4 * Processor and Memory placement constraints for sets of tasks.
6 * Copyright (C) 2003 BULL SA.
7 * Copyright (C) 2004 Silicon Graphics, Inc.
9 * Portions derived from Patrick Mochel's sysfs code.
10 * sysfs is Copyright (c) 2001-3 Patrick Mochel
11 * Portions Copyright (c) 2004 Silicon Graphics, Inc.
13 * 2003-10-10 Written by Simon Derr <simon.derr@bull.net>
14 * 2003-10-22 Updates by Stephen Hemminger.
15 * 2004 May-July Rework by Paul Jackson <pj@sgi.com>
17 * This file is subject to the terms and conditions of the GNU General Public
18 * License. See the file COPYING in the main directory of the Linux
19 * distribution for more details.
22 #include <linux/config.h>
23 #include <linux/cpu.h>
24 #include <linux/cpumask.h>
25 #include <linux/cpuset.h>
26 #include <linux/err.h>
27 #include <linux/errno.h>
28 #include <linux/file.h>
30 #include <linux/init.h>
31 #include <linux/interrupt.h>
32 #include <linux/kernel.h>
33 #include <linux/kmod.h>
34 #include <linux/list.h>
35 #include <linux/mempolicy.h>
37 #include <linux/module.h>
38 #include <linux/mount.h>
39 #include <linux/namei.h>
40 #include <linux/pagemap.h>
41 #include <linux/proc_fs.h>
42 #include <linux/rcupdate.h>
43 #include <linux/sched.h>
44 #include <linux/seq_file.h>
45 #include <linux/slab.h>
46 #include <linux/smp_lock.h>
47 #include <linux/spinlock.h>
48 #include <linux/stat.h>
49 #include <linux/string.h>
50 #include <linux/time.h>
51 #include <linux/backing-dev.h>
52 #include <linux/sort.h>
54 #include <asm/uaccess.h>
55 #include <asm/atomic.h>
56 #include <asm/semaphore.h>
58 #define CPUSET_SUPER_MAGIC 0x27e0eb
61 * Tracks how many cpusets are currently defined in system.
62 * When there is only one cpuset (the root cpuset) we can
63 * short circuit some hooks.
65 int number_of_cpusets __read_mostly
;
67 /* See "Frequency meter" comments, below. */
70 int cnt
; /* unprocessed events count */
71 int val
; /* most recent output value */
72 time_t time
; /* clock (secs) when val computed */
73 spinlock_t lock
; /* guards read or write of above */
77 unsigned long flags
; /* "unsigned long" so bitops work */
78 cpumask_t cpus_allowed
; /* CPUs allowed to tasks in cpuset */
79 nodemask_t mems_allowed
; /* Memory Nodes allowed to tasks */
82 * Count is atomic so can incr (fork) or decr (exit) without a lock.
84 atomic_t count
; /* count tasks using this cpuset */
87 * We link our 'sibling' struct into our parents 'children'.
88 * Our children link their 'sibling' into our 'children'.
90 struct list_head sibling
; /* my parents children */
91 struct list_head children
; /* my children */
93 struct cpuset
*parent
; /* my parent */
94 struct dentry
*dentry
; /* cpuset fs entry */
97 * Copy of global cpuset_mems_generation as of the most
98 * recent time this cpuset changed its mems_allowed.
102 struct fmeter fmeter
; /* memory_pressure filter */
105 /* bits in struct cpuset flags field */
114 /* convenient tests for these bits */
115 static inline int is_cpu_exclusive(const struct cpuset
*cs
)
117 return !!test_bit(CS_CPU_EXCLUSIVE
, &cs
->flags
);
120 static inline int is_mem_exclusive(const struct cpuset
*cs
)
122 return !!test_bit(CS_MEM_EXCLUSIVE
, &cs
->flags
);
125 static inline int is_removed(const struct cpuset
*cs
)
127 return !!test_bit(CS_REMOVED
, &cs
->flags
);
130 static inline int notify_on_release(const struct cpuset
*cs
)
132 return !!test_bit(CS_NOTIFY_ON_RELEASE
, &cs
->flags
);
135 static inline int is_memory_migrate(const struct cpuset
*cs
)
137 return !!test_bit(CS_MEMORY_MIGRATE
, &cs
->flags
);
141 * Increment this atomic integer everytime any cpuset changes its
142 * mems_allowed value. Users of cpusets can track this generation
143 * number, and avoid having to lock and reload mems_allowed unless
144 * the cpuset they're using changes generation.
146 * A single, global generation is needed because attach_task() could
147 * reattach a task to a different cpuset, which must not have its
148 * generation numbers aliased with those of that tasks previous cpuset.
150 * Generations are needed for mems_allowed because one task cannot
151 * modify anothers memory placement. So we must enable every task,
152 * on every visit to __alloc_pages(), to efficiently check whether
153 * its current->cpuset->mems_allowed has changed, requiring an update
154 * of its current->mems_allowed.
156 static atomic_t cpuset_mems_generation
= ATOMIC_INIT(1);
158 static struct cpuset top_cpuset
= {
159 .flags
= ((1 << CS_CPU_EXCLUSIVE
) | (1 << CS_MEM_EXCLUSIVE
)),
160 .cpus_allowed
= CPU_MASK_ALL
,
161 .mems_allowed
= NODE_MASK_ALL
,
162 .count
= ATOMIC_INIT(0),
163 .sibling
= LIST_HEAD_INIT(top_cpuset
.sibling
),
164 .children
= LIST_HEAD_INIT(top_cpuset
.children
),
167 static struct vfsmount
*cpuset_mount
;
168 static struct super_block
*cpuset_sb
;
171 * We have two global cpuset semaphores below. They can nest.
172 * It is ok to first take manage_sem, then nest callback_sem. We also
173 * require taking task_lock() when dereferencing a tasks cpuset pointer.
174 * See "The task_lock() exception", at the end of this comment.
176 * A task must hold both semaphores to modify cpusets. If a task
177 * holds manage_sem, then it blocks others wanting that semaphore,
178 * ensuring that it is the only task able to also acquire callback_sem
179 * and be able to modify cpusets. It can perform various checks on
180 * the cpuset structure first, knowing nothing will change. It can
181 * also allocate memory while just holding manage_sem. While it is
182 * performing these checks, various callback routines can briefly
183 * acquire callback_sem to query cpusets. Once it is ready to make
184 * the changes, it takes callback_sem, blocking everyone else.
186 * Calls to the kernel memory allocator can not be made while holding
187 * callback_sem, as that would risk double tripping on callback_sem
188 * from one of the callbacks into the cpuset code from within
191 * If a task is only holding callback_sem, then it has read-only
194 * The task_struct fields mems_allowed and mems_generation may only
195 * be accessed in the context of that task, so require no locks.
197 * Any task can increment and decrement the count field without lock.
198 * So in general, code holding manage_sem or callback_sem can't rely
199 * on the count field not changing. However, if the count goes to
200 * zero, then only attach_task(), which holds both semaphores, can
201 * increment it again. Because a count of zero means that no tasks
202 * are currently attached, therefore there is no way a task attached
203 * to that cpuset can fork (the other way to increment the count).
204 * So code holding manage_sem or callback_sem can safely assume that
205 * if the count is zero, it will stay zero. Similarly, if a task
206 * holds manage_sem or callback_sem on a cpuset with zero count, it
207 * knows that the cpuset won't be removed, as cpuset_rmdir() needs
208 * both of those semaphores.
210 * A possible optimization to improve parallelism would be to make
211 * callback_sem a R/W semaphore (rwsem), allowing the callback routines
212 * to proceed in parallel, with read access, until the holder of
213 * manage_sem needed to take this rwsem for exclusive write access
214 * and modify some cpusets.
216 * The cpuset_common_file_write handler for operations that modify
217 * the cpuset hierarchy holds manage_sem across the entire operation,
218 * single threading all such cpuset modifications across the system.
220 * The cpuset_common_file_read() handlers only hold callback_sem across
221 * small pieces of code, such as when reading out possibly multi-word
222 * cpumasks and nodemasks.
224 * The fork and exit callbacks cpuset_fork() and cpuset_exit(), don't
225 * (usually) take either semaphore. These are the two most performance
226 * critical pieces of code here. The exception occurs on cpuset_exit(),
227 * when a task in a notify_on_release cpuset exits. Then manage_sem
228 * is taken, and if the cpuset count is zero, a usermode call made
229 * to /sbin/cpuset_release_agent with the name of the cpuset (path
230 * relative to the root of cpuset file system) as the argument.
232 * A cpuset can only be deleted if both its 'count' of using tasks
233 * is zero, and its list of 'children' cpusets is empty. Since all
234 * tasks in the system use _some_ cpuset, and since there is always at
235 * least one task in the system (init, pid == 1), therefore, top_cpuset
236 * always has either children cpusets and/or using tasks. So we don't
237 * need a special hack to ensure that top_cpuset cannot be deleted.
239 * The above "Tale of Two Semaphores" would be complete, but for:
241 * The task_lock() exception
243 * The need for this exception arises from the action of attach_task(),
244 * which overwrites one tasks cpuset pointer with another. It does
245 * so using both semaphores, however there are several performance
246 * critical places that need to reference task->cpuset without the
247 * expense of grabbing a system global semaphore. Therefore except as
248 * noted below, when dereferencing or, as in attach_task(), modifying
249 * a tasks cpuset pointer we use task_lock(), which acts on a spinlock
250 * (task->alloc_lock) already in the task_struct routinely used for
253 * P.S. One more locking exception. RCU is used to guard the
254 * update of a tasks cpuset pointer by attach_task() and the
255 * access of task->cpuset->mems_generation via that pointer in
256 * the routine cpuset_update_task_memory_state().
