imx21: define and use MX21_IO_ADDRESS
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / fs / ubifs / journal.c
blobd321baeca68db65cb0bcce2fcd38ead5ee4e2e65
1 /*
2 * This file is part of UBIFS.
4 * Copyright (C) 2006-2008 Nokia Corporation.
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 as published by
8 * the Free Software Foundation.
10 * This program is distributed in the hope that it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 * more details.
15 * You should have received a copy of the GNU General Public License along with
16 * this program; if not, write to the Free Software Foundation, Inc., 51
17 * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
19 * Authors: Artem Bityutskiy (Битюцкий Артём)
20 * Adrian Hunter
24 * This file implements UBIFS journal.
26 * The journal consists of 2 parts - the log and bud LEBs. The log has fixed
27 * length and position, while a bud logical eraseblock is any LEB in the main
28 * area. Buds contain file system data - data nodes, inode nodes, etc. The log
29 * contains only references to buds and some other stuff like commit
30 * start node. The idea is that when we commit the journal, we do
31 * not copy the data, the buds just become indexed. Since after the commit the
32 * nodes in bud eraseblocks become leaf nodes of the file system index tree, we
33 * use term "bud". Analogy is obvious, bud eraseblocks contain nodes which will
34 * become leafs in the future.
36 * The journal is multi-headed because we want to write data to the journal as
37 * optimally as possible. It is nice to have nodes belonging to the same inode
38 * in one LEB, so we may write data owned by different inodes to different
39 * journal heads, although at present only one data head is used.
41 * For recovery reasons, the base head contains all inode nodes, all directory
42 * entry nodes and all truncate nodes. This means that the other heads contain
43 * only data nodes.
45 * Bud LEBs may be half-indexed. For example, if the bud was not full at the
46 * time of commit, the bud is retained to continue to be used in the journal,
47 * even though the "front" of the LEB is now indexed. In that case, the log
48 * reference contains the offset where the bud starts for the purposes of the
49 * journal.
51 * The journal size has to be limited, because the larger is the journal, the
52 * longer it takes to mount UBIFS (scanning the journal) and the more memory it
53 * takes (indexing in the TNC).
55 * All the journal write operations like 'ubifs_jnl_update()' here, which write
56 * multiple UBIFS nodes to the journal at one go, are atomic with respect to
57 * unclean reboots. Should the unclean reboot happen, the recovery code drops
58 * all the nodes.
61 #include "ubifs.h"
63 /**
64 * zero_ino_node_unused - zero out unused fields of an on-flash inode node.
65 * @ino: the inode to zero out
67 static inline void zero_ino_node_unused(struct ubifs_ino_node *ino)
69 memset(ino->padding1, 0, 4);
70 memset(ino->padding2, 0, 26);
73 /**
74 * zero_dent_node_unused - zero out unused fields of an on-flash directory
75 * entry node.
76 * @dent: the directory entry to zero out
78 static inline void zero_dent_node_unused(struct ubifs_dent_node *dent)
80 dent->padding1 = 0;
81 memset(dent->padding2, 0, 4);
84 /**
85 * zero_data_node_unused - zero out unused fields of an on-flash data node.
86 * @data: the data node to zero out
88 static inline void zero_data_node_unused(struct ubifs_data_node *data)
90 memset(data->padding, 0, 2);
93 /**
94 * zero_trun_node_unused - zero out unused fields of an on-flash truncation
95 * node.
96 * @trun: the truncation node to zero out
98 static inline void zero_trun_node_unused(struct ubifs_trun_node *trun)
100 memset(trun->padding, 0, 12);
104 * reserve_space - reserve space in the journal.
105 * @c: UBIFS file-system description object
106 * @jhead: journal head number
107 * @len: node length
109 * This function reserves space in journal head @head. If the reservation
110 * succeeded, the journal head stays locked and later has to be unlocked using
111 * 'release_head()'. 'write_node()' and 'write_head()' functions also unlock
112 * it. Returns zero in case of success, %-EAGAIN if commit has to be done, and
113 * other negative error codes in case of other failures.
115 static int reserve_space(struct ubifs_info *c, int jhead, int len)
117 int err = 0, err1, retries = 0, avail, lnum, offs, squeeze;
118 struct ubifs_wbuf *wbuf = &c->jheads[jhead].wbuf;
121 * Typically, the base head has smaller nodes written to it, so it is
122 * better to try to allocate space at the ends of eraseblocks. This is
123 * what the squeeze parameter does.
125 squeeze = (jhead == BASEHD);
126 again:
127 mutex_lock_nested(&wbuf->io_mutex, wbuf->jhead);
129 if (c->ro_media) {
130 err = -EROFS;
131 goto out_unlock;
134 avail = c->leb_size - wbuf->offs - wbuf->used;
135 if (wbuf->lnum != -1 && avail >= len)
136 return 0;
139 * Write buffer wasn't seek'ed or there is no enough space - look for an
140 * LEB with some empty space.
142 lnum = ubifs_find_free_space(c, len, &offs, squeeze);
143 if (lnum >= 0) {
144 /* Found an LEB, add it to the journal head */
145 err = ubifs_add_bud_to_log(c, jhead, lnum, offs);
146 if (err)
147 goto out_return;
148 /* A new bud was successfully allocated and added to the log */
149 goto out;
152 err = lnum;
153 if (err != -ENOSPC)
154 goto out_unlock;
157 * No free space, we have to run garbage collector to make
158 * some. But the write-buffer mutex has to be unlocked because
159 * GC also takes it.
161 dbg_jnl("no free space in jhead %s, run GC", dbg_jhead(jhead));
162 mutex_unlock(&wbuf->io_mutex);
164 lnum = ubifs_garbage_collect(c, 0);
165 if (lnum < 0) {
166 err = lnum;
167 if (err != -ENOSPC)
168 return err;
171 * GC could not make a free LEB. But someone else may
172 * have allocated new bud for this journal head,
173 * because we dropped @wbuf->io_mutex, so try once
174 * again.
176 dbg_jnl("GC couldn't make a free LEB for jhead %s",
177 dbg_jhead(jhead));
178 if (retries++ < 2) {
179 dbg_jnl("retry (%d)", retries);
180 goto again;
183 dbg_jnl("return -ENOSPC");
184 return err;
187 mutex_lock_nested(&wbuf->io_mutex, wbuf->jhead);
188 dbg_jnl("got LEB %d for jhead %s", lnum, dbg_jhead(jhead));
189 avail = c->leb_size - wbuf->offs - wbuf->used;
191 if (wbuf->lnum != -1 && avail >= len) {
193 * Someone else has switched the journal head and we have
194 * enough space now. This happens when more than one process is
195 * trying to write to the same journal head at the same time.
