linux/pci.h>
65 #include <linux/dma-mapping.h>
66 #include <linux/delay.h>
67 #include <linux/ethtool.h>
68 #include <linux/gfp.h>
69 #include <linux/mii.h>
70 #include <linux/if_vlan.h>
71 #include <linux/crc32.h>
74 #include <linux/tcp.h>
75 #include <linux/udp.h>
76 #include <linux/cache.h>
79 #include <asm/uaccess.h>
81 /* These identify the driver base version and may not be removed. */
82 static char version
[] =
83 DRV_NAME
": 10/100 PCI Ethernet driver v" DRV_VERSION
" (" DRV_RELDATE
")\n";
85 MODULE_AUTHOR("Jeff Garzik <jgarzik@pobox.com>");
86 MODULE_DESCRIPTION("RealTek RTL-8139C+ series 10/100 PCI Ethernet driver");
87 MODULE_VERSION(DRV_VERSION
);
88 MODULE_LICENSE("GPL");
90 static int debug
= -1;
91 module_param(debug
, int, 0);
92 MODULE_PARM_DESC (debug
, "8139cp: bitmapped message enable number");
94 /* Maximum number of multicast addresses to filter (vs. Rx-all-multicast).
95 The RTL chips use a 64 element hash table based on the Ethernet CRC. */
96 static int multicast_filter_limit
= 32;
97 module_param(multicast_filter_limit
, int, 0);
98 MODULE_PARM_DESC (multicast_filter_limit
, "8139cp: maximum number of filtered multicast addresses");
100 #define CP_DEF_MSG_ENABLE (NETIF_MSG_DRV | \
103 #define CP_NUM_STATS 14 /* struct cp_dma_stats, plus one */
104 #define CP_STATS_SIZE 64 /* size in bytes of DMA stats block */
105 #define CP_REGS_SIZE (0xff + 1)
106 #define CP_REGS_VER 1 /* version 1 */
107 #define CP_RX_RING_SIZE 64
108 #define CP_TX_RING_SIZE 64
109 #define CP_RING_BYTES \
110 ((sizeof(struct cp_desc) * CP_RX_RING_SIZE) + \
111 (sizeof(struct cp_desc) * CP_TX_RING_SIZE) + \
113 #define NEXT_TX(N) (((N) + 1) & (CP_TX_RING_SIZE - 1))
114 #define NEXT_RX(N) (((N) + 1) & (CP_RX_RING_SIZE - 1))
115 #define TX_BUFFS_AVAIL(CP) \
116 (((CP)->tx_tail <= (CP)->tx_head) ? \
117 (CP)->tx_tail + (CP_TX_RING_SIZE - 1) - (CP)->tx_head : \
118 (CP)->tx_tail - (CP)->tx_head - 1)
120 #define PKT_BUF_SZ 1536 /* Size of each temporary Rx buffer.*/
121 #define CP_INTERNAL_PHY 32
123 /* The following settings are log_2(bytes)-4: 0 == 16 bytes .. 6==1024, 7==end of packet. */
124 #define RX_FIFO_THRESH 5 /* Rx buffer level before first PCI xfer. */
125 #define RX_DMA_BURST 4 /* Maximum PCI burst, '4' is 256 */
126 #define TX_DMA_BURST 6 /* Maximum PCI burst, '6' is 1024 */
127 #define TX_EARLY_THRESH 256 /* Early Tx threshold, in bytes */
129 /* Time in jiffies before concluding the transmitter is hung. */
130 #define TX_TIMEOUT (6*HZ)
132 /* hardware minimum and maximum for a single frame's data payload */
133 #define CP_MIN_MTU 60 /* TODO: allow lower, but pad */
134 #define CP_MAX_MTU 4096
137 /* NIC register offsets */
138 MAC0
= 0x00, /* Ethernet hardware address. */
139 MAR0
= 0x08, /* Multicast filter. */
140 StatsAddr
= 0x10, /* 64-bit start addr of 64-byte DMA stats blk */
141 TxRingAddr
= 0x20, /* 64-bit start addr of Tx ring */
142 HiTxRingAddr
= 0x28, /* 64-bit start addr of high priority Tx ring */
143 Cmd
= 0x37, /* Command register */
144 IntrMask
= 0x3C, /* Interrupt mask */
145 IntrStatus
= 0x3E, /* Interrupt status */
146 TxConfig
= 0x40, /* Tx configuration */
147 ChipVersion
= 0x43, /* 8-bit chip version, inside TxConfig */
148 RxConfig
= 0x44, /* Rx configuration */
149 RxMissed
= 0x4C, /* 24 bits valid, write clears */
150 Cfg9346
= 0x50, /* EEPROM select/control; Cfg reg [un]lock */
151 Config1
= 0x52, /* Config1 */
152 Config3
= 0x59, /* Config3 */
153 Config4
= 0x5A, /* Config4 */
154 MultiIntr
= 0x5C, /* Multiple interrupt select */
155 BasicModeCtrl
= 0x62, /* MII BMCR */
156 BasicModeStatus
= 0x64, /* MII BMSR */
157 NWayAdvert
= 0x66, /* MII ADVERTISE */
158 NWayLPAR
= 0x68, /* MII LPA */
159 NWayExpansion
= 0x6A, /* MII Expansion */
160 Config5
= 0xD8, /* Config5 */
161 TxPoll
= 0xD9, /* Tell chip to check Tx descriptors for work */
162 RxMaxSize
= 0xDA, /* Max size of an Rx packet (8169 only) */
163 CpCmd
= 0xE0, /* C+ Command register (C+ mode only) */
164 IntrMitigate
= 0xE2, /* rx/tx interrupt mitigation control */
165 RxRingAddr
= 0xE4, /* 64-bit start addr of Rx ring */
166 TxThresh
= 0xEC, /* Early Tx threshold */
167 OldRxBufAddr
= 0x30, /* DMA address of Rx ring buffer (C mode) */
168 OldTSD0
= 0x10, /* DMA address of first Tx desc (C mode) */
170 /* Tx and Rx status descriptors */
171 DescOwn
= (1 << 31), /* Descriptor is owned by NIC */
172 RingEnd
= (1 << 30), /* End of descriptor ring */
173 FirstFrag
= (1 << 29), /* First segment of a packet */
174 LastFrag
= (1 << 28), /* Final segment of a packet */
175 LargeSend
= (1 << 27), /* TCP Large Send Offload (TSO) */
176 MSSShift
= 16, /* MSS value position */
177 MSSMask
= 0xfff, /* MSS value: 11 bits */
178 TxError
= (1 << 23), /* Tx error summary */
179 RxError
= (1 << 20), /* Rx error summary */
180 IPCS
= (1 << 18), /* Calculate IP checksum */
181 UDPCS
= (1 << 17), /* Calculate UDP/IP checksum */
182 TCPCS
= (1 << 16), /* Calculate TCP/IP checksum */
183 TxVlanTag
= (1 << 17), /* Add VLAN tag */
184 RxVlanTagged
= (1 << 16), /* Rx VLAN tag available */
185 IPFail
= (1 << 15), /* IP checksum failed */
186 UDPFail
= (1 << 14), /* UDP/IP checksum failed */
187 TCPFail
= (1 << 13), /* TCP/IP checksum failed */
188 NormalTxPoll
= (1 << 6), /* One or more normal Tx packets to send */
189 PID1
= (1 << 17), /* 2 protocol id bits: 0==non-IP, */
190 PID0
= (1 << 16), /* 1==UDP/IP, 2==TCP/IP, 3==IP */
194 TxFIFOUnder
= (1 << 25), /* Tx FIFO underrun */
195 TxOWC
= (1 << 22), /* Tx Out-of-window collision */
196 TxLinkFail
= (1 << 21), /* Link failed during Tx of packet */
197 TxMaxCol
= (1 << 20), /* Tx aborted due to excessive collisions */
198 TxColCntShift
= 16, /* Shift, to get 4-bit Tx collision cnt */
199 TxColCntMask
= 0x01 | 0x02 | 0x04 | 0x08, /* 4-bit collision count */
200 RxErrFrame
= (1 << 27), /* Rx frame alignment error */
201 RxMcast
= (1 << 26), /* Rx multicast packet rcv'd */
202 RxErrCRC
= (1 << 18), /* Rx CRC error */
203 RxErrRunt
= (1 << 19), /* Rx error, packet < 64 bytes */
204 RxErrLong
= (1 << 21), /* Rx error, packet > 4096 bytes */
205 RxErrFIFO
= (1 << 22), /* Rx error, FIFO overflowed, pkt bad */
207 /* StatsAddr register */
208 DumpStats
= (1 << 3), /* Begin stats dump */
210 /* RxConfig register */
211 RxCfgFIFOShift
= 13, /* Shift, to get Rx FIFO thresh value */
212 RxCfgDMAShift
= 8, /* Shift, to get Rx Max DMA value */
213 AcceptErr
= 0x20, /* Accept packets with CRC errors */
214 AcceptRunt
= 0x10, /* Accept runt (<64 bytes) packets */
215 AcceptBroadcast
= 0x08, /* Accept broadcast packets */
216 AcceptMulticast
= 0x04, /* Accept multicast packets */
217 AcceptMyPhys
= 0x02, /* Accept pkts with our MAC as dest */
218 AcceptAllPhys
= 0x01, /* Accept all pkts w/ physical dest */
220 /* IntrMask / IntrStatus registers */
221 PciErr
= (1 << 15), /* System error on the PCI bus */
222 TimerIntr
= (1 << 14), /* Asserted when TCTR reaches TimerInt value */
223 LenChg
= (1 << 13), /* Cable length change */
224 SWInt
= (1 << 8), /* Software-requested interrupt */
225 TxEmpty
= (1 << 7), /* No Tx descriptors available */
