2 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
20 #include "xfs_types.h"
24 #include "xfs_trans.h"
27 #include "xfs_mount.h"
28 #include "xfs_error.h"
29 #include "xfs_log_priv.h"
30 #include "xfs_buf_item.h"
31 #include "xfs_bmap_btree.h"
32 #include "xfs_alloc_btree.h"
33 #include "xfs_ialloc_btree.h"
34 #include "xfs_log_recover.h"
35 #include "xfs_trans_priv.h"
36 #include "xfs_dinode.h"
37 #include "xfs_inode.h"
39 #include "xfs_trace.h"
41 kmem_zone_t
*xfs_log_ticket_zone
;
43 /* Local miscellaneous function prototypes */
44 STATIC
int xlog_commit_record(struct log
*log
, struct xlog_ticket
*ticket
,
45 xlog_in_core_t
**, xfs_lsn_t
*);
46 STATIC xlog_t
* xlog_alloc_log(xfs_mount_t
*mp
,
47 xfs_buftarg_t
*log_target
,
48 xfs_daddr_t blk_offset
,
50 STATIC
int xlog_space_left(xlog_t
*log
, int cycle
, int bytes
);
51 STATIC
int xlog_sync(xlog_t
*log
, xlog_in_core_t
*iclog
);
52 STATIC
void xlog_dealloc_log(xlog_t
*log
);
54 /* local state machine functions */
55 STATIC
void xlog_state_done_syncing(xlog_in_core_t
*iclog
, int);
56 STATIC
void xlog_state_do_callback(xlog_t
*log
,int aborted
, xlog_in_core_t
*iclog
);
57 STATIC
int xlog_state_get_iclog_space(xlog_t
*log
,
59 xlog_in_core_t
**iclog
,
60 xlog_ticket_t
*ticket
,
63 STATIC
int xlog_state_release_iclog(xlog_t
*log
,
64 xlog_in_core_t
*iclog
);
65 STATIC
void xlog_state_switch_iclogs(xlog_t
*log
,
66 xlog_in_core_t
*iclog
,
68 STATIC
void xlog_state_want_sync(xlog_t
*log
, xlog_in_core_t
*iclog
);
70 /* local functions to manipulate grant head */
71 STATIC
int xlog_grant_log_space(xlog_t
*log
,
73 STATIC
void xlog_grant_push_ail(xfs_mount_t
*mp
,
75 STATIC
void xlog_regrant_reserve_log_space(xlog_t
*log
,
76 xlog_ticket_t
*ticket
);
77 STATIC
int xlog_regrant_write_log_space(xlog_t
*log
,
78 xlog_ticket_t
*ticket
);
79 STATIC
void xlog_ungrant_log_space(xlog_t
*log
,
80 xlog_ticket_t
*ticket
);
83 STATIC
void xlog_verify_dest_ptr(xlog_t
*log
, char *ptr
);
84 STATIC
void xlog_verify_grant_head(xlog_t
*log
, int equals
);
85 STATIC
void xlog_verify_iclog(xlog_t
*log
, xlog_in_core_t
*iclog
,
86 int count
, boolean_t syncing
);
87 STATIC
void xlog_verify_tail_lsn(xlog_t
*log
, xlog_in_core_t
*iclog
,
90 #define xlog_verify_dest_ptr(a,b)
91 #define xlog_verify_grant_head(a,b)
92 #define xlog_verify_iclog(a,b,c,d)
93 #define xlog_verify_tail_lsn(a,b,c)
96 STATIC
int xlog_iclogs_empty(xlog_t
*log
);
100 xlog_ins_ticketq(struct xlog_ticket
**qp
, struct xlog_ticket
*tic
)
104 tic
->t_prev
= (*qp
)->t_prev
;
105 (*qp
)->t_prev
->t_next
= tic
;
108 tic
->t_prev
= tic
->t_next
= tic
;
112 tic
->t_flags
|= XLOG_TIC_IN_Q
;
116 xlog_del_ticketq(struct xlog_ticket
**qp
, struct xlog_ticket
*tic
)
118 if (tic
== tic
->t_next
) {
122 tic
->t_next
->t_prev
= tic
->t_prev
;
123 tic
->t_prev
->t_next
= tic
->t_next
;
126 tic
->t_next
= tic
->t_prev
= NULL
;
127 tic
->t_flags
&= ~XLOG_TIC_IN_Q
;
131 xlog_grant_sub_space(struct log
*log
, int bytes
)
133 log
->l_grant_write_bytes
-= bytes
;
134 if (log
->l_grant_write_bytes
< 0) {
135 log
->l_grant_write_bytes
+= log
->l_logsize
;
136 log
->l_grant_write_cycle
--;
139 log
->l_grant_reserve_bytes
-= bytes
;
140 if ((log
)->l_grant_reserve_bytes
< 0) {
141 log
->l_grant_reserve_bytes
+= log
->l_logsize
;
142 log
->l_grant_reserve_cycle
--;
148 xlog_grant_add_space_write(struct log
*log
, int bytes
)
150 int tmp
= log
->l_logsize
- log
->l_grant_write_bytes
;
152 log
->l_grant_write_bytes
+= bytes
;
154 log
->l_grant_write_cycle
++;
155 log
->l_grant_write_bytes
= bytes
- tmp
;
160 xlog_grant_add_space_reserve(struct log
*log
, int bytes
)
162 int tmp
= log
->l_logsize
- log
->l_grant_reserve_bytes
;
164 log
->l_grant_reserve_bytes
+= bytes
;
166 log
->l_grant_reserve_cycle
++;
167 log
->l_grant_reserve_bytes
= bytes
- tmp
;
172 xlog_grant_add_space(struct log
*log
, int bytes
)
174 xlog_grant_add_space_write(log
, bytes
);
175 xlog_grant_add_space_reserve(log
, bytes
);
179 xlog_tic_reset_res(xlog_ticket_t
*tic
)
182 tic
->t_res_arr_sum
= 0;
183 tic
->t_res_num_ophdrs
= 0;
187 xlog_tic_add_region(xlog_ticket_t
*tic
, uint len
, uint type
)
189 if (tic
->t_res_num
== XLOG_TIC_LEN_MAX
) {
190 /* add to overflow and start again */
191 tic
->t_res_o_flow
+= tic
->t_res_arr_sum
;
193 tic
->t_res_arr_sum
= 0;
196 tic
->t_res_arr
[tic
->t_res_num
].r_len
= len
;
197 tic
->t_res_arr
[tic
->t_res_num
].r_type
= type
;
198 tic
->t_res_arr_sum
+= len
;
205 * 1. currblock field gets updated at startup and after in-core logs
206 * marked as with WANT_SYNC.
210 * This routine is called when a user of a log manager ticket is done with
211 * the reservation. If the ticket was ever used, then a commit record for
212 * the associated transaction is written out as a log operation header with
213 * no data. The flag XLOG_TIC_INITED is set when the first write occurs with
214 * a given ticket. If the ticket was one with a permanent reservation, then
215 * a few operations are done differently. Permanent reservation tickets by
216 * default don't release the reservation. They just commit the current
217 * transaction with the belief that the reservation is still needed. A flag
218 * must be passed in before permanent reservations are actually released.
219 * When these type of tickets are not released, they need to be set into
220 * the inited state again. By doing this, a start record will be written
221 * out when the next write occurs.
225 struct xfs_mount
*mp
,
226 struct xlog_ticket
*ticket
,
227 struct xlog_in_core
**iclog
,
230 struct log
*log
= mp
->m_log
;
233 if (XLOG_FORCED_SHUTDOWN(log
) ||
235 * If nothing was ever written, don't write out commit record.
236 * If we get an error, just continue and give back the log ticket.
238 (((ticket
->t_flags
& XLOG_TIC_INITED
) == 0) &&
239 (xlog_commit_record(log
, ticket
, iclog
, &lsn
)))) {
240 lsn
= (xfs_lsn_t
) -1;
241 if (ticket
->t_flags
& XLOG_TIC_PERM_RESERV
) {
242 flags
|= XFS_LOG_REL_PERM_RESERV
;
247 if ((ticket
->t_flags
& XLOG_TIC_PERM_RESERV
) == 0 ||
248 (flags
& XFS_LOG_REL_PERM_RESERV
)) {
249 trace_xfs_log_done_nonperm(log
, ticket
);
252 * Release ticket if not permanent reservation or a specific
253 * request has been made to release a permanent reservation.
255 xlog_ungrant_log_space(log
, ticket
);
256 xfs_log_ticket_put(ticket
);
258 trace_xfs_log_done_perm(log
, ticket
);
260 xlog_regrant_reserve_log_space(log
, ticket
);
261 /* If this ticket was a permanent reservation and we aren't
262 * trying to release it, reset the inited flags; so next time
263 * we write, a start record will be written out.
265 ticket
->t_flags
|= XLOG_TIC_INITED
;
272 * Attaches a new iclog I/O completion callback routine during
273 * transaction commit. If the log is in error state, a non-zero
274 * return code is handed back and the caller is responsible for
275 * executing the callback at an appropriate time.
279 struct xfs_mount
*mp
,
280 struct xlog_in_core
*iclog
,
281 xfs_log_callback_t
*cb
)
285 spin_lock(&iclog
->ic_callback_lock
);
286 abortflg
= (iclog
->ic_state
& XLOG_STATE_IOERROR
);
288 ASSERT_ALWAYS((iclog
->ic_state
== XLOG_STATE_ACTIVE
) ||
289 (iclog
->ic_state
== XLOG_STATE_WANT_SYNC
));
291 *(iclog
->ic_callback_tail
) = cb
;
292 iclog
->ic_callback_tail
= &(cb
->cb_next
);
294 spin_unlock(&iclog
->ic_callback_lock
);
299 xfs_log_release_iclog(
300 struct xfs_mount
*mp
,
301 struct xlog_in_core
*iclog
)
303 if (xlog_state_release_iclog(mp
->m_log
, iclog
)) {
304 xfs_force_shutdown(mp
, SHUTDOWN_LOG_IO_ERROR
);
312 * 1. Reserve an amount of on-disk log space and return a ticket corresponding
313 * to the reservation.
314 * 2. Potentially, push buffers at tail of log to disk.
316 * Each reservation is going to reserve extra space for a log record header.
317 * When writes happen to the on-disk log, we don't subtract the length of the
318 * log record header from any reservation. By wasting space in each
319 * reservation, we prevent over allocation problems.
323 struct xfs_mount
*mp
,
326 struct xlog_ticket
**ticket
,
331 struct log
*log
= mp
->m_log
;
332 struct xlog_ticket
*internal_ticket
;
335 ASSERT(client
== XFS_TRANSACTION
|| client
== XFS_LOG
);
337 if (XLOG_FORCED_SHUTDOWN(log
))
338 return XFS_ERROR(EIO
);
340 XFS_STATS_INC(xs_try_logspace
);
343 if (*ticket
!= NULL
) {
344 ASSERT(flags
& XFS_LOG_PERM_RESERV
);
345 internal_ticket
= *ticket
;
348 * this is a new transaction on the ticket, so we need to
349 * change the transaction ID so that the next transaction has a
350 * different TID in the log. Just add one to the existing tid
351 * so that we can see chains of rolling transactions in the log
354 internal_ticket
->t_tid
++;
356 trace_xfs_log_reserve(log
, internal_ticket
);
358 xlog_grant_push_ail(mp
, internal_ticket
->t_unit_res
);
359 retval
= xlog_regrant_write_log_space(log
, internal_ticket
);
361 /* may sleep if need to allocate more tickets */
362 internal_ticket
= xlog_ticket_alloc(log
, unit_bytes
, cnt
,
364 KM_SLEEP
|KM_MAYFAIL
);
365 if (!internal_ticket
)
366 return XFS_ERROR(ENOMEM
);
367 internal_ticket
->t_trans_type
= t_type
;
368 *ticket
= internal_ticket
;
370 trace_xfs_log_reserve(log
, internal_ticket
);
372 xlog_grant_push_ail(mp
,
373 (internal_ticket
->t_unit_res
*
374 internal_ticket
->t_cnt
));
375 retval
= xlog_grant_log_space(log
, internal_ticket
);
379 } /* xfs_log_reserve */
383 * Mount a log filesystem
385 * mp - ubiquitous xfs mount point structure
386 * log_target - buftarg of on-disk log device
387 * blk_offset - Start block # where block size is 512 bytes (BBSIZE)
388 * num_bblocks - Number of BBSIZE blocks in on-disk log
390 * Return error or zero.
395 xfs_buftarg_t
*log_target
,
396 xfs_daddr_t blk_offset
,
401 if (!(mp
->m_flags
& XFS_MOUNT_NORECOVERY
))
402 cmn_err(CE_NOTE
, "XFS mounting filesystem %s", mp
->m_fsname
);
405 "!Mounting filesystem \"%s\" in no-recovery mode. Filesystem will be inconsistent.",
407 ASSERT(mp
->m_flags
& XFS_MOUNT_RDONLY
);
410 mp
->m_log
= xlog_alloc_log(mp
, log_target
, blk_offset
, num_bblks
);
411 if (IS_ERR(mp
->m_log
)) {
412 error
= -PTR_ERR(mp
->m_log
);
417 * Initialize the AIL now we have a log.
419 error
= xfs_trans_ail_init(mp
);
421 cmn_err(CE_WARN
, "XFS: AIL initialisation failed: error %d", error
);
424 mp
->m_log
->l_ailp
= mp
->m_ail
;
427 * skip log recovery on a norecovery mount. pretend it all
430 if (!(mp
->m_flags
& XFS_MOUNT_NORECOVERY
)) {
431 int readonly
= (mp
->m_flags
& XFS_MOUNT_RDONLY
);
434 mp
->m_flags
&= ~XFS_MOUNT_RDONLY
;
436 error
= xlog_recover(mp
->m_log
);
439 mp
->m_flags
|= XFS_MOUNT_RDONLY
;
441 cmn_err(CE_WARN
, "XFS: log mount/recovery failed: error %d", error
);
442 goto out_destroy_ail
;
446 /* Normal transactions can now occur */
447 mp
->m_log
->l_flags
&= ~XLOG_ACTIVE_RECOVERY
;
450 * Now the log has been fully initialised and we know were our
451 * space grant counters are, we can initialise the permanent ticket
452 * needed for delayed logging to work.
454 xlog_cil_init_post_recovery(mp
->m_log
);
459 xfs_trans_ail_destroy(mp
);
461 xlog_dealloc_log(mp
->m_log
);
467 * Finish the recovery of the file system. This is separate from
468 * the xfs_log_mount() call, because it depends on the code in
469 * xfs_mountfs() to read in the root and real-time bitmap inodes
470 * between calling xfs_log_mount() and here.
472 * mp - ubiquitous xfs mount point structure
475 xfs_log_mount_finish(xfs_mount_t
*mp
)
479 if (!(mp
->m_flags
& XFS_MOUNT_NORECOVERY
))
480 error
= xlog_recover_finish(mp
->m_log
);
483 ASSERT(mp
->m_flags
& XFS_MOUNT_RDONLY
);
490 * Final log writes as part of unmount.
492 * Mark the filesystem clean as unmount happens. Note that during relocation
493 * this routine needs to be executed as part of source-bag while the
494 * deallocation must not be done until source-end.
498 * Unmount record used to have a string "Unmount filesystem--" in the
499 * data section where the "Un" was really a magic number (XLOG_UNMOUNT_TYPE).
500 * We just write the magic number now since that particular field isn't
501 * currently architecture converted and "nUmount" is a bit foo.
502 * As far as I know, there weren't any dependencies on the old behaviour.
506 xfs_log_unmount_write(xfs_mount_t
*mp
)
508 xlog_t
*log
= mp
->m_log
;
509 xlog_in_core_t
*iclog
;
511 xlog_in_core_t
*first_iclog
;
513 xlog_ticket_t
*tic
= NULL
;
518 * Don't write out unmount record on read-only mounts.
519 * Or, if we are doing a forced umount (typically because of IO errors).
