2 * Copyright (C) 2007 Oracle. All rights reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
20 #include <linux/blkdev.h>
21 #include <linux/scatterlist.h>
22 #include <linux/swap.h>
23 #include <linux/radix-tree.h>
24 #include <linux/writeback.h>
25 #include <linux/buffer_head.h>
26 #include <linux/workqueue.h>
27 #include <linux/kthread.h>
28 #include <linux/freezer.h>
33 #include "transaction.h"
34 #include "btrfs_inode.h"
36 #include "print-tree.h"
37 #include "async-thread.h"
39 #include "ref-cache.h"
41 #include "free-space-cache.h"
43 static struct extent_io_ops btree_extent_io_ops
;
44 static void end_workqueue_fn(struct btrfs_work
*work
);
47 * end_io_wq structs are used to do processing in task context when an IO is
48 * complete. This is used during reads to verify checksums, and it is used
49 * by writes to insert metadata for new file extents after IO is complete.
55 struct btrfs_fs_info
*info
;
58 struct list_head list
;
59 struct btrfs_work work
;
63 * async submit bios are used to offload expensive checksumming
64 * onto the worker threads. They checksum file and metadata bios
65 * just before they are sent down the IO stack.
67 struct async_submit_bio
{
70 struct list_head list
;
71 extent_submit_bio_hook_t
*submit_bio_start
;
72 extent_submit_bio_hook_t
*submit_bio_done
;
75 unsigned long bio_flags
;
76 struct btrfs_work work
;
79 /* These are used to set the lockdep class on the extent buffer locks.
80 * The class is set by the readpage_end_io_hook after the buffer has
81 * passed csum validation but before the pages are unlocked.
83 * The lockdep class is also set by btrfs_init_new_buffer on freshly
86 * The class is based on the level in the tree block, which allows lockdep
87 * to know that lower nodes nest inside the locks of higher nodes.
89 * We also add a check to make sure the highest level of the tree is
90 * the same as our lockdep setup here. If BTRFS_MAX_LEVEL changes, this
91 * code needs update as well.
93 #ifdef CONFIG_DEBUG_LOCK_ALLOC
94 # if BTRFS_MAX_LEVEL != 8
97 static struct lock_class_key btrfs_eb_class
[BTRFS_MAX_LEVEL
+ 1];
98 static const char *btrfs_eb_name
[BTRFS_MAX_LEVEL
+ 1] = {
108 /* highest possible level */
114 * extents on the btree inode are pretty simple, there's one extent
115 * that covers the entire device
117 static struct extent_map
*btree_get_extent(struct inode
*inode
,
118 struct page
*page
, size_t page_offset
, u64 start
, u64 len
,
121 struct extent_map_tree
*em_tree
= &BTRFS_I(inode
)->extent_tree
;
122 struct extent_map
*em
;
125 spin_lock(&em_tree
->lock
);
126 em
= lookup_extent_mapping(em_tree
, start
, len
);
129 BTRFS_I(inode
)->root
->fs_info
->fs_devices
->latest_bdev
;
130 spin_unlock(&em_tree
->lock
);
133 spin_unlock(&em_tree
->lock
);
135 em
= alloc_extent_map(GFP_NOFS
);
137 em
= ERR_PTR(-ENOMEM
);
142 em
->block_len
= (u64
)-1;
144 em
->bdev
= BTRFS_I(inode
)->root
->fs_info
->fs_devices
->latest_bdev
;
146 spin_lock(&em_tree
->lock
);
147 ret
= add_extent_mapping(em_tree
, em
);
148 if (ret
== -EEXIST
) {
149 u64 failed_start
= em
->start
;
150 u64 failed_len
= em
->len
;
153 em
= lookup_extent_mapping(em_tree
, start
, len
);
157 em
= lookup_extent_mapping(em_tree
, failed_start
,
165 spin_unlock(&em_tree
->lock
);
173 u32
btrfs_csum_data(struct btrfs_root
*root
, char *data
, u32 seed
, size_t len
)
175 return btrfs_crc32c(seed
, data
, len
);
178 void btrfs_csum_final(u32 crc
, char *result
)
180 *(__le32
*)result
= ~cpu_to_le32(crc
);
184 * compute the csum for a btree block, and either verify it or write it
185 * into the csum field of the block.
187 static int csum_tree_block(struct btrfs_root
*root
, struct extent_buffer
*buf
,
191 btrfs_super_csum_size(&root
->fs_info
->super_copy
);
194 unsigned long cur_len
;
195 unsigned long offset
= BTRFS_CSUM_SIZE
;
196 char *map_token
= NULL
;
198 unsigned long map_start
;
199 unsigned long map_len
;
202 unsigned long inline_result
;
204 len
= buf
->len
- offset
;
206 err
= map_private_extent_buffer(buf
, offset
, 32,
208 &map_start
, &map_len
, KM_USER0
);
211 cur_len
= min(len
, map_len
- (offset
- map_start
));
212 crc
= btrfs_csum_data(root
, kaddr
+ offset
- map_start
,
216 unmap_extent_buffer(buf
, map_token
, KM_USER0
);
218 if (csum_size
> sizeof(inline_result
)) {
219 result
= kzalloc(csum_size
* sizeof(char), GFP_NOFS
);
223 result
= (char *)&inline_result
;
226 btrfs_csum_final(crc
, result
);
229 if (memcmp_extent_buffer(buf
, result
, 0, csum_size
)) {
232 memcpy(&found
, result
, csum_size
);
234 read_extent_buffer(buf
, &val
, 0, csum_size
);
235 if (printk_ratelimit()) {
236 printk(KERN_INFO
"btrfs: %s checksum verify "
237 "failed on %llu wanted %X found %X "
239 root
->fs_info
->sb
->s_id
,
240 (unsigned long long)buf
->start
, val
, found
,
241 btrfs_header_level(buf
));
243 if (result
!= (char *)&inline_result
)
248 write_extent_buffer(buf
, result
, 0, csum_size
);
250 if (result
!= (char *)&inline_result
)
256 * we can't consider a given block up to date unless the transid of the
257 * block matches the transid in the parent node's pointer. This is how we
258 * detect blocks that either didn't get written at all or got written
259 * in the wrong place.
261 static int verify_parent_transid(struct extent_io_tree
*io_tree
,
262 struct extent_buffer
*eb
, u64 parent_transid
)
266 if (!parent_transid
|| btrfs_header_generation(eb
) == parent_transid
)
269 lock_extent(io_tree
, eb
->start
, eb
->start
+ eb
->len
- 1, GFP_NOFS
);
270 if (extent_buffer_uptodate(io_tree
, eb
) &&
271 btrfs_header_generation(eb
) == parent_transid
) {
275 if (printk_ratelimit()) {
276 printk("parent transid verify failed on %llu wanted %llu "
278 (unsigned long long)eb
->start
,
279 (unsigned long long)parent_transid
,
280 (unsigned long long)btrfs_header_generation(eb
));
283 clear_extent_buffer_uptodate(io_tree
, eb
);
285 unlock_extent(io_tree
, eb
->start
, eb
->start
+ eb
->len
- 1,
291 * helper to read a given tree block, doing retries as required when
292 * the checksums don't match and we have alternate mirrors to try.
294 static int btree_read_extent_buffer_pages(struct btrfs_root
*root
,
295 struct extent_buffer
*eb
,
296 u64 start
, u64 parent_transid
)
298 struct extent_io_tree
*io_tree
;
303 io_tree
= &BTRFS_I(root
->fs_info
->btree_inode
)->io_tree
;
305 ret
= read_extent_buffer_pages(io_tree
, eb
, start
, 1,
306 btree_get_extent
, mirror_num
);
308 !verify_parent_transid(io_tree
, eb
, parent_transid
))
311 num_copies
= btrfs_num_copies(&root
->fs_info
->mapping_tree
,
317 if (mirror_num
> num_copies
)
324 * checksum a dirty tree block before IO. This has extra checks to make sure
325 * we only fill in the checksum field in the first page of a multi-page block
328 static int csum_dirty_buffer(struct btrfs_root
*root
, struct page
*page
)
330 struct extent_io_tree
*tree
;
331 u64 start
= (u64
)page
->index
<< PAGE_CACHE_SHIFT
;
335 struct extent_buffer
*eb
;
338 tree
= &BTRFS_I(page
->mapping
->host
)->io_tree
;
340 if (page
->private == EXTENT_PAGE_PRIVATE
)
344 len
= page
->private >> 2;
347 eb
= alloc_extent_buffer(tree
, start
, len
, page
, GFP_NOFS
);
348 ret
= btree_read_extent_buffer_pages(root
, eb
, start
+ PAGE_CACHE_SIZE
,
349 btrfs_header_generation(eb
));
351 found_start
= btrfs_header_bytenr(eb
);
352 if (found_start
!= start
) {
356 if (eb
->first_page
!= page
) {
360 if (!PageUptodate(page
)) {
364 found_level
= btrfs_header_level(eb
);
366 csum_tree_block(root
, eb
, 0);
368 free_extent_buffer(eb
);
373 static int check_tree_block_fsid(struct btrfs_root
*root
,
374 struct extent_buffer
*eb
)
376 struct btrfs_fs_devices
*fs_devices
= root
->fs_info
->fs_devices
;
377 u8 fsid
[BTRFS_UUID_SIZE
];
380 read_extent_buffer(eb
, fsid
, (unsigned long)btrfs_header_fsid(eb
),
383 if (!memcmp(fsid
, fs_devices
->fsid
, BTRFS_FSID_SIZE
)) {
387 fs_devices
= fs_devices
->seed
;
392 #ifdef CONFIG_DEBUG_LOCK_ALLOC
393 void btrfs_set_buffer_lockdep_class(struct extent_buffer
*eb
, int level
)
395 lockdep_set_class_and_name(&eb
->lock
,
396 &btrfs_eb_class
[level
],
397 btrfs_eb_name
[level
]);
401 static int btree_readpage_end_io_hook(struct page
*page