226 RxFIFOOvr
= (1 << 6), /* Rx FIFO Overflow */
227 LinkChg
= (1 << 5), /* Packet underrun, or link change */
228 RxEmpty
= (1 << 4), /* No Rx descriptors available */
229 TxErr
= (1 << 3), /* Tx error */
230 TxOK
= (1 << 2), /* Tx packet sent */
231 RxErr
= (1 << 1), /* Rx error */
232 RxOK
= (1 << 0), /* Rx packet received */
233 IntrResvd
= (1 << 10), /* reserved, according to RealTek engineers,
234 but hardware likes to raise it */
236 IntrAll
= PciErr
| TimerIntr
| LenChg
| SWInt
| TxEmpty
|
237 RxFIFOOvr
| LinkChg
| RxEmpty
| TxErr
| TxOK
|
238 RxErr
| RxOK
| IntrResvd
,
240 /* C mode command register */
241 CmdReset
= (1 << 4), /* Enable to reset; self-clearing */
242 RxOn
= (1 << 3), /* Rx mode enable */
243 TxOn
= (1 << 2), /* Tx mode enable */
245 /* C+ mode command register */
246 RxVlanOn
= (1 << 6), /* Rx VLAN de-tagging enable */
247 RxChkSum
= (1 << 5), /* Rx checksum offload enable */
248 PCIDAC
= (1 << 4), /* PCI Dual Address Cycle (64-bit PCI) */
249 PCIMulRW
= (1 << 3), /* Enable PCI read/write multiple */
250 CpRxOn
= (1 << 1), /* Rx mode enable */
251 CpTxOn
= (1 << 0), /* Tx mode enable */
253 /* Cfg9436 EEPROM control register */
254 Cfg9346_Lock
= 0x00, /* Lock ConfigX/MII register access */
255 Cfg9346_Unlock
= 0xC0, /* Unlock ConfigX/MII register access */
257 /* TxConfig register */
258 IFG
= (1 << 25) | (1 << 24), /* standard IEEE interframe gap */
259 TxDMAShift
= 8, /* DMA burst value (0-7) is shift this many bits */
261 /* Early Tx Threshold register */
262 TxThreshMask
= 0x3f, /* Mask bits 5-0 */
263 TxThreshMax
= 2048, /* Max early Tx threshold */
265 /* Config1 register */
266 DriverLoaded
= (1 << 5), /* Software marker, driver is loaded */
267 LWACT
= (1 << 4), /* LWAKE active mode */
268 PMEnable
= (1 << 0), /* Enable various PM features of chip */
270 /* Config3 register */
271 PARMEnable
= (1 << 6), /* Enable auto-loading of PHY parms */
272 MagicPacket
= (1 << 5), /* Wake up when receives a Magic Packet */
273 LinkUp
= (1 << 4), /* Wake up when the cable connection is re-established */
275 /* Config4 register */
276 LWPTN
= (1 << 1), /* LWAKE Pattern */
277 LWPME
= (1 << 4), /* LANWAKE vs PMEB */
279 /* Config5 register */
280 BWF
= (1 << 6), /* Accept Broadcast wakeup frame */
281 MWF
= (1 << 5), /* Accept Multicast wakeup frame */
282 UWF
= (1 << 4), /* Accept Unicast wakeup frame */
283 LANWake
= (1 << 1), /* Enable LANWake signal */
284 PMEStatus
= (1 << 0), /* PME status can be reset by PCI RST# */
286 cp_norx_intr_mask
= PciErr
| LinkChg
| TxOK
| TxErr
| TxEmpty
,
287 cp_rx_intr_mask
= RxOK
| RxErr
| RxEmpty
| RxFIFOOvr
,
288 cp_intr_mask
= cp_rx_intr_mask
| cp_norx_intr_mask
,
291 static const unsigned int cp_rx_config
=
292 (RX_FIFO_THRESH
<< RxCfgFIFOShift
) |
293 (RX_DMA_BURST
<< RxCfgDMAShift
);
301 struct cp_dma_stats
{
317 struct cp_extra_stats
{
318 unsigned long rx_frags
;
323 struct net_device
*dev
;
327 struct napi_struct napi
;
329 struct pci_dev
*pdev
;
333 struct cp_extra_stats cp_stats
;
335 unsigned rx_head ____cacheline_aligned
;
337 struct cp_desc
*rx_ring
;
338 struct sk_buff
*rx_skb
[CP_RX_RING_SIZE
];
340 unsigned tx_head ____cacheline_aligned
;
342 struct cp_desc
*tx_ring
;
343 struct sk_buff
*tx_skb
[CP_TX_RING_SIZE
];
346 unsigned wol_enabled
: 1; /* Is Wake-on-LAN enabled? */
350 struct mii_if_info mii_if
;
353 #define cpr8(reg) readb(cp->regs + (reg))
354 #define cpr16(reg) readw(cp->regs + (reg))
355 #define cpr32(reg) readl(cp->regs + (reg))
356 #define cpw8(reg,val) writeb((val), cp->regs + (reg))
357 #define cpw16(reg,val) writew((val), cp->regs + (reg))
358 #define cpw32(reg,val) writel((val), cp->regs + (reg))
359 #define cpw8_f(reg,val) do { \
360 writeb((val), cp->regs + (reg)); \
361 readb(cp->regs + (reg)); \
363 #define cpw16_f(reg,val) do { \
364 writew((val), cp->regs + (reg)); \
365 readw(cp->regs + (reg)); \
367 #define cpw32_f(reg,val) do { \
368 writel((val), cp->regs + (reg)); \
369 readl(cp->regs + (reg)); \
373 static void __cp_set_rx_mode (struct net_device
*dev
);
374 static void cp_tx (struct cp_private
*cp
);
375 static void cp_clean_rings (struct cp_private
*cp
);
376 #ifdef CONFIG_NET_POLL_CONTROLLER
377 static void cp_poll_controller(struct net_device
*dev
);
379 static int cp_get_eeprom_len(struct net_device
*dev
);
380 static int cp_get_eeprom(struct net_device
*dev
,
381 struct ethtool_eeprom
*eeprom
, u8
*data
);
382 static int cp_set_eeprom(struct net_device
*dev
,
383 struct ethtool_eeprom
*eeprom
, u8
*data
);
385 static DEFINE_PCI_DEVICE_TABLE(cp_pci_tbl
) = {
386 { PCI_DEVICE(PCI_VENDOR_ID_REALTEK
, PCI_DEVICE_ID_REALTEK_8139
), },
387 { PCI_DEVICE(PCI_VENDOR_ID_TTTECH
, PCI_DEVICE_ID_TTTECH_MC322
), },
390 MODULE_DEVICE_TABLE(pci
, cp_pci_tbl
);
393 const char str
[ETH_GSTRING_LEN
];
394 } ethtool_stats_keys
[] = {
412 static inline void cp_set_rxbufsize (struct cp_private
*cp
)
414 unsigned int mtu
= cp
->dev
->mtu
;
416 if (mtu
> ETH_DATA_LEN
)
417 /* MTU + ethernet header + FCS + optional VLAN tag */
418 cp
->rx_buf_sz
= mtu
+ ETH_HLEN
+ 8;
420 cp
->rx_buf_sz
= PKT_BUF_SZ
;
423 static inline void cp_rx_skb (struct cp_private
*cp
, struct sk_buff
*skb
,
424 struct cp_desc
*desc
)
426 u32 opts2
= le32_to_cpu(desc
->opts2
);
428 skb
->protocol
= eth_type_trans (skb
, cp
->dev
);
430 cp
->dev
->stats
.rx_packets
++;
431 cp
->dev
->stats
.rx_bytes
+= skb
->len
;
433 if (opts2
& RxVlanTagged
)
434 __vlan_hwaccel_put_tag(skb
, swab16(opts2
& 0xffff));
436 napi_gro_receive(&cp
->napi
, skb
);
439 static void cp_rx_err_acct (struct cp_private
*cp
, unsigned rx_tail
,
442 netif_dbg(cp
, rx_err
, cp
->dev
, "rx err, slot %d status 0x%x len %d\n",
443 rx_tail
, status
, len
);
444 cp
->dev
->stats
.rx_errors
++;
445 if (status
& RxErrFrame
)
446 cp
->dev
->stats
.rx_frame_errors
++;
447 if (status
& RxErrCRC
)
448 cp
->dev
->stats
.rx_crc_errors
++;
449 if ((status
& RxErrRunt
) || (status
& RxErrLong
))
450 cp
->dev
->stats
.rx_length_errors
++;
451 if ((status
& (FirstFrag
| LastFrag
)) != (FirstFrag
| LastFrag
))
452 cp
->dev
->stats
.rx_length_errors
++;
453 if (status
& RxErrFIFO
)
454 cp
->dev
->stats
.rx_fifo_errors
++;
457 static inline unsigned int cp_rx_csum_ok (u32 status
)
459 unsigned int protocol
= (status
>> 16) & 0x3;
461 if (((protocol
== RxProtoTCP
) && !(status
& TCPFail
)) ||
462 ((protocol
== RxProtoUDP
) && !(status
& UDPFail
)))
468 static int cp_rx_poll(struct napi_struct
*napi
, int budget
)
470 struct cp_private
*cp
= container_of(napi
, struct cp_private
, napi
);
471 struct net_device
*dev
= cp
->dev
;
472 unsigned int rx_tail
= cp
->rx_tail
;
477 cpw16(IntrStatus
, cp_rx_intr_mask
);
482 struct sk_buff
*skb
, *new_skb
;
483 struct cp_desc
*desc
;
484 const unsigned buflen
= cp
->rx_buf_sz
;
486 skb
= cp
->rx_skb
[rx_tail
];
489 desc
= &cp
->rx_ring
[rx_tail
];
490 status
= le32_to_cpu(desc
->opts1
);
491 if (status
& DescOwn
)
494 len
= (status
& 0x1fff) - 4;
495 mapping
= le64_to_cpu(desc
->addr
);
497 if ((status
& (FirstFrag
| LastFrag
)) != (FirstFrag
| LastFrag
)) {
498 /* we don't support incoming fragmented frames.