259 static DECLARE_MUTEX(manage_sem
);
260 static DECLARE_MUTEX(callback_sem
);
263 * A couple of forward declarations required, due to cyclic reference loop:
264 * cpuset_mkdir -> cpuset_create -> cpuset_populate_dir -> cpuset_add_file
265 * -> cpuset_create_file -> cpuset_dir_inode_operations -> cpuset_mkdir.
268 static int cpuset_mkdir(struct inode
*dir
, struct dentry
*dentry
, int mode
);
269 static int cpuset_rmdir(struct inode
*unused_dir
, struct dentry
*dentry
);
271 static struct backing_dev_info cpuset_backing_dev_info
= {
272 .ra_pages
= 0, /* No readahead */
273 .capabilities
= BDI_CAP_NO_ACCT_DIRTY
| BDI_CAP_NO_WRITEBACK
,
276 static struct inode
*cpuset_new_inode(mode_t mode
)
278 struct inode
*inode
= new_inode(cpuset_sb
);
281 inode
->i_mode
= mode
;
282 inode
->i_uid
= current
->fsuid
;
283 inode
->i_gid
= current
->fsgid
;
284 inode
->i_blksize
= PAGE_CACHE_SIZE
;
286 inode
->i_atime
= inode
->i_mtime
= inode
->i_ctime
= CURRENT_TIME
;
287 inode
->i_mapping
->backing_dev_info
= &cpuset_backing_dev_info
;
292 static void cpuset_diput(struct dentry
*dentry
, struct inode
*inode
)
294 /* is dentry a directory ? if so, kfree() associated cpuset */
295 if (S_ISDIR(inode
->i_mode
)) {
296 struct cpuset
*cs
= dentry
->d_fsdata
;
297 BUG_ON(!(is_removed(cs
)));
303 static struct dentry_operations cpuset_dops
= {
304 .d_iput
= cpuset_diput
,
307 static struct dentry
*cpuset_get_dentry(struct dentry
*parent
, const char *name
)
309 struct dentry
*d
= lookup_one_len(name
, parent
, strlen(name
));
311 d
->d_op
= &cpuset_dops
;
315 static void remove_dir(struct dentry
*d
)
317 struct dentry
*parent
= dget(d
->d_parent
);
320 simple_rmdir(parent
->d_inode
, d
);
325 * NOTE : the dentry must have been dget()'ed
327 static void cpuset_d_remove_dir(struct dentry
*dentry
)
329 struct list_head
*node
;
331 spin_lock(&dcache_lock
);
332 node
= dentry
->d_subdirs
.next
;
333 while (node
!= &dentry
->d_subdirs
) {
334 struct dentry
*d
= list_entry(node
, struct dentry
, d_u
.d_child
);
338 spin_unlock(&dcache_lock
);
340 simple_unlink(dentry
->d_inode
, d
);
342 spin_lock(&dcache_lock
);
344 node
= dentry
->d_subdirs
.next
;
346 list_del_init(&dentry
->d_u
.d_child
);
347 spin_unlock(&dcache_lock
);
351 static struct super_operations cpuset_ops
= {
352 .statfs
= simple_statfs
,
353 .drop_inode
= generic_delete_inode
,
356 static int cpuset_fill_super(struct super_block
*sb
, void *unused_data
,
362 sb
->s_blocksize
= PAGE_CACHE_SIZE
;
363 sb
->s_blocksize_bits
= PAGE_CACHE_SHIFT
;
364 sb
->s_magic
= CPUSET_SUPER_MAGIC
;
365 sb
->s_op
= &cpuset_ops
;
368 inode
= cpuset_new_inode(S_IFDIR
| S_IRUGO
| S_IXUGO
| S_IWUSR
);
370 inode
->i_op
= &simple_dir_inode_operations
;
371 inode
->i_fop
= &simple_dir_operations
;
372 /* directories start off with i_nlink == 2 (for "." entry) */
378 root
= d_alloc_root(inode
);
387 static struct super_block
*cpuset_get_sb(struct file_system_type
*fs_type
,
388 int flags
, const char *unused_dev_name
,
391 return get_sb_single(fs_type
, flags
, data
, cpuset_fill_super
);
394 static struct file_system_type cpuset_fs_type
= {
396 .get_sb
= cpuset_get_sb
,
397 .kill_sb
= kill_litter_super
,
402 * The files in the cpuset filesystem mostly have a very simple read/write
403 * handling, some common function will take care of it. Nevertheless some cases
404 * (read tasks) are special and therefore I define this structure for every
408 * When reading/writing to a file:
409 * - the cpuset to use in file->f_dentry->d_parent->d_fsdata
410 * - the 'cftype' of the file is file->f_dentry->d_fsdata
416 int (*open
) (struct inode
*inode
, struct file
*file
);
417 ssize_t (*read
) (struct file
*file
, char __user
*buf
, size_t nbytes
,
419 int (*write
) (struct file
*file
, const char __user
*buf
, size_t nbytes
,
421 int (*release
) (struct inode
*inode
, struct file
*file
);
424 static inline struct cpuset
*__d_cs(struct dentry
*dentry
)
426 return dentry
->d_fsdata
;
429 static inline struct cftype
*__d_cft(struct dentry
*dentry
)
431 return dentry
->d_fsdata
;
435 * Call with manage_sem held. Writes path of cpuset into buf.
436 * Returns 0 on success, -errno on error.
439 static int cpuset_path(const struct cpuset
*cs
, char *buf
, int buflen
)
443 start
= buf
+ buflen
;
447 int len
= cs
->dentry
->d_name
.len
;
448 if ((start
-= len
) < buf
)
449 return -ENAMETOOLONG
;
450 memcpy(start
, cs
->dentry
->d_name
.name
, len
);
457 return -ENAMETOOLONG
;
460 memmove(buf
, start
, buf
+ buflen
- start
);
465 * Notify userspace when a cpuset is released, by running
466 * /sbin/cpuset_release_agent with the name of the cpuset (path
467 * relative to the root of cpuset file system) as the argument.
469 * Most likely, this user command will try to rmdir this cpuset.
471 * This races with the possibility that some other task will be
472 * attached to this cpuset before it is removed, or that some other
473 * user task will 'mkdir' a child cpuset of this cpuset. That's ok.
474 * The presumed 'rmdir' will fail quietly if this cpuset is no longer
475 * unused, and this cpuset will be reprieved from its death sentence,
476 * to continue to serve a useful existence. Next time it's released,
477 * we will get notified again, if it still has 'notify_on_release' set.
479 * The final arg to call_usermodehelper() is 0, which means don't
480 * wait. The separate /sbin/cpuset_release_agent task is forked by
481 * call_usermodehelper(), then control in this thread returns here,
482 * without waiting for the release agent task. We don't bother to
483 * wait because the caller of this routine has no use for the exit
484 * status of the /sbin/cpuset_release_agent task, so no sense holding
485 * our caller up for that.
487 * When we had only one cpuset semaphore, we had to call this
488 * without holding it, to avoid deadlock when call_usermodehelper()
489 * allocated memory. With two locks, we could now call this while
490 * holding manage_sem, but we still don't, so as to minimize
491 * the time manage_sem is held.
494 static void cpuset_release_agent(const char *pathbuf
)
496 char *argv
[3], *envp
[3];
503 argv
[i
++] = "/sbin/cpuset_release_agent";
504 argv
[i
++] = (char *)pathbuf
;
508 /* minimal command environment */
509 envp
[i
++] = "HOME=/";
510 envp
[i
++] = "PATH=/sbin:/bin:/usr/sbin:/usr/bin";
513 call_usermodehelper(argv
[0], argv
, envp
, 0);
518 * Either cs->count of using tasks transitioned to zero, or the
519 * cs->children list of child cpusets just became empty. If this
520 * cs is notify_on_release() and now both the user count is zero and
521 * the list of children is empty, prepare cpuset path in a kmalloc'd
522 * buffer, to be returned via ppathbuf, so that the caller can invoke
523 * cpuset_release_agent() with it later on, once manage_sem is dropped.
524 * Call here with manage_sem held.
526 * This check_for_release() routine is responsible for kmalloc'ing
527 * pathbuf. The above cpuset_release_agent() is responsible for
528 * kfree'ing pathbuf. The caller of these routines is responsible
529 * for providing a pathbuf pointer, initialized to NULL, then
530 * calling check_for_release() with manage_sem held and the address
531 * of the pathbuf pointer, then dropping manage_sem, then calling
532 * cpuset_release_agent() with pathbuf, as set by check_for_release().
535 static void check_for_release(struct cpuset
*cs
, char **ppathbuf
)
537 if (notify_on_release(cs
) && atomic_read(&cs
->count
) == 0 &&
538 list_empty(&cs
->children
)) {
541 buf
= kmalloc(PAGE_SIZE
, GFP_KERNEL
);
544 if (cpuset_path(cs
, buf
, PAGE_SIZE
) < 0)
552 * Return in *pmask the portion of a cpusets's cpus_allowed that
553 * are online. If none are online, walk up the cpuset hierarchy
554 * until we find one that does have some online cpus. If we get
555 * all the way to the top and still haven't found any online cpus,
556 * return cpu_online_map. Or if passed a NULL cs from an exit'ing
557 * task, return cpu_online_map.