521 if (mp
->m_flags
& XFS_MOUNT_RDONLY
)
524 error
= _xfs_log_force(mp
, XFS_LOG_SYNC
, NULL
);
525 ASSERT(error
|| !(XLOG_FORCED_SHUTDOWN(log
)));
528 first_iclog
= iclog
= log
->l_iclog
;
530 if (!(iclog
->ic_state
& XLOG_STATE_IOERROR
)) {
531 ASSERT(iclog
->ic_state
& XLOG_STATE_ACTIVE
);
532 ASSERT(iclog
->ic_offset
== 0);
534 iclog
= iclog
->ic_next
;
535 } while (iclog
!= first_iclog
);
537 if (! (XLOG_FORCED_SHUTDOWN(log
))) {
538 error
= xfs_log_reserve(mp
, 600, 1, &tic
,
539 XFS_LOG
, 0, XLOG_UNMOUNT_REC_TYPE
);
541 /* the data section must be 32 bit size aligned */
545 __uint32_t pad2
; /* may as well make it 64 bits */
547 .magic
= XLOG_UNMOUNT_TYPE
,
549 struct xfs_log_iovec reg
= {
551 .i_len
= sizeof(magic
),
552 .i_type
= XLOG_REG_TYPE_UNMOUNT
,
554 struct xfs_log_vec vec
= {
559 /* remove inited flag */
561 error
= xlog_write(log
, &vec
, tic
, &lsn
,
562 NULL
, XLOG_UNMOUNT_TRANS
);
564 * At this point, we're umounting anyway,
565 * so there's no point in transitioning log state
566 * to IOERROR. Just continue...
571 xfs_fs_cmn_err(CE_ALERT
, mp
,
572 "xfs_log_unmount: unmount record failed");
576 spin_lock(&log
->l_icloglock
);
577 iclog
= log
->l_iclog
;
578 atomic_inc(&iclog
->ic_refcnt
);
579 xlog_state_want_sync(log
, iclog
);
580 spin_unlock(&log
->l_icloglock
);
581 error
= xlog_state_release_iclog(log
, iclog
);
583 spin_lock(&log
->l_icloglock
);
584 if (!(iclog
->ic_state
== XLOG_STATE_ACTIVE
||
585 iclog
->ic_state
== XLOG_STATE_DIRTY
)) {
586 if (!XLOG_FORCED_SHUTDOWN(log
)) {
587 sv_wait(&iclog
->ic_force_wait
, PMEM
,
588 &log
->l_icloglock
, s
);
590 spin_unlock(&log
->l_icloglock
);
593 spin_unlock(&log
->l_icloglock
);
596 trace_xfs_log_umount_write(log
, tic
);
597 xlog_ungrant_log_space(log
, tic
);
598 xfs_log_ticket_put(tic
);
602 * We're already in forced_shutdown mode, couldn't
603 * even attempt to write out the unmount transaction.
605 * Go through the motions of sync'ing and releasing
606 * the iclog, even though no I/O will actually happen,
607 * we need to wait for other log I/Os that may already
608 * be in progress. Do this as a separate section of
609 * code so we'll know if we ever get stuck here that
610 * we're in this odd situation of trying to unmount
611 * a file system that went into forced_shutdown as
612 * the result of an unmount..
614 spin_lock(&log
->l_icloglock
);
615 iclog
= log
->l_iclog
;
616 atomic_inc(&iclog
->ic_refcnt
);
618 xlog_state_want_sync(log
, iclog
);
619 spin_unlock(&log
->l_icloglock
);
620 error
= xlog_state_release_iclog(log
, iclog
);
622 spin_lock(&log
->l_icloglock
);
624 if ( ! ( iclog
->ic_state
== XLOG_STATE_ACTIVE
625 || iclog
->ic_state
== XLOG_STATE_DIRTY
626 || iclog
->ic_state
== XLOG_STATE_IOERROR
) ) {
628 sv_wait(&iclog
->ic_force_wait
, PMEM
,
629 &log
->l_icloglock
, s
);
631 spin_unlock(&log
->l_icloglock
);
636 } /* xfs_log_unmount_write */
639 * Deallocate log structures for unmount/relocation.
641 * We need to stop the aild from running before we destroy
642 * and deallocate the log as the aild references the log.
645 xfs_log_unmount(xfs_mount_t
*mp
)
647 xfs_trans_ail_destroy(mp
);
648 xlog_dealloc_log(mp
->m_log
);
653 struct xfs_mount
*mp
,
654 struct xfs_log_item
*item
,
656 struct xfs_item_ops
*ops
)
658 item
->li_mountp
= mp
;
659 item
->li_ailp
= mp
->m_ail
;
660 item
->li_type
= type
;
664 INIT_LIST_HEAD(&item
->li_ail
);
665 INIT_LIST_HEAD(&item
->li_cil
);
669 * Write region vectors to log. The write happens using the space reservation
670 * of the ticket (tic). It is not a requirement that all writes for a given
671 * transaction occur with one call to xfs_log_write(). However, it is important
672 * to note that the transaction reservation code makes an assumption about the
673 * number of log headers a transaction requires that may be violated if you
674 * don't pass all the transaction vectors in one call....
678 struct xfs_mount
*mp
,
679 struct xfs_log_iovec reg
[],
681 struct xlog_ticket
*tic
,
682 xfs_lsn_t
*start_lsn
)
684 struct log
*log
= mp
->m_log
;
686 struct xfs_log_vec vec
= {
687 .lv_niovecs
= nentries
,
691 if (XLOG_FORCED_SHUTDOWN(log
))
692 return XFS_ERROR(EIO
);
694 error
= xlog_write(log
, &vec
, tic
, start_lsn
, NULL
, 0);
696 xfs_force_shutdown(mp
, SHUTDOWN_LOG_IO_ERROR
);
701 xfs_log_move_tail(xfs_mount_t
*mp
,
705 xlog_t
*log
= mp
->m_log
;
706 int need_bytes
, free_bytes
, cycle
, bytes
;
708 if (XLOG_FORCED_SHUTDOWN(log
))
712 /* needed since sync_lsn is 64 bits */
713 spin_lock(&log
->l_icloglock
);
714 tail_lsn
= log
->l_last_sync_lsn
;
715 spin_unlock(&log
->l_icloglock
);
718 spin_lock(&log
->l_grant_lock
);
720 /* Also an invalid lsn. 1 implies that we aren't passing in a valid
724 log
->l_tail_lsn
= tail_lsn
;
727 if ((tic
= log
->l_write_headq
)) {
729 if (log
->l_flags
& XLOG_ACTIVE_RECOVERY
)
730 panic("Recovery problem");
732 cycle
= log
->l_grant_write_cycle
;
733 bytes
= log
->l_grant_write_bytes
;
734 free_bytes
= xlog_space_left(log
, cycle
, bytes
);
736 ASSERT(tic
->t_flags
& XLOG_TIC_PERM_RESERV
);
738 if (free_bytes
< tic
->t_unit_res
&& tail_lsn
!= 1)
741 free_bytes
-= tic
->t_unit_res
;
742 sv_signal(&tic
->t_wait
);
744 } while (tic
!= log
->l_write_headq
);
746 if ((tic
= log
->l_reserve_headq
)) {
748 if (log
->l_flags
& XLOG_ACTIVE_RECOVERY
)
749 panic("Recovery problem");
751 cycle
= log
->l_grant_reserve_cycle
;
752 bytes
= log
->l_grant_reserve_bytes
;
753 free_bytes
= xlog_space_left(log
, cycle
, bytes
);
755 if (tic
->t_flags
& XLOG_TIC_PERM_RESERV
)
756 need_bytes
= tic
->t_unit_res
*tic
->t_cnt
;
758 need_bytes
= tic
->t_unit_res
;
759 if (free_bytes
< need_bytes
&& tail_lsn
!= 1)
762 free_bytes
-= need_bytes
;
763 sv_signal(&tic
->t_wait
);
765 } while (tic
!= log
->l_reserve_headq
);
767 spin_unlock(&log
->l_grant_lock
);
768 } /* xfs_log_move_tail */
771 * Determine if we have a transaction that has gone to disk
772 * that needs to be covered. To begin the transition to the idle state
773 * firstly the log needs to be idle (no AIL and nothing in the iclogs).
774 * If we are then in a state where covering is needed, the caller is informed
775 * that dummy transactions are required to move the log into the idle state.
777 * Because this is called as part of the sync process, we should also indicate
778 * that dummy transactions should be issued in anything but the covered or
779 * idle states. This ensures that the log tail is accurately reflected in
780 * the log at the end of the sync, hence if a crash occurrs avoids replay
781 * of transactions where the metadata is already on disk.
784 xfs_log_need_covered(xfs_mount_t
*mp
)
787 xlog_t
*log
= mp
->m_log
;
789 if (!xfs_fs_writable(mp
))
792 spin_lock(&log
->l_icloglock
);
793 switch (log
->l_covered_state
) {
794 case XLOG_STATE_COVER_DONE
:
795 case XLOG_STATE_COVER_DONE2
:
796 case XLOG_STATE_COVER_IDLE
:
798 case XLOG_STATE_COVER_NEED
:
799 case XLOG_STATE_COVER_NEED2
:
800 if (!xfs_trans_ail_tail(log
->l_ailp
) &&
801 xlog_iclogs_empty(log
)) {
802 if (log
->l_covered_state
== XLOG_STATE_COVER_NEED
)
803 log
->l_covered_state
= XLOG_STATE_COVER_DONE
;
805 log
->l_covered_state
= XLOG_STATE_COVER_DONE2
;
812 spin_unlock(&log
->l_icloglock
);
816 /******************************************************************************
820 ******************************************************************************
823 /* xfs_trans_tail_ail returns 0 when there is nothing in the list.
824 * The log manager must keep track of the last LR which was committed
825 * to disk. The lsn of this LR will become the new tail_lsn whenever
826 * xfs_trans_tail_ail returns 0. If we don't do this, we run into
827 * the situation where stuff could be written into the log but nothing
828 * was ever in the AIL when asked. Eventually, we panic since the
829 * tail hits the head.
831 * We may be holding the log iclog lock upon entering this routine.
834 xlog_assign_tail_lsn(xfs_mount_t
*mp
)
837 xlog_t
*log
= mp
->m_log
;
839 tail_lsn
= xfs_trans_ail_tail(mp
->m_ail
);
840 spin_lock(&log
->l_grant_lock
);
842 log
->l_tail_lsn
= tail_lsn
;
844 tail_lsn
= log
->l_tail_lsn
= log
->l_last_sync_lsn
;
846 spin_unlock(&log
->l_grant_lock
);
849 } /* xlog_assign_tail_lsn */
853 * Return the space in the log between the tail and the head. The head
854 * is passed in the cycle/bytes formal parms. In the special case where
855 * the reserve head has wrapped passed the tail, this calculation is no
856 * longer valid. In this case, just return 0 which means there is no space
857 * in the log. This works for all places where this function is called
858 * with the reserve head. Of course, if the write head were to ever
859 * wrap the tail, we should blow up. Rather than catch this case here,
860 * we depend on other ASSERTions in other parts of the code. XXXmiken
862 * This code also handles the case where the reservation head is behind
863 * the tail. The details of this case are described below, but the end
864 * result is that we return the size of the log as the amount of space left.
867 xlog_space_left(xlog_t
*log
, int cycle
, int bytes
)
873 tail_bytes
= BBTOB(BLOCK_LSN(log
->l_tail_lsn
));
874 tail_cycle
= CYCLE_LSN(log
->l_tail_lsn
);
875 if ((tail_cycle
== cycle
) && (bytes
>= tail_bytes
)) {
876 free_bytes
= log
->l_logsize
- (bytes
- tail_bytes
);
877 } else if ((tail_cycle
+ 1) < cycle
) {
879 } else if (tail_cycle
< cycle
) {
880 ASSERT(tail_cycle
== (cycle
- 1));
881 free_bytes
= tail_bytes
- bytes
;
884 * The reservation head is behind the tail.
885 * In this case we just want to return the size of the
886 * log as the amount of space left.
888 xfs_fs_cmn_err(CE_ALERT
, log
->l_mp
,
889 "xlog_space_left: head behind tail\n"
890 " tail_cycle = %d, tail_bytes = %d\n"
891 " GH cycle = %d, GH bytes = %d",
892 tail_cycle
, tail_bytes
, cycle
, bytes
);
894 free_bytes
= log
->l_logsize
;
897 } /* xlog_space_left */
901 * Log function which is called when an io completes.
903 * The log manager needs its own routine, in order to control what
904 * happens with the buffer after the write completes.
907 xlog_iodone(xfs_buf_t
*bp
)
909 xlog_in_core_t
*iclog
;
913 iclog
= XFS_BUF_FSPRIVATE(bp
, xlog_in_core_t
*);
914 ASSERT(XFS_BUF_FSPRIVATE2(bp
, unsigned long) == (unsigned long) 2);
915 XFS_BUF_SET_FSPRIVATE2(bp
, (unsigned long)1);
920 * If the _XFS_BARRIER_FAILED flag was set by a lower
921 * layer, it means the underlying device no longer supports
922 * barrier I/O. Warn loudly and turn off barriers.
924 if (bp
->b_flags
& _XFS_BARRIER_FAILED
) {
925 bp
->b_flags
&= ~_XFS_BARRIER_FAILED
;
926 l
->l_mp
->m_flags
&= ~XFS_MOUNT_BARRIER
;
927 xfs_fs_cmn_err(CE_WARN
, l
->l_mp
,
928 "xlog_iodone: Barriers are no longer supported"
929 " by device. Disabling barriers\n");
933 * Race to shutdown the filesystem if we see an error.
935 if (XFS_TEST_ERROR((XFS_BUF_GETERROR(bp
)), l
->l_mp
,
936 XFS_ERRTAG_IODONE_IOERR
, XFS_RANDOM_IODONE_IOERR
)) {
937 xfs_ioerror_alert("xlog_iodone", l
->l_mp
, bp
, XFS_BUF_ADDR(bp
));
939 xfs_force_shutdown(l
->l_mp
, SHUTDOWN_LOG_IO_ERROR
);
941 * This flag will be propagated to the trans-committed
942 * callback routines to let them know that the log-commit
945 aborted
= XFS_LI_ABORTED
;
946 } else if (iclog
->ic_state
& XLOG_STATE_IOERROR
) {
947 aborted
= XFS_LI_ABORTED
;
950 /* log I/O is always issued ASYNC */
951 ASSERT(XFS_BUF_ISASYNC(bp
));
952 xlog_state_done_syncing(iclog
, aborted
);
954 * do not reference the buffer (bp) here as we could race
955 * with it being freed after writing the unmount record to the
962 * Return size of each in-core log record buffer.
964 * All machines get 8 x 32kB buffers by default, unless tuned otherwise.
966 * If the filesystem blocksize is too large, we may need to choose a
967 * larger size since the directory code currently logs entire blocks.
971 xlog_get_iclog_buffer_size(xfs_mount_t
*mp
,
977 if (mp
->m_logbufs
<= 0)
978 log
->l_iclog_bufs
= XLOG_MAX_ICLOGS
;
980 log
->l_iclog_bufs
= mp
->m_logbufs
;
983 * Buffer size passed in from mount system call.
985 if (mp
->m_logbsize
> 0) {
986 size
= log
->l_iclog_size
= mp
->m_logbsize
;
987 log
->l_iclog_size_log
= 0;
989 log
->l_iclog_size_log
++;
993 if (xfs_sb_version_haslogv2(&mp
->m_sb
)) {
994 /* # headers = size / 32k
995 * one header holds cycles from 32k of data
998 xhdrs
= mp
->m_logbsize
/ XLOG_HEADER_CYCLE_SIZE
;
999 if (mp
->m_logbsize
% XLOG_HEADER_CYCLE_SIZE
)
1001 log
->l_iclog_hsize
= xhdrs
<< BBSHIFT
;
1002 log
->l_iclog_heads
= xhdrs
;
1004 ASSERT(mp
->m_logbsize
<= XLOG_BIG_RECORD_BSIZE
);
1005 log
->l_iclog_hsize
= BBSIZE
;
1006 log
->l_iclog_heads
= 1;
1011 /* All machines use 32kB buffers by default. */
1012 log
->l_iclog_size
= XLOG_BIG_RECORD_BSIZE
;
1013 log
->l_iclog_size_log
= XLOG_BIG_RECORD_BSHIFT
;
1015 /* the default log size is 16k or 32k which is one header sector */
1016 log
->l_iclog_hsize
= BBSIZE
;
1017 log
->l_iclog_heads
= 1;
1020 /* are we being asked to make the sizes selected above visible? */
1021 if (mp
->m_logbufs
== 0)
1022 mp
->m_logbufs
= log
->l_iclog_bufs
;
1023 if (mp
->m_logbsize
== 0)
1024 mp
->m_logbsize
= log
->l_iclog_size
;
1025 } /* xlog_get_iclog_buffer_size */
1029 * This routine initializes some of the log structure for a given mount point.
