2 * drivers/net/gianfar.c
4 * Gianfar Ethernet Driver
5 * This driver is designed for the non-CPM ethernet controllers
6 * on the 85xx and 83xx family of integrated processors
7 * Based on 8260_io/fcc_enet.c
10 * Maintainer: Kumar Gala
12 * Copyright (c) 2002-2006 Freescale Semiconductor, Inc.
13 * Copyright (c) 2007 MontaVista Software, Inc.
15 * This program is free software; you can redistribute it and/or modify it
16 * under the terms of the GNU General Public License as published by the
17 * Free Software Foundation; either version 2 of the License, or (at your
18 * option) any later version.
20 * Gianfar: AKA Lambda Draconis, "Dragon"
28 * The driver is initialized through of_device. Configuration information
29 * is therefore conveyed through an OF-style device tree.
31 * The Gianfar Ethernet Controller uses a ring of buffer
32 * descriptors. The beginning is indicated by a register
33 * pointing to the physical address of the start of the ring.
34 * The end is determined by a "wrap" bit being set in the
35 * last descriptor of the ring.
37 * When a packet is received, the RXF bit in the
38 * IEVENT register is set, triggering an interrupt when the
39 * corresponding bit in the IMASK register is also set (if
40 * interrupt coalescing is active, then the interrupt may not
41 * happen immediately, but will wait until either a set number
42 * of frames or amount of time have passed). In NAPI, the
43 * interrupt handler will signal there is work to be done, and
44 * exit. This method will start at the last known empty
45 * descriptor, and process every subsequent descriptor until there
46 * are none left with data (NAPI will stop after a set number of
47 * packets to give time to other tasks, but will eventually
48 * process all the packets). The data arrives inside a
49 * pre-allocated skb, and so after the skb is passed up to the
50 * stack, a new skb must be allocated, and the address field in
51 * the buffer descriptor must be updated to indicate this new
54 * When the kernel requests that a packet be transmitted, the
55 * driver starts where it left off last time, and points the
56 * descriptor at the buffer which was passed in. The driver
57 * then informs the DMA engine that there are packets ready to
58 * be transmitted. Once the controller is finished transmitting
59 * the packet, an interrupt may be triggered (under the same
60 * conditions as for reception, but depending on the TXF bit).
61 * The driver then cleans up the buffer.
64 #include <linux/kernel.h>
65 #include <linux/string.h>
66 #include <linux/errno.h>
67 #include <linux/unistd.h>
68 #include <linux/slab.h>
69 #include <linux/interrupt.h>
70 #include <linux/init.h>
71 #include <linux/delay.h>
72 #include <linux/netdevice.h>
73 #include <linux/etherdevice.h>
74 #include <linux/skbuff.h>
75 #include <linux/if_vlan.h>
76 #include <linux/spinlock.h>
78 #include <linux/of_platform.h>
80 #include <linux/tcp.h>
81 #include <linux/udp.h>
86 #include <asm/uaccess.h>
87 #include <linux/module.h>
88 #include <linux/dma-mapping.h>
89 #include <linux/crc32.h>
90 #include <linux/mii.h>
91 #include <linux/phy.h>
92 #include <linux/phy_fixed.h>
96 #include "fsl_pq_mdio.h"
98 #define TX_TIMEOUT (1*HZ)
99 #undef BRIEF_GFAR_ERRORS
100 #undef VERBOSE_GFAR_ERRORS
102 const char gfar_driver_name
[] = "Gianfar Ethernet";
103 const char gfar_driver_version
[] = "1.3";
105 static int gfar_enet_open(struct net_device
*dev
);
106 static int gfar_start_xmit(struct sk_buff
*skb
, struct net_device
