HID: Add support MacbookAir 4,1 keyboard
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / drivers / md / raid5.c
blobb6200c3935ca379385a1bd249dffb2940016761c
1 /*
2 * raid5.c : Multiple Devices driver for Linux
3 * Copyright (C) 1996, 1997 Ingo Molnar, Miguel de Icaza, Gadi Oxman
4 * Copyright (C) 1999, 2000 Ingo Molnar
5 * Copyright (C) 2002, 2003 H. Peter Anvin
7 * RAID-4/5/6 management functions.
8 * Thanks to Penguin Computing for making the RAID-6 development possible
9 * by donating a test server!
11 * This program is free software; you can redistribute it and/or modify
12 * it under the terms of the GNU General Public License as published by
13 * the Free Software Foundation; either version 2, or (at your option)
14 * any later version.
16 * You should have received a copy of the GNU General Public License
17 * (for example /usr/src/linux/COPYING); if not, write to the Free
18 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
22 * BITMAP UNPLUGGING:
24 * The sequencing for updating the bitmap reliably is a little
25 * subtle (and I got it wrong the first time) so it deserves some
26 * explanation.
28 * We group bitmap updates into batches. Each batch has a number.
29 * We may write out several batches at once, but that isn't very important.
30 * conf->seq_write is the number of the last batch successfully written.
31 * conf->seq_flush is the number of the last batch that was closed to
32 * new additions.
33 * When we discover that we will need to write to any block in a stripe
34 * (in add_stripe_bio) we update the in-memory bitmap and record in sh->bm_seq
35 * the number of the batch it will be in. This is seq_flush+1.
36 * When we are ready to do a write, if that batch hasn't been written yet,
37 * we plug the array and queue the stripe for later.
38 * When an unplug happens, we increment bm_flush, thus closing the current
39 * batch.
40 * When we notice that bm_flush > bm_write, we write out all pending updates
41 * to the bitmap, and advance bm_write to where bm_flush was.
42 * This may occasionally write a bit out twice, but is sure never to
43 * miss any bits.
46 #include <linux/blkdev.h>
47 #include <linux/kthread.h>
48 #include <linux/raid/pq.h>
49 #include <linux/async_tx.h>
50 #include <linux/async.h>
51 #include <linux/seq_file.h>
52 #include <linux/cpu.h>
53 #include <linux/slab.h>
54 #include <linux/ratelimit.h>
55 #include "md.h"
56 #include "raid5.h"
57 #include "raid0.h"
58 #include "bitmap.h"
61 * Stripe cache
64 #define NR_STRIPES 256
65 #define STRIPE_SIZE PAGE_SIZE
66 #define STRIPE_SHIFT (PAGE_SHIFT - 9)
67 #define STRIPE_SECTORS (STRIPE_SIZE>>9)
68 #define IO_THRESHOLD 1
69 #define BYPASS_THRESHOLD 1
70 #define NR_HASH (PAGE_SIZE / sizeof(struct hlist_head))
71 #define HASH_MASK (NR_HASH - 1)
73 #define stripe_hash(conf, sect) (&((conf)->stripe_hashtbl[((sect) >> STRIPE_SHIFT) & HASH_MASK]))
75 /* bio's attached to a stripe+device for I/O are linked together in bi_sector
76 * order without overlap. There may be several bio's per stripe+device, and
77 * a bio could span several devices.
78 * When walking this list for a particular stripe+device, we must never proceed
79 * beyond a bio that extends past this device, as the next bio might no longer
80 * be valid.
81 * This macro is used to determine the 'next' bio in the list, given the sector
82 * of the current stripe+device
84 #define r5_next_bio(bio, sect) ( ( (bio)->bi_sector + ((bio)->bi_size>>9) < sect + STRIPE_SECTORS) ? (bio)->bi_next : NULL)
86 * The following can be used to debug the driver
88 #define RAID5_PARANOIA 1
89 #if RAID5_PARANOIA && defined(CONFIG_SMP)
90 # define CHECK_DEVLOCK() assert_spin_locked(&conf->device_lock)
91 #else
92 # define CHECK_DEVLOCK()
93 #endif
95 #ifdef DEBUG
96 #define inline
97 #define __inline__
98 #endif
101 * We maintain a biased count of active stripes in the bottom 16 bits of
102 * bi_phys_segments, and a count of processed stripes in the upper 16 bits
104 static inline int raid5_bi_phys_segments(struct bio *bio)
106 return bio->bi_phys_segments & 0xffff;
109 static inline int raid5_bi_hw_segments(struct bio *bio)
111 return (bio->bi_phys_segments >> 16) & 0xffff;
114 static inline int raid5_dec_bi_phys_segments(struct bio *bio)
116 --bio->bi_phys_segments;
117 return raid5_bi_phys_segments(bio);
120 static inline int raid5_dec_bi_hw_segments(struct bio *bio)
122 unsigned short val = raid5_bi_hw_segments(bio);
124 --val;
125 bio->bi_phys_segments = (val << 16) | raid5_bi_phys_segments(bio);
126 return val;
129 static inline void raid5_set_bi_hw_segments(struct bio *bio, unsigned int cnt)
131 bio->bi_phys_segments = raid5_bi_phys_segments(bio) | (cnt << 16);
134 /* Find first data disk in a raid6 stripe */
135 static inline int raid6_d0(struct stripe_head *sh)
137 if (sh->ddf_layout)
138 /* ddf always start from first device */
139 return 0;
140 /* md starts just after Q block */
141 if (sh->qd_idx == sh->disks - 1)
142 return 0;
143 else
144 return sh->qd_idx + 1;
146 static inline int raid6_next_disk(int disk, int raid_disks)
148 disk++;
149 return (disk < raid_disks) ? disk : 0;
152 /* When walking through the disks in a raid5, starting at raid6_d0,
153 * We need to map each disk to a 'slot', where the data disks are slot
154 * 0 .. raid_disks-3, the parity disk is raid_disks-2 and the Q disk
155 * is raid_disks-1. This help does that mapping.
157 static int raid6_idx_to_slot(int idx, struct stripe_head *sh,
158 int *count, int syndrome_disks)
160 int slot = *count;
162 if (sh->ddf_layout)
163 (*count)++;
164 if (idx == sh->pd_idx)
165 return syndrome_disks;
166 if (idx == sh->qd_idx)
167 return syndrome_disks + 1;
168 if (!sh->ddf_layout)
169 (*count)++;
170 return slot;
173 static void return_io(struct bio *return_bi)
175 struct bio *bi = return_bi;
176 while (bi) {
178 return_bi = bi->bi_next;
179 bi->bi_next = NULL;
180 bi->bi_size = 0;
181 bio_endio(bi, 0);
182 bi = return_bi;
186 static void print_raid5_conf (raid5_conf_t *conf);
188 static int stripe_operations_active(struct stripe_head *sh)
190 return sh->check_state || sh->reconstruct_state ||
191 test_bit(STRIPE_BIOFILL_RUN, &sh->state) ||
192 test_bit(STRIPE_COMPUTE_RUN, &sh->state);
195 static void __release_stripe(raid5_conf_t *conf, struct stripe_head *sh)
197 if (atomic_dec_and_test(&sh->count)) {
198 BUG_ON(!list_empty(&sh->lru));
199 BUG_ON(atomic_read(&conf->active_stripes)==0);
200 if (test_bit(STRIPE_HANDLE, &sh->state)) {
201 if (test_bit(STRIPE_DELAYED, &sh->state))
202 list_add_tail(&sh->lru, &conf->delayed_list);
203 else if (test_bit(STRIPE_BIT_DELAY, &sh->state) &&
204 sh->bm_seq - conf->seq_write > 0)
205 list_add_tail(&sh->lru, &conf->bitmap_list);
206 else {
207 clear_bit(STRIPE_BIT_DELAY, &sh->state);
208 list_add_tail(&sh->lru, &conf->handle_list);
210 md_wakeup_thread(conf->mddev->thread);
211 } else {
212 BUG_ON(stripe_operations_active(sh));
213 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
214 atomic_dec(&conf->preread_active_stripes);
215 if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD)
216 md_wakeup_thread(conf->mddev->thread);
218 atomic_dec(&conf->active_stripes);
219 if (!test_bit(STRIPE_EXPANDING, &sh->state)) {
220 list_add_tail(&sh->lru, &conf->inactive_list);
221 wake_up(&conf->wait_for_stripe);
222 if (conf->retry_read_aligned)
223 md_wakeup_thread(conf->mddev->thread);
229 static void release_stripe(struct stripe_head *sh)
231 raid5_conf_t *conf = sh->raid_conf;
232 unsigned long flags;
234 spin_lock_irqsave(&conf->device_lock, flags);
235 __release_stripe(conf, sh);
236 spin_unlock_irqrestore(&conf->device_lock, flags);
239 static inline void remove_hash(struct stripe_head *sh)
241 pr_debug("remove_hash(), stripe %llu\n",
242 (unsigned long long)sh->sector);
244 hlist_del_init(&sh->hash);
247 static inline void insert_hash(raid5_conf_t *conf, struct stripe_head *sh)
249 struct hlist_head *hp = stripe_hash(conf, sh->sector);
251 pr_debug("insert_hash(), stripe %llu\n",
252 (unsigned long long)sh->sector);
254 CHECK_DEVLOCK();
255 hlist_add_head(&sh->hash, hp);
259 /* find an idle stripe, make sure it is unhashed, and return it. */
260 static struct stripe_head *get_free_stripe(raid5_conf_t *conf)
262 struct stripe_head *sh = NULL;
263 struct list_head *first;
265 CHECK_DEVLOCK();
266 if (list_empty(&conf->inactive_list))
267 goto out;
268 first = conf->inactive_list.next;
269 sh = list_entry(first, struct stripe_head, lru);
270 list_del_init(first);
271 remove_hash(sh);
272 atomic_inc(&conf->active_stripes);
273 out:
274 return sh;
277 static void shrink_buffers(struct stripe_head *sh)
279 struct page *p;
280 int i;
281 int num = sh->raid_conf->pool_size;
283 for (i = 0; i < num ; i++) {
284 p = sh->dev[i].page;
285 if (!p)
286 continue;
287 sh->dev[i].page = NULL;
288 put_page(p);
292 static int grow_buffers(struct stripe_head *sh)
294 int i;
295 int num = sh->raid_conf->pool_size;
297 for (i = 0; i < num; i++) {
298 struct page *page;
300 if (!(page = alloc_page(GFP_KERNEL))) {
301 return 1;
303 sh->dev[i].page = page;
305 return 0;
308 static void raid5_build_block(struct stripe_head *sh, int i, int previous);
309 static void stripe_set_idx(sector_t stripe, raid5_conf_t *conf, int previous,
310 struct stripe_head *sh);
312 static void init_stripe(struct stripe_head *sh, sector_t sector, int previous)
314 raid5_conf_t *conf = sh->raid_conf;
315 int i;
317 BUG_ON(atomic_read(&sh->count) != 0);
318 BUG_ON(test_bit(STRIPE_HANDLE, &sh->state));
319 BUG_ON(stripe_operations_active(sh));
321 CHECK_DEVLOCK();
322 pr_debug("init_stripe called, stripe %llu\n",
323 (unsigned long long)sh->sector);
325 remove_hash(sh);
327 sh->generation = conf->generation - previous;
328 sh->disks = previous ? conf->previous_raid_disks : conf->raid_disks;
329 sh->sector = sector;
330 stripe_set_idx(sector, conf, previous, sh);
331 sh->state = 0;
334 for (i = sh->disks; i--; ) {
335 struct r5dev *dev = &sh->dev[i];
337 if (dev->toread || dev->read || dev->towrite || dev->written ||
338 test_bit(R5_LOCKED, &dev->flags)) {
339 printk(KERN_ERR "sector=%llx i=%d %p %p %p %p %d\n",
340 (unsigned long long)sh->sector, i, dev->toread,
341 dev->read, dev->towrite, dev->written,
342 test_bit(R5_LOCKED, &dev->flags));
343 WARN_ON(1);
345 dev->flags = 0;
346 raid5_build_block(sh, i, previous);
348 insert_hash(conf, sh);
351 static struct stripe_head *__find_stripe(raid5_conf_t *conf, sector_t sector,
352 short generation)
354 struct stripe_head *sh;
355 struct hlist_node *hn;
357 CHECK_DEVLOCK();
358 pr_debug("__find_stripe, sector %llu\n", (unsigned long long)sector);
359 hlist_for_each_entry(sh, hn, stripe_hash(conf, sector), hash)
360 if (sh->sector == sector && sh->generation == generation)
361 return sh;
362 pr_debug("__stripe %llu not in cache\n", (unsigned long long)sector);
363 return NULL;
367 * Need to check if array has failed when deciding whether to:
368 * - start an array
369 * - remove non-faulty devices
370 * - add a spare
371 * - allow a reshape
372 * This determination is simple when no reshape is happening.
373 * However if there is a reshape, we need to carefully check
374 * both the before and after sections.
375 * This is because some failed devices may only affect one
376 * of the two sections, and some non-in_sync devices may
377 * be insync in the section most affected by failed devices.
379 static int has_failed(raid5_conf_t *conf)
381 int degraded;
382 int i;
383 if (conf->mddev->reshape_position == MaxSector)
384 return conf->mddev->degraded > conf->max_degraded;
386 rcu_read_lock();
387 degraded = 0;
388 for (i = 0; i < conf->previous_raid_disks; i++) {
389 mdk_rdev_t *rdev = rcu_dereference(conf->disks[i].rdev);
390 if (!rdev || test_bit(Faulty, &rdev->flags))
391 degraded++;
392 else if (test_bit(In_sync, &rdev->flags))
394 else
395 /* not in-sync or faulty.
396 * If the reshape increases the number of devices,
397 * this is being recovered by the reshape, so
398 * this 'previous' section is not in_sync.
399 * If the number of devices is being reduced however,
400 * the device can only be part of the array if
401 * we are reverting a reshape, so this section will
402 * be in-sync.
404 if (conf->raid_disks >= conf->previous_raid_disks)
405 degraded++;
407 rcu_read_unlock();
408 if (degraded > conf->max_degraded)
409 return 1;
410 rcu_read_lock();
411 degraded = 0;
412 for (i = 0; i < conf->raid_disks; i++) {
413 mdk_rdev_t *rdev = rcu_dereference(conf->disks[i].rdev);
414 if (!rdev || test_bit(Faulty, &rdev->flags))
415 degraded++;
416 else if (test_bit(In_sync, &rdev->flags))
418 else
419 /* not in-sync or faulty.
420 * If reshape increases the number of devices, this
421 * section has already been recovered, else it
422 * almost certainly hasn't.
424 if (conf->raid_disks <= conf->previous_raid_disks)
425 degraded++;
427 rcu_read_unlock();
428 if (degraded > conf->max_degraded)
429 return 1;
430 return 0;
433 static struct stripe_head *
434 get_active_stripe(raid5_conf_t *conf, sector_t sector,
435 int previous, int noblock, int noquiesce)
437 struct stripe_head *sh;
439 pr_debug("get_stripe, sector %llu\n", (unsigned long long)sector);
441 spin_lock_irq(&conf->device_lock);
443 do {
444 wait_event_lock_irq(conf->wait_for_stripe,
445 conf->quiesce == 0 || noquiesce,
446 conf->device_lock, /* nothing */);
447 sh = __find_stripe(conf, sector, conf->generation - previous);
448 if (!sh) {
449 if (!conf->inactive_blocked)
450 sh = get_free_stripe(conf);
451 if (noblock && sh == NULL)
452 break;
453 if (!sh) {
454 conf->inactive_blocked = 1;
455 wait_event_lock_irq(conf->wait_for_stripe,
456 !list_empty(&conf->inactive_list) &&
457 (atomic_read(&conf->active_stripes)
458 < (conf->max_nr_stripes *3/4)
459 || !conf->inactive_blocked),
460 conf->device_lock,
462 conf->inactive_blocked = 0;
463 } else
464 init_stripe(sh, sector, previous);
465 } else {
466 if (atomic_read(&sh->count)) {
467 BUG_ON(!list_empty(&sh->lru)
468 && !test_bit(STRIPE_EXPANDING, &sh->state));
469 } else {
470 if (!test_bit(STRIPE_HANDLE, &sh->state))
471 atomic_inc(&conf->active_stripes);
472 if (list_empty(&sh->lru) &&
473 !test_bit(STRIPE_EXPANDING, &sh->state))
474 BUG();
475 list_del_init(&sh->lru);
478 } while (sh == NULL);
480 if (sh)
481 atomic_inc(&sh->count);
483 spin_unlock_irq(&conf->device_lock);
484 return sh;
487 static void
488 raid5_end_read_request(struct bio *bi, int error);
489 static void
490 raid5_end_write_request(struct bio *bi, int error);
492 static void ops_run_io(struct stripe_head *sh, struct stripe_head_state *s)
494 raid5_conf_t *conf = sh->raid_conf;
495 int i, disks = sh->disks;
497 might_sleep();
499 for (i = disks; i--; ) {
500 int rw;
501 struct bio *bi;
502 mdk_rdev_t *rdev;
503 if (test_and_clear_bit(R5_Wantwrite, &sh->dev[i].flags)) {
504 if (test_and_clear_bit(R5_WantFUA, &sh->dev[i].flags))
505 rw = WRITE_FUA;
506 else
507 rw = WRITE;
508 } else if (test_and_clear_bit(R5_Wantread, &sh->dev[i].flags))
509 rw = READ;
510 else
511 continue;
513 bi = &sh->dev[i].req;
515 bi->bi_rw = rw;
516 if (rw & WRITE)
517 bi->bi_end_io = raid5_end_write_request;
518 else
519 bi->bi_end_io = raid5_end_read_request;
521 rcu_read_lock();
522 rdev = rcu_dereference(conf->disks[i].rdev);
523 if (rdev && test_bit(Faulty, &rdev->flags))
524 rdev = NULL;
525 if (rdev)
526 atomic_inc(&rdev->nr_pending);
527 rcu_read_unlock();
529 /* We have already checked bad blocks for reads. Now
530 * need to check for writes.
532 while ((rw & WRITE) && rdev &&
533 test_bit(WriteErrorSeen, &rdev->flags)) {
534 sector_t first_bad;
535 int bad_sectors;
536 int bad = is_badblock(rdev, sh->sector, STRIPE_SECTORS,
537 &first_bad, &bad_sectors);
538 if (!bad)
539 break;
541 if (bad < 0) {
542 set_bit(BlockedBadBlocks, &rdev->flags);
543 if (!conf->mddev->external &&
544 conf->mddev->flags) {
545 /* It is very unlikely, but we might
546 * still need to write out the
547 * bad block log - better give it
548 * a chance*/
549 md_check_recovery(conf->mddev);
551 md_wait_for_blocked_rdev(rdev, conf->mddev);
552 } else {
553 /* Acknowledged bad block - skip the write */
554 rdev_dec_pending(rdev, conf->mddev);
555 rdev = NULL;
559 if (rdev) {
560 if (s->syncing || s->expanding || s->expanded)
561 md_sync_acct(rdev->bdev, STRIPE_SECTORS);
563 set_bit(STRIPE_IO_STARTED, &sh->state);
565 bi->bi_bdev = rdev->bdev;
566 pr_debug("%s: for %llu schedule op %ld on disc %d\n",
567 __func__, (unsigned long long)sh->sector,
568 bi->bi_rw, i);
569 atomic_inc(&sh->count);
570 bi->bi_sector = sh->sector + rdev->data_offset;
571 bi->bi_flags = 1 << BIO_UPTODATE;
572 bi->bi_vcnt = 1;
573 bi->bi_max_vecs = 1;
574 bi->bi_idx = 0;
575 bi->bi_io_vec = &sh->dev[i].vec;
576 bi->bi_io_vec[0].bv_len = STRIPE_SIZE;
577 bi->bi_io_vec[0].bv_offset = 0;
578 bi->bi_size = STRIPE_SIZE;
579 bi->bi_next = NULL;
580 generic_make_request(bi);
581 } else {
582 if (rw & WRITE)
583 set_bit(STRIPE_DEGRADED, &sh->state);
584 pr_debug("skip op %ld on disc %d for sector %llu\n",
585 bi->bi_rw, i, (unsigned long long)sh->sector);
586 clear_bit(R5_LOCKED, &sh->dev[i].flags);
587 set_bit(STRIPE_HANDLE, &sh->state);
592 static struct dma_async_tx_descriptor *
593 async_copy_data(int frombio, struct bio *bio, struct page *page,
594 sector_t sector, struct dma_async_tx_descriptor *tx)
596 struct bio_vec *bvl;
597 struct page *bio_page;
598 int i;
599 int page_offset;
600 struct async_submit_ctl submit;
601 enum async_tx_flags flags = 0;
603 if (bio->bi_sector >= sector)
604 page_offset = (signed)(bio->bi_sector - sector) * 512;
605 else
606 page_offset = (signed)(sector - bio->bi_sector) * -512;
608 if (frombio)
609 flags |= ASYNC_TX_FENCE;
610 init_async_submit(&submit, flags, tx, NULL, NULL, NULL);
612 bio_for_each_segment(bvl, bio, i) {
613 int len = bvl->bv_len;
614 int clen;
615 int b_offset = 0;
617 if (page_offset < 0) {
618 b_offset = -page_offset;
619 page_offset += b_offset;
620 len -= b_offset;
623 if (len > 0 && page_offset + len > STRIPE_SIZE)
624 clen = STRIPE_SIZE - page_offset;
625 else
626 clen = len;
628 if (clen > 0) {
629 b_offset += bvl->bv_offset;
630 bio_page = bvl->bv_page;
631 if (frombio)
632 tx = async_memcpy(page, bio_page, page_offset,
633 b_offset, clen, &submit);
634 else
635 tx = async_memcpy(bio_page, page, b_offset,
636 page_offset, clen, &submit);
638 /* chain the operations */
639 submit.depend_tx = tx;
641 if (clen < len) /* hit end of page */
642 break;
643 page_offset += len;
646 return tx;
649 static void ops_complete_biofill(void *stripe_head_ref)
651 struct stripe_head *sh = stripe_head_ref;
652 struct bio *return_bi = NULL;
653 raid5_conf_t *conf = sh->raid_conf;
654 int i;
656 pr_debug("%s: stripe %llu\n", __func__,
657 (unsigned long long)sh->sector);
659 /* clear completed biofills */
660 spin_lock_irq(&conf->device_lock);
661 for (i = sh->disks; i--; ) {
662 struct r5dev *dev = &sh->dev[i];
664 /* acknowledge completion of a biofill operation */
665 /* and check if we need to reply to a read request,
666 * new R5_Wantfill requests are held off until
667 * !STRIPE_BIOFILL_RUN
669 if (test_and_clear_bit(R5_Wantfill, &dev->flags)) {
670 struct bio *rbi, *rbi2;
672 BUG_ON(!dev->read);
673 rbi = dev->read;
674 dev->read = NULL;
675 while (rbi && rbi->bi_sector <
676 dev->sector + STRIPE_SECTORS) {
677 rbi2 = r5_next_bio(rbi, dev->sector);
678 if (!raid5_dec_bi_phys_segments(rbi)) {
679 rbi->bi_next = return_bi;
680 return_bi = rbi;
682 rbi = rbi2;
686 spin_unlock_irq(&conf->device_lock);
687 clear_bit(STRIPE_BIOFILL_RUN, &sh->state);
689 return_io(return_bi);
691 set_bit(STRIPE_HANDLE, &sh->state);
692 release_stripe(sh);
695 static void ops_run_biofill(struct stripe_head *sh)
697 struct dma_async_tx_descriptor *tx = NULL;
698 raid5_conf_t *conf = sh->raid_conf;
699 struct async_submit_ctl submit;
700 int i;
702 pr_debug("%s: stripe %llu\n", __func__,
703 (unsigned long long)sh->sector);
705 for (i = sh->disks; i--; ) {
706 struct r5dev *dev = &sh->dev[i];
707 if (test_bit(R5_Wantfill, &dev->flags)) {
708 struct bio *rbi;
709 spin_lock_irq(&conf->device_lock);
710 dev->read = rbi = dev->toread;
711 dev->toread = NULL;
712 spin_unlock_irq(&conf->device_lock);
713 while (rbi && rbi->bi_sector <
714 dev->sector + STRIPE_SECTORS) {
715 tx = async_copy_data(0, rbi, dev->page,
716 dev->sector, tx);
717 rbi = r5_next_bio(rbi, dev->sector);
722 atomic_inc(&sh->count);
723 init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_biofill, sh, NULL);
724 async_trigger_callback(&submit);
727 static void mark_target_uptodate(struct stripe_head *sh, int target)
729 struct r5dev *tgt;
731 if (target < 0)
732 return;
734 tgt = &sh->dev[target];
735 set_bit(R5_UPTODATE, &tgt->flags);
736 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
737 clear_bit(R5_Wantcompute, &tgt->flags);
740 static void ops_complete_compute(void *stripe_head_ref)
742 struct stripe_head *sh = stripe_head_ref;
744 pr_debug("%s: stripe %llu\n", __func__,
745 (unsigned long long)sh->sector);
747 /* mark the computed target(s) as uptodate */
748 mark_target_uptodate(sh, sh->ops.target);
749 mark_target_uptodate(sh, sh->ops.target2);
751 clear_bit(STRIPE_COMPUTE_RUN, &sh->state);
752 if (sh->check_state == check_state_compute_run)
753 sh->check_state = check_state_compute_result;
754 set_bit(STRIPE_HANDLE, &sh->state);
755 release_stripe(sh);
758 /* return a pointer to the address conversion region of the scribble buffer */
759 static addr_conv_t *to_addr_conv(struct stripe_head *sh,
760 struct raid5_percpu *percpu)
762 return percpu->scribble + sizeof(struct page *) * (sh->disks + 2);
765 static struct dma_async_tx_descriptor *
766 ops_run_compute5(struct stripe_head *sh, struct raid5_percpu *percpu)
768 int disks = sh->disks;
769 struct page **xor_srcs = percpu->scribble;
770 int target = sh->ops.target;
771 struct r5dev *tgt = &sh->dev[target];
772 struct page *xor_dest = tgt->page;
773 int count = 0;
774 struct dma_async_tx_descriptor *tx;
775 struct async_submit_ctl submit;
776 int i;
778 pr_debug("%s: stripe %llu block: %d\n",
779 __func__, (unsigned long long)sh->sector, target);
780 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
782 for (i = disks; i--; )
783 if (i != target)
784 xor_srcs[count++] = sh->dev[i].page;
786 atomic_inc(&sh->count);
788 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST, NULL,
789 ops_complete_compute, sh, to_addr_conv(sh, percpu));
790 if (unlikely(count == 1))
791 tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
792 else
793 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
795 return tx;
798 /* set_syndrome_sources - populate source buffers for gen_syndrome
799 * @srcs - (struct page *) array of size sh->disks
800 * @sh - stripe_head to parse
802 * Populates srcs in proper layout order for the stripe and returns the
803 * 'count' of sources to be used in a call to async_gen_syndrome. The P
804 * destination buffer is recorded in srcs[count] and the Q destination
805 * is recorded in srcs[count+1]].