499 * instead, we attempt to ensure that the
500 * pre-allocated RX skbs are properly sized such
501 * that RX fragments are never encountered
503 cp_rx_err_acct(cp
, rx_tail
, status
, len
);
504 dev
->stats
.rx_dropped
++;
505 cp
->cp_stats
.rx_frags
++;
509 if (status
& (RxError
| RxErrFIFO
)) {
510 cp_rx_err_acct(cp
, rx_tail
, status
, len
);
514 netif_dbg(cp
, rx_status
, dev
, "rx slot %d status 0x%x len %d\n",
515 rx_tail
, status
, len
);
517 new_skb
= netdev_alloc_skb_ip_align(dev
, buflen
);
519 dev
->stats
.rx_dropped
++;
523 dma_unmap_single(&cp
->pdev
->dev
, mapping
,
524 buflen
, PCI_DMA_FROMDEVICE
);
526 /* Handle checksum offloading for incoming packets. */
527 if (cp_rx_csum_ok(status
))
528 skb
->ip_summed
= CHECKSUM_UNNECESSARY
;
530 skb_checksum_none_assert(skb
);
534 mapping
= dma_map_single(&cp
->pdev
->dev
, new_skb
->data
, buflen
,
536 cp
->rx_skb
[rx_tail
] = new_skb
;
538 cp_rx_skb(cp
, skb
, desc
);
542 cp
->rx_ring
[rx_tail
].opts2
= 0;
543 cp
->rx_ring
[rx_tail
].addr
= cpu_to_le64(mapping
);
544 if (rx_tail
== (CP_RX_RING_SIZE
- 1))
545 desc
->opts1
= cpu_to_le32(DescOwn
| RingEnd
|
548 desc
->opts1
= cpu_to_le32(DescOwn
| cp
->rx_buf_sz
);
549 rx_tail
= NEXT_RX(rx_tail
);
555 cp
->rx_tail
= rx_tail
;
557 /* if we did not reach work limit, then we're done with
558 * this round of polling
563 if (cpr16(IntrStatus
) & cp_rx_intr_mask
)
566 spin_lock_irqsave(&cp
->lock
, flags
);
567 __napi_complete(napi
);
568 cpw16_f(IntrMask
, cp_intr_mask
);
569 spin_unlock_irqrestore(&cp
->lock
, flags
);
575 static irqreturn_t
cp_interrupt (int irq
, void *dev_instance
)
577 struct net_device
*dev
= dev_instance
;
578 struct cp_private
*cp
;
581 if (unlikely(dev
== NULL
))
583 cp
= netdev_priv(dev
);
585 status
= cpr16(IntrStatus
);
586 if (!status
|| (status
== 0xFFFF))
589 netif_dbg(cp
, intr
, dev
, "intr, status %04x cmd %02x cpcmd %04x\n",
590 status
, cpr8(Cmd
), cpr16(CpCmd
));
592 cpw16(IntrStatus
, status
& ~cp_rx_intr_mask
);
594 spin_lock(&cp
->lock
);
596 /* close possible race's with dev_close */
597 if (unlikely(!netif_running(dev
))) {
599 spin_unlock(&cp
->lock
);
603 if (status
& (RxOK
| RxErr
| RxEmpty
| RxFIFOOvr
))
604 if (napi_schedule_prep(&cp
->napi
)) {
605 cpw16_f(IntrMask
, cp_norx_intr_mask
);
606 __napi_schedule(&cp
->napi
);
609 if (status
& (TxOK
| TxErr
| TxEmpty
| SWInt
))
611 if (status
& LinkChg
)
612 mii_check_media(&cp
->mii_if
, netif_msg_link(cp
), false);
614 spin_unlock(&cp
->lock
);
616 if (status
& PciErr
) {
619 pci_read_config_word(cp
->pdev
, PCI_STATUS
, &pci_status
);
620 pci_write_config_word(cp
->pdev
, PCI_STATUS
, pci_status
);
621 netdev_err(dev
, "PCI bus error, status=%04x, PCI status=%04x\n",
624 /* TODO: reset hardware */
630 #ifdef CONFIG_NET_POLL_CONTROLLER
632 * Polling receive - used by netconsole and other diagnostic tools
633 * to allow network i/o with interrupts disabled.
635 static void cp_poll_controller(struct net_device
*dev
)
637 disable_irq(dev
->irq
);
638 cp_interrupt(dev
->irq
, dev
);
639 enable_irq(dev
->irq
);
643 static void cp_tx (struct cp_private
*cp
)
645 unsigned tx_head
= cp
->tx_head
;
646 unsigned tx_tail
= cp
->tx_tail
;
648 while (tx_tail
!= tx_head
) {
649 struct cp_desc
*txd
= cp
->tx_ring
+ tx_tail
;
654 status
= le32_to_cpu(txd
->opts1
);
655 if (status
& DescOwn
)
658 skb
= cp
->tx_skb
[tx_tail
];
661 dma_unmap_single(&cp
->pdev
->dev
, le64_to_cpu(txd
->addr
),
662 le32_to_cpu(txd
->opts1
) & 0xffff,
665 if (status
& LastFrag
) {
666 if (status
& (TxError
| TxFIFOUnder
)) {
667 netif_dbg(cp
, tx_err
, cp
->dev
,
668 "tx err, status 0x%x\n", status
);
669 cp
->dev
->stats
.tx_errors
++;
671 cp
->dev
->stats
.tx_window_errors
++;
672 if (status
& TxMaxCol
)
673 cp
->dev
->stats
.tx_aborted_errors
++;
674 if (status
& TxLinkFail
)
675 cp
->dev
->stats
.tx_carrier_errors
++;
676 if (status
& TxFIFOUnder
)
677 cp
->dev
->stats
.tx_fifo_errors
++;
679 cp
->dev
->stats
.collisions
+=
680 ((status
>> TxColCntShift
) & TxColCntMask
);
681 cp
->dev
->stats
.tx_packets
++;
682 cp
->dev
->stats
.tx_bytes
+= skb
->len
;
683 netif_dbg(cp
, tx_done
, cp
->dev
,
684 "tx done, slot %d\n", tx_tail
);
686 dev_kfree_skb_irq(skb
);
689 cp
->tx_skb
[tx_tail
] = NULL
;
691 tx_tail
= NEXT_TX(tx_tail
);
694 cp
->tx_tail
= tx_tail
;
696 if (TX_BUFFS_AVAIL(cp
) > (MAX_SKB_FRAGS
+ 1))
697 netif_wake_queue(cp
->dev
);
700 static inline u32
cp_tx_vlan_tag(struct sk_buff
*skb
)
702 return vlan_tx_tag_present(skb
) ?
703 TxVlanTag
| swab16(vlan_tx_tag_get(skb
)) : 0x00;
706 static netdev_tx_t
cp_start_xmit (struct sk_buff
*skb
,
707 struct net_device
*dev
)
709 struct cp_private
*cp
= netdev_priv(dev
);
712 unsigned long intr_flags
;
716 spin_lock_irqsave(&cp
->lock
, intr_flags
);
718 /* This is a hard error, log it. */
719 if (TX_BUFFS_AVAIL(cp
) <= (skb_shinfo(skb
)->nr_frags
+ 1)) {
720 netif_stop_queue(dev
);
721 spin_unlock_irqrestore(&cp
->lock
, intr_flags
);
722 netdev_err(dev
, "BUG! Tx Ring full when queue awake!\n");
723 return NETDEV_TX_BUSY
;
727 eor
= (entry
== (CP_TX_RING_SIZE
- 1)) ? RingEnd
: 0;
728 mss
= skb_shinfo(skb
)->gso_size
;
730 opts2
= cpu_to_le32(cp_tx_vlan_tag(skb
));
732 if (skb_shinfo(skb
)->nr_frags
== 0) {
733 struct cp_desc
*txd
= &cp
->tx_ring
[entry
];
738 mapping
= dma_map_single(&cp
->pdev
->dev
, skb
->data
, len
, PCI_DMA_TODEVICE
);
740 txd
->addr
= cpu_to_le64(mapping
);
743 flags
= eor
| len
| DescOwn
| FirstFrag
| LastFrag
;
746 flags
|= LargeSend
| ((mss
& MSSMask
) << MSSShift
);
747 else if (skb
->ip_summed
== CHECKSUM_PARTIAL
) {
748 const struct iphdr
*ip
= ip_hdr(skb
);
749 if (ip
->protocol
== IPPROTO_TCP
)
750 flags
|= IPCS
| TCPCS
;
751 else if (ip
->protocol
== IPPROTO_UDP
)
752 flags
|= IPCS
| UDPCS
;
754 WARN_ON(1); /* we need a WARN() */
757 txd
->opts1
= cpu_to_le32(flags
);
760 cp
->tx_skb
[entry
] = skb
;
761 entry
= NEXT_TX(entry
);
764 u32 first_len
, first_eor
;
765 dma_addr_t first_mapping
;
766 int frag
, first_entry
= entry
;
767 const struct iphdr
*ip
= ip_hdr(skb
);
769 /* We must give this initial chunk to the device last.