197 dbg_jnl("return LEB %d back, already have LEB %d:%d",
198 lnum, wbuf->lnum, wbuf->offs + wbuf->used);
199 err = ubifs_return_leb(c, lnum);
200 if (err)
201 goto out_unlock;
202 return 0;
205 err = ubifs_add_bud_to_log(c, jhead, lnum, 0);
206 if (err)
207 goto out_return;
208 offs = 0;
210 out:
211 err = ubifs_wbuf_seek_nolock(wbuf, lnum, offs, wbuf->dtype);
212 if (err)
213 goto out_unlock;
215 return 0;
217 out_unlock:
218 mutex_unlock(&wbuf->io_mutex);
219 return err;
221 out_return:
222 /* An error occurred and the LEB has to be returned to lprops */
223 ubifs_assert(err < 0);
224 err1 = ubifs_return_leb(c, lnum);
225 if (err1 && err == -EAGAIN)
227 * Return original error code only if it is not %-EAGAIN,
228 * which is not really an error. Otherwise, return the error
229 * code of 'ubifs_return_leb()'.
231 err = err1;
232 mutex_unlock(&wbuf->io_mutex);
233 return err;
237 * write_node - write node to a journal head.
238 * @c: UBIFS file-system description object
239 * @jhead: journal head
240 * @node: node to write
241 * @len: node length
242 * @lnum: LEB number written is returned here
243 * @offs: offset written is returned here
245 * This function writes a node to reserved space of journal head @jhead.
246 * Returns zero in case of success and a negative error code in case of
247 * failure.
249 static int write_node(struct ubifs_info *c, int jhead, void *node, int len,
250 int *lnum, int *offs)
252 struct ubifs_wbuf *wbuf = &c->jheads[jhead].wbuf;
254 ubifs_assert(jhead != GCHD);
256 *lnum = c->jheads[jhead].wbuf.lnum;
257 *offs = c->jheads[jhead].wbuf.offs + c->jheads[jhead].wbuf.used;
259 dbg_jnl("jhead %s, LEB %d:%d, len %d",
260 dbg_jhead(jhead), *lnum, *offs, len);
261 ubifs_prepare_node(c, node, len, 0);
263 return ubifs_wbuf_write_nolock(wbuf, node, len);
267 * write_head - write data to a journal head.
268 * @c: UBIFS file-system description object
269 * @jhead: journal head
270 * @buf: buffer to write
271 * @len: length to write
272 * @lnum: LEB number written is returned here
273 * @offs: offset written is returned here
274 * @sync: non-zero if the write-buffer has to by synchronized
276 * This function is the same as 'write_node()' but it does not assume the
277 * buffer it is writing is a node, so it does not prepare it (which means
278 * initializing common header and calculating CRC).
280 static int write_head(struct ubifs_info *c, int jhead, void *buf, int len,
281 int *lnum, int *offs, int sync)
283 int err;
284 struct ubifs_wbuf *wbuf = &c->jheads[jhead].wbuf;
286 ubifs_assert(jhead != GCHD);
288 *lnum = c->jheads[jhead].wbuf.lnum;
289 *offs = c->jheads[jhead].wbuf.offs + c->jheads[jhead].wbuf.used;
290 dbg_jnl("jhead %s, LEB %d:%d, len %d",
291 dbg_jhead(jhead), *lnum, *offs, len);
293 err = ubifs_wbuf_write_nolock(wbuf, buf, len);
294 if (err)
295 return err;
296 if (sync)
297 err = ubifs_wbuf_sync_nolock(wbuf);
298 return err;
302 * make_reservation - reserve journal space.
303 * @c: UBIFS file-system description object
304 * @jhead: journal head
305 * @len: how many bytes to reserve
307 * This function makes space reservation in journal head @jhead. The function
308 * takes the commit lock and locks the journal head, and the caller has to
309 * unlock the head and finish the reservation with 'finish_reservation()'.
310 * Returns zero in case of success and a negative error code in case of
311 * failure.
313 * Note, the journal head may be unlocked as soon as the data is written, while
314 * the commit lock has to be released after the data has been added to the
315 * TNC.
317 static int make_reservation(struct ubifs_info *c, int jhead, int len)
319 int err, cmt_retries = 0, nospc_retries = 0;
321 again:
322 down_read(&c->commit_sem);
323 err = reserve_space(c, jhead, len);
324 if (!err)
325 return 0;
326 up_read(&c->commit_sem);
328 if (err == -ENOSPC) {
330 * GC could not make any progress. We should try to commit
331 * once because it could make some dirty space and GC would
332 * make progress, so make the error -EAGAIN so that the below
333 * will commit and re-try.
335 if (nospc_retries++ < 2) {
336 dbg_jnl("no space, retry");
337 err = -EAGAIN;
341 * This means that the budgeting is incorrect. We always have
342 * to be able to write to the media, because all operations are
343 * budgeted. Deletions are not budgeted, though, but we reserve
344 * an extra LEB for them.
348 if (err != -EAGAIN)
349 goto out;
352 * -EAGAIN means that the journal is full or too large, or the above
353 * code wants to do one commit. Do this and re-try.
355 if (cmt_retries > 128) {
357 * This should not happen unless the journal size limitations
358 * are too tough.
360 ubifs_err("stuck in space allocation");
361 err = -ENOSPC;
362 goto out;
363 } else if (cmt_retries > 32)
364 ubifs_warn("too many space allocation re-tries (%d)",
365 cmt_retries);
367 dbg_jnl("-EAGAIN, commit and retry (retried %d times)",
368 cmt_retries);
369 cmt_retries += 1;
371 err = ubifs_run_commit(c);
372 if (err)
373 return err;
374 goto again;
376 out:
377 ubifs_err("cannot reserve %d bytes in jhead %d, error %d",
378 len, jhead, err);
379 if (err == -ENOSPC) {
380 /* This are some budgeting problems, print useful information */
381 down_write(&c->commit_sem);
382 spin_lock(&c->space_lock);
383 dbg_dump_stack();
384 dbg_dump_budg(c);
385 spin_unlock(&c->space_lock);
386 dbg_dump_lprops(c);
387 cmt_retries = dbg_check_lprops(c);
388 up_write(&c->commit_sem);
390 return err;
394 * release_head - release a journal head.
395 * @c: UBIFS file-system description object
396 * @jhead: journal head
398 * This function releases journal head @jhead which was locked by
399 * the 'make_reservation()' function. It has to be called after each successful
400 * 'make_reservation()' invocation.
402 static inline void release_head(struct ubifs_info *c, int jhead)
404 mutex_unlock(&c->jheads[jhead].wbuf.io_mutex);
408 * finish_reservation - finish a reservation.
409 * @c: UBIFS file-system description object
411 * This function finishes journal space reservation. It must be called after
412 * 'make_reservation()'.
414 static void finish_reservation(struct ubifs_info *c)
416 up_read(&c->commit_sem);
420 * get_dent_type - translate VFS inode mode to UBIFS directory entry type.