807 static int set_syndrome_sources(struct page **srcs, struct stripe_head *sh)
809 int disks = sh->disks;
810 int syndrome_disks = sh->ddf_layout ? disks : (disks - 2);
811 int d0_idx = raid6_d0(sh);
812 int count;
813 int i;
815 for (i = 0; i < disks; i++)
816 srcs[i] = NULL;
818 count = 0;
819 i = d0_idx;
820 do {
821 int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
823 srcs[slot] = sh->dev[i].page;
824 i = raid6_next_disk(i, disks);
825 } while (i != d0_idx);
827 return syndrome_disks;
830 static struct dma_async_tx_descriptor *
831 ops_run_compute6_1(struct stripe_head *sh, struct raid5_percpu *percpu)
833 int disks = sh->disks;
834 struct page **blocks = percpu->scribble;
835 int target;
836 int qd_idx = sh->qd_idx;
837 struct dma_async_tx_descriptor *tx;
838 struct async_submit_ctl submit;
839 struct r5dev *tgt;
840 struct page *dest;
841 int i;
842 int count;
844 if (sh->ops.target < 0)
845 target = sh->ops.target2;
846 else if (sh->ops.target2 < 0)
847 target = sh->ops.target;
848 else
849 /* we should only have one valid target */
850 BUG();
851 BUG_ON(target < 0);
852 pr_debug("%s: stripe %llu block: %d\n",
853 __func__, (unsigned long long)sh->sector, target);
855 tgt = &sh->dev[target];
856 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
857 dest = tgt->page;
859 atomic_inc(&sh->count);
861 if (target == qd_idx) {
862 count = set_syndrome_sources(blocks, sh);
863 blocks[count] = NULL; /* regenerating p is not necessary */
864 BUG_ON(blocks[count+1] != dest); /* q should already be set */
865 init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
866 ops_complete_compute, sh,
867 to_addr_conv(sh, percpu));
868 tx = async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE, &submit);
869 } else {
870 /* Compute any data- or p-drive using XOR */
871 count = 0;
872 for (i = disks; i-- ; ) {
873 if (i == target || i == qd_idx)
874 continue;
875 blocks[count++] = sh->dev[i].page;
878 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
879 NULL, ops_complete_compute, sh,
880 to_addr_conv(sh, percpu));
881 tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE, &submit);
884 return tx;
887 static struct dma_async_tx_descriptor *
888 ops_run_compute6_2(struct stripe_head *sh, struct raid5_percpu *percpu)
890 int i, count, disks = sh->disks;
891 int syndrome_disks = sh->ddf_layout ? disks : disks-2;
892 int d0_idx = raid6_d0(sh);
893 int faila = -1, failb = -1;
894 int target = sh->ops.target;
895 int target2 = sh->ops.target2;
896 struct r5dev *tgt = &sh->dev[target];
897 struct r5dev *tgt2 = &sh->dev[target2];
898 struct dma_async_tx_descriptor *tx;
899 struct page **blocks = percpu->scribble;
900 struct async_submit_ctl submit;
902 pr_debug("%s: stripe %llu block1: %d block2: %d\n",
903 __func__, (unsigned long long)sh->sector, target, target2);
904 BUG_ON(target < 0 || target2 < 0);
905 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
906 BUG_ON(!test_bit(R5_Wantcompute, &tgt2->flags));
908 /* we need to open-code set_syndrome_sources to handle the
909 * slot number conversion for 'faila' and 'failb'
911 for (i = 0; i < disks ; i++)
912 blocks[i] = NULL;
913 count = 0;
914 i = d0_idx;
915 do {
916 int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
918 blocks[slot] = sh->dev[i].page;
920 if (i == target)
921 faila = slot;
922 if (i == target2)
923 failb = slot;
924 i = raid6_next_disk(i, disks);
925 } while (i != d0_idx);
927 BUG_ON(faila == failb);
928 if (failb < faila)
929 swap(faila, failb);
930 pr_debug("%s: stripe: %llu faila: %d failb: %d\n",
931 __func__, (unsigned long long)sh->sector, faila, failb);
933 atomic_inc(&sh->count);
935 if (failb == syndrome_disks+1) {
936 /* Q disk is one of the missing disks */
937 if (faila == syndrome_disks) {
938 /* Missing P+Q, just recompute */
939 init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
940 ops_complete_compute, sh,
941 to_addr_conv(sh, percpu));
942 return async_gen_syndrome(blocks, 0, syndrome_disks+2,
943 STRIPE_SIZE, &submit);
944 } else {
945 struct page *dest;
946 int data_target;
947 int qd_idx = sh->qd_idx;
949 /* Missing D+Q: recompute D from P, then recompute Q */
950 if (target == qd_idx)
951 data_target = target2;
952 else
953 data_target = target;
955 count = 0;
956 for (i = disks; i-- ; ) {
957 if (i == data_target || i == qd_idx)
958 continue;
959 blocks[count++] = sh->dev[i].page;
961 dest = sh->dev[data_target].page;
962 init_async_submit(&submit,
963 ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
964 NULL, NULL, NULL,
965 to_addr_conv(sh, percpu));
966 tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE,
967 &submit);
969 count = set_syndrome_sources(blocks, sh);
970 init_async_submit(&submit, ASYNC_TX_FENCE, tx,
971 ops_complete_compute, sh,
972 to_addr_conv(sh, percpu));
973 return async_gen_syndrome(blocks, 0, count+2,
974 STRIPE_SIZE, &submit);
976 } else {
977 init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
978 ops_complete_compute, sh,
979 to_addr_conv(sh, percpu));
980 if (failb == syndrome_disks) {
981 /* We're missing D+P. */
982 return async_raid6_datap_recov(syndrome_disks+2,
983 STRIPE_SIZE, faila,
984 blocks, &submit);
985 } else {
986 /* We're missing D+D. */
987 return async_raid6_2data_recov(syndrome_disks+2,
988 STRIPE_SIZE, faila, failb,
989 blocks, &submit);
995 static void ops_complete_prexor(void *stripe_head_ref)
997 struct stripe_head *sh = stripe_head_ref;
999 pr_debug("%s: stripe %llu\n", __func__,
1000 (unsigned long long)sh->sector);
1003 static struct dma_async_tx_descriptor *
1004 ops_run_prexor(struct stripe_head *sh, struct raid5_percpu *percpu,
1005 struct dma_async_tx_descriptor *tx)
1007 int disks = sh->disks;
1008 struct page **xor_srcs = percpu->scribble;
1009 int count = 0, pd_idx = sh->pd_idx, i;
1010 struct async_submit_ctl submit;
1012 /* existing parity data subtracted */
1013 struct page *xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
1015 pr_debug("%s: stripe %llu\n", __func__,
1016 (unsigned long long)sh->sector);
1018 for (i = disks; i--; ) {
1019 struct r5dev *dev = &sh->dev[i];
1020 /* Only process blocks that are known to be uptodate */
1021 if (test_bit(R5_Wantdrain, &dev->flags))
1022 xor_srcs[count++] = dev->page;
1025 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_DROP_DST, tx,
1026 ops_complete_prexor, sh, to_addr_conv(sh, percpu));
1027 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1029 return tx;
1032 static struct dma_async_tx_descriptor *
1033 ops_run_biodrain(struct stripe_head *sh, struct dma_async_tx_descriptor *tx)
1035 int disks = sh->disks;
1036 int i;
1038 pr_debug("%s: stripe %llu\n", __func__,
1039 (unsigned long long)sh->sector);
1041 for (i = disks; i--; ) {
1042 struct r5dev *dev = &sh->dev[i];
1043 struct bio *chosen;
1045 if (test_and_clear_bit(R5_Wantdrain, &dev->flags)) {
1046 struct bio *wbi;
1048 spin_lock_irq(&sh->raid_conf->device_lock);
1049 chosen = dev->towrite;
1050 dev->towrite = NULL;
1051 BUG_ON(dev->written);
1052 wbi = dev->written = chosen;
1053 spin_unlock_irq(&sh->raid_conf->device_lock);
1055 while (wbi && wbi->bi_sector <
1056 dev->sector + STRIPE_SECTORS) {
1057 if (wbi->bi_rw & REQ_FUA)
1058 set_bit(R5_WantFUA, &dev->flags);
1059 tx = async_copy_data(1, wbi, dev->page,
1060 dev->sector, tx);
1061 wbi = r5_next_bio(wbi, dev->sector);
1066 return tx;
1069 static void ops_complete_reconstruct(void *stripe_head_ref)
1071 struct stripe_head *sh = stripe_head_ref;
1072 int disks = sh->disks;
1073 int pd_idx = sh->pd_idx;
1074 int qd_idx = sh->qd_idx;
1075 int i;
1076 bool fua = false;
1078 pr_debug("%s: stripe %llu\n", __func__,
1079 (unsigned long long)sh->sector);
1081 for (i = disks; i--; )
1082 fua |= test_bit(R5_WantFUA, &sh->dev[i].flags);
1084 for (i = disks; i--; ) {
1085 struct r5dev *dev = &sh->dev[i];
1087 if (dev->written || i == pd_idx || i == qd_idx) {
1088 set_bit(R5_UPTODATE, &dev->flags);
1089 if (fua)
1090 set_bit(R5_WantFUA, &dev->flags);
1094 if (sh->reconstruct_state == reconstruct_state_drain_run)
1095 sh->reconstruct_state = reconstruct_state_drain_result;
1096 else if (sh->reconstruct_state == reconstruct_state_prexor_drain_run)
1097 sh->reconstruct_state = reconstruct_state_prexor_drain_result;
1098 else {
1099 BUG_ON(sh->reconstruct_state != reconstruct_state_run);
1100 sh->reconstruct_state = reconstruct_state_result;
1103 set_bit(STRIPE_HANDLE, &sh->state);
1104 release_stripe(sh);
1107 static void
1108 ops_run_reconstruct5(struct stripe_head *sh, struct raid5_percpu *percpu,
1109 struct dma_async_tx_descriptor *tx)
1111 int disks = sh->disks;
1112 struct page **xor_srcs = percpu->scribble;
1113 struct async_submit_ctl submit;
1114 int count = 0, pd_idx = sh->pd_idx, i;
1115 struct page *xor_dest;
1116 int prexor = 0;
1117 unsigned long flags;
1119 pr_debug("%s: stripe %llu\n", __func__,
1120 (unsigned long long)sh->sector);
1122 /* check if prexor is active which means only process blocks
1123 * that are part of a read-modify-write (written)
1125 if (sh->reconstruct_state == reconstruct_state_prexor_drain_run) {
1126 prexor = 1;
1127 xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
1128 for (i = disks; i--; ) {
1129 struct r5dev *dev = &sh->dev[i];
1130 if (dev->written)
1131 xor_srcs[count++] = dev->page;
1133 } else {
1134 xor_dest = sh->dev[pd_idx].page;
1135 for (i = disks; i--; ) {
1136 struct r5dev *dev = &sh->dev[i];
1137 if (i != pd_idx)
1138 xor_srcs[count++] = dev->page;
1142 /* 1/ if we prexor'd then the dest is reused as a source
1143 * 2/ if we did not prexor then we are redoing the parity
1144 * set ASYNC_TX_XOR_DROP_DST and ASYNC_TX_XOR_ZERO_DST
1145 * for the synchronous xor case
1147 flags = ASYNC_TX_ACK |
1148 (prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST);
1150 atomic_inc(&sh->count);
1152 init_async_submit(&submit, flags, tx, ops_complete_reconstruct, sh,
1153 to_addr_conv(sh, percpu));
1154 if (unlikely(count == 1))
1155 tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
1156 else
1157 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1160 static void
1161 ops_run_reconstruct6(struct stripe_head *sh, struct raid5_percpu *percpu,
1162 struct dma_async_tx_descriptor *tx)
1164 struct async_submit_ctl submit;
1165 struct page **blocks = percpu->scribble;
1166 int count;
1168 pr_debug("%s: stripe %llu\n", __func__, (unsigned long long)sh->sector);
1170 count = set_syndrome_sources(blocks, sh);
1172 atomic_inc(&sh->count);
1174 init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_reconstruct,
1175 sh, to_addr_conv(sh, percpu));
1176 async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE, &submit);
1179 static void ops_complete_check(void *stripe_head_ref)
1181 struct stripe_head *sh = stripe_head_ref;
1183 pr_debug("%s: stripe %llu\n", __func__,
1184 (unsigned long long)sh->sector);
1186 sh->check_state = check_state_check_result;
1187 set_bit(STRIPE_HANDLE, &sh->state);
1188 release_stripe(sh);
1191 static void ops_run_check_p(struct stripe_head *sh, struct raid5_percpu *percpu)
1193 int disks = sh->disks;
1194 int pd_idx = sh->pd_idx;
1195 int qd_idx = sh->qd_idx;
1196 struct page *xor_dest;
1197 struct page **xor_srcs = percpu->scribble;
1198 struct dma_async_tx_descriptor *tx;
1199 struct async_submit_ctl submit;
1200 int count;
1201 int i;
1203 pr_debug("%s: stripe %llu\n", __func__,
1204 (unsigned long long)sh->sector);
1206 count = 0;
1207 xor_dest = sh->dev[pd_idx].page;
1208 xor_srcs[count++] = xor_dest;
1209 for (i = disks; i--; ) {
1210 if (i == pd_idx || i == qd_idx)
1211 continue;
1212 xor_srcs[count++] = sh->dev[i].page;
1215 init_async_submit(&submit, 0, NULL, NULL, NULL,
1216 to_addr_conv(sh, percpu));
1217 tx = async_xor_val(xor_dest, xor_srcs, 0, count, STRIPE_SIZE,
1218 &sh->ops.zero_sum_result, &submit);
1220 atomic_inc(&sh->count);
1221 init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_check, sh, NULL);
1222 tx = async_trigger_callback(&submit);
1225 static void ops_run_check_pq(struct stripe_head *sh, struct raid5_percpu *percpu, int checkp)
1227 struct page **srcs = percpu->scribble;
1228 struct async_submit_ctl submit;
1229 int count;
1231 pr_debug("%s: stripe %llu checkp: %d\n", __func__,
1232 (unsigned long long)sh->sector, checkp);
1234 count = set_syndrome_sources(srcs, sh);
1235 if (!checkp)
1236 srcs[count] = NULL;
1238 atomic_inc(&sh->count);
1239 init_async_submit(&submit, ASYNC_TX_ACK, NULL, ops_complete_check,
1240 sh, to_addr_conv(sh, percpu));
1241 async_syndrome_val(srcs, 0, count+2, STRIPE_SIZE,
1242 &sh->ops.zero_sum_result, percpu->spare_page, &submit);
1245 static void __raid_run_ops(struct stripe_head *sh, unsigned long ops_request)
1247 int overlap_clear = 0, i, disks = sh->disks;
1248 struct dma_async_tx_descriptor *tx = NULL;
1249 raid5_conf_t *conf = sh->raid_conf;
1250 int level = conf->level;
1251 struct raid5_percpu *percpu;
1252 unsigned long cpu;
1254 cpu = get_cpu();
1255 percpu = per_cpu_ptr(conf->percpu, cpu);
1256 if (test_bit(STRIPE_OP_BIOFILL, &ops_request)) {
1257 ops_run_biofill(sh);
1258 overlap_clear++;
1261 if (test_bit(STRIPE_OP_COMPUTE_BLK, &ops_request)) {
1262 if (level < 6)
1263 tx = ops_run_compute5(sh, percpu);
1264 else {
1265 if (sh->ops.target2 < 0 || sh->ops.target < 0)
1266 tx = ops_run_compute6_1(sh, percpu);
1267 else
1268 tx = ops_run_compute6_2(sh, percpu);
1270 /* terminate the chain if reconstruct is not set to be run */
1271 if (tx && !test_bit(STRIPE_OP_RECONSTRUCT, &ops_request))
1272 async_tx_ack(tx);
1275 if (test_bit(STRIPE_OP_PREXOR, &ops_request))
1276 tx = ops_run_prexor(sh, percpu, tx);
1278 if (test_bit(STRIPE_OP_BIODRAIN, &ops_request)) {
1279 tx = ops_run_biodrain(sh, tx);
1280 overlap_clear++;
1283 if (test_bit(STRIPE_OP_RECONSTRUCT, &ops_request)) {
1284 if (level < 6)
1285 ops_run_reconstruct5(sh, percpu, tx);
1286 else
1287 ops_run_reconstruct6(sh, percpu, tx);
1290 if (test_bit(STRIPE_OP_CHECK, &ops_request)) {
1291 if (sh->check_state == check_state_run)
1292 ops_run_check_p(sh, percpu);
1293 else if (sh->check_state == check_state_run_q)
1294 ops_run_check_pq(sh, percpu, 0);
1295 else if (sh->check_state == check_state_run_pq)
1296 ops_run_check_pq(sh, percpu, 1);
1297 else
1298 BUG();
1301 if (overlap_clear)
1302 for (i = disks; i--; ) {
1303 struct r5dev *dev = &sh->dev[i];
1304 if (test_and_clear_bit(R5_Overlap, &dev->flags))
1305 wake_up(&sh->raid_conf->wait_for_overlap);
1307 put_cpu();
1310 #ifdef CONFIG_MULTICORE_RAID456
1311 static void async_run_ops(void *param, async_cookie_t cookie)
1313 struct stripe_head *sh = param;
1314 unsigned long ops_request = sh->ops.request;
1316 clear_bit_unlock(STRIPE_OPS_REQ_PENDING, &sh->state);
1317 wake_up(&sh->ops.wait_for_ops);
1319 __raid_run_ops(sh, ops_request);
1320 release_stripe(sh);
1323 static void raid_run_ops(struct stripe_head *sh, unsigned long ops_request)
1325 /* since handle_stripe can be called outside of raid5d context
1326 * we need to ensure sh->ops.request is de-staged before another
1327 * request arrives
1329 wait_event(sh->ops.wait_for_ops,
1330 !test_and_set_bit_lock(STRIPE_OPS_REQ_PENDING, &sh->state));
1331 sh->ops.request = ops_request;
1333 atomic_inc(&sh->count);
1334 async_schedule(async_run_ops, sh);
1336 #else
1337 #define raid_run_ops __raid_run_ops
1338 #endif
1340 static int grow_one_stripe(raid5_conf_t *conf)
1342 struct stripe_head *sh;
1343 sh = kmem_cache_zalloc(conf->slab_cache, GFP_KERNEL);
1344 if (!sh)
1345 return 0;
1347 sh->raid_conf = conf;
1348 #ifdef CONFIG_MULTICORE_RAID456
1349 init_waitqueue_head(&sh->ops.wait_for_ops);
1350 #endif
1352 if (grow_buffers(sh)) {
1353 shrink_buffers(sh);
1354 kmem_cache_free(conf->slab_cache, sh);
1355 return 0;
1357 /* we just created an active stripe so... */
1358 atomic_set(&sh->count, 1);
1359 atomic_inc(&conf->active_stripes);
1360 INIT_LIST_HEAD(&sh->lru);
1361 release_stripe(sh);
1362 return 1;
1365 static int grow_stripes(raid5_conf_t *conf, int num)
1367 struct kmem_cache *sc;
1368 int devs = max(conf->raid_disks, conf->previous_raid_disks);
1370 if (conf->mddev->gendisk)
1371 sprintf(conf->cache_name[0],
1372 "raid%d-%s", conf->level, mdname(conf->mddev));
1373 else
1374 sprintf(conf->cache_name[0],
1375 "raid%d-%p", conf->level, conf->mddev);
1376 sprintf(conf->cache_name[1], "%s-alt", conf->cache_name[0]);
1378 conf->active_name = 0;
1379 sc = kmem_cache_create(conf->cache_name[conf->active_name],
1380 sizeof(struct stripe_head)+(devs-1)*sizeof(struct r5dev),
1381 0, 0, NULL);
1382 if (!sc)
1383 return 1;
1384 conf->slab_cache = sc;
1385 conf->pool_size = devs;
1386 while (num--)
1387 if (!grow_one_stripe(conf))
1388 return 1;
1389 return 0;
1393 * scribble_len - return the required size of the scribble region
1394 * @num - total number of disks in the array
1396 * The size must be enough to contain:
1397 * 1/ a struct page pointer for each device in the array +2
1398 * 2/ room to convert each entry in (1) to its corresponding dma
1399 * (dma_map_page()) or page (page_address()) address.
1401 * Note: the +2 is for the destination buffers of the ddf/raid6 case where we
1402 * calculate over all devices (not just the data blocks), using zeros in place
1403 * of the P and Q blocks.
1405 static size_t scribble_len(int num)
1407 size_t len;
1409 len = sizeof(struct page *) * (num+2) + sizeof(addr_conv_t) * (num+2);
1411 return len;
1414 static int resize_stripes(raid5_conf_t *conf, int newsize)
1416 /* Make all the stripes able to hold 'newsize' devices.
1417 * New slots in each stripe get 'page' set to a new page.
1419 * This happens in stages:
1420 * 1/ create a new kmem_cache and allocate the required number of
1421 * stripe_heads.
1422 * 2/ gather all the old stripe_heads and tranfer the pages across
1423 * to the new stripe_heads. This will have the side effect of
1424 * freezing the array as once all stripe_heads have been collected,
1425 * no IO will be possible. Old stripe heads are freed once their
1426 * pages have been transferred over, and the old kmem_cache is
1427 * freed when all stripes are done.
1428 * 3/ reallocate conf->disks to be suitable bigger. If this fails,
1429 * we simple return a failre status - no need to clean anything up.
1430 * 4/ allocate new pages for the new slots in the new stripe_heads.
1431 * If this fails, we don't bother trying the shrink the
1432 * stripe_heads down again, we just leave them as they are.
1433 * As each stripe_head is processed the new one is released into
1434 * active service.
1436 * Once step2 is started, we cannot afford to wait for a write,
1437 * so we use GFP_NOIO allocations.
1439 struct stripe_head *osh, *nsh;
1440 LIST_HEAD(newstripes);
1441 struct disk_info *ndisks;
1442 unsigned long cpu;
1443 int err;
1444 struct kmem_cache *sc;
1445 int i;
1447 if (newsize <= conf->pool_size)
1448 return 0; /* never bother to shrink */
1450 err = md_allow_write(conf->mddev);
1451 if (err)
1452 return err;
1454 /* Step 1 */
1455 sc = kmem_cache_create(conf->cache_name[1-conf->active_name],
1456 sizeof(struct stripe_head)+(newsize-1)*sizeof(struct r5dev),
1457 0, 0, NULL);
1458 if (!sc)
1459 return -ENOMEM;
1461 for (i = conf->max_nr_stripes; i; i--) {
1462 nsh = kmem_cache_zalloc(sc, GFP_KERNEL);
1463 if (!nsh)
1464 break;
1466 nsh->raid_conf = conf;
1467 #ifdef CONFIG_MULTICORE_RAID456
1468 init_waitqueue_head(&nsh->ops.wait_for_ops);
1469 #endif
1471 list_add(&nsh->lru, &newstripes);
1473 if (i) {
1474 /* didn't get enough, give up */
1475 while (!list_empty(&newstripes)) {
1476 nsh = list_entry(newstripes.next, struct stripe_head, lru);
1477 list_del(&nsh->lru);
1478 kmem_cache_free(sc, nsh);
1480 kmem_cache_destroy(sc);
1481 return -ENOMEM;
1483 /* Step 2 - Must use GFP_NOIO now.
1484 * OK, we have enough stripes, start collecting inactive
1485 * stripes and copying them over
1487 list_for_each_entry(nsh, &newstripes, lru) {
1488 spin_lock_irq(&conf->device_lock);
1489 wait_event_lock_irq(conf->wait_for_stripe,
1490 !list_empty(&conf->inactive_list),
1491 conf->device_lock,
1493 osh = get_free_stripe(conf);
1494 spin_unlock_irq(&conf->device_lock);
1495 atomic_set(&nsh->count, 1);
1496 for(i=0; i<conf->pool_size; i++)
1497 nsh->dev[i].page = osh->dev[i].page;
1498 for( ; i<newsize; i++)
1499 nsh->dev[i].page = NULL;
1500 kmem_cache_free(conf->slab_cache, osh);
1502 kmem_cache_destroy(conf->slab_cache);
1504 /* Step 3.