559 * One way or another, we guarantee to return some non-empty subset
562 * Call with callback_sem held.
565 static void guarantee_online_cpus(const struct cpuset
*cs
, cpumask_t
*pmask
)
567 while (cs
&& !cpus_intersects(cs
->cpus_allowed
, cpu_online_map
))
570 cpus_and(*pmask
, cs
->cpus_allowed
, cpu_online_map
);
572 *pmask
= cpu_online_map
;
573 BUG_ON(!cpus_intersects(*pmask
, cpu_online_map
));
577 * Return in *pmask the portion of a cpusets's mems_allowed that
578 * are online. If none are online, walk up the cpuset hierarchy
579 * until we find one that does have some online mems. If we get
580 * all the way to the top and still haven't found any online mems,
581 * return node_online_map.
583 * One way or another, we guarantee to return some non-empty subset
584 * of node_online_map.
586 * Call with callback_sem held.
589 static void guarantee_online_mems(const struct cpuset
*cs
, nodemask_t
*pmask
)
591 while (cs
&& !nodes_intersects(cs
->mems_allowed
, node_online_map
))
594 nodes_and(*pmask
, cs
->mems_allowed
, node_online_map
);
596 *pmask
= node_online_map
;
597 BUG_ON(!nodes_intersects(*pmask
, node_online_map
));
601 * cpuset_update_task_memory_state - update task memory placement
603 * If the current tasks cpusets mems_allowed changed behind our
604 * backs, update current->mems_allowed, mems_generation and task NUMA
605 * mempolicy to the new value.
607 * Task mempolicy is updated by rebinding it relative to the
608 * current->cpuset if a task has its memory placement changed.
609 * Do not call this routine if in_interrupt().
611 * Call without callback_sem or task_lock() held. May be called
612 * with or without manage_sem held. Doesn't need task_lock to guard
613 * against another task changing a non-NULL cpuset pointer to NULL,
614 * as that is only done by a task on itself, and if the current task
615 * is here, it is not simultaneously in the exit code NULL'ing its
616 * cpuset pointer. This routine also might acquire callback_sem and
617 * current->mm->mmap_sem during call.
619 * Reading current->cpuset->mems_generation doesn't need task_lock
620 * to guard the current->cpuset derefence, because it is guarded
621 * from concurrent freeing of current->cpuset by attach_task(),
624 * The rcu_dereference() is technically probably not needed,
625 * as I don't actually mind if I see a new cpuset pointer but
626 * an old value of mems_generation. However this really only
627 * matters on alpha systems using cpusets heavily. If I dropped
628 * that rcu_dereference(), it would save them a memory barrier.
629 * For all other arch's, rcu_dereference is a no-op anyway, and for
630 * alpha systems not using cpusets, another planned optimization,
631 * avoiding the rcu critical section for tasks in the root cpuset
632 * which is statically allocated, so can't vanish, will make this
633 * irrelevant. Better to use RCU as intended, than to engage in
634 * some cute trick to save a memory barrier that is impossible to
635 * test, for alpha systems using cpusets heavily, which might not
638 * This routine is needed to update the per-task mems_allowed data,
639 * within the tasks context, when it is trying to allocate memory
640 * (in various mm/mempolicy.c routines) and notices that some other
641 * task has been modifying its cpuset.
644 void cpuset_update_task_memory_state(void)
646 int my_cpusets_mem_gen
;
647 struct task_struct
*tsk
= current
;
650 if (tsk
->cpuset
== &top_cpuset
) {
651 /* Don't need rcu for top_cpuset. It's never freed. */
652 my_cpusets_mem_gen
= top_cpuset
.mems_generation
;
655 cs
= rcu_dereference(tsk
->cpuset
);
656 my_cpusets_mem_gen
= cs
->mems_generation
;
660 if (my_cpusets_mem_gen
!= tsk
->cpuset_mems_generation
) {
663 cs
= tsk
->cpuset
; /* Maybe changed when task not locked */
664 guarantee_online_mems(cs
, &tsk
->mems_allowed
);
665 tsk
->cpuset_mems_generation
= cs
->mems_generation
;
668 mpol_rebind_task(tsk
, &tsk
->mems_allowed
);
673 * is_cpuset_subset(p, q) - Is cpuset p a subset of cpuset q?
675 * One cpuset is a subset of another if all its allowed CPUs and
676 * Memory Nodes are a subset of the other, and its exclusive flags
677 * are only set if the other's are set. Call holding manage_sem.
680 static int is_cpuset_subset(const struct cpuset
*p
, const struct cpuset
*q
)
682 return cpus_subset(p
->cpus_allowed
, q
->cpus_allowed
) &&
683 nodes_subset(p
->mems_allowed
, q
->mems_allowed
) &&
684 is_cpu_exclusive(p
) <= is_cpu_exclusive(q
) &&
685 is_mem_exclusive(p
) <= is_mem_exclusive(q
);
689 * validate_change() - Used to validate that any proposed cpuset change
690 * follows the structural rules for cpusets.
692 * If we replaced the flag and mask values of the current cpuset
693 * (cur) with those values in the trial cpuset (trial), would
694 * our various subset and exclusive rules still be valid? Presumes
697 * 'cur' is the address of an actual, in-use cpuset. Operations
698 * such as list traversal that depend on the actual address of the
699 * cpuset in the list must use cur below, not trial.
701 * 'trial' is the address of bulk structure copy of cur, with
702 * perhaps one or more of the fields cpus_allowed, mems_allowed,
703 * or flags changed to new, trial values.
705 * Return 0 if valid, -errno if not.
708 static int validate_change(const struct cpuset
*cur
, const struct cpuset
*trial
)
710 struct cpuset
*c
, *par
;
712 /* Each of our child cpusets must be a subset of us */
713 list_for_each_entry(c
, &cur
->children
, sibling
) {
714 if (!is_cpuset_subset(c
, trial
))
718 /* Remaining checks don't apply to root cpuset */
719 if ((par
= cur
->parent
) == NULL
)
722 /* We must be a subset of our parent cpuset */
723 if (!is_cpuset_subset(trial
, par
))
726 /* If either I or some sibling (!= me) is exclusive, we can't overlap */
727 list_for_each_entry(c
, &par
->children
, sibling
) {
728 if ((is_cpu_exclusive(trial
) || is_cpu_exclusive(c
)) &&
730 cpus_intersects(trial
->cpus_allowed
, c
->cpus_allowed
))
732 if ((is_mem_exclusive(trial
) || is_mem_exclusive(c
)) &&
734 nodes_intersects(trial
->mems_allowed
, c
->mems_allowed
))
742 * For a given cpuset cur, partition the system as follows
743 * a. All cpus in the parent cpuset's cpus_allowed that are not part of any
744 * exclusive child cpusets
745 * b. All cpus in the current cpuset's cpus_allowed that are not part of any
746 * exclusive child cpusets
747 * Build these two partitions by calling partition_sched_domains
749 * Call with manage_sem held. May nest a call to the
750 * lock_cpu_hotplug()/unlock_cpu_hotplug() pair.
753 static void update_cpu_domains(struct cpuset
*cur
)
755 struct cpuset
*c
, *par
= cur
->parent
;
756 cpumask_t pspan
, cspan
;
758 if (par
== NULL
|| cpus_empty(cur
->cpus_allowed
))
762 * Get all cpus from parent's cpus_allowed not part of exclusive
765 pspan
= par
->cpus_allowed
;
766 list_for_each_entry(c
, &par
->children
, sibling
) {
767 if (is_cpu_exclusive(c
))
768 cpus_andnot(pspan
, pspan
, c
->cpus_allowed
);
770 if (is_removed(cur
) || !is_cpu_exclusive(cur
)) {
771 cpus_or(pspan
, pspan
, cur
->cpus_allowed
);
772 if (cpus_equal(pspan
, cur
->cpus_allowed
))
774 cspan
= CPU_MASK_NONE
;
776 if (cpus_empty(pspan
))
778 cspan
= cur
->cpus_allowed
;
780 * Get all cpus from current cpuset's cpus_allowed not part
781 * of exclusive children
783 list_for_each_entry(c
, &cur
->children
, sibling
) {
784 if (is_cpu_exclusive(c
))
785 cpus_andnot(cspan
, cspan
, c
->cpus_allowed
);
790 partition_sched_domains(&pspan
, &cspan
);
791 unlock_cpu_hotplug();
795 * Call with manage_sem held. May take callback_sem during call.
798 static int update_cpumask(struct cpuset
*cs
, char *buf
)
800 struct cpuset trialcs
;
801 int retval
, cpus_unchanged
;
804 retval
= cpulist_parse(buf
, trialcs
.cpus_allowed
);
807 cpus_and(trialcs
.cpus_allowed
, trialcs
.cpus_allowed
, cpu_online_map
);
808 if (cpus_empty(trialcs
.cpus_allowed
))
810 retval
= validate_change(cs
, &trialcs
);
813 cpus_unchanged
= cpus_equal(cs
->cpus_allowed
, trialcs
.cpus_allowed
);
815 cs
->cpus_allowed
= trialcs
.cpus_allowed
;
817 if (is_cpu_exclusive(cs
) && !cpus_unchanged
)
818 update_cpu_domains(cs
);
823 * Handle user request to change the 'mems' memory placement
824 * of a cpuset. Needs to validate the request, update the
825 * cpusets mems_allowed and mems_generation, and for each
826 * task in the cpuset, rebind any vma mempolicies and if
827 * the cpuset is marked 'memory_migrate', migrate the tasks
828 * pages to the new memory.