1030 * Its primary purpose is to fill in enough, so recovery can occur. However,
1031 * some other stuff may be filled in too.
1034 xlog_alloc_log(xfs_mount_t
*mp
,
1035 xfs_buftarg_t
*log_target
,
1036 xfs_daddr_t blk_offset
,
1040 xlog_rec_header_t
*head
;
1041 xlog_in_core_t
**iclogp
;
1042 xlog_in_core_t
*iclog
, *prev_iclog
=NULL
;
1048 log
= kmem_zalloc(sizeof(xlog_t
), KM_MAYFAIL
);
1050 xlog_warn("XFS: Log allocation failed: No memory!");
1055 log
->l_targ
= log_target
;
1056 log
->l_logsize
= BBTOB(num_bblks
);
1057 log
->l_logBBstart
= blk_offset
;
1058 log
->l_logBBsize
= num_bblks
;
1059 log
->l_covered_state
= XLOG_STATE_COVER_IDLE
;
1060 log
->l_flags
|= XLOG_ACTIVE_RECOVERY
;
1062 log
->l_prev_block
= -1;
1063 log
->l_tail_lsn
= xlog_assign_lsn(1, 0);
1064 /* log->l_tail_lsn = 0x100000000LL; cycle = 1; current block = 0 */
1065 log
->l_last_sync_lsn
= log
->l_tail_lsn
;
1066 log
->l_curr_cycle
= 1; /* 0 is bad since this is initial value */
1067 log
->l_grant_reserve_cycle
= 1;
1068 log
->l_grant_write_cycle
= 1;
1070 error
= EFSCORRUPTED
;
1071 if (xfs_sb_version_hassector(&mp
->m_sb
)) {
1072 log2_size
= mp
->m_sb
.sb_logsectlog
;
1073 if (log2_size
< BBSHIFT
) {
1074 xlog_warn("XFS: Log sector size too small "
1075 "(0x%x < 0x%x)", log2_size
, BBSHIFT
);
1079 log2_size
-= BBSHIFT
;
1080 if (log2_size
> mp
->m_sectbb_log
) {
1081 xlog_warn("XFS: Log sector size too large "
1082 "(0x%x > 0x%x)", log2_size
, mp
->m_sectbb_log
);
1086 /* for larger sector sizes, must have v2 or external log */
1087 if (log2_size
&& log
->l_logBBstart
> 0 &&
1088 !xfs_sb_version_haslogv2(&mp
->m_sb
)) {
1090 xlog_warn("XFS: log sector size (0x%x) invalid "
1091 "for configuration.", log2_size
);
1095 log
->l_sectBBsize
= 1 << log2_size
;
1097 xlog_get_iclog_buffer_size(mp
, log
);
1100 bp
= xfs_buf_get_empty(log
->l_iclog_size
, mp
->m_logdev_targp
);
1103 XFS_BUF_SET_IODONE_FUNC(bp
, xlog_iodone
);
1104 XFS_BUF_SET_FSPRIVATE2(bp
, (unsigned long)1);
1105 ASSERT(XFS_BUF_ISBUSY(bp
));
1106 ASSERT(XFS_BUF_VALUSEMA(bp
) <= 0);
1109 spin_lock_init(&log
->l_icloglock
);
1110 spin_lock_init(&log
->l_grant_lock
);
1111 sv_init(&log
->l_flush_wait
, 0, "flush_wait");
1113 /* log record size must be multiple of BBSIZE; see xlog_rec_header_t */
1114 ASSERT((XFS_BUF_SIZE(bp
) & BBMASK
) == 0);
1116 iclogp
= &log
->l_iclog
;
1118 * The amount of memory to allocate for the iclog structure is
1119 * rather funky due to the way the structure is defined. It is
1120 * done this way so that we can use different sizes for machines
1121 * with different amounts of memory. See the definition of
1122 * xlog_in_core_t in xfs_log_priv.h for details.
1124 ASSERT(log
->l_iclog_size
>= 4096);
1125 for (i
=0; i
< log
->l_iclog_bufs
; i
++) {
1126 *iclogp
= kmem_zalloc(sizeof(xlog_in_core_t
), KM_MAYFAIL
);
1128 goto out_free_iclog
;
1131 iclog
->ic_prev
= prev_iclog
;
1134 bp
= xfs_buf_get_noaddr(log
->l_iclog_size
, mp
->m_logdev_targp
);
1136 goto out_free_iclog
;
1137 if (!XFS_BUF_CPSEMA(bp
))
1139 XFS_BUF_SET_IODONE_FUNC(bp
, xlog_iodone
);
1140 XFS_BUF_SET_FSPRIVATE2(bp
, (unsigned long)1);
1142 iclog
->ic_data
= bp
->b_addr
;
1144 log
->l_iclog_bak
[i
] = (xfs_caddr_t
)&(iclog
->ic_header
);
1146 head
= &iclog
->ic_header
;
1147 memset(head
, 0, sizeof(xlog_rec_header_t
));
1148 head
->h_magicno
= cpu_to_be32(XLOG_HEADER_MAGIC_NUM
);
1149 head
->h_version
= cpu_to_be32(
1150 xfs_sb_version_haslogv2(&log
->l_mp
->m_sb
) ? 2 : 1);
1151 head
->h_size
= cpu_to_be32(log
->l_iclog_size
);
1153 head
->h_fmt
= cpu_to_be32(XLOG_FMT
);
1154 memcpy(&head
->h_fs_uuid
, &mp
->m_sb
.sb_uuid
, sizeof(uuid_t
));
1156 iclog
->ic_size
= XFS_BUF_SIZE(bp
) - log
->l_iclog_hsize
;
1157 iclog
->ic_state
= XLOG_STATE_ACTIVE
;
1158 iclog
->ic_log
= log
;
1159 atomic_set(&iclog
->ic_refcnt
, 0);
1160 spin_lock_init(&iclog
->ic_callback_lock
);
1161 iclog
->ic_callback_tail
= &(iclog
->ic_callback
);
1162 iclog
->ic_datap
= (char *)iclog
->ic_data
+ log
->l_iclog_hsize
;
1164 ASSERT(XFS_BUF_ISBUSY(iclog
->ic_bp
));
1165 ASSERT(XFS_BUF_VALUSEMA(iclog
->ic_bp
) <= 0);
1166 sv_init(&iclog
->ic_force_wait
, SV_DEFAULT
, "iclog-force");
1167 sv_init(&iclog
->ic_write_wait
, SV_DEFAULT
, "iclog-write");
1169 iclogp
= &iclog
->ic_next
;
1171 *iclogp
= log
->l_iclog
; /* complete ring */
1172 log
->l_iclog
->ic_prev
= prev_iclog
; /* re-write 1st prev ptr */
1174 error
= xlog_cil_init(log
);
1176 goto out_free_iclog
;
1180 for (iclog
= log
->l_iclog
; iclog
; iclog
= prev_iclog
) {
1181 prev_iclog
= iclog
->ic_next
;
1183 sv_destroy(&iclog
->ic_force_wait
);
1184 sv_destroy(&iclog
->ic_write_wait
);
1185 xfs_buf_free(iclog
->ic_bp
);
1189 spinlock_destroy(&log
->l_icloglock
);
1190 spinlock_destroy(&log
->l_grant_lock
);
1191 xfs_buf_free(log
->l_xbuf
);
1195 return ERR_PTR(-error
);
1196 } /* xlog_alloc_log */
1200 * Write out the commit record of a transaction associated with the given
1201 * ticket. Return the lsn of the commit record.
1206 struct xlog_ticket
*ticket
,
1207 struct xlog_in_core
**iclog
,
1208 xfs_lsn_t
*commitlsnp
)
1210 struct xfs_mount
*mp
= log
->l_mp
;
1212 struct xfs_log_iovec reg
= {
1215 .i_type
= XLOG_REG_TYPE_COMMIT
,
1217 struct xfs_log_vec vec
= {
1222 ASSERT_ALWAYS(iclog
);
1223 error
= xlog_write(log
, &vec
, ticket
, commitlsnp
, iclog
,
1226 xfs_force_shutdown(mp
, SHUTDOWN_LOG_IO_ERROR
);
1231 * Push on the buffer cache code if we ever use more than 75% of the on-disk
1232 * log space. This code pushes on the lsn which would supposedly free up
1233 * the 25% which we want to leave free. We may need to adopt a policy which
1234 * pushes on an lsn which is further along in the log once we reach the high
1235 * water mark. In this manner, we would be creating a low water mark.
1238 xlog_grant_push_ail(xfs_mount_t
*mp
,
1241 xlog_t
*log
= mp
->m_log
; /* pointer to the log */
1242 xfs_lsn_t tail_lsn
; /* lsn of the log tail */
1243 xfs_lsn_t threshold_lsn
= 0; /* lsn we'd like to be at */
1244 int free_blocks
; /* free blocks left to write to */
1245 int free_bytes
; /* free bytes left to write to */
1246 int threshold_block
; /* block in lsn we'd like to be at */
1247 int threshold_cycle
; /* lsn cycle we'd like to be at */
1250 ASSERT(BTOBB(need_bytes
) < log
->l_logBBsize
);
1252 spin_lock(&log
->l_grant_lock
);
1253 free_bytes
= xlog_space_left(log
,
1254 log
->l_grant_reserve_cycle
,
1255 log
->l_grant_reserve_bytes
);
1256 tail_lsn
= log
->l_tail_lsn
;
1257 free_blocks
= BTOBBT(free_bytes
);
1260 * Set the threshold for the minimum number of free blocks in the
1261 * log to the maximum of what the caller needs, one quarter of the
1262 * log, and 256 blocks.
1264 free_threshold
= BTOBB(need_bytes
);
1265 free_threshold
= MAX(free_threshold
, (log
->l_logBBsize
>> 2));
1266 free_threshold
= MAX(free_threshold
, 256);
1267 if (free_blocks
< free_threshold
) {
1268 threshold_block
= BLOCK_LSN(tail_lsn
) + free_threshold
;
1269 threshold_cycle
= CYCLE_LSN(tail_lsn
);
1270 if (threshold_block
>= log
->l_logBBsize
) {
1271 threshold_block
-= log
->l_logBBsize
;
1272 threshold_cycle
+= 1;
1274 threshold_lsn
= xlog_assign_lsn(threshold_cycle
, threshold_block
);
1276 /* Don't pass in an lsn greater than the lsn of the last
1277 * log record known to be on disk.
1279 if (XFS_LSN_CMP(threshold_lsn
, log
->l_last_sync_lsn
) > 0)
1280 threshold_lsn
= log
->l_last_sync_lsn
;
1282 spin_unlock(&log
->l_grant_lock
);
1285 * Get the transaction layer to kick the dirty buffers out to
1286 * disk asynchronously. No point in trying to do this if
1287 * the filesystem is shutting down.
1289 if (threshold_lsn
&&
1290 !XLOG_FORCED_SHUTDOWN(log
))
1291 xfs_trans_ail_push(log
->l_ailp
, threshold_lsn
);
1292 } /* xlog_grant_push_ail */
1295 * The bdstrat callback function for log bufs. This gives us a central
1296 * place to trap bufs in case we get hit by a log I/O error and need to
1297 * shutdown. Actually, in practice, even when we didn't get a log error,
1298 * we transition the iclogs to IOERROR state *after* flushing all existing
1299 * iclogs to disk. This is because we don't want anymore new transactions to be
1300 * started or completed afterwards.
1306 struct xlog_in_core
*iclog
;
1308 iclog
= XFS_BUF_FSPRIVATE(bp
, xlog_in_core_t
*);
1309 if (iclog
->ic_state
& XLOG_STATE_IOERROR
) {
1310 XFS_BUF_ERROR(bp
, EIO
);
1314 * It would seem logical to return EIO here, but we rely on
1315 * the log state machine to propagate I/O errors instead of
1321 bp
->b_flags
|= _XBF_RUN_QUEUES
;
1322 xfs_buf_iorequest(bp
);
1327 * Flush out the in-core log (iclog) to the on-disk log in an asynchronous
1328 * fashion. Previously, we should have moved the current iclog
1329 * ptr in the log to point to the next available iclog. This allows further
1330 * write to continue while this code syncs out an iclog ready to go.
1331 * Before an in-core log can be written out, the data section must be scanned
1332 * to save away the 1st word of each BBSIZE block into the header. We replace
1333 * it with the current cycle count. Each BBSIZE block is tagged with the
1334 * cycle count because there in an implicit assumption that drives will
1335 * guarantee that entire 512 byte blocks get written at once. In other words,
1336 * we can't have part of a 512 byte block written and part not written. By
1337 * tagging each block, we will know which blocks are valid when recovering
1338 * after an unclean shutdown.
1340 * This routine is single threaded on the iclog. No other thread can be in
1341 * this routine with the same iclog. Changing contents of iclog can there-
1342 * fore be done without grabbing the state machine lock. Updating the global
1343 * log will require grabbing the lock though.
1345 * The entire log manager uses a logical block numbering scheme. Only
1346 * log_sync (and then only bwrite()) know about the fact that the log may
1347 * not start with block zero on a given device. The log block start offset
1348 * is added immediately before calling bwrite().
