2 * Copyright (c) 2000-2006 Silicon Graphics, Inc.
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
20 #include "xfs_types.h"
24 #include "xfs_trans.h"
27 #include "xfs_mount.h"
28 #include "xfs_error.h"
29 #include "xfs_bmap_btree.h"
30 #include "xfs_alloc_btree.h"
31 #include "xfs_ialloc_btree.h"
32 #include "xfs_dinode.h"
33 #include "xfs_inode.h"
34 #include "xfs_inode_item.h"
35 #include "xfs_alloc.h"
36 #include "xfs_ialloc.h"
37 #include "xfs_log_priv.h"
38 #include "xfs_buf_item.h"
39 #include "xfs_log_recover.h"
40 #include "xfs_extfree_item.h"
41 #include "xfs_trans_priv.h"
42 #include "xfs_quota.h"
44 #include "xfs_utils.h"
45 #include "xfs_trace.h"
47 STATIC
int xlog_find_zeroed(xlog_t
*, xfs_daddr_t
*);
48 STATIC
int xlog_clear_stale_blocks(xlog_t
*, xfs_lsn_t
);
50 STATIC
void xlog_recover_check_summary(xlog_t
*);
52 #define xlog_recover_check_summary(log)
56 * This structure is used during recovery to record the buf log items which
57 * have been canceled and should not be replayed.
59 struct xfs_buf_cancel
{
63 struct list_head bc_list
;
67 * Sector aligned buffer routines for buffer create/read/write/access
71 * Verify the given count of basic blocks is valid number of blocks
72 * to specify for an operation involving the given XFS log buffer.
73 * Returns nonzero if the count is valid, 0 otherwise.
77 xlog_buf_bbcount_valid(
81 return bbcount
> 0 && bbcount
<= log
->l_logBBsize
;
85 * Allocate a buffer to hold log data. The buffer needs to be able
86 * to map to a range of nbblks basic blocks at any valid (basic
87 * block) offset within the log.
96 if (!xlog_buf_bbcount_valid(log
, nbblks
)) {
97 xfs_warn(log
->l_mp
, "Invalid block length (0x%x) for buffer",
99 XFS_ERROR_REPORT(__func__
, XFS_ERRLEVEL_HIGH
, log
->l_mp
);
104 * We do log I/O in units of log sectors (a power-of-2
105 * multiple of the basic block size), so we round up the
106 * requested size to accommodate the basic blocks required
107 * for complete log sectors.
109 * In addition, the buffer may be used for a non-sector-
110 * aligned block offset, in which case an I/O of the
111 * requested size could extend beyond the end of the
112 * buffer. If the requested size is only 1 basic block it
113 * will never straddle a sector boundary, so this won't be
114 * an issue. Nor will this be a problem if the log I/O is
115 * done in basic blocks (sector size 1). But otherwise we
116 * extend the buffer by one extra log sector to ensure
117 * there's space to accommodate this possibility.
119 if (nbblks
> 1 && log
->l_sectBBsize
> 1)
120 nbblks
+= log
->l_sectBBsize
;
121 nbblks
= round_up(nbblks
, log
->l_sectBBsize
);
123 bp
= xfs_buf_get_uncached(log
->l_mp
->m_logdev_targp
, BBTOB(nbblks
), 0);
137 * Return the address of the start of the given block number's data
138 * in a log buffer. The buffer covers a log sector-aligned region.
147 xfs_daddr_t offset
= blk_no
& ((xfs_daddr_t
)log
->l_sectBBsize
- 1);
149 ASSERT(BBTOB(offset
+ nbblks
) <= XFS_BUF_SIZE(bp
));
150 return bp
->b_addr
+ BBTOB(offset
);
155 * nbblks should be uint, but oh well. Just want to catch that 32-bit length.
166 if (!xlog_buf_bbcount_valid(log
, nbblks
)) {
167 xfs_warn(log
->l_mp
, "Invalid block length (0x%x) for buffer",
169 XFS_ERROR_REPORT(__func__
, XFS_ERRLEVEL_HIGH
, log
->l_mp
);
173 blk_no
= round_down(blk_no
, log
->l_sectBBsize
);
174 nbblks
= round_up(nbblks
, log
->l_sectBBsize
);
177 ASSERT(BBTOB(nbblks
) <= XFS_BUF_SIZE(bp
));
179 XFS_BUF_SET_ADDR(bp
, log
->l_logBBstart
+ blk_no
);
181 XFS_BUF_SET_COUNT(bp
, BBTOB(nbblks
));
183 xfsbdstrat(log
->l_mp
, bp
);
184 error
= xfs_buf_iowait(bp
);
186 xfs_ioerror_alert("xlog_bread", log
->l_mp
,
187 bp
, XFS_BUF_ADDR(bp
));
201 error
= xlog_bread_noalign(log
, blk_no
, nbblks
, bp
);
205 *offset
= xlog_align(log
, blk_no
, nbblks
, bp
);
210 * Read at an offset into the buffer. Returns with the buffer in it's original
211 * state regardless of the result of the read.
216 xfs_daddr_t blk_no
, /* block to read from */
217 int nbblks
, /* blocks to read */
221 xfs_caddr_t orig_offset
= bp
->b_addr
;
222 int orig_len
= bp
->b_buffer_length
;
225 error
= xfs_buf_associate_memory(bp
, offset
, BBTOB(nbblks
));
229 error
= xlog_bread_noalign(log
, blk_no
, nbblks
, bp
);
231 /* must reset buffer pointer even on error */
232 error2
= xfs_buf_associate_memory(bp
, orig_offset
, orig_len
);
239 * Write out the buffer at the given block for the given number of blocks.
240 * The buffer is kept locked across the write and is returned locked.
241 * This can only be used for synchronous log writes.
252 if (!xlog_buf_bbcount_valid(log
, nbblks
)) {
253 xfs_warn(log
->l_mp
, "Invalid block length (0x%x) for buffer",
255 XFS_ERROR_REPORT(__func__
, XFS_ERRLEVEL_HIGH
, log
->l_mp
);
259 blk_no
= round_down(blk_no
, log
->l_sectBBsize
);
260 nbblks
= round_up(nbblks
, log
->l_sectBBsize
);
263 ASSERT(BBTOB(nbblks
) <= XFS_BUF_SIZE(bp
));
265 XFS_BUF_SET_ADDR(bp
, log
->l_logBBstart
+ blk_no
);
266 XFS_BUF_ZEROFLAGS(bp
);
269 XFS_BUF_SET_COUNT(bp
, BBTOB(nbblks
));
271 if ((error
= xfs_bwrite(log
->l_mp
, bp
)))
272 xfs_ioerror_alert("xlog_bwrite", log
->l_mp
,
273 bp
, XFS_BUF_ADDR(bp
));
279 * dump debug superblock and log record information
282 xlog_header_check_dump(
284 xlog_rec_header_t
*head
)
286 xfs_debug(mp
, "%s: SB : uuid = %pU, fmt = %d\n",
287 __func__
, &mp
->m_sb
.sb_uuid
, XLOG_FMT
);
288 xfs_debug(mp
, " log : uuid = %pU, fmt = %d\n",
289 &head
->h_fs_uuid
, be32_to_cpu(head
->h_fmt
));
292 #define xlog_header_check_dump(mp, head)
296 * check log record header for recovery
299 xlog_header_check_recover(
301 xlog_rec_header_t
*head
)
303 ASSERT(head
->h_magicno
== cpu_to_be32(XLOG_HEADER_MAGIC_NUM
));
306 * IRIX doesn't write the h_fmt field and leaves it zeroed
307 * (XLOG_FMT_UNKNOWN). This stops us from trying to recover
308 * a dirty log created in IRIX.
310 if (unlikely(head
->h_fmt
!= cpu_to_be32(XLOG_FMT
))) {
312 "dirty log written in incompatible format - can't recover");
313 xlog_header_check_dump(mp
, head
);
314 XFS_ERROR_REPORT("xlog_header_check_recover(1)",
315 XFS_ERRLEVEL_HIGH
, mp
);
316 return XFS_ERROR(EFSCORRUPTED
);
317 } else if (unlikely(!uuid_equal(&mp
->m_sb
.sb_uuid
, &head
->h_fs_uuid
))) {
319 "dirty log entry has mismatched uuid - can't recover");
320 xlog_header_check_dump(mp
, head
);
321 XFS_ERROR_REPORT("xlog_header_check_recover(2)",
322 XFS_ERRLEVEL_HIGH
, mp
);
323 return XFS_ERROR(EFSCORRUPTED
);
329 * read the head block of the log and check the header
332 xlog_header_check_mount(
334 xlog_rec_header_t
*head
)
336 ASSERT(head
->h_magicno
== cpu_to_be32(XLOG_HEADER_MAGIC_NUM
));
338 if (uuid_is_nil(&head
->h_fs_uuid
)) {
340 * IRIX doesn't write the h_fs_uuid or h_fmt fields. If
341 * h_fs_uuid is nil, we assume this log was last mounted
342 * by IRIX and continue.
344 xfs_warn(mp
, "nil uuid in log - IRIX style log");
345 } else if (unlikely(!uuid_equal(&mp
->m_sb
.sb_uuid
, &head
->h_fs_uuid
))) {
346 xfs_warn(mp
, "log has mismatched uuid - can't recover");
347 xlog_header_check_dump(mp
, head
);
348 XFS_ERROR_REPORT("xlog_header_check_mount",
349 XFS_ERRLEVEL_HIGH
, mp
);
350 return XFS_ERROR(EFSCORRUPTED
);
361 * We're not going to bother about retrying
362 * this during recovery. One strike!
364 xfs_ioerror_alert("xlog_recover_iodone",
365 bp
->b_target
->bt_mount
, bp
,
367 xfs_force_shutdown(bp
->b_target
->bt_mount
,
368 SHUTDOWN_META_IO_ERROR
);
371 xfs_buf_ioend(bp
, 0);
375 * This routine finds (to an approximation) the first block in the physical
376 * log which contains the given cycle. It uses a binary search algorithm.
377 * Note that the algorithm can not be perfect because the disk will not
378 * necessarily be perfect.
381 xlog_find_cycle_start(
384 xfs_daddr_t first_blk
,
385 xfs_daddr_t
*last_blk
,
395 mid_blk
= BLK_AVG(first_blk
, end_blk
);
396 while (mid_blk
!= first_blk
&& mid_blk
!= end_blk
) {
397 error
= xlog_bread(log
, mid_blk
, 1, bp
, &offset
);
400 mid_cycle
= xlog_get_cycle(offset
);
401 if (mid_cycle
== cycle
)
402 end_blk
= mid_blk
; /* last_half_cycle == mid_cycle */
404 first_blk
= mid_blk
; /* first_half_cycle == mid_cycle */
405 mid_blk
= BLK_AVG(first_blk
, end_blk
);
407 ASSERT((mid_blk
== first_blk
&& mid_blk
+1 == end_blk
) ||
408 (mid_blk
== end_blk
&& mid_blk
-1 == first_blk
));
416 * Check that a range of blocks does not contain stop_on_cycle_no.
417 * Fill in *new_blk with the block offset where such a block is
418 * found, or with -1 (an invalid block number) if there is no such
419 * block in the range. The scan needs to occur from front to back
420 * and the pointer into the region must be updated since a later
421 * routine will need to perform another test.
424 xlog_find_verify_cycle(
426 xfs_daddr_t start_blk
,
428 uint stop_on_cycle_no
,
429 xfs_daddr_t
*new_blk
)
435 xfs_caddr_t buf
= NULL
;
439 * Greedily allocate a buffer big enough to handle the full
440 * range of basic blocks we'll be examining. If that fails,
441 * try a smaller size. We need to be able to read at least
442 * a log sector, or we're out of luck.
444 bufblks
= 1 << ffs(nbblks
);
445 while (!(bp
= xlog_get_bp(log
, bufblks
))) {
447 if (bufblks
< log
->l_sectBBsize
)
451 for (i
= start_blk
; i
< start_blk
+ nbblks
; i
+= bufblks
) {
454 bcount
= min(bufblks
, (start_blk
+ nbblks
- i
));
456 error
= xlog_bread(log
, i
, bcount
, bp
, &buf
);
460 for (j
= 0; j
< bcount
; j
++) {
461 cycle
= xlog_get_cycle(buf
);
462 if (cycle
== stop_on_cycle_no
) {
479 * Potentially backup over partial log record write.
481 * In the typical case, last_blk is the number of the block directly after
482 * a good log record. Therefore, we subtract one to get the block number
483 * of the last block in the given buffer. extra_bblks contains the number
484 * of blocks we would have read on a previous read. This happens when the
485 * last log record is split over the end of the physical log.
487 * extra_bblks is the number of blocks potentially verified on a previous
488 * call to this routine.
491 xlog_find_verify_log_record(
493 xfs_daddr_t start_blk
,
494 xfs_daddr_t
*last_blk
,
499 xfs_caddr_t offset
= NULL
;
500 xlog_rec_header_t
*head
= NULL
;
503 int num_blks
= *last_blk
- start_blk
;
506 ASSERT(start_blk
!= 0 || *last_blk
!= start_blk
);
508 if (!(bp
= xlog_get_bp(log
, num_blks
))) {
509 if (!(bp
= xlog_get_bp(log
, 1)))
513 error
= xlog_bread(log
, start_blk
, num_blks
, bp
, &offset
);
516 offset
+= ((num_blks
- 1) << BBSHIFT
);
519 for (i
= (*last_blk
) - 1; i
>= 0; i
--) {
521 /* valid log record not found */
523 "Log inconsistent (didn't find previous header)");
525 error
= XFS_ERROR(EIO
);
530 error
= xlog_bread(log
, i
, 1, bp
, &offset
);
535 head
= (xlog_rec_header_t
*)offset
;
537 if (head
->h_magicno
== cpu_to_be32(XLOG_HEADER_MAGIC_NUM
))
545 * We hit the beginning of the physical log & still no header. Return
546 * to caller. If caller can handle a return of -1, then this routine
547 * will be called again for the end of the physical log.
555 * We have the final block of the good log (the first block
556 * of the log record _before_ the head. So we check the uuid.
558 if ((error
= xlog_header_check_mount(log
->l_mp
, head
)))
562 * We may have found a log record header before we expected one.
563 * last_blk will be the 1st block # with a given cycle #. We may end
564 * up reading an entire log record. In this case, we don't want to
565 * reset last_blk. Only when last_blk points in the middle of a log
566 * record do we update last_blk.
568 if (xfs_sb_version_haslogv2(&log
->l_mp
->m_sb
)) {
569 uint h_size
= be32_to_cpu(head
->h_size
);
571 xhdrs
= h_size
/ XLOG_HEADER_CYCLE_SIZE
;
572 if (h_size
% XLOG_HEADER_CYCLE_SIZE
)
578 if (*last_blk
- i
+ extra_bblks
!=
579 BTOBB(be32_to_cpu(head
->h_len
)) + xhdrs
)
588 * Head is defined to be the point of the log where the next log write
589 * write could go. This means that incomplete LR writes at the end are
590 * eliminated when calculating the head. We aren't guaranteed that previous
591 * LR have complete transactions. We only know that a cycle number of
592 * current cycle number -1 won't be present in the log if we start writing
593 * from our current block number.