1505 * At this point, we are holding all the stripes so the array
1506 * is completely stalled, so now is a good time to resize
1507 * conf->disks and the scribble region
1509 ndisks = kzalloc(newsize * sizeof(struct disk_info), GFP_NOIO);
1510 if (ndisks) {
1511 for (i=0; i<conf->raid_disks; i++)
1512 ndisks[i] = conf->disks[i];
1513 kfree(conf->disks);
1514 conf->disks = ndisks;
1515 } else
1516 err = -ENOMEM;
1518 get_online_cpus();
1519 conf->scribble_len = scribble_len(newsize);
1520 for_each_present_cpu(cpu) {
1521 struct raid5_percpu *percpu;
1522 void *scribble;
1524 percpu = per_cpu_ptr(conf->percpu, cpu);
1525 scribble = kmalloc(conf->scribble_len, GFP_NOIO);
1527 if (scribble) {
1528 kfree(percpu->scribble);
1529 percpu->scribble = scribble;
1530 } else {
1531 err = -ENOMEM;
1532 break;
1535 put_online_cpus();
1537 /* Step 4, return new stripes to service */
1538 while(!list_empty(&newstripes)) {
1539 nsh = list_entry(newstripes.next, struct stripe_head, lru);
1540 list_del_init(&nsh->lru);
1542 for (i=conf->raid_disks; i < newsize; i++)
1543 if (nsh->dev[i].page == NULL) {
1544 struct page *p = alloc_page(GFP_NOIO);
1545 nsh->dev[i].page = p;
1546 if (!p)
1547 err = -ENOMEM;
1549 release_stripe(nsh);
1551 /* critical section pass, GFP_NOIO no longer needed */
1553 conf->slab_cache = sc;
1554 conf->active_name = 1-conf->active_name;
1555 conf->pool_size = newsize;
1556 return err;
1559 static int drop_one_stripe(raid5_conf_t *conf)
1561 struct stripe_head *sh;
1563 spin_lock_irq(&conf->device_lock);
1564 sh = get_free_stripe(conf);
1565 spin_unlock_irq(&conf->device_lock);
1566 if (!sh)
1567 return 0;
1568 BUG_ON(atomic_read(&sh->count));
1569 shrink_buffers(sh);
1570 kmem_cache_free(conf->slab_cache, sh);
1571 atomic_dec(&conf->active_stripes);
1572 return 1;
1575 static void shrink_stripes(raid5_conf_t *conf)
1577 while (drop_one_stripe(conf))
1580 if (conf->slab_cache)
1581 kmem_cache_destroy(conf->slab_cache);
1582 conf->slab_cache = NULL;
1585 static void raid5_end_read_request(struct bio * bi, int error)
1587 struct stripe_head *sh = bi->bi_private;
1588 raid5_conf_t *conf = sh->raid_conf;
1589 int disks = sh->disks, i;
1590 int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
1591 char b[BDEVNAME_SIZE];
1592 mdk_rdev_t *rdev;
1595 for (i=0 ; i<disks; i++)
1596 if (bi == &sh->dev[i].req)
1597 break;
1599 pr_debug("end_read_request %llu/%d, count: %d, uptodate %d.\n",
1600 (unsigned long long)sh->sector, i, atomic_read(&sh->count),
1601 uptodate);
1602 if (i == disks) {
1603 BUG();
1604 return;
1607 if (uptodate) {
1608 set_bit(R5_UPTODATE, &sh->dev[i].flags);
1609 if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
1610 rdev = conf->disks[i].rdev;
1611 printk_ratelimited(
1612 KERN_INFO
1613 "md/raid:%s: read error corrected"
1614 " (%lu sectors at %llu on %s)\n",
1615 mdname(conf->mddev), STRIPE_SECTORS,
1616 (unsigned long long)(sh->sector
1617 + rdev->data_offset),
1618 bdevname(rdev->bdev, b));
1619 atomic_add(STRIPE_SECTORS, &rdev->corrected_errors);
1620 clear_bit(R5_ReadError, &sh->dev[i].flags);
1621 clear_bit(R5_ReWrite, &sh->dev[i].flags);
1623 if (atomic_read(&conf->disks[i].rdev->read_errors))
1624 atomic_set(&conf->disks[i].rdev->read_errors, 0);
1625 } else {
1626 const char *bdn = bdevname(conf->disks[i].rdev->bdev, b);
1627 int retry = 0;
1628 rdev = conf->disks[i].rdev;
1630 clear_bit(R5_UPTODATE, &sh->dev[i].flags);
1631 atomic_inc(&rdev->read_errors);
1632 if (conf->mddev->degraded >= conf->max_degraded)
1633 printk_ratelimited(
1634 KERN_WARNING
1635 "md/raid:%s: read error not correctable "
1636 "(sector %llu on %s).\n",
1637 mdname(conf->mddev),
1638 (unsigned long long)(sh->sector
1639 + rdev->data_offset),
1640 bdn);
1641 else if (test_bit(R5_ReWrite, &sh->dev[i].flags))
1642 /* Oh, no!!! */
1643 printk_ratelimited(
1644 KERN_WARNING
1645 "md/raid:%s: read error NOT corrected!! "
1646 "(sector %llu on %s).\n",
1647 mdname(conf->mddev),
1648 (unsigned long long)(sh->sector
1649 + rdev->data_offset),
1650 bdn);
1651 else if (atomic_read(&rdev->read_errors)
1652 > conf->max_nr_stripes)
1653 printk(KERN_WARNING
1654 "md/raid:%s: Too many read errors, failing device %s.\n",
1655 mdname(conf->mddev), bdn);
1656 else
1657 retry = 1;
1658 if (retry)
1659 set_bit(R5_ReadError, &sh->dev[i].flags);
1660 else {
1661 clear_bit(R5_ReadError, &sh->dev[i].flags);
1662 clear_bit(R5_ReWrite, &sh->dev[i].flags);
1663 md_error(conf->mddev, rdev);
1666 rdev_dec_pending(conf->disks[i].rdev, conf->mddev);
1667 clear_bit(R5_LOCKED, &sh->dev[i].flags);
1668 set_bit(STRIPE_HANDLE, &sh->state);
1669 release_stripe(sh);
1672 static void raid5_end_write_request(struct bio *bi, int error)
1674 struct stripe_head *sh = bi->bi_private;
1675 raid5_conf_t *conf = sh->raid_conf;
1676 int disks = sh->disks, i;
1677 int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
1678 sector_t first_bad;
1679 int bad_sectors;
1681 for (i=0 ; i<disks; i++)
1682 if (bi == &sh->dev[i].req)
1683 break;
1685 pr_debug("end_write_request %llu/%d, count %d, uptodate: %d.\n",
1686 (unsigned long long)sh->sector, i, atomic_read(&sh->count),
1687 uptodate);
1688 if (i == disks) {
1689 BUG();
1690 return;
1693 if (!uptodate) {
1694 set_bit(WriteErrorSeen, &conf->disks[i].rdev->flags);
1695 set_bit(R5_WriteError, &sh->dev[i].flags);
1696 } else if (is_badblock(conf->disks[i].rdev, sh->sector, STRIPE_SECTORS,
1697 &first_bad, &bad_sectors))
1698 set_bit(R5_MadeGood, &sh->dev[i].flags);
1700 rdev_dec_pending(conf->disks[i].rdev, conf->mddev);
1702 clear_bit(R5_LOCKED, &sh->dev[i].flags);
1703 set_bit(STRIPE_HANDLE, &sh->state);
1704 release_stripe(sh);
1708 static sector_t compute_blocknr(struct stripe_head *sh, int i, int previous);
1710 static void raid5_build_block(struct stripe_head *sh, int i, int previous)
1712 struct r5dev *dev = &sh->dev[i];
1714 bio_init(&dev->req);
1715 dev->req.bi_io_vec = &dev->vec;
1716 dev->req.bi_vcnt++;
1717 dev->req.bi_max_vecs++;
1718 dev->vec.bv_page = dev->page;
1719 dev->vec.bv_len = STRIPE_SIZE;
1720 dev->vec.bv_offset = 0;
1722 dev->req.bi_sector = sh->sector;
1723 dev->req.bi_private = sh;
1725 dev->flags = 0;
1726 dev->sector = compute_blocknr(sh, i, previous);
1729 static void error(mddev_t *mddev, mdk_rdev_t *rdev)
1731 char b[BDEVNAME_SIZE];
1732 raid5_conf_t *conf = mddev->private;
1733 pr_debug("raid456: error called\n");
1735 if (test_and_clear_bit(In_sync, &rdev->flags)) {
1736 unsigned long flags;
1737 spin_lock_irqsave(&conf->device_lock, flags);
1738 mddev->degraded++;
1739 spin_unlock_irqrestore(&conf->device_lock, flags);
1741 * if recovery was running, make sure it aborts.
1743 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1745 set_bit(Blocked, &rdev->flags);
1746 set_bit(Faulty, &rdev->flags);
1747 set_bit(MD_CHANGE_DEVS, &mddev->flags);
1748 printk(KERN_ALERT
1749 "md/raid:%s: Disk failure on %s, disabling device.\n"
1750 "md/raid:%s: Operation continuing on %d devices.\n",
1751 mdname(mddev),
1752 bdevname(rdev->bdev, b),
1753 mdname(mddev),
1754 conf->raid_disks - mddev->degraded);
1758 * Input: a 'big' sector number,
1759 * Output: index of the data and parity disk, and the sector # in them.
1761 static sector_t raid5_compute_sector(raid5_conf_t *conf, sector_t r_sector,
1762 int previous, int *dd_idx,
1763 struct stripe_head *sh)
1765 sector_t stripe, stripe2;
1766 sector_t chunk_number;
1767 unsigned int chunk_offset;
1768 int pd_idx, qd_idx;
1769 int ddf_layout = 0;
1770 sector_t new_sector;
1771 int algorithm = previous ? conf->prev_algo
1772 : conf->algorithm;
1773 int sectors_per_chunk = previous ? conf->prev_chunk_sectors
1774 : conf->chunk_sectors;
1775 int raid_disks = previous ? conf->previous_raid_disks
1776 : conf->raid_disks;
1777 int data_disks = raid_disks - conf->max_degraded;
1779 /* First compute the information on this sector */
1782 * Compute the chunk number and the sector offset inside the chunk
1784 chunk_offset = sector_div(r_sector, sectors_per_chunk);
1785 chunk_number = r_sector;
1788 * Compute the stripe number
1790 stripe = chunk_number;
1791 *dd_idx = sector_div(stripe, data_disks);
1792 stripe2 = stripe;
1794 * Select the parity disk based on the user selected algorithm.
1796 pd_idx = qd_idx = -1;
1797 switch(conf->level) {
1798 case 4:
1799 pd_idx = data_disks;
1800 break;
1801 case 5:
1802 switch (algorithm) {
1803 case ALGORITHM_LEFT_ASYMMETRIC:
1804 pd_idx = data_disks - sector_div(stripe2, raid_disks);
1805 if (*dd_idx >= pd_idx)
1806 (*dd_idx)++;
1807 break;
1808 case ALGORITHM_RIGHT_ASYMMETRIC:
1809 pd_idx = sector_div(stripe2, raid_disks);
1810 if (*dd_idx >= pd_idx)
1811 (*dd_idx)++;
1812 break;
1813 case ALGORITHM_LEFT_SYMMETRIC:
1814 pd_idx = data_disks - sector_div(stripe2, raid_disks);
1815 *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
1816 break;
1817 case ALGORITHM_RIGHT_SYMMETRIC:
1818 pd_idx = sector_div(stripe2, raid_disks);
1819 *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
1820 break;
1821 case ALGORITHM_PARITY_0:
1822 pd_idx = 0;
1823 (*dd_idx)++;
1824 break;
1825 case ALGORITHM_PARITY_N:
1826 pd_idx = data_disks;
1827 break;
1828 default:
1829 BUG();
1831 break;
1832 case 6:
1834 switch (algorithm) {
1835 case ALGORITHM_LEFT_ASYMMETRIC:
1836 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
1837 qd_idx = pd_idx + 1;
1838 if (pd_idx == raid_disks-1) {
1839 (*dd_idx)++; /* Q D D D P */
1840 qd_idx = 0;
1841 } else if (*dd_idx >= pd_idx)
1842 (*dd_idx) += 2; /* D D P Q D */
1843 break;
1844 case ALGORITHM_RIGHT_ASYMMETRIC:
1845 pd_idx = sector_div(stripe2, raid_disks);
1846 qd_idx = pd_idx + 1;
1847 if (pd_idx == raid_disks-1) {
1848 (*dd_idx)++; /* Q D D D P */
1849 qd_idx = 0;
1850 } else if (*dd_idx >= pd_idx)
1851 (*dd_idx) += 2; /* D D P Q D */
1852 break;
1853 case ALGORITHM_LEFT_SYMMETRIC:
1854 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
1855 qd_idx = (pd_idx + 1) % raid_disks;
1856 *dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
1857 break;
1858 case ALGORITHM_RIGHT_SYMMETRIC:
1859 pd_idx = sector_div(stripe2, raid_disks);
1860 qd_idx = (pd_idx + 1) % raid_disks;
1861 *dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
1862 break;
1864 case ALGORITHM_PARITY_0:
1865 pd_idx = 0;
1866 qd_idx = 1;
1867 (*dd_idx) += 2;
1868 break;
1869 case ALGORITHM_PARITY_N:
1870 pd_idx = data_disks;
1871 qd_idx = data_disks + 1;
1872 break;
1874 case ALGORITHM_ROTATING_ZERO_RESTART:
1875 /* Exactly the same as RIGHT_ASYMMETRIC, but or
1876 * of blocks for computing Q is different.
1878 pd_idx = sector_div(stripe2, raid_disks);
1879 qd_idx = pd_idx + 1;
1880 if (pd_idx == raid_disks-1) {
1881 (*dd_idx)++; /* Q D D D P */
1882 qd_idx = 0;
1883 } else if (*dd_idx >= pd_idx)
1884 (*dd_idx) += 2; /* D D P Q D */
1885 ddf_layout = 1;
1886 break;
1888 case ALGORITHM_ROTATING_N_RESTART:
1889 /* Same a left_asymmetric, by first stripe is
1890 * D D D P Q rather than
1891 * Q D D D P
1893 stripe2 += 1;
1894 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
1895 qd_idx = pd_idx + 1;
1896 if (pd_idx == raid_disks-1) {
1897 (*dd_idx)++; /* Q D D D P */
1898 qd_idx = 0;
1899 } else if (*dd_idx >= pd_idx)
1900 (*dd_idx) += 2; /* D D P Q D */
1901 ddf_layout = 1;
1902 break;
1904 case ALGORITHM_ROTATING_N_CONTINUE:
1905 /* Same as left_symmetric but Q is before P */
1906 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
1907 qd_idx = (pd_idx + raid_disks - 1) % raid_disks;
1908 *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
1909 ddf_layout = 1;
1910 break;
1912 case ALGORITHM_LEFT_ASYMMETRIC_6:
1913 /* RAID5 left_asymmetric, with Q on last device */
1914 pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
1915 if (*dd_idx >= pd_idx)
1916 (*dd_idx)++;
1917 qd_idx = raid_disks - 1;
1918 break;
1920 case ALGORITHM_RIGHT_ASYMMETRIC_6:
1921 pd_idx = sector_div(stripe2, raid_disks-1);
1922 if (*dd_idx >= pd_idx)
1923 (*dd_idx)++;
1924 qd_idx = raid_disks - 1;
1925 break;
1927 case ALGORITHM_LEFT_SYMMETRIC_6:
1928 pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
1929 *dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
1930 qd_idx = raid_disks - 1;
1931 break;
1933 case ALGORITHM_RIGHT_SYMMETRIC_6:
1934 pd_idx = sector_div(stripe2, raid_disks-1);
1935 *dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
1936 qd_idx = raid_disks - 1;
1937 break;
1939 case ALGORITHM_PARITY_0_6:
1940 pd_idx = 0;
1941 (*dd_idx)++;
1942 qd_idx = raid_disks - 1;
1943 break;
1945 default:
1946 BUG();
1948 break;
1951 if (sh) {
1952 sh->pd_idx = pd_idx;
1953 sh->qd_idx = qd_idx;
1954 sh->ddf_layout = ddf_layout;
1957 * Finally, compute the new sector number
1959 new_sector = (sector_t)stripe * sectors_per_chunk + chunk_offset;
1960 return new_sector;
1964 static sector_t compute_blocknr(struct stripe_head *sh, int i, int previous)
1966 raid5_conf_t *conf = sh->raid_conf;
1967 int raid_disks = sh->disks;
1968 int data_disks = raid_disks - conf->max_degraded;
1969 sector_t new_sector = sh->sector, check;
1970 int sectors_per_chunk = previous ? conf->prev_chunk_sectors
1971 : conf->chunk_sectors;
1972 int algorithm = previous ? conf->prev_algo
1973 : conf->algorithm;
1974 sector_t stripe;
1975 int chunk_offset;
1976 sector_t chunk_number;
1977 int dummy1, dd_idx = i;
1978 sector_t r_sector;
1979 struct stripe_head sh2;
1982 chunk_offset = sector_div(new_sector, sectors_per_chunk);
1983 stripe = new_sector;
1985 if (i == sh->pd_idx)
1986 return 0;
1987 switch(conf->level) {
1988 case 4: break;
1989 case 5:
1990 switch (algorithm) {
1991 case ALGORITHM_LEFT_ASYMMETRIC:
1992 case ALGORITHM_RIGHT_ASYMMETRIC:
1993 if (i > sh->pd_idx)
1994 i--;
1995 break;
1996 case ALGORITHM_LEFT_SYMMETRIC:
1997 case ALGORITHM_RIGHT_SYMMETRIC:
1998 if (i < sh->pd_idx)
1999 i += raid_disks;
2000 i -= (sh->pd_idx + 1);
2001 break;
2002 case ALGORITHM_PARITY_0:
2003 i -= 1;
2004 break;
2005 case ALGORITHM_PARITY_N:
2006 break;
2007 default:
2008 BUG();
2010 break;
2011 case 6:
2012 if (i == sh->qd_idx)
2013 return 0; /* It is the Q disk */
2014 switch (algorithm) {
2015 case ALGORITHM_LEFT_ASYMMETRIC:
2016 case ALGORITHM_RIGHT_ASYMMETRIC:
2017 case ALGORITHM_ROTATING_ZERO_RESTART:
2018 case ALGORITHM_ROTATING_N_RESTART:
2019 if (sh->pd_idx == raid_disks-1)
2020 i--; /* Q D D D P */
2021 else if (i > sh->pd_idx)
2022 i -= 2; /* D D P Q D */
2023 break;
2024 case ALGORITHM_LEFT_SYMMETRIC:
2025 case ALGORITHM_RIGHT_SYMMETRIC:
2026 if (sh->pd_idx == raid_disks-1)
2027 i--; /* Q D D D P */
2028 else {
2029 /* D D P Q D */
2030 if (i < sh->pd_idx)
2031 i += raid_disks;
2032 i -= (sh->pd_idx + 2);
2034 break;
2035 case ALGORITHM_PARITY_0:
2036 i -= 2;
2037 break;
2038 case ALGORITHM_PARITY_N:
2039 break;
2040 case ALGORITHM_ROTATING_N_CONTINUE:
2041 /* Like left_symmetric, but P is before Q */
2042 if (sh->pd_idx == 0)
2043 i--; /* P D D D Q */
2044 else {
2045 /* D D Q P D */
2046 if (i < sh->pd_idx)
2047 i += raid_disks;
2048 i -= (sh->pd_idx + 1);
2050 break;
2051 case ALGORITHM_LEFT_ASYMMETRIC_6:
2052 case ALGORITHM_RIGHT_ASYMMETRIC_6:
2053 if (i > sh->pd_idx)
2054 i--;
2055 break;
2056 case ALGORITHM_LEFT_SYMMETRIC_6:
2057 case ALGORITHM_RIGHT_SYMMETRIC_6:
2058 if (i < sh->pd_idx)
2059 i += data_disks + 1;
2060 i -= (sh->pd_idx + 1);
2061 break;
2062 case ALGORITHM_PARITY_0_6:
2063 i -= 1;
2064 break;
2065 default:
2066 BUG();
2068 break;
2071 chunk_number = stripe * data_disks + i;
2072 r_sector = chunk_number * sectors_per_chunk + chunk_offset;
2074 check = raid5_compute_sector(conf, r_sector,
2075 previous, &dummy1, &sh2);
2076 if (check != sh->sector || dummy1 != dd_idx || sh2.pd_idx != sh->pd_idx
2077 || sh2.qd_idx != sh->qd_idx) {
2078 printk(KERN_ERR "md/raid:%s: compute_blocknr: map not correct\n",
2079 mdname(conf->mddev));
2080 return 0;
2082 return r_sector;
2086 static void
2087 schedule_reconstruction(struct stripe_head *sh, struct stripe_head_state *s,
2088 int rcw, int expand)
2090 int i, pd_idx = sh->pd_idx, disks = sh->disks;
2091 raid5_conf_t *conf = sh->raid_conf;
2092 int level = conf->level;
2094 if (rcw) {
2095 /* if we are not expanding this is a proper write request, and
2096 * there will be bios with new data to be drained into the
2097 * stripe cache
2099 if (!expand) {
2100 sh->reconstruct_state = reconstruct_state_drain_run;
2101 set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
2102 } else
2103 sh->reconstruct_state = reconstruct_state_run;
2105 set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
2107 for (i = disks; i--; ) {
2108 struct r5dev *dev = &sh->dev[i];
2110 if (dev->towrite) {
2111 set_bit(R5_LOCKED, &dev->flags);
2112 set_bit(R5_Wantdrain, &dev->flags);
2113 if (!expand)
2114 clear_bit(R5_UPTODATE, &dev->flags);
2115 s->locked++;
2118 if (s->locked + conf->max_degraded == disks)
2119 if (!test_and_set_bit(STRIPE_FULL_WRITE, &sh->state))
2120 atomic_inc(&conf->pending_full_writes);
2121 } else {
2122 BUG_ON(level == 6);
2123 BUG_ON(!(test_bit(R5_UPTODATE, &sh->dev[pd_idx].flags) ||
2124 test_bit(R5_Wantcompute, &sh->dev[pd_idx].flags)));
2126 sh->reconstruct_state = reconstruct_state_prexor_drain_run;
2127 set_bit(STRIPE_OP_PREXOR, &s->ops_request);
2128 set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
2129 set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
2131 for (i = disks; i--; ) {
2132 struct r5dev *dev = &sh->dev[i];
2133 if (i == pd_idx)
2134 continue;
2136 if (dev->towrite &&
2137 (test_bit(R5_UPTODATE, &dev->flags) ||
2138 test_bit(R5_Wantcompute, &dev->flags))) {
2139 set_bit(R5_Wantdrain, &dev->flags);
2140 set_bit(R5_LOCKED, &dev->flags);
2141 clear_bit(R5_UPTODATE, &dev->flags);
2142 s->locked++;
2147 /* keep the parity disk(s) locked while asynchronous operations
2148 * are in flight
2150 set_bit(R5_LOCKED, &sh->dev[pd_idx].flags);
2151 clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
2152 s->locked++;
2154 if (level == 6) {
2155 int qd_idx = sh->qd_idx;
2156 struct r5dev *dev = &sh->dev[qd_idx];
2158 set_bit(R5_LOCKED, &dev->flags);
2159 clear_bit(R5_UPTODATE, &dev->flags);
2160 s->locked++;
2163 pr_debug("%s: stripe %llu locked: %d ops_request: %lx\n",
2164 __func__, (unsigned long long)sh->sector,
2165 s->locked, s->ops_request);
2169 * Each stripe/dev can have one or more bion attached.
2170 * toread/towrite point to the first in a chain.
2171 * The bi_next chain must be in order.
2173 static int add_stripe_bio(struct stripe_head *sh, struct bio *bi, int dd_idx, int forwrite)
2175 struct bio **bip;
2176 raid5_conf_t *conf = sh->raid_conf;
2177 int firstwrite=0;
2179 pr_debug("adding bi b#%llu to stripe s#%llu\n",
2180 (unsigned long long)bi->bi_sector,
2181 (unsigned long long)sh->sector);
2184 spin_lock_irq(&conf->device_lock);
2185 if (forwrite) {
2186 bip = &sh->dev[dd_idx].towrite;
2187 if (*bip == NULL && sh->dev[dd_idx].written == NULL)
2188 firstwrite = 1;
2189 } else
2190 bip = &sh->dev[dd_idx].toread;
2191 while (*bip && (*bip)->bi_sector < bi->bi_sector) {
2192 if ((*bip)->bi_sector + ((*bip)->bi_size >> 9) > bi->bi_sector)
2193 goto overlap;
2194 bip = & (*bip)->bi_next;
2196 if (*bip && (*bip)->bi_sector < bi->bi_sector + ((bi->bi_size)>>9))
2197 goto overlap;
2199 BUG_ON(*bip && bi->bi_next && (*bip) != bi->bi_next);
2200 if (*bip)
2201 bi->bi_next = *bip;
2202 *bip = bi;
2203 bi->bi_phys_segments++;
2205 if (forwrite) {
2206 /* check if page is covered */
2207 sector_t sector = sh->dev[dd_idx].sector;
2208 for (bi=sh->dev[dd_idx].towrite;
2209 sector < sh->dev[dd_idx].sector + STRIPE_SECTORS &&
2210 bi && bi->bi_sector <= sector;
2211 bi = r5_next_bio(bi, sh->dev[dd_idx].sector)) {
2212 if (bi->bi_sector + (bi->bi_size>>9) >= sector)
2213 sector = bi->bi_sector + (bi->bi_size>>9);
2215 if (sector >= sh->dev[dd_idx].sector + STRIPE_SECTORS)
2216 set_bit(R5_OVERWRITE, &sh->dev[dd_idx].flags);
2218 spin_unlock_irq(&conf->device_lock);
2220 pr_debug("added bi b#%llu to stripe s#%llu, disk %d.\n",
2221 (unsigned long long)(*bip)->bi_sector,
2222 (unsigned long long)sh->sector, dd_idx);
2224 if (conf->mddev->bitmap && firstwrite) {
2225 bitmap_startwrite(conf->mddev->bitmap, sh->sector,
2226 STRIPE_SECTORS, 0);
2227 sh->bm_seq = conf->seq_flush+1;
2228 set_bit(STRIPE_BIT_DELAY, &sh->state);
2230 return 1;
2232 overlap:
2233 set_bit(R5_Overlap, &sh->dev[dd_idx].flags);
2234 spin_unlock_irq(&conf->device_lock);
2235 return 0;
2238 static void end_reshape(raid5_conf_t *conf);
2240 static void stripe_set_idx(sector_t stripe, raid5_conf_t *conf, int previous,
2241 struct stripe_head *sh)
2243 int sectors_per_chunk =
2244 previous ? conf->prev_chunk_sectors : conf->chunk_sectors;
2245 int dd_idx;
2246 int chunk_offset = sector_div(stripe, sectors_per_chunk);
2247 int disks = previous ? conf->previous_raid_disks : conf->raid_disks;
2249 raid5_compute_sector(conf,
2250 stripe * (disks - conf->max_degraded)
2251 *sectors_per_chunk + chunk_offset,
2252 previous,
2253 &dd_idx, sh);
2256 static void
2257 handle_failed_stripe(raid5_conf_t *conf, struct stripe_head *sh,
2258 struct stripe_head_state *s, int disks,
2259 struct bio **return_bi)
2261 int i;
2262 for (i = disks; i--; ) {
2263 struct bio *bi;
2264 int bitmap_end = 0;
2266 if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
2267 mdk_rdev_t *rdev;
2268 rcu_read_lock();
2269 rdev = rcu_dereference(conf->disks[i].rdev);
2270 if (rdev && test_bit(In_sync, &rdev->flags))
2271 atomic_inc(&rdev->nr_pending);
2272 else
2273 rdev = NULL;
2274 rcu_read_unlock();
2275 if (rdev) {
2276 if (!rdev_set_badblocks(
2277 rdev,
2278 sh->sector,
2279 STRIPE_SECTORS, 0))
2280 md_error(conf->mddev, rdev);
2281 rdev_dec_pending(rdev, conf->mddev);
2284 spin_lock_irq(&conf->device_lock);
2285 /* fail all writes first */
2286 bi = sh->dev[i].towrite;
2287 sh->dev[i].towrite = NULL;
2288 if (bi) {
2289 s->to_write--;
2290 bitmap_end = 1;
2293 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
2294 wake_up(&conf->wait_for_overlap);
2296 while (bi && bi->bi_sector <
2297 sh->dev[i].sector + STRIPE_SECTORS) {
2298 struct bio *nextbi = r5_next_bio(bi, sh->dev[i].sector);
2299 clear_bit(BIO_UPTODATE, &bi->bi_flags);
2300 if (!raid5_dec_bi_phys_segments(bi)) {
2301 md_write_end(conf->mddev);
2302 bi->bi_next = *return_bi;
2303 *return_bi = bi;
2305 bi = nextbi;
2307 /* and fail all 'written' */
2308 bi = sh->dev[i].written;
2309 sh->dev[i].written = NULL;
2310 if (bi) bitmap_end = 1;
2311 while (bi && bi->bi_sector <
2312 sh->dev[i].sector + STRIPE_SECTORS) {
2313 struct bio *bi2 = r5_next_bio(bi, sh->dev[i].sector);
2314 clear_bit(BIO_UPTODATE, &bi->bi_flags);
2315 if (!raid5_dec_bi_phys_segments(bi)) {
2316 md_write_end(conf->mddev);
2317 bi->bi_next = *return_bi;
2318 *return_bi = bi;
2320 bi = bi2;
2323 /* fail any reads if this device is non-operational and
2324 * the data has not reached the cache yet.