1352 xlog_sync(xlog_t
*log
,
1353 xlog_in_core_t
*iclog
)
1355 xfs_caddr_t dptr
; /* pointer to byte sized element */
1358 uint count
; /* byte count of bwrite */
1359 uint count_init
; /* initial count before roundup */
1360 int roundoff
; /* roundoff to BB or stripe */
1361 int split
= 0; /* split write into two regions */
1363 int v2
= xfs_sb_version_haslogv2(&log
->l_mp
->m_sb
);
1365 XFS_STATS_INC(xs_log_writes
);
1366 ASSERT(atomic_read(&iclog
->ic_refcnt
) == 0);
1368 /* Add for LR header */
1369 count_init
= log
->l_iclog_hsize
+ iclog
->ic_offset
;
1371 /* Round out the log write size */
1372 if (v2
&& log
->l_mp
->m_sb
.sb_logsunit
> 1) {
1373 /* we have a v2 stripe unit to use */
1374 count
= XLOG_LSUNITTOB(log
, XLOG_BTOLSUNIT(log
, count_init
));
1376 count
= BBTOB(BTOBB(count_init
));
1378 roundoff
= count
- count_init
;
1379 ASSERT(roundoff
>= 0);
1380 ASSERT((v2
&& log
->l_mp
->m_sb
.sb_logsunit
> 1 &&
1381 roundoff
< log
->l_mp
->m_sb
.sb_logsunit
)
1383 (log
->l_mp
->m_sb
.sb_logsunit
<= 1 &&
1384 roundoff
< BBTOB(1)));
1386 /* move grant heads by roundoff in sync */
1387 spin_lock(&log
->l_grant_lock
);
1388 xlog_grant_add_space(log
, roundoff
);
1389 spin_unlock(&log
->l_grant_lock
);
1391 /* put cycle number in every block */
1392 xlog_pack_data(log
, iclog
, roundoff
);
1394 /* real byte length */
1396 iclog
->ic_header
.h_len
=
1397 cpu_to_be32(iclog
->ic_offset
+ roundoff
);
1399 iclog
->ic_header
.h_len
=
1400 cpu_to_be32(iclog
->ic_offset
);
1404 ASSERT(XFS_BUF_FSPRIVATE2(bp
, unsigned long) == (unsigned long)1);
1405 XFS_BUF_SET_FSPRIVATE2(bp
, (unsigned long)2);
1406 XFS_BUF_SET_ADDR(bp
, BLOCK_LSN(be64_to_cpu(iclog
->ic_header
.h_lsn
)));
1408 XFS_STATS_ADD(xs_log_blocks
, BTOBB(count
));
1410 /* Do we need to split this write into 2 parts? */
1411 if (XFS_BUF_ADDR(bp
) + BTOBB(count
) > log
->l_logBBsize
) {
1412 split
= count
- (BBTOB(log
->l_logBBsize
- XFS_BUF_ADDR(bp
)));
1413 count
= BBTOB(log
->l_logBBsize
- XFS_BUF_ADDR(bp
));
1414 iclog
->ic_bwritecnt
= 2; /* split into 2 writes */
1416 iclog
->ic_bwritecnt
= 1;
1418 XFS_BUF_SET_COUNT(bp
, count
);
1419 XFS_BUF_SET_FSPRIVATE(bp
, iclog
); /* save for later */
1420 XFS_BUF_ZEROFLAGS(bp
);
1423 bp
->b_flags
|= XBF_LOG_BUFFER
;
1425 if (log
->l_mp
->m_flags
& XFS_MOUNT_BARRIER
)
1426 XFS_BUF_ORDERED(bp
);
1428 ASSERT(XFS_BUF_ADDR(bp
) <= log
->l_logBBsize
-1);
1429 ASSERT(XFS_BUF_ADDR(bp
) + BTOBB(count
) <= log
->l_logBBsize
);
1431 xlog_verify_iclog(log
, iclog
, count
, B_TRUE
);
1433 /* account for log which doesn't start at block #0 */
1434 XFS_BUF_SET_ADDR(bp
, XFS_BUF_ADDR(bp
) + log
->l_logBBstart
);
1436 * Don't call xfs_bwrite here. We do log-syncs even when the filesystem
1441 if ((error
= xlog_bdstrat(bp
))) {
1442 xfs_ioerror_alert("xlog_sync", log
->l_mp
, bp
,
1447 bp
= iclog
->ic_log
->l_xbuf
;
1448 ASSERT(XFS_BUF_FSPRIVATE2(bp
, unsigned long) ==
1450 XFS_BUF_SET_FSPRIVATE2(bp
, (unsigned long)2);
1451 XFS_BUF_SET_ADDR(bp
, 0); /* logical 0 */
1452 XFS_BUF_SET_PTR(bp
, (xfs_caddr_t
)((__psint_t
)&(iclog
->ic_header
)+
1453 (__psint_t
)count
), split
);
1454 XFS_BUF_SET_FSPRIVATE(bp
, iclog
);
1455 XFS_BUF_ZEROFLAGS(bp
);
1458 bp
->b_flags
|= XBF_LOG_BUFFER
;
1459 if (log
->l_mp
->m_flags
& XFS_MOUNT_BARRIER
)
1460 XFS_BUF_ORDERED(bp
);
1461 dptr
= XFS_BUF_PTR(bp
);
1463 * Bump the cycle numbers at the start of each block
1464 * since this part of the buffer is at the start of
1465 * a new cycle. Watch out for the header magic number
1468 for (i
= 0; i
< split
; i
+= BBSIZE
) {
1469 be32_add_cpu((__be32
*)dptr
, 1);
1470 if (be32_to_cpu(*(__be32
*)dptr
) == XLOG_HEADER_MAGIC_NUM
)
1471 be32_add_cpu((__be32
*)dptr
, 1);
1475 ASSERT(XFS_BUF_ADDR(bp
) <= log
->l_logBBsize
-1);
1476 ASSERT(XFS_BUF_ADDR(bp
) + BTOBB(count
) <= log
->l_logBBsize
);
1478 /* account for internal log which doesn't start at block #0 */
1479 XFS_BUF_SET_ADDR(bp
, XFS_BUF_ADDR(bp
) + log
->l_logBBstart
);
1481 if ((error
= xlog_bdstrat(bp
))) {
1482 xfs_ioerror_alert("xlog_sync (split)", log
->l_mp
,
1483 bp
, XFS_BUF_ADDR(bp
));
1492 * Deallocate a log structure
1495 xlog_dealloc_log(xlog_t
*log
)
1497 xlog_in_core_t
*iclog
, *next_iclog
;
1500 xlog_cil_destroy(log
);
1502 iclog
= log
->l_iclog
;
1503 for (i
=0; i
<log
->l_iclog_bufs
; i
++) {
1504 sv_destroy(&iclog
->ic_force_wait
);
1505 sv_destroy(&iclog
->ic_write_wait
);
1506 xfs_buf_free(iclog
->ic_bp
);
1507 next_iclog
= iclog
->ic_next
;
1511 spinlock_destroy(&log
->l_icloglock
);
1512 spinlock_destroy(&log
->l_grant_lock
);
1514 xfs_buf_free(log
->l_xbuf
);
1515 log
->l_mp
->m_log
= NULL
;
1517 } /* xlog_dealloc_log */
1520 * Update counters atomically now that memcpy is done.
1524 xlog_state_finish_copy(xlog_t
*log
,
1525 xlog_in_core_t
*iclog
,
1529 spin_lock(&log
->l_icloglock
);
1531 be32_add_cpu(&iclog
->ic_header
.h_num_logops
, record_cnt
);
1532 iclog
->ic_offset
+= copy_bytes
;
1534 spin_unlock(&log
->l_icloglock
);
1535 } /* xlog_state_finish_copy */
1541 * print out info relating to regions written which consume
1546 struct xfs_mount
*mp
,
1547 struct xlog_ticket
*ticket
)
1550 uint ophdr_spc
= ticket
->t_res_num_ophdrs
* (uint
)sizeof(xlog_op_header_t
);
1552 /* match with XLOG_REG_TYPE_* in xfs_log.h */
1553 static char *res_type_str
[XLOG_REG_TYPE_MAX
] = {
1574 static char *trans_type_str
[XFS_TRANS_TYPE_MAX
] = {
1617 xfs_fs_cmn_err(CE_WARN
, mp
,
1618 "xfs_log_write: reservation summary:\n"
1619 " trans type = %s (%u)\n"
1620 " unit res = %d bytes\n"
1621 " current res = %d bytes\n"
1622 " total reg = %u bytes (o/flow = %u bytes)\n"
1623 " ophdrs = %u (ophdr space = %u bytes)\n"
1624 " ophdr + reg = %u bytes\n"
1625 " num regions = %u\n",
1626 ((ticket
->t_trans_type
<= 0 ||
1627 ticket
->t_trans_type
> XFS_TRANS_TYPE_MAX
) ?
1628 "bad-trans-type" : trans_type_str
[ticket
->t_trans_type
-1]),
1629 ticket
->t_trans_type
,
1632 ticket
->t_res_arr_sum
, ticket
->t_res_o_flow
,
1633 ticket
->t_res_num_ophdrs
, ophdr_spc
,
1634 ticket
->t_res_arr_sum
+
1635 ticket
->t_res_o_flow
+ ophdr_spc
,
1638 for (i
= 0; i
< ticket
->t_res_num
; i
++) {
1639 uint r_type
= ticket
->t_res_arr
[i
].r_type
;
1641 "region[%u]: %s - %u bytes\n",
1643 ((r_type
<= 0 || r_type
> XLOG_REG_TYPE_MAX
) ?
1644 "bad-rtype" : res_type_str
[r_type
-1]),
1645 ticket
->t_res_arr
[i
].r_len
);
1648 xfs_cmn_err(XFS_PTAG_LOGRES
, CE_ALERT
, mp
,
1649 "xfs_log_write: reservation ran out. Need to up reservation");
1650 xfs_force_shutdown(mp
, SHUTDOWN_CORRUPT_INCORE
);
1654 * Calculate the potential space needed by the log vector. Each region gets
1655 * its own xlog_op_header_t and may need to be double word aligned.
1658 xlog_write_calc_vec_length(
1659 struct xlog_ticket
*ticket
,
1660 struct xfs_log_vec
*log_vector
)
1662 struct xfs_log_vec
*lv
;
1667 /* acct for start rec of xact */
1668 if (ticket
->t_flags
& XLOG_TIC_INITED
)
1671 for (lv
= log_vector
; lv
; lv
= lv
->lv_next
) {
1672 headers
+= lv
->lv_niovecs
;
1674 for (i
= 0; i
< lv
->lv_niovecs
; i
++) {
1675 struct xfs_log_iovec
*vecp
= &lv
->lv_iovecp
[i
];
1678 xlog_tic_add_region(ticket
, vecp
->i_len
, vecp
->i_type
);
1682 ticket
->t_res_num_ophdrs
+= headers
;
1683 len
+= headers
* sizeof(struct xlog_op_header
);
1689 * If first write for transaction, insert start record We can't be trying to
1690 * commit if we are inited. We can't have any "partial_copy" if we are inited.
1693 xlog_write_start_rec(
1694 struct xlog_op_header
*ophdr
,
1695 struct xlog_ticket
*ticket
)
1697 if (!(ticket
->t_flags
& XLOG_TIC_INITED
))
1700 ophdr
->oh_tid
= cpu_to_be32(ticket
->t_tid
);
1701 ophdr
->oh_clientid
= ticket
->t_clientid
;
1703 ophdr
->oh_flags
= XLOG_START_TRANS
;
1706 ticket
->t_flags
&= ~XLOG_TIC_INITED
;
1708 return sizeof(struct xlog_op_header
);
1711 static xlog_op_header_t
*
1712 xlog_write_setup_ophdr(
1714 struct xlog_op_header
*ophdr
,
1715 struct xlog_ticket
*ticket
,
1718 ophdr
->oh_tid
= cpu_to_be32(ticket
->t_tid
);
1719 ophdr
->oh_clientid
= ticket
->t_clientid
;
1722 /* are we copying a commit or unmount record? */
1723 ophdr
->oh_flags
= flags
;
1726 * We've seen logs corrupted with bad transaction client ids. This
1727 * makes sure that XFS doesn't generate them on. Turn this into an EIO
1728 * and shut down the filesystem.
1730 switch (ophdr
->oh_clientid
) {
1731 case XFS_TRANSACTION
:
1736 xfs_fs_cmn_err(CE_WARN
, log
->l_mp
,
1737 "Bad XFS transaction clientid 0x%x in ticket 0x%p",
1738 ophdr
->oh_clientid
, ticket
);
1746 * Set up the parameters of the region copy into the log. This has
1747 * to handle region write split across multiple log buffers - this
1748 * state is kept external to this function so that this code can
1749 * can be written in an obvious, self documenting manner.
1752 xlog_write_setup_copy(
1753 struct xlog_ticket
*ticket
,
1754 struct xlog_op_header
*ophdr
,
1755 int space_available
,
1759 int *last_was_partial_copy
,
1760 int *bytes_consumed
)
1764 still_to_copy
= space_required
- *bytes_consumed
;
1765 *copy_off
= *bytes_consumed
;
1767 if (still_to_copy
<= space_available
) {
1768 /* write of region completes here */
1769 *copy_len
= still_to_copy
;
1770 ophdr
->oh_len
= cpu_to_be32(*copy_len
);
1771 if (*last_was_partial_copy
)
1772 ophdr
->oh_flags
|= (XLOG_END_TRANS
|XLOG_WAS_CONT_TRANS
);
1773 *last_was_partial_copy
= 0;
1774 *bytes_consumed
= 0;
1778 /* partial write of region, needs extra log op header reservation */
1779 *copy_len
= space_available
;
1780 ophdr
->oh_len
= cpu_to_be32(*copy_len
);
1781 ophdr
->oh_flags
|= XLOG_CONTINUE_TRANS
;
1782 if (*last_was_partial_copy
)
1783 ophdr
->oh_flags
|= XLOG_WAS_CONT_TRANS
;
1784 *bytes_consumed
+= *copy_len
;
1785 (*last_was_partial_copy
)++;
1787 /* account for new log op header */
1788 ticket
->t_curr_res
-= sizeof(struct xlog_op_header
);
1789 ticket
->t_res_num_ophdrs
++;
1791 return sizeof(struct xlog_op_header
);
1795 xlog_write_copy_finish(
1797 struct xlog_in_core
*iclog
,
1802 int *partial_copy_len
,
1804 struct xlog_in_core
**commit_iclog
)
1806 if (*partial_copy
) {
1808 * This iclog has already been marked WANT_SYNC by
1809 * xlog_state_get_iclog_space.
1811 xlog_state_finish_copy(log
, iclog
, *record_cnt
, *data_cnt
);
1814 return xlog_state_release_iclog(log
, iclog
);
1818 *partial_copy_len
= 0;
1820 if (iclog
->ic_size
- log_offset
<= sizeof(xlog_op_header_t
)) {
1821 /* no more space in this iclog - push it. */
1822 xlog_state_finish_copy(log
, iclog
, *record_cnt
, *data_cnt
);
1826 spin_lock(&log
->l_icloglock
);
1827 xlog_state_want_sync(log
, iclog
);
1828 spin_unlock(&log
->l_icloglock
);
1831 return xlog_state_release_iclog(log
, iclog
);
1832 ASSERT(flags
& XLOG_COMMIT_TRANS
);
1833 *commit_iclog
= iclog
;
1840 * Write some region out to in-core log
1842 * This will be called when writing externally provided regions or when
1843 * writing out a commit record for a given transaction.
1845 * General algorithm:
1846 * 1. Find total length of this write. This may include adding to the
1847 * lengths passed in.
1848 * 2. Check whether we violate the tickets reservation.
1849 * 3. While writing to this iclog
1850 * A. Reserve as much space in this iclog as can get
1851 * B. If this is first write, save away start lsn
1852 * C. While writing this region:
1853 * 1. If first write of transaction, write start record
1854 * 2. Write log operation header (header per region)
1855 * 3. Find out if we can fit entire region into this iclog
1856 * 4. Potentially, verify destination memcpy ptr
1857 * 5. Memcpy (partial) region
1858 * 6. If partial copy, release iclog; otherwise, continue
1859 * copying more regions into current iclog
1860 * 4. Mark want sync bit (in simulation mode)
1861 * 5. Release iclog for potential flush to on-disk log.
1864 * 1. Panic if reservation is overrun. This should never happen since
1865 * reservation amounts are generated internal to the filesystem.
1867 * 1. Tickets are single threaded data structures.
1868 * 2. The XLOG_END_TRANS & XLOG_CONTINUE_TRANS flags are passed down to the
1869 * syncing routine. When a single log_write region needs to span
1870 * multiple in-core logs, the XLOG_CONTINUE_TRANS bit should be set
1871 * on all log operation writes which don't contain the end of the
1872 * region. The XLOG_END_TRANS bit is used for the in-core log
1873 * operation which contains the end of the continued log_write region.
1874 * 3. When xlog_state_get_iclog_space() grabs the rest of the current iclog,
1875 * we don't really know exactly how much space will be used. As a result,
1876 * we don't update ic_offset until the end when we know exactly how many
1877 * bytes have been written out.
1882 struct xfs_log_vec
*log_vector
,
1883 struct xlog_ticket
*ticket
,
1884 xfs_lsn_t
*start_lsn
,
1885 struct xlog_in_core
**commit_iclog
,
1888 struct xlog_in_core
*iclog
= NULL
;
1889 struct xfs_log_iovec
*vecp
;
1890 struct xfs_log_vec
*lv
;
1893 int partial_copy
= 0;
1894 int partial_copy_len
= 0;
1902 len
= xlog_write_calc_vec_length(ticket
, log_vector
);
1905 * Region headers and bytes are already accounted for.
1906 * We only need to take into account start records and
1907 * split regions in this function.
1909 if (ticket
->t_flags
& XLOG_TIC_INITED
)
1910 ticket
->t_curr_res
-= sizeof(xlog_op_header_t
);
1913 * Commit record headers need to be accounted for. These
1914 * come in as separate writes so are easy to detect.
1916 if (flags
& (XLOG_COMMIT_TRANS
| XLOG_UNMOUNT_TRANS
))
1917 ticket
->t_curr_res
-= sizeof(xlog_op_header_t
);
1919 ticket
->t_curr_res
-= len
;
1921 if (ticket
->t_curr_res
< 0)
1922 xlog_print_tic_res(log
->l_mp
, ticket
);
1926 vecp
= lv
->lv_iovecp
;
1927 while (lv
&& index
< lv
->lv_niovecs
) {
1931 error
= xlog_state_get_iclog_space(log
, len
, &iclog
, ticket
,
1932 &contwr
, &log_offset
);
1936 ASSERT(log_offset
<= iclog
->ic_size
- 1);
1937 ptr
= iclog
->ic_datap
+ log_offset
;
1939 /* start_lsn is the first lsn written to. That's all we need. */
1941 *start_lsn
= be64_to_cpu(iclog
->ic_header
.h_lsn
);
1944 * This loop writes out as many regions as can fit in the amount
1945 * of space which was allocated by xlog_state_get_iclog_space().