, u64 start
, u64 end
,
402 struct extent_state
*state
)
404 struct extent_io_tree
*tree
;
408 struct extent_buffer
*eb
;
409 struct btrfs_root
*root
= BTRFS_I(page
->mapping
->host
)->root
;
412 tree
= &BTRFS_I(page
->mapping
->host
)->io_tree
;
413 if (page
->private == EXTENT_PAGE_PRIVATE
)
418 len
= page
->private >> 2;
421 eb
= alloc_extent_buffer(tree
, start
, len
, page
, GFP_NOFS
);
423 found_start
= btrfs_header_bytenr(eb
);
424 if (found_start
!= start
) {
425 if (printk_ratelimit()) {
426 printk(KERN_INFO
"btrfs bad tree block start "
428 (unsigned long long)found_start
,
429 (unsigned long long)eb
->start
);
434 if (eb
->first_page
!= page
) {
435 printk(KERN_INFO
"btrfs bad first page %lu %lu\n",
436 eb
->first_page
->index
, page
->index
);
441 if (check_tree_block_fsid(root
, eb
)) {
442 if (printk_ratelimit()) {
443 printk(KERN_INFO
"btrfs bad fsid on block %llu\n",
444 (unsigned long long)eb
->start
);
449 found_level
= btrfs_header_level(eb
);
451 btrfs_set_buffer_lockdep_class(eb
, found_level
);
453 ret
= csum_tree_block(root
, eb
, 1);
457 end
= min_t(u64
, eb
->len
, PAGE_CACHE_SIZE
);
458 end
= eb
->start
+ end
- 1;
460 free_extent_buffer(eb
);
465 static void end_workqueue_bio(struct bio
*bio
, int err
)
467 struct end_io_wq
*end_io_wq
= bio
->bi_private
;
468 struct btrfs_fs_info
*fs_info
;
470 fs_info
= end_io_wq
->info
;
471 end_io_wq
->error
= err
;
472 end_io_wq
->work
.func
= end_workqueue_fn
;
473 end_io_wq
->work
.flags
= 0;
475 if (bio
->bi_rw
& (1 << BIO_RW
)) {
476 if (end_io_wq
->metadata
)
477 btrfs_queue_worker(&fs_info
->endio_meta_write_workers
,
480 btrfs_queue_worker(&fs_info
->endio_write_workers
,
483 if (end_io_wq
->metadata
)
484 btrfs_queue_worker(&fs_info
->endio_meta_workers
,
487 btrfs_queue_worker(&fs_info
->endio_workers
,
492 int btrfs_bio_wq_end_io(struct btrfs_fs_info
*info
, struct bio
*bio
,
495 struct end_io_wq
*end_io_wq
;
496 end_io_wq
= kmalloc(sizeof(*end_io_wq
), GFP_NOFS
);
500 end_io_wq
->private = bio
->bi_private
;
501 end_io_wq
->end_io
= bio
->bi_end_io
;
502 end_io_wq
->info
= info
;
503 end_io_wq
->error
= 0;
504 end_io_wq
->bio
= bio
;
505 end_io_wq
->metadata
= metadata
;
507 bio
->bi_private
= end_io_wq
;
508 bio
->bi_end_io
= end_workqueue_bio
;
512 unsigned long btrfs_async_submit_limit(struct btrfs_fs_info
*info
)
514 unsigned long limit
= min_t(unsigned long,
515 info
->workers
.max_workers
,
516 info
->fs_devices
->open_devices
);
520 int btrfs_congested_async(struct btrfs_fs_info
*info
, int iodone
)
522 return atomic_read(&info
->nr_async_bios
) >
523 btrfs_async_submit_limit(info
);
526 static void run_one_async_start(struct btrfs_work
*work
)
528 struct btrfs_fs_info
*fs_info
;
529 struct async_submit_bio
*async
;
531 async
= container_of(work
, struct async_submit_bio
, work
);
532 fs_info
= BTRFS_I(async
->inode
)->root
->fs_info
;
533 async
->submit_bio_start(async
->inode
, async
->rw
, async
->bio
,
534 async
->mirror_num
, async
->bio_flags
);
537 static void run_one_async_done(struct btrfs_work
*work
)
539 struct btrfs_fs_info
*fs_info
;
540 struct async_submit_bio
*async
;
543 async
= container_of(work
, struct async_submit_bio
, work
);
544 fs_info
= BTRFS_I(async
->inode
)->root
->fs_info
;
546 limit
= btrfs_async_submit_limit(fs_info
);
547 limit
= limit
* 2 / 3;
549 atomic_dec(&fs_info
->nr_async_submits
);
551 if (atomic_read(&fs_info
->nr_async_submits
) < limit
&&
552 waitqueue_active(&fs_info
->async_submit_wait
))
553 wake_up(&fs_info
->async_submit_wait
);
555 async
->submit_bio_done(async
->inode
, async
->rw
, async
->bio
,
556 async
->mirror_num
, async
->bio_flags
);
559 static void run_one_async_free(struct btrfs_work
*work
)
561 struct async_submit_bio
*async
;
563 async
= container_of(work
, struct async_submit_bio
, work
);
567 int btrfs_wq_submit_bio(struct btrfs_fs_info
*fs_info
, struct inode
*inode
,
568 int rw
, struct bio
*bio
, int mirror_num
,
569 unsigned long bio_flags
,
570 extent_submit_bio_hook_t
*submit_bio_start
,
571 extent_submit_bio_hook_t
*submit_bio_done
)
573 struct async_submit_bio
*async
;
575 async
= kmalloc(sizeof(*async
), GFP_NOFS
);
579 async
->inode
= inode
;
582 async
->mirror_num
= mirror_num
;
583 async
->submit_bio_start
= submit_bio_start
;
584 async
->submit_bio_done
= submit_bio_done
;
586 async
->work
.func
= run_one_async_start
;
587 async
->work
.ordered_func
= run_one_async_done
;
588 async
->work
.ordered_free
= run_one_async_free
;
590 async
->work
.flags
= 0;
591 async
->bio_flags
= bio_flags
;
593 atomic_inc(&fs_info
->nr_async_submits
);
595 if (rw
& (1 << BIO_RW_SYNCIO
))
596 btrfs_set_work_high_prio(&async
->work
);
598 btrfs_queue_worker(&fs_info
->workers
, &async
->work
);
600 while (atomic_read(&fs_info
->async_submit_draining
) &&
601 atomic_read(&fs_info
->nr_async_submits
)) {
602 wait_event(fs_info
->async_submit_wait
,
603 (atomic_read(&fs_info
->nr_async_submits
) == 0));
609 static int btree_csum_one_bio(struct bio
*bio
)
611 struct bio_vec
*bvec
= bio
->bi_io_vec
;
613 struct btrfs_root
*root
;
615 WARN_ON(bio
->bi_vcnt
<= 0);
616 while (bio_index
< bio
->bi_vcnt
) {
617 root
= BTRFS_I(bvec
->bv_page
->mapping
->host
)->root
;
618 csum_dirty_buffer(root
, bvec
->bv_page
);
625 static int __btree_submit_bio_start(struct inode
*inode
, int rw
,
626 struct bio
*bio
, int mirror_num
,
627 unsigned long bio_flags
)
630 * when we're called for a write, we're already in the async
631 * submission context. Just jump into btrfs_map_bio
633 btree_csum_one_bio(bio
);
637 static int __btree_submit_bio_done(struct inode
*inode
, int rw
, struct bio
*bio
,
638 int mirror_num
, unsigned long bio_flags
)
641 * when we're called for a write, we're already in the async
642 * submission context. Just jump into btrfs_map_bio
644 return btrfs_map_bio(BTRFS_I(inode
)->root
, rw
, bio
, mirror_num
, 1);
647 static int btree_submit_bio_hook(struct inode
*inode
, int rw
, struct bio
*bio
,
648 int mirror_num
, unsigned long bio_flags
)
652 ret
= btrfs_bio_wq_end_io(BTRFS_I(inode
)->root
->fs_info
,
656 if (!(rw
& (1 << BIO_RW
))) {
658 * called for a read, do the setup so that checksum validation
659 * can happen in the async kernel threads
661 return btrfs_map_bio(BTRFS_I(inode
)->root
, rw
, bio
,
666 * kthread helpers are used to submit writes so that checksumming
667 * can happen in parallel across all CPUs
669 return btrfs_wq_submit_bio(BTRFS_I(inode
)->root
->fs_info
,
670 inode
, rw
, bio
, mirror_num
, 0,
671 __btree_submit_bio_start
,
672 __btree_submit_bio_done
);
675 static int btree_writepage(struct page
*page
, struct writeback_control
*wbc
)
677 struct extent_io_tree
*tree
;
678 struct btrfs_root
*root
= BTRFS_I(page
->mapping
->host
)->root
;
679 struct extent_buffer
*eb
;
682 tree
= &BTRFS_I(page
->mapping
->host
)->io_tree
;
683 if (!(current
->flags
& PF_MEMALLOC
)) {
684 return extent_write_full_page(tree
, page
,
685 btree_get_extent
, wbc
);
688 redirty_page_for_writepage(wbc
, page
);
689 eb
= btrfs_find_tree_block(root
, page_offset(page
),
693 was_dirty
= test_and_set_bit(EXTENT_BUFFER_DIRTY
, &eb
->bflags
);
695 spin_lock(&root
->fs_info
->delalloc_lock
);
696 root
->fs_info
->dirty_metadata_bytes
+= PAGE_CACHE_SIZE
;
697 spin_unlock(&root
->fs_info
->delalloc_lock
);
699 free_extent_buffer(eb
);
705 static int btree_writepages(struct address_space
*mapping
,
706 struct writeback_control
*wbc
)
708 struct extent_io_tree
*tree
;
709 tree
= &BTRFS_I(mapping
->host
)->io_tree
;
710 if (wbc
->sync_mode
== WB_SYNC_NONE
) {
711 struct btrfs_root
*root
= BTRFS_I(mapping
->host
)->root
;
713 unsigned long thresh
= 32 * 1024 * 1024;
715 if (wbc
->for_kupdate
)
718 /* this is a bit racy, but that's ok */
719 num_dirty
= root
->fs_info
->dirty_metadata_bytes
;
720 if (num_dirty
< thresh
)
723 return extent_writepages(tree
, mapping
, btree_get_extent
, wbc
);
726 static int btree_readpage(struct file
*file
, struct page
*page
)
728 struct extent_io_tree
*tree
;
729 tree
= &BTRFS_I(page
->mapping
->host
)->io_tree
;
730 return extent_read_full_page(tree
, page
, btree_get_extent
);
733 static int btree_releasepage(struct page
*page
, gfp_t gfp_flags