830 * Call with manage_sem held. May take callback_sem during call.
831 * Will take tasklist_lock, scan tasklist for tasks in cpuset cs,
832 * lock each such tasks mm->mmap_sem, scan its vma's and rebind
833 * their mempolicies to the cpusets new mems_allowed.
836 static int update_nodemask(struct cpuset
*cs
, char *buf
)
838 struct cpuset trialcs
;
840 struct task_struct
*g
, *p
;
841 struct mm_struct
**mmarray
;
848 retval
= nodelist_parse(buf
, trialcs
.mems_allowed
);
851 nodes_and(trialcs
.mems_allowed
, trialcs
.mems_allowed
, node_online_map
);
852 oldmem
= cs
->mems_allowed
;
853 if (nodes_equal(oldmem
, trialcs
.mems_allowed
)) {
854 retval
= 0; /* Too easy - nothing to do */
857 if (nodes_empty(trialcs
.mems_allowed
)) {
861 retval
= validate_change(cs
, &trialcs
);
866 cs
->mems_allowed
= trialcs
.mems_allowed
;
867 atomic_inc(&cpuset_mems_generation
);
868 cs
->mems_generation
= atomic_read(&cpuset_mems_generation
);
871 set_cpuset_being_rebound(cs
); /* causes mpol_copy() rebind */
873 fudge
= 10; /* spare mmarray[] slots */
874 fudge
+= cpus_weight(cs
->cpus_allowed
); /* imagine one fork-bomb/cpu */
878 * Allocate mmarray[] to hold mm reference for each task
879 * in cpuset cs. Can't kmalloc GFP_KERNEL while holding
880 * tasklist_lock. We could use GFP_ATOMIC, but with a
881 * few more lines of code, we can retry until we get a big
882 * enough mmarray[] w/o using GFP_ATOMIC.
885 ntasks
= atomic_read(&cs
->count
); /* guess */
887 mmarray
= kmalloc(ntasks
* sizeof(*mmarray
), GFP_KERNEL
);
890 write_lock_irq(&tasklist_lock
); /* block fork */
891 if (atomic_read(&cs
->count
) <= ntasks
)
892 break; /* got enough */
893 write_unlock_irq(&tasklist_lock
); /* try again */
899 /* Load up mmarray[] with mm reference for each task in cpuset. */
900 do_each_thread(g
, p
) {
901 struct mm_struct
*mm
;
905 "Cpuset mempolicy rebind incomplete.\n");
914 } while_each_thread(g
, p
);
915 write_unlock_irq(&tasklist_lock
);
918 * Now that we've dropped the tasklist spinlock, we can
919 * rebind the vma mempolicies of each mm in mmarray[] to their
920 * new cpuset, and release that mm. The mpol_rebind_mm()
921 * call takes mmap_sem, which we couldn't take while holding
922 * tasklist_lock. Forks can happen again now - the mpol_copy()
923 * cpuset_being_rebound check will catch such forks, and rebind
924 * their vma mempolicies too. Because we still hold the global
925 * cpuset manage_sem, we know that no other rebind effort will
926 * be contending for the global variable cpuset_being_rebound.
927 * It's ok if we rebind the same mm twice; mpol_rebind_mm()
928 * is idempotent. Also migrate pages in each mm to new nodes.
930 migrate
= is_memory_migrate(cs
);
931 for (i
= 0; i
< n
; i
++) {
932 struct mm_struct
*mm
= mmarray
[i
];
934 mpol_rebind_mm(mm
, &cs
->mems_allowed
);
936 do_migrate_pages(mm
, &oldmem
, &cs
->mems_allowed
,
942 /* We're done rebinding vma's to this cpusets new mems_allowed. */
944 set_cpuset_being_rebound(NULL
);
951 * Call with manage_sem held.
954 static int update_memory_pressure_enabled(struct cpuset
*cs
, char *buf
)
956 if (simple_strtoul(buf
, NULL
, 10) != 0)
957 cpuset_memory_pressure_enabled
= 1;
959 cpuset_memory_pressure_enabled
= 0;
964 * update_flag - read a 0 or a 1 in a file and update associated flag
965 * bit: the bit to update (CS_CPU_EXCLUSIVE, CS_MEM_EXCLUSIVE,
966 * CS_NOTIFY_ON_RELEASE, CS_MEMORY_MIGRATE)
967 * cs: the cpuset to update
968 * buf: the buffer where we read the 0 or 1
970 * Call with manage_sem held.
973 static int update_flag(cpuset_flagbits_t bit
, struct cpuset
*cs
, char *buf
)
976 struct cpuset trialcs
;
977 int err
, cpu_exclusive_changed
;
979 turning_on
= (simple_strtoul(buf
, NULL
, 10) != 0);
983 set_bit(bit
, &trialcs
.flags
);
985 clear_bit(bit
, &trialcs
.flags
);
987 err
= validate_change(cs
, &trialcs
);
990 cpu_exclusive_changed
=
991 (is_cpu_exclusive(cs
) != is_cpu_exclusive(&trialcs
));
994 set_bit(bit
, &cs
->flags
);
996 clear_bit(bit
, &cs
->flags
);
999 if (cpu_exclusive_changed
)
1000 update_cpu_domains(cs
);
1005 * Frequency meter - How fast is some event occuring?
1007 * These routines manage a digitally filtered, constant time based,
1008 * event frequency meter. There are four routines:
1009 * fmeter_init() - initialize a frequency meter.
1010 * fmeter_markevent() - called each time the event happens.
1011 * fmeter_getrate() - returns the recent rate of such events.
1012 * fmeter_update() - internal routine used to update fmeter.
1014 * A common data structure is passed to each of these routines,
1015 * which is used to keep track of the state required to manage the
1016 * frequency meter and its digital filter.
1018 * The filter works on the number of events marked per unit time.
1019 * The filter is single-pole low-pass recursive (IIR). The time unit
1020 * is 1 second. Arithmetic is done using 32-bit integers scaled to
1021 * simulate 3 decimal digits of precision (multiplied by 1000).
1023 * With an FM_COEF of 933, and a time base of 1 second, the filter
1024 * has a half-life of 10 seconds, meaning that if the events quit
1025 * happening, then the rate returned from the fmeter_getrate()
1026 * will be cut in half each 10 seconds, until it converges to zero.
1028 * It is not worth doing a real infinitely recursive filter. If more
1029 * than FM_MAXTICKS ticks have elapsed since the last filter event,
1030 * just compute FM_MAXTICKS ticks worth, by which point the level
1033 * Limit the count of unprocessed events to FM_MAXCNT, so as to avoid
1034 * arithmetic overflow in the fmeter_update() routine.
1036 * Given the simple 32 bit integer arithmetic used, this meter works
1037 * best for reporting rates between one per millisecond (msec) and
1038 * one per 32 (approx) seconds. At constant rates faster than one
1039 * per msec it maxes out at values just under 1,000,000. At constant
1040 * rates between one per msec, and one per second it will stabilize
1041 * to a value N*1000, where N is the rate of events per second.
1042 * At constant rates between one per second and one per 32 seconds,
1043 * it will be choppy, moving up on the seconds that have an event,
1044 * and then decaying until the next event. At rates slower than
1045 * about one in 32 seconds, it decays all the way back to zero between
1049 #define FM_COEF 933 /* coefficient for half-life of 10 secs */
1050 #define FM_MAXTICKS ((time_t)99) /* useless computing more ticks than this */
1051 #define FM_MAXCNT 1000000 /* limit cnt to avoid overflow */
1052 #define FM_SCALE 1000 /* faux fixed point scale */
1054 /* Initialize a frequency meter */
1055 static void fmeter_init(struct fmeter
*fmp
)
1060 spin_lock_init(&fmp
->lock
);
1063 /* Internal meter update - process cnt events and update value */
1064 static void fmeter_update(struct fmeter
*fmp
)
1066 time_t now
= get_seconds();
1067 time_t ticks
= now
- fmp
->time
;
1072 ticks
= min(FM_MAXTICKS
, ticks
);
1074 fmp
->val
= (FM_COEF
* fmp
->val
) / FM_SCALE
;
1077 fmp
->val
+= ((FM_SCALE
- FM_COEF
) * fmp
->cnt
) / FM_SCALE
;
1081 /* Process any previous ticks, then bump cnt by one (times scale). */
1082 static void fmeter_markevent(struct fmeter
*fmp
)
1084 spin_lock(&fmp
->lock
);
1086 fmp
->cnt
= min(FM_MAXCNT
, fmp
->cnt
+ FM_SCALE
);
1087 spin_unlock(&fmp
->lock
);
1090 /* Process any previous ticks, then return current value. */
1091 static int fmeter_getrate(struct fmeter
*fmp
)
1095 spin_lock(&fmp
->lock
);
1098 spin_unlock(&fmp
->lock
);
1103 * Attack task specified by pid in 'pidbuf' to cpuset 'cs', possibly
1104 * writing the path of the old cpuset in 'ppathbuf' if it needs to be
1105 * notified on release.
1107 * Call holding manage_sem. May take callback_sem and task_lock of
1108 * the task 'pid' during call.