595 * last_blk contains the block number of the first block with a given
598 * Return: zero if normal, non-zero if error.
603 xfs_daddr_t
*return_head_blk
)
607 xfs_daddr_t new_blk
, first_blk
, start_blk
, last_blk
, head_blk
;
609 uint first_half_cycle
, last_half_cycle
;
611 int error
, log_bbnum
= log
->l_logBBsize
;
613 /* Is the end of the log device zeroed? */
614 if ((error
= xlog_find_zeroed(log
, &first_blk
)) == -1) {
615 *return_head_blk
= first_blk
;
617 /* Is the whole lot zeroed? */
619 /* Linux XFS shouldn't generate totally zeroed logs -
620 * mkfs etc write a dummy unmount record to a fresh
621 * log so we can store the uuid in there
623 xfs_warn(log
->l_mp
, "totally zeroed log");
628 xfs_warn(log
->l_mp
, "empty log check failed");
632 first_blk
= 0; /* get cycle # of 1st block */
633 bp
= xlog_get_bp(log
, 1);
637 error
= xlog_bread(log
, 0, 1, bp
, &offset
);
641 first_half_cycle
= xlog_get_cycle(offset
);
643 last_blk
= head_blk
= log_bbnum
- 1; /* get cycle # of last block */
644 error
= xlog_bread(log
, last_blk
, 1, bp
, &offset
);
648 last_half_cycle
= xlog_get_cycle(offset
);
649 ASSERT(last_half_cycle
!= 0);
652 * If the 1st half cycle number is equal to the last half cycle number,
653 * then the entire log is stamped with the same cycle number. In this
654 * case, head_blk can't be set to zero (which makes sense). The below
655 * math doesn't work out properly with head_blk equal to zero. Instead,
656 * we set it to log_bbnum which is an invalid block number, but this
657 * value makes the math correct. If head_blk doesn't changed through
658 * all the tests below, *head_blk is set to zero at the very end rather
659 * than log_bbnum. In a sense, log_bbnum and zero are the same block
660 * in a circular file.
662 if (first_half_cycle
== last_half_cycle
) {
664 * In this case we believe that the entire log should have
665 * cycle number last_half_cycle. We need to scan backwards
666 * from the end verifying that there are no holes still
667 * containing last_half_cycle - 1. If we find such a hole,
668 * then the start of that hole will be the new head. The
669 * simple case looks like
670 * x | x ... | x - 1 | x
671 * Another case that fits this picture would be
672 * x | x + 1 | x ... | x
673 * In this case the head really is somewhere at the end of the
674 * log, as one of the latest writes at the beginning was
677 * x | x + 1 | x ... | x - 1 | x
678 * This is really the combination of the above two cases, and
679 * the head has to end up at the start of the x-1 hole at the
682 * In the 256k log case, we will read from the beginning to the
683 * end of the log and search for cycle numbers equal to x-1.
684 * We don't worry about the x+1 blocks that we encounter,
685 * because we know that they cannot be the head since the log
688 head_blk
= log_bbnum
;
689 stop_on_cycle
= last_half_cycle
- 1;
692 * In this case we want to find the first block with cycle
693 * number matching last_half_cycle. We expect the log to be
695 * x + 1 ... | x ... | x
696 * The first block with cycle number x (last_half_cycle) will
697 * be where the new head belongs. First we do a binary search
698 * for the first occurrence of last_half_cycle. The binary
699 * search may not be totally accurate, so then we scan back
700 * from there looking for occurrences of last_half_cycle before
701 * us. If that backwards scan wraps around the beginning of
702 * the log, then we look for occurrences of last_half_cycle - 1
703 * at the end of the log. The cases we're looking for look
705 * v binary search stopped here
706 * x + 1 ... | x | x + 1 | x ... | x
707 * ^ but we want to locate this spot
709 * <---------> less than scan distance
710 * x + 1 ... | x ... | x - 1 | x
711 * ^ we want to locate this spot
713 stop_on_cycle
= last_half_cycle
;
714 if ((error
= xlog_find_cycle_start(log
, bp
, first_blk
,
715 &head_blk
, last_half_cycle
)))
720 * Now validate the answer. Scan back some number of maximum possible
721 * blocks and make sure each one has the expected cycle number. The
722 * maximum is determined by the total possible amount of buffering
723 * in the in-core log. The following number can be made tighter if
724 * we actually look at the block size of the filesystem.
726 num_scan_bblks
= XLOG_TOTAL_REC_SHIFT(log
);
727 if (head_blk
>= num_scan_bblks
) {
729 * We are guaranteed that the entire check can be performed
732 start_blk
= head_blk
- num_scan_bblks
;
733 if ((error
= xlog_find_verify_cycle(log
,
734 start_blk
, num_scan_bblks
,
735 stop_on_cycle
, &new_blk
)))
739 } else { /* need to read 2 parts of log */
741 * We are going to scan backwards in the log in two parts.
742 * First we scan the physical end of the log. In this part
743 * of the log, we are looking for blocks with cycle number
744 * last_half_cycle - 1.
745 * If we find one, then we know that the log starts there, as
746 * we've found a hole that didn't get written in going around
747 * the end of the physical log. The simple case for this is
748 * x + 1 ... | x ... | x - 1 | x
749 * <---------> less than scan distance
750 * If all of the blocks at the end of the log have cycle number
751 * last_half_cycle, then we check the blocks at the start of
752 * the log looking for occurrences of last_half_cycle. If we
753 * find one, then our current estimate for the location of the
754 * first occurrence of last_half_cycle is wrong and we move
755 * back to the hole we've found. This case looks like
756 * x + 1 ... | x | x + 1 | x ...
757 * ^ binary search stopped here
758 * Another case we need to handle that only occurs in 256k
760 * x + 1 ... | x ... | x+1 | x ...
761 * ^ binary search stops here
762 * In a 256k log, the scan at the end of the log will see the
763 * x + 1 blocks. We need to skip past those since that is
764 * certainly not the head of the log. By searching for
765 * last_half_cycle-1 we accomplish that.
767 ASSERT(head_blk
<= INT_MAX
&&
768 (xfs_daddr_t
) num_scan_bblks
>= head_blk
);
769 start_blk
= log_bbnum
- (num_scan_bblks
- head_blk
);
770 if ((error
= xlog_find_verify_cycle(log
, start_blk
,
771 num_scan_bblks
- (int)head_blk
,
772 (stop_on_cycle
- 1), &new_blk
)))
780 * Scan beginning of log now. The last part of the physical
781 * log is good. This scan needs to verify that it doesn't find
782 * the last_half_cycle.
785 ASSERT(head_blk
<= INT_MAX
);
786 if ((error
= xlog_find_verify_cycle(log
,
787 start_blk
, (int)head_blk
,
788 stop_on_cycle
, &new_blk
)))
796 * Now we need to make sure head_blk is not pointing to a block in
797 * the middle of a log record.
799 num_scan_bblks
= XLOG_REC_SHIFT(log
);
800 if (head_blk
>= num_scan_bblks
) {
801 start_blk
= head_blk
- num_scan_bblks
; /* don't read head_blk */
803 /* start ptr at last block ptr before head_blk */
804 if ((error
= xlog_find_verify_log_record(log
, start_blk
,
805 &head_blk
, 0)) == -1) {
806 error
= XFS_ERROR(EIO
);
812 ASSERT(head_blk
<= INT_MAX
);
813 if ((error
= xlog_find_verify_log_record(log
, start_blk
,
814 &head_blk
, 0)) == -1) {
815 /* We hit the beginning of the log during our search */
816 start_blk
= log_bbnum
- (num_scan_bblks
- head_blk
);
818 ASSERT(start_blk
<= INT_MAX
&&
819 (xfs_daddr_t
) log_bbnum
-start_blk
>= 0);
820 ASSERT(head_blk
<= INT_MAX
);
821 if ((error
= xlog_find_verify_log_record(log
,
823 (int)head_blk
)) == -1) {
824 error
= XFS_ERROR(EIO
);
828 if (new_blk
!= log_bbnum
)
835 if (head_blk
== log_bbnum
)
836 *return_head_blk
= 0;
838 *return_head_blk
= head_blk
;
840 * When returning here, we have a good block number. Bad block
841 * means that during a previous crash, we didn't have a clean break
842 * from cycle number N to cycle number N-1. In this case, we need
843 * to find the first block with cycle number N-1.
851 xfs_warn(log
->l_mp
, "failed to find log head");
856 * Find the sync block number or the tail of the log.
858 * This will be the block number of the last record to have its
859 * associated buffers synced to disk. Every log record header has
860 * a sync lsn embedded in it. LSNs hold block numbers, so it is easy
861 * to get a sync block number. The only concern is to figure out which
862 * log record header to believe.
864 * The following algorithm uses the log record header with the largest
865 * lsn. The entire log record does not need to be valid. We only care
866 * that the header is valid.
868 * We could speed up search by using current head_blk buffer, but it is not
874 xfs_daddr_t
*head_blk
,
875 xfs_daddr_t
*tail_blk
)
877 xlog_rec_header_t
*rhead
;
878 xlog_op_header_t
*op_head
;
879 xfs_caddr_t offset
= NULL
;
882 xfs_daddr_t umount_data_blk
;
883 xfs_daddr_t after_umount_blk
;
890 * Find previous log record
892 if ((error
= xlog_find_head(log
, head_blk
)))
895 bp
= xlog_get_bp(log
, 1);
898 if (*head_blk
== 0) { /* special case */
899 error
= xlog_bread(log
, 0, 1, bp
, &offset
);
903 if (xlog_get_cycle(offset
) == 0) {
905 /* leave all other log inited values alone */
911 * Search backwards looking for log record header block
913 ASSERT(*head_blk
< INT_MAX
);
914 for (i
= (int)(*head_blk
) - 1; i
>= 0; i
--) {
915 error
= xlog_bread(log
, i
, 1, bp
, &offset
);
919 if (*(__be32
*)offset
== cpu_to_be32(XLOG_HEADER_MAGIC_NUM
)) {
925 * If we haven't found the log record header block, start looking
926 * again from the end of the physical log. XXXmiken: There should be
927 * a check here to make sure we didn't search more than N blocks in
931 for (i
= log
->l_logBBsize
- 1; i
>= (int)(*head_blk
); i
--) {
932 error
= xlog_bread(log
, i
, 1, bp
, &offset
);
936 if (*(__be32
*)offset
==
937 cpu_to_be32(XLOG_HEADER_MAGIC_NUM
)) {
944 xfs_warn(log
->l_mp
, "%s: couldn't find sync record", __func__
);
946 return XFS_ERROR(EIO
);
949 /* find blk_no of tail of log */
950 rhead
= (xlog_rec_header_t
*)offset
;
951 *tail_blk
= BLOCK_LSN(be64_to_cpu(rhead
->h_tail_lsn
));
954 * Reset log values according to the state of the log when we
955 * crashed. In the case where head_blk == 0, we bump curr_cycle
956 * one because the next write starts a new cycle rather than
957 * continuing the cycle of the last good log record. At this
958 * point we have guaranteed that all partial log records have been
959 * accounted for. Therefore, we know that the last good log record
960 * written was complete and ended exactly on the end boundary
961 * of the physical log.
963 log
->l_prev_block
= i
;
964 log
->l_curr_block
= (int)*head_blk
;
965 log
->l_curr_cycle
= be32_to_cpu(rhead
->h_cycle
);
968 atomic64_set(&log
->l_tail_lsn
, be64_to_cpu(rhead
->h_tail_lsn
));
969 atomic64_set(&log
->l_last_sync_lsn
, be64_to_cpu(rhead
->h_lsn
));
970 xlog_assign_grant_head(&log
->l_grant_reserve_head
, log
->l_curr_cycle
,
971 BBTOB(log
->l_curr_block
));
972 xlog_assign_grant_head(&log
->l_grant_write_head
, log
->l_curr_cycle
,
973 BBTOB(log
->l_curr_block
));
976 * Look for unmount record. If we find it, then we know there
977 * was a clean unmount. Since 'i' could be the last block in
978 * the physical log, we convert to a log block before comparing
981 * Save the current tail lsn to use to pass to
982 * xlog_clear_stale_blocks() below. We won't want to clear the
983 * unmount record if there is one, so we pass the lsn of the
984 * unmount record rather than the block after it.
986 if (xfs_sb_version_haslogv2(&log
->l_mp
->m_sb
)) {
987 int h_size
= be32_to_cpu(rhead
->h_size
);
988 int h_version
= be32_to_cpu(rhead
->h_version
);
990 if ((h_version
& XLOG_VERSION_2
) &&
991 (h_size
> XLOG_HEADER_CYCLE_SIZE
)) {
992 hblks
= h_size
/ XLOG_HEADER_CYCLE_SIZE
;
993 if (h_size
% XLOG_HEADER_CYCLE_SIZE
)
1001 after_umount_blk
= (i
+ hblks
+ (int)
1002 BTOBB(be32_to_cpu(rhead
->h_len
))) % log
->l_logBBsize
;
1003 tail_lsn
= atomic64_read(&log
->l_tail_lsn
);
1004 if (*head_blk
== after_umount_blk
&&
1005 be32_to_cpu(rhead
->h_num_logops
) == 1) {
1006 umount_data_blk
= (i
+ hblks
) % log
->l_logBBsize
;
1007 error
= xlog_bread(log
, umount_data_blk
, 1, bp
, &offset
);
1011 op_head
= (xlog_op_header_t
*)offset
;
1012 if (op_head
->oh_flags
& XLOG_UNMOUNT_TRANS
) {
1014 * Set tail and last sync so that newly written
1015 * log records will point recovery to after the
1016 * current unmount record.
1018 xlog_assign_atomic_lsn(&log
->l_tail_lsn
,
1019 log
->l_curr_cycle
, after_umount_blk
);
1020 xlog_assign_atomic_lsn(&log
->l_last_sync_lsn
,
1021 log
->l_curr_cycle
, after_umount_blk
);
1022 *tail_blk
= after_umount_blk
;
1025 * Note that the unmount was clean. If the unmount
1026 * was not clean, we need to know this to rebuild the
1027 * superblock counters from the perag headers if we
1028 * have a filesystem using non-persistent counters.
1030 log
->l_mp
->m_flags
|= XFS_MOUNT_WAS_CLEAN
;
1035 * Make sure that there are no blocks in front of the head
1036 * with the same cycle number as the head. This can happen
1037 * because we allow multiple outstanding log writes concurrently,
1038 * and the later writes might make it out before earlier ones.
1040 * We use the lsn from before modifying it so that we'll never
1041 * overwrite the unmount record after a clean unmount.
1043 * Do this only if we are going to recover the filesystem
1045 * NOTE: This used to say "if (!readonly)"
1046 * However on Linux, we can & do recover a read-only filesystem.
1047 * We only skip recovery if NORECOVERY is specified on mount,
1048 * in which case we would not be here.
1050 * But... if the -device- itself is readonly, just skip this.
1051 * We can't recover this device anyway, so it won't matter.
1053 if (!xfs_readonly_buftarg(log
->l_mp
->m_logdev_targp
))
1054 error
= xlog_clear_stale_blocks(log
, tail_lsn
);
1060 xfs_warn(log
->l_mp
, "failed to locate log tail");
1065 * Is the log zeroed at all?