)
735 struct extent_io_tree
*tree
;
736 struct extent_map_tree
*map
;
739 if (PageWriteback(page
) || PageDirty(page
))
742 tree
= &BTRFS_I(page
->mapping
->host
)->io_tree
;
743 map
= &BTRFS_I(page
->mapping
->host
)->extent_tree
;
745 ret
= try_release_extent_state(map
, tree
, page
, gfp_flags
);
749 ret
= try_release_extent_buffer(tree
, page
);
751 ClearPagePrivate(page
);
752 set_page_private(page
, 0);
753 page_cache_release(page
);
759 static void btree_invalidatepage(struct page
*page
, unsigned long offset
)
761 struct extent_io_tree
*tree
;
762 tree
= &BTRFS_I(page
->mapping
->host
)->io_tree
;
763 extent_invalidatepage(tree
, page
, offset
);
764 btree_releasepage(page
, GFP_NOFS
);
765 if (PagePrivate(page
)) {
766 printk(KERN_WARNING
"btrfs warning page private not zero "
767 "on page %llu\n", (unsigned long long)page_offset(page
));
768 ClearPagePrivate(page
);
769 set_page_private(page
, 0);
770 page_cache_release(page
);
774 static struct address_space_operations btree_aops
= {
775 .readpage
= btree_readpage
,
776 .writepage
= btree_writepage
,
777 .writepages
= btree_writepages
,
778 .releasepage
= btree_releasepage
,
779 .invalidatepage
= btree_invalidatepage
,
780 .sync_page
= block_sync_page
,
783 int readahead_tree_block(struct btrfs_root
*root
, u64 bytenr
, u32 blocksize
,
786 struct extent_buffer
*buf
= NULL
;
787 struct inode
*btree_inode
= root
->fs_info
->btree_inode
;
790 buf
= btrfs_find_create_tree_block(root
, bytenr
, blocksize
);
793 read_extent_buffer_pages(&BTRFS_I(btree_inode
)->io_tree
,
794 buf
, 0, 0, btree_get_extent
, 0);
795 free_extent_buffer(buf
);
799 struct extent_buffer
*btrfs_find_tree_block(struct btrfs_root
*root
,
800 u64 bytenr
, u32 blocksize
)
802 struct inode
*btree_inode
= root
->fs_info
->btree_inode
;
803 struct extent_buffer
*eb
;
804 eb
= find_extent_buffer(&BTRFS_I(btree_inode
)->io_tree
,
805 bytenr
, blocksize
, GFP_NOFS
);
809 struct extent_buffer
*btrfs_find_create_tree_block(struct btrfs_root
*root
,
810 u64 bytenr
, u32 blocksize
)
812 struct inode
*btree_inode
= root
->fs_info
->btree_inode
;
813 struct extent_buffer
*eb
;
815 eb
= alloc_extent_buffer(&BTRFS_I(btree_inode
)->io_tree
,
816 bytenr
, blocksize
, NULL
, GFP_NOFS
);
821 int btrfs_write_tree_block(struct extent_buffer
*buf
)
823 return btrfs_fdatawrite_range(buf
->first_page
->mapping
, buf
->start
,
824 buf
->start
+ buf
->len
- 1, WB_SYNC_ALL
);
827 int btrfs_wait_tree_block_writeback(struct extent_buffer
*buf
)
829 return btrfs_wait_on_page_writeback_range(buf
->first_page
->mapping
,
830 buf
->start
, buf
->start
+ buf
->len
- 1);
833 struct extent_buffer
*read_tree_block(struct btrfs_root
*root
, u64 bytenr
,
834 u32 blocksize
, u64 parent_transid
)
836 struct extent_buffer
*buf
= NULL
;
837 struct inode
*btree_inode
= root
->fs_info
->btree_inode
;
838 struct extent_io_tree
*io_tree
;
841 io_tree
= &BTRFS_I(btree_inode
)->io_tree
;
843 buf
= btrfs_find_create_tree_block(root
, bytenr
, blocksize
);
847 ret
= btree_read_extent_buffer_pages(root
, buf
, 0, parent_transid
);
850 set_bit(EXTENT_BUFFER_UPTODATE
, &buf
->bflags
);
855 int clean_tree_block(struct btrfs_trans_handle
*trans
, struct btrfs_root
*root
,
856 struct extent_buffer
*buf
)
858 struct inode
*btree_inode
= root
->fs_info
->btree_inode
;
859 if (btrfs_header_generation(buf
) ==
860 root
->fs_info
->running_transaction
->transid
) {
861 btrfs_assert_tree_locked(buf
);
863 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY
, &buf
->bflags
)) {
864 spin_lock(&root
->fs_info
->delalloc_lock
);
865 if (root
->fs_info
->dirty_metadata_bytes
>= buf
->len
)
866 root
->fs_info
->dirty_metadata_bytes
-= buf
->len
;
869 spin_unlock(&root
->fs_info
->delalloc_lock
);
872 /* ugh, clear_extent_buffer_dirty needs to lock the page */
873 btrfs_set_lock_blocking(buf
);
874 clear_extent_buffer_dirty(&BTRFS_I(btree_inode
)->io_tree
,
880 static int __setup_root(u32 nodesize
, u32 leafsize
, u32 sectorsize
,
881 u32 stripesize
, struct btrfs_root
*root
,
882 struct btrfs_fs_info
*fs_info
,
886 root
->commit_root
= NULL
;
887 root
->ref_tree
= NULL
;
888 root
->sectorsize
= sectorsize
;
889 root
->nodesize
= nodesize
;
890 root
->leafsize
= leafsize
;
891 root
->stripesize
= stripesize
;
893 root
->track_dirty
= 0;
895 root
->fs_info
= fs_info
;
896 root
->objectid
= objectid
;
897 root
->last_trans
= 0;
898 root
->highest_inode
= 0;
899 root
->last_inode_alloc
= 0;
903 INIT_LIST_HEAD(&root
->dirty_list
);
904 INIT_LIST_HEAD(&root
->orphan_list
);
905 INIT_LIST_HEAD(&root
->dead_list
);
906 spin_lock_init(&root
->node_lock
);
907 spin_lock_init(&root
->list_lock
);
908 mutex_init(&root
->objectid_mutex
);
909 mutex_init(&root
->log_mutex
);
910 init_waitqueue_head(&root
->log_writer_wait
);
911 init_waitqueue_head(&root
->log_commit_wait
[0]);
912 init_waitqueue_head(&root
->log_commit_wait
[1]);
913 atomic_set(&root
->log_commit
[0], 0);
914 atomic_set(&root
->log_commit
[1], 0);
915 atomic_set(&root
->log_writers
, 0);
917 root
->log_transid
= 0;
918 extent_io_tree_init(&root
->dirty_log_pages
,
919 fs_info
->btree_inode
->i_mapping
, GFP_NOFS
);
921 btrfs_leaf_ref_tree_init(&root
->ref_tree_struct
);
922 root
->ref_tree
= &root
->ref_tree_struct
;
924 memset(&root
->root_key
, 0, sizeof(root
->root_key
));
925 memset(&root
->root_item
, 0, sizeof(root
->root_item
));
926 memset(&root
->defrag_progress
, 0, sizeof(root
->defrag_progress
));
927 memset(&root
->root_kobj
, 0, sizeof(root
->root_kobj
));
928 root
->defrag_trans_start
= fs_info
->generation
;
929 init_completion(&root
->kobj_unregister
);
930 root
->defrag_running
= 0;
931 root
->defrag_level
= 0;
932 root
->root_key
.objectid
= objectid
;
933 root
->anon_super
.s_root
= NULL
;
934 root
->anon_super
.s_dev
= 0;
935 INIT_LIST_HEAD(&root
->anon_super
.s_list
);
936 INIT_LIST_HEAD(&root
->anon_super
.s_instances
);
937 init_rwsem(&root
->anon_super
.s_umount
);
942 static int find_and_setup_root(struct btrfs_root
*tree_root
,
943 struct btrfs_fs_info
*fs_info
,
945 struct btrfs_root
*root
)
951 __setup_root(tree_root
->nodesize
, tree_root
->leafsize
,
952 tree_root
->sectorsize
, tree_root
->stripesize
,
953 root
, fs_info
, objectid
);
954 ret
= btrfs_find_last_root(tree_root
, objectid
,
955 &root
->root_item
, &root
->root_key
);
958 generation
= btrfs_root_generation(&root
->root_item
);
959 blocksize
= btrfs_level_size(root
, btrfs_root_level(&root
->root_item
));
960 root
->node
= read_tree_block(root
, btrfs_root_bytenr(&root
->root_item
),
961 blocksize
, generation
);
966 int btrfs_free_log_root_tree(struct btrfs_trans_handle
*trans
,
967 struct btrfs_fs_info
*fs_info
)
969 struct extent_buffer
*eb
;
970 struct btrfs_root
*log_root_tree
= fs_info
->log_root_tree
;
979 ret
= find_first_extent_bit(&log_root_tree
->dirty_log_pages
,
980 0, &start
, &end
, EXTENT_DIRTY
);
984 clear_extent_dirty(&log_root_tree
->dirty_log_pages
,
985 start
, end
, GFP_NOFS
);
987 eb
= fs_info
->log_root_tree
->node
;
989 WARN_ON(btrfs_header_level(eb
) != 0);
990 WARN_ON(btrfs_header_nritems(eb
) != 0);
992 ret
= btrfs_free_reserved_extent(fs_info
->tree_root
,
996 free_extent_buffer(eb
);
997 kfree(fs_info
->log_root_tree
);
998 fs_info
->log_root_tree
= NULL
;
1002 static struct btrfs_root
*alloc_log_tree(struct btrfs_trans_handle
*trans
,
1003 struct btrfs_fs_info
*fs_info
)
1005 struct btrfs_root
*root
;
1006 struct btrfs_root
*tree_root
= fs_info
->tree_root
;
1007 struct extent_buffer
*leaf
;
1009 root
= kzalloc(sizeof(*root
), GFP_NOFS
);
1011 return ERR_PTR(-ENOMEM
);
1013 __setup_root(tree_root
->nodesize
, tree_root
->leafsize
,
1014 tree_root
->sectorsize
, tree_root
->stripesize
,
1015 root
, fs_info
, BTRFS_TREE_LOG_OBJECTID
);
1017 root
->root_key
.objectid
= BTRFS_TREE_LOG_OBJECTID
;
1018 root
->root_key
.type
= BTRFS_ROOT_ITEM_KEY
;
1019 root
->root_key
.offset
= BTRFS_TREE_LOG_OBJECTID
;
1021 * log trees do not get reference counted because they go away
1022 * before a real commit is actually done. They do store pointers
1023 * to file data extents, and those reference counts still get
1024 * updated (along with back refs to the log tree).