421 * @mode: inode mode
423 static int get_dent_type(int mode)
425 switch (mode & S_IFMT) {
426 case S_IFREG:
427 return UBIFS_ITYPE_REG;
428 case S_IFDIR:
429 return UBIFS_ITYPE_DIR;
430 case S_IFLNK:
431 return UBIFS_ITYPE_LNK;
432 case S_IFBLK:
433 return UBIFS_ITYPE_BLK;
434 case S_IFCHR:
435 return UBIFS_ITYPE_CHR;
436 case S_IFIFO:
437 return UBIFS_ITYPE_FIFO;
438 case S_IFSOCK:
439 return UBIFS_ITYPE_SOCK;
440 default:
441 BUG();
443 return 0;
447 * pack_inode - pack an inode node.
448 * @c: UBIFS file-system description object
449 * @ino: buffer in which to pack inode node
450 * @inode: inode to pack
451 * @last: indicates the last node of the group
453 static void pack_inode(struct ubifs_info *c, struct ubifs_ino_node *ino,
454 const struct inode *inode, int last)
456 int data_len = 0, last_reference = !inode->i_nlink;
457 struct ubifs_inode *ui = ubifs_inode(inode);
459 ino->ch.node_type = UBIFS_INO_NODE;
460 ino_key_init_flash(c, &ino->key, inode->i_ino);
461 ino->creat_sqnum = cpu_to_le64(ui->creat_sqnum);
462 ino->atime_sec = cpu_to_le64(inode->i_atime.tv_sec);
463 ino->atime_nsec = cpu_to_le32(inode->i_atime.tv_nsec);
464 ino->ctime_sec = cpu_to_le64(inode->i_ctime.tv_sec);
465 ino->ctime_nsec = cpu_to_le32(inode->i_ctime.tv_nsec);
466 ino->mtime_sec = cpu_to_le64(inode->i_mtime.tv_sec);
467 ino->mtime_nsec = cpu_to_le32(inode->i_mtime.tv_nsec);
468 ino->uid = cpu_to_le32(inode->i_uid);
469 ino->gid = cpu_to_le32(inode->i_gid);
470 ino->mode = cpu_to_le32(inode->i_mode);
471 ino->flags = cpu_to_le32(ui->flags);
472 ino->size = cpu_to_le64(ui->ui_size);
473 ino->nlink = cpu_to_le32(inode->i_nlink);
474 ino->compr_type = cpu_to_le16(ui->compr_type);
475 ino->data_len = cpu_to_le32(ui->data_len);
476 ino->xattr_cnt = cpu_to_le32(ui->xattr_cnt);
477 ino->xattr_size = cpu_to_le32(ui->xattr_size);
478 ino->xattr_names = cpu_to_le32(ui->xattr_names);
479 zero_ino_node_unused(ino);
482 * Drop the attached data if this is a deletion inode, the data is not
483 * needed anymore.
485 if (!last_reference) {
486 memcpy(ino->data, ui->data, ui->data_len);
487 data_len = ui->data_len;
490 ubifs_prep_grp_node(c, ino, UBIFS_INO_NODE_SZ + data_len, last);
494 * mark_inode_clean - mark UBIFS inode as clean.
495 * @c: UBIFS file-system description object
496 * @ui: UBIFS inode to mark as clean
498 * This helper function marks UBIFS inode @ui as clean by cleaning the
499 * @ui->dirty flag and releasing its budget. Note, VFS may still treat the
500 * inode as dirty and try to write it back, but 'ubifs_write_inode()' would
501 * just do nothing.
503 static void mark_inode_clean(struct ubifs_info *c, struct ubifs_inode *ui)
505 if (ui->dirty)
506 ubifs_release_dirty_inode_budget(c, ui);
507 ui->dirty = 0;
511 * ubifs_jnl_update - update inode.
512 * @c: UBIFS file-system description object
513 * @dir: parent inode or host inode in case of extended attributes
514 * @nm: directory entry name
515 * @inode: inode to update
516 * @deletion: indicates a directory entry deletion i.e unlink or rmdir
517 * @xent: non-zero if the directory entry is an extended attribute entry
519 * This function updates an inode by writing a directory entry (or extended
520 * attribute entry), the inode itself, and the parent directory inode (or the
521 * host inode) to the journal.
523 * The function writes the host inode @dir last, which is important in case of
524 * extended attributes. Indeed, then we guarantee that if the host inode gets
525 * synchronized (with 'fsync()'), and the write-buffer it sits in gets flushed,
526 * the extended attribute inode gets flushed too. And this is exactly what the
527 * user expects - synchronizing the host inode synchronizes its extended
528 * attributes. Similarly, this guarantees that if @dir is synchronized, its
529 * directory entry corresponding to @nm gets synchronized too.
531 * If the inode (@inode) or the parent directory (@dir) are synchronous, this
532 * function synchronizes the write-buffer.
534 * This function marks the @dir and @inode inodes as clean and returns zero on
535 * success. In case of failure, a negative error code is returned.
537 int ubifs_jnl_update(struct ubifs_info *c, const struct inode *dir,
538 const struct qstr *nm, const struct inode *inode,
539 int deletion, int xent)
541 int err, dlen, ilen, len, lnum, ino_offs, dent_offs;
542 int aligned_dlen, aligned_ilen, sync = IS_DIRSYNC(dir);
543 int last_reference = !!(deletion && inode->i_nlink == 0);
544 struct ubifs_inode *ui = ubifs_inode(inode);
545 struct ubifs_inode *dir_ui = ubifs_inode(dir);
546 struct ubifs_dent_node *dent;
547 struct ubifs_ino_node *ino;
548 union ubifs_key dent_key, ino_key;
550 dbg_jnl("ino %lu, dent '%.*s', data len %d in dir ino %lu",
551 inode->i_ino, nm->len, nm->name, ui->data_len, dir->i_ino);
552 ubifs_assert(dir_ui->data_len == 0);
553 ubifs_assert(mutex_is_locked(&dir_ui->ui_mutex));
555 dlen = UBIFS_DENT_NODE_SZ + nm->len + 1;
556 ilen = UBIFS_INO_NODE_SZ;
559 * If the last reference to the inode is being deleted, then there is
560 * no need to attach and write inode data, it is being deleted anyway.
561 * And if the inode is being deleted, no need to synchronize
562 * write-buffer even if the inode is synchronous.