1067 * The last binary search should be changed to perform an X block read
1068 * once X becomes small enough. You can then search linearly through
1069 * the X blocks. This will cut down on the number of reads we need to do.
1071 * If the log is partially zeroed, this routine will pass back the blkno
1072 * of the first block with cycle number 0. It won't have a complete LR
1076 * 0 => the log is completely written to
1077 * -1 => use *blk_no as the first block of the log
1078 * >0 => error has occurred
1083 xfs_daddr_t
*blk_no
)
1087 uint first_cycle
, last_cycle
;
1088 xfs_daddr_t new_blk
, last_blk
, start_blk
;
1089 xfs_daddr_t num_scan_bblks
;
1090 int error
, log_bbnum
= log
->l_logBBsize
;
1094 /* check totally zeroed log */
1095 bp
= xlog_get_bp(log
, 1);
1098 error
= xlog_bread(log
, 0, 1, bp
, &offset
);
1102 first_cycle
= xlog_get_cycle(offset
);
1103 if (first_cycle
== 0) { /* completely zeroed log */
1109 /* check partially zeroed log */
1110 error
= xlog_bread(log
, log_bbnum
-1, 1, bp
, &offset
);
1114 last_cycle
= xlog_get_cycle(offset
);
1115 if (last_cycle
!= 0) { /* log completely written to */
1118 } else if (first_cycle
!= 1) {
1120 * If the cycle of the last block is zero, the cycle of
1121 * the first block must be 1. If it's not, maybe we're
1122 * not looking at a log... Bail out.
1125 "Log inconsistent or not a log (last==0, first!=1)");
1126 return XFS_ERROR(EINVAL
);
1129 /* we have a partially zeroed log */
1130 last_blk
= log_bbnum
-1;
1131 if ((error
= xlog_find_cycle_start(log
, bp
, 0, &last_blk
, 0)))
1135 * Validate the answer. Because there is no way to guarantee that
1136 * the entire log is made up of log records which are the same size,
1137 * we scan over the defined maximum blocks. At this point, the maximum
1138 * is not chosen to mean anything special. XXXmiken
1140 num_scan_bblks
= XLOG_TOTAL_REC_SHIFT(log
);
1141 ASSERT(num_scan_bblks
<= INT_MAX
);
1143 if (last_blk
< num_scan_bblks
)
1144 num_scan_bblks
= last_blk
;
1145 start_blk
= last_blk
- num_scan_bblks
;
1148 * We search for any instances of cycle number 0 that occur before
1149 * our current estimate of the head. What we're trying to detect is
1150 * 1 ... | 0 | 1 | 0...
1151 * ^ binary search ends here
1153 if ((error
= xlog_find_verify_cycle(log
, start_blk
,
1154 (int)num_scan_bblks
, 0, &new_blk
)))
1160 * Potentially backup over partial log record write. We don't need
1161 * to search the end of the log because we know it is zero.
1163 if ((error
= xlog_find_verify_log_record(log
, start_blk
,
1164 &last_blk
, 0)) == -1) {
1165 error
= XFS_ERROR(EIO
);
1179 * These are simple subroutines used by xlog_clear_stale_blocks() below
1180 * to initialize a buffer full of empty log record headers and write
1181 * them into the log.
1192 xlog_rec_header_t
*recp
= (xlog_rec_header_t
*)buf
;
1194 memset(buf
, 0, BBSIZE
);
1195 recp
->h_magicno
= cpu_to_be32(XLOG_HEADER_MAGIC_NUM
);
1196 recp
->h_cycle
= cpu_to_be32(cycle
);
1197 recp
->h_version
= cpu_to_be32(
1198 xfs_sb_version_haslogv2(&log
->l_mp
->m_sb
) ? 2 : 1);
1199 recp
->h_lsn
= cpu_to_be64(xlog_assign_lsn(cycle
, block
));
1200 recp
->h_tail_lsn
= cpu_to_be64(xlog_assign_lsn(tail_cycle
, tail_block
));
1201 recp
->h_fmt
= cpu_to_be32(XLOG_FMT
);
1202 memcpy(&recp
->h_fs_uuid
, &log
->l_mp
->m_sb
.sb_uuid
, sizeof(uuid_t
));
1206 xlog_write_log_records(
1217 int sectbb
= log
->l_sectBBsize
;
1218 int end_block
= start_block
+ blocks
;
1224 * Greedily allocate a buffer big enough to handle the full
1225 * range of basic blocks to be written. If that fails, try
1226 * a smaller size. We need to be able to write at least a
1227 * log sector, or we're out of luck.
1229 bufblks
= 1 << ffs(blocks
);
1230 while (!(bp
= xlog_get_bp(log
, bufblks
))) {
1232 if (bufblks
< sectbb
)
1236 /* We may need to do a read at the start to fill in part of
1237 * the buffer in the starting sector not covered by the first
1240 balign
= round_down(start_block
, sectbb
);
1241 if (balign
!= start_block
) {
1242 error
= xlog_bread_noalign(log
, start_block
, 1, bp
);
1246 j
= start_block
- balign
;
1249 for (i
= start_block
; i
< end_block
; i
+= bufblks
) {
1250 int bcount
, endcount
;
1252 bcount
= min(bufblks
, end_block
- start_block
);
1253 endcount
= bcount
- j
;
1255 /* We may need to do a read at the end to fill in part of
1256 * the buffer in the final sector not covered by the write.
1257 * If this is the same sector as the above read, skip it.
1259 ealign
= round_down(end_block
, sectbb
);
1260 if (j
== 0 && (start_block
+ endcount
> ealign
)) {
1261 offset
= bp
->b_addr
+ BBTOB(ealign
- start_block
);
1262 error
= xlog_bread_offset(log
, ealign
, sectbb
,
1269 offset
= xlog_align(log
, start_block
, endcount
, bp
);
1270 for (; j
< endcount
; j
++) {
1271 xlog_add_record(log
, offset
, cycle
, i
+j
,
1272 tail_cycle
, tail_block
);
1275 error
= xlog_bwrite(log
, start_block
, endcount
, bp
);
1278 start_block
+= endcount
;
1288 * This routine is called to blow away any incomplete log writes out
1289 * in front of the log head. We do this so that we won't become confused
1290 * if we come up, write only a little bit more, and then crash again.
1291 * If we leave the partial log records out there, this situation could
1292 * cause us to think those partial writes are valid blocks since they
1293 * have the current cycle number. We get rid of them by overwriting them
1294 * with empty log records with the old cycle number rather than the
1297 * The tail lsn is passed in rather than taken from
1298 * the log so that we will not write over the unmount record after a
1299 * clean unmount in a 512 block log. Doing so would leave the log without
1300 * any valid log records in it until a new one was written. If we crashed
1301 * during that time we would not be able to recover.
1304 xlog_clear_stale_blocks(
1308 int tail_cycle
, head_cycle
;
1309 int tail_block
, head_block
;
1310 int tail_distance
, max_distance
;
1314 tail_cycle
= CYCLE_LSN(tail_lsn
);
1315 tail_block
= BLOCK_LSN(tail_lsn
);
1316 head_cycle
= log
->l_curr_cycle
;
1317 head_block
= log
->l_curr_block
;
1320 * Figure out the distance between the new head of the log
1321 * and the tail. We want to write over any blocks beyond the
1322 * head that we may have written just before the crash, but
1323 * we don't want to overwrite the tail of the log.
1325 if (head_cycle
== tail_cycle
) {
1327 * The tail is behind the head in the physical log,
1328 * so the distance from the head to the tail is the
1329 * distance from the head to the end of the log plus
1330 * the distance from the beginning of the log to the
1333 if (unlikely(head_block
< tail_block
|| head_block
>= log
->l_logBBsize
)) {
1334 XFS_ERROR_REPORT("xlog_clear_stale_blocks(1)",
1335 XFS_ERRLEVEL_LOW
, log
->l_mp
);
1336 return XFS_ERROR(EFSCORRUPTED
);
1338 tail_distance
= tail_block
+ (log
->l_logBBsize
- head_block
);
1341 * The head is behind the tail in the physical log,
1342 * so the distance from the head to the tail is just
1343 * the tail block minus the head block.
1345 if (unlikely(head_block
>= tail_block
|| head_cycle
!= (tail_cycle
+ 1))){
1346 XFS_ERROR_REPORT("xlog_clear_stale_blocks(2)",
1347 XFS_ERRLEVEL_LOW
, log
->l_mp
);
1348 return XFS_ERROR(EFSCORRUPTED
);
1350 tail_distance
= tail_block
- head_block
;
1354 * If the head is right up against the tail, we can't clear
1357 if (tail_distance
<= 0) {
1358 ASSERT(tail_distance
== 0);
1362 max_distance
= XLOG_TOTAL_REC_SHIFT(log
);
1364 * Take the smaller of the maximum amount of outstanding I/O
1365 * we could have and the distance to the tail to clear out.
1366 * We take the smaller so that we don't overwrite the tail and
1367 * we don't waste all day writing from the head to the tail
1370 max_distance
= MIN(max_distance
, tail_distance
);
1372 if ((head_block
+ max_distance
) <= log
->l_logBBsize
) {
1374 * We can stomp all the blocks we need to without
1375 * wrapping around the end of the log. Just do it
1376 * in a single write. Use the cycle number of the
1377 * current cycle minus one so that the log will look like:
1380 error
= xlog_write_log_records(log
, (head_cycle
- 1),
1381 head_block
, max_distance
, tail_cycle
,
1387 * We need to wrap around the end of the physical log in
1388 * order to clear all the blocks. Do it in two separate
1389 * I/Os. The first write should be from the head to the
1390 * end of the physical log, and it should use the current
1391 * cycle number minus one just like above.
1393 distance
= log
->l_logBBsize
- head_block
;
1394 error
= xlog_write_log_records(log
, (head_cycle
- 1),
1395 head_block
, distance
, tail_cycle
,
1402 * Now write the blocks at the start of the physical log.
1403 * This writes the remainder of the blocks we want to clear.
1404 * It uses the current cycle number since we're now on the
1405 * same cycle as the head so that we get:
1406 * n ... n ... | n - 1 ...
1407 * ^^^^^ blocks we're writing
1409 distance
= max_distance
- (log
->l_logBBsize
- head_block
);
1410 error
= xlog_write_log_records(log
, head_cycle
, 0, distance
,
1411 tail_cycle
, tail_block
);
1419 /******************************************************************************
1421 * Log recover routines
1423 ******************************************************************************
1426 STATIC xlog_recover_t
*
1427 xlog_recover_find_tid(
1428 struct hlist_head
*head
,
1431 xlog_recover_t
*trans
;
1432 struct hlist_node
*n
;
1434 hlist_for_each_entry(trans
, n
, head
, r_list
) {
1435 if (trans
->r_log_tid
== tid
)
1442 xlog_recover_new_tid(
1443 struct hlist_head
*head
,
1447 xlog_recover_t
*trans
;
1449 trans
= kmem_zalloc(sizeof(xlog_recover_t
), KM_SLEEP
);
1450 trans
->r_log_tid
= tid
;
1452 INIT_LIST_HEAD(&trans
->r_itemq
);
1454 INIT_HLIST_NODE(&trans
->r_list
);
1455 hlist_add_head(&trans
->r_list
, head
);
1459 xlog_recover_add_item(
1460 struct list_head
*head
)
1462 xlog_recover_item_t
*item
;
1464 item
= kmem_zalloc(sizeof(xlog_recover_item_t
), KM_SLEEP
);
1465 INIT_LIST_HEAD(&item
->ri_list
);
1466 list_add_tail(&item
->ri_list
, head
);
1470 xlog_recover_add_to_cont_trans(
1472 xlog_recover_t
*trans
,
1476 xlog_recover_item_t
*item
;
1477 xfs_caddr_t ptr
, old_ptr
;
1480 if (list_empty(&trans
->r_itemq
)) {
1481 /* finish copying rest of trans header */
1482 xlog_recover_add_item(&trans
->r_itemq
);
1483 ptr
= (xfs_caddr_t
) &trans
->r_theader
+
1484 sizeof(xfs_trans_header_t
) - len
;
1485 memcpy(ptr
, dp
, len
); /* d, s, l */
1488 /* take the tail entry */
1489 item
= list_entry(trans
->r_itemq
.prev
, xlog_recover_item_t
, ri_list
);
1491 old_ptr
= item
->ri_buf
[item
->ri_cnt
-1].i_addr
;
1492 old_len
= item
->ri_buf
[item
->ri_cnt
-1].i_len
;
1494 ptr
= kmem_realloc(old_ptr
, len
+old_len
, old_len
, 0u);
1495 memcpy(&ptr
[old_len
], dp
, len
); /* d, s, l */
1496 item
->ri_buf
[item
->ri_cnt
-1].i_len
+= len
;
1497 item
->ri_buf
[item
->ri_cnt
-1].i_addr
= ptr
;
1498 trace_xfs_log_recover_item_add_cont(log
, trans
, item
, 0);
1503 * The next region to add is the start of a new region. It could be
1504 * a whole region or it could be the first part of a new region. Because
1505 * of this, the assumption here is that the type and size fields of all
1506 * format structures fit into the first 32 bits of the structure.
1508 * This works because all regions must be 32 bit aligned. Therefore, we
1509 * either have both fields or we have neither field. In the case we have
1510 * neither field, the data part of the region is zero length. We only have
1511 * a log_op_header and can throw away the header since a new one will appear
1512 * later. If we have at least 4 bytes, then we can determine how many regions
1513 * will appear in the current log item.
1516 xlog_recover_add_to_trans(
1518 xlog_recover_t
*trans
,
1522 xfs_inode_log_format_t
*in_f
; /* any will do */
1523 xlog_recover_item_t
*item
;
1528 if (list_empty(&trans
->r_itemq
)) {
1529 /* we need to catch log corruptions here */
1530 if (*(uint
*)dp
!= XFS_TRANS_HEADER_MAGIC
) {
1531 xfs_warn(log
->l_mp
, "%s: bad header magic number",
1534 return XFS_ERROR(EIO
);
1536 if (len
== sizeof(xfs_trans_header_t
))
1537 xlog_recover_add_item(&trans
->r_itemq
);
1538 memcpy(&trans
->r_theader
, dp
, len
); /* d, s, l */
1542 ptr
= kmem_alloc(len
, KM_SLEEP
);
1543 memcpy(ptr
, dp
, len
);
1544 in_f
= (xfs_inode_log_format_t
*)ptr
;
1546 /* take the tail entry */
1547 item
= list_entry(trans
->r_itemq
.prev
, xlog_recover_item_t
, ri_list
);
1548 if (item
->ri_total
!= 0 &&
1549 item
->ri_total
== item
->ri_cnt
) {
1550 /* tail item is in use, get a new one */
1551 xlog_recover_add_item(&trans
->r_itemq
);
1552 item
= list_entry(trans
->r_itemq
.prev
,
1553 xlog_recover_item_t
, ri_list
);
1556 if (item
->ri_total
== 0) { /* first region to be added */
1557 if (in_f
->ilf_size
== 0 ||
1558 in_f
->ilf_size
> XLOG_MAX_REGIONS_IN_ITEM
) {
1560 "bad number of regions (%d) in inode log format",
1563 return XFS_ERROR(EIO
);
1566 item
->ri_total
= in_f
->ilf_size
;
1568 kmem_zalloc(item
->ri_total
* sizeof(xfs_log_iovec_t
),
1571 ASSERT(item
->ri_total
> item
->ri_cnt
);
1572 /* Description region is ri_buf[0] */
1573 item
->ri_buf
[item
->ri_cnt
].i_addr
= ptr
;
1574 item
->ri_buf
[item
->ri_cnt
].i_len
= len
;
1576 trace_xfs_log_recover_item_add(log
, trans
, item
, 0);
1581 * Sort the log items in the transaction. Cancelled buffers need
1582 * to be put first so they are processed before any items that might
1583 * modify the buffers. If they are cancelled, then the modifications
1584 * don't need to be replayed.