2326 if (!test_bit(R5_Wantfill, &sh->dev[i].flags) &&
2327 (!test_bit(R5_Insync, &sh->dev[i].flags) ||
2328 test_bit(R5_ReadError, &sh->dev[i].flags))) {
2329 bi = sh->dev[i].toread;
2330 sh->dev[i].toread = NULL;
2331 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
2332 wake_up(&conf->wait_for_overlap);
2333 if (bi) s->to_read--;
2334 while (bi && bi->bi_sector <
2335 sh->dev[i].sector + STRIPE_SECTORS) {
2336 struct bio *nextbi =
2337 r5_next_bio(bi, sh->dev[i].sector);
2338 clear_bit(BIO_UPTODATE, &bi->bi_flags);
2339 if (!raid5_dec_bi_phys_segments(bi)) {
2340 bi->bi_next = *return_bi;
2341 *return_bi = bi;
2343 bi = nextbi;
2346 spin_unlock_irq(&conf->device_lock);
2347 if (bitmap_end)
2348 bitmap_endwrite(conf->mddev->bitmap, sh->sector,
2349 STRIPE_SECTORS, 0, 0);
2350 /* If we were in the middle of a write the parity block might
2351 * still be locked - so just clear all R5_LOCKED flags
2353 clear_bit(R5_LOCKED, &sh->dev[i].flags);
2356 if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
2357 if (atomic_dec_and_test(&conf->pending_full_writes))
2358 md_wakeup_thread(conf->mddev->thread);
2361 static void
2362 handle_failed_sync(raid5_conf_t *conf, struct stripe_head *sh,
2363 struct stripe_head_state *s)
2365 int abort = 0;
2366 int i;
2368 md_done_sync(conf->mddev, STRIPE_SECTORS, 0);
2369 clear_bit(STRIPE_SYNCING, &sh->state);
2370 s->syncing = 0;
2371 /* There is nothing more to do for sync/check/repair.
2372 * For recover we need to record a bad block on all
2373 * non-sync devices, or abort the recovery
2375 if (!test_bit(MD_RECOVERY_RECOVER, &conf->mddev->recovery))
2376 return;
2377 /* During recovery devices cannot be removed, so locking and
2378 * refcounting of rdevs is not needed
2380 for (i = 0; i < conf->raid_disks; i++) {
2381 mdk_rdev_t *rdev = conf->disks[i].rdev;
2382 if (!rdev
2383 || test_bit(Faulty, &rdev->flags)
2384 || test_bit(In_sync, &rdev->flags))
2385 continue;
2386 if (!rdev_set_badblocks(rdev, sh->sector,
2387 STRIPE_SECTORS, 0))
2388 abort = 1;
2390 if (abort) {
2391 conf->recovery_disabled = conf->mddev->recovery_disabled;
2392 set_bit(MD_RECOVERY_INTR, &conf->mddev->recovery);
2396 /* fetch_block - checks the given member device to see if its data needs
2397 * to be read or computed to satisfy a request.
2399 * Returns 1 when no more member devices need to be checked, otherwise returns
2400 * 0 to tell the loop in handle_stripe_fill to continue
2402 static int fetch_block(struct stripe_head *sh, struct stripe_head_state *s,
2403 int disk_idx, int disks)
2405 struct r5dev *dev = &sh->dev[disk_idx];
2406 struct r5dev *fdev[2] = { &sh->dev[s->failed_num[0]],
2407 &sh->dev[s->failed_num[1]] };
2409 /* is the data in this block needed, and can we get it? */
2410 if (!test_bit(R5_LOCKED, &dev->flags) &&
2411 !test_bit(R5_UPTODATE, &dev->flags) &&
2412 (dev->toread ||
2413 (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags)) ||
2414 s->syncing || s->expanding ||
2415 (s->failed >= 1 && fdev[0]->toread) ||
2416 (s->failed >= 2 && fdev[1]->toread) ||
2417 (sh->raid_conf->level <= 5 && s->failed && fdev[0]->towrite &&
2418 !test_bit(R5_OVERWRITE, &fdev[0]->flags)) ||
2419 (sh->raid_conf->level == 6 && s->failed && s->to_write))) {
2420 /* we would like to get this block, possibly by computing it,
2421 * otherwise read it if the backing disk is insync
2423 BUG_ON(test_bit(R5_Wantcompute, &dev->flags));
2424 BUG_ON(test_bit(R5_Wantread, &dev->flags));
2425 if ((s->uptodate == disks - 1) &&
2426 (s->failed && (disk_idx == s->failed_num[0] ||
2427 disk_idx == s->failed_num[1]))) {
2428 /* have disk failed, and we're requested to fetch it;
2429 * do compute it
2431 pr_debug("Computing stripe %llu block %d\n",
2432 (unsigned long long)sh->sector, disk_idx);
2433 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
2434 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
2435 set_bit(R5_Wantcompute, &dev->flags);
2436 sh->ops.target = disk_idx;
2437 sh->ops.target2 = -1; /* no 2nd target */
2438 s->req_compute = 1;
2439 /* Careful: from this point on 'uptodate' is in the eye
2440 * of raid_run_ops which services 'compute' operations
2441 * before writes. R5_Wantcompute flags a block that will
2442 * be R5_UPTODATE by the time it is needed for a
2443 * subsequent operation.
2445 s->uptodate++;
2446 return 1;
2447 } else if (s->uptodate == disks-2 && s->failed >= 2) {
2448 /* Computing 2-failure is *very* expensive; only
2449 * do it if failed >= 2
2451 int other;
2452 for (other = disks; other--; ) {
2453 if (other == disk_idx)
2454 continue;
2455 if (!test_bit(R5_UPTODATE,
2456 &sh->dev[other].flags))
2457 break;
2459 BUG_ON(other < 0);
2460 pr_debug("Computing stripe %llu blocks %d,%d\n",
2461 (unsigned long long)sh->sector,
2462 disk_idx, other);
2463 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
2464 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
2465 set_bit(R5_Wantcompute, &sh->dev[disk_idx].flags);
2466 set_bit(R5_Wantcompute, &sh->dev[other].flags);
2467 sh->ops.target = disk_idx;
2468 sh->ops.target2 = other;
2469 s->uptodate += 2;
2470 s->req_compute = 1;
2471 return 1;
2472 } else if (test_bit(R5_Insync, &dev->flags)) {
2473 set_bit(R5_LOCKED, &dev->flags);
2474 set_bit(R5_Wantread, &dev->flags);
2475 s->locked++;
2476 pr_debug("Reading block %d (sync=%d)\n",
2477 disk_idx, s->syncing);
2481 return 0;
2485 * handle_stripe_fill - read or compute data to satisfy pending requests.
2487 static void handle_stripe_fill(struct stripe_head *sh,
2488 struct stripe_head_state *s,
2489 int disks)
2491 int i;
2493 /* look for blocks to read/compute, skip this if a compute
2494 * is already in flight, or if the stripe contents are in the
2495 * midst of changing due to a write
2497 if (!test_bit(STRIPE_COMPUTE_RUN, &sh->state) && !sh->check_state &&
2498 !sh->reconstruct_state)
2499 for (i = disks; i--; )
2500 if (fetch_block(sh, s, i, disks))
2501 break;
2502 set_bit(STRIPE_HANDLE, &sh->state);
2506 /* handle_stripe_clean_event
2507 * any written block on an uptodate or failed drive can be returned.
2508 * Note that if we 'wrote' to a failed drive, it will be UPTODATE, but
2509 * never LOCKED, so we don't need to test 'failed' directly.
2511 static void handle_stripe_clean_event(raid5_conf_t *conf,
2512 struct stripe_head *sh, int disks, struct bio **return_bi)
2514 int i;
2515 struct r5dev *dev;
2517 for (i = disks; i--; )
2518 if (sh->dev[i].written) {
2519 dev = &sh->dev[i];
2520 if (!test_bit(R5_LOCKED, &dev->flags) &&
2521 test_bit(R5_UPTODATE, &dev->flags)) {
2522 /* We can return any write requests */
2523 struct bio *wbi, *wbi2;
2524 int bitmap_end = 0;
2525 pr_debug("Return write for disc %d\n", i);
2526 spin_lock_irq(&conf->device_lock);
2527 wbi = dev->written;
2528 dev->written = NULL;
2529 while (wbi && wbi->bi_sector <
2530 dev->sector + STRIPE_SECTORS) {
2531 wbi2 = r5_next_bio(wbi, dev->sector);
2532 if (!raid5_dec_bi_phys_segments(wbi)) {
2533 md_write_end(conf->mddev);
2534 wbi->bi_next = *return_bi;
2535 *return_bi = wbi;
2537 wbi = wbi2;
2539 if (dev->towrite == NULL)
2540 bitmap_end = 1;
2541 spin_unlock_irq(&conf->device_lock);
2542 if (bitmap_end)
2543 bitmap_endwrite(conf->mddev->bitmap,
2544 sh->sector,
2545 STRIPE_SECTORS,
2546 !test_bit(STRIPE_DEGRADED, &sh->state),
2551 if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
2552 if (atomic_dec_and_test(&conf->pending_full_writes))
2553 md_wakeup_thread(conf->mddev->thread);
2556 static void handle_stripe_dirtying(raid5_conf_t *conf,
2557 struct stripe_head *sh,
2558 struct stripe_head_state *s,
2559 int disks)
2561 int rmw = 0, rcw = 0, i;
2562 if (conf->max_degraded == 2) {
2563 /* RAID6 requires 'rcw' in current implementation
2564 * Calculate the real rcw later - for now fake it
2565 * look like rcw is cheaper
2567 rcw = 1; rmw = 2;
2568 } else for (i = disks; i--; ) {
2569 /* would I have to read this buffer for read_modify_write */
2570 struct r5dev *dev = &sh->dev[i];
2571 if ((dev->towrite || i == sh->pd_idx) &&
2572 !test_bit(R5_LOCKED, &dev->flags) &&
2573 !(test_bit(R5_UPTODATE, &dev->flags) ||
2574 test_bit(R5_Wantcompute, &dev->flags))) {
2575 if (test_bit(R5_Insync, &dev->flags))
2576 rmw++;
2577 else
2578 rmw += 2*disks; /* cannot read it */
2580 /* Would I have to read this buffer for reconstruct_write */
2581 if (!test_bit(R5_OVERWRITE, &dev->flags) && i != sh->pd_idx &&
2582 !test_bit(R5_LOCKED, &dev->flags) &&
2583 !(test_bit(R5_UPTODATE, &dev->flags) ||
2584 test_bit(R5_Wantcompute, &dev->flags))) {
2585 if (test_bit(R5_Insync, &dev->flags)) rcw++;
2586 else
2587 rcw += 2*disks;
2590 pr_debug("for sector %llu, rmw=%d rcw=%d\n",
2591 (unsigned long long)sh->sector, rmw, rcw);
2592 set_bit(STRIPE_HANDLE, &sh->state);
2593 if (rmw < rcw && rmw > 0)
2594 /* prefer read-modify-write, but need to get some data */
2595 for (i = disks; i--; ) {
2596 struct r5dev *dev = &sh->dev[i];
2597 if ((dev->towrite || i == sh->pd_idx) &&
2598 !test_bit(R5_LOCKED, &dev->flags) &&
2599 !(test_bit(R5_UPTODATE, &dev->flags) ||
2600 test_bit(R5_Wantcompute, &dev->flags)) &&
2601 test_bit(R5_Insync, &dev->flags)) {
2602 if (
2603 test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
2604 pr_debug("Read_old block "
2605 "%d for r-m-w\n", i);
2606 set_bit(R5_LOCKED, &dev->flags);
2607 set_bit(R5_Wantread, &dev->flags);
2608 s->locked++;
2609 } else {
2610 set_bit(STRIPE_DELAYED, &sh->state);
2611 set_bit(STRIPE_HANDLE, &sh->state);
2615 if (rcw <= rmw && rcw > 0) {
2616 /* want reconstruct write, but need to get some data */
2617 rcw = 0;
2618 for (i = disks; i--; ) {
2619 struct r5dev *dev = &sh->dev[i];
2620 if (!test_bit(R5_OVERWRITE, &dev->flags) &&
2621 i != sh->pd_idx && i != sh->qd_idx &&
2622 !test_bit(R5_LOCKED, &dev->flags) &&
2623 !(test_bit(R5_UPTODATE, &dev->flags) ||
2624 test_bit(R5_Wantcompute, &dev->flags))) {
2625 rcw++;
2626 if (!test_bit(R5_Insync, &dev->flags))
2627 continue; /* it's a failed drive */
2628 if (
2629 test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
2630 pr_debug("Read_old block "
2631 "%d for Reconstruct\n", i);
2632 set_bit(R5_LOCKED, &dev->flags);
2633 set_bit(R5_Wantread, &dev->flags);
2634 s->locked++;
2635 } else {
2636 set_bit(STRIPE_DELAYED, &sh->state);
2637 set_bit(STRIPE_HANDLE, &sh->state);
2642 /* now if nothing is locked, and if we have enough data,
2643 * we can start a write request
2645 /* since handle_stripe can be called at any time we need to handle the
2646 * case where a compute block operation has been submitted and then a
2647 * subsequent call wants to start a write request. raid_run_ops only
2648 * handles the case where compute block and reconstruct are requested
2649 * simultaneously. If this is not the case then new writes need to be
2650 * held off until the compute completes.
2652 if ((s->req_compute || !test_bit(STRIPE_COMPUTE_RUN, &sh->state)) &&
2653 (s->locked == 0 && (rcw == 0 || rmw == 0) &&
2654 !test_bit(STRIPE_BIT_DELAY, &sh->state)))
2655 schedule_reconstruction(sh, s, rcw == 0, 0);
2658 static void handle_parity_checks5(raid5_conf_t *conf, struct stripe_head *sh,
2659 struct stripe_head_state *s, int disks)
2661 struct r5dev *dev = NULL;
2663 set_bit(STRIPE_HANDLE, &sh->state);
2665 switch (sh->check_state) {
2666 case check_state_idle:
2667 /* start a new check operation if there are no failures */
2668 if (s->failed == 0) {
2669 BUG_ON(s->uptodate != disks);
2670 sh->check_state = check_state_run;
2671 set_bit(STRIPE_OP_CHECK, &s->ops_request);
2672 clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
2673 s->uptodate--;
2674 break;
2676 dev = &sh->dev[s->failed_num[0]];
2677 /* fall through */
2678 case check_state_compute_result:
2679 sh->check_state = check_state_idle;
2680 if (!dev)
2681 dev = &sh->dev[sh->pd_idx];
2683 /* check that a write has not made the stripe insync */
2684 if (test_bit(STRIPE_INSYNC, &sh->state))
2685 break;
2687 /* either failed parity check, or recovery is happening */
2688 BUG_ON(!test_bit(R5_UPTODATE, &dev->flags));
2689 BUG_ON(s->uptodate != disks);
2691 set_bit(R5_LOCKED, &dev->flags);
2692 s->locked++;
2693 set_bit(R5_Wantwrite, &dev->flags);
2695 clear_bit(STRIPE_DEGRADED, &sh->state);
2696 set_bit(STRIPE_INSYNC, &sh->state);
2697 break;
2698 case check_state_run:
2699 break; /* we will be called again upon completion */
2700 case check_state_check_result:
2701 sh->check_state = check_state_idle;
2703 /* if a failure occurred during the check operation, leave
2704 * STRIPE_INSYNC not set and let the stripe be handled again
2706 if (s->failed)
2707 break;
2709 /* handle a successful check operation, if parity is correct
2710 * we are done. Otherwise update the mismatch count and repair
2711 * parity if !MD_RECOVERY_CHECK
2713 if ((sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) == 0)
2714 /* parity is correct (on disc,
2715 * not in buffer any more)
2717 set_bit(STRIPE_INSYNC, &sh->state);
2718 else {
2719 conf->mddev->resync_mismatches += STRIPE_SECTORS;
2720 if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
2721 /* don't try to repair!! */
2722 set_bit(STRIPE_INSYNC, &sh->state);
2723 else {
2724 sh->check_state = check_state_compute_run;
2725 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
2726 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
2727 set_bit(R5_Wantcompute,
2728 &sh->dev[sh->pd_idx].flags);
2729 sh->ops.target = sh->pd_idx;
2730 sh->ops.target2 = -1;
2731 s->uptodate++;
2734 break;
2735 case check_state_compute_run:
2736 break;
2737 default:
2738 printk(KERN_ERR "%s: unknown check_state: %d sector: %llu\n",
2739 __func__, sh->check_state,
2740 (unsigned long long) sh->sector);
2741 BUG();
2746 static void handle_parity_checks6(raid5_conf_t *conf, struct stripe_head *sh,
2747 struct stripe_head_state *s,
2748 int disks)
2750 int pd_idx = sh->pd_idx;
2751 int qd_idx = sh->qd_idx;
2752 struct r5dev *dev;
2754 set_bit(STRIPE_HANDLE, &sh->state);
2756 BUG_ON(s->failed > 2);
2758 /* Want to check and possibly repair P and Q.
2759 * However there could be one 'failed' device, in which
2760 * case we can only check one of them, possibly using the
2761 * other to generate missing data
2764 switch (sh->check_state) {
2765 case check_state_idle:
2766 /* start a new check operation if there are < 2 failures */
2767 if (s->failed == s->q_failed) {
2768 /* The only possible failed device holds Q, so it
2769 * makes sense to check P (If anything else were failed,
2770 * we would have used P to recreate it).
2772 sh->check_state = check_state_run;
2774 if (!s->q_failed && s->failed < 2) {
2775 /* Q is not failed, and we didn't use it to generate
2776 * anything, so it makes sense to check it
2778 if (sh->check_state == check_state_run)
2779 sh->check_state = check_state_run_pq;
2780 else
2781 sh->check_state = check_state_run_q;
2784 /* discard potentially stale zero_sum_result */
2785 sh->ops.zero_sum_result = 0;
2787 if (sh->check_state == check_state_run) {
2788 /* async_xor_zero_sum destroys the contents of P */
2789 clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
2790 s->uptodate--;
2792 if (sh->check_state >= check_state_run &&
2793 sh->check_state <= check_state_run_pq) {
2794 /* async_syndrome_zero_sum preserves P and Q, so
2795 * no need to mark them !uptodate here
2797 set_bit(STRIPE_OP_CHECK, &s->ops_request);
2798 break;
2801 /* we have 2-disk failure */
2802 BUG_ON(s->failed != 2);
2803 /* fall through */
2804 case check_state_compute_result:
2805 sh->check_state = check_state_idle;
2807 /* check that a write has not made the stripe insync */
2808 if (test_bit(STRIPE_INSYNC, &sh->state))
2809 break;
2811 /* now write out any block on a failed drive,
2812 * or P or Q if they were recomputed
2814 BUG_ON(s->uptodate < disks - 1); /* We don't need Q to recover */
2815 if (s->failed == 2) {
2816 dev = &sh->dev[s->failed_num[1]];
2817 s->locked++;
2818 set_bit(R5_LOCKED, &dev->flags);
2819 set_bit(R5_Wantwrite, &dev->flags);
2821 if (s->failed >= 1) {
2822 dev = &sh->dev[s->failed_num[0]];
2823 s->locked++;
2824 set_bit(R5_LOCKED, &dev->flags);
2825 set_bit(R5_Wantwrite, &dev->flags);
2827 if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
2828 dev = &sh->dev[pd_idx];
2829 s->locked++;
2830 set_bit(R5_LOCKED, &dev->flags);
2831 set_bit(R5_Wantwrite, &dev->flags);
2833 if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
2834 dev = &sh->dev[qd_idx];
2835 s->locked++;
2836 set_bit(R5_LOCKED, &dev->flags);
2837 set_bit(R5_Wantwrite, &dev->flags);
2839 clear_bit(STRIPE_DEGRADED, &sh->state);
2841 set_bit(STRIPE_INSYNC, &sh->state);
2842 break;
2843 case check_state_run:
2844 case check_state_run_q:
2845 case check_state_run_pq:
2846 break; /* we will be called again upon completion */
2847 case check_state_check_result:
2848 sh->check_state = check_state_idle;
2850 /* handle a successful check operation, if parity is correct
2851 * we are done. Otherwise update the mismatch count and repair
2852 * parity if !MD_RECOVERY_CHECK
2854 if (sh->ops.zero_sum_result == 0) {
2855 /* both parities are correct */
2856 if (!s->failed)
2857 set_bit(STRIPE_INSYNC, &sh->state);
2858 else {
2859 /* in contrast to the raid5 case we can validate
2860 * parity, but still have a failure to write
2861 * back
2863 sh->check_state = check_state_compute_result;
2864 /* Returning at this point means that we may go
2865 * off and bring p and/or q uptodate again so
2866 * we make sure to check zero_sum_result again
2867 * to verify if p or q need writeback
2870 } else {
2871 conf->mddev->resync_mismatches += STRIPE_SECTORS;
2872 if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
2873 /* don't try to repair!! */
2874 set_bit(STRIPE_INSYNC, &sh->state);
2875 else {
2876 int *target = &sh->ops.target;
2878 sh->ops.target = -1;
2879 sh->ops.target2 = -1;
2880 sh->check_state = check_state_compute_run;
2881 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
2882 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
2883 if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
2884 set_bit(R5_Wantcompute,
2885 &sh->dev[pd_idx].flags);
2886 *target = pd_idx;
2887 target = &sh->ops.target2;
2888 s->uptodate++;
2890 if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
2891 set_bit(R5_Wantcompute,
2892 &sh->dev[qd_idx].flags);
2893 *target = qd_idx;
2894 s->uptodate++;
2898 break;
2899 case check_state_compute_run:
2900 break;
2901 default:
2902 printk(KERN_ERR "%s: unknown check_state: %d sector: %llu\n",
2903 __func__, sh->check_state,
2904 (unsigned long long) sh->sector);
2905 BUG();
2909 static void handle_stripe_expansion(raid5_conf_t *conf, struct stripe_head *sh)
2911 int i;
2913 /* We have read all the blocks in this stripe and now we need to
2914 * copy some of them into a target stripe for expand.
2916 struct dma_async_tx_descriptor *tx = NULL;
2917 clear_bit(STRIPE_EXPAND_SOURCE, &sh->state);
2918 for (i = 0; i < sh->disks; i++)
2919 if (i != sh->pd_idx && i != sh->qd_idx) {
2920 int dd_idx, j;
2921 struct stripe_head *sh2;
2922 struct async_submit_ctl submit;
2924 sector_t bn = compute_blocknr(sh, i, 1);
2925 sector_t s = raid5_compute_sector(conf, bn, 0,
2926 &dd_idx, NULL);
2927 sh2 = get_active_stripe(conf, s, 0, 1, 1);
2928 if (sh2 == NULL)
2929 /* so far only the early blocks of this stripe
2930 * have been requested. When later blocks
2931 * get requested, we will try again
2933 continue;
2934 if (!test_bit(STRIPE_EXPANDING, &sh2->state) ||
2935 test_bit(R5_Expanded, &sh2->dev[dd_idx].flags)) {
2936 /* must have already done this block */
2937 release_stripe(sh2);
2938 continue;
2941 /* place all the copies on one channel */
2942 init_async_submit(&submit, 0, tx, NULL, NULL, NULL);
2943 tx = async_memcpy(sh2->dev[dd_idx].page,
2944 sh->dev[i].page, 0, 0, STRIPE_SIZE,
2945 &submit);
2947 set_bit(R5_Expanded, &sh2->dev[dd_idx].flags);
2948 set_bit(R5_UPTODATE, &sh2->dev[dd_idx].flags);
2949 for (j = 0; j < conf->raid_disks; j++)
2950 if (j != sh2->pd_idx &&
2951 j != sh2->qd_idx &&
2952 !test_bit(R5_Expanded, &sh2->dev[j].flags))
2953 break;
2954 if (j == conf->raid_disks) {
2955 set_bit(STRIPE_EXPAND_READY, &sh2->state);
2956 set_bit(STRIPE_HANDLE, &sh2->state);
2958 release_stripe(sh2);
2961 /* done submitting copies, wait for them to complete */
2962 if (tx) {
2963 async_tx_ack(tx);
2964 dma_wait_for_async_tx(tx);
2970 * handle_stripe - do things to a stripe.