564 if (!last_reference) {
565 ilen += ui->data_len;
566 sync |= IS_SYNC(inode);
569 aligned_dlen = ALIGN(dlen, 8);
570 aligned_ilen = ALIGN(ilen, 8);
571 len = aligned_dlen + aligned_ilen + UBIFS_INO_NODE_SZ;
572 dent = kmalloc(len, GFP_NOFS);
573 if (!dent)
574 return -ENOMEM;
576 /* Make reservation before allocating sequence numbers */
577 err = make_reservation(c, BASEHD, len);
578 if (err)
579 goto out_free;
581 if (!xent) {
582 dent->ch.node_type = UBIFS_DENT_NODE;
583 dent_key_init(c, &dent_key, dir->i_ino, nm);
584 } else {
585 dent->ch.node_type = UBIFS_XENT_NODE;
586 xent_key_init(c, &dent_key, dir->i_ino, nm);
589 key_write(c, &dent_key, dent->key);
590 dent->inum = deletion ? 0 : cpu_to_le64(inode->i_ino);
591 dent->type = get_dent_type(inode->i_mode);
592 dent->nlen = cpu_to_le16(nm->len);
593 memcpy(dent->name, nm->name, nm->len);
594 dent->name[nm->len] = '\0';
595 zero_dent_node_unused(dent);
596 ubifs_prep_grp_node(c, dent, dlen, 0);
598 ino = (void *)dent + aligned_dlen;
599 pack_inode(c, ino, inode, 0);
600 ino = (void *)ino + aligned_ilen;
601 pack_inode(c, ino, dir, 1);
603 if (last_reference) {
604 err = ubifs_add_orphan(c, inode->i_ino);
605 if (err) {
606 release_head(c, BASEHD);
607 goto out_finish;
609 ui->del_cmtno = c->cmt_no;
612 err = write_head(c, BASEHD, dent, len, &lnum, &dent_offs, sync);
613 if (err)
614 goto out_release;
615 if (!sync) {
616 struct ubifs_wbuf *wbuf = &c->jheads[BASEHD].wbuf;
618 ubifs_wbuf_add_ino_nolock(wbuf, inode->i_ino);
619 ubifs_wbuf_add_ino_nolock(wbuf, dir->i_ino);
621 release_head(c, BASEHD);
622 kfree(dent);
624 if (deletion) {
625 err = ubifs_tnc_remove_nm(c, &dent_key, nm);
626 if (err)
627 goto out_ro;
628 err = ubifs_add_dirt(c, lnum, dlen);
629 } else
630 err = ubifs_tnc_add_nm(c, &dent_key, lnum, dent_offs, dlen, nm);
631 if (err)
632 goto out_ro;
635 * Note, we do not remove the inode from TNC even if the last reference
636 * to it has just been deleted, because the inode may still be opened.
637 * Instead, the inode has been added to orphan lists and the orphan
638 * subsystem will take further care about it.
640 ino_key_init(c, &ino_key, inode->i_ino);
641 ino_offs = dent_offs + aligned_dlen;
642 err = ubifs_tnc_add(c, &ino_key, lnum, ino_offs, ilen);
643 if (err)
644 goto out_ro;
646 ino_key_init(c, &ino_key, dir->i_ino);
647 ino_offs += aligned_ilen;
648 err = ubifs_tnc_add(c, &ino_key, lnum, ino_offs, UBIFS_INO_NODE_SZ);
649 if (err)
650 goto out_ro;
652 finish_reservation(c);
653 spin_lock(&ui->ui_lock);
654 ui->synced_i_size = ui->ui_size;
655 spin_unlock(&ui->ui_lock);
656 mark_inode_clean(c, ui);
657 mark_inode_clean(c, dir_ui);
658 return 0;
660 out_finish:
661 finish_reservation(c);
662 out_free:
663 kfree(dent);
664 return err;
666 out_release:
667 release_head(c, BASEHD);
668 out_ro:
669 ubifs_ro_mode(c, err);
670 if (last_reference)
671 ubifs_delete_orphan(c, inode->i_ino);
672 finish_reservation(c);
673 return err;
677 * ubifs_jnl_write_data - write a data node to the journal.
678 * @c: UBIFS file-system description object
679 * @inode: inode the data node belongs to
680 * @key: node key
681 * @buf: buffer to write
682 * @len: data length (must not exceed %UBIFS_BLOCK_SIZE)
684 * This function writes a data node to the journal. Returns %0 if the data node
685 * was successfully written, and a negative error code in case of failure.
687 int ubifs_jnl_write_data(struct ubifs_info *c, const struct inode *inode,
688 const union ubifs_key *key, const void *buf, int len)
690 struct ubifs_data_node *data;
691 int err, lnum, offs, compr_type, out_len;
692 int dlen = UBIFS_DATA_NODE_SZ + UBIFS_BLOCK_SIZE * WORST_COMPR_FACTOR;
693 struct ubifs_inode *ui = ubifs_inode(inode);
695 dbg_jnl("ino %lu, blk %u, len %d, key %s",
696 (unsigned long)key_inum(c, key), key_block(c, key), len,
697 DBGKEY(key));
698 ubifs_assert(len <= UBIFS_BLOCK_SIZE);
700 data = kmalloc(dlen, GFP_NOFS);
701 if (!data)
702 return -ENOMEM;
704 data->ch.node_type = UBIFS_DATA_NODE;
705 key_write(c, key, &data->key);
706 data->size = cpu_to_le32(len);
707 zero_data_node_unused(data);
709 if (!(ui->flags & UBIFS_COMPR_FL))
710 /* Compression is disabled for this inode */
711 compr_type = UBIFS_COMPR_NONE;
712 else
713 compr_type = ui->compr_type;
715 out_len = dlen - UBIFS_DATA_NODE_SZ;
716 ubifs_compress(buf, len, &data->data, &out_len, &compr_type);
717 ubifs_assert(out_len <= UBIFS_BLOCK_SIZE);
719 dlen = UBIFS_DATA_NODE_SZ + out_len;
720 data->compr_type = cpu_to_le16(compr_type);
722 /* Make reservation before allocating sequence numbers */
723 err = make_reservation(c, DATAHD, dlen);
724 if (err)
725 goto out_free;
727 err = write_node(c, DATAHD, data, dlen, &lnum, &offs);
728 if (err)
729 goto out_release;
730 ubifs_wbuf_add_ino_nolock(&c->jheads[DATAHD].wbuf, key_inum(c, key));
731 release_head(c, DATAHD);
733 err = ubifs_tnc_add(c, key, lnum, offs, dlen);
734 if (err)
735 goto out_ro;
737 finish_reservation(c);
738 kfree(data);
739 return 0;
741 out_release:
742 release_head(c, DATAHD);
743 out_ro:
744 ubifs_ro_mode(c, err);
745 finish_reservation(c);
746 out_free:
747 kfree(data);
748 return err;
752 * ubifs_jnl_write_inode - flush inode to the journal.
753 * @c: UBIFS file-system description object
754 * @inode: inode to flush
756 * This function writes inode @inode to the journal. If the inode is
757 * synchronous, it also synchronizes the write-buffer. Returns zero in case of
758 * success and a negative error code in case of failure.
760 int ubifs_jnl_write_inode(struct ubifs_info *c, const struct inode *inode)
762 int err, lnum, offs;
763 struct ubifs_ino_node *ino;
764 struct ubifs_inode *ui = ubifs_inode(inode);
765 int sync = 0, len = UBIFS_INO_NODE_SZ, last_reference = !inode->i_nlink;
767 dbg_jnl("ino %lu, nlink %u", inode->i_ino, inode->i_nlink);
770 * If the inode is being deleted, do not write the attached data. No
771 * need to synchronize the write-buffer either.