1587 xlog_recover_reorder_trans(
1589 xlog_recover_t
*trans
,
1592 xlog_recover_item_t
*item
, *n
;
1593 LIST_HEAD(sort_list
);
1595 list_splice_init(&trans
->r_itemq
, &sort_list
);
1596 list_for_each_entry_safe(item
, n
, &sort_list
, ri_list
) {
1597 xfs_buf_log_format_t
*buf_f
= item
->ri_buf
[0].i_addr
;
1599 switch (ITEM_TYPE(item
)) {
1601 if (!(buf_f
->blf_flags
& XFS_BLF_CANCEL
)) {
1602 trace_xfs_log_recover_item_reorder_head(log
,
1604 list_move(&item
->ri_list
, &trans
->r_itemq
);
1609 case XFS_LI_QUOTAOFF
:
1612 trace_xfs_log_recover_item_reorder_tail(log
,
1614 list_move_tail(&item
->ri_list
, &trans
->r_itemq
);
1618 "%s: unrecognized type of log operation",
1621 return XFS_ERROR(EIO
);
1624 ASSERT(list_empty(&sort_list
));
1629 * Build up the table of buf cancel records so that we don't replay
1630 * cancelled data in the second pass. For buffer records that are
1631 * not cancel records, there is nothing to do here so we just return.
1633 * If we get a cancel record which is already in the table, this indicates
1634 * that the buffer was cancelled multiple times. In order to ensure
1635 * that during pass 2 we keep the record in the table until we reach its
1636 * last occurrence in the log, we keep a reference count in the cancel
1637 * record in the table to tell us how many times we expect to see this
1638 * record during the second pass.
1641 xlog_recover_buffer_pass1(
1643 xlog_recover_item_t
*item
)
1645 xfs_buf_log_format_t
*buf_f
= item
->ri_buf
[0].i_addr
;
1646 struct list_head
*bucket
;
1647 struct xfs_buf_cancel
*bcp
;
1650 * If this isn't a cancel buffer item, then just return.
1652 if (!(buf_f
->blf_flags
& XFS_BLF_CANCEL
)) {
1653 trace_xfs_log_recover_buf_not_cancel(log
, buf_f
);
1658 * Insert an xfs_buf_cancel record into the hash table of them.
1659 * If there is already an identical record, bump its reference count.
1661 bucket
= XLOG_BUF_CANCEL_BUCKET(log
, buf_f
->blf_blkno
);
1662 list_for_each_entry(bcp
, bucket
, bc_list
) {
1663 if (bcp
->bc_blkno
== buf_f
->blf_blkno
&&
1664 bcp
->bc_len
== buf_f
->blf_len
) {
1666 trace_xfs_log_recover_buf_cancel_ref_inc(log
, buf_f
);
1671 bcp
= kmem_alloc(sizeof(struct xfs_buf_cancel
), KM_SLEEP
);
1672 bcp
->bc_blkno
= buf_f
->blf_blkno
;
1673 bcp
->bc_len
= buf_f
->blf_len
;
1674 bcp
->bc_refcount
= 1;
1675 list_add_tail(&bcp
->bc_list
, bucket
);
1677 trace_xfs_log_recover_buf_cancel_add(log
, buf_f
);
1682 * Check to see whether the buffer being recovered has a corresponding
1683 * entry in the buffer cancel record table. If it does then return 1
1684 * so that it will be cancelled, otherwise return 0. If the buffer is
1685 * actually a buffer cancel item (XFS_BLF_CANCEL is set), then decrement
1686 * the refcount on the entry in the table and remove it from the table
1687 * if this is the last reference.
1689 * We remove the cancel record from the table when we encounter its
1690 * last occurrence in the log so that if the same buffer is re-used
1691 * again after its last cancellation we actually replay the changes
1692 * made at that point.
1695 xlog_check_buffer_cancelled(
1701 struct list_head
*bucket
;
1702 struct xfs_buf_cancel
*bcp
;
1704 if (log
->l_buf_cancel_table
== NULL
) {
1706 * There is nothing in the table built in pass one,
1707 * so this buffer must not be cancelled.
1709 ASSERT(!(flags
& XFS_BLF_CANCEL
));
1714 * Search for an entry in the cancel table that matches our buffer.
1716 bucket
= XLOG_BUF_CANCEL_BUCKET(log
, blkno
);
1717 list_for_each_entry(bcp
, bucket
, bc_list
) {
1718 if (bcp
->bc_blkno
== blkno
&& bcp
->bc_len
== len
)
1723 * We didn't find a corresponding entry in the table, so return 0 so
1724 * that the buffer is NOT cancelled.
1726 ASSERT(!(flags
& XFS_BLF_CANCEL
));
1731 * We've go a match, so return 1 so that the recovery of this buffer
1732 * is cancelled. If this buffer is actually a buffer cancel log
1733 * item, then decrement the refcount on the one in the table and
1734 * remove it if this is the last reference.
1736 if (flags
& XFS_BLF_CANCEL
) {
1737 if (--bcp
->bc_refcount
== 0) {
1738 list_del(&bcp
->bc_list
);
1746 * Perform recovery for a buffer full of inodes. In these buffers, the only
1747 * data which should be recovered is that which corresponds to the
1748 * di_next_unlinked pointers in the on disk inode structures. The rest of the
1749 * data for the inodes is always logged through the inodes themselves rather
1750 * than the inode buffer and is recovered in xlog_recover_inode_pass2().
1752 * The only time when buffers full of inodes are fully recovered is when the
1753 * buffer is full of newly allocated inodes. In this case the buffer will
1754 * not be marked as an inode buffer and so will be sent to
1755 * xlog_recover_do_reg_buffer() below during recovery.
1758 xlog_recover_do_inode_buffer(
1759 struct xfs_mount
*mp
,
1760 xlog_recover_item_t
*item
,
1762 xfs_buf_log_format_t
*buf_f
)
1768 int reg_buf_offset
= 0;
1769 int reg_buf_bytes
= 0;
1770 int next_unlinked_offset
;
1772 xfs_agino_t
*logged_nextp
;
1773 xfs_agino_t
*buffer_nextp
;
1775 trace_xfs_log_recover_buf_inode_buf(mp
->m_log
, buf_f
);
1777 inodes_per_buf
= XFS_BUF_COUNT(bp
) >> mp
->m_sb
.sb_inodelog
;
1778 for (i
= 0; i
< inodes_per_buf
; i
++) {
1779 next_unlinked_offset
= (i
* mp
->m_sb
.sb_inodesize
) +
1780 offsetof(xfs_dinode_t
, di_next_unlinked
);
1782 while (next_unlinked_offset
>=
1783 (reg_buf_offset
+ reg_buf_bytes
)) {
1785 * The next di_next_unlinked field is beyond
1786 * the current logged region. Find the next
1787 * logged region that contains or is beyond
1788 * the current di_next_unlinked field.
1791 bit
= xfs_next_bit(buf_f
->blf_data_map
,
1792 buf_f
->blf_map_size
, bit
);
1795 * If there are no more logged regions in the
1796 * buffer, then we're done.
1801 nbits
= xfs_contig_bits(buf_f
->blf_data_map
,
1802 buf_f
->blf_map_size
, bit
);
1804 reg_buf_offset
= bit
<< XFS_BLF_SHIFT
;
1805 reg_buf_bytes
= nbits
<< XFS_BLF_SHIFT
;
1810 * If the current logged region starts after the current
1811 * di_next_unlinked field, then move on to the next
1812 * di_next_unlinked field.
1814 if (next_unlinked_offset
< reg_buf_offset
)
1817 ASSERT(item
->ri_buf
[item_index
].i_addr
!= NULL
);
1818 ASSERT((item
->ri_buf
[item_index
].i_len
% XFS_BLF_CHUNK
) == 0);
1819 ASSERT((reg_buf_offset
+ reg_buf_bytes
) <= XFS_BUF_COUNT(bp
));
1822 * The current logged region contains a copy of the
1823 * current di_next_unlinked field. Extract its value
1824 * and copy it to the buffer copy.
1826 logged_nextp
= item
->ri_buf
[item_index
].i_addr
+
1827 next_unlinked_offset
- reg_buf_offset
;
1828 if (unlikely(*logged_nextp
== 0)) {
1830 "Bad inode buffer log record (ptr = 0x%p, bp = 0x%p). "
1831 "Trying to replay bad (0) inode di_next_unlinked field.",
1833 XFS_ERROR_REPORT("xlog_recover_do_inode_buf",
1834 XFS_ERRLEVEL_LOW
, mp
);
1835 return XFS_ERROR(EFSCORRUPTED
);
1838 buffer_nextp
= (xfs_agino_t
*)xfs_buf_offset(bp
,
1839 next_unlinked_offset
);
1840 *buffer_nextp
= *logged_nextp
;
1847 * Perform a 'normal' buffer recovery. Each logged region of the
1848 * buffer should be copied over the corresponding region in the
1849 * given buffer. The bitmap in the buf log format structure indicates
1850 * where to place the logged data.
1853 xlog_recover_do_reg_buffer(
1854 struct xfs_mount
*mp
,
1855 xlog_recover_item_t
*item
,
1857 xfs_buf_log_format_t
*buf_f
)
1864 trace_xfs_log_recover_buf_reg_buf(mp
->m_log
, buf_f
);
1867 i
= 1; /* 0 is the buf format structure */
1869 bit
= xfs_next_bit(buf_f
->blf_data_map
,
1870 buf_f
->blf_map_size
, bit
);
1873 nbits
= xfs_contig_bits(buf_f
->blf_data_map
,
1874 buf_f
->blf_map_size
, bit
);
1876 ASSERT(item
->ri_buf
[i
].i_addr
!= NULL
);
1877 ASSERT(item
->ri_buf
[i
].i_len
% XFS_BLF_CHUNK
== 0);
1878 ASSERT(XFS_BUF_COUNT(bp
) >=
1879 ((uint
)bit
<< XFS_BLF_SHIFT
)+(nbits
<<XFS_BLF_SHIFT
));
1882 * Do a sanity check if this is a dquot buffer. Just checking
1883 * the first dquot in the buffer should do. XXXThis is
1884 * probably a good thing to do for other buf types also.
1887 if (buf_f
->blf_flags
&
1888 (XFS_BLF_UDQUOT_BUF
|XFS_BLF_PDQUOT_BUF
|XFS_BLF_GDQUOT_BUF
)) {
1889 if (item
->ri_buf
[i
].i_addr
== NULL
) {
1891 "XFS: NULL dquot in %s.", __func__
);
1894 if (item
->ri_buf
[i
].i_len
< sizeof(xfs_disk_dquot_t
)) {
1896 "XFS: dquot too small (%d) in %s.",
1897 item
->ri_buf
[i
].i_len
, __func__
);
1900 error
= xfs_qm_dqcheck(mp
, item
->ri_buf
[i
].i_addr
,
1901 -1, 0, XFS_QMOPT_DOWARN
,
1902 "dquot_buf_recover");
1907 memcpy(xfs_buf_offset(bp
,
1908 (uint
)bit
<< XFS_BLF_SHIFT
), /* dest */
1909 item
->ri_buf
[i
].i_addr
, /* source */
1910 nbits
<<XFS_BLF_SHIFT
); /* length */
1916 /* Shouldn't be any more regions */
1917 ASSERT(i
== item
->ri_total
);
1921 * Do some primitive error checking on ondisk dquot data structures.
1925 struct xfs_mount
*mp
,
1926 xfs_disk_dquot_t
*ddq
,
1928 uint type
, /* used only when IO_dorepair is true */
1932 xfs_dqblk_t
*d
= (xfs_dqblk_t
*)ddq
;
1936 * We can encounter an uninitialized dquot buffer for 2 reasons:
1937 * 1. If we crash while deleting the quotainode(s), and those blks got
1938 * used for user data. This is because we take the path of regular
1939 * file deletion; however, the size field of quotainodes is never
1940 * updated, so all the tricks that we play in itruncate_finish
1941 * don't quite matter.
1943 * 2. We don't play the quota buffers when there's a quotaoff logitem.
1944 * But the allocation will be replayed so we'll end up with an
1945 * uninitialized quota block.
1947 * This is all fine; things are still consistent, and we haven't lost
1948 * any quota information. Just don't complain about bad dquot blks.
1950 if (ddq
->d_magic
!= cpu_to_be16(XFS_DQUOT_MAGIC
)) {
1951 if (flags
& XFS_QMOPT_DOWARN
)
1953 "%s : XFS dquot ID 0x%x, magic 0x%x != 0x%x",
1954 str
, id
, be16_to_cpu(ddq
->d_magic
), XFS_DQUOT_MAGIC
);
1957 if (ddq
->d_version
!= XFS_DQUOT_VERSION
) {
1958 if (flags
& XFS_QMOPT_DOWARN
)
1960 "%s : XFS dquot ID 0x%x, version 0x%x != 0x%x",
1961 str
, id
, ddq
->d_version
, XFS_DQUOT_VERSION
);
1965 if (ddq
->d_flags
!= XFS_DQ_USER
&&
1966 ddq
->d_flags
!= XFS_DQ_PROJ
&&
1967 ddq
->d_flags
!= XFS_DQ_GROUP
) {
1968 if (flags
& XFS_QMOPT_DOWARN
)
1970 "%s : XFS dquot ID 0x%x, unknown flags 0x%x",
1971 str
, id
, ddq
->d_flags
);
1975 if (id
!= -1 && id
!= be32_to_cpu(ddq
->d_id
)) {
1976 if (flags
& XFS_QMOPT_DOWARN
)
1978 "%s : ondisk-dquot 0x%p, ID mismatch: "
1979 "0x%x expected, found id 0x%x",
1980 str
, ddq
, id
, be32_to_cpu(ddq
->d_id
));
1984 if (!errs
&& ddq
->d_id
) {
1985 if (ddq
->d_blk_softlimit
&&
1986 be64_to_cpu(ddq
->d_bcount
) >=
1987 be64_to_cpu(ddq
->d_blk_softlimit
)) {
1988 if (!ddq
->d_btimer
) {
1989 if (flags
& XFS_QMOPT_DOWARN
)
1991 "%s : Dquot ID 0x%x (0x%p) BLK TIMER NOT STARTED",
1992 str
, (int)be32_to_cpu(ddq
->d_id
), ddq
);
1996 if (ddq
->d_ino_softlimit
&&
1997 be64_to_cpu(ddq
->d_icount
) >=
1998 be64_to_cpu(ddq
->d_ino_softlimit
)) {
1999 if (!ddq
->d_itimer
) {
2000 if (flags
& XFS_QMOPT_DOWARN
)
2002 "%s : Dquot ID 0x%x (0x%p) INODE TIMER NOT STARTED",
2003 str
, (int)be32_to_cpu(ddq
->d_id
), ddq
);
2007 if (ddq
->d_rtb_softlimit
&&
2008 be64_to_cpu(ddq
->d_rtbcount
) >=
2009 be64_to_cpu(ddq
->d_rtb_softlimit
)) {
2010 if (!ddq
->d_rtbtimer
) {
2011 if (flags
& XFS_QMOPT_DOWARN
)
2013 "%s : Dquot ID 0x%x (0x%p) RTBLK TIMER NOT STARTED",
2014 str
, (int)be32_to_cpu(ddq
->d_id
), ddq
);
2020 if (!errs
|| !(flags
& XFS_QMOPT_DQREPAIR
))
2023 if (flags
& XFS_QMOPT_DOWARN
)
2024 xfs_notice(mp
, "Re-initializing dquot ID 0x%x", id
);
2027 * Typically, a repair is only requested by quotacheck.