770 * Otherwise we could race with the device.
773 first_len
= skb_headlen(skb
);
774 first_mapping
= dma_map_single(&cp
->pdev
->dev
, skb
->data
,
775 first_len
, PCI_DMA_TODEVICE
);
776 cp
->tx_skb
[entry
] = skb
;
777 entry
= NEXT_TX(entry
);
779 for (frag
= 0; frag
< skb_shinfo(skb
)->nr_frags
; frag
++) {
780 skb_frag_t
*this_frag
= &skb_shinfo(skb
)->frags
[frag
];
785 len
= this_frag
->size
;
786 mapping
= dma_map_single(&cp
->pdev
->dev
,
787 ((void *) page_address(this_frag
->page
) +
788 this_frag
->page_offset
),
789 len
, PCI_DMA_TODEVICE
);
790 eor
= (entry
== (CP_TX_RING_SIZE
- 1)) ? RingEnd
: 0;
792 ctrl
= eor
| len
| DescOwn
;
796 ((mss
& MSSMask
) << MSSShift
);
797 else if (skb
->ip_summed
== CHECKSUM_PARTIAL
) {
798 if (ip
->protocol
== IPPROTO_TCP
)
799 ctrl
|= IPCS
| TCPCS
;
800 else if (ip
->protocol
== IPPROTO_UDP
)
801 ctrl
|= IPCS
| UDPCS
;
806 if (frag
== skb_shinfo(skb
)->nr_frags
- 1)
809 txd
= &cp
->tx_ring
[entry
];
811 txd
->addr
= cpu_to_le64(mapping
);
814 txd
->opts1
= cpu_to_le32(ctrl
);
817 cp
->tx_skb
[entry
] = skb
;
818 entry
= NEXT_TX(entry
);
821 txd
= &cp
->tx_ring
[first_entry
];
823 txd
->addr
= cpu_to_le64(first_mapping
);
826 if (skb
->ip_summed
== CHECKSUM_PARTIAL
) {
827 if (ip
->protocol
== IPPROTO_TCP
)
828 txd
->opts1
= cpu_to_le32(first_eor
| first_len
|
829 FirstFrag
| DescOwn
|
831 else if (ip
->protocol
== IPPROTO_UDP
)
832 txd
->opts1
= cpu_to_le32(first_eor
| first_len
|
833 FirstFrag
| DescOwn
|
838 txd
->opts1
= cpu_to_le32(first_eor
| first_len
|
839 FirstFrag
| DescOwn
);
843 netif_dbg(cp
, tx_queued
, cp
->dev
, "tx queued, slot %d, skblen %d\n",
845 if (TX_BUFFS_AVAIL(cp
) <= (MAX_SKB_FRAGS
+ 1))
846 netif_stop_queue(dev
);
848 spin_unlock_irqrestore(&cp
->lock
, intr_flags
);
850 cpw8(TxPoll
, NormalTxPoll
);
855 /* Set or clear the multicast filter for this adaptor.
856 This routine is not state sensitive and need not be SMP locked. */
858 static void __cp_set_rx_mode (struct net_device
*dev
)
860 struct cp_private
*cp
= netdev_priv(dev
);
861 u32 mc_filter
[2]; /* Multicast hash filter */
865 /* Note: do not reorder, GCC is clever about common statements. */
866 if (dev
->flags
& IFF_PROMISC
) {
867 /* Unconditionally log net taps. */
869 AcceptBroadcast
| AcceptMulticast
| AcceptMyPhys
|
871 mc_filter
[1] = mc_filter
[0] = 0xffffffff;
872 } else if ((netdev_mc_count(dev
) > multicast_filter_limit
) ||
873 (dev
->flags
& IFF_ALLMULTI
)) {
874 /* Too many to filter perfectly -- accept all multicasts. */
875 rx_mode
= AcceptBroadcast
| AcceptMulticast
| AcceptMyPhys
;
876 mc_filter
[1] = mc_filter
[0] = 0xffffffff;
878 struct netdev_hw_addr
*ha
;
879 rx_mode
= AcceptBroadcast
| AcceptMyPhys
;
880 mc_filter
[1] = mc_filter
[0] = 0;
881 netdev_for_each_mc_addr(ha
, dev
) {
882 int bit_nr
= ether_crc(ETH_ALEN
, ha
->addr
) >> 26;
884 mc_filter
[bit_nr
>> 5] |= 1 << (bit_nr
& 31);
885 rx_mode
|= AcceptMulticast
;
889 /* We can safely update without stopping the chip. */
890 tmp
= cp_rx_config
| rx_mode
;
891 if (cp
->rx_config
!= tmp
) {
892 cpw32_f (RxConfig
, tmp
);
895 cpw32_f (MAR0
+ 0, mc_filter
[0]);
896 cpw32_f (MAR0
+ 4, mc_filter
[1]);
899 static void cp_set_rx_mode (struct net_device
*dev
)
902 struct cp_private
*cp
= netdev_priv(dev
);
904 spin_lock_irqsave (&cp
->lock
, flags
);
905 __cp_set_rx_mode(dev
);
906 spin_unlock_irqrestore (&cp
->lock
, flags
);
909 static void __cp_get_stats(struct cp_private
*cp
)
911 /* only lower 24 bits valid; write any value to clear */
912 cp
->dev
->stats
.rx_missed_errors
+= (cpr32 (RxMissed
) & 0xffffff);
916 static struct net_device_stats
*cp_get_stats(struct net_device
*dev
)
918 struct cp_private
*cp
= netdev_priv(dev
);
921 /* The chip only need report frame silently dropped. */
922 spin_lock_irqsave(&cp
->lock
, flags
);
923 if (netif_running(dev
) && netif_device_present(dev
))
925 spin_unlock_irqrestore(&cp
->lock
, flags
);
930 static void cp_stop_hw (struct cp_private
*cp
)
932 cpw16(IntrStatus
, ~(cpr16(IntrStatus
)));
933 cpw16_f(IntrMask
, 0);
936 cpw16_f(IntrStatus
, ~(cpr16(IntrStatus
)));
939 cp
->tx_head
= cp
->tx_tail
= 0;
942 static void cp_reset_hw (struct cp_private
*cp
)
944 unsigned work
= 1000;
949 if (!(cpr8(Cmd
) & CmdReset
))
952 schedule_timeout_uninterruptible(10);
955 netdev_err(cp
->dev
, "hardware reset timeout\n");
958 static inline void cp_start_hw (struct cp_private
*cp
)
960 cpw16(CpCmd
, cp
->cpcmd
);
961 cpw8(Cmd
, RxOn
| TxOn
);
964 static void cp_init_hw (struct cp_private
*cp
)
966 struct net_device
*dev
= cp
->dev
;
971 cpw8_f (Cfg9346
, Cfg9346_Unlock
);
973 /* Restore our idea of the MAC address. */
974 cpw32_f (MAC0
+ 0, le32_to_cpu (*(__le32
*) (dev
->dev_addr
+ 0)));
975 cpw32_f (MAC0
+ 4, le32_to_cpu (*(__le32
*) (dev
->dev_addr
+ 4)));
978 cpw8(TxThresh
, 0x06); /* XXX convert magic num to a constant */
980 __cp_set_rx_mode(dev
);
981 cpw32_f (TxConfig
, IFG
| (TX_DMA_BURST
<< TxDMAShift
));
983 cpw8(Config1
, cpr8(Config1
) | DriverLoaded
| PMEnable
);
984 /* Disable Wake-on-LAN. Can be turned on with ETHTOOL_SWOL */
985 cpw8(Config3
, PARMEnable