773 if (!last_reference) {
774 len += ui->data_len;
775 sync = IS_SYNC(inode);
777 ino = kmalloc(len, GFP_NOFS);
778 if (!ino)
779 return -ENOMEM;
781 /* Make reservation before allocating sequence numbers */
782 err = make_reservation(c, BASEHD, len);
783 if (err)
784 goto out_free;
786 pack_inode(c, ino, inode, 1);
787 err = write_head(c, BASEHD, ino, len, &lnum, &offs, sync);
788 if (err)
789 goto out_release;
790 if (!sync)
791 ubifs_wbuf_add_ino_nolock(&c->jheads[BASEHD].wbuf,
792 inode->i_ino);
793 release_head(c, BASEHD);
795 if (last_reference) {
796 err = ubifs_tnc_remove_ino(c, inode->i_ino);
797 if (err)
798 goto out_ro;
799 ubifs_delete_orphan(c, inode->i_ino);
800 err = ubifs_add_dirt(c, lnum, len);
801 } else {
802 union ubifs_key key;
804 ino_key_init(c, &key, inode->i_ino);
805 err = ubifs_tnc_add(c, &key, lnum, offs, len);
807 if (err)
808 goto out_ro;
810 finish_reservation(c);
811 spin_lock(&ui->ui_lock);
812 ui->synced_i_size = ui->ui_size;
813 spin_unlock(&ui->ui_lock);
814 kfree(ino);
815 return 0;
817 out_release:
818 release_head(c, BASEHD);
819 out_ro:
820 ubifs_ro_mode(c, err);
821 finish_reservation(c);
822 out_free:
823 kfree(ino);
824 return err;
828 * ubifs_jnl_delete_inode - delete an inode.
829 * @c: UBIFS file-system description object
830 * @inode: inode to delete
832 * This function deletes inode @inode which includes removing it from orphans,
833 * deleting it from TNC and, in some cases, writing a deletion inode to the
834 * journal.
836 * When regular file inodes are unlinked or a directory inode is removed, the
837 * 'ubifs_jnl_update()' function writes a corresponding deletion inode and
838 * direntry to the media, and adds the inode to orphans. After this, when the
839 * last reference to this inode has been dropped, this function is called. In
840 * general, it has to write one more deletion inode to the media, because if
841 * a commit happened between 'ubifs_jnl_update()' and
842 * 'ubifs_jnl_delete_inode()', the deletion inode is not in the journal
843 * anymore, and in fact it might not be on the flash anymore, because it might
844 * have been garbage-collected already. And for optimization reasons UBIFS does
845 * not read the orphan area if it has been unmounted cleanly, so it would have
846 * no indication in the journal that there is a deleted inode which has to be
847 * removed from TNC.
849 * However, if there was no commit between 'ubifs_jnl_update()' and
850 * 'ubifs_jnl_delete_inode()', then there is no need to write the deletion
851 * inode to the media for the second time. And this is quite a typical case.
853 * This function returns zero in case of success and a negative error code in
854 * case of failure.
856 int ubifs_jnl_delete_inode(struct ubifs_info *c, const struct inode *inode)
858 int err;
859 struct ubifs_inode *ui = ubifs_inode(inode);
861 ubifs_assert(inode->i_nlink == 0);
863 if (ui->del_cmtno != c->cmt_no)
864 /* A commit happened for sure */
865 return ubifs_jnl_write_inode(c, inode);
867 down_read(&c->commit_sem);
869 * Check commit number again, because the first test has been done
870 * without @c->commit_sem, so a commit might have happened.
872 if (ui->del_cmtno != c->cmt_no) {
873 up_read(&c->commit_sem);
874 return ubifs_jnl_write_inode(c, inode);
877 err = ubifs_tnc_remove_ino(c, inode->i_ino);
878 if (err)
879 ubifs_ro_mode(c, err);
880 else
881 ubifs_delete_orphan(c, inode->i_ino);
882 up_read(&c->commit_sem);
883 return err;
887 * ubifs_jnl_rename - rename a directory entry.
888 * @c: UBIFS file-system description object
889 * @old_dir: parent inode of directory entry to rename
890 * @old_dentry: directory entry to rename
891 * @new_dir: parent inode of directory entry to rename
892 * @new_dentry: new directory entry (or directory entry to replace)
893 * @sync: non-zero if the write-buffer has to be synchronized
895 * This function implements the re-name operation which may involve writing up
896 * to 3 inodes and 2 directory entries. It marks the written inodes as clean
897 * and returns zero on success. In case of failure, a negative error code is
898 * returned.
900 int ubifs_jnl_rename(struct ubifs_info *c, const struct inode *old_dir,
901 const struct dentry *old_dentry,
902 const struct inode *new_dir,
903 const struct dentry *new_dentry, int sync)
905 void *p;
906 union ubifs_key key;
907 struct ubifs_dent_node *dent, *dent2;
908 int err, dlen1, dlen2, ilen, lnum, offs, len;
909 const struct inode *old_inode = old_dentry->d_inode;
910 const struct inode *new_inode = new_dentry->d_inode;
911 int aligned_dlen1, aligned_dlen2, plen = UBIFS_INO_NODE_SZ;
912 int last_reference = !!(new_inode && new_inode->i_nlink == 0);
913 int move = (old_dir != new_dir);
914 struct ubifs_inode *uninitialized_var(new_ui);
916 dbg_jnl("dent '%.*s' in dir ino %lu to dent '%.*s' in dir ino %lu",
917 old_dentry->d_name.len, old_dentry->d_name.name,
918 old_dir->i_ino, new_dentry->d_name.len,
919 new_dentry->d_name.name, new_dir->i_ino);
920 ubifs_assert(ubifs_inode(old_dir)->data_len == 0);
921 ubifs_assert(ubifs_inode(new_dir)->data_len == 0);
922 ubifs_assert(mutex_is_locked(&ubifs_inode(old_dir)->ui_mutex));
923 ubifs_assert(mutex_is_locked(&ubifs_inode(new_dir)->ui_mutex));
925 dlen1 = UBIFS_DENT_NODE_SZ + new_dentry->d_name.len + 1;
926 dlen2 = UBIFS_DENT_NODE_SZ + old_dentry->d_name.len + 1;
927 if (new_inode) {
928 new_ui = ubifs_inode(new_inode);
929 ubifs_assert(mutex_is_locked(&new_ui->ui_mutex));