2030 ASSERT(flags
& XFS_QMOPT_DQREPAIR
);
2031 memset(d
, 0, sizeof(xfs_dqblk_t
));
2033 d
->dd_diskdq
.d_magic
= cpu_to_be16(XFS_DQUOT_MAGIC
);
2034 d
->dd_diskdq
.d_version
= XFS_DQUOT_VERSION
;
2035 d
->dd_diskdq
.d_flags
= type
;
2036 d
->dd_diskdq
.d_id
= cpu_to_be32(id
);
2042 * Perform a dquot buffer recovery.
2043 * Simple algorithm: if we have found a QUOTAOFF logitem of the same type
2044 * (ie. USR or GRP), then just toss this buffer away; don't recover it.
2045 * Else, treat it as a regular buffer and do recovery.
2048 xlog_recover_do_dquot_buffer(
2051 xlog_recover_item_t
*item
,
2053 xfs_buf_log_format_t
*buf_f
)
2057 trace_xfs_log_recover_buf_dquot_buf(log
, buf_f
);
2060 * Filesystems are required to send in quota flags at mount time.
2062 if (mp
->m_qflags
== 0) {
2067 if (buf_f
->blf_flags
& XFS_BLF_UDQUOT_BUF
)
2068 type
|= XFS_DQ_USER
;
2069 if (buf_f
->blf_flags
& XFS_BLF_PDQUOT_BUF
)
2070 type
|= XFS_DQ_PROJ
;
2071 if (buf_f
->blf_flags
& XFS_BLF_GDQUOT_BUF
)
2072 type
|= XFS_DQ_GROUP
;
2074 * This type of quotas was turned off, so ignore this buffer
2076 if (log
->l_quotaoffs_flag
& type
)
2079 xlog_recover_do_reg_buffer(mp
, item
, bp
, buf_f
);
2083 * This routine replays a modification made to a buffer at runtime.
2084 * There are actually two types of buffer, regular and inode, which
2085 * are handled differently. Inode buffers are handled differently
2086 * in that we only recover a specific set of data from them, namely
2087 * the inode di_next_unlinked fields. This is because all other inode
2088 * data is actually logged via inode records and any data we replay
2089 * here which overlaps that may be stale.
2091 * When meta-data buffers are freed at run time we log a buffer item
2092 * with the XFS_BLF_CANCEL bit set to indicate that previous copies
2093 * of the buffer in the log should not be replayed at recovery time.
2094 * This is so that if the blocks covered by the buffer are reused for
2095 * file data before we crash we don't end up replaying old, freed
2096 * meta-data into a user's file.
2098 * To handle the cancellation of buffer log items, we make two passes
2099 * over the log during recovery. During the first we build a table of
2100 * those buffers which have been cancelled, and during the second we
2101 * only replay those buffers which do not have corresponding cancel
2102 * records in the table. See xlog_recover_do_buffer_pass[1,2] above
2103 * for more details on the implementation of the table of cancel records.
2106 xlog_recover_buffer_pass2(
2108 xlog_recover_item_t
*item
)
2110 xfs_buf_log_format_t
*buf_f
= item
->ri_buf
[0].i_addr
;
2111 xfs_mount_t
*mp
= log
->l_mp
;
2117 * In this pass we only want to recover all the buffers which have
2118 * not been cancelled and are not cancellation buffers themselves.
2120 if (xlog_check_buffer_cancelled(log
, buf_f
->blf_blkno
,
2121 buf_f
->blf_len
, buf_f
->blf_flags
)) {
2122 trace_xfs_log_recover_buf_cancel(log
, buf_f
);
2126 trace_xfs_log_recover_buf_recover(log
, buf_f
);
2128 buf_flags
= XBF_LOCK
;
2129 if (!(buf_f
->blf_flags
& XFS_BLF_INODE_BUF
))
2130 buf_flags
|= XBF_MAPPED
;
2132 bp
= xfs_buf_read(mp
->m_ddev_targp
, buf_f
->blf_blkno
, buf_f
->blf_len
,
2135 return XFS_ERROR(ENOMEM
);
2136 error
= bp
->b_error
;
2138 xfs_ioerror_alert("xlog_recover_do..(read#1)", mp
,
2139 bp
, buf_f
->blf_blkno
);
2144 if (buf_f
->blf_flags
& XFS_BLF_INODE_BUF
) {
2145 error
= xlog_recover_do_inode_buffer(mp
, item
, bp
, buf_f
);
2146 } else if (buf_f
->blf_flags
&
2147 (XFS_BLF_UDQUOT_BUF
|XFS_BLF_PDQUOT_BUF
|XFS_BLF_GDQUOT_BUF
)) {
2148 xlog_recover_do_dquot_buffer(mp
, log
, item
, bp
, buf_f
);
2150 xlog_recover_do_reg_buffer(mp
, item
, bp
, buf_f
);
2153 return XFS_ERROR(error
);
2156 * Perform delayed write on the buffer. Asynchronous writes will be
2157 * slower when taking into account all the buffers to be flushed.
2159 * Also make sure that only inode buffers with good sizes stay in
2160 * the buffer cache. The kernel moves inodes in buffers of 1 block
2161 * or XFS_INODE_CLUSTER_SIZE bytes, whichever is bigger. The inode
2162 * buffers in the log can be a different size if the log was generated
2163 * by an older kernel using unclustered inode buffers or a newer kernel
2164 * running with a different inode cluster size. Regardless, if the
2165 * the inode buffer size isn't MAX(blocksize, XFS_INODE_CLUSTER_SIZE)
2166 * for *our* value of XFS_INODE_CLUSTER_SIZE, then we need to keep
2167 * the buffer out of the buffer cache so that the buffer won't
2168 * overlap with future reads of those inodes.
2170 if (XFS_DINODE_MAGIC
==
2171 be16_to_cpu(*((__be16
*)xfs_buf_offset(bp
, 0))) &&
2172 (XFS_BUF_COUNT(bp
) != MAX(log
->l_mp
->m_sb
.sb_blocksize
,
2173 (__uint32_t
)XFS_INODE_CLUSTER_SIZE(log
->l_mp
)))) {
2175 error
= xfs_bwrite(mp
, bp
);
2177 ASSERT(bp
->b_target
->bt_mount
== mp
);
2178 bp
->b_iodone
= xlog_recover_iodone
;
2179 xfs_bdwrite(mp
, bp
);
2186 xlog_recover_inode_pass2(
2188 xlog_recover_item_t
*item
)
2190 xfs_inode_log_format_t
*in_f
;
2191 xfs_mount_t
*mp
= log
->l_mp
;
2200 xfs_icdinode_t
*dicp
;
2203 if (item
->ri_buf
[0].i_len
== sizeof(xfs_inode_log_format_t
)) {
2204 in_f
= item
->ri_buf
[0].i_addr
;
2206 in_f
= kmem_alloc(sizeof(xfs_inode_log_format_t
), KM_SLEEP
);
2208 error
= xfs_inode_item_format_convert(&item
->ri_buf
[0], in_f
);
2214 * Inode buffers can be freed, look out for it,
2215 * and do not replay the inode.
2217 if (xlog_check_buffer_cancelled(log
, in_f
->ilf_blkno
,
2218 in_f
->ilf_len
, 0)) {
2220 trace_xfs_log_recover_inode_cancel(log
, in_f
);
2223 trace_xfs_log_recover_inode_recover(log
, in_f
);
2225 bp
= xfs_buf_read(mp
->m_ddev_targp
, in_f
->ilf_blkno
, in_f
->ilf_len
,
2231 error
= bp
->b_error
;
2233 xfs_ioerror_alert("xlog_recover_do..(read#2)", mp
,
2234 bp
, in_f
->ilf_blkno
);
2238 ASSERT(in_f
->ilf_fields
& XFS_ILOG_CORE
);
2239 dip
= (xfs_dinode_t
*)xfs_buf_offset(bp
, in_f
->ilf_boffset
);
2242 * Make sure the place we're flushing out to really looks
2245 if (unlikely(dip
->di_magic
!= cpu_to_be16(XFS_DINODE_MAGIC
))) {
2248 "%s: Bad inode magic number, dip = 0x%p, dino bp = 0x%p, ino = %Ld",
2249 __func__
, dip
, bp
, in_f
->ilf_ino
);
2250 XFS_ERROR_REPORT("xlog_recover_inode_pass2(1)",
2251 XFS_ERRLEVEL_LOW
, mp
);
2252 error
= EFSCORRUPTED
;
2255 dicp
= item
->ri_buf
[1].i_addr
;
2256 if (unlikely(dicp
->di_magic
!= XFS_DINODE_MAGIC
)) {
2259 "%s: Bad inode log record, rec ptr 0x%p, ino %Ld",
2260 __func__
, item
, in_f
->ilf_ino
);
2261 XFS_ERROR_REPORT("xlog_recover_inode_pass2(2)",
2262 XFS_ERRLEVEL_LOW
, mp
);
2263 error
= EFSCORRUPTED
;
2267 /* Skip replay when the on disk inode is newer than the log one */
2268 if (dicp
->di_flushiter
< be16_to_cpu(dip
->di_flushiter
)) {
2270 * Deal with the wrap case, DI_MAX_FLUSH is less
2271 * than smaller numbers
2273 if (be16_to_cpu(dip
->di_flushiter
) == DI_MAX_FLUSH
&&
2274 dicp
->di_flushiter
< (DI_MAX_FLUSH
>> 1)) {
2278 trace_xfs_log_recover_inode_skip(log
, in_f
);
2283 /* Take the opportunity to reset the flush iteration count */
2284 dicp
->di_flushiter
= 0;
2286 if (unlikely(S_ISREG(dicp
->di_mode
))) {
2287 if ((dicp
->di_format
!= XFS_DINODE_FMT_EXTENTS
) &&
2288 (dicp
->di_format
!= XFS_DINODE_FMT_BTREE
)) {
2289 XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(3)",
2290 XFS_ERRLEVEL_LOW
, mp
, dicp
);
2293 "%s: Bad regular inode log record, rec ptr 0x%p, "
2294 "ino ptr = 0x%p, ino bp = 0x%p, ino %Ld",
2295 __func__
, item
, dip
, bp
, in_f
->ilf_ino
);
2296 error
= EFSCORRUPTED
;
2299 } else if (unlikely(S_ISDIR(dicp
->di_mode
))) {
2300 if ((dicp
->di_format
!= XFS_DINODE_FMT_EXTENTS
) &&
2301 (dicp
->di_format
!= XFS_DINODE_FMT_BTREE
) &&
2302 (dicp
->di_format
!= XFS_DINODE_FMT_LOCAL
)) {
2303 XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(4)",
2304 XFS_ERRLEVEL_LOW
, mp
, dicp
);
2307 "%s: Bad dir inode log record, rec ptr 0x%p, "
2308 "ino ptr = 0x%p, ino bp = 0x%p, ino %Ld",
2309 __func__
, item
, dip
, bp
, in_f
->ilf_ino
);
2310 error
= EFSCORRUPTED
;
2314 if (unlikely(dicp
->di_nextents
+ dicp
->di_anextents
> dicp
->di_nblocks
)){
2315 XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(5)",
2316 XFS_ERRLEVEL_LOW
, mp
, dicp
);
2319 "%s: Bad inode log record, rec ptr 0x%p, dino ptr 0x%p, "
2320 "dino bp 0x%p, ino %Ld, total extents = %d, nblocks = %Ld",
2321 __func__
, item
, dip
, bp
, in_f
->ilf_ino
,
2322 dicp
->di_nextents
+ dicp
->di_anextents
,
2324 error
= EFSCORRUPTED
;
2327 if (unlikely(dicp
->di_forkoff
> mp
->m_sb
.sb_inodesize
)) {
2328 XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(6)",
2329 XFS_ERRLEVEL_LOW
, mp
, dicp
);
2332 "%s: Bad inode log record, rec ptr 0x%p, dino ptr 0x%p, "
2333 "dino bp 0x%p, ino %Ld, forkoff 0x%x", __func__
,
2334 item
, dip
, bp
, in_f
->ilf_ino
, dicp
->di_forkoff
);
2335 error
= EFSCORRUPTED
;
2338 if (unlikely(item
->ri_buf
[1].i_len
> sizeof(struct xfs_icdinode
))) {
2339 XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(7)",
2340 XFS_ERRLEVEL_LOW
, mp
, dicp
);
2343 "%s: Bad inode log record length %d, rec ptr 0x%p",
2344 __func__
, item
->ri_buf
[1].i_len
, item
);
2345 error
= EFSCORRUPTED
;
2349 /* The core is in in-core format */
2350 xfs_dinode_to_disk(dip
, item
->ri_buf
[1].i_addr
);
2352 /* the rest is in on-disk format */
2353 if (item
->ri_buf
[1].i_len
> sizeof(struct xfs_icdinode
)) {
2354 memcpy((xfs_caddr_t
) dip
+ sizeof(struct xfs_icdinode
),
2355 item
->ri_buf
[1].i_addr
+ sizeof(struct xfs_icdinode
),
2356 item
->ri_buf
[1].i_len
- sizeof(struct xfs_icdinode
));
2359 fields
= in_f
->ilf_fields
;
2360 switch (fields
& (XFS_ILOG_DEV
| XFS_ILOG_UUID
)) {
2362 xfs_dinode_put_rdev(dip
, in_f
->ilf_u
.ilfu_rdev
);
2365 memcpy(XFS_DFORK_DPTR(dip
),
2366 &in_f
->ilf_u
.ilfu_uuid
,
2371 if (in_f
->ilf_size
== 2)
2372 goto write_inode_buffer
;
2373 len
= item
->ri_buf
[2].i_len
;
2374 src
= item
->ri_buf
[2].i_addr
;
2375 ASSERT(in_f
->ilf_size
<= 4);
2376 ASSERT((in_f
->ilf_size
== 3) || (fields
& XFS_ILOG_AFORK
));
2377 ASSERT(!(fields
& XFS_ILOG_DFORK
) ||
2378 (len
== in_f
->ilf_dsize
));
2380 switch (fields
& XFS_ILOG_DFORK
) {
2381 case XFS_ILOG_DDATA
:
2383 memcpy(XFS_DFORK_DPTR(dip
), src
, len
);
2386 case XFS_ILOG_DBROOT
:
2387 xfs_bmbt_to_bmdr(mp
, (struct xfs_btree_block
*)src
, len
,
2388 (xfs_bmdr_block_t
*)XFS_DFORK_DPTR(dip
),
2389 XFS_DFORK_DSIZE(dip
, mp
));
2394 * There are no data fork flags set.