1111 static int attach_task(struct cpuset
*cs
, char *pidbuf
, char **ppathbuf
)
1114 struct task_struct
*tsk
;
1115 struct cpuset
*oldcs
;
1117 nodemask_t from
, to
;
1118 struct mm_struct
*mm
;
1120 if (sscanf(pidbuf
, "%d", &pid
) != 1)
1122 if (cpus_empty(cs
->cpus_allowed
) || nodes_empty(cs
->mems_allowed
))
1126 read_lock(&tasklist_lock
);
1128 tsk
= find_task_by_pid(pid
);
1129 if (!tsk
|| tsk
->flags
& PF_EXITING
) {
1130 read_unlock(&tasklist_lock
);
1134 get_task_struct(tsk
);
1135 read_unlock(&tasklist_lock
);
1137 if ((current
->euid
) && (current
->euid
!= tsk
->uid
)
1138 && (current
->euid
!= tsk
->suid
)) {
1139 put_task_struct(tsk
);
1144 get_task_struct(tsk
);
1147 down(&callback_sem
);
1150 oldcs
= tsk
->cpuset
;
1154 put_task_struct(tsk
);
1157 atomic_inc(&cs
->count
);
1158 rcu_assign_pointer(tsk
->cpuset
, cs
);
1161 guarantee_online_cpus(cs
, &cpus
);
1162 set_cpus_allowed(tsk
, cpus
);
1164 from
= oldcs
->mems_allowed
;
1165 to
= cs
->mems_allowed
;
1169 mm
= get_task_mm(tsk
);
1171 mpol_rebind_mm(mm
, &to
);
1175 if (is_memory_migrate(cs
))
1176 do_migrate_pages(tsk
->mm
, &from
, &to
, MPOL_MF_MOVE_ALL
);
1177 put_task_struct(tsk
);
1179 if (atomic_dec_and_test(&oldcs
->count
))
1180 check_for_release(oldcs
, ppathbuf
);
1184 /* The various types of files and directories in a cpuset file system */
1189 FILE_MEMORY_MIGRATE
,
1194 FILE_NOTIFY_ON_RELEASE
,
1195 FILE_MEMORY_PRESSURE_ENABLED
,
1196 FILE_MEMORY_PRESSURE
,
1198 } cpuset_filetype_t
;
1200 static ssize_t
cpuset_common_file_write(struct file
*file
, const char __user
*userbuf
,
1201 size_t nbytes
, loff_t
*unused_ppos
)
1203 struct cpuset
*cs
= __d_cs(file
->f_dentry
->d_parent
);
1204 struct cftype
*cft
= __d_cft(file
->f_dentry
);
1205 cpuset_filetype_t type
= cft
->private;
1207 char *pathbuf
= NULL
;
1210 /* Crude upper limit on largest legitimate cpulist user might write. */
1211 if (nbytes
> 100 + 6 * NR_CPUS
)
1214 /* +1 for nul-terminator */
1215 if ((buffer
= kmalloc(nbytes
+ 1, GFP_KERNEL
)) == 0)
1218 if (copy_from_user(buffer
, userbuf
, nbytes
)) {
1222 buffer
[nbytes
] = 0; /* nul-terminate */
1226 if (is_removed(cs
)) {
1233 retval
= update_cpumask(cs
, buffer
);
1236 retval
= update_nodemask(cs
, buffer
);
1238 case FILE_CPU_EXCLUSIVE
:
1239 retval
= update_flag(CS_CPU_EXCLUSIVE
, cs
, buffer
);
1241 case FILE_MEM_EXCLUSIVE
:
1242 retval
= update_flag(CS_MEM_EXCLUSIVE
, cs
, buffer
);
1244 case FILE_NOTIFY_ON_RELEASE
:
1245 retval
= update_flag(CS_NOTIFY_ON_RELEASE
, cs
, buffer
);
1247 case FILE_MEMORY_MIGRATE
:
1248 retval
= update_flag(CS_MEMORY_MIGRATE
, cs
, buffer
);
1250 case FILE_MEMORY_PRESSURE_ENABLED
:
1251 retval
= update_memory_pressure_enabled(cs
, buffer
);
1253 case FILE_MEMORY_PRESSURE
:
1257 retval
= attach_task(cs
, buffer
, &pathbuf
);
1268 cpuset_release_agent(pathbuf
);
1274 static ssize_t
cpuset_file_write(struct file
*file
, const char __user
*buf
,
1275 size_t nbytes
, loff_t
*ppos
)
1278 struct cftype
*cft
= __d_cft(file
->f_dentry
);
1282 /* special function ? */
1284 retval
= cft
->write(file
, buf
, nbytes
, ppos
);
1286 retval
= cpuset_common_file_write(file
, buf
, nbytes
, ppos
);
1292 * These ascii lists should be read in a single call, by using a user
1293 * buffer large enough to hold the entire map. If read in smaller
1294 * chunks, there is no guarantee of atomicity. Since the display format
1295 * used, list of ranges of sequential numbers, is variable length,
1296 * and since these maps can change value dynamically, one could read
1297 * gibberish by doing partial reads while a list was changing.
1298 * A single large read to a buffer that crosses a page boundary is
1299 * ok, because the result being copied to user land is not recomputed
1300 * across a page fault.
1303 static int cpuset_sprintf_cpulist(char *page
, struct cpuset
*cs
)
1307 down(&callback_sem
);
1308 mask
= cs
->cpus_allowed
;
1311 return cpulist_scnprintf(page
, PAGE_SIZE
, mask
);
1314 static int cpuset_sprintf_memlist(char *page
, struct cpuset
*cs
)
1318 down(&callback_sem
);
1319 mask
= cs
->mems_allowed
;
1322 return nodelist_scnprintf(page
, PAGE_SIZE
, mask
);
1325 static ssize_t
cpuset_common_file_read(struct file
*file
, char __user
*buf
,
1326 size_t nbytes
, loff_t
*ppos
)
1328 struct cftype
*cft
= __d_cft(file
->f_dentry
);
1329 struct cpuset
*cs
= __d_cs(file
->f_dentry
->d_parent
);
1330 cpuset_filetype_t type
= cft
->private;
1335 if (!(page
= (char *)__get_free_page(GFP_KERNEL
)))
1342 s
+= cpuset_sprintf_cpulist(s
, cs
);
1345 s
+= cpuset_sprintf_memlist(s
, cs
);
1347 case FILE_CPU_EXCLUSIVE
:
1348 *s
++ = is_cpu_exclusive(cs
) ? '1' : '0';
1350 case FILE_MEM_EXCLUSIVE
:
1351 *s
++ = is_mem_exclusive(cs
) ? '1' : '0';
1353 case FILE_NOTIFY_ON_RELEASE
:
1354 *s
++ = notify_on_release(cs
) ? '1' : '0';
1356 case FILE_MEMORY_MIGRATE
:
1357 *s
++ = is_memory_migrate(cs
) ? '1' : '0';
1359 case FILE_MEMORY_PRESSURE_ENABLED
:
1360 *s
++ = cpuset_memory_pressure_enabled
? '1' : '0';
1362 case FILE_MEMORY_PRESSURE
:
1363 s
+= sprintf(s
, "%d", fmeter_getrate(&cs
->fmeter
));
1371 retval
= simple_read_from_buffer(buf
, nbytes
, ppos
, page
, s
- page
);
1373 free_page((unsigned long)page
);
1377 static ssize_t
cpuset_file_read(struct file
*file
, char __user
*buf
, size_t nbytes
,
1381 struct cftype
*cft
= __d_cft(file
->f_dentry
);
1385 /* special function ? */
1387 retval
= cft
->read(file
, buf
, nbytes
, ppos
);
1389 retval
= cpuset_common_file_read(file
, buf
, nbytes
, ppos
);
1394 static int cpuset_file_open(struct inode
*inode
, struct file
*file
)
1399 err
= generic_file_open(inode
, file
);
1403 cft
= __d_cft(file
->f_dentry
);
1407 err
= cft
->open(inode
, file
);
1414 static int cpuset_file_release(struct inode
*inode
, struct file
*file
)
1416 struct cftype
*cft
= __d_cft(file
->f_dentry
);
1418 return cft
->release(inode
, file
);
1423 * cpuset_rename - Only allow simple rename of directories in place.
1425 static int cpuset_rename(struct inode
*old_dir
, struct dentry
*old_dentry
,
1426 struct inode
*new_dir
, struct dentry
*new_dentry
)
1428 if (!S_ISDIR(old_dentry
->d_inode
->i_mode
))
1430 if (new_dentry
->d_inode
)
1432 if (old_dir
!= new_dir
)
1434 return simple_rename(old_dir
, old_dentry
, new_dir
, new_dentry
);
1437 static struct file_operations cpuset_file_operations
= {
1438 .read
= cpuset_file_read
,
1439 .write
= cpuset_file_write
,
1440 .llseek
= generic_file_llseek
,
1441 .open
= cpuset_file_open
,
1442 .release
= cpuset_file_release
,
1445 static struct inode_operations cpuset_dir_inode_operations
= {
1446 .lookup
= simple_lookup
,
1447 .mkdir
= cpuset_mkdir
,
1448 .rmdir
= cpuset_rmdir
,
1449 .rename
= cpuset_rename
,
1452 static int cpuset_create_file(struct dentry
*dentry
, int mode
)
1454 struct inode
*inode
;
1458 if (dentry
->d_inode
)
1461 inode
= cpuset_new_inode(mode
);
1465 if (S_ISDIR(mode
)) {
1466 inode
->i_op
= &cpuset_dir_inode_operations
;
1467 inode
->i_fop
= &simple_dir_operations
;
1469 /* start off with i_nlink == 2 (for "." entry) */
1471 } else if (S_ISREG(mode
)) {
1473 inode
->i_fop
= &cpuset_file_operations
;
1476 d_instantiate(dentry
, inode
);
1477 dget(dentry
); /* Extra count - pin the dentry in core */
1482 * cpuset_create_dir - create a directory for an object.