);
988 cpw8(Config5
, cpr8(Config5
) & PMEStatus
);
990 cpw32_f(HiTxRingAddr
, 0);
991 cpw32_f(HiTxRingAddr
+ 4, 0);
993 ring_dma
= cp
->ring_dma
;
994 cpw32_f(RxRingAddr
, ring_dma
& 0xffffffff);
995 cpw32_f(RxRingAddr
+ 4, (ring_dma
>> 16) >> 16);
997 ring_dma
+= sizeof(struct cp_desc
) * CP_RX_RING_SIZE
;
998 cpw32_f(TxRingAddr
, ring_dma
& 0xffffffff);
999 cpw32_f(TxRingAddr
+ 4, (ring_dma
>> 16) >> 16);
1001 cpw16(MultiIntr
, 0);
1003 cpw16_f(IntrMask
, cp_intr_mask
);
1005 cpw8_f(Cfg9346
, Cfg9346_Lock
);
1008 static int cp_refill_rx(struct cp_private
*cp
)
1010 struct net_device
*dev
= cp
->dev
;
1013 for (i
= 0; i
< CP_RX_RING_SIZE
; i
++) {
1014 struct sk_buff
*skb
;
1017 skb
= netdev_alloc_skb_ip_align(dev
, cp
->rx_buf_sz
);
1021 mapping
= dma_map_single(&cp
->pdev
->dev
, skb
->data
,
1022 cp
->rx_buf_sz
, PCI_DMA_FROMDEVICE
);
1023 cp
->rx_skb
[i
] = skb
;
1025 cp
->rx_ring
[i
].opts2
= 0;
1026 cp
->rx_ring
[i
].addr
= cpu_to_le64(mapping
);
1027 if (i
== (CP_RX_RING_SIZE
- 1))
1028 cp
->rx_ring
[i
].opts1
=
1029 cpu_to_le32(DescOwn
| RingEnd
| cp
->rx_buf_sz
);
1031 cp
->rx_ring
[i
].opts1
=
1032 cpu_to_le32(DescOwn
| cp
->rx_buf_sz
);
1042 static void cp_init_rings_index (struct cp_private
*cp
)
1045 cp
->tx_head
= cp
->tx_tail
= 0;
1048 static int cp_init_rings (struct cp_private
*cp
)
1050 memset(cp
->tx_ring
, 0, sizeof(struct cp_desc
) * CP_TX_RING_SIZE
);
1051 cp
->tx_ring
[CP_TX_RING_SIZE
- 1].opts1
= cpu_to_le32(RingEnd
);
1053 cp_init_rings_index(cp
);
1055 return cp_refill_rx (cp
);
1058 static int cp_alloc_rings (struct cp_private
*cp
)
1062 mem
= dma_alloc_coherent(&cp
->pdev
->dev
, CP_RING_BYTES
,
1063 &cp
->ring_dma
, GFP_KERNEL
);
1068 cp
->tx_ring
= &cp
->rx_ring
[CP_RX_RING_SIZE
];
1070 return cp_init_rings(cp
);
1073 static void cp_clean_rings (struct cp_private
*cp
)
1075 struct cp_desc
*desc
;
1078 for (i
= 0; i
< CP_RX_RING_SIZE
; i
++) {
1079 if (cp
->rx_skb
[i
]) {
1080 desc
= cp
->rx_ring
+ i
;
1081 dma_unmap_single(&cp
->pdev
->dev
,le64_to_cpu(desc
->addr
),
1082 cp
->rx_buf_sz
, PCI_DMA_FROMDEVICE
);
1083 dev_kfree_skb(cp
->rx_skb
[i
]);
1087 for (i
= 0; i
< CP_TX_RING_SIZE
; i
++) {
1088 if (cp
->tx_skb
[i
]) {
1089 struct sk_buff
*skb
= cp
->tx_skb
[i
];
1091 desc
= cp
->tx_ring
+ i
;
1092 dma_unmap_single(&cp
->pdev
->dev
,le64_to_cpu(desc
->addr
),
1093 le32_to_cpu(desc
->opts1
) & 0xffff,
1095 if (le32_to_cpu(desc
->opts1
) & LastFrag
)
1097 cp
->dev
->stats
.tx_dropped
++;
1101 memset(cp
->rx_ring
, 0, sizeof(struct cp_desc
) * CP_RX_RING_SIZE
);
1102 memset(cp
->tx_ring
, 0, sizeof(struct cp_desc
) * CP_TX_RING_SIZE
);
1104 memset(cp
->rx_skb
, 0, sizeof(struct sk_buff
*) * CP_RX_RING_SIZE
);
1105 memset(cp
->tx_skb
, 0, sizeof(struct sk_buff
*) * CP_TX_RING_SIZE
);
1108 static void cp_free_rings (struct cp_private
*cp
)
1111 dma_free_coherent(&cp
->pdev
->dev
, CP_RING_BYTES
, cp
->rx_ring
,
1117 static int cp_open (struct net_device
*dev
)
1119 struct cp_private
*cp
= netdev_priv(dev
);
1122 netif_dbg(cp
, ifup
, dev
, "enabling interface\n");
1124 rc
= cp_alloc_rings(cp
);
1128 napi_enable(&cp
->napi
);
1132 rc
= request_irq(dev
->irq
, cp_interrupt
, IRQF_SHARED
, dev
->name
, dev
);
1136 netif_carrier_off(dev
);
1137 mii_check_media(&cp
->mii_if
, netif_msg_link(cp
), true);
1138 netif_start_queue(dev
);
1143 napi_disable(&cp
->napi
);
1149 static int cp_close (struct net_device
*dev
)
1151 struct cp_private
*cp
= netdev_priv(dev
);
1152 unsigned long flags
;
1154 napi_disable(&cp
->napi
);
1156 netif_dbg(cp
, ifdown
, dev
, "disabling interface\n");
1158 spin_lock_irqsave(&cp
->lock
, flags
);
1160 netif_stop_queue(dev
);
1161 netif_carrier_off(dev
);
1165 spin_unlock_irqrestore(&cp
->lock
, flags
);
1167 free_irq(dev
->irq
, dev
);
1173 static void cp_tx_timeout(struct net_device
*dev
)
1175 struct cp_private
*cp
= netdev_priv(dev
);
1176 unsigned long flags
;
1179 netdev_warn(dev
, "Transmit timeout, status %2x %4x %4x %4x\n",
1180 cpr8(Cmd
), cpr16(CpCmd
),
1181 cpr16(IntrStatus
), cpr16(IntrMask
));
1183 spin_lock_irqsave(&cp
->lock
, flags
);
1187 rc
= cp_init_rings(cp
);
1190 netif_wake_queue(dev
);
1192 spin_unlock_irqrestore(&cp
->lock
, flags
);
1196 static int cp_change_mtu(struct net_device
*dev
, int new_mtu
)
1198 struct cp_private
*cp
= netdev_priv(dev
);
1200 unsigned long flags
;
1202 /* check for invalid MTU, according to hardware limits */
1203 if (new_mtu
< CP_MIN_MTU
|| new_mtu
> CP_MAX_MTU
)
1206 /* if network interface not up, no need for complexity */
1207 if (!netif_running(dev
)) {
1209 cp_set_rxbufsize(cp
); /* set new rx buf size */
1213 spin_lock_irqsave(&cp
->lock
, flags
);
1215 cp_stop_hw(cp
); /* stop h/w and free rings */
1219 cp_set_rxbufsize(cp
); /* set new rx buf size */
1221 rc
= cp_init_rings(cp
); /* realloc and restart h/w */
1224 spin_unlock_irqrestore(&cp
->lock
, flags
);
1230 static const char mii_2_8139_map
[8] = {
1241 static int mdio_read(struct net_device
*dev
, int phy_id
, int location
)
1243 struct cp_private
*cp
= netdev_priv(dev
);
1245 return location
< 8 && mii_2_8139_map
[location
] ?