2396 ASSERT((fields
& XFS_ILOG_DFORK
) == 0);
2401 * If we logged any attribute data, recover it. There may or
2402 * may not have been any other non-core data logged in this
2405 if (in_f
->ilf_fields
& XFS_ILOG_AFORK
) {
2406 if (in_f
->ilf_fields
& XFS_ILOG_DFORK
) {
2411 len
= item
->ri_buf
[attr_index
].i_len
;
2412 src
= item
->ri_buf
[attr_index
].i_addr
;
2413 ASSERT(len
== in_f
->ilf_asize
);
2415 switch (in_f
->ilf_fields
& XFS_ILOG_AFORK
) {
2416 case XFS_ILOG_ADATA
:
2418 dest
= XFS_DFORK_APTR(dip
);
2419 ASSERT(len
<= XFS_DFORK_ASIZE(dip
, mp
));
2420 memcpy(dest
, src
, len
);
2423 case XFS_ILOG_ABROOT
:
2424 dest
= XFS_DFORK_APTR(dip
);
2425 xfs_bmbt_to_bmdr(mp
, (struct xfs_btree_block
*)src
,
2426 len
, (xfs_bmdr_block_t
*)dest
,
2427 XFS_DFORK_ASIZE(dip
, mp
));
2431 xfs_warn(log
->l_mp
, "%s: Invalid flag", __func__
);
2440 ASSERT(bp
->b_target
->bt_mount
== mp
);
2441 bp
->b_iodone
= xlog_recover_iodone
;
2442 xfs_bdwrite(mp
, bp
);
2446 return XFS_ERROR(error
);
2450 * Recover QUOTAOFF records. We simply make a note of it in the xlog_t
2451 * structure, so that we know not to do any dquot item or dquot buffer recovery,
2455 xlog_recover_quotaoff_pass1(
2457 xlog_recover_item_t
*item
)
2459 xfs_qoff_logformat_t
*qoff_f
= item
->ri_buf
[0].i_addr
;
2463 * The logitem format's flag tells us if this was user quotaoff,
2464 * group/project quotaoff or both.
2466 if (qoff_f
->qf_flags
& XFS_UQUOTA_ACCT
)
2467 log
->l_quotaoffs_flag
|= XFS_DQ_USER
;
2468 if (qoff_f
->qf_flags
& XFS_PQUOTA_ACCT
)
2469 log
->l_quotaoffs_flag
|= XFS_DQ_PROJ
;
2470 if (qoff_f
->qf_flags
& XFS_GQUOTA_ACCT
)
2471 log
->l_quotaoffs_flag
|= XFS_DQ_GROUP
;
2477 * Recover a dquot record
2480 xlog_recover_dquot_pass2(
2482 xlog_recover_item_t
*item
)
2484 xfs_mount_t
*mp
= log
->l_mp
;
2486 struct xfs_disk_dquot
*ddq
, *recddq
;
2488 xfs_dq_logformat_t
*dq_f
;
2493 * Filesystems are required to send in quota flags at mount time.
2495 if (mp
->m_qflags
== 0)
2498 recddq
= item
->ri_buf
[1].i_addr
;
2499 if (recddq
== NULL
) {
2500 xfs_alert(log
->l_mp
, "NULL dquot in %s.", __func__
);
2501 return XFS_ERROR(EIO
);
2503 if (item
->ri_buf
[1].i_len
< sizeof(xfs_disk_dquot_t
)) {
2504 xfs_alert(log
->l_mp
, "dquot too small (%d) in %s.",
2505 item
->ri_buf
[1].i_len
, __func__
);
2506 return XFS_ERROR(EIO
);
2510 * This type of quotas was turned off, so ignore this record.
2512 type
= recddq
->d_flags
& (XFS_DQ_USER
| XFS_DQ_PROJ
| XFS_DQ_GROUP
);
2514 if (log
->l_quotaoffs_flag
& type
)
2518 * At this point we know that quota was _not_ turned off.
2519 * Since the mount flags are not indicating to us otherwise, this
2520 * must mean that quota is on, and the dquot needs to be replayed.
2521 * Remember that we may not have fully recovered the superblock yet,
2522 * so we can't do the usual trick of looking at the SB quota bits.
2524 * The other possibility, of course, is that the quota subsystem was
2525 * removed since the last mount - ENOSYS.
2527 dq_f
= item
->ri_buf
[0].i_addr
;
2529 error
= xfs_qm_dqcheck(mp
, recddq
, dq_f
->qlf_id
, 0, XFS_QMOPT_DOWARN
,
2530 "xlog_recover_dquot_pass2 (log copy)");
2532 return XFS_ERROR(EIO
);
2533 ASSERT(dq_f
->qlf_len
== 1);
2535 error
= xfs_read_buf(mp
, mp
->m_ddev_targp
,
2537 XFS_FSB_TO_BB(mp
, dq_f
->qlf_len
),
2540 xfs_ioerror_alert("xlog_recover_do..(read#3)", mp
,
2541 bp
, dq_f
->qlf_blkno
);
2545 ddq
= (xfs_disk_dquot_t
*)xfs_buf_offset(bp
, dq_f
->qlf_boffset
);
2548 * At least the magic num portion should be on disk because this
2549 * was among a chunk of dquots created earlier, and we did some
2550 * minimal initialization then.
2552 error
= xfs_qm_dqcheck(mp
, ddq
, dq_f
->qlf_id
, 0, XFS_QMOPT_DOWARN
,
2553 "xlog_recover_dquot_pass2");
2556 return XFS_ERROR(EIO
);
2559 memcpy(ddq
, recddq
, item
->ri_buf
[1].i_len
);
2561 ASSERT(dq_f
->qlf_size
== 2);
2562 ASSERT(bp
->b_target
->bt_mount
== mp
);
2563 bp
->b_iodone
= xlog_recover_iodone
;
2564 xfs_bdwrite(mp
, bp
);
2570 * This routine is called to create an in-core extent free intent
2571 * item from the efi format structure which was logged on disk.
2572 * It allocates an in-core efi, copies the extents from the format
2573 * structure into it, and adds the efi to the AIL with the given
2577 xlog_recover_efi_pass2(
2579 xlog_recover_item_t
*item
,
2583 xfs_mount_t
*mp
= log
->l_mp
;
2584 xfs_efi_log_item_t
*efip
;
2585 xfs_efi_log_format_t
*efi_formatp
;
2587 efi_formatp
= item
->ri_buf
[0].i_addr
;
2589 efip
= xfs_efi_init(mp
, efi_formatp
->efi_nextents
);
2590 if ((error
= xfs_efi_copy_format(&(item
->ri_buf
[0]),
2591 &(efip
->efi_format
)))) {
2592 xfs_efi_item_free(efip
);
2595 atomic_set(&efip
->efi_next_extent
, efi_formatp
->efi_nextents
);
2597 spin_lock(&log
->l_ailp
->xa_lock
);
2599 * xfs_trans_ail_update() drops the AIL lock.
2601 xfs_trans_ail_update(log
->l_ailp
, &efip
->efi_item
, lsn
);
2607 * This routine is called when an efd format structure is found in
2608 * a committed transaction in the log. It's purpose is to cancel
2609 * the corresponding efi if it was still in the log. To do this
2610 * it searches the AIL for the efi with an id equal to that in the
2611 * efd format structure. If we find it, we remove the efi from the
2615 xlog_recover_efd_pass2(
2617 xlog_recover_item_t
*item
)
2619 xfs_efd_log_format_t
*efd_formatp
;
2620 xfs_efi_log_item_t
*efip
= NULL
;
2621 xfs_log_item_t
*lip
;
2623 struct xfs_ail_cursor cur
;
2624 struct xfs_ail
*ailp
= log
->l_ailp
;
2626 efd_formatp
= item
->ri_buf
[0].i_addr
;
2627 ASSERT((item
->ri_buf
[0].i_len
== (sizeof(xfs_efd_log_format_32_t
) +
2628 ((efd_formatp
->efd_nextents
- 1) * sizeof(xfs_extent_32_t
)))) ||
2629 (item
->ri_buf
[0].i_len
== (sizeof(xfs_efd_log_format_64_t
) +
2630 ((efd_formatp
->efd_nextents
- 1) * sizeof(xfs_extent_64_t
)))));
2631 efi_id
= efd_formatp
->efd_efi_id
;
2634 * Search for the efi with the id in the efd format structure
2637 spin_lock(&ailp
->xa_lock
);
2638 lip
= xfs_trans_ail_cursor_first(ailp
, &cur
, 0);
2639 while (lip
!= NULL
) {
2640 if (lip
->li_type
== XFS_LI_EFI
) {
2641 efip
= (xfs_efi_log_item_t
*)lip
;
2642 if (efip
->efi_format
.efi_id
== efi_id
) {
2644 * xfs_trans_ail_delete() drops the
2647 xfs_trans_ail_delete(ailp
, lip
);
2648 xfs_efi_item_free(efip
);
2649 spin_lock(&ailp
->xa_lock
);
2653 lip
= xfs_trans_ail_cursor_next(ailp
, &cur
);
2655 xfs_trans_ail_cursor_done(ailp
, &cur
);
2656 spin_unlock(&ailp
->xa_lock
);
2662 * Free up any resources allocated by the transaction
2664 * Remember that EFIs, EFDs, and IUNLINKs are handled later.
2667 xlog_recover_free_trans(
2668 struct xlog_recover
*trans
)
2670 xlog_recover_item_t
*item
, *n
;
2673 list_for_each_entry_safe(item
, n
, &trans
->r_itemq
, ri_list
) {
2674 /* Free the regions in the item. */
2675 list_del(&item
->ri_list
);
2676 for (i
= 0; i
< item
->ri_cnt
; i
++)
2677 kmem_free(item
->ri_buf
[i
].i_addr
);
2678 /* Free the item itself */
2679 kmem_free(item
->ri_buf
);
2682 /* Free the transaction recover structure */
2687 xlog_recover_commit_pass1(
2689 struct xlog_recover
*trans
,
2690 xlog_recover_item_t
*item
)
2692 trace_xfs_log_recover_item_recover(log
, trans
, item
, XLOG_RECOVER_PASS1
);
2694 switch (ITEM_TYPE(item
)) {
2696 return xlog_recover_buffer_pass1(log
, item
);
2697 case XFS_LI_QUOTAOFF
:
2698 return xlog_recover_quotaoff_pass1(log
, item
);
2703 /* nothing to do in pass 1 */
2706 xfs_warn(log
->l_mp
, "%s: invalid item type (%d)",
2707 __func__
, ITEM_TYPE(item
));
2709 return XFS_ERROR(EIO
);
2714 xlog_recover_commit_pass2(
2716 struct xlog_recover
*trans
,
2717 xlog_recover_item_t
*item
)
2719 trace_xfs_log_recover_item_recover(log
, trans
, item
, XLOG_RECOVER_PASS2
);
2721 switch (ITEM_TYPE(item
)) {
2723 return xlog_recover_buffer_pass2(log
, item
);
2725 return xlog_recover_inode_pass2(log
, item
);
2727 return xlog_recover_efi_pass2(log
, item
, trans
->r_lsn
);
2729 return xlog_recover_efd_pass2(log
, item
);
2731 return xlog_recover_dquot_pass2(log
, item
);
2732 case XFS_LI_QUOTAOFF
:
2733 /* nothing to do in pass2 */
2736 xfs_warn(log
->l_mp
, "%s: invalid item type (%d)",
2737 __func__
, ITEM_TYPE(item
));
2739 return XFS_ERROR(EIO
);
2744 * Perform the transaction.
2746 * If the transaction modifies a buffer or inode, do it now. Otherwise,
2747 * EFIs and EFDs get queued up by adding entries into the AIL for them.
2750 xlog_recover_commit_trans(
2752 struct xlog_recover
*trans
,
2756 xlog_recover_item_t
*item
;
2758 hlist_del(&trans
->r_list
);
2760 error
= xlog_recover_reorder_trans(log
, trans
, pass
);
2764 list_for_each_entry(item
, &trans
->r_itemq
, ri_list
) {
2765 if (pass
== XLOG_RECOVER_PASS1
)
2766 error
= xlog_recover_commit_pass1(log
, trans
, item
);
2768 error
= xlog_recover_commit_pass2(log
, trans
, item
);
2773 xlog_recover_free_trans(trans
);
2778 xlog_recover_unmount_trans(
2780 xlog_recover_t
*trans
)
2782 /* Do nothing now */
2783 xfs_warn(log
->l_mp
, "%s: Unmount LR", __func__
);
2788 * There are two valid states of the r_state field. 0 indicates that the
2789 * transaction structure is in a normal state. We have either seen the
2790 * start of the transaction or the last operation we added was not a partial
2791 * operation. If the last operation we added to the transaction was a
2792 * partial operation, we need to mark r_state with XLOG_WAS_CONT_TRANS.
2794 * NOTE: skip LRs with 0 data length.
2797 xlog_recover_process_data(
2799 struct hlist_head rhash
[],
2800 xlog_rec_header_t
*rhead
,
2806 xlog_op_header_t
*ohead
;
2807 xlog_recover_t
*trans
;
2813 lp
= dp
+ be32_to_cpu(rhead
->h_len
);
2814 num_logops
= be32_to_cpu(rhead
->h_num_logops
);
2816 /* check the log format matches our own - else we can't recover */
2817 if (xlog_header_check_recover(log
->l_mp
, rhead
))
2818 return (XFS_ERROR(EIO
));
2820 while ((dp
< lp
) && num_logops
) {
2821 ASSERT(dp
+ sizeof(xlog_op_header_t
) <= lp
);
2822 ohead
= (xlog_op_header_t
*)dp
;
2823 dp
+= sizeof(xlog_op_header_t
);
2824 if (ohead
->oh_clientid
!= XFS_TRANSACTION
&&
2825 ohead
->oh_clientid
!= XFS_LOG
) {
2826 xfs_warn(log
->l_mp
, "%s: bad clientid 0x%x",
2827 __func__
, ohead
->oh_clientid
);
2829 return (XFS_ERROR(EIO
));
2831 tid
= be32_to_cpu(ohead
->oh_tid
);
2832 hash
= XLOG_RHASH(tid
);
2833 trans
= xlog_recover_find_tid(&rhash
[hash
], tid
);
2834 if (trans
== NULL
) { /* not found; add new tid */
2835 if (ohead
->oh_flags
& XLOG_START_TRANS
)
2836 xlog_recover_new_tid(&rhash
[hash
], tid
,
2837 be64_to_cpu(rhead
->h_lsn
));
2839 if (dp
+ be32_to_cpu(ohead
->oh_len
) > lp
) {
2840 xfs_warn(log
->l_mp
, "%s: bad length 0x%x",
2841 __func__
, be32_to_cpu(ohead
->oh_len
));
2843 return (XFS_ERROR(EIO
));
2845 flags
= ohead
->oh_flags
& ~XLOG_END_TRANS
;
2846 if (flags
& XLOG_WAS_CONT_TRANS
)
2847 flags
&= ~XLOG_CONTINUE_TRANS
;
2849 case XLOG_COMMIT_TRANS
:
2850 error
= xlog_recover_commit_trans(log
,
2853 case XLOG_UNMOUNT_TRANS
:
2854 error
= xlog_recover_unmount_trans(log
, trans
);
2856 case XLOG_WAS_CONT_TRANS
:
2857 error
= xlog_recover_add_to_cont_trans(log
,
2859 be32_to_cpu(ohead
->oh_len
));
2861 case XLOG_START_TRANS
:
2862 xfs_warn(log
->l_mp
, "%s: bad transaction",
2865 error
= XFS_ERROR(EIO
);
2868 case XLOG_CONTINUE_TRANS
:
2869 error
= xlog_recover_add_to_trans(log
, trans
,
2870 dp
, be32_to_cpu(ohead
->oh_len
));
2873 xfs_warn(log
->l_mp
, "%s: bad flag 0x%x",
2876 error
= XFS_ERROR(EIO
);
2882 dp
+= be32_to_cpu(ohead
->oh_len
);
2889 * Process an extent free intent item that was recovered from
2890 * the log. We need to free the extents that it describes.