*dev
);
107 static void gfar_reset_task(struct work_struct
*work
);
108 static void gfar_timeout(struct net_device
*dev
);
109 static int gfar_close(struct net_device
*dev
);
110 struct sk_buff
*gfar_new_skb(struct net_device
*dev
);
111 static void gfar_new_rxbdp(struct net_device
*dev
, struct rxbd8
*bdp
,
112 struct sk_buff
*skb
);
113 static int gfar_set_mac_address(struct net_device
*dev
);
114 static int gfar_change_mtu(struct net_device
*dev
, int new_mtu
);
115 static irqreturn_t
gfar_error(int irq
, void *dev_id
);
116 static irqreturn_t
gfar_transmit(int irq
, void *dev_id
);
117 static irqreturn_t
gfar_interrupt(int irq
, void *dev_id
);
118 static void adjust_link(struct net_device
*dev
);
119 static void init_registers(struct net_device
*dev
);
120 static int init_phy(struct net_device
*dev
);
121 static int gfar_probe(struct of_device
*ofdev
,
122 const struct of_device_id
*match
);
123 static int gfar_remove(struct of_device
*ofdev
);
124 static void free_skb_resources(struct gfar_private
*priv
);
125 static void gfar_set_multi(struct net_device
*dev
);
126 static void gfar_set_hash_for_addr(struct net_device
*dev
, u8
*addr
);
127 static void gfar_configure_serdes(struct net_device
*dev
);
128 static int gfar_poll(struct napi_struct
*napi
, int budget
);
129 #ifdef CONFIG_NET_POLL_CONTROLLER
130 static void gfar_netpoll(struct net_device
*dev
);
132 int gfar_clean_rx_ring(struct net_device
*dev
, int rx_work_limit
);
133 static int gfar_clean_tx_ring(struct net_device
*dev
);
134 static int gfar_process_frame(struct net_device
*dev
, struct sk_buff
*skb
,
136 static void gfar_vlan_rx_register(struct net_device
*netdev
,
137 struct vlan_group
*grp
);
138 void gfar_halt(struct net_device
*dev
);
139 static void gfar_halt_nodisable(struct net_device
*dev
);
140 void gfar_start(struct net_device
*dev
);
141 static void gfar_clear_exact_match(struct net_device
*dev
);
142 static void gfar_set_mac_for_addr(struct net_device
*dev
, int num
, u8
*addr
);
143 static int gfar_ioctl(struct net_device
*dev
, struct ifreq
*rq
, int cmd
);
145 MODULE_AUTHOR("Freescale Semiconductor, Inc");
146 MODULE_DESCRIPTION("Gianfar Ethernet Driver");
147 MODULE_LICENSE("GPL");
149 static const struct net_device_ops gfar_netdev_ops
= {
150 .ndo_open
= gfar_enet_open
,
151 .ndo_start_xmit
= gfar_start_xmit
,
152 .ndo_stop
= gfar_close
,
153 .ndo_change_mtu
= gfar_change_mtu
,
154 .ndo_set_multicast_list
= gfar_set_multi
,
155 .ndo_tx_timeout
= gfar_timeout
,
156 .ndo_do_ioctl
= gfar_ioctl
,
157 .ndo_vlan_rx_register
= gfar_vlan_rx_register
,
158 #ifdef CONFIG_NET_POLL_CONTROLLER
159 .ndo_poll_controller
= gfar_netpoll
,
163 /* Returns 1 if incoming frames use an FCB */
164 static inline int gfar_uses_fcb(struct gfar_private
*priv
)
166 return priv
->vlgrp
|| priv
->rx_csum_enable
;
169 static int gfar_of_init(struct net_device
*dev
)
171 struct device_node
*phy
, *mdio
;
172 const unsigned int *id
;
175 const void *mac_addr
;
179 struct gfar_private
*priv
= netdev_priv(dev
);
180 struct device_node
*np
= priv
->node
;
181 char bus_name
[MII_BUS_ID_SIZE
];
183 const u32
*stash_len
;
184 const u32
*stash_idx
;
186 if (!np
|| !of_device_is_available(np
))
189 /* get a pointer to the register memory */
190 addr
= of_translate_address(np
, of_get_address(np
, 0, &size
, NULL
));
191 priv
->regs
= ioremap(addr
, size
);
193 if (priv
->regs
== NULL
)
196 priv
->interruptTransmit
= irq_of_parse_and_map(np
, 0);
198 model
= of_get_property(np
, "model", NULL
);