1028 leaf
= btrfs_alloc_free_block(trans
, root
, root
->leafsize
,
1029 0, BTRFS_TREE_LOG_OBJECTID
,
1030 trans
->transid
, 0, 0, 0);
1033 return ERR_CAST(leaf
);
1037 btrfs_set_header_nritems(root
->node
, 0);
1038 btrfs_set_header_level(root
->node
, 0);
1039 btrfs_set_header_bytenr(root
->node
, root
->node
->start
);
1040 btrfs_set_header_generation(root
->node
, trans
->transid
);
1041 btrfs_set_header_owner(root
->node
, BTRFS_TREE_LOG_OBJECTID
);
1043 write_extent_buffer(root
->node
, root
->fs_info
->fsid
,
1044 (unsigned long)btrfs_header_fsid(root
->node
),
1046 btrfs_mark_buffer_dirty(root
->node
);
1047 btrfs_tree_unlock(root
->node
);
1051 int btrfs_init_log_root_tree(struct btrfs_trans_handle
*trans
,
1052 struct btrfs_fs_info
*fs_info
)
1054 struct btrfs_root
*log_root
;
1056 log_root
= alloc_log_tree(trans
, fs_info
);
1057 if (IS_ERR(log_root
))
1058 return PTR_ERR(log_root
);
1059 WARN_ON(fs_info
->log_root_tree
);
1060 fs_info
->log_root_tree
= log_root
;
1064 int btrfs_add_log_tree(struct btrfs_trans_handle
*trans
,
1065 struct btrfs_root
*root
)
1067 struct btrfs_root
*log_root
;
1068 struct btrfs_inode_item
*inode_item
;
1070 log_root
= alloc_log_tree(trans
, root
->fs_info
);
1071 if (IS_ERR(log_root
))
1072 return PTR_ERR(log_root
);
1074 log_root
->last_trans
= trans
->transid
;
1075 log_root
->root_key
.offset
= root
->root_key
.objectid
;
1077 inode_item
= &log_root
->root_item
.inode
;
1078 inode_item
->generation
= cpu_to_le64(1);
1079 inode_item
->size
= cpu_to_le64(3);
1080 inode_item
->nlink
= cpu_to_le32(1);
1081 inode_item
->nbytes
= cpu_to_le64(root
->leafsize
);
1082 inode_item
->mode
= cpu_to_le32(S_IFDIR
| 0755);
1084 btrfs_set_root_bytenr(&log_root
->root_item
, log_root
->node
->start
);
1085 btrfs_set_root_generation(&log_root
->root_item
, trans
->transid
);
1087 WARN_ON(root
->log_root
);
1088 root
->log_root
= log_root
;
1089 root
->log_transid
= 0;
1093 struct btrfs_root
*btrfs_read_fs_root_no_radix(struct btrfs_root
*tree_root
,
1094 struct btrfs_key
*location
)
1096 struct btrfs_root
*root
;
1097 struct btrfs_fs_info
*fs_info
= tree_root
->fs_info
;
1098 struct btrfs_path
*path
;
1099 struct extent_buffer
*l
;
1105 root
= kzalloc(sizeof(*root
), GFP_NOFS
);
1107 return ERR_PTR(-ENOMEM
);
1108 if (location
->offset
== (u64
)-1) {
1109 ret
= find_and_setup_root(tree_root
, fs_info
,
1110 location
->objectid
, root
);
1113 return ERR_PTR(ret
);
1118 __setup_root(tree_root
->nodesize
, tree_root
->leafsize
,
1119 tree_root
->sectorsize
, tree_root
->stripesize
,
1120 root
, fs_info
, location
->objectid
);
1122 path
= btrfs_alloc_path();
1124 ret
= btrfs_search_slot(NULL
, tree_root
, location
, path
, 0, 0);
1131 read_extent_buffer(l
, &root
->root_item
,
1132 btrfs_item_ptr_offset(l
, path
->slots
[0]),
1133 sizeof(root
->root_item
));
1134 memcpy(&root
->root_key
, location
, sizeof(*location
));
1137 btrfs_release_path(root
, path
);
1138 btrfs_free_path(path
);
1141 return ERR_PTR(ret
);
1143 generation
= btrfs_root_generation(&root
->root_item
);
1144 blocksize
= btrfs_level_size(root
, btrfs_root_level(&root
->root_item
));
1145 root
->node
= read_tree_block(root
, btrfs_root_bytenr(&root
->root_item
),
1146 blocksize
, generation
);
1147 BUG_ON(!root
->node
);
1149 if (location
->objectid
!= BTRFS_TREE_LOG_OBJECTID
) {
1151 ret
= btrfs_find_highest_inode(root
, &highest_inode
);
1153 root
->highest_inode
= highest_inode
;
1154 root
->last_inode_alloc
= highest_inode
;
1160 struct btrfs_root
*btrfs_lookup_fs_root(struct btrfs_fs_info
*fs_info
,
1163 struct btrfs_root
*root
;
1165 if (root_objectid
== BTRFS_ROOT_TREE_OBJECTID
)
1166 return fs_info
->tree_root
;
1167 if (root_objectid
== BTRFS_EXTENT_TREE_OBJECTID
)
1168 return fs_info
->extent_root
;
1170 root
= radix_tree_lookup(&fs_info
->fs_roots_radix
,
1171 (unsigned long)root_objectid
);
1175 struct btrfs_root
*btrfs_read_fs_root_no_name(struct btrfs_fs_info
*fs_info
,
1176 struct btrfs_key
*location
)
1178 struct btrfs_root
*root
;
1181 if (location
->objectid
== BTRFS_ROOT_TREE_OBJECTID
)
1182 return fs_info
->tree_root
;
1183 if (location
->objectid
== BTRFS_EXTENT_TREE_OBJECTID
)
1184 return fs_info
->extent_root
;
1185 if (location
->objectid
== BTRFS_CHUNK_TREE_OBJECTID
)
1186 return fs_info
->chunk_root
;
1187 if (location
->objectid
== BTRFS_DEV_TREE_OBJECTID
)
1188 return fs_info
->dev_root
;
1189 if (location
->objectid
== BTRFS_CSUM_TREE_OBJECTID
)
1190 return fs_info
->csum_root
;
1192 root
= radix_tree_lookup(&fs_info
->fs_roots_radix
,
1193 (unsigned long)location
->objectid
);
1197 root
= btrfs_read_fs_root_no_radix(fs_info
->tree_root
, location
);
1201 set_anon_super(&root
->anon_super
, NULL
);
1203 ret
= radix_tree_insert(&fs_info
->fs_roots_radix
,
1204 (unsigned long)root
->root_key
.objectid
,
1207 free_extent_buffer(root
->node
);
1209 return ERR_PTR(ret
);
1211 if (!(fs_info
->sb
->s_flags
& MS_RDONLY
)) {
1212 ret
= btrfs_find_dead_roots(fs_info
->tree_root
,
1213 root
->root_key
.objectid
, root
);
1215 btrfs_orphan_cleanup(root
);
1220 struct btrfs_root
*btrfs_read_fs_root(struct btrfs_fs_info
*fs_info
,
1221 struct btrfs_key
*location
,
1222 const char *name
, int namelen
)
1224 struct btrfs_root
*root
;
1227 root
= btrfs_read_fs_root_no_name(fs_info
, location
);
1234 ret
= btrfs_set_root_name(root
, name
, namelen
);
1236 free_extent_buffer(root
->node
);
1238 return ERR_PTR(ret
);
1241 ret
= btrfs_sysfs_add_root(root
);
1243 free_extent_buffer(root
->node
);
1246 return ERR_PTR(ret
);
1253 static int btrfs_congested_fn(void *congested_data
, int bdi_bits
)
1255 struct btrfs_fs_info
*info
= (struct btrfs_fs_info
*)congested_data
;
1257 struct btrfs_device
*device
;
1258 struct backing_dev_info
*bdi
;
1260 list_for_each_entry(device
, &info
->fs_devices
->devices
, dev_list
) {
1263 bdi
= blk_get_backing_dev_info(device
->bdev
);
1264 if (bdi
&& bdi_congested(bdi
, bdi_bits
)) {
1273 * this unplugs every device on the box, and it is only used when page
1276 static void __unplug_io_fn(struct backing_dev_info
*bdi
, struct page
*page
)
1278 struct btrfs_device
*device
;
1279 struct btrfs_fs_info
*info
;
1281 info
= (struct btrfs_fs_info
*)bdi
->unplug_io_data
;
1282 list_for_each_entry(device
, &info
->fs_devices
->devices
, dev_list
) {
1286 bdi
= blk_get_backing_dev_info(device
->bdev
);
1287 if (bdi
->unplug_io_fn
)
1288 bdi
->unplug_io_fn(bdi
, page
);
1292 static void btrfs_unplug_io_fn(struct backing_dev_info
*bdi
, struct page
*page
)
1294 struct inode
*inode
;
1295 struct extent_map_tree
*em_tree
;
1296 struct extent_map
*em
;
1297 struct address_space
*mapping
;
1300 /* the generic O_DIRECT read code does this */
1302 __unplug_io_fn(bdi
, page
);
1307 * page->mapping may change at any time. Get a consistent copy
1308 * and use that for everything below
1311 mapping
= page
->mapping
;
1315 inode
= mapping
->host
;
1318 * don't do the expensive searching for a small number of
1321 if (BTRFS_I(inode
)->root
->fs_info