2893 xlog_recover_process_efi(
2895 xfs_efi_log_item_t
*efip
)
2897 xfs_efd_log_item_t
*efdp
;
2902 xfs_fsblock_t startblock_fsb
;
2904 ASSERT(!test_bit(XFS_EFI_RECOVERED
, &efip
->efi_flags
));
2907 * First check the validity of the extents described by the
2908 * EFI. If any are bad, then assume that all are bad and
2909 * just toss the EFI.
2911 for (i
= 0; i
< efip
->efi_format
.efi_nextents
; i
++) {
2912 extp
= &(efip
->efi_format
.efi_extents
[i
]);
2913 startblock_fsb
= XFS_BB_TO_FSB(mp
,
2914 XFS_FSB_TO_DADDR(mp
, extp
->ext_start
));
2915 if ((startblock_fsb
== 0) ||
2916 (extp
->ext_len
== 0) ||
2917 (startblock_fsb
>= mp
->m_sb
.sb_dblocks
) ||
2918 (extp
->ext_len
>= mp
->m_sb
.sb_agblocks
)) {
2920 * This will pull the EFI from the AIL and
2921 * free the memory associated with it.
2923 xfs_efi_release(efip
, efip
->efi_format
.efi_nextents
);
2924 return XFS_ERROR(EIO
);
2928 tp
= xfs_trans_alloc(mp
, 0);
2929 error
= xfs_trans_reserve(tp
, 0, XFS_ITRUNCATE_LOG_RES(mp
), 0, 0, 0);
2932 efdp
= xfs_trans_get_efd(tp
, efip
, efip
->efi_format
.efi_nextents
);
2934 for (i
= 0; i
< efip
->efi_format
.efi_nextents
; i
++) {
2935 extp
= &(efip
->efi_format
.efi_extents
[i
]);
2936 error
= xfs_free_extent(tp
, extp
->ext_start
, extp
->ext_len
);
2939 xfs_trans_log_efd_extent(tp
, efdp
, extp
->ext_start
,
2943 set_bit(XFS_EFI_RECOVERED
, &efip
->efi_flags
);
2944 error
= xfs_trans_commit(tp
, 0);
2948 xfs_trans_cancel(tp
, XFS_TRANS_ABORT
);
2953 * When this is called, all of the EFIs which did not have
2954 * corresponding EFDs should be in the AIL. What we do now
2955 * is free the extents associated with each one.
2957 * Since we process the EFIs in normal transactions, they
2958 * will be removed at some point after the commit. This prevents
2959 * us from just walking down the list processing each one.
2960 * We'll use a flag in the EFI to skip those that we've already
2961 * processed and use the AIL iteration mechanism's generation
2962 * count to try to speed this up at least a bit.
2964 * When we start, we know that the EFIs are the only things in
2965 * the AIL. As we process them, however, other items are added
2966 * to the AIL. Since everything added to the AIL must come after
2967 * everything already in the AIL, we stop processing as soon as
2968 * we see something other than an EFI in the AIL.
2971 xlog_recover_process_efis(
2974 xfs_log_item_t
*lip
;
2975 xfs_efi_log_item_t
*efip
;
2977 struct xfs_ail_cursor cur
;
2978 struct xfs_ail
*ailp
;
2981 spin_lock(&ailp
->xa_lock
);
2982 lip
= xfs_trans_ail_cursor_first(ailp
, &cur
, 0);
2983 while (lip
!= NULL
) {
2985 * We're done when we see something other than an EFI.
2986 * There should be no EFIs left in the AIL now.
2988 if (lip
->li_type
!= XFS_LI_EFI
) {
2990 for (; lip
; lip
= xfs_trans_ail_cursor_next(ailp
, &cur
))
2991 ASSERT(lip
->li_type
!= XFS_LI_EFI
);
2997 * Skip EFIs that we've already processed.
2999 efip
= (xfs_efi_log_item_t
*)lip
;
3000 if (test_bit(XFS_EFI_RECOVERED
, &efip
->efi_flags
)) {
3001 lip
= xfs_trans_ail_cursor_next(ailp
, &cur
);
3005 spin_unlock(&ailp
->xa_lock
);
3006 error
= xlog_recover_process_efi(log
->l_mp
, efip
);
3007 spin_lock(&ailp
->xa_lock
);
3010 lip
= xfs_trans_ail_cursor_next(ailp
, &cur
);
3013 xfs_trans_ail_cursor_done(ailp
, &cur
);
3014 spin_unlock(&ailp
->xa_lock
);
3019 * This routine performs a transaction to null out a bad inode pointer
3020 * in an agi unlinked inode hash bucket.
3023 xlog_recover_clear_agi_bucket(
3025 xfs_agnumber_t agno
,
3034 tp
= xfs_trans_alloc(mp
, XFS_TRANS_CLEAR_AGI_BUCKET
);
3035 error
= xfs_trans_reserve(tp
, 0, XFS_CLEAR_AGI_BUCKET_LOG_RES(mp
),
3040 error
= xfs_read_agi(mp
, tp
, agno
, &agibp
);
3044 agi
= XFS_BUF_TO_AGI(agibp
);
3045 agi
->agi_unlinked
[bucket
] = cpu_to_be32(NULLAGINO
);
3046 offset
= offsetof(xfs_agi_t
, agi_unlinked
) +
3047 (sizeof(xfs_agino_t
) * bucket
);
3048 xfs_trans_log_buf(tp
, agibp
, offset
,
3049 (offset
+ sizeof(xfs_agino_t
) - 1));
3051 error
= xfs_trans_commit(tp
, 0);
3057 xfs_trans_cancel(tp
, XFS_TRANS_ABORT
);
3059 xfs_warn(mp
, "%s: failed to clear agi %d. Continuing.", __func__
, agno
);
3064 xlog_recover_process_one_iunlink(
3065 struct xfs_mount
*mp
,
3066 xfs_agnumber_t agno
,
3070 struct xfs_buf
*ibp
;
3071 struct xfs_dinode
*dip
;
3072 struct xfs_inode
*ip
;
3076 ino
= XFS_AGINO_TO_INO(mp
, agno
, agino
);
3077 error
= xfs_iget(mp
, NULL
, ino
, 0, 0, &ip
);
3082 * Get the on disk inode to find the next inode in the bucket.
3084 error
= xfs_itobp(mp
, NULL
, ip
, &dip
, &ibp
, XBF_LOCK
);
3088 ASSERT(ip
->i_d
.di_nlink
== 0);
3089 ASSERT(ip
->i_d
.di_mode
!= 0);
3091 /* setup for the next pass */
3092 agino
= be32_to_cpu(dip
->di_next_unlinked
);
3096 * Prevent any DMAPI event from being sent when the reference on
3097 * the inode is dropped.
3099 ip
->i_d
.di_dmevmask
= 0;
3108 * We can't read in the inode this bucket points to, or this inode
3109 * is messed up. Just ditch this bucket of inodes. We will lose
3110 * some inodes and space, but at least we won't hang.
3112 * Call xlog_recover_clear_agi_bucket() to perform a transaction to
3113 * clear the inode pointer in the bucket.
3115 xlog_recover_clear_agi_bucket(mp
, agno
, bucket
);
3120 * xlog_iunlink_recover
3122 * This is called during recovery to process any inodes which
3123 * we unlinked but not freed when the system crashed. These
3124 * inodes will be on the lists in the AGI blocks. What we do
3125 * here is scan all the AGIs and fully truncate and free any
3126 * inodes found on the lists. Each inode is removed from the
3127 * lists when it has been fully truncated and is freed. The
3128 * freeing of the inode and its removal from the list must be
3132 xlog_recover_process_iunlinks(
3136 xfs_agnumber_t agno
;
3147 * Prevent any DMAPI event from being sent while in this function.
3149 mp_dmevmask
= mp
->m_dmevmask
;
3152 for (agno
= 0; agno
< mp
->m_sb
.sb_agcount
; agno
++) {
3154 * Find the agi for this ag.
3156 error
= xfs_read_agi(mp
, NULL
, agno
, &agibp
);
3159 * AGI is b0rked. Don't process it.
3161 * We should probably mark the filesystem as corrupt
3162 * after we've recovered all the ag's we can....
3166 agi
= XFS_BUF_TO_AGI(agibp
);
3168 for (bucket
= 0; bucket
< XFS_AGI_UNLINKED_BUCKETS
; bucket
++) {
3169 agino
= be32_to_cpu(agi
->agi_unlinked
[bucket
]);
3170 while (agino
!= NULLAGINO
) {
3172 * Release the agi buffer so that it can
3173 * be acquired in the normal course of the
3174 * transaction to truncate and free the inode.
3176 xfs_buf_relse(agibp
);
3178 agino
= xlog_recover_process_one_iunlink(mp
,
3179 agno
, agino
, bucket
);
3182 * Reacquire the agibuffer and continue around
3183 * the loop. This should never fail as we know
3184 * the buffer was good earlier on.
3186 error
= xfs_read_agi(mp
, NULL
, agno
, &agibp
);
3188 agi
= XFS_BUF_TO_AGI(agibp
);
3193 * Release the buffer for the current agi so we can
3194 * go on to the next one.
3196 xfs_buf_relse(agibp
);
3199 mp
->m_dmevmask
= mp_dmevmask
;
3205 xlog_pack_data_checksum(
3207 xlog_in_core_t
*iclog
,
3214 up
= (__be32
*)iclog
->ic_datap
;
3215 /* divide length by 4 to get # words */
3216 for (i
= 0; i
< (size
>> 2); i
++) {
3217 chksum
^= be32_to_cpu(*up
);
3220 iclog
->ic_header
.h_chksum
= cpu_to_be32(chksum
);
3223 #define xlog_pack_data_checksum(log, iclog, size)
3227 * Stamp cycle number in every block
3232 xlog_in_core_t
*iclog
,
3236 int size
= iclog
->ic_offset
+ roundoff
;
3240 xlog_pack_data_checksum(log
, iclog
, size
);
3242 cycle_lsn
= CYCLE_LSN_DISK(iclog
->ic_header
.h_lsn
);
3244 dp
= iclog
->ic_datap
;
3245 for (i
= 0; i
< BTOBB(size
) &&
3246 i
< (XLOG_HEADER_CYCLE_SIZE
/ BBSIZE
); i
++) {
3247 iclog
->ic_header
.h_cycle_data
[i
] = *(__be32
*)dp
;
3248 *(__be32
*)dp
= cycle_lsn
;
3252 if (xfs_sb_version_haslogv2(&log
->l_mp
->m_sb
)) {
3253 xlog_in_core_2_t
*xhdr
= iclog
->ic_data
;
3255 for ( ; i
< BTOBB(size
); i
++) {
3256 j
= i
/ (XLOG_HEADER_CYCLE_SIZE
/ BBSIZE
);
3257 k
= i
% (XLOG_HEADER_CYCLE_SIZE
/ BBSIZE
);
3258 xhdr
[j
].hic_xheader
.xh_cycle_data
[k
] = *(__be32
*)dp
;
3259 *(__be32
*)dp
= cycle_lsn
;
3263 for (i
= 1; i
< log
->l_iclog_heads
; i
++) {
3264 xhdr
[i
].hic_xheader
.xh_cycle
= cycle_lsn
;
3271 xlog_rec_header_t
*rhead
,
3277 for (i
= 0; i
< BTOBB(be32_to_cpu(rhead
->h_len
)) &&
3278 i
< (XLOG_HEADER_CYCLE_SIZE
/ BBSIZE
); i
++) {
3279 *(__be32
*)dp
= *(__be32
*)&rhead
->h_cycle_data
[i
];
3283 if (xfs_sb_version_haslogv2(&log
->l_mp
->m_sb
)) {
3284 xlog_in_core_2_t
*xhdr
= (xlog_in_core_2_t
*)rhead
;
3285 for ( ; i
< BTOBB(be32_to_cpu(rhead
->h_len
)); i
++) {
3286 j
= i
/ (XLOG_HEADER_CYCLE_SIZE
/ BBSIZE
);
3287 k
= i
% (XLOG_HEADER_CYCLE_SIZE
/ BBSIZE
);
3288 *(__be32
*)dp
= xhdr
[j
].hic_xheader
.xh_cycle_data
[k
];
3295 xlog_valid_rec_header(
3297 xlog_rec_header_t
*rhead
,
3302 if (unlikely(rhead
->h_magicno
!= cpu_to_be32(XLOG_HEADER_MAGIC_NUM
))) {
3303 XFS_ERROR_REPORT("xlog_valid_rec_header(1)",
3304 XFS_ERRLEVEL_LOW
, log
->l_mp
);
3305 return XFS_ERROR(EFSCORRUPTED
);
3308 (!rhead
->h_version
||
3309 (be32_to_cpu(rhead
->h_version
) & (~XLOG_VERSION_OKBITS
))))) {
3310 xfs_warn(log
->l_mp
, "%s: unrecognised log version (%d).",
3311 __func__
, be32_to_cpu(rhead
->h_version
));
3312 return XFS_ERROR(EIO
);
3315 /* LR body must have data or it wouldn't have been written */
3316 hlen
= be32_to_cpu(rhead
->h_len
);
3317 if (unlikely( hlen
<= 0 || hlen
> INT_MAX
)) {
3318 XFS_ERROR_REPORT("xlog_valid_rec_header(2)",
3319 XFS_ERRLEVEL_LOW
, log
->l_mp
);
3320 return XFS_ERROR(EFSCORRUPTED
);
3322 if (unlikely( blkno
> log
->l_logBBsize
|| blkno
> INT_MAX
)) {
3323 XFS_ERROR_REPORT("xlog_valid_rec_header(3)",
3324 XFS_ERRLEVEL_LOW
, log
->l_mp
);
3325 return XFS_ERROR(EFSCORRUPTED
);
3331 * Read the log from tail to head and process the log records found.