1947 while (lv
&& index
< lv
->lv_niovecs
) {
1948 struct xfs_log_iovec
*reg
= &vecp
[index
];
1949 struct xlog_op_header
*ophdr
;
1954 ASSERT(reg
->i_len
% sizeof(__int32_t
) == 0);
1955 ASSERT((unsigned long)ptr
% sizeof(__int32_t
) == 0);
1957 start_rec_copy
= xlog_write_start_rec(ptr
, ticket
);
1958 if (start_rec_copy
) {
1960 xlog_write_adv_cnt(&ptr
, &len
, &log_offset
,
1964 ophdr
= xlog_write_setup_ophdr(log
, ptr
, ticket
, flags
);
1966 return XFS_ERROR(EIO
);
1968 xlog_write_adv_cnt(&ptr
, &len
, &log_offset
,
1969 sizeof(struct xlog_op_header
));
1971 len
+= xlog_write_setup_copy(ticket
, ophdr
,
1972 iclog
->ic_size
-log_offset
,
1974 ©_off
, ©_len
,
1977 xlog_verify_dest_ptr(log
, ptr
);
1980 ASSERT(copy_len
>= 0);
1981 memcpy(ptr
, reg
->i_addr
+ copy_off
, copy_len
);
1982 xlog_write_adv_cnt(&ptr
, &len
, &log_offset
, copy_len
);
1984 copy_len
+= start_rec_copy
+ sizeof(xlog_op_header_t
);
1986 data_cnt
+= contwr
? copy_len
: 0;
1988 error
= xlog_write_copy_finish(log
, iclog
, flags
,
1989 &record_cnt
, &data_cnt
,
1998 * if we had a partial copy, we need to get more iclog
1999 * space but we don't want to increment the region
2000 * index because there is still more is this region to
2003 * If we completed writing this region, and we flushed
2004 * the iclog (indicated by resetting of the record
2005 * count), then we also need to get more log space. If
2006 * this was the last record, though, we are done and
2012 if (++index
== lv
->lv_niovecs
) {
2016 vecp
= lv
->lv_iovecp
;
2018 if (record_cnt
== 0) {
2028 xlog_state_finish_copy(log
, iclog
, record_cnt
, data_cnt
);
2030 return xlog_state_release_iclog(log
, iclog
);
2032 ASSERT(flags
& XLOG_COMMIT_TRANS
);
2033 *commit_iclog
= iclog
;
2038 /*****************************************************************************
2040 * State Machine functions
2042 *****************************************************************************
2045 /* Clean iclogs starting from the head. This ordering must be
2046 * maintained, so an iclog doesn't become ACTIVE beyond one that
2047 * is SYNCING. This is also required to maintain the notion that we use
2048 * a ordered wait queue to hold off would be writers to the log when every
2049 * iclog is trying to sync to disk.
2051 * State Change: DIRTY -> ACTIVE
2054 xlog_state_clean_log(xlog_t
*log
)
2056 xlog_in_core_t
*iclog
;
2059 iclog
= log
->l_iclog
;
2061 if (iclog
->ic_state
== XLOG_STATE_DIRTY
) {
2062 iclog
->ic_state
= XLOG_STATE_ACTIVE
;
2063 iclog
->ic_offset
= 0;
2064 ASSERT(iclog
->ic_callback
== NULL
);
2066 * If the number of ops in this iclog indicate it just
2067 * contains the dummy transaction, we can
2068 * change state into IDLE (the second time around).
2069 * Otherwise we should change the state into
2071 * We don't need to cover the dummy.
2074 (be32_to_cpu(iclog
->ic_header
.h_num_logops
) ==
2079 * We have two dirty iclogs so start over
2080 * This could also be num of ops indicates
2081 * this is not the dummy going out.
2085 iclog
->ic_header
.h_num_logops
= 0;
2086 memset(iclog
->ic_header
.h_cycle_data
, 0,
2087 sizeof(iclog
->ic_header
.h_cycle_data
));
2088 iclog
->ic_header
.h_lsn
= 0;
2089 } else if (iclog
->ic_state
== XLOG_STATE_ACTIVE
)
2092 break; /* stop cleaning */
2093 iclog
= iclog
->ic_next
;
2094 } while (iclog
!= log
->l_iclog
);
2096 /* log is locked when we are called */
2098 * Change state for the dummy log recording.
2099 * We usually go to NEED. But we go to NEED2 if the changed indicates
2100 * we are done writing the dummy record.
2101 * If we are done with the second dummy recored (DONE2), then
2105 switch (log
->l_covered_state
) {
2106 case XLOG_STATE_COVER_IDLE
:
2107 case XLOG_STATE_COVER_NEED
:
2108 case XLOG_STATE_COVER_NEED2
:
2109 log
->l_covered_state
= XLOG_STATE_COVER_NEED
;
2112 case XLOG_STATE_COVER_DONE
:
2114 log
->l_covered_state
= XLOG_STATE_COVER_NEED2
;
2116 log
->l_covered_state
= XLOG_STATE_COVER_NEED
;
2119 case XLOG_STATE_COVER_DONE2
:
2121 log
->l_covered_state
= XLOG_STATE_COVER_IDLE
;
2123 log
->l_covered_state
= XLOG_STATE_COVER_NEED
;
2130 } /* xlog_state_clean_log */
2133 xlog_get_lowest_lsn(
2136 xlog_in_core_t
*lsn_log
;
2137 xfs_lsn_t lowest_lsn
, lsn
;
2139 lsn_log
= log
->l_iclog
;
2142 if (!(lsn_log
->ic_state
& (XLOG_STATE_ACTIVE
|XLOG_STATE_DIRTY
))) {
2143 lsn
= be64_to_cpu(lsn_log
->ic_header
.h_lsn
);
2144 if ((lsn
&& !lowest_lsn
) ||
2145 (XFS_LSN_CMP(lsn
, lowest_lsn
) < 0)) {
2149 lsn_log
= lsn_log
->ic_next
;
2150 } while (lsn_log
!= log
->l_iclog
);
2156 xlog_state_do_callback(
2159 xlog_in_core_t
*ciclog
)
2161 xlog_in_core_t
*iclog
;
2162 xlog_in_core_t
*first_iclog
; /* used to know when we've
2163 * processed all iclogs once */
2164 xfs_log_callback_t
*cb
, *cb_next
;
2166 xfs_lsn_t lowest_lsn
;
2167 int ioerrors
; /* counter: iclogs with errors */
2168 int loopdidcallbacks
; /* flag: inner loop did callbacks*/
2169 int funcdidcallbacks
; /* flag: function did callbacks */
2170 int repeats
; /* for issuing console warnings if
2171 * looping too many times */
2174 spin_lock(&log
->l_icloglock
);
2175 first_iclog
= iclog
= log
->l_iclog
;
2177 funcdidcallbacks
= 0;
2182 * Scan all iclogs starting with the one pointed to by the
2183 * log. Reset this starting point each time the log is
2184 * unlocked (during callbacks).
2186 * Keep looping through iclogs until one full pass is made
2187 * without running any callbacks.
2189 first_iclog
= log
->l_iclog
;
2190 iclog
= log
->l_iclog
;
2191 loopdidcallbacks
= 0;
2196 /* skip all iclogs in the ACTIVE & DIRTY states */
2197 if (iclog
->ic_state
&
2198 (XLOG_STATE_ACTIVE
|XLOG_STATE_DIRTY
)) {
2199 iclog
= iclog
->ic_next
;
2204 * Between marking a filesystem SHUTDOWN and stopping
2205 * the log, we do flush all iclogs to disk (if there
2206 * wasn't a log I/O error). So, we do want things to
2207 * go smoothly in case of just a SHUTDOWN w/o a
2210 if (!(iclog
->ic_state
& XLOG_STATE_IOERROR
)) {
2212 * Can only perform callbacks in order. Since
2213 * this iclog is not in the DONE_SYNC/
2214 * DO_CALLBACK state, we skip the rest and
2215 * just try to clean up. If we set our iclog
2216 * to DO_CALLBACK, we will not process it when
2217 * we retry since a previous iclog is in the
2218 * CALLBACK and the state cannot change since
2219 * we are holding the l_icloglock.
2221 if (!(iclog
->ic_state
&
2222 (XLOG_STATE_DONE_SYNC
|
2223 XLOG_STATE_DO_CALLBACK
))) {
2224 if (ciclog
&& (ciclog
->ic_state
==
2225 XLOG_STATE_DONE_SYNC
)) {
2226 ciclog
->ic_state
= XLOG_STATE_DO_CALLBACK
;
2231 * We now have an iclog that is in either the
2232 * DO_CALLBACK or DONE_SYNC states. The other
2233 * states (WANT_SYNC, SYNCING, or CALLBACK were
2234 * caught by the above if and are going to
2235 * clean (i.e. we aren't doing their callbacks)
2240 * We will do one more check here to see if we
2241 * have chased our tail around.
2244 lowest_lsn
= xlog_get_lowest_lsn(log
);
2246 XFS_LSN_CMP(lowest_lsn
,
2247 be64_to_cpu(iclog
->ic_header
.h_lsn
)) < 0) {
2248 iclog
= iclog
->ic_next
;
2249 continue; /* Leave this iclog for
2253 iclog
->ic_state
= XLOG_STATE_CALLBACK
;
2255 spin_unlock(&log
->l_icloglock
);
2257 /* l_last_sync_lsn field protected by
2258 * l_grant_lock. Don't worry about iclog's lsn.
2259 * No one else can be here except us.
2261 spin_lock(&log
->l_grant_lock
);
2262 ASSERT(XFS_LSN_CMP(log
->l_last_sync_lsn
,
2263 be64_to_cpu(iclog
->ic_header
.h_lsn
)) <= 0);
2264 log
->l_last_sync_lsn
=
2265 be64_to_cpu(iclog
->ic_header
.h_lsn
);
2266 spin_unlock(&log
->l_grant_lock
);
2269 spin_unlock(&log
->l_icloglock
);
2274 * Keep processing entries in the callback list until
2275 * we come around and it is empty. We need to
2276 * atomically see that the list is empty and change the
2277 * state to DIRTY so that we don't miss any more
2278 * callbacks being added.
2280 spin_lock(&iclog
->ic_callback_lock
);
2281 cb
= iclog
->ic_callback
;
2283 iclog
->ic_callback_tail
= &(iclog
->ic_callback
);
2284 iclog
->ic_callback
= NULL
;
2285 spin_unlock(&iclog
->ic_callback_lock
);
2287 /* perform callbacks in the order given */
2288 for (; cb
; cb
= cb_next
) {
2289 cb_next
= cb
->cb_next
;
2290 cb
->cb_func(cb
->cb_arg
, aborted
);
2292 spin_lock(&iclog
->ic_callback_lock
);
2293 cb
= iclog
->ic_callback
;
2299 spin_lock(&log
->l_icloglock
);
2300 ASSERT(iclog
->ic_callback
== NULL
);
2301 spin_unlock(&iclog
->ic_callback_lock
);
2302 if (!(iclog
->ic_state
& XLOG_STATE_IOERROR
))
2303 iclog
->ic_state
= XLOG_STATE_DIRTY
;
2306 * Transition from DIRTY to ACTIVE if applicable.
2307 * NOP if STATE_IOERROR.
2309 xlog_state_clean_log(log
);
2311 /* wake up threads waiting in xfs_log_force() */
2312 sv_broadcast(&iclog
->ic_force_wait
);
2314 iclog
= iclog
->ic_next
;
2315 } while (first_iclog
!= iclog
);
2317 if (repeats
> 5000) {
2318 flushcnt
+= repeats
;
2320 xfs_fs_cmn_err(CE_WARN
, log
->l_mp
,
2321 "%s: possible infinite loop (%d iterations)",
2322 __func__
, flushcnt
);
2324 } while (!ioerrors
&& loopdidcallbacks
);
2327 * make one last gasp attempt to see if iclogs are being left in
2331 if (funcdidcallbacks
) {
2332 first_iclog
= iclog
= log
->l_iclog
;
2334 ASSERT(iclog
->ic_state
!= XLOG_STATE_DO_CALLBACK
);
2336 * Terminate the loop if iclogs are found in states
2337 * which will cause other threads to clean up iclogs.
2339 * SYNCING - i/o completion will go through logs
2340 * DONE_SYNC - interrupt thread should be waiting for
2342 * IOERROR - give up hope all ye who enter here
2344 if (iclog
->ic_state
== XLOG_STATE_WANT_SYNC
||
2345 iclog
->ic_state
== XLOG_STATE_SYNCING
||
2346 iclog
->ic_state
== XLOG_STATE_DONE_SYNC
||
2347 iclog
->ic_state
== XLOG_STATE_IOERROR
)
2349 iclog
= iclog
->ic_next
;
2350 } while (first_iclog
!= iclog
);
2354 if (log
->l_iclog
->ic_state
& (XLOG_STATE_ACTIVE
|XLOG_STATE_IOERROR
))
2356 spin_unlock(&log
->l_icloglock
);
2359 sv_broadcast(&log
->l_flush_wait
);
2364 * Finish transitioning this iclog to the dirty state.
2366 * Make sure that we completely execute this routine only when this is
2367 * the last call to the iclog. There is a good chance that iclog flushes,
2368 * when we reach the end of the physical log, get turned into 2 separate
2369 * calls to bwrite. Hence, one iclog flush could generate two calls to this
2370 * routine. By using the reference count bwritecnt, we guarantee that only
2371 * the second completion goes through.
2373 * Callbacks could take time, so they are done outside the scope of the
2374 * global state machine log lock.
2377 xlog_state_done_syncing(
2378 xlog_in_core_t
*iclog
,
2381 xlog_t
*log
= iclog
->ic_log
;
2383 spin_lock(&log
->l_icloglock
);
2385 ASSERT(iclog
->ic_state
== XLOG_STATE_SYNCING
||
2386 iclog
->ic_state
== XLOG_STATE_IOERROR
);
2387 ASSERT(atomic_read(&iclog
->ic_refcnt
) == 0);
2388 ASSERT(iclog
->ic_bwritecnt
== 1 || iclog
->ic_bwritecnt
== 2);
2392 * If we got an error, either on the first buffer, or in the case of
2393 * split log writes, on the second, we mark ALL iclogs STATE_IOERROR,
2394 * and none should ever be attempted to be written to disk
2397 if (iclog
->ic_state
!= XLOG_STATE_IOERROR
) {
2398 if (--iclog
->ic_bwritecnt
== 1) {
2399 spin_unlock(&log
->l_icloglock
);
2402 iclog
->ic_state
= XLOG_STATE_DONE_SYNC
;
2406 * Someone could be sleeping prior to writing out the next
2407 * iclog buffer, we wake them all, one will get to do the
2408 * I/O, the others get to wait for the result.
2410 sv_broadcast(&iclog
->ic_write_wait
);
2411 spin_unlock(&log
->l_icloglock
);
2412 xlog_state_do_callback(log
, aborted
, iclog
); /* also cleans log */
2413 } /* xlog_state_done_syncing */
2417 * If the head of the in-core log ring is not (ACTIVE or DIRTY), then we must
2418 * sleep. We wait on the flush queue on the head iclog as that should be
2419 * the first iclog to complete flushing. Hence if all iclogs are syncing,
2420 * we will wait here and all new writes will sleep until a sync completes.
2422 * The in-core logs are used in a circular fashion. They are not used
2423 * out-of-order even when an iclog past the head is free.
2426 * * log_offset where xlog_write() can start writing into the in-core
2428 * * in-core log pointer to which xlog_write() should write.
2429 * * boolean indicating this is a continued write to an in-core log.