1246 readw(cp
->regs
+ mii_2_8139_map
[location
]) : 0;
1250 static void mdio_write(struct net_device
*dev
, int phy_id
, int location
,
1253 struct cp_private
*cp
= netdev_priv(dev
);
1255 if (location
== 0) {
1256 cpw8(Cfg9346
, Cfg9346_Unlock
);
1257 cpw16(BasicModeCtrl
, value
);
1258 cpw8(Cfg9346
, Cfg9346_Lock
);
1259 } else if (location
< 8 && mii_2_8139_map
[location
])
1260 cpw16(mii_2_8139_map
[location
], value
);
1263 /* Set the ethtool Wake-on-LAN settings */
1264 static int netdev_set_wol (struct cp_private
*cp
,
1265 const struct ethtool_wolinfo
*wol
)
1269 options
= cpr8 (Config3
) & ~(LinkUp
| MagicPacket
);
1270 /* If WOL is being disabled, no need for complexity */
1272 if (wol
->wolopts
& WAKE_PHY
) options
|= LinkUp
;
1273 if (wol
->wolopts
& WAKE_MAGIC
) options
|= MagicPacket
;
1276 cpw8 (Cfg9346
, Cfg9346_Unlock
);
1277 cpw8 (Config3
, options
);
1278 cpw8 (Cfg9346
, Cfg9346_Lock
);
1280 options
= 0; /* Paranoia setting */
1281 options
= cpr8 (Config5
) & ~(UWF
| MWF
| BWF
);
1282 /* If WOL is being disabled, no need for complexity */
1284 if (wol
->wolopts
& WAKE_UCAST
) options
|= UWF
;
1285 if (wol
->wolopts
& WAKE_BCAST
) options
|= BWF
;
1286 if (wol
->wolopts
& WAKE_MCAST
) options
|= MWF
;
1289 cpw8 (Config5
, options
);
1291 cp
->wol_enabled
= (wol
->wolopts
) ? 1 : 0;
1296 /* Get the ethtool Wake-on-LAN settings */
1297 static void netdev_get_wol (struct cp_private
*cp
,
1298 struct ethtool_wolinfo
*wol
)
1302 wol
->wolopts
= 0; /* Start from scratch */
1303 wol
->supported
= WAKE_PHY
| WAKE_BCAST
| WAKE_MAGIC
|
1304 WAKE_MCAST
| WAKE_UCAST
;
1305 /* We don't need to go on if WOL is disabled */
1306 if (!cp
->wol_enabled
) return;
1308 options
= cpr8 (Config3
);
1309 if (options
& LinkUp
) wol
->wolopts
|= WAKE_PHY
;
1310 if (options
& MagicPacket
) wol
->wolopts
|= WAKE_MAGIC
;
1312 options
= 0; /* Paranoia setting */
1313 options
= cpr8 (Config5
);
1314 if (options
& UWF
) wol
->wolopts
|= WAKE_UCAST
;
1315 if (options
& BWF
) wol
->wolopts
|= WAKE_BCAST
;
1316 if (options
& MWF
) wol
->wolopts
|= WAKE_MCAST
;
1319 static void cp_get_drvinfo (struct net_device
*dev
, struct ethtool_drvinfo
*info
)
1321 struct cp_private
*cp
= netdev_priv(dev
);
1323 strcpy (info
->driver
, DRV_NAME
);
1324 strcpy (info
->version
, DRV_VERSION
);
1325 strcpy (info
->bus_info
, pci_name(cp
->pdev
));
1328 static int cp_get_regs_len(struct net_device
*dev
)
1330 return CP_REGS_SIZE
;
1333 static int cp_get_sset_count (struct net_device
*dev
, int sset
)
1337 return CP_NUM_STATS
;
1343 static int cp_get_settings(struct net_device
*dev
, struct ethtool_cmd
*cmd
)
1345 struct cp_private
*cp
= netdev_priv(dev
);
1347 unsigned long flags
;
1349 spin_lock_irqsave(&cp
->lock
, flags
);
1350 rc
= mii_ethtool_gset(&cp
->mii_if
, cmd
);
1351 spin_unlock_irqrestore(&cp
->lock
, flags
);
1356 static int cp_set_settings(struct net_device
*dev
, struct ethtool_cmd
*cmd
)
1358 struct cp_private
*cp
= netdev_priv(dev
);
1360 unsigned long flags
;
1362 spin_lock_irqsave(&cp
->lock
, flags
);
1363 rc
= mii_ethtool_sset(&cp
->mii_if
, cmd
);
1364 spin_unlock_irqrestore(&cp
->lock
, flags
);
1369 static int cp_nway_reset(struct net_device
*dev
)
1371 struct cp_private
*cp
= netdev_priv(dev
);
1372 return mii_nway_restart(&cp
->mii_if
);
1375 static u32
cp_get_msglevel(struct net_device
*dev
)
1377 struct cp_private
*cp
= netdev_priv(dev
);
1378 return cp
->msg_enable
;
1381 static void cp_set_msglevel(struct net_device
*dev
, u32 value
)
1383 struct cp_private
*cp
= netdev_priv(dev
);
1384 cp
->msg_enable
= value
;
1387 static int cp_set_features(struct net_device
*dev
, u32 features
)
1389 struct cp_private
*cp
= netdev_priv(dev
);
1390 unsigned long flags
;
1392 if (!((dev
->features
^ features
) & NETIF_F_RXCSUM
))
1395 spin_lock_irqsave(&cp
->lock
, flags
);
1397 if (features
& NETIF_F_RXCSUM
)
1398 cp
->cpcmd
|= RxChkSum
;
1400 cp
->cpcmd
&= ~RxChkSum
;
1402 if (features
& NETIF_F_HW_VLAN_RX
)
1403 cp
->cpcmd
|= RxVlanOn
;
1405 cp
->cpcmd
&= ~RxVlanOn
;
1407 cpw16_f(CpCmd
, cp
->cpcmd
);
1408 spin_unlock_irqrestore(&cp
->lock
, flags
);
1413 static void cp_get_regs(struct net_device
*dev
, struct ethtool_regs
*regs
,
1416 struct cp_private
*cp
= netdev_priv(dev
);
1417 unsigned long flags
;
1419 if (regs
->len
< CP_REGS_SIZE
)
1420 return /* -EINVAL */;
1422 regs
->version
= CP_REGS_VER
;
1424 spin_lock_irqsave(&cp
->lock
, flags
);
1425 memcpy_fromio(p
, cp
->regs
, CP_REGS_SIZE
);
1426 spin_unlock_irqrestore(&cp
->lock
, flags
);
1429 static void cp_get_wol (struct net_device
*dev
, struct ethtool_wolinfo
*wol
)
1431 struct cp_private
*cp
= netdev_priv(dev
);
1432 unsigned long flags
;
1434 spin_lock_irqsave (&cp
->lock
, flags
);
1435 netdev_get_wol (cp
, wol
);
1436 spin_unlock_irqrestore (&cp
->lock
, flags
);
1439 static int cp_set_wol (struct net_device
*dev
, struct ethtool_wolinfo
*wol
)
1441 struct cp_private
*cp
= netdev_priv(dev
);
1442 unsigned long flags
;
1445 spin_lock_irqsave (&cp
->lock
, flags
);
1446 rc
= netdev_set_wol (cp
, wol
);
1447 spin_unlock_irqrestore (&cp
->lock
, flags
);
1452 static void cp_get_strings (struct net_device
*dev
, u32 stringset
, u8
*buf
)
1454 switch (stringset
) {
1456 memcpy(buf
, ðtool_stats_keys
, sizeof(ethtool_stats_keys
));
1464 static void cp_get_ethtool_stats (struct net_device
*dev
,
1465 struct ethtool_stats
*estats
, u64
*tmp_stats
)
1467 struct cp_private
*cp
= netdev_priv(dev
);
1468 struct cp_dma_stats
*nic_stats
;
1472 nic_stats
= dma_alloc_coherent(&cp
->pdev
->dev
, sizeof(*nic_stats
),
1477 /* begin NIC statistics dump */
1478 cpw32(StatsAddr
+ 4, (u64
)dma
>> 32);
1479 cpw32(StatsAddr
, ((u64
)dma
& DMA_BIT_MASK(32)) | DumpStats
);
1482 for (i
= 0; i
< 1000; i
++) {
1483 if ((cpr32(StatsAddr
) & DumpStats
) == 0)
1487 cpw32(StatsAddr
, 0);
1488 cpw32(StatsAddr
+ 4, 0);
1492 tmp_stats
[i
++] = le64_to_cpu(nic_stats
->tx_ok
);
1493 tmp_stats
[i
++] = le64_to_cpu(nic_stats
->rx_ok
);
1494 tmp_stats
[i
++] = le64_to_cpu(nic_stats
->tx_err
);
1495 tmp_stats
[i
++] = le32_to_cpu(nic_stats
->rx_err
);
1496 tmp_stats
[i
++] = le16_to_cpu(nic_stats
->rx_fifo
);
1497 tmp_stats
[i
++] = le16_to_cpu(nic_stats
->frame_align
);
1498 tmp_stats
[i
++] = le32_to_cpu(nic_stats
->tx_ok_1col
);
1499 tmp_stats
[i
++] = le32_to_cpu(nic_stats
->tx_ok_mcol
);
1500 tmp_stats
[i
++] = le64_to_cpu(nic_stats
->rx_ok_phys
);
1501 tmp_stats
[i
++] = le64_to_cpu(nic_stats
->rx_ok_bcast
);
1502 tmp_stats
[i
++] = le32_to_cpu(nic_stats
->rx_ok_mcast
);
1503 tmp_stats
[i
++] = le16_to_cpu(nic_stats
->tx_abort
);
1504 tmp_stats
[i
++] = le16_to_cpu(nic_stats
->tx_underrun
);
1505 tmp_stats
[i
++] = cp
->cp_stats
.rx_frags
;
1506 BUG_ON(i
!= CP_NUM_STATS
);
1508 dma_free_coherent(&cp
->pdev
->dev
, sizeof(*nic_stats
), nic_stats
, dma
);
1511 static const struct ethtool_ops cp_ethtool_ops
= {
1512 .get_drvinfo
= cp_get_drvinfo
,
1513 .get_regs_len
= cp_get_regs_len
,
1514 .get_sset_count
= cp_get_sset_count
,
1515 .get_settings
= cp_get_settings
,
1516 .set_settings
= cp_set_settings
,
1517 .nway_reset
= cp_nway_reset
,
1518 .get_link
= ethtool_op_get_link
,
1519 .get_msglevel
= cp_get_msglevel
,
1520 .set_msglevel
= cp_set_msglevel
,
1521 .get_regs
= cp_get_regs
,
1522 .get_wol
= cp_get_wol
,
1523 .set_wol
= cp_set_wol
,
1524 .get_strings
= cp_get_strings
,
1525 .get_ethtool_stats
= cp_get_ethtool_stats
,
1526 .get_eeprom_len
= cp_get_eeprom_len
,
1527 .get_eeprom
= cp_get_eeprom
,
1528 .set_eeprom
= cp_set_eeprom
,
1531 static int cp_ioctl (struct net_device
*dev
, struct ifreq
*rq
, int cmd
)
1533 struct cp_private
*cp
= netdev_priv(dev
);
1535 unsigned long flags
;
1537 if (!netif_running(dev
))
1540 spin_lock_irqsave(&cp
->lock
, flags
);
1541 rc
= generic_mii_ioctl(&cp
->mii_if
, if_mii(rq
), cmd
, NULL
);
1542 spin_unlock_irqrestore(&cp
->lock
, flags
);
1546 static int cp_set_mac_address(struct net_device
*dev
, void *p
)
1548 struct cp_private
*cp
= netdev_priv(dev
);
1549 struct sockaddr
*addr
= p
;
1551 if (!is_valid_ether_addr(addr
->sa_data
))
1552 return -EADDRNOTAVAIL
;
1554 memcpy(dev
->dev_addr
, addr
->sa_data
, dev
->addr_len
);
1556 spin_lock_irq(&cp
->lock
);
1558 cpw8_f(Cfg9346
, Cfg9346_Unlock
);
1559 cpw32_f(MAC0
+ 0, le32_to_cpu (*(__le32
*) (dev
->dev_addr
+ 0)));
1560 cpw32_f(MAC0
+ 4, le32_to_cpu (*(__le32
*) (dev
->dev_addr
+ 4)));
1561 cpw8_f(Cfg9346
, Cfg9346_Lock
);
1563 spin_unlock_irq(&cp
->lock
);
1568 /* Serial EEPROM section. */
1570 /* EEPROM_Ctrl bits. */
1571 #define EE_SHIFT_CLK 0x04 /* EEPROM shift clock. */
1572 #define EE_CS 0x08 /* EEPROM chip select. */
1573 #define EE_DATA_WRITE 0x02 /* EEPROM chip data in. */
1574 #define EE_WRITE_0 0x00
1575 #define EE_WRITE_1 0x02
1576 #define EE_DATA_READ 0x01 /* EEPROM chip data out. */
1577 #define EE_ENB (0x80 | EE_CS)
1579 /* Delay between EEPROM clock transitions.