930 ilen = UBIFS_INO_NODE_SZ;
931 if (!last_reference)
932 ilen += new_ui->data_len;
933 } else
934 ilen = 0;
936 aligned_dlen1 = ALIGN(dlen1, 8);
937 aligned_dlen2 = ALIGN(dlen2, 8);
938 len = aligned_dlen1 + aligned_dlen2 + ALIGN(ilen, 8) + ALIGN(plen, 8);
939 if (old_dir != new_dir)
940 len += plen;
941 dent = kmalloc(len, GFP_NOFS);
942 if (!dent)
943 return -ENOMEM;
945 /* Make reservation before allocating sequence numbers */
946 err = make_reservation(c, BASEHD, len);
947 if (err)
948 goto out_free;
950 /* Make new dent */
951 dent->ch.node_type = UBIFS_DENT_NODE;
952 dent_key_init_flash(c, &dent->key, new_dir->i_ino, &new_dentry->d_name);
953 dent->inum = cpu_to_le64(old_inode->i_ino);
954 dent->type = get_dent_type(old_inode->i_mode);
955 dent->nlen = cpu_to_le16(new_dentry->d_name.len);
956 memcpy(dent->name, new_dentry->d_name.name, new_dentry->d_name.len);
957 dent->name[new_dentry->d_name.len] = '\0';
958 zero_dent_node_unused(dent);
959 ubifs_prep_grp_node(c, dent, dlen1, 0);
961 /* Make deletion dent */
962 dent2 = (void *)dent + aligned_dlen1;
963 dent2->ch.node_type = UBIFS_DENT_NODE;
964 dent_key_init_flash(c, &dent2->key, old_dir->i_ino,
965 &old_dentry->d_name);
966 dent2->inum = 0;
967 dent2->type = DT_UNKNOWN;
968 dent2->nlen = cpu_to_le16(old_dentry->d_name.len);
969 memcpy(dent2->name, old_dentry->d_name.name, old_dentry->d_name.len);
970 dent2->name[old_dentry->d_name.len] = '\0';
971 zero_dent_node_unused(dent2);
972 ubifs_prep_grp_node(c, dent2, dlen2, 0);
974 p = (void *)dent2 + aligned_dlen2;
975 if (new_inode) {
976 pack_inode(c, p, new_inode, 0);
977 p += ALIGN(ilen, 8);
980 if (!move)
981 pack_inode(c, p, old_dir, 1);
982 else {
983 pack_inode(c, p, old_dir, 0);
984 p += ALIGN(plen, 8);
985 pack_inode(c, p, new_dir, 1);
988 if (last_reference) {
989 err = ubifs_add_orphan(c, new_inode->i_ino);
990 if (err) {
991 release_head(c, BASEHD);
992 goto out_finish;
994 new_ui->del_cmtno = c->cmt_no;
997 err = write_head(c, BASEHD, dent, len, &lnum, &offs, sync);
998 if (err)
999 goto out_release;
1000 if (!sync) {
1001 struct ubifs_wbuf *wbuf = &c->jheads[BASEHD].wbuf;
1003 ubifs_wbuf_add_ino_nolock(wbuf, new_dir->i_ino);
1004 ubifs_wbuf_add_ino_nolock(wbuf, old_dir->i_ino);
1005 if (new_inode)
1006 ubifs_wbuf_add_ino_nolock(&c->jheads[BASEHD].wbuf,
1007 new_inode->i_ino);
1009 release_head(c, BASEHD);
1011 dent_key_init(c, &key, new_dir->i_ino, &new_dentry->d_name);
1012 err = ubifs_tnc_add_nm(c, &key, lnum, offs, dlen1, &new_dentry->d_name);
1013 if (err)
1014 goto out_ro;
1016 err = ubifs_add_dirt(c, lnum, dlen2);
1017 if (err)
1018 goto out_ro;
1020 dent_key_init(c, &key, old_dir->i_ino, &old_dentry->d_name);
1021 err = ubifs_tnc_remove_nm(c, &key, &old_dentry->d_name);
1022 if (err)
1023 goto out_ro;
1025 offs += aligned_dlen1 + aligned_dlen2;
1026 if (new_inode) {
1027 ino_key_init(c, &key, new_inode->i_ino);
1028 err = ubifs_tnc_add(c, &key, lnum, offs, ilen);
1029 if (err)
1030 goto out_ro;
1031 offs += ALIGN(ilen, 8);
1034 ino_key_init(c, &key, old_dir->i_ino);
1035 err = ubifs_tnc_add(c, &key, lnum, offs, plen);
1036 if (err)
1037 goto out_ro;
1039 if (old_dir != new_dir) {
1040 offs += ALIGN(plen, 8);
1041 ino_key_init(c, &key, new_dir->i_ino);
1042 err = ubifs_tnc_add(c, &key, lnum, offs, plen);
1043 if (err)
1044 goto out_ro;
1047 finish_reservation(c);
1048 if (new_inode) {
1049 mark_inode_clean(c, new_ui);
1050 spin_lock(&new_ui->ui_lock);
1051 new_ui->synced_i_size = new_ui->ui_size;
1052 spin_unlock(&new_ui->ui_lock);
1054 mark_inode_clean(c, ubifs_inode(old_dir));
1055 if (move)
1056 mark_inode_clean(c, ubifs_inode(new_dir));
1057 kfree(dent);
1058 return 0;
1060 out_release:
1061 release_head(c, BASEHD);
1062 out_ro:
1063 ubifs_ro_mode(c, err);
1064 if (last_reference)
1065 ubifs_delete_orphan(c, new_inode->i_ino);
1066 out_finish:
1067 finish_reservation(c);
1068 out_free:
1069 kfree(dent);
1070 return err;
1074 * recomp_data_node - re-compress a truncated data node.
1075 * @dn: data node to re-compress
1076 * @new_len: new length
1078 * This function is used when an inode is truncated and the last data node of
1079 * the inode has to be re-compressed and re-written.
1081 static int recomp_data_node(struct ubifs_data_node *dn, int *new_len)
1083 void *buf;
1084 int err, len, compr_type, out_len;
1086 out_len = le32_to_cpu(dn->size);
1087 buf = kmalloc(out_len * WORST_COMPR_FACTOR, GFP_NOFS);
1088 if (!buf)
1089 return -ENOMEM;
1091 len = le32_to_cpu(dn->ch.len) - UBIFS_DATA_NODE_SZ;
1092 compr_type = le16_to_cpu(dn->compr_type);
1093 err = ubifs_decompress(&dn->data, len, buf, &out_len, compr_type);
1094 if (err)
1095 goto out;
1097 ubifs_compress(buf, *new_len, &dn->data, &out_len, &compr_type);
1098 ubifs_assert(out_len <= UBIFS_BLOCK_SIZE);
1099 dn->compr_type = cpu_to_le16(compr_type);
1100 dn->size = cpu_to_le32(*new_len);
1101 *new_len = UBIFS_DATA_NODE_SZ + out_len;
1102 out:
1103 kfree(buf);
1104 return err;
1108 * ubifs_jnl_truncate - update the journal for a truncation.
1109 * @c: UBIFS file-system description object
1110 * @inode: inode to truncate
1111 * @old_size: old size
1112 * @new_size: new size
1114 * When the size of a file decreases due to truncation, a truncation node is
1115 * written, the journal tree is updated, and the last data block is re-written
1116 * if it has been affected. The inode is also updated in order to synchronize
1117 * the new inode size.