->fs_devices
->open_devices
<= 2) {
1322 __unplug_io_fn(bdi
, page
);
1326 offset
= page_offset(page
);
1328 em_tree
= &BTRFS_I(inode
)->extent_tree
;
1329 spin_lock(&em_tree
->lock
);
1330 em
= lookup_extent_mapping(em_tree
, offset
, PAGE_CACHE_SIZE
);
1331 spin_unlock(&em_tree
->lock
);
1333 __unplug_io_fn(bdi
, page
);
1337 if (em
->block_start
>= EXTENT_MAP_LAST_BYTE
) {
1338 free_extent_map(em
);
1339 __unplug_io_fn(bdi
, page
);
1342 offset
= offset
- em
->start
;
1343 btrfs_unplug_page(&BTRFS_I(inode
)->root
->fs_info
->mapping_tree
,
1344 em
->block_start
+ offset
, page
);
1345 free_extent_map(em
);
1348 static int setup_bdi(struct btrfs_fs_info
*info
, struct backing_dev_info
*bdi
)
1351 bdi
->ra_pages
= default_backing_dev_info
.ra_pages
;
1353 bdi
->capabilities
= default_backing_dev_info
.capabilities
;
1354 bdi
->unplug_io_fn
= btrfs_unplug_io_fn
;
1355 bdi
->unplug_io_data
= info
;
1356 bdi
->congested_fn
= btrfs_congested_fn
;
1357 bdi
->congested_data
= info
;
1361 static int bio_ready_for_csum(struct bio
*bio
)
1367 struct extent_io_tree
*io_tree
= NULL
;
1368 struct btrfs_fs_info
*info
= NULL
;
1369 struct bio_vec
*bvec
;
1373 bio_for_each_segment(bvec
, bio
, i
) {
1374 page
= bvec
->bv_page
;
1375 if (page
->private == EXTENT_PAGE_PRIVATE
) {
1376 length
+= bvec
->bv_len
;
1379 if (!page
->private) {
1380 length
+= bvec
->bv_len
;
1383 length
= bvec
->bv_len
;
1384 buf_len
= page
->private >> 2;
1385 start
= page_offset(page
) + bvec
->bv_offset
;
1386 io_tree
= &BTRFS_I(page
->mapping
->host
)->io_tree
;
1387 info
= BTRFS_I(page
->mapping
->host
)->root
->fs_info
;
1389 /* are we fully contained in this bio? */
1390 if (buf_len
<= length
)
1393 ret
= extent_range_uptodate(io_tree
, start
+ length
,
1394 start
+ buf_len
- 1);
1399 * called by the kthread helper functions to finally call the bio end_io
1400 * functions. This is where read checksum verification actually happens
1402 static void end_workqueue_fn(struct btrfs_work
*work
)
1405 struct end_io_wq
*end_io_wq
;
1406 struct btrfs_fs_info
*fs_info
;
1409 end_io_wq
= container_of(work
, struct end_io_wq
, work
);
1410 bio
= end_io_wq
->bio
;
1411 fs_info
= end_io_wq
->info
;
1413 /* metadata bio reads are special because the whole tree block must
1414 * be checksummed at once. This makes sure the entire block is in
1415 * ram and up to date before trying to verify things. For
1416 * blocksize <= pagesize, it is basically a noop
1418 if (!(bio
->bi_rw
& (1 << BIO_RW
)) && end_io_wq
->metadata
&&
1419 !bio_ready_for_csum(bio
)) {
1420 btrfs_queue_worker(&fs_info
->endio_meta_workers
,
1424 error
= end_io_wq
->error
;
1425 bio
->bi_private
= end_io_wq
->private;
1426 bio
->bi_end_io
= end_io_wq
->end_io
;
1428 bio_endio(bio
, error
);
1431 static int cleaner_kthread(void *arg
)
1433 struct btrfs_root
*root
= arg
;
1437 if (root
->fs_info
->closing
)
1440 vfs_check_frozen(root
->fs_info
->sb
, SB_FREEZE_WRITE
);
1441 mutex_lock(&root
->fs_info
->cleaner_mutex
);
1442 btrfs_clean_old_snapshots(root
);
1443 mutex_unlock(&root
->fs_info
->cleaner_mutex
);
1445 if (freezing(current
)) {
1449 if (root
->fs_info
->closing
)
1451 set_current_state(TASK_INTERRUPTIBLE
);
1453 __set_current_state(TASK_RUNNING
);
1455 } while (!kthread_should_stop());
1459 static int transaction_kthread(void *arg
)
1461 struct btrfs_root
*root
= arg
;
1462 struct btrfs_trans_handle
*trans
;
1463 struct btrfs_transaction
*cur
;
1465 unsigned long delay
;
1470 if (root
->fs_info
->closing
)
1474 vfs_check_frozen(root
->fs_info
->sb
, SB_FREEZE_WRITE
);
1475 mutex_lock(&root
->fs_info
->transaction_kthread_mutex
);
1477 mutex_lock(&root
->fs_info
->trans_mutex
);
1478 cur
= root
->fs_info
->running_transaction
;
1480 mutex_unlock(&root
->fs_info
->trans_mutex
);
1484 now
= get_seconds();
1485 if (now
< cur
->start_time
|| now
- cur
->start_time
< 30) {
1486 mutex_unlock(&root
->fs_info
->trans_mutex
);
1490 mutex_unlock(&root
->fs_info
->trans_mutex
);
1491 trans
= btrfs_start_transaction(root
, 1);
1492 ret
= btrfs_commit_transaction(trans
, root
);
1495 wake_up_process(root
->fs_info
->cleaner_kthread
);
1496 mutex_unlock(&root
->fs_info
->transaction_kthread_mutex
);
1498 if (freezing(current
)) {
1501 if (root
->fs_info
->closing
)
1503 set_current_state(TASK_INTERRUPTIBLE
);
1504 schedule_timeout(delay
);
1505 __set_current_state(TASK_RUNNING
);
1507 } while (!kthread_should_stop());
1511 struct btrfs_root
*open_ctree(struct super_block
*sb
,
1512 struct btrfs_fs_devices
*fs_devices
,
1522 struct btrfs_key location
;
1523 struct buffer_head
*bh
;
1524 struct btrfs_root
*extent_root
= kzalloc(sizeof(struct btrfs_root
),
1526 struct btrfs_root
*csum_root
= kzalloc(sizeof(struct btrfs_root
),
1528 struct btrfs_root
*tree_root
= kzalloc(sizeof(struct btrfs_root
),
1530 struct btrfs_fs_info
*fs_info
= kzalloc(sizeof(*fs_info
),
1532 struct btrfs_root
*chunk_root
= kzalloc(sizeof(struct btrfs_root
),
1534 struct btrfs_root
*dev_root
= kzalloc(sizeof(struct btrfs_root
),
1536 struct btrfs_root
*log_tree_root
;
1541 struct btrfs_super_block
*disk_super
;
1543 if (!extent_root
|| !tree_root
|| !fs_info
||
1544 !chunk_root
|| !dev_root
|| !csum_root
) {
1548 INIT_RADIX_TREE(&fs_info
->fs_roots_radix
, GFP_NOFS
);
1549 INIT_LIST_HEAD(&fs_info
->trans_list
);
1550 INIT_LIST_HEAD(&fs_info
->dead_roots
);
1551 INIT_LIST_HEAD(&fs_info
->hashers
);
1552 INIT_LIST_HEAD(&fs_info
->delalloc_inodes
);
1553 INIT_LIST_HEAD(&fs_info
->ordered_operations
);
1554 spin_lock_init(&fs_info
->delalloc_lock
);
1555 spin_lock_init(&fs_info
->new_trans_lock
);
1556 spin_lock_init(&fs_info
->ref_cache_lock
);
1558 init_completion(&fs_info
->kobj_unregister
);
1559 fs_info
->tree_root
= tree_root
;
1560 fs_info
->extent_root
= extent_root
;
1561 fs_info
->csum_root
= csum_root
;
1562 fs_info
->chunk_root
= chunk_root
;
1563 fs_info
->dev_root
= dev_root
;
1564 fs_info
->fs_devices
= fs_devices
;
1565 INIT_LIST_HEAD(&fs_info
->dirty_cowonly_roots
);
1566 INIT_LIST_HEAD(&fs_info
->space_info
);
1567 btrfs_mapping_init(&fs_info
->mapping_tree
);
1568 atomic_set(&fs_info
->nr_async_submits
, 0);
1569 atomic_set(&fs_info
->async_delalloc_pages
, 0);
1570 atomic_set(&fs_info
->async_submit_draining
, 0);
1571 atomic_set(&fs_info
->nr_async_bios
, 0);
1572 atomic_set(&fs_info
->throttles
, 0);
1573 atomic_set(&fs_info
->throttle_gen
, 0);
1575 fs_info
->max_extent
= (u64
)-1;
1576 fs_info
->max_inline
= 8192 * 1024;
1577 setup_bdi(fs_info
, &fs_info
->bdi
);
1578 fs_info
->btree_inode
= new_inode(sb
);
1579 fs_info
->btree_inode
->i_ino
= 1;
1580 fs_info
->btree_inode
->i_nlink
= 1;
1581 fs_info
->metadata_ratio
= 8;
1583 fs_info
->thread_pool_size
= min_t(unsigned long,
1584 num_online_cpus() + 2, 8);
1586 INIT_LIST_HEAD(&fs_info
->ordered_extents
);
1587 spin_lock_init(&fs_info
->ordered_extent_lock
);
1589 sb
->s_blocksize
= 4096;
1590 sb
->s_blocksize_bits
= blksize_bits(4096);
1593 * we set the i_size on the btree inode to the max possible int.