1580 No extra delay is needed with 33Mhz PCI, but 66Mhz may change this.
1583 #define eeprom_delay() readl(ee_addr)
1585 /* The EEPROM commands include the alway-set leading bit. */
1586 #define EE_EXTEND_CMD (4)
1587 #define EE_WRITE_CMD (5)
1588 #define EE_READ_CMD (6)
1589 #define EE_ERASE_CMD (7)
1591 #define EE_EWDS_ADDR (0)
1592 #define EE_WRAL_ADDR (1)
1593 #define EE_ERAL_ADDR (2)
1594 #define EE_EWEN_ADDR (3)
1596 #define CP_EEPROM_MAGIC PCI_DEVICE_ID_REALTEK_8139
1598 static void eeprom_cmd_start(void __iomem
*ee_addr
)
1600 writeb (EE_ENB
& ~EE_CS
, ee_addr
);
1601 writeb (EE_ENB
, ee_addr
);
1605 static void eeprom_cmd(void __iomem
*ee_addr
, int cmd
, int cmd_len
)
1609 /* Shift the command bits out. */
1610 for (i
= cmd_len
- 1; i
>= 0; i
--) {
1611 int dataval
= (cmd
& (1 << i
)) ? EE_DATA_WRITE
: 0;
1612 writeb (EE_ENB
| dataval
, ee_addr
);
1614 writeb (EE_ENB
| dataval
| EE_SHIFT_CLK
, ee_addr
);
1617 writeb (EE_ENB
, ee_addr
);
1621 static void eeprom_cmd_end(void __iomem
*ee_addr
)
1623 writeb (~EE_CS
, ee_addr
);
1627 static void eeprom_extend_cmd(void __iomem
*ee_addr
, int extend_cmd
,
1630 int cmd
= (EE_EXTEND_CMD
<< addr_len
) | (extend_cmd
<< (addr_len
- 2));
1632 eeprom_cmd_start(ee_addr
);
1633 eeprom_cmd(ee_addr
, cmd
, 3 + addr_len
);
1634 eeprom_cmd_end(ee_addr
);
1637 static u16
read_eeprom (void __iomem
*ioaddr
, int location
, int addr_len
)
1641 void __iomem
*ee_addr
= ioaddr
+ Cfg9346
;
1642 int read_cmd
= location
| (EE_READ_CMD
<< addr_len
);
1644 eeprom_cmd_start(ee_addr
);
1645 eeprom_cmd(ee_addr
, read_cmd
, 3 + addr_len
);
1647 for (i
= 16; i
> 0; i
--) {
1648 writeb (EE_ENB
| EE_SHIFT_CLK
, ee_addr
);
1651 (retval
<< 1) | ((readb (ee_addr
) & EE_DATA_READ
) ? 1 :
1653 writeb (EE_ENB
, ee_addr
);
1657 eeprom_cmd_end(ee_addr
);
1662 static void write_eeprom(void __iomem
*ioaddr
, int location
, u16 val
,
1666 void __iomem
*ee_addr
= ioaddr
+ Cfg9346
;
1667 int write_cmd
= location
| (EE_WRITE_CMD
<< addr_len
);
1669 eeprom_extend_cmd(ee_addr
, EE_EWEN_ADDR
, addr_len
);
1671 eeprom_cmd_start(ee_addr
);
1672 eeprom_cmd(ee_addr
, write_cmd
, 3 + addr_len
);
1673 eeprom_cmd(ee_addr
, val
, 16);
1674 eeprom_cmd_end(ee_addr
);
1676 eeprom_cmd_start(ee_addr
);
1677 for (i
= 0; i
< 20000; i
++)
1678 if (readb(ee_addr
) & EE_DATA_READ
)
1680 eeprom_cmd_end(ee_addr
);
1682 eeprom_extend_cmd(ee_addr
, EE_EWDS_ADDR
, addr_len
);
1685 static int cp_get_eeprom_len(struct net_device
*dev
)
1687 struct cp_private
*cp
= netdev_priv(dev
);
1690 spin_lock_irq(&cp
->lock
);
1691 size
= read_eeprom(cp
->regs
, 0, 8) == 0x8129 ? 256 : 128;
1692 spin_unlock_irq(&cp
->lock
);
1697 static int cp_get_eeprom(struct net_device
*dev
,
1698 struct ethtool_eeprom
*eeprom
, u8
*data
)
1700 struct cp_private
*cp
= netdev_priv(dev
);
1701 unsigned int addr_len
;
1703 u32 offset
= eeprom
->offset
>> 1;
1704 u32 len
= eeprom
->len
;
1707 eeprom
->magic
= CP_EEPROM_MAGIC
;
1709 spin_lock_irq(&cp
->lock
);
1711 addr_len
= read_eeprom(cp
->regs
, 0, 8) == 0x8129 ? 8 : 6;
1713 if (eeprom
->offset
& 1) {
1714 val
= read_eeprom(cp
->regs
, offset
, addr_len
);
1715 data
[i
++] = (u8
)(val
>> 8);
1719 while (i
< len
- 1) {
1720 val
= read_eeprom(cp
->regs
, offset
, addr_len
);
1721 data
[i
++] = (u8
)val
;
1722 data
[i
++] = (u8
)(val
>> 8);
1727 val
= read_eeprom(cp
->regs
, offset
, addr_len
);
1731 spin_unlock_irq(&cp
->lock
);
1735 static int cp_set_eeprom(struct net_device
*dev
,
1736 struct ethtool_eeprom
*eeprom
, u8
*data
)
1738 struct cp_private
*cp
= netdev_priv(dev
);
1739 unsigned int addr_len
;
1741 u32 offset
= eeprom
->offset
>> 1;
1742 u32 len
= eeprom
->len
;
1745 if (eeprom
->magic
!= CP_EEPROM_MAGIC
)
1748 spin_lock_irq(&cp
->lock
);
1750 addr_len
= read_eeprom(cp
->regs
, 0, 8) == 0x8129 ? 8 : 6;
1752 if (eeprom
->offset
& 1) {
1753 val
= read_eeprom(cp
->regs
, offset
, addr_len
) & 0xff;
1754 val
|= (u16
)data
[i
++] << 8;
1755 write_eeprom(cp
->regs
, offset
, val
, addr_len
);
1759 while (i
< len
- 1) {
1760 val
= (u16
)data
[i
++];
1761 val
|= (u16
)data
[i
++] << 8;
1762 write_eeprom(cp
->regs
, offset
, val
, addr_len
);
1767 val
= read_eeprom(cp
->regs
, offset
, addr_len
) & 0xff00;
1768 val
|= (u16
)data
[i
];
1769 write_eeprom(cp
->regs
, offset
, val
, addr_len
);
1772 spin_unlock_irq(&cp
->lock
);
1776 /* Put the board into D3cold state and wait for WakeUp signal */
1777 static void cp_set_d3_state (struct cp_private
*cp
)
1779 pci_enable_wake (cp
->pdev
, 0, 1); /* Enable PME# generation */
1780 pci_set_power_state (cp
->pdev
, PCI_D3hot
);
1783 static const struct net_device_ops cp_netdev_ops
= {
1784 .ndo_open
= cp_open
,
1785 .ndo_stop
= cp_close
,
1786 .ndo_validate_addr
= eth_validate_addr
,
1787 .ndo_set_mac_address
= cp_set_mac_address
,
1788 .ndo_set_multicast_list
= cp_set_rx_mode
,
1789 .ndo_get_stats
= cp_get_stats
,
1790 .ndo_do_ioctl
= cp_ioctl
,
1791 .ndo_start_xmit
= cp_start_xmit
,
1792 .ndo_tx_timeout
= cp_tx_timeout
,
1793 .ndo_set_features
= cp_set_features
,
1795 .ndo_change_mtu
= cp_change_mtu
,
1798 #ifdef CONFIG_NET_POLL_CONTROLLER
1799 .ndo_poll_controller
= cp_poll_controller
,
1803 static int cp_init_one (struct pci_dev
*pdev
, const struct pci_device_id
*ent
)
1805 struct net_device
*dev
;
1806 struct cp_private
*cp
;
1809 resource_size_t pciaddr
;
1810 unsigned int addr_len
, i
, pci_using_dac
;
1813 static int version_printed
;
1814 if (version_printed
++ == 0)
1815 pr_info("%s", version
);
1818 if (pdev