2972 * We lock the stripe and then examine the state of various bits
2973 * to see what needs to be done.
2974 * Possible results:
2975 * return some read request which now have data
2976 * return some write requests which are safely on disc
2977 * schedule a read on some buffers
2978 * schedule a write of some buffers
2979 * return confirmation of parity correctness
2981 * buffers are taken off read_list or write_list, and bh_cache buffers
2982 * get BH_Lock set before the stripe lock is released.
2986 static void analyse_stripe(struct stripe_head *sh, struct stripe_head_state *s)
2988 raid5_conf_t *conf = sh->raid_conf;
2989 int disks = sh->disks;
2990 struct r5dev *dev;
2991 int i;
2993 memset(s, 0, sizeof(*s));
2995 s->syncing = test_bit(STRIPE_SYNCING, &sh->state);
2996 s->expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state);
2997 s->expanded = test_bit(STRIPE_EXPAND_READY, &sh->state);
2998 s->failed_num[0] = -1;
2999 s->failed_num[1] = -1;
3001 /* Now to look around and see what can be done */
3002 rcu_read_lock();
3003 spin_lock_irq(&conf->device_lock);
3004 for (i=disks; i--; ) {
3005 mdk_rdev_t *rdev;
3006 sector_t first_bad;
3007 int bad_sectors;
3008 int is_bad = 0;
3010 dev = &sh->dev[i];
3012 pr_debug("check %d: state 0x%lx read %p write %p written %p\n",
3013 i, dev->flags, dev->toread, dev->towrite, dev->written);
3014 /* maybe we can reply to a read
3016 * new wantfill requests are only permitted while
3017 * ops_complete_biofill is guaranteed to be inactive
3019 if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread &&
3020 !test_bit(STRIPE_BIOFILL_RUN, &sh->state))
3021 set_bit(R5_Wantfill, &dev->flags);
3023 /* now count some things */
3024 if (test_bit(R5_LOCKED, &dev->flags))
3025 s->locked++;
3026 if (test_bit(R5_UPTODATE, &dev->flags))
3027 s->uptodate++;
3028 if (test_bit(R5_Wantcompute, &dev->flags)) {
3029 s->compute++;
3030 BUG_ON(s->compute > 2);
3033 if (test_bit(R5_Wantfill, &dev->flags))
3034 s->to_fill++;
3035 else if (dev->toread)
3036 s->to_read++;
3037 if (dev->towrite) {
3038 s->to_write++;
3039 if (!test_bit(R5_OVERWRITE, &dev->flags))
3040 s->non_overwrite++;
3042 if (dev->written)
3043 s->written++;
3044 rdev = rcu_dereference(conf->disks[i].rdev);
3045 if (rdev) {
3046 is_bad = is_badblock(rdev, sh->sector, STRIPE_SECTORS,
3047 &first_bad, &bad_sectors);
3048 if (s->blocked_rdev == NULL
3049 && (test_bit(Blocked, &rdev->flags)
3050 || is_bad < 0)) {
3051 if (is_bad < 0)
3052 set_bit(BlockedBadBlocks,
3053 &rdev->flags);
3054 s->blocked_rdev = rdev;
3055 atomic_inc(&rdev->nr_pending);
3058 clear_bit(R5_Insync, &dev->flags);
3059 if (!rdev)
3060 /* Not in-sync */;
3061 else if (is_bad) {
3062 /* also not in-sync */
3063 if (!test_bit(WriteErrorSeen, &rdev->flags)) {
3064 /* treat as in-sync, but with a read error
3065 * which we can now try to correct
3067 set_bit(R5_Insync, &dev->flags);
3068 set_bit(R5_ReadError, &dev->flags);
3070 } else if (test_bit(In_sync, &rdev->flags))
3071 set_bit(R5_Insync, &dev->flags);
3072 else if (!test_bit(Faulty, &rdev->flags)) {
3073 /* in sync if before recovery_offset */
3074 if (sh->sector + STRIPE_SECTORS <= rdev->recovery_offset)
3075 set_bit(R5_Insync, &dev->flags);
3077 if (test_bit(R5_WriteError, &dev->flags)) {
3078 clear_bit(R5_Insync, &dev->flags);
3079 if (!test_bit(Faulty, &rdev->flags)) {
3080 s->handle_bad_blocks = 1;
3081 atomic_inc(&rdev->nr_pending);
3082 } else
3083 clear_bit(R5_WriteError, &dev->flags);
3085 if (test_bit(R5_MadeGood, &dev->flags)) {
3086 if (!test_bit(Faulty, &rdev->flags)) {
3087 s->handle_bad_blocks = 1;
3088 atomic_inc(&rdev->nr_pending);
3089 } else
3090 clear_bit(R5_MadeGood, &dev->flags);
3092 if (!test_bit(R5_Insync, &dev->flags)) {
3093 /* The ReadError flag will just be confusing now */
3094 clear_bit(R5_ReadError, &dev->flags);
3095 clear_bit(R5_ReWrite, &dev->flags);
3097 if (test_bit(R5_ReadError, &dev->flags))
3098 clear_bit(R5_Insync, &dev->flags);
3099 if (!test_bit(R5_Insync, &dev->flags)) {
3100 if (s->failed < 2)
3101 s->failed_num[s->failed] = i;
3102 s->failed++;
3105 spin_unlock_irq(&conf->device_lock);
3106 rcu_read_unlock();
3109 static void handle_stripe(struct stripe_head *sh)
3111 struct stripe_head_state s;
3112 raid5_conf_t *conf = sh->raid_conf;
3113 int i;
3114 int prexor;
3115 int disks = sh->disks;
3116 struct r5dev *pdev, *qdev;
3118 clear_bit(STRIPE_HANDLE, &sh->state);
3119 if (test_and_set_bit_lock(STRIPE_ACTIVE, &sh->state)) {
3120 /* already being handled, ensure it gets handled
3121 * again when current action finishes */
3122 set_bit(STRIPE_HANDLE, &sh->state);
3123 return;
3126 if (test_and_clear_bit(STRIPE_SYNC_REQUESTED, &sh->state)) {
3127 set_bit(STRIPE_SYNCING, &sh->state);
3128 clear_bit(STRIPE_INSYNC, &sh->state);
3130 clear_bit(STRIPE_DELAYED, &sh->state);
3132 pr_debug("handling stripe %llu, state=%#lx cnt=%d, "
3133 "pd_idx=%d, qd_idx=%d\n, check:%d, reconstruct:%d\n",
3134 (unsigned long long)sh->sector, sh->state,
3135 atomic_read(&sh->count), sh->pd_idx, sh->qd_idx,
3136 sh->check_state, sh->reconstruct_state);
3138 analyse_stripe(sh, &s);
3140 if (s.handle_bad_blocks) {
3141 set_bit(STRIPE_HANDLE, &sh->state);
3142 goto finish;
3145 if (unlikely(s.blocked_rdev)) {
3146 if (s.syncing || s.expanding || s.expanded ||
3147 s.to_write || s.written) {
3148 set_bit(STRIPE_HANDLE, &sh->state);
3149 goto finish;
3151 /* There is nothing for the blocked_rdev to block */
3152 rdev_dec_pending(s.blocked_rdev, conf->mddev);
3153 s.blocked_rdev = NULL;
3156 if (s.to_fill && !test_bit(STRIPE_BIOFILL_RUN, &sh->state)) {
3157 set_bit(STRIPE_OP_BIOFILL, &s.ops_request);
3158 set_bit(STRIPE_BIOFILL_RUN, &sh->state);
3161 pr_debug("locked=%d uptodate=%d to_read=%d"
3162 " to_write=%d failed=%d failed_num=%d,%d\n",
3163 s.locked, s.uptodate, s.to_read, s.to_write, s.failed,
3164 s.failed_num[0], s.failed_num[1]);
3165 /* check if the array has lost more than max_degraded devices and,
3166 * if so, some requests might need to be failed.
3168 if (s.failed > conf->max_degraded) {
3169 sh->check_state = 0;
3170 sh->reconstruct_state = 0;
3171 if (s.to_read+s.to_write+s.written)
3172 handle_failed_stripe(conf, sh, &s, disks, &s.return_bi);
3173 if (s.syncing)
3174 handle_failed_sync(conf, sh, &s);
3178 * might be able to return some write requests if the parity blocks
3179 * are safe, or on a failed drive
3181 pdev = &sh->dev[sh->pd_idx];
3182 s.p_failed = (s.failed >= 1 && s.failed_num[0] == sh->pd_idx)
3183 || (s.failed >= 2 && s.failed_num[1] == sh->pd_idx);
3184 qdev = &sh->dev[sh->qd_idx];
3185 s.q_failed = (s.failed >= 1 && s.failed_num[0] == sh->qd_idx)
3186 || (s.failed >= 2 && s.failed_num[1] == sh->qd_idx)
3187 || conf->level < 6;
3189 if (s.written &&
3190 (s.p_failed || ((test_bit(R5_Insync, &pdev->flags)
3191 && !test_bit(R5_LOCKED, &pdev->flags)
3192 && test_bit(R5_UPTODATE, &pdev->flags)))) &&
3193 (s.q_failed || ((test_bit(R5_Insync, &qdev->flags)
3194 && !test_bit(R5_LOCKED, &qdev->flags)
3195 && test_bit(R5_UPTODATE, &qdev->flags)))))
3196 handle_stripe_clean_event(conf, sh, disks, &s.return_bi);
3198 /* Now we might consider reading some blocks, either to check/generate
3199 * parity, or to satisfy requests
3200 * or to load a block that is being partially written.
3202 if (s.to_read || s.non_overwrite
3203 || (conf->level == 6 && s.to_write && s.failed)
3204 || (s.syncing && (s.uptodate + s.compute < disks)) || s.expanding)
3205 handle_stripe_fill(sh, &s, disks);
3207 /* Now we check to see if any write operations have recently
3208 * completed
3210 prexor = 0;
3211 if (sh->reconstruct_state == reconstruct_state_prexor_drain_result)
3212 prexor = 1;
3213 if (sh->reconstruct_state == reconstruct_state_drain_result ||
3214 sh->reconstruct_state == reconstruct_state_prexor_drain_result) {
3215 sh->reconstruct_state = reconstruct_state_idle;
3217 /* All the 'written' buffers and the parity block are ready to
3218 * be written back to disk
3220 BUG_ON(!test_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags));
3221 BUG_ON(sh->qd_idx >= 0 &&
3222 !test_bit(R5_UPTODATE, &sh->dev[sh->qd_idx].flags));
3223 for (i = disks; i--; ) {
3224 struct r5dev *dev = &sh->dev[i];
3225 if (test_bit(R5_LOCKED, &dev->flags) &&
3226 (i == sh->pd_idx || i == sh->qd_idx ||
3227 dev->written)) {
3228 pr_debug("Writing block %d\n", i);
3229 set_bit(R5_Wantwrite, &dev->flags);
3230 if (prexor)
3231 continue;
3232 if (!test_bit(R5_Insync, &dev->flags) ||
3233 ((i == sh->pd_idx || i == sh->qd_idx) &&
3234 s.failed == 0))
3235 set_bit(STRIPE_INSYNC, &sh->state);
3238 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3239 s.dec_preread_active = 1;
3242 /* Now to consider new write requests and what else, if anything
3243 * should be read. We do not handle new writes when:
3244 * 1/ A 'write' operation (copy+xor) is already in flight.
3245 * 2/ A 'check' operation is in flight, as it may clobber the parity
3246 * block.
3248 if (s.to_write && !sh->reconstruct_state && !sh->check_state)
3249 handle_stripe_dirtying(conf, sh, &s, disks);
3251 /* maybe we need to check and possibly fix the parity for this stripe
3252 * Any reads will already have been scheduled, so we just see if enough
3253 * data is available. The parity check is held off while parity
3254 * dependent operations are in flight.
3256 if (sh->check_state ||
3257 (s.syncing && s.locked == 0 &&
3258 !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
3259 !test_bit(STRIPE_INSYNC, &sh->state))) {
3260 if (conf->level == 6)
3261 handle_parity_checks6(conf, sh, &s, disks);
3262 else
3263 handle_parity_checks5(conf, sh, &s, disks);
3266 if (s.syncing && s.locked == 0 && test_bit(STRIPE_INSYNC, &sh->state)) {
3267 md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
3268 clear_bit(STRIPE_SYNCING, &sh->state);
3271 /* If the failed drives are just a ReadError, then we might need
3272 * to progress the repair/check process
3274 if (s.failed <= conf->max_degraded && !conf->mddev->ro)
3275 for (i = 0; i < s.failed; i++) {
3276 struct r5dev *dev = &sh->dev[s.failed_num[i]];
3277 if (test_bit(R5_ReadError, &dev->flags)
3278 && !test_bit(R5_LOCKED, &dev->flags)
3279 && test_bit(R5_UPTODATE, &dev->flags)
3281 if (!test_bit(R5_ReWrite, &dev->flags)) {
3282 set_bit(R5_Wantwrite, &dev->flags);
3283 set_bit(R5_ReWrite, &dev->flags);
3284 set_bit(R5_LOCKED, &dev->flags);
3285 s.locked++;
3286 } else {
3287 /* let's read it back */
3288 set_bit(R5_Wantread, &dev->flags);
3289 set_bit(R5_LOCKED, &dev->flags);
3290 s.locked++;
3296 /* Finish reconstruct operations initiated by the expansion process */
3297 if (sh->reconstruct_state == reconstruct_state_result) {
3298 struct stripe_head *sh_src
3299 = get_active_stripe(conf, sh->sector, 1, 1, 1);
3300 if (sh_src && test_bit(STRIPE_EXPAND_SOURCE, &sh_src->state)) {
3301 /* sh cannot be written until sh_src has been read.
3302 * so arrange for sh to be delayed a little
3304 set_bit(STRIPE_DELAYED, &sh->state);
3305 set_bit(STRIPE_HANDLE, &sh->state);
3306 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE,
3307 &sh_src->state))
3308 atomic_inc(&conf->preread_active_stripes);
3309 release_stripe(sh_src);
3310 goto finish;
3312 if (sh_src)
3313 release_stripe(sh_src);
3315 sh->reconstruct_state = reconstruct_state_idle;
3316 clear_bit(STRIPE_EXPANDING, &sh->state);
3317 for (i = conf->raid_disks; i--; ) {
3318 set_bit(R5_Wantwrite, &sh->dev[i].flags);
3319 set_bit(R5_LOCKED, &sh->dev[i].flags);
3320 s.locked++;
3324 if (s.expanded && test_bit(STRIPE_EXPANDING, &sh->state) &&
3325 !sh->reconstruct_state) {
3326 /* Need to write out all blocks after computing parity */
3327 sh->disks = conf->raid_disks;
3328 stripe_set_idx(sh->sector, conf, 0, sh);
3329 schedule_reconstruction(sh, &s, 1, 1);
3330 } else if (s.expanded && !sh->reconstruct_state && s.locked == 0) {
3331 clear_bit(STRIPE_EXPAND_READY, &sh->state);
3332 atomic_dec(&conf->reshape_stripes);
3333 wake_up(&conf->wait_for_overlap);
3334 md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
3337 if (s.expanding && s.locked == 0 &&
3338 !test_bit(STRIPE_COMPUTE_RUN, &sh->state))
3339 handle_stripe_expansion(conf, sh);
3341 finish:
3342 /* wait for this device to become unblocked */
3343 if (conf->mddev->external && unlikely(s.blocked_rdev))
3344 md_wait_for_blocked_rdev(s.blocked_rdev, conf->mddev);
3346 if (s.handle_bad_blocks)
3347 for (i = disks; i--; ) {
3348 mdk_rdev_t *rdev;
3349 struct r5dev *dev = &sh->dev[i];
3350 if (test_and_clear_bit(R5_WriteError, &dev->flags)) {
3351 /* We own a safe reference to the rdev */
3352 rdev = conf->disks[i].rdev;
3353 if (!rdev_set_badblocks(rdev, sh->sector,
3354 STRIPE_SECTORS, 0))
3355 md_error(conf->mddev, rdev);
3356 rdev_dec_pending(rdev, conf->mddev);
3358 if (test_and_clear_bit(R5_MadeGood, &dev->flags)) {
3359 rdev = conf->disks[i].rdev;
3360 rdev_clear_badblocks(rdev, sh->sector,
3361 STRIPE_SECTORS);
3362 rdev_dec_pending(rdev, conf->mddev);
3366 if (s.ops_request)
3367 raid_run_ops(sh, s.ops_request);
3369 ops_run_io(sh, &s);
3371 if (s.dec_preread_active) {
3372 /* We delay this until after ops_run_io so that if make_request
3373 * is waiting on a flush, it won't continue until the writes
3374 * have actually been submitted.
3376 atomic_dec(&conf->preread_active_stripes);
3377 if (atomic_read(&conf->preread_active_stripes) <
3378 IO_THRESHOLD)
3379 md_wakeup_thread(conf->mddev->thread);
3382 return_io(s.return_bi);
3384 clear_bit_unlock(STRIPE_ACTIVE, &sh->state);
3387 static void raid5_activate_delayed(raid5_conf_t *conf)
3389 if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD) {
3390 while (!list_empty(&conf->delayed_list)) {
3391 struct list_head *l = conf->delayed_list.next;
3392 struct stripe_head *sh;
3393 sh = list_entry(l, struct stripe_head, lru);
3394 list_del_init(l);
3395 clear_bit(STRIPE_DELAYED, &sh->state);
3396 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3397 atomic_inc(&conf->preread_active_stripes);
3398 list_add_tail(&sh->lru, &conf->hold_list);
3403 static void activate_bit_delay(raid5_conf_t *conf)
3405 /* device_lock is held */
3406 struct list_head head;
3407 list_add(&head, &conf->bitmap_list);
3408 list_del_init(&conf->bitmap_list);
3409 while (!list_empty(&head)) {
3410 struct stripe_head *sh = list_entry(head.next, struct stripe_head, lru);
3411 list_del_init(&sh->lru);
3412 atomic_inc(&sh->count);
3413 __release_stripe(conf, sh);
3417 int md_raid5_congested(mddev_t *mddev, int bits)
3419 raid5_conf_t *conf = mddev->private;
3421 /* No difference between reads and writes. Just check
3422 * how busy the stripe_cache is
3425 if (conf->inactive_blocked)
3426 return 1;
3427 if (conf->quiesce)
3428 return 1;
3429 if (list_empty_careful(&conf->inactive_list))
3430 return 1;
3432 return 0;
3434 EXPORT_SYMBOL_GPL(md_raid5_congested);
3436 static int raid5_congested(void *data, int bits)
3438 mddev_t *mddev = data;
3440 return mddev_congested(mddev, bits) ||
3441 md_raid5_congested(mddev, bits);
3444 /* We want read requests to align with chunks where possible,
3445 * but write requests don't need to.
3447 static int raid5_mergeable_bvec(struct request_queue *q,
3448 struct bvec_merge_data *bvm,
3449 struct bio_vec *biovec)
3451 mddev_t *mddev = q->queuedata;
3452 sector_t sector = bvm->bi_sector + get_start_sect(bvm->bi_bdev);
3453 int max;
3454 unsigned int chunk_sectors = mddev->chunk_sectors;
3455 unsigned int bio_sectors = bvm->bi_size >> 9;
3457 if ((bvm->bi_rw & 1) == WRITE)
3458 return biovec->bv_len; /* always allow writes to be mergeable */
3460 if (mddev->new_chunk_sectors < mddev->chunk_sectors)
3461 chunk_sectors = mddev->new_chunk_sectors;
3462 max = (chunk_sectors - ((sector & (chunk_sectors - 1)) + bio_sectors)) << 9;
3463 if (max < 0) max = 0;
3464 if (max <= biovec->bv_len && bio_sectors == 0)
3465 return biovec->bv_len;
3466 else
3467 return max;
3471 static int in_chunk_boundary(mddev_t *mddev, struct bio *bio)
3473 sector_t sector = bio->bi_sector + get_start_sect(bio->bi_bdev);
3474 unsigned int chunk_sectors = mddev->chunk_sectors;
3475 unsigned int bio_sectors = bio->bi_size >> 9;
3477 if (mddev->new_chunk_sectors < mddev->chunk_sectors)
3478 chunk_sectors = mddev->new_chunk_sectors;
3479 return chunk_sectors >=
3480 ((sector & (chunk_sectors - 1)) + bio_sectors);
3484 * add bio to the retry LIFO ( in O(1) ... we are in interrupt )
3485 * later sampled by raid5d.
3487 static void add_bio_to_retry(struct bio *bi,raid5_conf_t *conf)
3489 unsigned long flags;
3491 spin_lock_irqsave(&conf->device_lock, flags);
3493 bi->bi_next = conf->retry_read_aligned_list;
3494 conf->retry_read_aligned_list = bi;
3496 spin_unlock_irqrestore(&conf->device_lock, flags);
3497 md_wakeup_thread(conf->mddev->thread);
3501 static struct bio *remove_bio_from_retry(raid5_conf_t *conf)
3503 struct bio *bi;
3505 bi = conf->retry_read_aligned;
3506 if (bi) {
3507 conf->retry_read_aligned = NULL;
3508 return bi;
3510 bi = conf->retry_read_aligned_list;
3511 if(bi) {
3512 conf->retry_read_aligned_list = bi->bi_next;
3513 bi->bi_next = NULL;
3515 * this sets the active strip count to 1 and the processed
3516 * strip count to zero (upper 8 bits)
3518 bi->bi_phys_segments = 1; /* biased count of active stripes */
3521 return bi;
3526 * The "raid5_align_endio" should check if the read succeeded and if it
3527 * did, call bio_endio on the original bio (having bio_put the new bio
3528 * first).
3529 * If the read failed..
3531 static void raid5_align_endio(struct bio *bi, int error)
3533 struct bio* raid_bi = bi->bi_private;
3534 mddev_t *mddev;
3535 raid5_conf_t *conf;
3536 int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
3537 mdk_rdev_t *rdev;
3539 bio_put(bi);
3541 rdev = (void*)raid_bi->bi_next;
3542 raid_bi->bi_next = NULL;
3543 mddev = rdev->mddev;
3544 conf = mddev->private;
3546 rdev_dec_pending(rdev, conf->mddev);
3548 if (!error && uptodate) {
3549 bio_endio(raid_bi, 0);
3550 if (atomic_dec_and_test(&conf->active_aligned_reads))
3551 wake_up(&conf->wait_for_stripe);
3552 return;
3556 pr_debug("raid5_align_endio : io error...handing IO for a retry\n");
3558 add_bio_to_retry(raid_bi, conf);
3561 static int bio_fits_rdev(struct bio *bi)
3563 struct request_queue *q = bdev_get_queue(bi->bi_bdev);
3565 if ((bi->bi_size>>9) > queue_max_sectors(q))
3566 return 0;
3567 blk_recount_segments(q, bi);
3568 if (bi->bi_phys_segments > queue_max_segments(q))
3569 return 0;
3571 if (q->merge_bvec_fn)
3572 /* it's too hard to apply the merge_bvec_fn at this stage,
3573 * just just give up
3575 return 0;
3577 return 1;
3581 static int chunk_aligned_read(mddev_t *mddev, struct bio * raid_bio)
3583 raid5_conf_t *conf = mddev->private;
3584 int dd_idx;
3585 struct bio* align_bi;
3586 mdk_rdev_t *rdev;
3588 if (!in_chunk_boundary(mddev, raid_bio)) {
3589 pr_debug("chunk_aligned_read : non aligned\n");
3590 return 0;
3593 * use bio_clone_mddev to make a copy of the bio
3595 align_bi = bio_clone_mddev(raid_bio, GFP_NOIO, mddev);
3596 if (!align_bi)
3597 return 0;
3599 * set bi_end_io to a new function, and set bi_private to the
3600 * original bio.
3602 align_bi->bi_end_io = raid5_align_endio;
3603 align_bi->bi_private = raid_bio;
3605 * compute position
3607 align_bi->bi_sector = raid5_compute_sector(conf, raid_bio->bi_sector,
3609 &dd_idx, NULL);
3611 rcu_read_lock();
3612 rdev = rcu_dereference(conf->disks[dd_idx].rdev);
3613 if (rdev && test_bit(In_sync, &rdev->flags)) {
3614 sector_t first_bad;
3615 int bad_sectors;
3617 atomic_inc(&rdev->nr_pending);
3618 rcu_read_unlock();
3619 raid_bio->bi_next = (void*)rdev;
3620 align_bi->bi_bdev = rdev->bdev;
3621 align_bi->bi_flags &= ~(1 << BIO_SEG_VALID);
3622 align_bi->bi_sector += rdev->data_offset;
3624 if (!bio_fits_rdev(align_bi) ||
3625 is_badblock(rdev, align_bi->bi_sector, align_bi->bi_size>>9,
3626 &first_bad, &bad_sectors)) {
3627 /* too big in some way, or has a known bad block */
3628 bio_put(align_bi);
3629 rdev_dec_pending(rdev, mddev);
3630 return 0;
3633 spin_lock_irq(&conf->device_lock);
3634 wait_event_lock_irq(conf->wait_for_stripe,
3635 conf->quiesce == 0,
3636 conf->device_lock, /* nothing */);
3637 atomic_inc(&conf->active_aligned_reads);
3638 spin_unlock_irq(&conf->device_lock);
3640 generic_make_request(align_bi);
3641 return 1;
3642 } else {
3643 rcu_read_unlock();
3644 bio_put(align_bi);
3645 return 0;
3649 /* __get_priority_stripe - get the next stripe to process
3651 * Full stripe writes are allowed to pass preread active stripes up until
3652 * the bypass_threshold is exceeded. In general the bypass_count
3653 * increments when the handle_list is handled before the hold_list; however, it
3654 * will not be incremented when STRIPE_IO_STARTED is sampled set signifying a
3655 * stripe with in flight i/o. The bypass_count will be reset when the
3656 * head of the hold_list has changed, i.e. the head was promoted to the
3657 * handle_list.