1594 * the real end of the address space is determined by all of
1595 * the devices in the system
1597 fs_info
->btree_inode
->i_size
= OFFSET_MAX
;
1598 fs_info
->btree_inode
->i_mapping
->a_ops
= &btree_aops
;
1599 fs_info
->btree_inode
->i_mapping
->backing_dev_info
= &fs_info
->bdi
;
1601 extent_io_tree_init(&BTRFS_I(fs_info
->btree_inode
)->io_tree
,
1602 fs_info
->btree_inode
->i_mapping
,
1604 extent_map_tree_init(&BTRFS_I(fs_info
->btree_inode
)->extent_tree
,
1607 BTRFS_I(fs_info
->btree_inode
)->io_tree
.ops
= &btree_extent_io_ops
;
1609 spin_lock_init(&fs_info
->block_group_cache_lock
);
1610 fs_info
->block_group_cache_tree
.rb_node
= NULL
;
1612 extent_io_tree_init(&fs_info
->pinned_extents
,
1613 fs_info
->btree_inode
->i_mapping
, GFP_NOFS
);
1614 fs_info
->do_barriers
= 1;
1616 INIT_LIST_HEAD(&fs_info
->dead_reloc_roots
);
1617 btrfs_leaf_ref_tree_init(&fs_info
->reloc_ref_tree
);
1618 btrfs_leaf_ref_tree_init(&fs_info
->shared_ref_tree
);
1620 BTRFS_I(fs_info
->btree_inode
)->root
= tree_root
;
1621 memset(&BTRFS_I(fs_info
->btree_inode
)->location
, 0,
1622 sizeof(struct btrfs_key
));
1623 insert_inode_hash(fs_info
->btree_inode
);
1625 mutex_init(&fs_info
->trans_mutex
);
1626 mutex_init(&fs_info
->ordered_operations_mutex
);
1627 mutex_init(&fs_info
->tree_log_mutex
);
1628 mutex_init(&fs_info
->drop_mutex
);
1629 mutex_init(&fs_info
->chunk_mutex
);
1630 mutex_init(&fs_info
->transaction_kthread_mutex
);
1631 mutex_init(&fs_info
->cleaner_mutex
);
1632 mutex_init(&fs_info
->volume_mutex
);
1633 mutex_init(&fs_info
->tree_reloc_mutex
);
1635 btrfs_init_free_cluster(&fs_info
->meta_alloc_cluster
);
1636 btrfs_init_free_cluster(&fs_info
->data_alloc_cluster
);
1638 init_waitqueue_head(&fs_info
->transaction_throttle
);
1639 init_waitqueue_head(&fs_info
->transaction_wait
);
1640 init_waitqueue_head(&fs_info
->async_submit_wait
);
1642 __setup_root(4096, 4096, 4096, 4096, tree_root
,
1643 fs_info
, BTRFS_ROOT_TREE_OBJECTID
);
1646 bh
= btrfs_read_dev_super(fs_devices
->latest_bdev
);
1650 memcpy(&fs_info
->super_copy
, bh
->b_data
, sizeof(fs_info
->super_copy
));
1651 memcpy(&fs_info
->super_for_commit
, &fs_info
->super_copy
,
1652 sizeof(fs_info
->super_for_commit
));
1655 memcpy(fs_info
->fsid
, fs_info
->super_copy
.fsid
, BTRFS_FSID_SIZE
);
1657 disk_super
= &fs_info
->super_copy
;
1658 if (!btrfs_super_root(disk_super
))
1661 ret
= btrfs_parse_options(tree_root
, options
);
1667 features
= btrfs_super_incompat_flags(disk_super
) &
1668 ~BTRFS_FEATURE_INCOMPAT_SUPP
;
1670 printk(KERN_ERR
"BTRFS: couldn't mount because of "
1671 "unsupported optional features (%Lx).\n",
1672 (unsigned long long)features
);
1677 features
= btrfs_super_compat_ro_flags(disk_super
) &
1678 ~BTRFS_FEATURE_COMPAT_RO_SUPP
;
1679 if (!(sb
->s_flags
& MS_RDONLY
) && features
) {
1680 printk(KERN_ERR
"BTRFS: couldn't mount RDWR because of "
1681 "unsupported option features (%Lx).\n",
1682 (unsigned long long)features
);
1688 * we need to start all the end_io workers up front because the
1689 * queue work function gets called at interrupt time, and so it
1690 * cannot dynamically grow.
1692 btrfs_init_workers(&fs_info
->workers
, "worker",
1693 fs_info
->thread_pool_size
);
1695 btrfs_init_workers(&fs_info
->delalloc_workers
, "delalloc",
1696 fs_info
->thread_pool_size
);
1698 btrfs_init_workers(&fs_info
->submit_workers
, "submit",
1699 min_t(u64
, fs_devices
->num_devices
,
1700 fs_info
->thread_pool_size
));
1702 /* a higher idle thresh on the submit workers makes it much more
1703 * likely that bios will be send down in a sane order to the
1706 fs_info
->submit_workers
.idle_thresh
= 64;
1708 fs_info
->workers
.idle_thresh
= 16;
1709 fs_info
->workers
.ordered
= 1;
1711 fs_info
->delalloc_workers
.idle_thresh
= 2;
1712 fs_info
->delalloc_workers
.ordered
= 1;
1714 btrfs_init_workers(&fs_info
->fixup_workers
, "fixup", 1);
1715 btrfs_init_workers(&fs_info
->endio_workers
, "endio",
1716 fs_info
->thread_pool_size
);
1717 btrfs_init_workers(&fs_info
->endio_meta_workers
, "endio-meta",
1718 fs_info
->thread_pool_size
);
1719 btrfs_init_workers(&fs_info
->endio_meta_write_workers
,
1720 "endio-meta-write", fs_info
->thread_pool_size
);
1721 btrfs_init_workers(&fs_info
->endio_write_workers
, "endio-write",
1722 fs_info
->thread_pool_size
);
1725 * endios are largely parallel and should have a very
1728 fs_info
->endio_workers
.idle_thresh
= 4;
1729 fs_info
->endio_meta_workers
.idle_thresh
= 4;
1731 fs_info
->endio_write_workers
.idle_thresh
= 64;
1732 fs_info
->endio_meta_write_workers
.idle_thresh
= 64;
1734 btrfs_start_workers(&fs_info
->workers
, 1);
1735 btrfs_start_workers(&fs_info
->submit_workers
, 1);
1736 btrfs_start_workers(&fs_info
->delalloc_workers
, 1);
1737 btrfs_start_workers(&fs_info
->fixup_workers
, 1);
1738 btrfs_start_workers(&fs_info
->endio_workers
, fs_info
->thread_pool_size
);
1739 btrfs_start_workers(&fs_info
->endio_meta_workers
,
1740 fs_info
->thread_pool_size
);
1741 btrfs_start_workers(&fs_info
->endio_meta_write_workers
,
1742 fs_info
->thread_pool_size
);
1743 btrfs_start_workers(&fs_info
->endio_write_workers
,
1744 fs_info
->thread_pool_size
);
1746 fs_info
->bdi
.ra_pages
*= btrfs_super_num_devices(disk_super
);
1747 fs_info
->bdi
.ra_pages
= max(fs_info
->bdi
.ra_pages
,
1748 4 * 1024 * 1024 / PAGE_CACHE_SIZE
);
1750 nodesize
= btrfs_super_nodesize(disk_super
);
1751 leafsize
= btrfs_super_leafsize(disk_super
);
1752 sectorsize
= btrfs_super_sectorsize(disk_super
);
1753 stripesize
= btrfs_super_stripesize(disk_super
);
1754 tree_root
->nodesize
= nodesize
;
1755 tree_root
->leafsize
= leafsize
;
1756 tree_root
->sectorsize
= sectorsize
;
1757 tree_root
->stripesize
= stripesize
;
1759 sb
->s_blocksize
= sectorsize
;
1760 sb
->s_blocksize_bits
= blksize_bits(sectorsize
);
1762 if (strncmp((char *)(&disk_super
->magic
), BTRFS_MAGIC
,
1763 sizeof(disk_super
->magic
))) {
1764 printk(KERN_INFO
"btrfs: valid FS not found on %s\n", sb
->s_id
);
1765 goto fail_sb_buffer
;
1768 mutex_lock(&fs_info
->chunk_mutex
);
1769 ret
= btrfs_read_sys_array(tree_root
);
1770 mutex_unlock(&fs_info
->chunk_mutex
);
1772 printk(KERN_WARNING
"btrfs: failed to read the system "
1773 "array on %s\n", sb
->s_id
);
1774 goto fail_sys_array
;
1777 blocksize
= btrfs_level_size(tree_root
,
1778 btrfs_super_chunk_root_level(disk_super
));
1779 generation
= btrfs_super_chunk_root_generation(disk_super
);
1781 __setup_root(nodesize
, leafsize
, sectorsize
, stripesize
,
1782 chunk_root
, fs_info
, BTRFS_CHUNK_TREE_OBJECTID
);
1784 chunk_root
->node
= read_tree_block(chunk_root
,
1785 btrfs_super_chunk_root(disk_super
),
1786 blocksize
, generation
);
1787 BUG_ON(!chunk_root
->node
);
1789 read_extent_buffer(chunk_root
->node
, fs_info
->chunk_tree_uuid
,
1790 (unsigned long)btrfs_header_chunk_tree_uuid(chunk_root
->node
),
1793 mutex_lock(&fs_info
->chunk_mutex
);
1794 ret
= btrfs_read_chunk_tree(chunk_root
);
1795 mutex_unlock(&fs_info
->chunk_mutex
);
1797 printk(KERN_WARNING
"btrfs: failed to read chunk tree on %s\n",
1799 goto fail_chunk_root
;
1802 btrfs_close_extra_devices(fs_devices
);
1804 blocksize
= btrfs_level_size(tree_root
,
1805 btrfs_super_root_level(disk_super
));
1806 generation
= btrfs_super_generation(disk_super
);
1808 tree_root
->node
= read_tree_block(tree_root
,
1809 btrfs_super_root(disk_super
),
1810 blocksize
, generation
);
1811 if (!tree_root
->node
)
1812 goto fail_chunk_root
;
1815 ret
= find_and_setup_root(tree_root
, fs_info
,
1816 BTRFS_EXTENT_TREE_OBJECTID
, extent_root
);
1818 goto fail_tree_root
;
1819 extent_root
->track_dirty
= 1;
1821 ret