->vendor
== PCI_VENDOR_ID_REALTEK
&&
1819 pdev
->device
== PCI_DEVICE_ID_REALTEK_8139
&& pdev
->revision
< 0x20) {
1820 dev_info(&pdev
->dev
,
1821 "This (id %04x:%04x rev %02x) is not an 8139C+ compatible chip, use 8139too\n",
1822 pdev
->vendor
, pdev
->device
, pdev
->revision
);
1826 dev
= alloc_etherdev(sizeof(struct cp_private
));
1829 SET_NETDEV_DEV(dev
, &pdev
->dev
);
1831 cp
= netdev_priv(dev
);
1834 cp
->msg_enable
= (debug
< 0 ? CP_DEF_MSG_ENABLE
: debug
);
1835 spin_lock_init (&cp
->lock
);
1836 cp
->mii_if
.dev
= dev
;
1837 cp
->mii_if
.mdio_read
= mdio_read
;
1838 cp
->mii_if
.mdio_write
= mdio_write
;
1839 cp
->mii_if
.phy_id
= CP_INTERNAL_PHY
;
1840 cp
->mii_if
.phy_id_mask
= 0x1f;
1841 cp
->mii_if
.reg_num_mask
= 0x1f;
1842 cp_set_rxbufsize(cp
);
1844 rc
= pci_enable_device(pdev
);
1848 rc
= pci_set_mwi(pdev
);
1850 goto err_out_disable
;
1852 rc
= pci_request_regions(pdev
, DRV_NAME
);
1856 pciaddr
= pci_resource_start(pdev
, 1);
1859 dev_err(&pdev
->dev
, "no MMIO resource\n");
1862 if (pci_resource_len(pdev
, 1) < CP_REGS_SIZE
) {
1864 dev_err(&pdev
->dev
, "MMIO resource (%llx) too small\n",
1865 (unsigned long long)pci_resource_len(pdev
, 1));
1869 /* Configure DMA attributes. */
1870 if ((sizeof(dma_addr_t
) > 4) &&
1871 !pci_set_consistent_dma_mask(pdev
, DMA_BIT_MASK(64)) &&
1872 !pci_set_dma_mask(pdev
, DMA_BIT_MASK(64))) {
1877 rc
= pci_set_dma_mask(pdev
, DMA_BIT_MASK(32));
1880 "No usable DMA configuration, aborting\n");
1883 rc
= pci_set_consistent_dma_mask(pdev
, DMA_BIT_MASK(32));
1886 "No usable consistent DMA configuration, aborting\n");
1891 cp
->cpcmd
= (pci_using_dac
? PCIDAC
: 0) |
1892 PCIMulRW
| RxChkSum
| CpRxOn
| CpTxOn
;
1894 dev
->features
|= NETIF_F_RXCSUM
;
1895 dev
->hw_features
|= NETIF_F_RXCSUM
;
1897 regs
= ioremap(pciaddr
, CP_REGS_SIZE
);
1900 dev_err(&pdev
->dev
, "Cannot map PCI MMIO (%Lx@%Lx)\n",
1901 (unsigned long long)pci_resource_len(pdev
, 1),
1902 (unsigned long long)pciaddr
);
1905 dev
->base_addr
= (unsigned long) regs
;
1910 /* read MAC address from EEPROM */
1911 addr_len
= read_eeprom (regs
, 0, 8) == 0x8129 ? 8 : 6;
1912 for (i
= 0; i
< 3; i
++)
1913 ((__le16
*) (dev
->dev_addr
))[i
] =
1914 cpu_to_le16(read_eeprom (regs
, i
+ 7, addr_len
));
1915 memcpy(dev
->perm_addr
, dev
->dev_addr
, dev
->addr_len
);
1917 dev
->netdev_ops
= &cp_netdev_ops
;
1918 netif_napi_add(dev
, &cp
->napi
, cp_rx_poll
, 16);
1919 dev
->ethtool_ops
= &cp_ethtool_ops
;
1920 dev
->watchdog_timeo
= TX_TIMEOUT
;
1922 dev
->features
|= NETIF_F_HW_VLAN_TX
| NETIF_F_HW_VLAN_RX
;
1925 dev
->features
|= NETIF_F_HIGHDMA
;
1927 /* disabled by default until verified */
1928 dev
->hw_features
|= NETIF_F_SG
| NETIF_F_IP_CSUM
| NETIF_F_TSO
|
1929 NETIF_F_HW_VLAN_TX
| NETIF_F_HW_VLAN_RX
;
1930 dev
->vlan_features
= NETIF_F_SG
| NETIF_F_IP_CSUM
| NETIF_F_TSO
|
1933 dev
->irq
= pdev
->irq
;
1935 rc
= register_netdev(dev
);
1939 netdev_info(dev
, "RTL-8139C+ at 0x%lx, %pM, IRQ %d\n",
1940 dev
->base_addr
, dev
->dev_addr
, dev
->irq
);
1942 pci_set_drvdata(pdev
, dev
);
1944 /* enable busmastering and memory-write-invalidate */
1945 pci_set_master(pdev
);
1947 if (cp
->wol_enabled
)
1948 cp_set_d3_state (cp
);
1955 pci_release_regions(pdev
);
1957 pci_clear_mwi(pdev
);
1959 pci_disable_device(pdev
);
1965 static void cp_remove_one (struct pci_dev
*pdev
)
1967 struct net_device
*dev
= pci_get_drvdata(pdev
);
1968 struct cp_private
*cp
= netdev_priv(dev
);
1970 unregister_netdev(dev
);
1972 if (cp
->wol_enabled
)
1973 pci_set_power_state (pdev
, PCI_D0
);
1974 pci_release_regions(pdev
);
1975 pci_clear_mwi(pdev
);
1976 pci_disable_device(pdev
);
1977 pci_set_drvdata(pdev
, NULL
);
1982 static int cp_suspend (struct pci_dev
*pdev
, pm_message_t state
)
1984 struct net_device
*dev
= pci_get_drvdata(pdev
);
1985 struct cp_private
*cp
= netdev_priv(dev
);
1986 unsigned long flags
;
1988 if (!netif_running(dev
))
1991 netif_device_detach (dev
);
1992 netif_stop_queue (dev
);
1994 spin_lock_irqsave (&cp
->lock
, flags
);
1996 /* Disable Rx and Tx */
1997 cpw16 (IntrMask
, 0);
1998 cpw8 (Cmd
, cpr8 (Cmd
) & (~RxOn
| ~TxOn
));
2000 spin_unlock_irqrestore (&cp
->lock
, flags
);
2002 pci_save_state(pdev
);
2003 pci_enable_wake(pdev
, pci_choose_state(pdev
, state
), cp
->wol_enabled
);
2004 pci_set_power_state(pdev
, pci_choose_state(pdev
, state
));
2009 static int cp_resume (struct pci_dev
*pdev
)
2011 struct net_device
*dev
= pci_get_drvdata (pdev
);
2012 struct cp_private
*cp
= netdev_priv(dev
);
2013 unsigned long flags
;
2015 if (!netif_running(dev
))
2018 netif_device_attach (dev
);
2020 pci_set_power_state(pdev
, PCI_D0
);
2021 pci_restore_state(pdev
);
2022 pci_enable_wake(pdev
, PCI_D0
, 0);
2024 /* FIXME: sh*t may happen if the Rx ring buffer is depleted */
2025 cp_init_rings_index (cp
);
2027 netif_start_queue (dev
);
2029 spin_lock_irqsave (&cp
->lock
, flags
);
2031 mii_check_media(&cp
->mii_if
, netif_msg_link(cp
), false);
2033 spin_unlock_irqrestore (&cp
->lock
, flags
);
2037 #endif /* CONFIG_PM */
2039 static struct pci_driver cp_driver
= {
2041 .id_table
= cp_pci_tbl
,
2042 .probe
= cp_init_one
,
2043 .remove
= cp_remove_one
,
2045 .resume
= cp_resume
,
2046 .suspend
= cp_suspend
,
2050 static int __init
cp_init (void)
2053 pr_info("%s", version
);
2055 return pci_register_driver(&cp_driver
);
2058 static void __exit
cp_exit (void)
2060 pci_unregister_driver (&cp_driver
);
2063 module_init(cp_init
);
2064 module_exit(cp_exit
);