2430 * If this is the last write, then the in-core log's offset field
2431 * needs to be incremented, depending on the amount of data which
2435 xlog_state_get_iclog_space(xlog_t
*log
,
2437 xlog_in_core_t
**iclogp
,
2438 xlog_ticket_t
*ticket
,
2439 int *continued_write
,
2443 xlog_rec_header_t
*head
;
2444 xlog_in_core_t
*iclog
;
2448 spin_lock(&log
->l_icloglock
);
2449 if (XLOG_FORCED_SHUTDOWN(log
)) {
2450 spin_unlock(&log
->l_icloglock
);
2451 return XFS_ERROR(EIO
);
2454 iclog
= log
->l_iclog
;
2455 if (iclog
->ic_state
!= XLOG_STATE_ACTIVE
) {
2456 XFS_STATS_INC(xs_log_noiclogs
);
2458 /* Wait for log writes to have flushed */
2459 sv_wait(&log
->l_flush_wait
, 0, &log
->l_icloglock
, 0);
2463 head
= &iclog
->ic_header
;
2465 atomic_inc(&iclog
->ic_refcnt
); /* prevents sync */
2466 log_offset
= iclog
->ic_offset
;
2468 /* On the 1st write to an iclog, figure out lsn. This works
2469 * if iclogs marked XLOG_STATE_WANT_SYNC always write out what they are
2470 * committing to. If the offset is set, that's how many blocks
2473 if (log_offset
== 0) {
2474 ticket
->t_curr_res
-= log
->l_iclog_hsize
;
2475 xlog_tic_add_region(ticket
,
2477 XLOG_REG_TYPE_LRHEADER
);
2478 head
->h_cycle
= cpu_to_be32(log
->l_curr_cycle
);
2479 head
->h_lsn
= cpu_to_be64(
2480 xlog_assign_lsn(log
->l_curr_cycle
, log
->l_curr_block
));
2481 ASSERT(log
->l_curr_block
>= 0);
2484 /* If there is enough room to write everything, then do it. Otherwise,
2485 * claim the rest of the region and make sure the XLOG_STATE_WANT_SYNC
2486 * bit is on, so this will get flushed out. Don't update ic_offset
2487 * until you know exactly how many bytes get copied. Therefore, wait
2488 * until later to update ic_offset.
2490 * xlog_write() algorithm assumes that at least 2 xlog_op_header_t's
2491 * can fit into remaining data section.
2493 if (iclog
->ic_size
- iclog
->ic_offset
< 2*sizeof(xlog_op_header_t
)) {
2494 xlog_state_switch_iclogs(log
, iclog
, iclog
->ic_size
);
2497 * If I'm the only one writing to this iclog, sync it to disk.
2498 * We need to do an atomic compare and decrement here to avoid
2499 * racing with concurrent atomic_dec_and_lock() calls in
2500 * xlog_state_release_iclog() when there is more than one
2501 * reference to the iclog.
2503 if (!atomic_add_unless(&iclog
->ic_refcnt
, -1, 1)) {
2504 /* we are the only one */
2505 spin_unlock(&log
->l_icloglock
);
2506 error
= xlog_state_release_iclog(log
, iclog
);
2510 spin_unlock(&log
->l_icloglock
);
2515 /* Do we have enough room to write the full amount in the remainder
2516 * of this iclog? Or must we continue a write on the next iclog and
2517 * mark this iclog as completely taken? In the case where we switch
2518 * iclogs (to mark it taken), this particular iclog will release/sync
2519 * to disk in xlog_write().
2521 if (len
<= iclog
->ic_size
- iclog
->ic_offset
) {
2522 *continued_write
= 0;
2523 iclog
->ic_offset
+= len
;
2525 *continued_write
= 1;
2526 xlog_state_switch_iclogs(log
, iclog
, iclog
->ic_size
);
2530 ASSERT(iclog
->ic_offset
<= iclog
->ic_size
);
2531 spin_unlock(&log
->l_icloglock
);
2533 *logoffsetp
= log_offset
;
2535 } /* xlog_state_get_iclog_space */
2538 * Atomically get the log space required for a log ticket.
2540 * Once a ticket gets put onto the reserveq, it will only return after
2541 * the needed reservation is satisfied.
2544 xlog_grant_log_space(xlog_t
*log
,
2555 if (log
->l_flags
& XLOG_ACTIVE_RECOVERY
)
2556 panic("grant Recovery problem");
2559 /* Is there space or do we need to sleep? */
2560 spin_lock(&log
->l_grant_lock
);
2562 trace_xfs_log_grant_enter(log
, tic
);
2564 /* something is already sleeping; insert new transaction at end */
2565 if (log
->l_reserve_headq
) {
2566 xlog_ins_ticketq(&log
->l_reserve_headq
, tic
);
2568 trace_xfs_log_grant_sleep1(log
, tic
);
2571 * Gotta check this before going to sleep, while we're
2572 * holding the grant lock.
2574 if (XLOG_FORCED_SHUTDOWN(log
))
2577 XFS_STATS_INC(xs_sleep_logspace
);
2578 sv_wait(&tic
->t_wait
, PINOD
|PLTWAIT
, &log
->l_grant_lock
, s
);
2580 * If we got an error, and the filesystem is shutting down,
2581 * we'll catch it down below. So just continue...
2583 trace_xfs_log_grant_wake1(log
, tic
);
2584 spin_lock(&log
->l_grant_lock
);
2586 if (tic
->t_flags
& XFS_LOG_PERM_RESERV
)
2587 need_bytes
= tic
->t_unit_res
*tic
->t_ocnt
;
2589 need_bytes
= tic
->t_unit_res
;
2592 if (XLOG_FORCED_SHUTDOWN(log
))
2595 free_bytes
= xlog_space_left(log
, log
->l_grant_reserve_cycle
,
2596 log
->l_grant_reserve_bytes
);
2597 if (free_bytes
< need_bytes
) {
2598 if ((tic
->t_flags
& XLOG_TIC_IN_Q
) == 0)
2599 xlog_ins_ticketq(&log
->l_reserve_headq
, tic
);
2601 trace_xfs_log_grant_sleep2(log
, tic
);
2603 spin_unlock(&log
->l_grant_lock
);
2604 xlog_grant_push_ail(log
->l_mp
, need_bytes
);
2605 spin_lock(&log
->l_grant_lock
);
2607 XFS_STATS_INC(xs_sleep_logspace
);
2608 sv_wait(&tic
->t_wait
, PINOD
|PLTWAIT
, &log
->l_grant_lock
, s
);
2610 spin_lock(&log
->l_grant_lock
);
2611 if (XLOG_FORCED_SHUTDOWN(log
))
2614 trace_xfs_log_grant_wake2(log
, tic
);
2617 } else if (tic
->t_flags
& XLOG_TIC_IN_Q
)
2618 xlog_del_ticketq(&log
->l_reserve_headq
, tic
);
2620 /* we've got enough space */
2621 xlog_grant_add_space(log
, need_bytes
);
2623 tail_lsn
= log
->l_tail_lsn
;
2625 * Check to make sure the grant write head didn't just over lap the
2626 * tail. If the cycles are the same, we can't be overlapping.
2627 * Otherwise, make sure that the cycles differ by exactly one and
2628 * check the byte count.
2630 if (CYCLE_LSN(tail_lsn
) != log
->l_grant_write_cycle
) {
2631 ASSERT(log
->l_grant_write_cycle
-1 == CYCLE_LSN(tail_lsn
));
2632 ASSERT(log
->l_grant_write_bytes
<= BBTOB(BLOCK_LSN(tail_lsn
)));
2635 trace_xfs_log_grant_exit(log
, tic
);
2636 xlog_verify_grant_head(log
, 1);
2637 spin_unlock(&log
->l_grant_lock
);
2641 if (tic
->t_flags
& XLOG_TIC_IN_Q
)
2642 xlog_del_ticketq(&log
->l_reserve_headq
, tic
);
2644 trace_xfs_log_grant_error(log
, tic
);
2647 * If we are failing, make sure the ticket doesn't have any
2648 * current reservations. We don't want to add this back when
2649 * the ticket/transaction gets cancelled.
2651 tic
->t_curr_res
= 0;
2652 tic
->t_cnt
= 0; /* ungrant will give back unit_res * t_cnt. */
2653 spin_unlock(&log
->l_grant_lock
);
2654 return XFS_ERROR(EIO
);
2655 } /* xlog_grant_log_space */
2659 * Replenish the byte reservation required by moving the grant write head.
2664 xlog_regrant_write_log_space(xlog_t
*log
,
2667 int free_bytes
, need_bytes
;
2668 xlog_ticket_t
*ntic
;
2673 tic
->t_curr_res
= tic
->t_unit_res
;
2674 xlog_tic_reset_res(tic
);
2680 if (log
->l_flags
& XLOG_ACTIVE_RECOVERY
)
2681 panic("regrant Recovery problem");
2684 spin_lock(&log
->l_grant_lock
);
2686 trace_xfs_log_regrant_write_enter(log
, tic
);
2688 if (XLOG_FORCED_SHUTDOWN(log
))
2691 /* If there are other waiters on the queue then give them a
2692 * chance at logspace before us. Wake up the first waiters,
2693 * if we do not wake up all the waiters then go to sleep waiting
2694 * for more free space, otherwise try to get some space for
2697 need_bytes
= tic
->t_unit_res
;
2698 if ((ntic
= log
->l_write_headq
)) {
2699 free_bytes
= xlog_space_left(log
, log
->l_grant_write_cycle
,
2700 log
->l_grant_write_bytes
);
2702 ASSERT(ntic
->t_flags
& XLOG_TIC_PERM_RESERV
);
2704 if (free_bytes
< ntic
->t_unit_res
)
2706 free_bytes
-= ntic
->t_unit_res
;
2707 sv_signal(&ntic
->t_wait
);
2708 ntic
= ntic
->t_next
;
2709 } while (ntic
!= log
->l_write_headq
);
2711 if (ntic
!= log
->l_write_headq
) {
2712 if ((tic
->t_flags
& XLOG_TIC_IN_Q
) == 0)
2713 xlog_ins_ticketq(&log
->l_write_headq
, tic
);
2715 trace_xfs_log_regrant_write_sleep1(log
, tic
);
2717 spin_unlock(&log
->l_grant_lock
);
2718 xlog_grant_push_ail(log
->l_mp
, need_bytes
);
2719 spin_lock(&log
->l_grant_lock
);
2721 XFS_STATS_INC(xs_sleep_logspace
);
2722 sv_wait(&tic
->t_wait
, PINOD
|PLTWAIT
,
2723 &log
->l_grant_lock
, s
);
2725 /* If we're shutting down, this tic is already
2727 spin_lock(&log
->l_grant_lock
);
2728 if (XLOG_FORCED_SHUTDOWN(log
))
2731 trace_xfs_log_regrant_write_wake1(log
, tic
);
2736 if (XLOG_FORCED_SHUTDOWN(log
))
2739 free_bytes
= xlog_space_left(log
, log
->l_grant_write_cycle
,
2740 log
->l_grant_write_bytes
);
2741 if (free_bytes
< need_bytes
) {
2742 if ((tic
->t_flags
& XLOG_TIC_IN_Q
) == 0)
2743 xlog_ins_ticketq(&log
->l_write_headq
, tic
);
2744 spin_unlock(&log
->l_grant_lock
);
2745 xlog_grant_push_ail(log
->l_mp
, need_bytes
);
2746 spin_lock(&log
->l_grant_lock
);
2748 XFS_STATS_INC(xs_sleep_logspace
);
2749 trace_xfs_log_regrant_write_sleep2(log
, tic
);
2751 sv_wait(&tic
->t_wait
, PINOD
|PLTWAIT
, &log
->l_grant_lock
, s
);
2753 /* If we're shutting down, this tic is already off the queue */
2754 spin_lock(&log
->l_grant_lock
);
2755 if (XLOG_FORCED_SHUTDOWN(log
))
2758 trace_xfs_log_regrant_write_wake2(log
, tic
);
2760 } else if (tic
->t_flags
& XLOG_TIC_IN_Q
)
2761 xlog_del_ticketq(&log
->l_write_headq
, tic
);
2763 /* we've got enough space */
2764 xlog_grant_add_space_write(log
, need_bytes
);
2766 tail_lsn
= log
->l_tail_lsn
;
2767 if (CYCLE_LSN(tail_lsn
) != log
->l_grant_write_cycle
) {
2768 ASSERT(log
->l_grant_write_cycle
-1 == CYCLE_LSN(tail_lsn
));
2769 ASSERT(log
->l_grant_write_bytes
<= BBTOB(BLOCK_LSN(tail_lsn
)));
2773 trace_xfs_log_regrant_write_exit(log
, tic
);
2775 xlog_verify_grant_head(log
, 1);
2776 spin_unlock(&log
->l_grant_lock
);
2781 if (tic
->t_flags
& XLOG_TIC_IN_Q
)
2782 xlog_del_ticketq(&log
->l_reserve_headq
, tic
);
2784 trace_xfs_log_regrant_write_error(log
, tic
);
2787 * If we are failing, make sure the ticket doesn't have any
2788 * current reservations. We don't want to add this back when
2789 * the ticket/transaction gets cancelled.
2791 tic
->t_curr_res
= 0;
2792 tic
->t_cnt
= 0; /* ungrant will give back unit_res * t_cnt. */
2793 spin_unlock(&log
->l_grant_lock
);
2794 return XFS_ERROR(EIO
);
2795 } /* xlog_regrant_write_log_space */
2798 /* The first cnt-1 times through here we don't need to
2799 * move the grant write head because the permanent
2800 * reservation has reserved cnt times the unit amount.
2801 * Release part of current permanent unit reservation and
2802 * reset current reservation to be one units worth. Also
2803 * move grant reservation head forward.
2806 xlog_regrant_reserve_log_space(xlog_t
*log
,
2807 xlog_ticket_t
*ticket
)
2809 trace_xfs_log_regrant_reserve_enter(log
, ticket
);
2811 if (ticket
->t_cnt
> 0)
2814 spin_lock(&log
->l_grant_lock
);
2815 xlog_grant_sub_space(log
, ticket
->t_curr_res
);
2816 ticket
->t_curr_res
= ticket
->t_unit_res
;
2817 xlog_tic_reset_res(ticket
);
2819 trace_xfs_log_regrant_reserve_sub(log
, ticket
);
2821 xlog_verify_grant_head(log
, 1);
2823 /* just return if we still have some of the pre-reserved space */
2824 if (ticket
->t_cnt
> 0) {
2825 spin_unlock(&log
->l_grant_lock
);
2829 xlog_grant_add_space_reserve(log
, ticket
->t_unit_res
);
2831 trace_xfs_log_regrant_reserve_exit(log
, ticket
);
2833 xlog_verify_grant_head(log
, 0);
2834 spin_unlock(&log
->l_grant_lock
);
2835 ticket
->t_curr_res
= ticket
->t_unit_res
;
2836 xlog_tic_reset_res(ticket
);
2837 } /* xlog_regrant_reserve_log_space */
2841 * Give back the space left from a reservation.
2843 * All the information we need to make a correct determination of space left
2844 * is present. For non-permanent reservations, things are quite easy. The
2845 * count should have been decremented to zero. We only need to deal with the
2846 * space remaining in the current reservation part of the ticket. If the
2847 * ticket contains a permanent reservation, there may be left over space which
2848 * needs to be released. A count of N means that N-1 refills of the current
2849 * reservation can be done before we need to ask for more space. The first
2850 * one goes to fill up the first current reservation. Once we run out of
2851 * space, the count will stay at zero and the only space remaining will be
2852 * in the current reservation field.
2855 xlog_ungrant_log_space(xlog_t
*log
,
2856 xlog_ticket_t
*ticket
)
2858 if (ticket
->t_cnt
> 0)
2861 spin_lock(&log
->l_grant_lock
);
2862 trace_xfs_log_ungrant_enter(log
, ticket
);
2864 xlog_grant_sub_space(log
, ticket
->t_curr_res
);
2866 trace_xfs_log_ungrant_sub(log
, ticket
);
2868 /* If this is a permanent reservation ticket, we may be able to free
2869 * up more space based on the remaining count.
2871 if (ticket
->t_cnt
> 0) {
2872 ASSERT(ticket
->t_flags
& XLOG_TIC_PERM_RESERV
);
2873 xlog_grant_sub_space(log
, ticket
->t_unit_res
*ticket
->t_cnt
);
2876 trace_xfs_log_ungrant_exit(log
, ticket
);
2878 xlog_verify_grant_head(log
, 1);
2879 spin_unlock(&log
->l_grant_lock
);
2880 xfs_log_move_tail(log
->l_mp
, 1);
2881 } /* xlog_ungrant_log_space */
2885 * Flush iclog to disk if this is the last reference to the given iclog and
2886 * the WANT_SYNC bit is set.