3332 * Handle the two cases where the tail and head are in the same cycle
3333 * and where the active portion of the log wraps around the end of
3334 * the physical log separately. The pass parameter is passed through
3335 * to the routines called to process the data and is not looked at
3339 xlog_do_recovery_pass(
3341 xfs_daddr_t head_blk
,
3342 xfs_daddr_t tail_blk
,
3345 xlog_rec_header_t
*rhead
;
3348 xfs_buf_t
*hbp
, *dbp
;
3349 int error
= 0, h_size
;
3350 int bblks
, split_bblks
;
3351 int hblks
, split_hblks
, wrapped_hblks
;
3352 struct hlist_head rhash
[XLOG_RHASH_SIZE
];
3354 ASSERT(head_blk
!= tail_blk
);
3357 * Read the header of the tail block and get the iclog buffer size from
3358 * h_size. Use this to tell how many sectors make up the log header.
3360 if (xfs_sb_version_haslogv2(&log
->l_mp
->m_sb
)) {
3362 * When using variable length iclogs, read first sector of
3363 * iclog header and extract the header size from it. Get a
3364 * new hbp that is the correct size.
3366 hbp
= xlog_get_bp(log
, 1);
3370 error
= xlog_bread(log
, tail_blk
, 1, hbp
, &offset
);
3374 rhead
= (xlog_rec_header_t
*)offset
;
3375 error
= xlog_valid_rec_header(log
, rhead
, tail_blk
);
3378 h_size
= be32_to_cpu(rhead
->h_size
);
3379 if ((be32_to_cpu(rhead
->h_version
) & XLOG_VERSION_2
) &&
3380 (h_size
> XLOG_HEADER_CYCLE_SIZE
)) {
3381 hblks
= h_size
/ XLOG_HEADER_CYCLE_SIZE
;
3382 if (h_size
% XLOG_HEADER_CYCLE_SIZE
)
3385 hbp
= xlog_get_bp(log
, hblks
);
3390 ASSERT(log
->l_sectBBsize
== 1);
3392 hbp
= xlog_get_bp(log
, 1);
3393 h_size
= XLOG_BIG_RECORD_BSIZE
;
3398 dbp
= xlog_get_bp(log
, BTOBB(h_size
));
3404 memset(rhash
, 0, sizeof(rhash
));
3405 if (tail_blk
<= head_blk
) {
3406 for (blk_no
= tail_blk
; blk_no
< head_blk
; ) {
3407 error
= xlog_bread(log
, blk_no
, hblks
, hbp
, &offset
);
3411 rhead
= (xlog_rec_header_t
*)offset
;
3412 error
= xlog_valid_rec_header(log
, rhead
, blk_no
);
3416 /* blocks in data section */
3417 bblks
= (int)BTOBB(be32_to_cpu(rhead
->h_len
));
3418 error
= xlog_bread(log
, blk_no
+ hblks
, bblks
, dbp
,
3423 xlog_unpack_data(rhead
, offset
, log
);
3424 if ((error
= xlog_recover_process_data(log
,
3425 rhash
, rhead
, offset
, pass
)))
3427 blk_no
+= bblks
+ hblks
;
3431 * Perform recovery around the end of the physical log.
3432 * When the head is not on the same cycle number as the tail,
3433 * we can't do a sequential recovery as above.
3436 while (blk_no
< log
->l_logBBsize
) {
3438 * Check for header wrapping around physical end-of-log
3440 offset
= hbp
->b_addr
;
3443 if (blk_no
+ hblks
<= log
->l_logBBsize
) {
3444 /* Read header in one read */
3445 error
= xlog_bread(log
, blk_no
, hblks
, hbp
,
3450 /* This LR is split across physical log end */
3451 if (blk_no
!= log
->l_logBBsize
) {
3452 /* some data before physical log end */
3453 ASSERT(blk_no
<= INT_MAX
);
3454 split_hblks
= log
->l_logBBsize
- (int)blk_no
;
3455 ASSERT(split_hblks
> 0);
3456 error
= xlog_bread(log
, blk_no
,
3464 * Note: this black magic still works with
3465 * large sector sizes (non-512) only because:
3466 * - we increased the buffer size originally
3467 * by 1 sector giving us enough extra space
3468 * for the second read;
3469 * - the log start is guaranteed to be sector
3471 * - we read the log end (LR header start)
3472 * _first_, then the log start (LR header end)
3473 * - order is important.
3475 wrapped_hblks
= hblks
- split_hblks
;
3476 error
= xlog_bread_offset(log
, 0,
3478 offset
+ BBTOB(split_hblks
));
3482 rhead
= (xlog_rec_header_t
*)offset
;
3483 error
= xlog_valid_rec_header(log
, rhead
,
3484 split_hblks
? blk_no
: 0);
3488 bblks
= (int)BTOBB(be32_to_cpu(rhead
->h_len
));
3491 /* Read in data for log record */
3492 if (blk_no
+ bblks
<= log
->l_logBBsize
) {
3493 error
= xlog_bread(log
, blk_no
, bblks
, dbp
,
3498 /* This log record is split across the
3499 * physical end of log */
3500 offset
= dbp
->b_addr
;
3502 if (blk_no
!= log
->l_logBBsize
) {
3503 /* some data is before the physical
3505 ASSERT(!wrapped_hblks
);
3506 ASSERT(blk_no
<= INT_MAX
);
3508 log
->l_logBBsize
- (int)blk_no
;
3509 ASSERT(split_bblks
> 0);
3510 error
= xlog_bread(log
, blk_no
,
3518 * Note: this black magic still works with
3519 * large sector sizes (non-512) only because:
3520 * - we increased the buffer size originally
3521 * by 1 sector giving us enough extra space
3522 * for the second read;
3523 * - the log start is guaranteed to be sector
3525 * - we read the log end (LR header start)
3526 * _first_, then the log start (LR header end)
3527 * - order is important.
3529 error
= xlog_bread_offset(log
, 0,
3530 bblks
- split_bblks
, hbp
,
3531 offset
+ BBTOB(split_bblks
));
3535 xlog_unpack_data(rhead
, offset
, log
);
3536 if ((error
= xlog_recover_process_data(log
, rhash
,
3537 rhead
, offset
, pass
)))
3542 ASSERT(blk_no
>= log
->l_logBBsize
);
3543 blk_no
-= log
->l_logBBsize
;
3545 /* read first part of physical log */
3546 while (blk_no
< head_blk
) {
3547 error
= xlog_bread(log
, blk_no
, hblks
, hbp
, &offset
);
3551 rhead
= (xlog_rec_header_t
*)offset
;
3552 error
= xlog_valid_rec_header(log
, rhead
, blk_no
);
3556 bblks
= (int)BTOBB(be32_to_cpu(rhead
->h_len
));
3557 error
= xlog_bread(log
, blk_no
+hblks
, bblks
, dbp
,
3562 xlog_unpack_data(rhead
, offset
, log
);
3563 if ((error
= xlog_recover_process_data(log
, rhash
,
3564 rhead
, offset
, pass
)))
3566 blk_no
+= bblks
+ hblks
;
3578 * Do the recovery of the log. We actually do this in two phases.
3579 * The two passes are necessary in order to implement the function
3580 * of cancelling a record written into the log. The first pass
3581 * determines those things which have been cancelled, and the
3582 * second pass replays log items normally except for those which
3583 * have been cancelled. The handling of the replay and cancellations
3584 * takes place in the log item type specific routines.
3586 * The table of items which have cancel records in the log is allocated
3587 * and freed at this level, since only here do we know when all of
3588 * the log recovery has been completed.
3591 xlog_do_log_recovery(
3593 xfs_daddr_t head_blk
,
3594 xfs_daddr_t tail_blk
)
3598 ASSERT(head_blk
!= tail_blk
);
3601 * First do a pass to find all of the cancelled buf log items.
3602 * Store them in the buf_cancel_table for use in the second pass.
3604 log
->l_buf_cancel_table
= kmem_zalloc(XLOG_BC_TABLE_SIZE
*
3605 sizeof(struct list_head
),
3607 for (i
= 0; i
< XLOG_BC_TABLE_SIZE
; i
++)
3608 INIT_LIST_HEAD(&log
->l_buf_cancel_table
[i
]);
3610 error
= xlog_do_recovery_pass(log
, head_blk
, tail_blk
,
3611 XLOG_RECOVER_PASS1
);
3613 kmem_free(log
->l_buf_cancel_table
);
3614 log
->l_buf_cancel_table
= NULL
;
3618 * Then do a second pass to actually recover the items in the log.
3619 * When it is complete free the table of buf cancel items.
3621 error
= xlog_do_recovery_pass(log
, head_blk
, tail_blk
,
3622 XLOG_RECOVER_PASS2
);
3627 for (i
= 0; i
< XLOG_BC_TABLE_SIZE
; i
++)
3628 ASSERT(list_empty(&log
->l_buf_cancel_table
[i
]));
3632 kmem_free(log
->l_buf_cancel_table
);
3633 log
->l_buf_cancel_table
= NULL
;
3639 * Do the actual recovery
3644 xfs_daddr_t head_blk
,
3645 xfs_daddr_t tail_blk
)
3652 * First replay the images in the log.
3654 error
= xlog_do_log_recovery(log
, head_blk
, tail_blk
);
3659 XFS_bflush(log
->l_mp
->m_ddev_targp
);
3662 * If IO errors happened during recovery, bail out.
3664 if (XFS_FORCED_SHUTDOWN(log
->l_mp
)) {
3669 * We now update the tail_lsn since much of the recovery has completed
3670 * and there may be space available to use. If there were no extent
3671 * or iunlinks, we can free up the entire log and set the tail_lsn to
3672 * be the last_sync_lsn. This was set in xlog_find_tail to be the
3673 * lsn of the last known good LR on disk. If there are extent frees
3674 * or iunlinks they will have some entries in the AIL; so we look at
3675 * the AIL to determine how to set the tail_lsn.
3677 xlog_assign_tail_lsn(log
->l_mp
);
3680 * Now that we've finished replaying all buffer and inode
3681 * updates, re-read in the superblock.
3683 bp
= xfs_getsb(log
->l_mp
, 0);
3685 ASSERT(!(XFS_BUF_ISWRITE(bp
)));
3686 ASSERT(!(XFS_BUF_ISDELAYWRITE(bp
)));
3688 XFS_BUF_UNASYNC(bp
);
3689 xfsbdstrat(log
->l_mp
, bp
);
3690 error
= xfs_buf_iowait(bp
);
3692 xfs_ioerror_alert("xlog_do_recover",
3693 log
->l_mp
, bp
, XFS_BUF_ADDR(bp
));
3699 /* Convert superblock from on-disk format */
3700 sbp
= &log
->l_mp
->m_sb
;
3701 xfs_sb_from_disk(sbp
, XFS_BUF_TO_SBP(bp
));
3702 ASSERT(sbp
->sb_magicnum
== XFS_SB_MAGIC
);
3703 ASSERT(xfs_sb_good_version(sbp
));
3706 /* We've re-read the superblock so re-initialize per-cpu counters */
3707 xfs_icsb_reinit_counters(log
->l_mp
);
3709 xlog_recover_check_summary(log
);
3711 /* Normal transactions can now occur */
3712 log
->l_flags
&= ~XLOG_ACTIVE_RECOVERY
;
3717 * Perform recovery and re-initialize some log variables in xlog_find_tail.
3719 * Return error or zero.
3725 xfs_daddr_t head_blk
, tail_blk
;
3728 /* find the tail of the log */
3729 if ((error
= xlog_find_tail(log
, &head_blk
, &tail_blk
)))
3732 if (tail_blk
!= head_blk
) {
3733 /* There used to be a comment here:
3735 * disallow recovery on read-only mounts. note -- mount
3736 * checks for ENOSPC and turns it into an intelligent
3738 * ...but this is no longer true. Now, unless you specify
3739 * NORECOVERY (in which case this function would never be
3740 * called), we just go ahead and recover. We do this all
3741 * under the vfs layer, so we can get away with it unless
3742 * the device itself is read-only, in which case we fail.
3744 if ((error
= xfs_dev_is_read_only(log
->l_mp
, "recovery"))) {
3748 xfs_notice(log
->l_mp
, "Starting recovery (logdev: %s)",
3749 log
->l_mp
->m_logname
? log
->l_mp
->m_logname
3752 error
= xlog_do_recover(log
, head_blk
, tail_blk
);
3753 log
->l_flags
|= XLOG_RECOVERY_NEEDED
;
3759 * In the first part of recovery we replay inodes and buffers and build
3760 * up the list of extent free items which need to be processed. Here
3761 * we process the extent free items and clean up the on disk unlinked
3762 * inode lists. This is separated from the first part of recovery so
3763 * that the root and real-time bitmap inodes can be read in from disk in
3764 * between the two stages. This is necessary so that we can free space
3765 * in the real-time portion of the file system.
3768 xlog_recover_finish(
3772 * Now we're ready to do the transactions needed for the
3773 * rest of recovery. Start with completing all the extent
3774 * free intent records and then process the unlinked inode
3775 * lists. At this point, we essentially run in normal mode
3776 * except that we're still performing recovery actions
3777 * rather than accepting new requests.
3779 if (log
->l_flags
& XLOG_RECOVERY_NEEDED
) {
3781 error
= xlog_recover_process_efis(log
);
3783 xfs_alert(log
->l_mp
, "Failed to recover EFIs");
3787 * Sync the log to get all the EFIs out of the AIL.
3788 * This isn't absolutely necessary, but it helps in
3789 * case the unlink transactions would have problems
3790 * pushing the EFIs out of the way.
3792 xfs_log_force(log
->l_mp
, XFS_LOG_SYNC
);
3794 xlog_recover_process_iunlinks(log
);
3796 xlog_recover_check_summary(log
);
3798 xfs_notice(log
->l_mp
, "Ending recovery (logdev: %s)",
3799 log
->l_mp
->m_logname
? log
->l_mp
->m_logname
3801 log
->l_flags
&= ~XLOG_RECOVERY_NEEDED
;
3803 xfs_info(log
->l_mp
, "Ending clean mount");
3811 * Read all of the agf and agi counters and check that they
3812 * are consistent with the superblock counters.
3815 xlog_recover_check_summary(
3822 xfs_agnumber_t agno
;
3823 __uint64_t freeblks
;
3833 for (agno
= 0; agno
< mp
->m_sb
.sb_agcount
; agno
++) {
3834 error
= xfs_read_agf(mp
, NULL
, agno
, 0, &agfbp
);
3836 xfs_alert(mp
, "%s agf read failed agno %d error %d",
3837 __func__
, agno
, error
);
3839 agfp
= XFS_BUF_TO_AGF(agfbp
);
3840 freeblks
+= be32_to_cpu(agfp
->agf_freeblks
) +
3841 be32_to_cpu(agfp
->agf_flcount
);
3842 xfs_buf_relse(agfbp
);
3845 error
= xfs_read_agi(mp
, NULL
, agno
, &agibp
);
3847 xfs_alert(mp
, "%s agi read failed agno %d error %d",
3848 __func__
, agno
, error
);
3850 struct xfs_agi
*agi
= XFS_BUF_TO_AGI(agibp
);
3852 itotal
+= be32_to_cpu(agi
->agi_count
);
3853 ifree
+= be32_to_cpu(agi
->agi_freecount
);
3854 xfs_buf_relse(agibp
);