3659 static struct stripe_head *__get_priority_stripe(raid5_conf_t *conf)
3661 struct stripe_head *sh;
3663 pr_debug("%s: handle: %s hold: %s full_writes: %d bypass_count: %d\n",
3664 __func__,
3665 list_empty(&conf->handle_list) ? "empty" : "busy",
3666 list_empty(&conf->hold_list) ? "empty" : "busy",
3667 atomic_read(&conf->pending_full_writes), conf->bypass_count);
3669 if (!list_empty(&conf->handle_list)) {
3670 sh = list_entry(conf->handle_list.next, typeof(*sh), lru);
3672 if (list_empty(&conf->hold_list))
3673 conf->bypass_count = 0;
3674 else if (!test_bit(STRIPE_IO_STARTED, &sh->state)) {
3675 if (conf->hold_list.next == conf->last_hold)
3676 conf->bypass_count++;
3677 else {
3678 conf->last_hold = conf->hold_list.next;
3679 conf->bypass_count -= conf->bypass_threshold;
3680 if (conf->bypass_count < 0)
3681 conf->bypass_count = 0;
3684 } else if (!list_empty(&conf->hold_list) &&
3685 ((conf->bypass_threshold &&
3686 conf->bypass_count > conf->bypass_threshold) ||
3687 atomic_read(&conf->pending_full_writes) == 0)) {
3688 sh = list_entry(conf->hold_list.next,
3689 typeof(*sh), lru);
3690 conf->bypass_count -= conf->bypass_threshold;
3691 if (conf->bypass_count < 0)
3692 conf->bypass_count = 0;
3693 } else
3694 return NULL;
3696 list_del_init(&sh->lru);
3697 atomic_inc(&sh->count);
3698 BUG_ON(atomic_read(&sh->count) != 1);
3699 return sh;
3702 static int make_request(mddev_t *mddev, struct bio * bi)
3704 raid5_conf_t *conf = mddev->private;
3705 int dd_idx;
3706 sector_t new_sector;
3707 sector_t logical_sector, last_sector;
3708 struct stripe_head *sh;
3709 const int rw = bio_data_dir(bi);
3710 int remaining;
3711 int plugged;
3713 if (unlikely(bi->bi_rw & REQ_FLUSH)) {
3714 md_flush_request(mddev, bi);
3715 return 0;
3718 md_write_start(mddev, bi);
3720 if (rw == READ &&
3721 mddev->reshape_position == MaxSector &&
3722 chunk_aligned_read(mddev,bi))
3723 return 0;
3725 logical_sector = bi->bi_sector & ~((sector_t)STRIPE_SECTORS-1);
3726 last_sector = bi->bi_sector + (bi->bi_size>>9);
3727 bi->bi_next = NULL;
3728 bi->bi_phys_segments = 1; /* over-loaded to count active stripes */
3730 plugged = mddev_check_plugged(mddev);
3731 for (;logical_sector < last_sector; logical_sector += STRIPE_SECTORS) {
3732 DEFINE_WAIT(w);
3733 int disks, data_disks;
3734 int previous;
3736 retry:
3737 previous = 0;
3738 disks = conf->raid_disks;
3739 prepare_to_wait(&conf->wait_for_overlap, &w, TASK_UNINTERRUPTIBLE);
3740 if (unlikely(conf->reshape_progress != MaxSector)) {
3741 /* spinlock is needed as reshape_progress may be
3742 * 64bit on a 32bit platform, and so it might be
3743 * possible to see a half-updated value
3744 * Of course reshape_progress could change after
3745 * the lock is dropped, so once we get a reference
3746 * to the stripe that we think it is, we will have
3747 * to check again.
3749 spin_lock_irq(&conf->device_lock);
3750 if (mddev->delta_disks < 0
3751 ? logical_sector < conf->reshape_progress
3752 : logical_sector >= conf->reshape_progress) {
3753 disks = conf->previous_raid_disks;
3754 previous = 1;
3755 } else {
3756 if (mddev->delta_disks < 0
3757 ? logical_sector < conf->reshape_safe
3758 : logical_sector >= conf->reshape_safe) {
3759 spin_unlock_irq(&conf->device_lock);
3760 schedule();
3761 goto retry;
3764 spin_unlock_irq(&conf->device_lock);
3766 data_disks = disks - conf->max_degraded;
3768 new_sector = raid5_compute_sector(conf, logical_sector,
3769 previous,
3770 &dd_idx, NULL);
3771 pr_debug("raid456: make_request, sector %llu logical %llu\n",
3772 (unsigned long long)new_sector,
3773 (unsigned long long)logical_sector);
3775 sh = get_active_stripe(conf, new_sector, previous,
3776 (bi->bi_rw&RWA_MASK), 0);
3777 if (sh) {
3778 if (unlikely(previous)) {
3779 /* expansion might have moved on while waiting for a
3780 * stripe, so we must do the range check again.
3781 * Expansion could still move past after this
3782 * test, but as we are holding a reference to
3783 * 'sh', we know that if that happens,
3784 * STRIPE_EXPANDING will get set and the expansion
3785 * won't proceed until we finish with the stripe.
3787 int must_retry = 0;
3788 spin_lock_irq(&conf->device_lock);
3789 if (mddev->delta_disks < 0
3790 ? logical_sector >= conf->reshape_progress
3791 : logical_sector < conf->reshape_progress)
3792 /* mismatch, need to try again */
3793 must_retry = 1;
3794 spin_unlock_irq(&conf->device_lock);
3795 if (must_retry) {
3796 release_stripe(sh);
3797 schedule();
3798 goto retry;
3802 if (rw == WRITE &&
3803 logical_sector >= mddev->suspend_lo &&
3804 logical_sector < mddev->suspend_hi) {
3805 release_stripe(sh);
3806 /* As the suspend_* range is controlled by
3807 * userspace, we want an interruptible
3808 * wait.
3810 flush_signals(current);
3811 prepare_to_wait(&conf->wait_for_overlap,
3812 &w, TASK_INTERRUPTIBLE);
3813 if (logical_sector >= mddev->suspend_lo &&
3814 logical_sector < mddev->suspend_hi)
3815 schedule();
3816 goto retry;
3819 if (test_bit(STRIPE_EXPANDING, &sh->state) ||
3820 !add_stripe_bio(sh, bi, dd_idx, rw)) {
3821 /* Stripe is busy expanding or
3822 * add failed due to overlap. Flush everything
3823 * and wait a while
3825 md_wakeup_thread(mddev->thread);
3826 release_stripe(sh);
3827 schedule();
3828 goto retry;
3830 finish_wait(&conf->wait_for_overlap, &w);
3831 set_bit(STRIPE_HANDLE, &sh->state);
3832 clear_bit(STRIPE_DELAYED, &sh->state);
3833 if ((bi->bi_rw & REQ_SYNC) &&
3834 !test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3835 atomic_inc(&conf->preread_active_stripes);
3836 release_stripe(sh);
3837 } else {
3838 /* cannot get stripe for read-ahead, just give-up */
3839 clear_bit(BIO_UPTODATE, &bi->bi_flags);
3840 finish_wait(&conf->wait_for_overlap, &w);
3841 break;
3845 if (!plugged)
3846 md_wakeup_thread(mddev->thread);
3848 spin_lock_irq(&conf->device_lock);
3849 remaining = raid5_dec_bi_phys_segments(bi);
3850 spin_unlock_irq(&conf->device_lock);
3851 if (remaining == 0) {
3853 if ( rw == WRITE )
3854 md_write_end(mddev);
3856 bio_endio(bi, 0);
3859 return 0;
3862 static sector_t raid5_size(mddev_t *mddev, sector_t sectors, int raid_disks);
3864 static sector_t reshape_request(mddev_t *mddev, sector_t sector_nr, int *skipped)
3866 /* reshaping is quite different to recovery/resync so it is
3867 * handled quite separately ... here.
3869 * On each call to sync_request, we gather one chunk worth of
3870 * destination stripes and flag them as expanding.
3871 * Then we find all the source stripes and request reads.
3872 * As the reads complete, handle_stripe will copy the data
3873 * into the destination stripe and release that stripe.
3875 raid5_conf_t *conf = mddev->private;
3876 struct stripe_head *sh;
3877 sector_t first_sector, last_sector;
3878 int raid_disks = conf->previous_raid_disks;
3879 int data_disks = raid_disks - conf->max_degraded;
3880 int new_data_disks = conf->raid_disks - conf->max_degraded;
3881 int i;
3882 int dd_idx;
3883 sector_t writepos, readpos, safepos;
3884 sector_t stripe_addr;
3885 int reshape_sectors;
3886 struct list_head stripes;
3888 if (sector_nr == 0) {
3889 /* If restarting in the middle, skip the initial sectors */
3890 if (mddev->delta_disks < 0 &&
3891 conf->reshape_progress < raid5_size(mddev, 0, 0)) {
3892 sector_nr = raid5_size(mddev, 0, 0)
3893 - conf->reshape_progress;
3894 } else if (mddev->delta_disks >= 0 &&
3895 conf->reshape_progress > 0)
3896 sector_nr = conf->reshape_progress;
3897 sector_div(sector_nr, new_data_disks);
3898 if (sector_nr) {
3899 mddev->curr_resync_completed = sector_nr;
3900 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
3901 *skipped = 1;
3902 return sector_nr;
3906 /* We need to process a full chunk at a time.
3907 * If old and new chunk sizes differ, we need to process the
3908 * largest of these
3910 if (mddev->new_chunk_sectors > mddev->chunk_sectors)
3911 reshape_sectors = mddev->new_chunk_sectors;
3912 else
3913 reshape_sectors = mddev->chunk_sectors;
3915 /* we update the metadata when there is more than 3Meg
3916 * in the block range (that is rather arbitrary, should
3917 * probably be time based) or when the data about to be
3918 * copied would over-write the source of the data at
3919 * the front of the range.
3920 * i.e. one new_stripe along from reshape_progress new_maps
3921 * to after where reshape_safe old_maps to
3923 writepos = conf->reshape_progress;
3924 sector_div(writepos, new_data_disks);
3925 readpos = conf->reshape_progress;
3926 sector_div(readpos, data_disks);
3927 safepos = conf->reshape_safe;
3928 sector_div(safepos, data_disks);
3929 if (mddev->delta_disks < 0) {
3930 writepos -= min_t(sector_t, reshape_sectors, writepos);
3931 readpos += reshape_sectors;
3932 safepos += reshape_sectors;
3933 } else {
3934 writepos += reshape_sectors;
3935 readpos -= min_t(sector_t, reshape_sectors, readpos);
3936 safepos -= min_t(sector_t, reshape_sectors, safepos);
3939 /* 'writepos' is the most advanced device address we might write.
3940 * 'readpos' is the least advanced device address we might read.
3941 * 'safepos' is the least address recorded in the metadata as having
3942 * been reshaped.
3943 * If 'readpos' is behind 'writepos', then there is no way that we can
3944 * ensure safety in the face of a crash - that must be done by userspace
3945 * making a backup of the data. So in that case there is no particular
3946 * rush to update metadata.
3947 * Otherwise if 'safepos' is behind 'writepos', then we really need to
3948 * update the metadata to advance 'safepos' to match 'readpos' so that
3949 * we can be safe in the event of a crash.
3950 * So we insist on updating metadata if safepos is behind writepos and
3951 * readpos is beyond writepos.
3952 * In any case, update the metadata every 10 seconds.
3953 * Maybe that number should be configurable, but I'm not sure it is
3954 * worth it.... maybe it could be a multiple of safemode_delay???
3956 if ((mddev->delta_disks < 0
3957 ? (safepos > writepos && readpos < writepos)
3958 : (safepos < writepos && readpos > writepos)) ||
3959 time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) {
3960 /* Cannot proceed until we've updated the superblock... */
3961 wait_event(conf->wait_for_overlap,
3962 atomic_read(&conf->reshape_stripes)==0);
3963 mddev->reshape_position = conf->reshape_progress;
3964 mddev->curr_resync_completed = sector_nr;
3965 conf->reshape_checkpoint = jiffies;
3966 set_bit(MD_CHANGE_DEVS, &mddev->flags);
3967 md_wakeup_thread(mddev->thread);
3968 wait_event(mddev->sb_wait, mddev->flags == 0 ||
3969 kthread_should_stop());
3970 spin_lock_irq(&conf->device_lock);
3971 conf->reshape_safe = mddev->reshape_position;
3972 spin_unlock_irq(&conf->device_lock);
3973 wake_up(&conf->wait_for_overlap);
3974 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
3977 if (mddev->delta_disks < 0) {
3978 BUG_ON(conf->reshape_progress == 0);
3979 stripe_addr = writepos;
3980 BUG_ON((mddev->dev_sectors &
3981 ~((sector_t)reshape_sectors - 1))
3982 - reshape_sectors - stripe_addr
3983 != sector_nr);
3984 } else {
3985 BUG_ON(writepos != sector_nr + reshape_sectors);
3986 stripe_addr = sector_nr;
3988 INIT_LIST_HEAD(&stripes);
3989 for (i = 0; i < reshape_sectors; i += STRIPE_SECTORS) {
3990 int j;
3991 int skipped_disk = 0;
3992 sh = get_active_stripe(conf, stripe_addr+i, 0, 0, 1);
3993 set_bit(STRIPE_EXPANDING, &sh->state);
3994 atomic_inc(&conf->reshape_stripes);
3995 /* If any of this stripe is beyond the end of the old
3996 * array, then we need to zero those blocks
3998 for (j=sh->disks; j--;) {
3999 sector_t s;
4000 if (j == sh->pd_idx)
4001 continue;
4002 if (conf->level == 6 &&
4003 j == sh->qd_idx)
4004 continue;
4005 s = compute_blocknr(sh, j, 0);
4006 if (s < raid5_size(mddev, 0, 0)) {
4007 skipped_disk = 1;
4008 continue;
4010 memset(page_address(sh->dev[j].page), 0, STRIPE_SIZE);
4011 set_bit(R5_Expanded, &sh->dev[j].flags);
4012 set_bit(R5_UPTODATE, &sh->dev[j].flags);
4014 if (!skipped_disk) {
4015 set_bit(STRIPE_EXPAND_READY, &sh->state);
4016 set_bit(STRIPE_HANDLE, &sh->state);
4018 list_add(&sh->lru, &stripes);
4020 spin_lock_irq(&conf->device_lock);
4021 if (mddev->delta_disks < 0)
4022 conf->reshape_progress -= reshape_sectors * new_data_disks;
4023 else
4024 conf->reshape_progress += reshape_sectors * new_data_disks;
4025 spin_unlock_irq(&conf->device_lock);
4026 /* Ok, those stripe are ready. We can start scheduling
4027 * reads on the source stripes.
4028 * The source stripes are determined by mapping the first and last
4029 * block on the destination stripes.
4031 first_sector =
4032 raid5_compute_sector(conf, stripe_addr*(new_data_disks),
4033 1, &dd_idx, NULL);
4034 last_sector =
4035 raid5_compute_sector(conf, ((stripe_addr+reshape_sectors)
4036 * new_data_disks - 1),
4037 1, &dd_idx, NULL);
4038 if (last_sector >= mddev->dev_sectors)
4039 last_sector = mddev->dev_sectors - 1;
4040 while (first_sector <= last_sector) {
4041 sh = get_active_stripe(conf, first_sector, 1, 0, 1);
4042 set_bit(STRIPE_EXPAND_SOURCE, &sh->state);
4043 set_bit(STRIPE_HANDLE, &sh->state);
4044 release_stripe(sh);
4045 first_sector += STRIPE_SECTORS;
4047 /* Now that the sources are clearly marked, we can release
4048 * the destination stripes
4050 while (!list_empty(&stripes)) {
4051 sh = list_entry(stripes.next, struct stripe_head, lru);
4052 list_del_init(&sh->lru);
4053 release_stripe(sh);
4055 /* If this takes us to the resync_max point where we have to pause,
4056 * then we need to write out the superblock.
4058 sector_nr += reshape_sectors;
4059 if ((sector_nr - mddev->curr_resync_completed) * 2
4060 >= mddev->resync_max - mddev->curr_resync_completed) {
4061 /* Cannot proceed until we've updated the superblock... */
4062 wait_event(conf->wait_for_overlap,
4063 atomic_read(&conf->reshape_stripes) == 0);
4064 mddev->reshape_position = conf->reshape_progress;
4065 mddev->curr_resync_completed = sector_nr;
4066 conf->reshape_checkpoint = jiffies;
4067 set_bit(MD_CHANGE_DEVS, &mddev->flags);
4068 md_wakeup_thread(mddev->thread);
4069 wait_event(mddev->sb_wait,
4070 !test_bit(MD_CHANGE_DEVS, &mddev->flags)
4071 || kthread_should_stop());
4072 spin_lock_irq(&conf->device_lock);
4073 conf->reshape_safe = mddev->reshape_position;
4074 spin_unlock_irq(&conf->device_lock);
4075 wake_up(&conf->wait_for_overlap);
4076 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
4078 return reshape_sectors;
4081 /* FIXME go_faster isn't used */
4082 static inline sector_t sync_request(mddev_t *mddev, sector_t sector_nr, int *skipped, int go_faster)
4084 raid5_conf_t *conf = mddev->private;
4085 struct stripe_head *sh;
4086 sector_t max_sector = mddev->dev_sectors;
4087 sector_t sync_blocks;
4088 int still_degraded = 0;
4089 int i;
4091 if (sector_nr >= max_sector) {
4092 /* just being told to finish up .. nothing much to do */
4094 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
4095 end_reshape(conf);
4096 return 0;
4099 if (mddev->curr_resync < max_sector) /* aborted */
4100 bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
4101 &sync_blocks, 1);
4102 else /* completed sync */
4103 conf->fullsync = 0;
4104 bitmap_close_sync(mddev->bitmap);
4106 return 0;
4109 /* Allow raid5_quiesce to complete */
4110 wait_event(conf->wait_for_overlap, conf->quiesce != 2);
4112 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
4113 return reshape_request(mddev, sector_nr, skipped);
4115 /* No need to check resync_max as we never do more than one
4116 * stripe, and as resync_max will always be on a chunk boundary,
4117 * if the check in md_do_sync didn't fire, there is no chance
4118 * of overstepping resync_max here
4121 /* if there is too many failed drives and we are trying
4122 * to resync, then assert that we are finished, because there is
4123 * nothing we can do.
4125 if (mddev->degraded >= conf->max_degraded &&
4126 test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
4127 sector_t rv = mddev->dev_sectors - sector_nr;
4128 *skipped = 1;
4129 return rv;
4131 if (!bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
4132 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
4133 !conf->fullsync && sync_blocks >= STRIPE_SECTORS) {
4134 /* we can skip this block, and probably more */
4135 sync_blocks /= STRIPE_SECTORS;
4136 *skipped = 1;
4137 return sync_blocks * STRIPE_SECTORS; /* keep things rounded to whole stripes */
4141 bitmap_cond_end_sync(mddev->bitmap, sector_nr);
4143 sh = get_active_stripe(conf, sector_nr, 0, 1, 0);
4144 if (sh == NULL) {
4145 sh = get_active_stripe(conf, sector_nr, 0, 0, 0);
4146 /* make sure we don't swamp the stripe cache if someone else
4147 * is trying to get access
4149 schedule_timeout_uninterruptible(1);
4151 /* Need to check if array will still be degraded after recovery/resync
4152 * We don't need to check the 'failed' flag as when that gets set,
4153 * recovery aborts.
4155 for (i = 0; i < conf->raid_disks; i++)
4156 if (conf->disks[i].rdev == NULL)
4157 still_degraded = 1;
4159 bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, still_degraded);
4161 set_bit(STRIPE_SYNC_REQUESTED, &sh->state);
4163 handle_stripe(sh);
4164 release_stripe(sh);
4166 return STRIPE_SECTORS;
4169 static int retry_aligned_read(raid5_conf_t *conf, struct bio *raid_bio)
4171 /* We may not be able to submit a whole bio at once as there
4172 * may not be enough stripe_heads available.
4173 * We cannot pre-allocate enough stripe_heads as we may need
4174 * more than exist in the cache (if we allow ever large chunks).
4175 * So we do one stripe head at a time and record in
4176 * ->bi_hw_segments how many have been done.
4178 * We *know* that this entire raid_bio is in one chunk, so
4179 * it will be only one 'dd_idx' and only need one call to raid5_compute_sector.
4181 struct stripe_head *sh;
4182 int dd_idx;
4183 sector_t sector, logical_sector, last_sector;
4184 int scnt = 0;
4185 int remaining;
4186 int handled = 0;
4188 logical_sector = raid_bio->bi_sector & ~((sector_t)STRIPE_SECTORS-1);
4189 sector = raid5_compute_sector(conf, logical_sector,
4190 0, &dd_idx, NULL);
4191 last_sector = raid_bio->bi_sector + (raid_bio->bi_size>>9);
4193 for (; logical_sector < last_sector;
4194 logical_sector += STRIPE_SECTORS,
4195 sector += STRIPE_SECTORS,
4196 scnt++) {
4198 if (scnt < raid5_bi_hw_segments(raid_bio))
4199 /* already done this stripe */
4200 continue;
4202 sh = get_active_stripe(conf, sector, 0, 1, 0);
4204 if (!sh) {
4205 /* failed to get a stripe - must wait */
4206 raid5_set_bi_hw_segments(raid_bio, scnt);
4207 conf->retry_read_aligned = raid_bio;
4208 return handled;
4211 set_bit(R5_ReadError, &sh->dev[dd_idx].flags);
4212 if (!add_stripe_bio(sh, raid_bio, dd_idx, 0)) {
4213 release_stripe(sh);
4214 raid5_set_bi_hw_segments(raid_bio, scnt);
4215 conf->retry_read_aligned = raid_bio;
4216 return handled;
4219 handle_stripe(sh);
4220 release_stripe(sh);
4221 handled++;
4223 spin_lock_irq(&conf->device_lock);
4224 remaining = raid5_dec_bi_phys_segments(raid_bio);
4225 spin_unlock_irq(&conf->device_lock);
4226 if (remaining == 0)
4227 bio_endio(raid_bio, 0);
4228 if (atomic_dec_and_test(&conf->active_aligned_reads))
4229 wake_up(&conf->wait_for_stripe);
4230 return handled;
4235 * This is our raid5 kernel thread.
4237 * We scan the hash table for stripes which can be handled now.
4238 * During the scan, completed stripes are saved for us by the interrupt
4239 * handler, so that they will not have to wait for our next wakeup.