= find_and_setup_root(tree_root
, fs_info
,
1822 BTRFS_DEV_TREE_OBJECTID
, dev_root
);
1823 dev_root
->track_dirty
= 1;
1825 goto fail_extent_root
;
1827 ret
= find_and_setup_root(tree_root
, fs_info
,
1828 BTRFS_CSUM_TREE_OBJECTID
, csum_root
);
1830 goto fail_extent_root
;
1832 csum_root
->track_dirty
= 1;
1834 btrfs_read_block_groups(extent_root
);
1836 fs_info
->generation
= generation
;
1837 fs_info
->last_trans_committed
= generation
;
1838 fs_info
->data_alloc_profile
= (u64
)-1;
1839 fs_info
->metadata_alloc_profile
= (u64
)-1;
1840 fs_info
->system_alloc_profile
= fs_info
->metadata_alloc_profile
;
1841 fs_info
->cleaner_kthread
= kthread_run(cleaner_kthread
, tree_root
,
1843 if (IS_ERR(fs_info
->cleaner_kthread
))
1844 goto fail_csum_root
;
1846 fs_info
->transaction_kthread
= kthread_run(transaction_kthread
,
1848 "btrfs-transaction");
1849 if (IS_ERR(fs_info
->transaction_kthread
))
1852 if (btrfs_super_log_root(disk_super
) != 0) {
1853 u64 bytenr
= btrfs_super_log_root(disk_super
);
1855 if (fs_devices
->rw_devices
== 0) {
1856 printk(KERN_WARNING
"Btrfs log replay required "
1859 goto fail_trans_kthread
;
1862 btrfs_level_size(tree_root
,
1863 btrfs_super_log_root_level(disk_super
));
1865 log_tree_root
= kzalloc(sizeof(struct btrfs_root
),
1868 __setup_root(nodesize
, leafsize
, sectorsize
, stripesize
,
1869 log_tree_root
, fs_info
, BTRFS_TREE_LOG_OBJECTID
);
1871 log_tree_root
->node
= read_tree_block(tree_root
, bytenr
,
1874 ret
= btrfs_recover_log_trees(log_tree_root
);
1877 if (sb
->s_flags
& MS_RDONLY
) {
1878 ret
= btrfs_commit_super(tree_root
);
1883 if (!(sb
->s_flags
& MS_RDONLY
)) {
1884 ret
= btrfs_cleanup_reloc_trees(tree_root
);
1888 location
.objectid
= BTRFS_FS_TREE_OBJECTID
;
1889 location
.type
= BTRFS_ROOT_ITEM_KEY
;
1890 location
.offset
= (u64
)-1;
1892 fs_info
->fs_root
= btrfs_read_fs_root_no_name(fs_info
, &location
);
1893 if (!fs_info
->fs_root
)
1894 goto fail_trans_kthread
;
1898 kthread_stop(fs_info
->transaction_kthread
);
1900 kthread_stop(fs_info
->cleaner_kthread
);
1903 * make sure we're done with the btree inode before we stop our
1906 filemap_write_and_wait(fs_info
->btree_inode
->i_mapping
);
1907 invalidate_inode_pages2(fs_info
->btree_inode
->i_mapping
);
1910 free_extent_buffer(csum_root
->node
);
1912 free_extent_buffer(extent_root
->node
);
1914 free_extent_buffer(tree_root
->node
);
1916 free_extent_buffer(chunk_root
->node
);
1918 free_extent_buffer(dev_root
->node
);
1920 btrfs_stop_workers(&fs_info
->fixup_workers
);
1921 btrfs_stop_workers(&fs_info
->delalloc_workers
);
1922 btrfs_stop_workers(&fs_info
->workers
);
1923 btrfs_stop_workers(&fs_info
->endio_workers
);
1924 btrfs_stop_workers(&fs_info
->endio_meta_workers
);
1925 btrfs_stop_workers(&fs_info
->endio_meta_write_workers
);
1926 btrfs_stop_workers(&fs_info
->endio_write_workers
);
1927 btrfs_stop_workers(&fs_info
->submit_workers
);
1929 invalidate_inode_pages2(fs_info
->btree_inode
->i_mapping
);
1930 iput(fs_info
->btree_inode
);
1932 btrfs_close_devices(fs_info
->fs_devices
);
1933 btrfs_mapping_tree_free(&fs_info
->mapping_tree
);
1934 bdi_destroy(&fs_info
->bdi
);
1943 return ERR_PTR(err
);
1946 static void btrfs_end_buffer_write_sync(struct buffer_head
*bh
, int uptodate
)
1948 char b
[BDEVNAME_SIZE
];
1951 set_buffer_uptodate(bh
);
1953 if (!buffer_eopnotsupp(bh
) && printk_ratelimit()) {
1954 printk(KERN_WARNING
"lost page write due to "
1955 "I/O error on %s\n",
1956 bdevname(bh
->b_bdev
, b
));
1958 /* note, we dont' set_buffer_write_io_error because we have
1959 * our own ways of dealing with the IO errors
1961 clear_buffer_uptodate(bh
);
1967 struct buffer_head
*btrfs_read_dev_super(struct block_device
*bdev
)
1969 struct buffer_head
*bh
;
1970 struct buffer_head
*latest
= NULL
;
1971 struct btrfs_super_block
*super
;
1976 /* we would like to check all the supers, but that would make
1977 * a btrfs mount succeed after a mkfs from a different FS.
1978 * So, we need to add a special mount option to scan for
1979 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
1981 for (i
= 0; i
< 1; i
++) {
1982 bytenr
= btrfs_sb_offset(i
);
1983 if (bytenr
+ 4096 >= i_size_read(bdev
->bd_inode
))
1985 bh
= __bread(bdev
, bytenr
/ 4096, 4096);
1989 super
= (struct btrfs_super_block
*)bh
->b_data
;
1990 if (btrfs_super_bytenr(super
) != bytenr
||
1991 strncmp((char *)(&super
->magic
), BTRFS_MAGIC
,
1992 sizeof(super
->magic
))) {
1997 if (!latest
|| btrfs_super_generation(super
) > transid
) {
2000 transid
= btrfs_super_generation(super
);
2008 static int write_dev_supers(struct btrfs_device
*device
,
2009 struct btrfs_super_block
*sb
,
2010 int do_barriers
, int wait
, int max_mirrors
)
2012 struct buffer_head
*bh
;
2018 int last_barrier
= 0;
2020 if (max_mirrors
== 0)
2021 max_mirrors
= BTRFS_SUPER_MIRROR_MAX
;
2023 /* make sure only the last submit_bh does a barrier */
2025 for (i
= 0; i
< max_mirrors
; i
++) {
2026 bytenr
= btrfs_sb_offset(i
);
2027 if (bytenr
+ BTRFS_SUPER_INFO_SIZE
>=
2028 device
->total_bytes
)
2034 for (i
= 0; i
< max_mirrors
; i
++) {
2035 bytenr
= btrfs_sb_offset(i
);
2036 if (bytenr
+ BTRFS_SUPER_INFO_SIZE
>= device
->total_bytes
)
2040 bh
= __find_get_block(device
->bdev
, bytenr
/ 4096,
2041 BTRFS_SUPER_INFO_SIZE
);
2045 if (buffer_uptodate(bh
)) {
2050 btrfs_set_super_bytenr(sb
, bytenr
);
2053 crc
= btrfs_csum_data(NULL
, (char *)sb
+
2054 BTRFS_CSUM_SIZE
, crc
,
2055 BTRFS_SUPER_INFO_SIZE
-
2057 btrfs_csum_final(crc
, sb
->csum
);
2059 bh
= __getblk(device
->bdev
, bytenr
/ 4096,
2060 BTRFS_SUPER_INFO_SIZE
);
2061 memcpy(bh
->b_data
, sb
, BTRFS_SUPER_INFO_SIZE
);
2063 set_buffer_uptodate(bh
);
2066 bh
->b_end_io
= btrfs_end_buffer_write_sync
;
2069 if (i
== last_barrier
&& do_barriers
&& device
->barriers
) {
2070 ret
= submit_bh(WRITE_BARRIER
, bh
);
2071 if (ret
== -EOPNOTSUPP
) {
2072 printk("btrfs: disabling barriers on dev %s\n",
2074 set_buffer_uptodate(bh
);
2075 device
->barriers
= 0;
2078 ret
= submit_bh(WRITE_SYNC
, bh
);
2081 ret
= submit_bh(WRITE_SYNC
, bh
);
2086 if (!buffer_uptodate(bh
))
2094 return errors
< i
? 0 : -1;
2097 int write_all_supers(struct btrfs_root
*root
, int max_mirrors
)
2099 struct list_head
*head
= &root
->fs_info
->fs_devices
->devices
;
2100 struct btrfs_device
*dev
;
2101 struct btrfs_super_block
*sb
;
2102 struct btrfs_dev_item
*dev_item
;
2106 int total_errors
= 0;
2109 max_errors
= btrfs_super_num_devices(&root
->fs_info
->super_copy
) - 1;
2110 do_barriers
= !btrfs_test_opt(root
, NOBARRIER
);
2112 sb
= &root
->fs_info
->super_for_commit
;
2113 dev_item
= &sb
->dev_item
;
2114 list_for_each_entry(dev
, head
, dev_list
) {
2119 if (!dev
->in_fs_metadata
|| !dev
->writeable
)
2122 btrfs_set_stack_device_generation(dev_item
, 0);
2123 btrfs_set_stack_device_type(dev_item
, dev
->type
);
2124 btrfs_set_stack_device_id(dev_item
, dev
->devid
);
2125 btrfs_set_stack_device_total_bytes(dev_item
, dev
->total_bytes
);
2126 btrfs_set_stack_device_bytes_used(dev_item
, dev
->bytes_used
);
2127 btrfs_set_stack_device_io_align(dev_item
, dev
->io_align
);
2128 btrfs_set_stack_device_io_width(dev_item
, dev
->io_width
);
2129 btrfs_set_stack_device_sector_size(dev_item
, dev
->sector_size
);
2130 memcpy(dev_item
->uuid
, dev
->uuid
, BTRFS_UUID_SIZE
);
2131 memcpy(dev_item
->fsid
, dev
->fs_devices
->fsid
, BTRFS_UUID_SIZE
);
2133 flags
= btrfs_super_flags(sb
);
2134 btrfs_set_super_flags(sb
, flags
| BTRFS_HEADER_FLAG_WRITTEN
);
2136 ret
= write_dev_supers(dev
, sb
, do_barriers
, 0, max_mirrors
);
2140 if (total_errors
> max_errors
) {
2141 printk(KERN_ERR
"btrfs: %d errors while writing supers\n",
2147 list_for_each_entry(dev