1119 * This function marks the inode as clean and returns zero on success. In case
1120 * of failure, a negative error code is returned.
1122 int ubifs_jnl_truncate(struct ubifs_info *c, const struct inode *inode,
1123 loff_t old_size, loff_t new_size)
1125 union ubifs_key key, to_key;
1126 struct ubifs_ino_node *ino;
1127 struct ubifs_trun_node *trun;
1128 struct ubifs_data_node *uninitialized_var(dn);
1129 int err, dlen, len, lnum, offs, bit, sz, sync = IS_SYNC(inode);
1130 struct ubifs_inode *ui = ubifs_inode(inode);
1131 ino_t inum = inode->i_ino;
1132 unsigned int blk;
1134 dbg_jnl("ino %lu, size %lld -> %lld",
1135 (unsigned long)inum, old_size, new_size);
1136 ubifs_assert(!ui->data_len);
1137 ubifs_assert(S_ISREG(inode->i_mode));
1138 ubifs_assert(mutex_is_locked(&ui->ui_mutex));
1140 sz = UBIFS_TRUN_NODE_SZ + UBIFS_INO_NODE_SZ +
1141 UBIFS_MAX_DATA_NODE_SZ * WORST_COMPR_FACTOR;
1142 ino = kmalloc(sz, GFP_NOFS);
1143 if (!ino)
1144 return -ENOMEM;
1146 trun = (void *)ino + UBIFS_INO_NODE_SZ;
1147 trun->ch.node_type = UBIFS_TRUN_NODE;
1148 trun->inum = cpu_to_le32(inum);
1149 trun->old_size = cpu_to_le64(old_size);
1150 trun->new_size = cpu_to_le64(new_size);
1151 zero_trun_node_unused(trun);
1153 dlen = new_size & (UBIFS_BLOCK_SIZE - 1);
1154 if (dlen) {
1155 /* Get last data block so it can be truncated */
1156 dn = (void *)trun + UBIFS_TRUN_NODE_SZ;
1157 blk = new_size >> UBIFS_BLOCK_SHIFT;
1158 data_key_init(c, &key, inum, blk);
1159 dbg_jnl("last block key %s", DBGKEY(&key));
1160 err = ubifs_tnc_lookup(c, &key, dn);
1161 if (err == -ENOENT)
1162 dlen = 0; /* Not found (so it is a hole) */
1163 else if (err)
1164 goto out_free;
1165 else {
1166 if (le32_to_cpu(dn->size) <= dlen)
1167 dlen = 0; /* Nothing to do */
1168 else {
1169 int compr_type = le16_to_cpu(dn->compr_type);
1171 if (compr_type != UBIFS_COMPR_NONE) {
1172 err = recomp_data_node(dn, &dlen);
1173 if (err)
1174 goto out_free;
1175 } else {
1176 dn->size = cpu_to_le32(dlen);
1177 dlen += UBIFS_DATA_NODE_SZ;
1179 zero_data_node_unused(dn);
1184 /* Must make reservation before allocating sequence numbers */
1185 len = UBIFS_TRUN_NODE_SZ + UBIFS_INO_NODE_SZ;
1186 if (dlen)
1187 len += dlen;
1188 err = make_reservation(c, BASEHD, len);
1189 if (err)
1190 goto out_free;
1192 pack_inode(c, ino, inode, 0);
1193 ubifs_prep_grp_node(c, trun, UBIFS_TRUN_NODE_SZ, dlen ? 0 : 1);
1194 if (dlen)
1195 ubifs_prep_grp_node(c, dn, dlen, 1);
1197 err = write_head(c, BASEHD, ino, len, &lnum, &offs, sync);
1198 if (err)
1199 goto out_release;
1200 if (!sync)
1201 ubifs_wbuf_add_ino_nolock(&c->jheads[BASEHD].wbuf, inum);
1202 release_head(c, BASEHD);
1204 if (dlen) {
1205 sz = offs + UBIFS_INO_NODE_SZ + UBIFS_TRUN_NODE_SZ;
1206 err = ubifs_tnc_add(c, &key, lnum, sz, dlen);
1207 if (err)
1208 goto out_ro;
1211 ino_key_init(c, &key, inum);
1212 err = ubifs_tnc_add(c, &key, lnum, offs, UBIFS_INO_NODE_SZ);
1213 if (err)
1214 goto out_ro;
1216 err = ubifs_add_dirt(c, lnum, UBIFS_TRUN_NODE_SZ);
1217 if (err)
1218 goto out_ro;
1220 bit = new_size & (UBIFS_BLOCK_SIZE - 1);
1221 blk = (new_size >> UBIFS_BLOCK_SHIFT) + (bit ? 1 : 0);
1222 data_key_init(c, &key, inum, blk);
1224 bit = old_size & (UBIFS_BLOCK_SIZE - 1);
1225 blk = (old_size >> UBIFS_BLOCK_SHIFT) - (bit ? 0 : 1);
1226 data_key_init(c, &to_key, inum, blk);
1228 err = ubifs_tnc_remove_range(c, &key, &to_key);
1229 if (err)
1230 goto out_ro;
1232 finish_reservation(c);
1233 spin_lock(&ui->ui_lock);
1234 ui->synced_i_size = ui->ui_size;
1235 spin_unlock(&ui->ui_lock);
1236 mark_inode_clean(c, ui);
1237 kfree(ino);
1238 return 0;
1240 out_release:
1241 release_head(c, BASEHD);
1242 out_ro:
1243 ubifs_ro_mode(c, err);
1244 finish_reservation(c);
1245 out_free:
1246 kfree(ino);
1247 return err;
1250 #ifdef CONFIG_UBIFS_FS_XATTR
1253 * ubifs_jnl_delete_xattr - delete an extended attribute.
1254 * @c: UBIFS file-system description object
1255 * @host: host inode
1256 * @inode: extended attribute inode
1257 * @nm: extended attribute entry name
1259 * This function delete an extended attribute which is very similar to
1260 * un-linking regular files - it writes a deletion xentry, a deletion inode and
1261 * updates the target inode. Returns zero in case of success and a negative
1262 * error code in case of failure.
1264 int ubifs_jnl_delete_xattr(struct ubifs_info *c, const struct inode *host,
1265 const struct inode *inode, const struct qstr *nm)
1267 int err, xlen, hlen, len, lnum, xent_offs, aligned_xlen;
1268 struct ubifs_dent_node *xent;
1269 struct ubifs_ino_node *ino;
1270 union ubifs_key xent_key, key1, key2;
1271 int sync = IS_DIRSYNC(host);
1272 struct ubifs_inode *host_ui = ubifs_inode(host);
1274 dbg_jnl("host %lu, xattr ino %lu, name '%s', data len %d",
1275 host->i_ino, inode->i_ino, nm->name,
1276 ubifs_inode(inode)->data_len);
1277 ubifs_assert(inode->i_nlink == 0);
1278 ubifs_assert(mutex_is_locked(&host_ui->ui_mutex));
1281 * Since we are deleting the inode, we do not bother to attach any data
1282 * to it and assume its length is %UBIFS_INO_NODE_SZ.