4241 static void raid5d(mddev_t *mddev)
4243 struct stripe_head *sh;
4244 raid5_conf_t *conf = mddev->private;
4245 int handled;
4246 struct blk_plug plug;
4248 pr_debug("+++ raid5d active\n");
4250 md_check_recovery(mddev);
4252 blk_start_plug(&plug);
4253 handled = 0;
4254 spin_lock_irq(&conf->device_lock);
4255 while (1) {
4256 struct bio *bio;
4258 if (atomic_read(&mddev->plug_cnt) == 0 &&
4259 !list_empty(&conf->bitmap_list)) {
4260 /* Now is a good time to flush some bitmap updates */
4261 conf->seq_flush++;
4262 spin_unlock_irq(&conf->device_lock);
4263 bitmap_unplug(mddev->bitmap);
4264 spin_lock_irq(&conf->device_lock);
4265 conf->seq_write = conf->seq_flush;
4266 activate_bit_delay(conf);
4268 if (atomic_read(&mddev->plug_cnt) == 0)
4269 raid5_activate_delayed(conf);
4271 while ((bio = remove_bio_from_retry(conf))) {
4272 int ok;
4273 spin_unlock_irq(&conf->device_lock);
4274 ok = retry_aligned_read(conf, bio);
4275 spin_lock_irq(&conf->device_lock);
4276 if (!ok)
4277 break;
4278 handled++;
4281 sh = __get_priority_stripe(conf);
4283 if (!sh)
4284 break;
4285 spin_unlock_irq(&conf->device_lock);
4287 handled++;
4288 handle_stripe(sh);
4289 release_stripe(sh);
4290 cond_resched();
4292 if (mddev->flags & ~(1<<MD_CHANGE_PENDING))
4293 md_check_recovery(mddev);
4295 spin_lock_irq(&conf->device_lock);
4297 pr_debug("%d stripes handled\n", handled);
4299 spin_unlock_irq(&conf->device_lock);
4301 async_tx_issue_pending_all();
4302 blk_finish_plug(&plug);
4304 pr_debug("--- raid5d inactive\n");
4307 static ssize_t
4308 raid5_show_stripe_cache_size(mddev_t *mddev, char *page)
4310 raid5_conf_t *conf = mddev->private;
4311 if (conf)
4312 return sprintf(page, "%d\n", conf->max_nr_stripes);
4313 else
4314 return 0;
4318 raid5_set_cache_size(mddev_t *mddev, int size)
4320 raid5_conf_t *conf = mddev->private;
4321 int err;
4323 if (size <= 16 || size > 32768)
4324 return -EINVAL;
4325 while (size < conf->max_nr_stripes) {
4326 if (drop_one_stripe(conf))
4327 conf->max_nr_stripes--;
4328 else
4329 break;
4331 err = md_allow_write(mddev);
4332 if (err)
4333 return err;
4334 while (size > conf->max_nr_stripes) {
4335 if (grow_one_stripe(conf))
4336 conf->max_nr_stripes++;
4337 else break;
4339 return 0;
4341 EXPORT_SYMBOL(raid5_set_cache_size);
4343 static ssize_t
4344 raid5_store_stripe_cache_size(mddev_t *mddev, const char *page, size_t len)
4346 raid5_conf_t *conf = mddev->private;
4347 unsigned long new;
4348 int err;
4350 if (len >= PAGE_SIZE)
4351 return -EINVAL;
4352 if (!conf)
4353 return -ENODEV;
4355 if (strict_strtoul(page, 10, &new))
4356 return -EINVAL;
4357 err = raid5_set_cache_size(mddev, new);
4358 if (err)
4359 return err;
4360 return len;
4363 static struct md_sysfs_entry
4364 raid5_stripecache_size = __ATTR(stripe_cache_size, S_IRUGO | S_IWUSR,
4365 raid5_show_stripe_cache_size,
4366 raid5_store_stripe_cache_size);
4368 static ssize_t
4369 raid5_show_preread_threshold(mddev_t *mddev, char *page)
4371 raid5_conf_t *conf = mddev->private;
4372 if (conf)
4373 return sprintf(page, "%d\n", conf->bypass_threshold);
4374 else
4375 return 0;
4378 static ssize_t
4379 raid5_store_preread_threshold(mddev_t *mddev, const char *page, size_t len)
4381 raid5_conf_t *conf = mddev->private;
4382 unsigned long new;
4383 if (len >= PAGE_SIZE)
4384 return -EINVAL;
4385 if (!conf)
4386 return -ENODEV;
4388 if (strict_strtoul(page, 10, &new))
4389 return -EINVAL;
4390 if (new > conf->max_nr_stripes)
4391 return -EINVAL;
4392 conf->bypass_threshold = new;
4393 return len;
4396 static struct md_sysfs_entry
4397 raid5_preread_bypass_threshold = __ATTR(preread_bypass_threshold,
4398 S_IRUGO | S_IWUSR,
4399 raid5_show_preread_threshold,
4400 raid5_store_preread_threshold);
4402 static ssize_t
4403 stripe_cache_active_show(mddev_t *mddev, char *page)
4405 raid5_conf_t *conf = mddev->private;
4406 if (conf)
4407 return sprintf(page, "%d\n", atomic_read(&conf->active_stripes));
4408 else
4409 return 0;
4412 static struct md_sysfs_entry
4413 raid5_stripecache_active = __ATTR_RO(stripe_cache_active);
4415 static struct attribute *raid5_attrs[] = {
4416 &raid5_stripecache_size.attr,
4417 &raid5_stripecache_active.attr,
4418 &raid5_preread_bypass_threshold.attr,
4419 NULL,
4421 static struct attribute_group raid5_attrs_group = {
4422 .name = NULL,
4423 .attrs = raid5_attrs,
4426 static sector_t
4427 raid5_size(mddev_t *mddev, sector_t sectors, int raid_disks)
4429 raid5_conf_t *conf = mddev->private;
4431 if (!sectors)
4432 sectors = mddev->dev_sectors;
4433 if (!raid_disks)
4434 /* size is defined by the smallest of previous and new size */
4435 raid_disks = min(conf->raid_disks, conf->previous_raid_disks);
4437 sectors &= ~((sector_t)mddev->chunk_sectors - 1);
4438 sectors &= ~((sector_t)mddev->new_chunk_sectors - 1);
4439 return sectors * (raid_disks - conf->max_degraded);
4442 static void raid5_free_percpu(raid5_conf_t *conf)
4444 struct raid5_percpu *percpu;
4445 unsigned long cpu;
4447 if (!conf->percpu)
4448 return;
4450 get_online_cpus();
4451 for_each_possible_cpu(cpu) {
4452 percpu = per_cpu_ptr(conf->percpu, cpu);
4453 safe_put_page(percpu->spare_page);
4454 kfree(percpu->scribble);
4456 #ifdef CONFIG_HOTPLUG_CPU
4457 unregister_cpu_notifier(&conf->cpu_notify);
4458 #endif
4459 put_online_cpus();
4461 free_percpu(conf->percpu);
4464 static void free_conf(raid5_conf_t *conf)
4466 shrink_stripes(conf);
4467 raid5_free_percpu(conf);
4468 kfree(conf->disks);
4469 kfree(conf->stripe_hashtbl);
4470 kfree(conf);
4473 #ifdef CONFIG_HOTPLUG_CPU
4474 static int raid456_cpu_notify(struct notifier_block *nfb, unsigned long action,
4475 void *hcpu)
4477 raid5_conf_t *conf = container_of(nfb, raid5_conf_t, cpu_notify);
4478 long cpu = (long)hcpu;
4479 struct raid5_percpu *percpu = per_cpu_ptr(conf->percpu, cpu);
4481 switch (action) {
4482 case CPU_UP_PREPARE:
4483 case CPU_UP_PREPARE_FROZEN:
4484 if (conf->level == 6 && !percpu->spare_page)
4485 percpu->spare_page = alloc_page(GFP_KERNEL);
4486 if (!percpu->scribble)
4487 percpu->scribble = kmalloc(conf->scribble_len, GFP_KERNEL);
4489 if (!percpu->scribble ||
4490 (conf->level == 6 && !percpu->spare_page)) {
4491 safe_put_page(percpu->spare_page);
4492 kfree(percpu->scribble);
4493 pr_err("%s: failed memory allocation for cpu%ld\n",
4494 __func__, cpu);
4495 return notifier_from_errno(-ENOMEM);
4497 break;
4498 case CPU_DEAD:
4499 case CPU_DEAD_FROZEN:
4500 safe_put_page(percpu->spare_page);
4501 kfree(percpu->scribble);
4502 percpu->spare_page = NULL;
4503 percpu->scribble = NULL;
4504 break;
4505 default:
4506 break;
4508 return NOTIFY_OK;
4510 #endif
4512 static int raid5_alloc_percpu(raid5_conf_t *conf)
4514 unsigned long cpu;
4515 struct page *spare_page;
4516 struct raid5_percpu __percpu *allcpus;
4517 void *scribble;
4518 int err;
4520 allcpus = alloc_percpu(struct raid5_percpu);
4521 if (!allcpus)
4522 return -ENOMEM;
4523 conf->percpu = allcpus;
4525 get_online_cpus();
4526 err = 0;
4527 for_each_present_cpu(cpu) {
4528 if (conf->level == 6) {
4529 spare_page = alloc_page(GFP_KERNEL);
4530 if (!spare_page) {
4531 err = -ENOMEM;
4532 break;
4534 per_cpu_ptr(conf->percpu, cpu)->spare_page = spare_page;
4536 scribble = kmalloc(conf->scribble_len, GFP_KERNEL);
4537 if (!scribble) {
4538 err = -ENOMEM;
4539 break;
4541 per_cpu_ptr(conf->percpu, cpu)->scribble = scribble;
4543 #ifdef CONFIG_HOTPLUG_CPU
4544 conf->cpu_notify.notifier_call = raid456_cpu_notify;
4545 conf->cpu_notify.priority = 0;
4546 if (err == 0)
4547 err = register_cpu_notifier(&conf->cpu_notify);
4548 #endif
4549 put_online_cpus();
4551 return err;
4554 static raid5_conf_t *setup_conf(mddev_t *mddev)
4556 raid5_conf_t *conf;
4557 int raid_disk, memory, max_disks;
4558 mdk_rdev_t *rdev;
4559 struct disk_info *disk;
4561 if (mddev->new_level != 5
4562 && mddev->new_level != 4
4563 && mddev->new_level != 6) {
4564 printk(KERN_ERR "md/raid:%s: raid level not set to 4/5/6 (%d)\n",
4565 mdname(mddev), mddev->new_level);
4566 return ERR_PTR(-EIO);
4568 if ((mddev->new_level == 5
4569 && !algorithm_valid_raid5(mddev->new_layout)) ||
4570 (mddev->new_level == 6
4571 && !algorithm_valid_raid6(mddev->new_layout))) {
4572 printk(KERN_ERR "md/raid:%s: layout %d not supported\n",
4573 mdname(mddev), mddev->new_layout);
4574 return ERR_PTR(-EIO);
4576 if (mddev->new_level == 6 && mddev->raid_disks < 4) {
4577 printk(KERN_ERR "md/raid:%s: not enough configured devices (%d, minimum 4)\n",
4578 mdname(mddev), mddev->raid_disks);
4579 return ERR_PTR(-EINVAL);
4582 if (!mddev->new_chunk_sectors ||
4583 (mddev->new_chunk_sectors << 9) % PAGE_SIZE ||
4584 !is_power_of_2(mddev->new_chunk_sectors)) {
4585 printk(KERN_ERR "md/raid:%s: invalid chunk size %d\n",
4586 mdname(mddev), mddev->new_chunk_sectors << 9);
4587 return ERR_PTR(-EINVAL);
4590 conf = kzalloc(sizeof(raid5_conf_t), GFP_KERNEL);
4591 if (conf == NULL)
4592 goto abort;
4593 spin_lock_init(&conf->device_lock);
4594 init_waitqueue_head(&conf->wait_for_stripe);
4595 init_waitqueue_head(&conf->wait_for_overlap);
4596 INIT_LIST_HEAD(&conf->handle_list);
4597 INIT_LIST_HEAD(&conf->hold_list);
4598 INIT_LIST_HEAD(&conf->delayed_list);
4599 INIT_LIST_HEAD(&conf->bitmap_list);
4600 INIT_LIST_HEAD(&conf->inactive_list);
4601 atomic_set(&conf->active_stripes, 0);
4602 atomic_set(&conf->preread_active_stripes, 0);
4603 atomic_set(&conf->active_aligned_reads, 0);
4604 conf->bypass_threshold = BYPASS_THRESHOLD;
4606 conf->raid_disks = mddev->raid_disks;
4607 if (mddev->reshape_position == MaxSector)
4608 conf->previous_raid_disks = mddev->raid_disks;
4609 else
4610 conf->previous_raid_disks = mddev->raid_disks - mddev->delta_disks;
4611 max_disks = max(conf->raid_disks, conf->previous_raid_disks);
4612 conf->scribble_len = scribble_len(max_disks);
4614 conf->disks = kzalloc(max_disks * sizeof(struct disk_info),
4615 GFP_KERNEL);
4616 if (!conf->disks)
4617 goto abort;
4619 conf->mddev = mddev;
4621 if ((conf->stripe_hashtbl = kzalloc(PAGE_SIZE, GFP_KERNEL)) == NULL)
4622 goto abort;
4624 conf->level = mddev->new_level;
4625 if (raid5_alloc_percpu(conf) != 0)
4626 goto abort;
4628 pr_debug("raid456: run(%s) called.\n", mdname(mddev));
4630 list_for_each_entry(rdev, &mddev->disks, same_set) {
4631 raid_disk = rdev->raid_disk;
4632 if (raid_disk >= max_disks
4633 || raid_disk < 0)
4634 continue;
4635 disk = conf->disks + raid_disk;
4637 disk->rdev = rdev;
4639 if (test_bit(In_sync, &rdev->flags)) {
4640 char b[BDEVNAME_SIZE];
4641 printk(KERN_INFO "md/raid:%s: device %s operational as raid"
4642 " disk %d\n",
4643 mdname(mddev), bdevname(rdev->bdev, b), raid_disk);
4644 } else if (rdev->saved_raid_disk != raid_disk)
4645 /* Cannot rely on bitmap to complete recovery */
4646 conf->fullsync = 1;
4649 conf->chunk_sectors = mddev->new_chunk_sectors;
4650 conf->level = mddev->new_level;
4651 if (conf->level == 6)
4652 conf->max_degraded = 2;
4653 else
4654 conf->max_degraded = 1;
4655 conf->algorithm = mddev->new_layout;
4656 conf->max_nr_stripes = NR_STRIPES;
4657 conf->reshape_progress = mddev->reshape_position;
4658 if (conf->reshape_progress != MaxSector) {
4659 conf->prev_chunk_sectors = mddev->chunk_sectors;
4660 conf->prev_algo = mddev->layout;
4663 memory = conf->max_nr_stripes * (sizeof(struct stripe_head) +
4664 max_disks * ((sizeof(struct bio) + PAGE_SIZE))) / 1024;
4665 if (grow_stripes(conf, conf->max_nr_stripes)) {
4666 printk(KERN_ERR
4667 "md/raid:%s: couldn't allocate %dkB for buffers\n",
4668 mdname(mddev), memory);
4669 goto abort;
4670 } else
4671 printk(KERN_INFO "md/raid:%s: allocated %dkB\n",
4672 mdname(mddev), memory);
4674 conf->thread = md_register_thread(raid5d, mddev, NULL);
4675 if (!conf->thread) {
4676 printk(KERN_ERR
4677 "md/raid:%s: couldn't allocate thread.\n",
4678 mdname(mddev));
4679 goto abort;
4682 return conf;
4684 abort:
4685 if (conf) {
4686 free_conf(conf);
4687 return ERR_PTR(-EIO);
4688 } else
4689 return ERR_PTR(-ENOMEM);
4693 static int only_parity(int raid_disk, int algo, int raid_disks, int max_degraded)
4695 switch (algo) {
4696 case ALGORITHM_PARITY_0:
4697 if (raid_disk < max_degraded)
4698 return 1;
4699 break;
4700 case ALGORITHM_PARITY_N:
4701 if (raid_disk >= raid_disks - max_degraded)
4702 return 1;
4703 break;
4704 case ALGORITHM_PARITY_0_6:
4705 if (raid_disk == 0 ||
4706 raid_disk == raid_disks - 1)
4707 return 1;
4708 break;
4709 case ALGORITHM_LEFT_ASYMMETRIC_6:
4710 case ALGORITHM_RIGHT_ASYMMETRIC_6:
4711 case ALGORITHM_LEFT_SYMMETRIC_6:
4712 case ALGORITHM_RIGHT_SYMMETRIC_6:
4713 if (raid_disk == raid_disks - 1)
4714 return 1;
4716 return 0;
4719 static int run(mddev_t *mddev)
4721 raid5_conf_t *conf;
4722 int working_disks = 0;
4723 int dirty_parity_disks = 0;
4724 mdk_rdev_t *rdev;
4725 sector_t reshape_offset = 0;
4727 if (mddev->recovery_cp != MaxSector)
4728 printk(KERN_NOTICE "md/raid:%s: not clean"
4729 " -- starting background reconstruction\n",
4730 mdname(mddev));
4731 if (mddev->reshape_position != MaxSector) {
4732 /* Check that we can continue the reshape.
4733 * Currently only disks can change, it must
4734 * increase, and we must be past the point where
4735 * a stripe over-writes itself
4737 sector_t here_new, here_old;
4738 int old_disks;
4739 int max_degraded = (mddev->level == 6 ? 2 : 1);
4741 if (mddev->new_level != mddev->level) {
4742 printk(KERN_ERR "md/raid:%s: unsupported reshape "
4743 "required - aborting.\n",
4744 mdname(mddev));
4745 return -EINVAL;
4747 old_disks = mddev->raid_disks - mddev->delta_disks;
4748 /* reshape_position must be on a new-stripe boundary, and one
4749 * further up in new geometry must map after here in old
4750 * geometry.
4752 here_new = mddev->reshape_position;
4753 if (sector_div(here_new, mddev->new_chunk_sectors *
4754 (mddev->raid_disks - max_degraded))) {
4755 printk(KERN_ERR "md/raid:%s: reshape_position not "
4756 "on a stripe boundary\n", mdname(mddev));
4757 return -EINVAL;
4759 reshape_offset = here_new * mddev->new_chunk_sectors;
4760 /* here_new is the stripe we will write to */
4761 here_old = mddev->reshape_position;
4762 sector_div(here_old, mddev->chunk_sectors *
4763 (old_disks-max_degraded));
4764 /* here_old is the first stripe that we might need to read
4765 * from */
4766 if (mddev->delta_disks == 0) {
4767 /* We cannot be sure it is safe to start an in-place
4768 * reshape. It is only safe if user-space if monitoring
4769 * and taking constant backups.
4770 * mdadm always starts a situation like this in
4771 * readonly mode so it can take control before
4772 * allowing any writes. So just check for that.
4774 if ((here_new * mddev->new_chunk_sectors !=
4775 here_old * mddev->chunk_sectors) ||
4776 mddev->ro == 0) {
4777 printk(KERN_ERR "md/raid:%s: in-place reshape must be started"
4778 " in read-only mode - aborting\n",
4779 mdname(mddev));
4780 return -EINVAL;
4782 } else if (mddev->delta_disks < 0
4783 ? (here_new * mddev->new_chunk_sectors <=
4784 here_old * mddev->chunk_sectors)
4785 : (here_new * mddev->new_chunk_sectors >=
4786 here_old * mddev->chunk_sectors)) {
4787 /* Reading from the same stripe as writing to - bad */
4788 printk(KERN_ERR "md/raid:%s: reshape_position too early for "
4789 "auto-recovery - aborting.\n",
4790 mdname(mddev));
4791 return -EINVAL;
4793 printk(KERN_INFO "md/raid:%s: reshape will continue\n",
4794 mdname(mddev));
4795 /* OK, we should be able to continue; */
4796 } else {
4797 BUG_ON(mddev->level != mddev->new_level);
4798 BUG_ON(mddev->layout != mddev->new_layout);
4799 BUG_ON(mddev->chunk_sectors != mddev->new_chunk_sectors);
4800 BUG_ON(mddev->delta_disks != 0);
4803 if (mddev->private == NULL)
4804 conf = setup_conf(mddev);
4805 else
4806 conf = mddev->private;
4808 if (IS_ERR(conf))
4809 return PTR_ERR(conf);
4811 mddev->thread = conf->thread;
4812 conf->thread = NULL;
4813 mddev->private = conf;
4816 * 0 for a fully functional array, 1 or 2 for a degraded array.
4818 list_for_each_entry(rdev, &mddev->disks, same_set) {
4819 if (rdev->raid_disk < 0)
4820 continue;
4821 if (test_bit(In_sync, &rdev->flags)) {
4822 working_disks++;
4823 continue;
4825 /* This disc is not fully in-sync. However if it
4826 * just stored parity (beyond the recovery_offset),
4827 * when we don't need to be concerned about the
4828 * array being dirty.
4829 * When reshape goes 'backwards', we never have
4830 * partially completed devices, so we only need
4831 * to worry about reshape going forwards.
4833 /* Hack because v0.91 doesn't store recovery_offset properly. */
4834 if (mddev->major_version == 0 &&
4835 mddev->minor_version > 90)
4836 rdev->recovery_offset = reshape_offset;
4838 if (rdev->recovery_offset < reshape_offset) {
4839 /* We need to check old and new layout */
4840 if (!only_parity(rdev->raid_disk,
4841 conf->algorithm,
4842 conf->raid_disks,
4843 conf->max_degraded))
4844 continue;
4846 if (!only_parity(rdev->raid_disk,
4847 conf->prev_algo,
4848 conf->previous_raid_disks,
4849 conf->max_degraded))
4850 continue;
4851 dirty_parity_disks++;
4854 mddev->degraded = (max(conf->raid_disks, conf->previous_raid_disks)
4855 - working_disks);
4857 if (has_failed(conf)) {
4858 printk(KERN_ERR "md/raid:%s: not enough operational devices"
4859 " (%d/%d failed)\n",
4860 mdname(mddev), mddev->degraded, conf->raid_disks);
4861 goto abort;
4864 /* device size must be a multiple of chunk size */
4865 mddev->dev_sectors &= ~(mddev->chunk_sectors - 1);
4866 mddev->resync_max_sectors = mddev->dev_sectors;
4868 if (mddev->degraded > dirty_parity_disks &&
4869 mddev->recovery_cp != MaxSector) {
4870 if (mddev->ok_start_degraded)
4871 printk(KERN_WARNING
4872 "md/raid:%s: starting dirty degraded array"
4873 " - data corruption possible.\n",
4874 mdname(mddev));
4875 else {
4876 printk(KERN_ERR
4877 "md/raid:%s: cannot start dirty degraded array.\n",
4878 mdname(mddev));
4879 goto abort;
4883 if (mddev->degraded == 0)
4884 printk(KERN_INFO "md/raid:%s: raid level %d active with %d out of %d"
4885 " devices, algorithm %d\n", mdname(mddev), conf->level,
4886 mddev->raid_disks-mddev->degraded, mddev->raid_disks,
4887 mddev->new_layout);
4888 else
4889 printk(KERN_ALERT "md/raid:%s: raid level %d active with %d"
4890 " out of %d devices, algorithm %d\n",
4891 mdname(mddev), conf->level,
4892 mddev->raid_disks - mddev->degraded,
4893 mddev->raid_disks, mddev->new_layout);
4895 print_raid5_conf(conf);
4897 if (conf->reshape_progress != MaxSector) {
4898 conf->reshape_safe = conf->reshape_progress;
4899 atomic_set(&conf->reshape_stripes, 0);
4900 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4901 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
4902 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
4903 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
4904 mddev->sync_thread = md_register_thread(md_do_sync, mddev,
4905 "reshape");
4909 /* Ok, everything is just fine now */
4910 if (mddev->to_remove == &raid5_attrs_group)
4911 mddev->to_remove = NULL;
4912 else if (mddev->kobj.sd &&
4913 sysfs_create_group(&mddev->kobj, &raid5_attrs_group))
4914 printk(KERN_WARNING
4915 "raid5: failed to create sysfs attributes for %s\n",
4916 mdname(mddev));
4917 md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
4919 if (mddev->queue) {
4920 int chunk_size;
4921 /* read-ahead size must cover two whole stripes, which
4922 * is 2 * (datadisks) * chunksize where 'n' is the
4923 * number of raid devices
4925 int data_disks = conf->previous_raid_disks - conf->max_degraded;
4926 int stripe = data_disks *
4927 ((mddev->chunk_sectors << 9) / PAGE_SIZE);
4928 if (mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
4929 mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
4931 blk_queue_merge_bvec(mddev->queue, raid5_mergeable_bvec);
4933 mddev->queue->backing_dev_info.congested_data = mddev;
4934 mddev->queue->backing_dev_info.congested_fn = raid5_congested;
4936 chunk_size = mddev->chunk_sectors << 9;
4937 blk_queue_io_min(mddev->queue, chunk_size);
4938 blk_queue_io_opt(mddev->queue, chunk_size *
4939 (conf->raid_disks - conf->max_degraded));
4941 list_for_each_entry(rdev, &mddev->disks, same_set)
4942 disk_stack_limits(mddev->gendisk, rdev->bdev,
4943 rdev->data_offset << 9);
4946 return 0;
4947 abort:
4948 md_unregister_thread(&mddev->thread);
4949 if (conf) {
4950 print_raid5_conf(conf);
4951 free_conf(conf);
4953 mddev->private = NULL;
4954 printk(KERN_ALERT "md/raid:%s: failed to run raid set.\n", mdname(mddev));
4955 return -EIO;
4958 static int stop(mddev_t *mddev)
4960 raid5_conf_t *conf = mddev->private;
4962 md_unregister_thread(&mddev->thread);
4963 if (mddev->queue)
4964 mddev->queue->backing_dev_info.congested_fn = NULL;
4965 free_conf(conf);
4966 mddev->private = NULL;
4967 mddev->to_remove = &raid5_attrs_group;
4968 return 0;
4971 #ifdef DEBUG
4972 static void print_sh(struct seq_file *seq, struct stripe_head *sh)
4974 int i;
4976 seq_printf(seq, "sh %llu, pd_idx %d, state %ld.\n",
4977 (unsigned long long)sh->sector, sh->pd_idx, sh->state);
4978 seq_printf(seq, "sh %llu, count %d.\n",
4979 (unsigned long long)sh->sector, atomic_read(&sh->count));
4980 seq_printf(seq, "sh %llu, ", (unsigned long long)sh->sector);
4981 for (i = 0; i < sh->disks; i++) {
4982 seq_printf(seq, "(cache%d: %p %ld) ",
4983 i, sh->dev[i].page, sh->dev[i].flags);
4985 seq_printf(seq, "\n");
4988 static void printall(struct seq_file *seq, raid5_conf_t *conf)
4990 struct stripe_head *sh;
4991 struct hlist_node *hn;
4992 int i;
4994 spin_lock_irq(&conf->device_lock);
4995 for (i = 0; i < NR_HASH; i++) {
4996 hlist_for_each_entry(sh, hn, &conf->stripe_hashtbl[i], hash) {
4997 if (sh->raid_conf != conf)
4998 continue;
4999 print_sh(seq, sh);
5002 spin_unlock_irq(&conf->device_lock);
5004 #endif
5006 static void status(struct seq_file *seq, mddev_t *mddev)
5008 raid5_conf_t *conf = mddev->private;
5009 int i;
5011 seq_printf(seq, " level %d, %dk chunk, algorithm %d", mddev->level,
5012 mddev->chunk_sectors / 2, mddev->layout);
5013 seq_printf (seq, " [%d/%d] [", conf->raid_disks, conf->raid_disks - mddev->degraded);
5014 for (i = 0; i < conf->raid_disks; i++)
5015 seq_printf (seq, "%s",
5016 conf->disks[i].rdev &&
5017 test_bit(In_sync, &conf->disks[i].rdev->flags) ? "U" : "_");
5018 seq_printf (seq, "]");
5019 #ifdef DEBUG
5020 seq_printf (seq, "\n");
5021 printall(seq, conf);
5022 #endif
5025 static void print_raid5_conf (raid5_conf_t *conf)
5027 int i;
5028 struct disk_info *tmp;
5030 printk(KERN_DEBUG "RAID conf printout:\n");
5031 if (!conf) {
5032 printk("(conf==NULL)\n");
5033 return;
5035 printk(KERN_DEBUG " --- level:%d rd:%d wd:%d\n", conf->level,
5036 conf->raid_disks,
5037 conf->raid_disks - conf->mddev->degraded);
5039 for (i = 0; i < conf->raid_disks; i++) {
5040 char b[BDEVNAME_SIZE];
5041 tmp = conf->disks + i;
5042 if (tmp->rdev)
5043 printk(KERN_DEBUG " disk %d, o:%d, dev:%s\n",
5044 i, !test_bit(Faulty, &tmp->rdev->flags),
5045 bdevname(tmp->rdev->bdev, b));
5049 static int raid5_spare_active(mddev_t *mddev)
5051 int i;
5052 raid5_conf_t *conf = mddev->private;
5053 struct disk_info *tmp;
5054 int count = 0;
5055 unsigned long flags;
5057 for (i = 0; i < conf->raid_disks; i++) {
5058 tmp = conf->disks + i;
5059 if (tmp->rdev
5060 && tmp->rdev->recovery_offset == MaxSector
5061 && !test_bit(Faulty, &tmp->rdev->flags)
5062 && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
5063 count++;
5064 sysfs_notify_dirent_safe(tmp->rdev->sysfs_state);
5067 spin_lock_irqsave(&conf->device_lock, flags);
5068 mddev->degraded -= count;
5069 spin_unlock_irqrestore(&conf->device_lock, flags);
5070 print_raid5_conf(conf);
5071 return count;
5074 static int raid5_remove_disk(mddev_t *mddev, int number)
5076 raid5_conf_t *conf = mddev->private;
5077 int err = 0;
5078 mdk_rdev_t *rdev;
5079 struct disk_info *p = conf->disks + number;
5081 print_raid5_conf(conf);
5082 rdev = p->rdev;
5083 if (rdev) {
5084 if (number >= conf->raid_disks &&
5085 conf->reshape_progress == MaxSector)
5086 clear_bit(In_sync, &rdev->flags);
5088 if (test_bit(In_sync, &rdev->flags) ||
5089 atomic_read(&rdev->nr_pending)) {
5090 err = -EBUSY;
5091 goto abort;
5093 /* Only remove non-faulty devices if recovery
5094 * isn't possible.