, head
, dev_list
) {
2150 if (!dev
->in_fs_metadata
|| !dev
->writeable
)
2153 ret
= write_dev_supers(dev
, sb
, do_barriers
, 1, max_mirrors
);
2157 if (total_errors
> max_errors
) {
2158 printk(KERN_ERR
"btrfs: %d errors while writing supers\n",
2165 int write_ctree_super(struct btrfs_trans_handle
*trans
,
2166 struct btrfs_root
*root
, int max_mirrors
)
2170 ret
= write_all_supers(root
, max_mirrors
);
2174 int btrfs_free_fs_root(struct btrfs_fs_info
*fs_info
, struct btrfs_root
*root
)
2176 radix_tree_delete(&fs_info
->fs_roots_radix
,
2177 (unsigned long)root
->root_key
.objectid
);
2178 if (root
->anon_super
.s_dev
) {
2179 down_write(&root
->anon_super
.s_umount
);
2180 kill_anon_super(&root
->anon_super
);
2183 free_extent_buffer(root
->node
);
2184 if (root
->commit_root
)
2185 free_extent_buffer(root
->commit_root
);
2191 static int del_fs_roots(struct btrfs_fs_info
*fs_info
)
2194 struct btrfs_root
*gang
[8];
2198 ret
= radix_tree_gang_lookup(&fs_info
->fs_roots_radix
,
2203 for (i
= 0; i
< ret
; i
++)
2204 btrfs_free_fs_root(fs_info
, gang
[i
]);
2209 int btrfs_cleanup_fs_roots(struct btrfs_fs_info
*fs_info
)
2211 u64 root_objectid
= 0;
2212 struct btrfs_root
*gang
[8];
2217 ret
= radix_tree_gang_lookup(&fs_info
->fs_roots_radix
,
2218 (void **)gang
, root_objectid
,
2222 for (i
= 0; i
< ret
; i
++) {
2223 root_objectid
= gang
[i
]->root_key
.objectid
;
2224 ret
= btrfs_find_dead_roots(fs_info
->tree_root
,
2225 root_objectid
, gang
[i
]);
2227 btrfs_orphan_cleanup(gang
[i
]);
2234 int btrfs_commit_super(struct btrfs_root
*root
)
2236 struct btrfs_trans_handle
*trans
;
2239 mutex_lock(&root
->fs_info
->cleaner_mutex
);
2240 btrfs_clean_old_snapshots(root
);
2241 mutex_unlock(&root
->fs_info
->cleaner_mutex
);
2242 trans
= btrfs_start_transaction(root
, 1);
2243 ret
= btrfs_commit_transaction(trans
, root
);
2245 /* run commit again to drop the original snapshot */
2246 trans
= btrfs_start_transaction(root
, 1);
2247 btrfs_commit_transaction(trans
, root
);
2248 ret
= btrfs_write_and_wait_transaction(NULL
, root
);
2251 ret
= write_ctree_super(NULL
, root
, 0);
2255 int close_ctree(struct btrfs_root
*root
)
2257 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
2260 fs_info
->closing
= 1;
2263 kthread_stop(root
->fs_info
->transaction_kthread
);
2264 kthread_stop(root
->fs_info
->cleaner_kthread
);
2266 if (!(fs_info
->sb
->s_flags
& MS_RDONLY
)) {
2267 ret
= btrfs_commit_super(root
);
2269 printk(KERN_ERR
"btrfs: commit super ret %d\n", ret
);
2272 if (fs_info
->delalloc_bytes
) {
2273 printk(KERN_INFO
"btrfs: at unmount delalloc count %llu\n",
2274 (unsigned long long)fs_info
->delalloc_bytes
);
2276 if (fs_info
->total_ref_cache_size
) {
2277 printk(KERN_INFO
"btrfs: at umount reference cache size %llu\n",
2278 (unsigned long long)fs_info
->total_ref_cache_size
);
2281 if (fs_info
->extent_root
->node
)
2282 free_extent_buffer(fs_info
->extent_root
->node
);
2284 if (fs_info
->tree_root
->node
)
2285 free_extent_buffer(fs_info
->tree_root
->node
);
2287 if (root
->fs_info
->chunk_root
->node
)
2288 free_extent_buffer(root
->fs_info
->chunk_root
->node
);
2290 if (root
->fs_info
->dev_root
->node
)
2291 free_extent_buffer(root
->fs_info
->dev_root
->node
);
2293 if (root
->fs_info
->csum_root
->node
)
2294 free_extent_buffer(root
->fs_info
->csum_root
->node
);
2296 btrfs_free_block_groups(root
->fs_info
);
2298 del_fs_roots(fs_info
);
2300 iput(fs_info
->btree_inode
);
2302 btrfs_stop_workers(&fs_info
->fixup_workers
);
2303 btrfs_stop_workers(&fs_info
->delalloc_workers
);
2304 btrfs_stop_workers(&fs_info
->workers
);
2305 btrfs_stop_workers(&fs_info
->endio_workers
);
2306 btrfs_stop_workers(&fs_info
->endio_meta_workers
);
2307 btrfs_stop_workers(&fs_info
->endio_meta_write_workers
);
2308 btrfs_stop_workers(&fs_info
->endio_write_workers
);
2309 btrfs_stop_workers(&fs_info
->submit_workers
);
2311 btrfs_close_devices(fs_info
->fs_devices
);
2312 btrfs_mapping_tree_free(&fs_info
->mapping_tree
);
2314 bdi_destroy(&fs_info
->bdi
);
2316 kfree(fs_info
->extent_root
);
2317 kfree(fs_info
->tree_root
);
2318 kfree(fs_info
->chunk_root
);
2319 kfree(fs_info
->dev_root
);
2320 kfree(fs_info
->csum_root
);
2324 int btrfs_buffer_uptodate(struct extent_buffer
*buf
, u64 parent_transid
)
2327 struct inode
*btree_inode
= buf
->first_page
->mapping
->host
;
2329 ret
= extent_buffer_uptodate(&BTRFS_I(btree_inode
)->io_tree
, buf
);
2333 ret
= verify_parent_transid(&BTRFS_I(btree_inode
)->io_tree
, buf
,
2338 int btrfs_set_buffer_uptodate(struct extent_buffer
*buf
)
2340 struct inode
*btree_inode
= buf
->first_page
->mapping
->host
;
2341 return set_extent_buffer_uptodate(&BTRFS_I(btree_inode
)->io_tree
,
2345 void btrfs_mark_buffer_dirty(struct extent_buffer
*buf
)
2347 struct btrfs_root
*root
= BTRFS_I(buf
->first_page
->mapping
->host
)->root
;
2348 u64 transid
= btrfs_header_generation(buf
);
2349 struct inode
*btree_inode
= root
->fs_info
->btree_inode
;
2352 btrfs_assert_tree_locked(buf
);
2353 if (transid
!= root
->fs_info
->generation
) {
2354 printk(KERN_CRIT
"btrfs transid mismatch buffer %llu, "
2355 "found %llu running %llu\n",
2356 (unsigned long long)buf
->start
,
2357 (unsigned long long)transid
,
2358 (unsigned long long)root
->fs_info
->generation
);
2361 was_dirty
= set_extent_buffer_dirty(&BTRFS_I(btree_inode
)->io_tree
,
2364 spin_lock(&root
->fs_info
->delalloc_lock
);
2365 root
->fs_info
->dirty_metadata_bytes
+= buf
->len
;
2366 spin_unlock(&root
->fs_info
->delalloc_lock
);
2370 void btrfs_btree_balance_dirty(struct btrfs_root
*root
, unsigned long nr
)
2373 * looks as though older kernels can get into trouble with
2374 * this code, they end up stuck in balance_dirty_pages forever
2376 struct extent_io_tree
*tree
;
2379 unsigned long thresh
= 32 * 1024 * 1024;
2380 tree
= &BTRFS_I(root
->fs_info
->btree_inode
)->io_tree
;
2382 if (current
->flags
& PF_MEMALLOC
)
2385 num_dirty
= count_range_bits(tree
, &start
, (u64
)-1,
2386 thresh
, EXTENT_DIRTY
);
2387 if (num_dirty
> thresh
) {
2388 balance_dirty_pages_ratelimited_nr(
2389 root
->fs_info
->btree_inode
->i_mapping
, 1);
2394 int btrfs_read_buffer(struct extent_buffer
*buf
, u64 parent_transid
)
2396 struct btrfs_root
*root
= BTRFS_I(buf
->first_page
->mapping
->host
)->root
;
2398 ret
= btree_read_extent_buffer_pages(root
, buf
, 0, parent_transid
);
2400 set_bit(EXTENT_BUFFER_UPTODATE
, &buf
->bflags
);
2404 int btree_lock_page_hook(struct page
*page
)
2406 struct inode
*inode
= page
->mapping
->host
;
2407 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
2408 struct extent_io_tree
*io_tree
= &BTRFS_I(inode
)->io_tree
;
2409 struct extent_buffer
*eb
;
2411 u64 bytenr
= page_offset(page
);
2413 if (page
->private == EXTENT_PAGE_PRIVATE
)
2416 len
= page
->private >> 2;
2417 eb
= find_extent_buffer(io_tree
, bytenr
, len
, GFP_NOFS
);
2421 btrfs_tree_lock(eb
);
2422 btrfs_set_header_flag(eb
, BTRFS_HEADER_FLAG_WRITTEN
);
2424 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY
, &eb
->bflags
)) {
2425 spin_lock(&root
->fs_info
->delalloc_lock
);
2426 if (root
->fs_info
->dirty_metadata_bytes
>= eb
->len
)
2427 root
->fs_info
->dirty_metadata_bytes
-= eb
->len
;
2430 spin_unlock(&root
->fs_info
->delalloc_lock
);
2433 btrfs_tree_unlock(eb
);
2434 free_extent_buffer(eb
);
2440 static struct extent_io_ops btree_extent_io_ops
= {
2441 .write_cache_pages_lock_hook
= btree_lock_page_hook
,
2442 .readpage_end_io_hook
= btree_readpage_end_io_hook
,
2443 .submit_bio_hook
= btree_submit_bio_hook
,
2444 /* note we're sharing with inode.c for the merge bio hook */
2445 .merge_bio_hook
= btrfs_merge_bio_hook
,