2888 * When this function is entered, the iclog is not necessarily in the
2889 * WANT_SYNC state. It may be sitting around waiting to get filled.
2894 xlog_state_release_iclog(
2896 xlog_in_core_t
*iclog
)
2898 int sync
= 0; /* do we sync? */
2900 if (iclog
->ic_state
& XLOG_STATE_IOERROR
)
2901 return XFS_ERROR(EIO
);
2903 ASSERT(atomic_read(&iclog
->ic_refcnt
) > 0);
2904 if (!atomic_dec_and_lock(&iclog
->ic_refcnt
, &log
->l_icloglock
))
2907 if (iclog
->ic_state
& XLOG_STATE_IOERROR
) {
2908 spin_unlock(&log
->l_icloglock
);
2909 return XFS_ERROR(EIO
);
2911 ASSERT(iclog
->ic_state
== XLOG_STATE_ACTIVE
||
2912 iclog
->ic_state
== XLOG_STATE_WANT_SYNC
);
2914 if (iclog
->ic_state
== XLOG_STATE_WANT_SYNC
) {
2915 /* update tail before writing to iclog */
2916 xlog_assign_tail_lsn(log
->l_mp
);
2918 iclog
->ic_state
= XLOG_STATE_SYNCING
;
2919 iclog
->ic_header
.h_tail_lsn
= cpu_to_be64(log
->l_tail_lsn
);
2920 xlog_verify_tail_lsn(log
, iclog
, log
->l_tail_lsn
);
2921 /* cycle incremented when incrementing curr_block */
2923 spin_unlock(&log
->l_icloglock
);
2926 * We let the log lock go, so it's possible that we hit a log I/O
2927 * error or some other SHUTDOWN condition that marks the iclog
2928 * as XLOG_STATE_IOERROR before the bwrite. However, we know that
2929 * this iclog has consistent data, so we ignore IOERROR
2930 * flags after this point.
2933 return xlog_sync(log
, iclog
);
2935 } /* xlog_state_release_iclog */
2939 * This routine will mark the current iclog in the ring as WANT_SYNC
2940 * and move the current iclog pointer to the next iclog in the ring.
2941 * When this routine is called from xlog_state_get_iclog_space(), the
2942 * exact size of the iclog has not yet been determined. All we know is
2943 * that every data block. We have run out of space in this log record.
2946 xlog_state_switch_iclogs(xlog_t
*log
,
2947 xlog_in_core_t
*iclog
,
2950 ASSERT(iclog
->ic_state
== XLOG_STATE_ACTIVE
);
2952 eventual_size
= iclog
->ic_offset
;
2953 iclog
->ic_state
= XLOG_STATE_WANT_SYNC
;
2954 iclog
->ic_header
.h_prev_block
= cpu_to_be32(log
->l_prev_block
);
2955 log
->l_prev_block
= log
->l_curr_block
;
2956 log
->l_prev_cycle
= log
->l_curr_cycle
;
2958 /* roll log?: ic_offset changed later */
2959 log
->l_curr_block
+= BTOBB(eventual_size
)+BTOBB(log
->l_iclog_hsize
);
2961 /* Round up to next log-sunit */
2962 if (xfs_sb_version_haslogv2(&log
->l_mp
->m_sb
) &&
2963 log
->l_mp
->m_sb
.sb_logsunit
> 1) {
2964 __uint32_t sunit_bb
= BTOBB(log
->l_mp
->m_sb
.sb_logsunit
);
2965 log
->l_curr_block
= roundup(log
->l_curr_block
, sunit_bb
);
2968 if (log
->l_curr_block
>= log
->l_logBBsize
) {
2969 log
->l_curr_cycle
++;
2970 if (log
->l_curr_cycle
== XLOG_HEADER_MAGIC_NUM
)
2971 log
->l_curr_cycle
++;
2972 log
->l_curr_block
-= log
->l_logBBsize
;
2973 ASSERT(log
->l_curr_block
>= 0);
2975 ASSERT(iclog
== log
->l_iclog
);
2976 log
->l_iclog
= iclog
->ic_next
;
2977 } /* xlog_state_switch_iclogs */
2980 * Write out all data in the in-core log as of this exact moment in time.
2982 * Data may be written to the in-core log during this call. However,
2983 * we don't guarantee this data will be written out. A change from past
2984 * implementation means this routine will *not* write out zero length LRs.
2986 * Basically, we try and perform an intelligent scan of the in-core logs.
2987 * If we determine there is no flushable data, we just return. There is no
2988 * flushable data if:
2990 * 1. the current iclog is active and has no data; the previous iclog
2991 * is in the active or dirty state.
2992 * 2. the current iclog is drity, and the previous iclog is in the
2993 * active or dirty state.
2997 * 1. the current iclog is not in the active nor dirty state.
2998 * 2. the current iclog dirty, and the previous iclog is not in the
2999 * active nor dirty state.
3000 * 3. the current iclog is active, and there is another thread writing
3001 * to this particular iclog.
3002 * 4. a) the current iclog is active and has no other writers
3003 * b) when we return from flushing out this iclog, it is still
3004 * not in the active nor dirty state.
3008 struct xfs_mount
*mp
,
3012 struct log
*log
= mp
->m_log
;
3013 struct xlog_in_core
*iclog
;
3016 XFS_STATS_INC(xs_log_force
);
3019 xlog_cil_force(log
);
3021 spin_lock(&log
->l_icloglock
);
3023 iclog
= log
->l_iclog
;
3024 if (iclog
->ic_state
& XLOG_STATE_IOERROR
) {
3025 spin_unlock(&log
->l_icloglock
);
3026 return XFS_ERROR(EIO
);
3029 /* If the head iclog is not active nor dirty, we just attach
3030 * ourselves to the head and go to sleep.
3032 if (iclog
->ic_state
== XLOG_STATE_ACTIVE
||
3033 iclog
->ic_state
== XLOG_STATE_DIRTY
) {
3035 * If the head is dirty or (active and empty), then
3036 * we need to look at the previous iclog. If the previous
3037 * iclog is active or dirty we are done. There is nothing
3038 * to sync out. Otherwise, we attach ourselves to the
3039 * previous iclog and go to sleep.
3041 if (iclog
->ic_state
== XLOG_STATE_DIRTY
||
3042 (atomic_read(&iclog
->ic_refcnt
) == 0
3043 && iclog
->ic_offset
== 0)) {
3044 iclog
= iclog
->ic_prev
;
3045 if (iclog
->ic_state
== XLOG_STATE_ACTIVE
||
3046 iclog
->ic_state
== XLOG_STATE_DIRTY
)
3051 if (atomic_read(&iclog
->ic_refcnt
) == 0) {
3052 /* We are the only one with access to this
3053 * iclog. Flush it out now. There should
3054 * be a roundoff of zero to show that someone
3055 * has already taken care of the roundoff from
3056 * the previous sync.
3058 atomic_inc(&iclog
->ic_refcnt
);
3059 lsn
= be64_to_cpu(iclog
->ic_header
.h_lsn
);
3060 xlog_state_switch_iclogs(log
, iclog
, 0);
3061 spin_unlock(&log
->l_icloglock
);
3063 if (xlog_state_release_iclog(log
, iclog
))
3064 return XFS_ERROR(EIO
);
3068 spin_lock(&log
->l_icloglock
);
3069 if (be64_to_cpu(iclog
->ic_header
.h_lsn
) == lsn
&&
3070 iclog
->ic_state
!= XLOG_STATE_DIRTY
)
3075 /* Someone else is writing to this iclog.
3076 * Use its call to flush out the data. However,
3077 * the other thread may not force out this LR,
3078 * so we mark it WANT_SYNC.
3080 xlog_state_switch_iclogs(log
, iclog
, 0);
3086 /* By the time we come around again, the iclog could've been filled
3087 * which would give it another lsn. If we have a new lsn, just
3088 * return because the relevant data has been flushed.
3091 if (flags
& XFS_LOG_SYNC
) {
3093 * We must check if we're shutting down here, before
3094 * we wait, while we're holding the l_icloglock.
3095 * Then we check again after waking up, in case our
3096 * sleep was disturbed by a bad news.
3098 if (iclog
->ic_state
& XLOG_STATE_IOERROR
) {
3099 spin_unlock(&log
->l_icloglock
);
3100 return XFS_ERROR(EIO
);
3102 XFS_STATS_INC(xs_log_force_sleep
);
3103 sv_wait(&iclog
->ic_force_wait
, PINOD
, &log
->l_icloglock
, s
);
3105 * No need to grab the log lock here since we're
3106 * only deciding whether or not to return EIO
3107 * and the memory read should be atomic.
3109 if (iclog
->ic_state
& XLOG_STATE_IOERROR
)
3110 return XFS_ERROR(EIO
);
3116 spin_unlock(&log
->l_icloglock
);
3122 * Wrapper for _xfs_log_force(), to be used when caller doesn't care
3123 * about errors or whether the log was flushed or not. This is the normal
3124 * interface to use when trying to unpin items or move the log forward.
3133 error
= _xfs_log_force(mp
, flags
, NULL
);
3135 xfs_fs_cmn_err(CE_WARN
, mp
, "xfs_log_force: "
3136 "error %d returned.", error
);
3141 * Force the in-core log to disk for a specific LSN.
3143 * Find in-core log with lsn.
3144 * If it is in the DIRTY state, just return.
3145 * If it is in the ACTIVE state, move the in-core log into the WANT_SYNC
3146 * state and go to sleep or return.
3147 * If it is in any other state, go to sleep or return.
3149 * Synchronous forces are implemented with a signal variable. All callers
3150 * to force a given lsn to disk will wait on a the sv attached to the
3151 * specific in-core log. When given in-core log finally completes its
3152 * write to disk, that thread will wake up all threads waiting on the
3157 struct xfs_mount
*mp
,
3162 struct log
*log
= mp
->m_log
;
3163 struct xlog_in_core
*iclog
;
3164 int already_slept
= 0;
3168 XFS_STATS_INC(xs_log_force
);
3171 lsn
= xlog_cil_force_lsn(log
, lsn
);
3172 if (lsn
== NULLCOMMITLSN
)
3177 spin_lock(&log
->l_icloglock
);
3178 iclog
= log
->l_iclog
;
3179 if (iclog
->ic_state
& XLOG_STATE_IOERROR
) {
3180 spin_unlock(&log
->l_icloglock
);
3181 return XFS_ERROR(EIO
);
3185 if (be64_to_cpu(iclog
->ic_header
.h_lsn
) != lsn
) {
3186 iclog
= iclog
->ic_next
;
3190 if (iclog
->ic_state
== XLOG_STATE_DIRTY
) {
3191 spin_unlock(&log
->l_icloglock
);
3195 if (iclog
->ic_state
== XLOG_STATE_ACTIVE
) {
3197 * We sleep here if we haven't already slept (e.g.
3198 * this is the first time we've looked at the correct
3199 * iclog buf) and the buffer before us is going to
3200 * be sync'ed. The reason for this is that if we
3201 * are doing sync transactions here, by waiting for
3202 * the previous I/O to complete, we can allow a few
3203 * more transactions into this iclog before we close
3206 * Otherwise, we mark the buffer WANT_SYNC, and bump
3207 * up the refcnt so we can release the log (which
3208 * drops the ref count). The state switch keeps new
3209 * transaction commits from using this buffer. When
3210 * the current commits finish writing into the buffer,
3211 * the refcount will drop to zero and the buffer will
3214 if (!already_slept
&&
3215 (iclog
->ic_prev
->ic_state
&
3216 (XLOG_STATE_WANT_SYNC
| XLOG_STATE_SYNCING
))) {
3217 ASSERT(!(iclog
->ic_state
& XLOG_STATE_IOERROR
));
3219 XFS_STATS_INC(xs_log_force_sleep
);
3221 sv_wait(&iclog
->ic_prev
->ic_write_wait
,
3222 PSWP
, &log
->l_icloglock
, s
);
3228 atomic_inc(&iclog
->ic_refcnt
);
3229 xlog_state_switch_iclogs(log
, iclog
, 0);
3230 spin_unlock(&log
->l_icloglock
);
3231 if (xlog_state_release_iclog(log
, iclog
))
3232 return XFS_ERROR(EIO
);
3235 spin_lock(&log
->l_icloglock
);
3238 if ((flags
& XFS_LOG_SYNC
) && /* sleep */
3240 (XLOG_STATE_ACTIVE
| XLOG_STATE_DIRTY
))) {
3242 * Don't wait on completion if we know that we've
3243 * gotten a log write error.
3245 if (iclog
->ic_state
& XLOG_STATE_IOERROR
) {
3246 spin_unlock(&log
->l_icloglock
);
3247 return XFS_ERROR(EIO
);
3249 XFS_STATS_INC(xs_log_force_sleep
);
3250 sv_wait(&iclog
->ic_force_wait
, PSWP
, &log
->l_icloglock
, s
);
3252 * No need to grab the log lock here since we're
3253 * only deciding whether or not to return EIO
3254 * and the memory read should be atomic.
3256 if (iclog
->ic_state
& XLOG_STATE_IOERROR
)
3257 return XFS_ERROR(EIO
);
3261 } else { /* just return */
3262 spin_unlock(&log
->l_icloglock
);
3266 } while (iclog
!= log
->l_iclog
);
3268 spin_unlock(&log
->l_icloglock
);
3273 * Wrapper for _xfs_log_force_lsn(), to be used when caller doesn't care
3274 * about errors or whether the log was flushed or not. This is the normal
3275 * interface to use when trying to unpin items or move the log forward.
3285 error
= _xfs_log_force_lsn(mp
, lsn
, flags
, NULL
);
3287 xfs_fs_cmn_err(CE_WARN
, mp
, "xfs_log_force: "
3288 "error %d returned.", error
);
3293 * Called when we want to mark the current iclog as being ready to sync to
3297 xlog_state_want_sync(xlog_t
*log
, xlog_in_core_t
*iclog
)
3299 assert_spin_locked(&log
->l_icloglock
);
3301 if (iclog
->ic_state
== XLOG_STATE_ACTIVE
) {
3302 xlog_state_switch_iclogs(log
, iclog
, 0);
3304 ASSERT(iclog
->ic_state
&
3305 (XLOG_STATE_WANT_SYNC
|XLOG_STATE_IOERROR
));
3310 /*****************************************************************************
3314 *****************************************************************************
3318 * Free a used ticket when its refcount falls to zero.
3322 xlog_ticket_t
*ticket
)
3324 ASSERT(atomic_read(&ticket
->t_ref
) > 0);
3325 if (atomic_dec_and_test(&ticket
->t_ref
)) {
3326 sv_destroy(&ticket
->t_wait
);
3327 kmem_zone_free(xfs_log_ticket_zone
, ticket
);
3333 xlog_ticket_t
*ticket
)
3335 ASSERT(atomic_read(&ticket
->t_ref
) > 0);
3336 atomic_inc(&ticket
->t_ref
);
3341 xfs_log_get_trans_ident(
3342 struct xfs_trans
*tp
)
3344 return tp
->t_ticket
->t_tid
;
3348 * Allocate and initialise a new log ticket.
3359 struct xlog_ticket
*tic
;
3363 tic
= kmem_zone_zalloc(xfs_log_ticket_zone
, alloc_flags
);
3368 * Permanent reservations have up to 'cnt'-1 active log operations
3369 * in the log. A unit in this case is the amount of space for one
3370 * of these log operations. Normal reservations have a cnt of 1
3371 * and their unit amount is the total amount of space required.
3373 * The following lines of code account for non-transaction data
3374 * which occupy space in the on-disk log.
3376 * Normal form of a transaction is:
3377 * <oph><trans-hdr><start-oph><reg1-oph><reg1><reg2-oph>...<commit-oph>
3378 * and then there are LR hdrs, split-recs and roundoff at end of syncs.
3380 * We need to account for all the leadup data and trailer data
3381 * around the transaction data.