1284 xlen = UBIFS_DENT_NODE_SZ + nm->len + 1;
1285 aligned_xlen = ALIGN(xlen, 8);
1286 hlen = host_ui->data_len + UBIFS_INO_NODE_SZ;
1287 len = aligned_xlen + UBIFS_INO_NODE_SZ + ALIGN(hlen, 8);
1289 xent = kmalloc(len, GFP_NOFS);
1290 if (!xent)
1291 return -ENOMEM;
1293 /* Make reservation before allocating sequence numbers */
1294 err = make_reservation(c, BASEHD, len);
1295 if (err) {
1296 kfree(xent);
1297 return err;
1300 xent->ch.node_type = UBIFS_XENT_NODE;
1301 xent_key_init(c, &xent_key, host->i_ino, nm);
1302 key_write(c, &xent_key, xent->key);
1303 xent->inum = 0;
1304 xent->type = get_dent_type(inode->i_mode);
1305 xent->nlen = cpu_to_le16(nm->len);
1306 memcpy(xent->name, nm->name, nm->len);
1307 xent->name[nm->len] = '\0';
1308 zero_dent_node_unused(xent);
1309 ubifs_prep_grp_node(c, xent, xlen, 0);
1311 ino = (void *)xent + aligned_xlen;
1312 pack_inode(c, ino, inode, 0);
1313 ino = (void *)ino + UBIFS_INO_NODE_SZ;
1314 pack_inode(c, ino, host, 1);
1316 err = write_head(c, BASEHD, xent, len, &lnum, &xent_offs, sync);
1317 if (!sync && !err)
1318 ubifs_wbuf_add_ino_nolock(&c->jheads[BASEHD].wbuf, host->i_ino);
1319 release_head(c, BASEHD);
1320 kfree(xent);
1321 if (err)
1322 goto out_ro;
1324 /* Remove the extended attribute entry from TNC */
1325 err = ubifs_tnc_remove_nm(c, &xent_key, nm);
1326 if (err)
1327 goto out_ro;
1328 err = ubifs_add_dirt(c, lnum, xlen);
1329 if (err)
1330 goto out_ro;
1333 * Remove all nodes belonging to the extended attribute inode from TNC.
1334 * Well, there actually must be only one node - the inode itself.
1336 lowest_ino_key(c, &key1, inode->i_ino);
1337 highest_ino_key(c, &key2, inode->i_ino);
1338 err = ubifs_tnc_remove_range(c, &key1, &key2);
1339 if (err)
1340 goto out_ro;
1341 err = ubifs_add_dirt(c, lnum, UBIFS_INO_NODE_SZ);
1342 if (err)
1343 goto out_ro;
1345 /* And update TNC with the new host inode position */
1346 ino_key_init(c, &key1, host->i_ino);
1347 err = ubifs_tnc_add(c, &key1, lnum, xent_offs + len - hlen, hlen);
1348 if (err)
1349 goto out_ro;
1351 finish_reservation(c);
1352 spin_lock(&host_ui->ui_lock);
1353 host_ui->synced_i_size = host_ui->ui_size;
1354 spin_unlock(&host_ui->ui_lock);
1355 mark_inode_clean(c, host_ui);
1356 return 0;
1358 out_ro:
1359 ubifs_ro_mode(c, err);
1360 finish_reservation(c);
1361 return err;
1365 * ubifs_jnl_change_xattr - change an extended attribute.
1366 * @c: UBIFS file-system description object
1367 * @inode: extended attribute inode
1368 * @host: host inode
1370 * This function writes the updated version of an extended attribute inode and
1371 * the host inode to the journal (to the base head). The host inode is written
1372 * after the extended attribute inode in order to guarantee that the extended
1373 * attribute will be flushed when the inode is synchronized by 'fsync()' and
1374 * consequently, the write-buffer is synchronized. This function returns zero
1375 * in case of success and a negative error code in case of failure.
1377 int ubifs_jnl_change_xattr(struct ubifs_info *c, const struct inode *inode,
1378 const struct inode *host)
1380 int err, len1, len2, aligned_len, aligned_len1, lnum, offs;
1381 struct ubifs_inode *host_ui = ubifs_inode(host);
1382 struct ubifs_ino_node *ino;
1383 union ubifs_key key;
1384 int sync = IS_DIRSYNC(host);
1386 dbg_jnl("ino %lu, ino %lu", host->i_ino, inode->i_ino);
1387 ubifs_assert(host->i_nlink > 0);
1388 ubifs_assert(inode->i_nlink > 0);
1389 ubifs_assert(mutex_is_locked(&host_ui->ui_mutex));
1391 len1 = UBIFS_INO_NODE_SZ + host_ui->data_len;
1392 len2 = UBIFS_INO_NODE_SZ + ubifs_inode(inode)->data_len;
1393 aligned_len1 = ALIGN(len1, 8);
1394 aligned_len = aligned_len1 + ALIGN(len2, 8);
1396 ino = kmalloc(aligned_len, GFP_NOFS);
1397 if (!ino)
1398 return -ENOMEM;
1400 /* Make reservation before allocating sequence numbers */
1401 err = make_reservation(c, BASEHD, aligned_len);
1402 if (err)
1403 goto out_free;
1405 pack_inode(c, ino, host, 0);
1406 pack_inode(c, (void *)ino + aligned_len1, inode, 1);
1408 err = write_head(c, BASEHD, ino, aligned_len, &lnum, &offs, 0);
1409 if (!sync && !err) {
1410 struct ubifs_wbuf *wbuf = &c->jheads[BASEHD].wbuf;
1412 ubifs_wbuf_add_ino_nolock(wbuf, host->i_ino);
1413 ubifs_wbuf_add_ino_nolock(wbuf, inode->i_ino);
1415 release_head(c, BASEHD);
1416 if (err)
1417 goto out_ro;
1419 ino_key_init(c, &key, host->i_ino);
1420 err = ubifs_tnc_add(c, &key, lnum, offs, len1);
1421 if (err)
1422 goto out_ro;
1424 ino_key_init(c, &key, inode->i_ino);
1425 err = ubifs_tnc_add(c, &key, lnum, offs + aligned_len1, len2);
1426 if (err)
1427 goto out_ro;
1429 finish_reservation(c);
1430 spin_lock(&host_ui->ui_lock);
1431 host_ui->synced_i_size = host_ui->ui_size;
1432 spin_unlock(&host_ui->ui_lock);
1433 mark_inode_clean(c, host_ui);
1434 kfree(ino);
1435 return 0;
1437 out_ro:
1438 ubifs_ro_mode(c, err);
1439 finish_reservation(c);
1440 out_free:
1441 kfree(ino);
1442 return err;
1445 #endif /* CONFIG_UBIFS_FS_XATTR */