1483 * cs: the cpuset we create the directory for.
1484 * It must have a valid ->parent field
1485 * And we are going to fill its ->dentry field.
1486 * name: The name to give to the cpuset directory. Will be copied.
1487 * mode: mode to set on new directory.
1490 static int cpuset_create_dir(struct cpuset
*cs
, const char *name
, int mode
)
1492 struct dentry
*dentry
= NULL
;
1493 struct dentry
*parent
;
1496 parent
= cs
->parent
->dentry
;
1497 dentry
= cpuset_get_dentry(parent
, name
);
1499 return PTR_ERR(dentry
);
1500 error
= cpuset_create_file(dentry
, S_IFDIR
| mode
);
1502 dentry
->d_fsdata
= cs
;
1503 parent
->d_inode
->i_nlink
++;
1504 cs
->dentry
= dentry
;
1511 static int cpuset_add_file(struct dentry
*dir
, const struct cftype
*cft
)
1513 struct dentry
*dentry
;
1516 mutex_lock(&dir
->d_inode
->i_mutex
);
1517 dentry
= cpuset_get_dentry(dir
, cft
->name
);
1518 if (!IS_ERR(dentry
)) {
1519 error
= cpuset_create_file(dentry
, 0644 | S_IFREG
);
1521 dentry
->d_fsdata
= (void *)cft
;
1524 error
= PTR_ERR(dentry
);
1525 mutex_unlock(&dir
->d_inode
->i_mutex
);
1530 * Stuff for reading the 'tasks' file.
1532 * Reading this file can return large amounts of data if a cpuset has
1533 * *lots* of attached tasks. So it may need several calls to read(),
1534 * but we cannot guarantee that the information we produce is correct
1535 * unless we produce it entirely atomically.
1537 * Upon tasks file open(), a struct ctr_struct is allocated, that
1538 * will have a pointer to an array (also allocated here). The struct
1539 * ctr_struct * is stored in file->private_data. Its resources will
1540 * be freed by release() when the file is closed. The array is used
1541 * to sprintf the PIDs and then used by read().
1544 /* cpusets_tasks_read array */
1552 * Load into 'pidarray' up to 'npids' of the tasks using cpuset 'cs'.
1553 * Return actual number of pids loaded. No need to task_lock(p)
1554 * when reading out p->cpuset, as we don't really care if it changes
1555 * on the next cycle, and we are not going to try to dereference it.
1557 static int pid_array_load(pid_t
*pidarray
, int npids
, struct cpuset
*cs
)
1560 struct task_struct
*g
, *p
;
1562 read_lock(&tasklist_lock
);
1564 do_each_thread(g
, p
) {
1565 if (p
->cpuset
== cs
) {
1566 pidarray
[n
++] = p
->pid
;
1567 if (unlikely(n
== npids
))
1570 } while_each_thread(g
, p
);
1573 read_unlock(&tasklist_lock
);
1577 static int cmppid(const void *a
, const void *b
)
1579 return *(pid_t
*)a
- *(pid_t
*)b
;
1583 * Convert array 'a' of 'npids' pid_t's to a string of newline separated
1584 * decimal pids in 'buf'. Don't write more than 'sz' chars, but return
1585 * count 'cnt' of how many chars would be written if buf were large enough.
1587 static int pid_array_to_buf(char *buf
, int sz
, pid_t
*a
, int npids
)
1592 for (i
= 0; i
< npids
; i
++)
1593 cnt
+= snprintf(buf
+ cnt
, max(sz
- cnt
, 0), "%d\n", a
[i
]);
1598 * Handle an open on 'tasks' file. Prepare a buffer listing the
1599 * process id's of tasks currently attached to the cpuset being opened.
1601 * Does not require any specific cpuset semaphores, and does not take any.
1603 static int cpuset_tasks_open(struct inode
*unused
, struct file
*file
)
1605 struct cpuset
*cs
= __d_cs(file
->f_dentry
->d_parent
);
1606 struct ctr_struct
*ctr
;
1611 if (!(file
->f_mode
& FMODE_READ
))
1614 ctr
= kmalloc(sizeof(*ctr
), GFP_KERNEL
);
1619 * If cpuset gets more users after we read count, we won't have
1620 * enough space - tough. This race is indistinguishable to the
1621 * caller from the case that the additional cpuset users didn't
1622 * show up until sometime later on.
1624 npids
= atomic_read(&cs
->count
);
1625 pidarray
= kmalloc(npids
* sizeof(pid_t
), GFP_KERNEL
);
1629 npids
= pid_array_load(pidarray
, npids
, cs
);
1630 sort(pidarray
, npids
, sizeof(pid_t
), cmppid
, NULL
);
1632 /* Call pid_array_to_buf() twice, first just to get bufsz */
1633 ctr
->bufsz
= pid_array_to_buf(&c
, sizeof(c
), pidarray
, npids
) + 1;
1634 ctr
->buf
= kmalloc(ctr
->bufsz
, GFP_KERNEL
);
1637 ctr
->bufsz
= pid_array_to_buf(ctr
->buf
, ctr
->bufsz
, pidarray
, npids
);
1640 file
->private_data
= ctr
;
1651 static ssize_t
cpuset_tasks_read(struct file
*file
, char __user
*buf
,
1652 size_t nbytes
, loff_t
*ppos
)
1654 struct ctr_struct
*ctr
= file
->private_data
;
1656 if (*ppos
+ nbytes
> ctr
->bufsz
)
1657 nbytes
= ctr
->bufsz
- *ppos
;
1658 if (copy_to_user(buf
, ctr
->buf
+ *ppos
, nbytes
))
1664 static int cpuset_tasks_release(struct inode
*unused_inode
, struct file
*file
)
1666 struct ctr_struct
*ctr
;
1668 if (file
->f_mode
& FMODE_READ
) {
1669 ctr
= file
->private_data
;
1677 * for the common functions, 'private' gives the type of file
1680 static struct cftype cft_tasks
= {
1682 .open
= cpuset_tasks_open
,
1683 .read
= cpuset_tasks_read
,
1684 .release
= cpuset_tasks_release
,
1685 .private = FILE_TASKLIST
,
1688 static struct cftype cft_cpus
= {
1690 .private = FILE_CPULIST
,
1693 static struct cftype cft_mems
= {
1695 .private = FILE_MEMLIST
,
1698 static struct cftype cft_cpu_exclusive
= {
1699 .name
= "cpu_exclusive",
1700 .private = FILE_CPU_EXCLUSIVE
,
1703 static struct cftype cft_mem_exclusive
= {
1704 .name
= "mem_exclusive",
1705 .private = FILE_MEM_EXCLUSIVE
,
1708 static struct cftype cft_notify_on_release
= {
1709 .name
= "notify_on_release",
1710 .private = FILE_NOTIFY_ON_RELEASE
,
1713 static struct cftype cft_memory_migrate
= {
1714 .name
= "memory_migrate",
1715 .private = FILE_MEMORY_MIGRATE
,
1718 static struct cftype cft_memory_pressure_enabled
= {
1719 .name
= "memory_pressure_enabled",
1720 .private = FILE_MEMORY_PRESSURE_ENABLED
,
1723 static struct cftype cft_memory_pressure
= {
1724 .name
= "memory_pressure",
1725 .private = FILE_MEMORY_PRESSURE
,
1728 static int cpuset_populate_dir(struct dentry
*cs_dentry
)
1732 if ((err
= cpuset_add_file(cs_dentry
, &cft_cpus
)) < 0)
1734 if ((err
= cpuset_add_file(cs_dentry
, &cft_mems
)) < 0)
1736 if ((err
= cpuset_add_file(cs_dentry
, &cft_cpu_exclusive
)) < 0)
1738 if ((err
= cpuset_add_file(cs_dentry
, &cft_mem_exclusive
)) < 0)
1740 if ((err
= cpuset_add_file(cs_dentry
, &cft_notify_on_release
)) < 0)
1742 if ((err
= cpuset_add_file(cs_dentry
, &cft_memory_migrate
)) < 0)
1744 if ((err
= cpuset_add_file(cs_dentry
, &cft_memory_pressure
)) < 0)
1746 if ((err
= cpuset_add_file(cs_dentry
, &cft_tasks
)) < 0)
1752 * cpuset_create - create a cpuset
1753 * parent: cpuset that will be parent of the new cpuset.
1754 * name: name of the new cpuset. Will be strcpy'ed.