5096 if (!test_bit(Faulty, &rdev->flags) &&
5097 mddev->recovery_disabled != conf->recovery_disabled &&
5098 !has_failed(conf) &&
5099 number < conf->raid_disks) {
5100 err = -EBUSY;
5101 goto abort;
5103 p->rdev = NULL;
5104 synchronize_rcu();
5105 if (atomic_read(&rdev->nr_pending)) {
5106 /* lost the race, try later */
5107 err = -EBUSY;
5108 p->rdev = rdev;
5111 abort:
5113 print_raid5_conf(conf);
5114 return err;
5117 static int raid5_add_disk(mddev_t *mddev, mdk_rdev_t *rdev)
5119 raid5_conf_t *conf = mddev->private;
5120 int err = -EEXIST;
5121 int disk;
5122 struct disk_info *p;
5123 int first = 0;
5124 int last = conf->raid_disks - 1;
5126 if (mddev->recovery_disabled == conf->recovery_disabled)
5127 return -EBUSY;
5129 if (has_failed(conf))
5130 /* no point adding a device */
5131 return -EINVAL;
5133 if (rdev->raid_disk >= 0)
5134 first = last = rdev->raid_disk;
5137 * find the disk ... but prefer rdev->saved_raid_disk
5138 * if possible.
5140 if (rdev->saved_raid_disk >= 0 &&
5141 rdev->saved_raid_disk >= first &&
5142 conf->disks[rdev->saved_raid_disk].rdev == NULL)
5143 disk = rdev->saved_raid_disk;
5144 else
5145 disk = first;
5146 for ( ; disk <= last ; disk++)
5147 if ((p=conf->disks + disk)->rdev == NULL) {
5148 clear_bit(In_sync, &rdev->flags);
5149 rdev->raid_disk = disk;
5150 err = 0;
5151 if (rdev->saved_raid_disk != disk)
5152 conf->fullsync = 1;
5153 rcu_assign_pointer(p->rdev, rdev);
5154 break;
5156 print_raid5_conf(conf);
5157 return err;
5160 static int raid5_resize(mddev_t *mddev, sector_t sectors)
5162 /* no resync is happening, and there is enough space
5163 * on all devices, so we can resize.
5164 * We need to make sure resync covers any new space.
5165 * If the array is shrinking we should possibly wait until
5166 * any io in the removed space completes, but it hardly seems
5167 * worth it.
5169 sectors &= ~((sector_t)mddev->chunk_sectors - 1);
5170 md_set_array_sectors(mddev, raid5_size(mddev, sectors,
5171 mddev->raid_disks));
5172 if (mddev->array_sectors >
5173 raid5_size(mddev, sectors, mddev->raid_disks))
5174 return -EINVAL;
5175 set_capacity(mddev->gendisk, mddev->array_sectors);
5176 revalidate_disk(mddev->gendisk);
5177 if (sectors > mddev->dev_sectors &&
5178 mddev->recovery_cp > mddev->dev_sectors) {
5179 mddev->recovery_cp = mddev->dev_sectors;
5180 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5182 mddev->dev_sectors = sectors;
5183 mddev->resync_max_sectors = sectors;
5184 return 0;
5187 static int check_stripe_cache(mddev_t *mddev)
5189 /* Can only proceed if there are plenty of stripe_heads.
5190 * We need a minimum of one full stripe,, and for sensible progress
5191 * it is best to have about 4 times that.
5192 * If we require 4 times, then the default 256 4K stripe_heads will
5193 * allow for chunk sizes up to 256K, which is probably OK.
5194 * If the chunk size is greater, user-space should request more
5195 * stripe_heads first.
5197 raid5_conf_t *conf = mddev->private;
5198 if (((mddev->chunk_sectors << 9) / STRIPE_SIZE) * 4
5199 > conf->max_nr_stripes ||
5200 ((mddev->new_chunk_sectors << 9) / STRIPE_SIZE) * 4
5201 > conf->max_nr_stripes) {
5202 printk(KERN_WARNING "md/raid:%s: reshape: not enough stripes. Needed %lu\n",
5203 mdname(mddev),
5204 ((max(mddev->chunk_sectors, mddev->new_chunk_sectors) << 9)
5205 / STRIPE_SIZE)*4);
5206 return 0;
5208 return 1;
5211 static int check_reshape(mddev_t *mddev)
5213 raid5_conf_t *conf = mddev->private;
5215 if (mddev->delta_disks == 0 &&
5216 mddev->new_layout == mddev->layout &&
5217 mddev->new_chunk_sectors == mddev->chunk_sectors)
5218 return 0; /* nothing to do */
5219 if (mddev->bitmap)
5220 /* Cannot grow a bitmap yet */
5221 return -EBUSY;
5222 if (has_failed(conf))
5223 return -EINVAL;
5224 if (mddev->delta_disks < 0) {
5225 /* We might be able to shrink, but the devices must
5226 * be made bigger first.
5227 * For raid6, 4 is the minimum size.
5228 * Otherwise 2 is the minimum
5230 int min = 2;
5231 if (mddev->level == 6)
5232 min = 4;
5233 if (mddev->raid_disks + mddev->delta_disks < min)
5234 return -EINVAL;
5237 if (!check_stripe_cache(mddev))
5238 return -ENOSPC;
5240 return resize_stripes(conf, conf->raid_disks + mddev->delta_disks);
5243 static int raid5_start_reshape(mddev_t *mddev)
5245 raid5_conf_t *conf = mddev->private;
5246 mdk_rdev_t *rdev;
5247 int spares = 0;
5248 unsigned long flags;
5250 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
5251 return -EBUSY;
5253 if (!check_stripe_cache(mddev))
5254 return -ENOSPC;
5256 list_for_each_entry(rdev, &mddev->disks, same_set)
5257 if (!test_bit(In_sync, &rdev->flags)
5258 && !test_bit(Faulty, &rdev->flags))
5259 spares++;
5261 if (spares - mddev->degraded < mddev->delta_disks - conf->max_degraded)
5262 /* Not enough devices even to make a degraded array
5263 * of that size
5265 return -EINVAL;
5267 /* Refuse to reduce size of the array. Any reductions in
5268 * array size must be through explicit setting of array_size
5269 * attribute.
5271 if (raid5_size(mddev, 0, conf->raid_disks + mddev->delta_disks)
5272 < mddev->array_sectors) {
5273 printk(KERN_ERR "md/raid:%s: array size must be reduced "
5274 "before number of disks\n", mdname(mddev));
5275 return -EINVAL;
5278 atomic_set(&conf->reshape_stripes, 0);
5279 spin_lock_irq(&conf->device_lock);
5280 conf->previous_raid_disks = conf->raid_disks;
5281 conf->raid_disks += mddev->delta_disks;
5282 conf->prev_chunk_sectors = conf->chunk_sectors;
5283 conf->chunk_sectors = mddev->new_chunk_sectors;
5284 conf->prev_algo = conf->algorithm;
5285 conf->algorithm = mddev->new_layout;
5286 if (mddev->delta_disks < 0)
5287 conf->reshape_progress = raid5_size(mddev, 0, 0);
5288 else
5289 conf->reshape_progress = 0;
5290 conf->reshape_safe = conf->reshape_progress;
5291 conf->generation++;
5292 spin_unlock_irq(&conf->device_lock);
5294 /* Add some new drives, as many as will fit.
5295 * We know there are enough to make the newly sized array work.
5296 * Don't add devices if we are reducing the number of
5297 * devices in the array. This is because it is not possible
5298 * to correctly record the "partially reconstructed" state of
5299 * such devices during the reshape and confusion could result.
5301 if (mddev->delta_disks >= 0) {
5302 int added_devices = 0;
5303 list_for_each_entry(rdev, &mddev->disks, same_set)
5304 if (rdev->raid_disk < 0 &&
5305 !test_bit(Faulty, &rdev->flags)) {
5306 if (raid5_add_disk(mddev, rdev) == 0) {
5307 if (rdev->raid_disk
5308 >= conf->previous_raid_disks) {
5309 set_bit(In_sync, &rdev->flags);
5310 added_devices++;
5311 } else
5312 rdev->recovery_offset = 0;
5314 if (sysfs_link_rdev(mddev, rdev))
5315 /* Failure here is OK */;
5317 } else if (rdev->raid_disk >= conf->previous_raid_disks
5318 && !test_bit(Faulty, &rdev->flags)) {
5319 /* This is a spare that was manually added */
5320 set_bit(In_sync, &rdev->flags);
5321 added_devices++;
5324 /* When a reshape changes the number of devices,
5325 * ->degraded is measured against the larger of the
5326 * pre and post number of devices.
5328 spin_lock_irqsave(&conf->device_lock, flags);
5329 mddev->degraded += (conf->raid_disks - conf->previous_raid_disks)
5330 - added_devices;
5331 spin_unlock_irqrestore(&conf->device_lock, flags);
5333 mddev->raid_disks = conf->raid_disks;
5334 mddev->reshape_position = conf->reshape_progress;
5335 set_bit(MD_CHANGE_DEVS, &mddev->flags);
5337 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
5338 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
5339 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
5340 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
5341 mddev->sync_thread = md_register_thread(md_do_sync, mddev,
5342 "reshape");
5343 if (!mddev->sync_thread) {
5344 mddev->recovery = 0;
5345 spin_lock_irq(&conf->device_lock);
5346 mddev->raid_disks = conf->raid_disks = conf->previous_raid_disks;
5347 conf->reshape_progress = MaxSector;
5348 spin_unlock_irq(&conf->device_lock);
5349 return -EAGAIN;
5351 conf->reshape_checkpoint = jiffies;
5352 md_wakeup_thread(mddev->sync_thread);
5353 md_new_event(mddev);
5354 return 0;
5357 /* This is called from the reshape thread and should make any
5358 * changes needed in 'conf'
5360 static void end_reshape(raid5_conf_t *conf)
5363 if (!test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) {
5365 spin_lock_irq(&conf->device_lock);
5366 conf->previous_raid_disks = conf->raid_disks;
5367 conf->reshape_progress = MaxSector;
5368 spin_unlock_irq(&conf->device_lock);
5369 wake_up(&conf->wait_for_overlap);
5371 /* read-ahead size must cover two whole stripes, which is
5372 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
5374 if (conf->mddev->queue) {
5375 int data_disks = conf->raid_disks - conf->max_degraded;
5376 int stripe = data_disks * ((conf->chunk_sectors << 9)
5377 / PAGE_SIZE);
5378 if (conf->mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
5379 conf->mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
5384 /* This is called from the raid5d thread with mddev_lock held.
5385 * It makes config changes to the device.
5387 static void raid5_finish_reshape(mddev_t *mddev)
5389 raid5_conf_t *conf = mddev->private;
5391 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
5393 if (mddev->delta_disks > 0) {
5394 md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
5395 set_capacity(mddev->gendisk, mddev->array_sectors);
5396 revalidate_disk(mddev->gendisk);
5397 } else {
5398 int d;
5399 mddev->degraded = conf->raid_disks;
5400 for (d = 0; d < conf->raid_disks ; d++)
5401 if (conf->disks[d].rdev &&
5402 test_bit(In_sync,
5403 &conf->disks[d].rdev->flags))
5404 mddev->degraded--;
5405 for (d = conf->raid_disks ;
5406 d < conf->raid_disks - mddev->delta_disks;
5407 d++) {
5408 mdk_rdev_t *rdev = conf->disks[d].rdev;
5409 if (rdev && raid5_remove_disk(mddev, d) == 0) {
5410 sysfs_unlink_rdev(mddev, rdev);
5411 rdev->raid_disk = -1;
5415 mddev->layout = conf->algorithm;
5416 mddev->chunk_sectors = conf->chunk_sectors;
5417 mddev->reshape_position = MaxSector;
5418 mddev->delta_disks = 0;
5422 static void raid5_quiesce(mddev_t *mddev, int state)
5424 raid5_conf_t *conf = mddev->private;
5426 switch(state) {
5427 case 2: /* resume for a suspend */
5428 wake_up(&conf->wait_for_overlap);
5429 break;
5431 case 1: /* stop all writes */
5432 spin_lock_irq(&conf->device_lock);
5433 /* '2' tells resync/reshape to pause so that all
5434 * active stripes can drain
5436 conf->quiesce = 2;
5437 wait_event_lock_irq(conf->wait_for_stripe,
5438 atomic_read(&conf->active_stripes) == 0 &&
5439 atomic_read(&conf->active_aligned_reads) == 0,
5440 conf->device_lock, /* nothing */);
5441 conf->quiesce = 1;
5442 spin_unlock_irq(&conf->device_lock);
5443 /* allow reshape to continue */
5444 wake_up(&conf->wait_for_overlap);
5445 break;
5447 case 0: /* re-enable writes */
5448 spin_lock_irq(&conf->device_lock);
5449 conf->quiesce = 0;
5450 wake_up(&conf->wait_for_stripe);
5451 wake_up(&conf->wait_for_overlap);
5452 spin_unlock_irq(&conf->device_lock);
5453 break;
5458 static void *raid45_takeover_raid0(mddev_t *mddev, int level)
5460 struct raid0_private_data *raid0_priv = mddev->private;
5461 sector_t sectors;
5463 /* for raid0 takeover only one zone is supported */
5464 if (raid0_priv->nr_strip_zones > 1) {
5465 printk(KERN_ERR "md/raid:%s: cannot takeover raid0 with more than one zone.\n",
5466 mdname(mddev));
5467 return ERR_PTR(-EINVAL);
5470 sectors = raid0_priv->strip_zone[0].zone_end;
5471 sector_div(sectors, raid0_priv->strip_zone[0].nb_dev);
5472 mddev->dev_sectors = sectors;
5473 mddev->new_level = level;
5474 mddev->new_layout = ALGORITHM_PARITY_N;
5475 mddev->new_chunk_sectors = mddev->chunk_sectors;
5476 mddev->raid_disks += 1;
5477 mddev->delta_disks = 1;
5478 /* make sure it will be not marked as dirty */
5479 mddev->recovery_cp = MaxSector;
5481 return setup_conf(mddev);
5485 static void *raid5_takeover_raid1(mddev_t *mddev)
5487 int chunksect;
5489 if (mddev->raid_disks != 2 ||
5490 mddev->degraded > 1)
5491 return ERR_PTR(-EINVAL);
5493 /* Should check if there are write-behind devices? */
5495 chunksect = 64*2; /* 64K by default */
5497 /* The array must be an exact multiple of chunksize */
5498 while (chunksect && (mddev->array_sectors & (chunksect-1)))
5499 chunksect >>= 1;
5501 if ((chunksect<<9) < STRIPE_SIZE)
5502 /* array size does not allow a suitable chunk size */
5503 return ERR_PTR(-EINVAL);
5505 mddev->new_level = 5;
5506 mddev->new_layout = ALGORITHM_LEFT_SYMMETRIC;
5507 mddev->new_chunk_sectors = chunksect;
5509 return setup_conf(mddev);
5512 static void *raid5_takeover_raid6(mddev_t *mddev)
5514 int new_layout;
5516 switch (mddev->layout) {
5517 case ALGORITHM_LEFT_ASYMMETRIC_6:
5518 new_layout = ALGORITHM_LEFT_ASYMMETRIC;
5519 break;
5520 case ALGORITHM_RIGHT_ASYMMETRIC_6:
5521 new_layout = ALGORITHM_RIGHT_ASYMMETRIC;
5522 break;
5523 case ALGORITHM_LEFT_SYMMETRIC_6:
5524 new_layout = ALGORITHM_LEFT_SYMMETRIC;
5525 break;
5526 case ALGORITHM_RIGHT_SYMMETRIC_6:
5527 new_layout = ALGORITHM_RIGHT_SYMMETRIC;
5528 break;
5529 case ALGORITHM_PARITY_0_6:
5530 new_layout = ALGORITHM_PARITY_0;
5531 break;
5532 case ALGORITHM_PARITY_N:
5533 new_layout = ALGORITHM_PARITY_N;
5534 break;
5535 default:
5536 return ERR_PTR(-EINVAL);
5538 mddev->new_level = 5;
5539 mddev->new_layout = new_layout;
5540 mddev->delta_disks = -1;
5541 mddev->raid_disks -= 1;
5542 return setup_conf(mddev);
5546 static int raid5_check_reshape(mddev_t *mddev)
5548 /* For a 2-drive array, the layout and chunk size can be changed
5549 * immediately as not restriping is needed.
5550 * For larger arrays we record the new value - after validation
5551 * to be used by a reshape pass.
5553 raid5_conf_t *conf = mddev->private;
5554 int new_chunk = mddev->new_chunk_sectors;
5556 if (mddev->new_layout >= 0 && !algorithm_valid_raid5(mddev->new_layout))
5557 return -EINVAL;
5558 if (new_chunk > 0) {
5559 if (!is_power_of_2(new_chunk))
5560 return -EINVAL;
5561 if (new_chunk < (PAGE_SIZE>>9))
5562 return -EINVAL;
5563 if (mddev->array_sectors & (new_chunk-1))
5564 /* not factor of array size */
5565 return -EINVAL;
5568 /* They look valid */
5570 if (mddev->raid_disks == 2) {
5571 /* can make the change immediately */
5572 if (mddev->new_layout >= 0) {
5573 conf->algorithm = mddev->new_layout;
5574 mddev->layout = mddev->new_layout;
5576 if (new_chunk > 0) {
5577 conf->chunk_sectors = new_chunk ;
5578 mddev->chunk_sectors = new_chunk;
5580 set_bit(MD_CHANGE_DEVS, &mddev->flags);
5581 md_wakeup_thread(mddev->thread);
5583 return check_reshape(mddev);
5586 static int raid6_check_reshape(mddev_t *mddev)
5588 int new_chunk = mddev->new_chunk_sectors;
5590 if (mddev->new_layout >= 0 && !algorithm_valid_raid6(mddev->new_layout))
5591 return -EINVAL;
5592 if (new_chunk > 0) {
5593 if (!is_power_of_2(new_chunk))
5594 return -EINVAL;
5595 if (new_chunk < (PAGE_SIZE >> 9))
5596 return -EINVAL;
5597 if (mddev->array_sectors & (new_chunk-1))
5598 /* not factor of array size */
5599 return -EINVAL;
5602 /* They look valid */
5603 return check_reshape(mddev);
5606 static void *raid5_takeover(mddev_t *mddev)
5608 /* raid5 can take over:
5609 * raid0 - if there is only one strip zone - make it a raid4 layout
5610 * raid1 - if there are two drives. We need to know the chunk size
5611 * raid4 - trivial - just use a raid4 layout.
5612 * raid6 - Providing it is a *_6 layout
5614 if (mddev->level == 0)
5615 return raid45_takeover_raid0(mddev, 5);
5616 if (mddev->level == 1)
5617 return raid5_takeover_raid1(mddev);
5618 if (mddev->level == 4) {
5619 mddev->new_layout = ALGORITHM_PARITY_N;
5620 mddev->new_level = 5;
5621 return setup_conf(mddev);
5623 if (mddev->level == 6)
5624 return raid5_takeover_raid6(mddev);
5626 return ERR_PTR(-EINVAL);
5629 static void *raid4_takeover(mddev_t *mddev)
5631 /* raid4 can take over:
5632 * raid0 - if there is only one strip zone
5633 * raid5 - if layout is right
5635 if (mddev->level == 0)
5636 return raid45_takeover_raid0(mddev, 4);
5637 if (mddev->level == 5 &&
5638 mddev->layout == ALGORITHM_PARITY_N) {
5639 mddev->new_layout = 0;
5640 mddev->new_level = 4;
5641 return setup_conf(mddev);
5643 return ERR_PTR(-EINVAL);
5646 static struct mdk_personality raid5_personality;
5648 static void *raid6_takeover(mddev_t *mddev)
5650 /* Currently can only take over a raid5. We map the
5651 * personality to an equivalent raid6 personality
5652 * with the Q block at the end.
5654 int new_layout;
5656 if (mddev->pers != &raid5_personality)
5657 return ERR_PTR(-EINVAL);
5658 if (mddev->degraded > 1)
5659 return ERR_PTR(-EINVAL);
5660 if (mddev->raid_disks > 253)
5661 return ERR_PTR(-EINVAL);
5662 if (mddev->raid_disks < 3)
5663 return ERR_PTR(-EINVAL);
5665 switch (mddev->layout) {
5666 case ALGORITHM_LEFT_ASYMMETRIC:
5667 new_layout = ALGORITHM_LEFT_ASYMMETRIC_6;
5668 break;
5669 case ALGORITHM_RIGHT_ASYMMETRIC:
5670 new_layout = ALGORITHM_RIGHT_ASYMMETRIC_6;
5671 break;
5672 case ALGORITHM_LEFT_SYMMETRIC:
5673 new_layout = ALGORITHM_LEFT_SYMMETRIC_6;
5674 break;
5675 case ALGORITHM_RIGHT_SYMMETRIC:
5676 new_layout = ALGORITHM_RIGHT_SYMMETRIC_6;
5677 break;
5678 case ALGORITHM_PARITY_0:
5679 new_layout = ALGORITHM_PARITY_0_6;
5680 break;
5681 case ALGORITHM_PARITY_N:
5682 new_layout = ALGORITHM_PARITY_N;
5683 break;
5684 default:
5685 return ERR_PTR(-EINVAL);
5687 mddev->new_level = 6;
5688 mddev->new_layout = new_layout;
5689 mddev->delta_disks = 1;
5690 mddev->raid_disks += 1;
5691 return setup_conf(mddev);
5695 static struct mdk_personality raid6_personality =
5697 .name = "raid6",
5698 .level = 6,
5699 .owner = THIS_MODULE,
5700 .make_request = make_request,
5701 .run = run,
5702 .stop = stop,
5703 .status = status,
5704 .error_handler = error,
5705 .hot_add_disk = raid5_add_disk,
5706 .hot_remove_disk= raid5_remove_disk,
5707 .spare_active = raid5_spare_active,
5708 .sync_request = sync_request,
5709 .resize = raid5_resize,
5710 .size = raid5_size,
5711 .check_reshape = raid6_check_reshape,
5712 .start_reshape = raid5_start_reshape,
5713 .finish_reshape = raid5_finish_reshape,
5714 .quiesce = raid5_quiesce,
5715 .takeover = raid6_takeover,
5717 static struct mdk_personality raid5_personality =
5719 .name = "raid5",
5720 .level = 5,
5721 .owner = THIS_MODULE,
5722 .make_request = make_request,
5723 .run = run,
5724 .stop = stop,
5725 .status = status,
5726 .error_handler = error,
5727 .hot_add_disk = raid5_add_disk,
5728 .hot_remove_disk= raid5_remove_disk,
5729 .spare_active = raid5_spare_active,
5730 .sync_request = sync_request,
5731 .resize = raid5_resize,
5732 .size = raid5_size,
5733 .check_reshape = raid5_check_reshape,
5734 .start_reshape = raid5_start_reshape,
5735 .finish_reshape = raid5_finish_reshape,
5736 .quiesce = raid5_quiesce,
5737 .takeover = raid5_takeover,
5740 static struct mdk_personality raid4_personality =
5742 .name = "raid4",
5743 .level = 4,
5744 .owner = THIS_MODULE,
5745 .make_request = make_request,
5746 .run = run,
5747 .stop = stop,
5748 .status = status,
5749 .error_handler = error,
5750 .hot_add_disk = raid5_add_disk,
5751 .hot_remove_disk= raid5_remove_disk,
5752 .spare_active = raid5_spare_active,
5753 .sync_request = sync_request,
5754 .resize = raid5_resize,
5755 .size = raid5_size,
5756 .check_reshape = raid5_check_reshape,
5757 .start_reshape = raid5_start_reshape,
5758 .finish_reshape = raid5_finish_reshape,
5759 .quiesce = raid5_quiesce,
5760 .takeover = raid4_takeover,
5763 static int __init raid5_init(void)
5765 register_md_personality(&raid6_personality);
5766 register_md_personality(&raid5_personality);
5767 register_md_personality(&raid4_personality);
5768 return 0;
5771 static void raid5_exit(void)
5773 unregister_md_personality(&raid6_personality);
5774 unregister_md_personality(&raid5_personality);
5775 unregister_md_personality(&raid4_personality);
5778 module_init(raid5_init);
5779 module_exit(raid5_exit);
5780 MODULE_LICENSE("GPL");
5781 MODULE_DESCRIPTION("RAID4/5/6 (striping with parity) personality for MD");
5782 MODULE_ALIAS("md-personality-4"); /* RAID5 */
5783 MODULE_ALIAS("md-raid5");
5784 MODULE_ALIAS("md-raid4");
5785 MODULE_ALIAS("md-level-5");
5786 MODULE_ALIAS("md-level-4");
5787 MODULE_ALIAS("md-personality-8"); /* RAID6 */
5788 MODULE_ALIAS("md-raid6");
5789 MODULE_ALIAS("md-level-6");
5791 /* This used to be two separate modules, they were: */
5792 MODULE_ALIAS("raid5");
5793 MODULE_ALIAS("raid6");