3382 * And then we need to account for the worst case in terms of using
3384 * The worst case will happen if:
3385 * - the placement of the transaction happens to be such that the
3386 * roundoff is at its maximum
3387 * - the transaction data is synced before the commit record is synced
3388 * i.e. <transaction-data><roundoff> | <commit-rec><roundoff>
3389 * Therefore the commit record is in its own Log Record.
3390 * This can happen as the commit record is called with its
3391 * own region to xlog_write().
3392 * This then means that in the worst case, roundoff can happen for
3393 * the commit-rec as well.
3394 * The commit-rec is smaller than padding in this scenario and so it is
3395 * not added separately.
3398 /* for trans header */
3399 unit_bytes
+= sizeof(xlog_op_header_t
);
3400 unit_bytes
+= sizeof(xfs_trans_header_t
);
3403 unit_bytes
+= sizeof(xlog_op_header_t
);
3406 * for LR headers - the space for data in an iclog is the size minus
3407 * the space used for the headers. If we use the iclog size, then we
3408 * undercalculate the number of headers required.
3410 * Furthermore - the addition of op headers for split-recs might
3411 * increase the space required enough to require more log and op
3412 * headers, so take that into account too.
3414 * IMPORTANT: This reservation makes the assumption that if this
3415 * transaction is the first in an iclog and hence has the LR headers
3416 * accounted to it, then the remaining space in the iclog is
3417 * exclusively for this transaction. i.e. if the transaction is larger
3418 * than the iclog, it will be the only thing in that iclog.
3419 * Fundamentally, this means we must pass the entire log vector to
3420 * xlog_write to guarantee this.
3422 iclog_space
= log
->l_iclog_size
- log
->l_iclog_hsize
;
3423 num_headers
= howmany(unit_bytes
, iclog_space
);
3425 /* for split-recs - ophdrs added when data split over LRs */
3426 unit_bytes
+= sizeof(xlog_op_header_t
) * num_headers
;
3428 /* add extra header reservations if we overrun */
3429 while (!num_headers
||
3430 howmany(unit_bytes
, iclog_space
) > num_headers
) {
3431 unit_bytes
+= sizeof(xlog_op_header_t
);
3434 unit_bytes
+= log
->l_iclog_hsize
* num_headers
;
3436 /* for commit-rec LR header - note: padding will subsume the ophdr */
3437 unit_bytes
+= log
->l_iclog_hsize
;
3439 /* for roundoff padding for transaction data and one for commit record */
3440 if (xfs_sb_version_haslogv2(&log
->l_mp
->m_sb
) &&
3441 log
->l_mp
->m_sb
.sb_logsunit
> 1) {
3442 /* log su roundoff */
3443 unit_bytes
+= 2*log
->l_mp
->m_sb
.sb_logsunit
;
3446 unit_bytes
+= 2*BBSIZE
;
3449 atomic_set(&tic
->t_ref
, 1);
3450 tic
->t_unit_res
= unit_bytes
;
3451 tic
->t_curr_res
= unit_bytes
;
3454 tic
->t_tid
= random32();
3455 tic
->t_clientid
= client
;
3456 tic
->t_flags
= XLOG_TIC_INITED
;
3457 tic
->t_trans_type
= 0;
3458 if (xflags
& XFS_LOG_PERM_RESERV
)
3459 tic
->t_flags
|= XLOG_TIC_PERM_RESERV
;
3460 sv_init(&tic
->t_wait
, SV_DEFAULT
, "logtick");
3462 xlog_tic_reset_res(tic
);
3468 /******************************************************************************
3470 * Log debug routines
3472 ******************************************************************************
3476 * Make sure that the destination ptr is within the valid data region of
3477 * one of the iclogs. This uses backup pointers stored in a different
3478 * part of the log in case we trash the log structure.
3481 xlog_verify_dest_ptr(
3488 for (i
= 0; i
< log
->l_iclog_bufs
; i
++) {
3489 if (ptr
>= log
->l_iclog_bak
[i
] &&
3490 ptr
<= log
->l_iclog_bak
[i
] + log
->l_iclog_size
)
3495 xlog_panic("xlog_verify_dest_ptr: invalid ptr");
3499 xlog_verify_grant_head(xlog_t
*log
, int equals
)
3501 if (log
->l_grant_reserve_cycle
== log
->l_grant_write_cycle
) {
3503 ASSERT(log
->l_grant_reserve_bytes
>= log
->l_grant_write_bytes
);
3505 ASSERT(log
->l_grant_reserve_bytes
> log
->l_grant_write_bytes
);
3507 ASSERT(log
->l_grant_reserve_cycle
-1 == log
->l_grant_write_cycle
);
3508 ASSERT(log
->l_grant_write_bytes
>= log
->l_grant_reserve_bytes
);
3510 } /* xlog_verify_grant_head */
3512 /* check if it will fit */
3514 xlog_verify_tail_lsn(xlog_t
*log
,
3515 xlog_in_core_t
*iclog
,
3520 if (CYCLE_LSN(tail_lsn
) == log
->l_prev_cycle
) {
3522 log
->l_logBBsize
- (log
->l_prev_block
- BLOCK_LSN(tail_lsn
));
3523 if (blocks
< BTOBB(iclog
->ic_offset
)+BTOBB(log
->l_iclog_hsize
))
3524 xlog_panic("xlog_verify_tail_lsn: ran out of log space");
3526 ASSERT(CYCLE_LSN(tail_lsn
)+1 == log
->l_prev_cycle
);
3528 if (BLOCK_LSN(tail_lsn
) == log
->l_prev_block
)
3529 xlog_panic("xlog_verify_tail_lsn: tail wrapped");
3531 blocks
= BLOCK_LSN(tail_lsn
) - log
->l_prev_block
;
3532 if (blocks
< BTOBB(iclog
->ic_offset
) + 1)
3533 xlog_panic("xlog_verify_tail_lsn: ran out of log space");
3535 } /* xlog_verify_tail_lsn */
3538 * Perform a number of checks on the iclog before writing to disk.
3540 * 1. Make sure the iclogs are still circular
3541 * 2. Make sure we have a good magic number
3542 * 3. Make sure we don't have magic numbers in the data
3543 * 4. Check fields of each log operation header for:
3544 * A. Valid client identifier
3545 * B. tid ptr value falls in valid ptr space (user space code)
3546 * C. Length in log record header is correct according to the
3547 * individual operation headers within record.
3548 * 5. When a bwrite will occur within 5 blocks of the front of the physical
3549 * log, check the preceding blocks of the physical log to make sure all
3550 * the cycle numbers agree with the current cycle number.
3553 xlog_verify_iclog(xlog_t
*log
,
3554 xlog_in_core_t
*iclog
,
3558 xlog_op_header_t
*ophead
;
3559 xlog_in_core_t
*icptr
;
3560 xlog_in_core_2_t
*xhdr
;
3562 xfs_caddr_t base_ptr
;
3563 __psint_t field_offset
;
3565 int len
, i
, j
, k
, op_len
;
3568 /* check validity of iclog pointers */
3569 spin_lock(&log
->l_icloglock
);
3570 icptr
= log
->l_iclog
;
3571 for (i
=0; i
< log
->l_iclog_bufs
; i
++) {
3573 xlog_panic("xlog_verify_iclog: invalid ptr");
3574 icptr
= icptr
->ic_next
;
3576 if (icptr
!= log
->l_iclog
)
3577 xlog_panic("xlog_verify_iclog: corrupt iclog ring");
3578 spin_unlock(&log
->l_icloglock
);
3580 /* check log magic numbers */
3581 if (be32_to_cpu(iclog
->ic_header
.h_magicno
) != XLOG_HEADER_MAGIC_NUM
)
3582 xlog_panic("xlog_verify_iclog: invalid magic num");
3584 ptr
= (xfs_caddr_t
) &iclog
->ic_header
;
3585 for (ptr
+= BBSIZE
; ptr
< ((xfs_caddr_t
)&iclog
->ic_header
) + count
;
3587 if (be32_to_cpu(*(__be32
*)ptr
) == XLOG_HEADER_MAGIC_NUM
)
3588 xlog_panic("xlog_verify_iclog: unexpected magic num");
3592 len
= be32_to_cpu(iclog
->ic_header
.h_num_logops
);
3593 ptr
= iclog
->ic_datap
;
3595 ophead
= (xlog_op_header_t
*)ptr
;
3596 xhdr
= iclog
->ic_data
;
3597 for (i
= 0; i
< len
; i
++) {
3598 ophead
= (xlog_op_header_t
*)ptr
;
3600 /* clientid is only 1 byte */
3601 field_offset
= (__psint_t
)
3602 ((xfs_caddr_t
)&(ophead
->oh_clientid
) - base_ptr
);
3603 if (syncing
== B_FALSE
|| (field_offset
& 0x1ff)) {
3604 clientid
= ophead
->oh_clientid
;
3606 idx
= BTOBBT((xfs_caddr_t
)&(ophead
->oh_clientid
) - iclog
->ic_datap
);
3607 if (idx
>= (XLOG_HEADER_CYCLE_SIZE
/ BBSIZE
)) {
3608 j
= idx
/ (XLOG_HEADER_CYCLE_SIZE
/ BBSIZE
);
3609 k
= idx
% (XLOG_HEADER_CYCLE_SIZE
/ BBSIZE
);
3610 clientid
= xlog_get_client_id(
3611 xhdr
[j
].hic_xheader
.xh_cycle_data
[k
]);
3613 clientid
= xlog_get_client_id(
3614 iclog
->ic_header
.h_cycle_data
[idx
]);
3617 if (clientid
!= XFS_TRANSACTION
&& clientid
!= XFS_LOG
)
3618 cmn_err(CE_WARN
, "xlog_verify_iclog: "
3619 "invalid clientid %d op 0x%p offset 0x%lx",
3620 clientid
, ophead
, (unsigned long)field_offset
);
3623 field_offset
= (__psint_t
)
3624 ((xfs_caddr_t
)&(ophead
->oh_len
) - base_ptr
);
3625 if (syncing
== B_FALSE
|| (field_offset
& 0x1ff)) {
3626 op_len
= be32_to_cpu(ophead
->oh_len
);
3628 idx
= BTOBBT((__psint_t
)&ophead
->oh_len
-
3629 (__psint_t
)iclog
->ic_datap
);
3630 if (idx
>= (XLOG_HEADER_CYCLE_SIZE
/ BBSIZE
)) {
3631 j
= idx
/ (XLOG_HEADER_CYCLE_SIZE
/ BBSIZE
);
3632 k
= idx
% (XLOG_HEADER_CYCLE_SIZE
/ BBSIZE
);
3633 op_len
= be32_to_cpu(xhdr
[j
].hic_xheader
.xh_cycle_data
[k
]);
3635 op_len
= be32_to_cpu(iclog
->ic_header
.h_cycle_data
[idx
]);
3638 ptr
+= sizeof(xlog_op_header_t
) + op_len
;
3640 } /* xlog_verify_iclog */
3644 * Mark all iclogs IOERROR. l_icloglock is held by the caller.
3650 xlog_in_core_t
*iclog
, *ic
;
3652 iclog
= log
->l_iclog
;
3653 if (! (iclog
->ic_state
& XLOG_STATE_IOERROR
)) {
3655 * Mark all the incore logs IOERROR.
3656 * From now on, no log flushes will result.
3660 ic
->ic_state
= XLOG_STATE_IOERROR
;
3662 } while (ic
!= iclog
);
3666 * Return non-zero, if state transition has already happened.
3672 * This is called from xfs_force_shutdown, when we're forcibly
3673 * shutting down the filesystem, typically because of an IO error.
3674 * Our main objectives here are to make sure that:
3675 * a. the filesystem gets marked 'SHUTDOWN' for all interested
3676 * parties to find out, 'atomically'.
3677 * b. those who're sleeping on log reservations, pinned objects and
3678 * other resources get woken up, and be told the bad news.
3679 * c. nothing new gets queued up after (a) and (b) are done.
3680 * d. if !logerror, flush the iclogs to disk, then seal them off
3683 * Note: for delayed logging the !logerror case needs to flush the regions
3684 * held in memory out to the iclogs before flushing them to disk. This needs
3685 * to be done before the log is marked as shutdown, otherwise the flush to the
3689 xfs_log_force_umount(
3690 struct xfs_mount
*mp
,
3700 * If this happens during log recovery, don't worry about
3701 * locking; the log isn't open for business yet.
3704 log
->l_flags
& XLOG_ACTIVE_RECOVERY
) {
3705 mp
->m_flags
|= XFS_MOUNT_FS_SHUTDOWN
;
3707 XFS_BUF_DONE(mp
->m_sb_bp
);
3712 * Somebody could've already done the hard work for us.
3713 * No need to get locks for this.
3715 if (logerror
&& log
->l_iclog
->ic_state
& XLOG_STATE_IOERROR
) {
3716 ASSERT(XLOG_FORCED_SHUTDOWN(log
));
3722 * Flush the in memory commit item list before marking the log as
3723 * being shut down. We need to do it in this order to ensure all the
3724 * completed transactions are flushed to disk with the xfs_log_force()
3727 if (!logerror
&& (mp
->m_flags
& XFS_MOUNT_DELAYLOG
))
3728 xlog_cil_force(log
);
3731 * We must hold both the GRANT lock and the LOG lock,
3732 * before we mark the filesystem SHUTDOWN and wake
3733 * everybody up to tell the bad news.
3735 spin_lock(&log
->l_icloglock
);
3736 spin_lock(&log
->l_grant_lock
);
3737 mp
->m_flags
|= XFS_MOUNT_FS_SHUTDOWN
;
3739 XFS_BUF_DONE(mp
->m_sb_bp
);
3742 * This flag is sort of redundant because of the mount flag, but
3743 * it's good to maintain the separation between the log and the rest
3746 log
->l_flags
|= XLOG_IO_ERROR
;
3749 * If we hit a log error, we want to mark all the iclogs IOERROR
3750 * while we're still holding the loglock.
3753 retval
= xlog_state_ioerror(log
);
3754 spin_unlock(&log
->l_icloglock
);
3757 * We don't want anybody waiting for log reservations
3758 * after this. That means we have to wake up everybody
3759 * queued up on reserve_headq as well as write_headq.
3760 * In addition, we make sure in xlog_{re}grant_log_space
3761 * that we don't enqueue anything once the SHUTDOWN flag
3762 * is set, and this action is protected by the GRANTLOCK.
3764 if ((tic
= log
->l_reserve_headq
)) {
3766 sv_signal(&tic
->t_wait
);
3768 } while (tic
!= log
->l_reserve_headq
);
3771 if ((tic
= log
->l_write_headq
)) {
3773 sv_signal(&tic
->t_wait
);
3775 } while (tic
!= log
->l_write_headq
);
3777 spin_unlock(&log
->l_grant_lock
);
3779 if (!(log
->l_iclog
->ic_state
& XLOG_STATE_IOERROR
)) {
3782 * Force the incore logs to disk before shutting the
3783 * log down completely.
3785 _xfs_log_force(mp
, XFS_LOG_SYNC
, NULL
);
3787 spin_lock(&log
->l_icloglock
);
3788 retval
= xlog_state_ioerror(log
);
3789 spin_unlock(&log
->l_icloglock
);
3792 * Wake up everybody waiting on xfs_log_force.
3793 * Callback all log item committed functions as if the
3794 * log writes were completed.
3796 xlog_state_do_callback(log
, XFS_LI_ABORTED
, NULL
);
3798 #ifdef XFSERRORDEBUG
3800 xlog_in_core_t
*iclog
;
3802 spin_lock(&log
->l_icloglock
);
3803 iclog
= log
->l_iclog
;
3805 ASSERT(iclog
->ic_callback
== 0);
3806 iclog
= iclog
->ic_next
;
3807 } while (iclog
!= log
->l_iclog
);
3808 spin_unlock(&log
->l_icloglock
);
3811 /* return non-zero if log IOERROR transition had already happened */
3816 xlog_iclogs_empty(xlog_t
*log
)
3818 xlog_in_core_t
*iclog
;
3820 iclog
= log
->l_iclog
;
3822 /* endianness does not matter here, zero is zero in
3825 if (iclog
->ic_header
.h_num_logops
)
3827 iclog
= iclog
->ic_next
;
3828 } while (iclog
!= log
->l_iclog
);