1755 * mode: mode to set on new inode
1757 * Must be called with the semaphore on the parent inode held
1760 static long cpuset_create(struct cpuset
*parent
, const char *name
, int mode
)
1765 cs
= kmalloc(sizeof(*cs
), GFP_KERNEL
);
1770 cpuset_update_task_memory_state();
1772 if (notify_on_release(parent
))
1773 set_bit(CS_NOTIFY_ON_RELEASE
, &cs
->flags
);
1774 cs
->cpus_allowed
= CPU_MASK_NONE
;
1775 cs
->mems_allowed
= NODE_MASK_NONE
;
1776 atomic_set(&cs
->count
, 0);
1777 INIT_LIST_HEAD(&cs
->sibling
);
1778 INIT_LIST_HEAD(&cs
->children
);
1779 atomic_inc(&cpuset_mems_generation
);
1780 cs
->mems_generation
= atomic_read(&cpuset_mems_generation
);
1781 fmeter_init(&cs
->fmeter
);
1783 cs
->parent
= parent
;
1785 down(&callback_sem
);
1786 list_add(&cs
->sibling
, &cs
->parent
->children
);
1787 number_of_cpusets
++;
1790 err
= cpuset_create_dir(cs
, name
, mode
);
1795 * Release manage_sem before cpuset_populate_dir() because it
1796 * will down() this new directory's i_mutex and if we race with
1797 * another mkdir, we might deadlock.
1801 err
= cpuset_populate_dir(cs
->dentry
);
1802 /* If err < 0, we have a half-filled directory - oh well ;) */
1805 list_del(&cs
->sibling
);
1811 static int cpuset_mkdir(struct inode
*dir
, struct dentry
*dentry
, int mode
)
1813 struct cpuset
*c_parent
= dentry
->d_parent
->d_fsdata
;
1815 /* the vfs holds inode->i_mutex already */
1816 return cpuset_create(c_parent
, dentry
->d_name
.name
, mode
| S_IFDIR
);
1819 static int cpuset_rmdir(struct inode
*unused_dir
, struct dentry
*dentry
)
1821 struct cpuset
*cs
= dentry
->d_fsdata
;
1823 struct cpuset
*parent
;
1824 char *pathbuf
= NULL
;
1826 /* the vfs holds both inode->i_mutex already */
1829 cpuset_update_task_memory_state();
1830 if (atomic_read(&cs
->count
) > 0) {
1834 if (!list_empty(&cs
->children
)) {
1838 parent
= cs
->parent
;
1839 down(&callback_sem
);
1840 set_bit(CS_REMOVED
, &cs
->flags
);
1841 if (is_cpu_exclusive(cs
))
1842 update_cpu_domains(cs
);
1843 list_del(&cs
->sibling
); /* delete my sibling from parent->children */
1844 spin_lock(&cs
->dentry
->d_lock
);
1845 d
= dget(cs
->dentry
);
1847 spin_unlock(&d
->d_lock
);
1848 cpuset_d_remove_dir(d
);
1850 number_of_cpusets
--;
1852 if (list_empty(&parent
->children
))
1853 check_for_release(parent
, &pathbuf
);
1855 cpuset_release_agent(pathbuf
);
1860 * cpuset_init_early - just enough so that the calls to
1861 * cpuset_update_task_memory_state() in early init code
1865 int __init
cpuset_init_early(void)
1867 struct task_struct
*tsk
= current
;
1869 tsk
->cpuset
= &top_cpuset
;
1870 tsk
->cpuset
->mems_generation
= atomic_read(&cpuset_mems_generation
);
1875 * cpuset_init - initialize cpusets at system boot
1877 * Description: Initialize top_cpuset and the cpuset internal file system,
1880 int __init
cpuset_init(void)
1882 struct dentry
*root
;
1885 top_cpuset
.cpus_allowed
= CPU_MASK_ALL
;
1886 top_cpuset
.mems_allowed
= NODE_MASK_ALL
;
1888 fmeter_init(&top_cpuset
.fmeter
);
1889 atomic_inc(&cpuset_mems_generation
);
1890 top_cpuset
.mems_generation
= atomic_read(&cpuset_mems_generation
);
1892 init_task
.cpuset
= &top_cpuset
;
1894 err
= register_filesystem(&cpuset_fs_type
);
1897 cpuset_mount
= kern_mount(&cpuset_fs_type
);
1898 if (IS_ERR(cpuset_mount
)) {
1899 printk(KERN_ERR
"cpuset: could not mount!\n");
1900 err
= PTR_ERR(cpuset_mount
);
1901 cpuset_mount
= NULL
;
1904 root
= cpuset_mount
->mnt_sb
->s_root
;
1905 root
->d_fsdata
= &top_cpuset
;
1906 root
->d_inode
->i_nlink
++;
1907 top_cpuset
.dentry
= root
;
1908 root
->d_inode
->i_op
= &cpuset_dir_inode_operations
;
1909 number_of_cpusets
= 1;
1910 err
= cpuset_populate_dir(root
);
1911 /* memory_pressure_enabled is in root cpuset only */
1913 err
= cpuset_add_file(root
, &cft_memory_pressure_enabled
);
1919 * cpuset_init_smp - initialize cpus_allowed
1921 * Description: Finish top cpuset after cpu, node maps are initialized
1924 void __init
cpuset_init_smp(void)
1926 top_cpuset
.cpus_allowed
= cpu_online_map
;
1927 top_cpuset
.mems_allowed
= node_online_map
;
1931 * cpuset_fork - attach newly forked task to its parents cpuset.
1932 * @tsk: pointer to task_struct of forking parent process.
1934 * Description: A task inherits its parent's cpuset at fork().
1936 * A pointer to the shared cpuset was automatically copied in fork.c
1937 * by dup_task_struct(). However, we ignore that copy, since it was
1938 * not made under the protection of task_lock(), so might no longer be
1939 * a valid cpuset pointer. attach_task() might have already changed
1940 * current->cpuset, allowing the previously referenced cpuset to
1941 * be removed and freed. Instead, we task_lock(current) and copy
1942 * its present value of current->cpuset for our freshly forked child.
1944 * At the point that cpuset_fork() is called, 'current' is the parent
1945 * task, and the passed argument 'child' points to the child task.
1948 void cpuset_fork(struct task_struct
*child
)
1951 child
->cpuset
= current
->cpuset
;
1952 atomic_inc(&child
->cpuset
->count
);
1953 task_unlock(current
);
1957 * cpuset_exit - detach cpuset from exiting task
1958 * @tsk: pointer to task_struct of exiting process
1960 * Description: Detach cpuset from @tsk and release it.
1962 * Note that cpusets marked notify_on_release force every task in
1963 * them to take the global manage_sem semaphore when exiting.
1964 * This could impact scaling on very large systems. Be reluctant to
1965 * use notify_on_release cpusets where very high task exit scaling
1966 * is required on large systems.
1968 * Don't even think about derefencing 'cs' after the cpuset use count
1969 * goes to zero, except inside a critical section guarded by manage_sem
1970 * or callback_sem. Otherwise a zero cpuset use count is a license to
1971 * any other task to nuke the cpuset immediately, via cpuset_rmdir().
1973 * This routine has to take manage_sem, not callback_sem, because
1974 * it is holding that semaphore while calling check_for_release(),
1975 * which calls kmalloc(), so can't be called holding callback__sem().
1977 * We don't need to task_lock() this reference to tsk->cpuset,
1978 * because tsk is already marked PF_EXITING, so attach_task() won't
1979 * mess with it, or task is a failed fork, never visible to attach_task.
1983 * Set the exiting tasks cpuset to the root cpuset (top_cpuset).
1985 * Don't leave a task unable to allocate memory, as that is an
1986 * accident waiting to happen should someone add a callout in
1987 * do_exit() after the cpuset_exit() call that might allocate.
1988 * If a task tries to allocate memory with an invalid cpuset,
1989 * it will oops in cpuset_update_task_memory_state().
1991 * We call cpuset_exit() while the task is still competent to
1992 * handle notify_on_release(), then leave the task attached to
1993 * the root cpuset (top_cpuset) for the remainder of its exit.
1995 * To do this properly, we would increment the reference count on
1996 * top_cpuset, and near the very end of the kernel/exit.c do_exit()
1997 * code we would add a second cpuset function call, to drop that
1998 * reference. This would just create an unnecessary hot spot on
1999 * the top_cpuset reference count, to no avail.
2001 * Normally, holding a reference to a cpuset without bumping its
2002 * count is unsafe. The cpuset could go away, or someone could
2003 * attach us to a different cpuset, decrementing the count on
2004 * the first cpuset that we never incremented. But in this case,
2005 * top_cpuset isn't going away, and either task has PF_EXITING set,
2006 * which wards off any attach_task() attempts, or task is a failed
2007 * fork, never visible to attach_task.
2009 * Another way to do this would be to set the cpuset pointer
2010 * to NULL here, and check in cpuset_update_task_memory_state()
2011 * for a NULL pointer. This hack avoids that NULL check, for no
2012 * cost (other than this way too long comment ;).
2015 void cpuset_exit(struct task_struct
*tsk
)
2020 tsk
->cpuset
= &top_cpuset
; /* Hack - see comment above */
2022 if (notify_on_release(cs
)) {
2023 char *pathbuf
= NULL
;
2026 if (atomic_dec_and_test(&cs
->count
))
2027 check_for_release(cs
, &pathbuf
);
2029 cpuset_release_agent(pathbuf
);
2031 atomic_dec(&cs
->count
);
2036 * cpuset_cpus_allowed - return cpus_allowed mask from a tasks cpuset.
2037 * @tsk: pointer to task_struct from which to obtain cpuset->cpus_allowed.
2039 * Description: Returns the cpumask_t cpus_allowed of the cpuset
2040 * attached to the specified @tsk. Guaranteed to return some non-empty
2041 * subset of cpu_online_map, even if this means going outside the
2045 cpumask_t
cpuset_cpus_allowed(struct task_struct
*tsk
)
2049 down(&callback_sem
);
2051 guarantee_online_cpus(tsk
->cpuset
, &mask
);
2058 void cpuset_init_current_mems_allowed(void)
2060 current
->mems_allowed
= NODE_MASK_ALL
;
2064 * cpuset_mems_allowed - return mems_allowed mask from a tasks cpuset.
2065 * @tsk: pointer to task_struct from which to obtain cpuset->mems_allowed.
2067 * Description: Returns the nodemask_t mems_allowed of the cpuset
2068 * attached to the specified @tsk. Guaranteed to return some non-empty
2069 * subset of node_online_map, even if this means going outside the
2073 nodemask_t
cpuset_mems_allowed(struct task_struct
*tsk
)
2077 down(&callback_sem
);
2079 guarantee_online_mems(tsk
->cpuset
, &mask
);
2087 * cpuset_zonelist_valid_mems_allowed - check zonelist vs. curremt mems_allowed
2088 * @zl: the zonelist to be checked
2090 * Are any of the nodes on zonelist zl allowed in current->mems_allowed?
2092 int cpuset_zonelist_valid_mems_allowed(struct zonelist
*zl
)
2096 for (i
= 0; zl
->zones
[i
]; i
++) {
2097 int nid
= zl
->zones
[i
]->zone_pgdat
->node_id
;
2099 if (node_isset(nid
, current
->mems_allowed
))
2106 * nearest_exclusive_ancestor() - Returns the nearest mem_exclusive
2107 * ancestor to the specified cpuset. Call holding callback_sem.
2108 * If no ancestor is mem_exclusive (an unusual configuration), then
2109 * returns the root cpuset.
2111 static const struct cpuset
*nearest_exclusive_ancestor(const struct cpuset
*cs
)
2113 while (!is_mem_exclusive(cs
) && cs
->parent
)
2119 * cpuset_zone_allowed - Can we allocate memory on zone z's memory node?
2120 * @z: is this zone on an allowed node?
2121 * @gfp_mask: memory allocation flags (we use __GFP_HARDWALL)
2123 * If we're in interrupt, yes, we can always allocate. If zone
2124 * z's node is in our tasks mems_allowed, yes. If it's not a
2125 * __GFP_HARDWALL request and this zone's nodes is in the nearest
2126 * mem_exclusive cpuset ancestor to this tasks cpuset, yes.
2129 * GFP_USER allocations are marked with the __GFP_HARDWALL bit,
2130 * and do not allow allocations outside the current tasks cpuset.
2131 * GFP_KERNEL allocations are not so marked, so can escape to the
2132 * nearest mem_exclusive ancestor cpuset.
2134 * Scanning up parent cpusets requires callback_sem. The __alloc_pages()
2135 * routine only calls here with __GFP_HARDWALL bit _not_ set if
2136 * it's a GFP_KERNEL allocation, and all nodes in the current tasks
2137 * mems_allowed came up empty on the first pass over the zonelist.
2138 * So only GFP_KERNEL allocations, if all nodes in the cpuset are
2139 * short of memory, might require taking the callback_sem semaphore.
2141 * The first loop over the zonelist in mm/page_alloc.c:__alloc_pages()
2142 * calls here with __GFP_HARDWALL always set in gfp_mask, enforcing
2143 * hardwall cpusets - no allocation on a node outside the cpuset is
2144 * allowed (unless in interrupt, of course).
2146 * The second loop doesn't even call here for GFP_ATOMIC requests
2147 * (if the __alloc_pages() local variable 'wait' is set). That check
2148 * and the checks below have the combined affect in the second loop of
2149 * the __alloc_pages() routine that:
2150 * in_interrupt - any node ok (current task context irrelevant)
2151 * GFP_ATOMIC - any node ok
2152 * GFP_KERNEL - any node in enclosing mem_exclusive cpuset ok
2153 * GFP_USER - only nodes in current tasks mems allowed ok.
2156 int __cpuset_zone_allowed(struct zone
*z
, gfp_t gfp_mask
)
2158 int node
; /* node that zone z is on */
2159 const struct cpuset
*cs
; /* current cpuset ancestors */
2160 int allowed
= 1; /* is allocation in zone z allowed? */
2164 node
= z
->zone_pgdat
->node_id
;
2165 if (node_isset(node
, current
->mems_allowed
))
2167 if (gfp_mask
& __GFP_HARDWALL
) /* If hardwall request, stop here */
2170 if (current
->flags
& PF_EXITING
) /* Let dying task have memory */
2173 /* Not hardwall and node outside mems_allowed: scan up cpusets */
2174 down(&callback_sem
);
2177 cs
= nearest_exclusive_ancestor(current
->cpuset
);
2178 task_unlock(current
);
2180 allowed
= node_isset(node
, cs
->mems_allowed
);
2186 * cpuset_lock - lock out any changes to cpuset structures
2188 * The out of memory (oom) code needs to lock down cpusets
2189 * from being changed while it scans the tasklist looking for a
2190 * task in an overlapping cpuset. Expose callback_sem via this
2191 * cpuset_lock() routine, so the oom code can lock it, before
2192 * locking the task list. The tasklist_lock is a spinlock, so
2193 * must be taken inside callback_sem.
2196 void cpuset_lock(void)
2198 down(&callback_sem
);
2202 * cpuset_unlock - release lock on cpuset changes
2204 * Undo the lock taken in a previous cpuset_lock() call.
2207 void cpuset_unlock(void)
2213 * cpuset_excl_nodes_overlap - Do we overlap @p's mem_exclusive ancestors?
2214 * @p: pointer to task_struct of some other task.
2216 * Description: Return true if the nearest mem_exclusive ancestor
2217 * cpusets of tasks @p and current overlap. Used by oom killer to
2218 * determine if task @p's memory usage might impact the memory
2219 * available to the current task.
2221 * Call while holding callback_sem.
2224 int cpuset_excl_nodes_overlap(const struct task_struct
*p
)
2226 const struct cpuset
*cs1
, *cs2
; /* my and p's cpuset ancestors */
2227 int overlap
= 0; /* do cpusets overlap? */
2230 if (current
->flags
& PF_EXITING
) {
2231 task_unlock(current
);
2234 cs1
= nearest_exclusive_ancestor(current
->cpuset
);
2235 task_unlock(current
);
2237 task_lock((struct task_struct
*)p
);
2238 if (p
->flags
& PF_EXITING
) {
2239 task_unlock((struct task_struct
*)p
);
2242 cs2
= nearest_exclusive_ancestor(p
->cpuset
);
2243 task_unlock((struct task_struct
*)p
);
2245 overlap
= nodes_intersects(cs1
->mems_allowed
, cs2
->mems_allowed
);
2251 * Collection of memory_pressure is suppressed unless
2252 * this flag is enabled by writing "1" to the special
2253 * cpuset file 'memory_pressure_enabled' in the root cpuset.
2256 int cpuset_memory_pressure_enabled __read_mostly
;
2259 * cpuset_memory_pressure_bump - keep stats of per-cpuset reclaims.
2261 * Keep a running average of the rate of synchronous (direct)
2262 * page reclaim efforts initiated by tasks in each cpuset.
2264 * This represents the rate at which some task in the cpuset
2265 * ran low on memory on all nodes it was allowed to use, and
2266 * had to enter the kernels page reclaim code in an effort to
2267 * create more free memory by tossing clean pages or swapping
2268 * or writing dirty pages.
2270 * Display to user space in the per-cpuset read-only file
2271 * "memory_pressure". Value displayed is an integer
2272 * representing the recent rate of entry into the synchronous
2273 * (direct) page reclaim by any task attached to the cpuset.
2276 void __cpuset_memory_pressure_bump(void)
2281 cs
= current
->cpuset
;
2282 fmeter_markevent(&cs
->fmeter
);
2283 task_unlock(current
);
2287 * proc_cpuset_show()
2288 * - Print tasks cpuset path into seq_file.
2289 * - Used for /proc/<pid>/cpuset.
2290 * - No need to task_lock(tsk) on this tsk->cpuset reference, as it
2291 * doesn't really matter if tsk->cpuset changes after we read it,
2292 * and we take manage_sem, keeping attach_task() from changing it
2296 static int proc_cpuset_show(struct seq_file
*m
, void *v
)
2299 struct task_struct
*tsk
;
2303 buf
= kmalloc(PAGE_SIZE
, GFP_KERNEL
);
2315 retval
= cpuset_path(cs
, buf
, PAGE_SIZE
);
2326 static int cpuset_open(struct inode
*inode
, struct file
*file
)
2328 struct task_struct
*tsk
= PROC_I(inode
)->task
;
2329 return single_open(file
, proc_cpuset_show
, tsk
);
2332 struct file_operations proc_cpuset_operations
= {
2333 .open
= cpuset_open
,
2335 .llseek
= seq_lseek
,
2336 .release
= single_release
,
2339 /* Display task cpus_allowed, mems_allowed in /proc/<pid>/status file. */
2340 char *cpuset_task_status_allowed(struct task_struct
*task
, char *buffer
)
2342 buffer
+= sprintf(buffer
, "Cpus_allowed:\t");
2343 buffer
+= cpumask_scnprintf(buffer
, PAGE_SIZE
, task
->cpus_allowed
);
2344 buffer
+= sprintf(buffer
, "\n");
2345 buffer
+= sprintf(buffer
, "Mems_allowed:\t");
2346 buffer
+= nodemask_scnprintf(buffer
, PAGE_SIZE
, task
->mems_allowed
);
2347 buffer
+= sprintf(buffer
, "\n");