200 /* If we aren't the FEC we have multiple interrupts */
201 if (model
&& strcasecmp(model
, "FEC")) {
202 priv
->interruptReceive
= irq_of_parse_and_map(np
, 1);
204 priv
->interruptError
= irq_of_parse_and_map(np
, 2);
206 if (priv
->interruptTransmit
< 0 ||
207 priv
->interruptReceive
< 0 ||
208 priv
->interruptError
< 0) {
214 stash
= of_get_property(np
, "bd-stash", NULL
);
217 priv
->device_flags
|= FSL_GIANFAR_DEV_HAS_BD_STASHING
;
218 priv
->bd_stash_en
= 1;
221 stash_len
= of_get_property(np
, "rx-stash-len", NULL
);
224 priv
->rx_stash_size
= *stash_len
;
226 stash_idx
= of_get_property(np
, "rx-stash-idx", NULL
);
229 priv
->rx_stash_index
= *stash_idx
;
231 if (stash_len
|| stash_idx
)
232 priv
->device_flags
|= FSL_GIANFAR_DEV_HAS_BUF_STASHING
;
234 mac_addr
= of_get_mac_address(np
);
236 memcpy(dev
->dev_addr
, mac_addr
, MAC_ADDR_LEN
);
238 if (model
&& !strcasecmp(model
, "TSEC"))
240 FSL_GIANFAR_DEV_HAS_GIGABIT
|
241 FSL_GIANFAR_DEV_HAS_COALESCE
|
242 FSL_GIANFAR_DEV_HAS_RMON
|
243 FSL_GIANFAR_DEV_HAS_MULTI_INTR
;
244 if (model
&& !strcasecmp(model
, "eTSEC"))
246 FSL_GIANFAR_DEV_HAS_GIGABIT
|
247 FSL_GIANFAR_DEV_HAS_COALESCE
|
248 FSL_GIANFAR_DEV_HAS_RMON
|
249 FSL_GIANFAR_DEV_HAS_MULTI_INTR
|
250 FSL_GIANFAR_DEV_HAS_PADDING
|
251 FSL_GIANFAR_DEV_HAS_CSUM
|
252 FSL_GIANFAR_DEV_HAS_VLAN
|
253 FSL_GIANFAR_DEV_HAS_MAGIC_PACKET
|
254 FSL_GIANFAR_DEV_HAS_EXTENDED_HASH
;
256 ctype
= of_get_property(np
, "phy-connection-type", NULL
);
258 /* We only care about rgmii-id. The rest are autodetected */
259 if (ctype
&& !strcmp(ctype
, "rgmii-id"))
260 priv
->interface
= PHY_INTERFACE_MODE_RGMII_ID
;
262 priv
->interface
= PHY_INTERFACE_MODE_MII
;
264 if (of_get_property(np
, "fsl,magic-packet", NULL
))
265 priv
->device_flags
|= FSL_GIANFAR_DEV_HAS_MAGIC_PACKET
;
267 ph
= of_get_property(np
, "phy-handle", NULL
);
271 fixed_link
= (u32
*)of_get_property(np
, "fixed-link", NULL
);
277 snprintf(priv
->phy_bus_id
, sizeof(priv
->phy_bus_id
),
278 PHY_ID_FMT
, "0", fixed_link
[0]);
280 phy
= of_find_node_by_phandle(*ph
);
287 mdio
= of_get_parent(phy
);
289 id
= of_get_property(phy
, "reg", NULL
);
293 fsl_pq_mdio_bus_name(bus_name
, mdio
);
295 snprintf(priv
->phy_bus_id
, sizeof(priv
->phy_bus_id
), "%s:%02x",
299 /* Find the TBI PHY. If it's not there, we don't support SGMII */
300 ph
= of_get_property(np
, "tbi-handle", NULL
);
302 struct device_node
*tbi
= of_find_node_by_phandle(*ph
);
303 struct of_device
*ofdev
;
309 mdio
= of_get_parent(tbi
);
313 ofdev
= of_find_device_by_node(mdio
);
317 id
= of_get_property(tbi
, "reg", NULL
);
323 bus
= dev_get_drvdata(&ofdev
->dev
);
325 priv
->tbiphy
= bus
->phy_map
[*id
];
335 /* Ioctl MII Interface */
336 static int gfar_ioctl(struct net_device
*dev
, struct ifreq
*rq
, int cmd
)
338 struct gfar_private
*priv
= netdev_priv(dev
);
340 if (!netif_running(dev
))
346 return phy_mii_ioctl(priv
->phydev
, if_mii(rq
), cmd
);
349 /* Set up the ethernet device structure, private data,
350 * and anything else we need before we start */
351 static int gfar_probe(struct of_device
*ofdev
,
352 const struct of_device_id
*match
)
355 struct net_device
*dev
= NULL
;
356 struct gfar_private
*priv
= NULL
;
357 DECLARE_MAC_BUF(mac
);
361 /* Create an ethernet device instance */
362 dev
= alloc_etherdev(sizeof (*priv
));
367 priv
= netdev_priv(dev
);
370 priv
->node
= ofdev
->node
;
371 SET_NETDEV_DEV(dev
, &ofdev
->dev
);
373 err
= gfar_of_init(dev
);
378 spin_lock_init(&priv
->txlock
);
379 spin_lock_init(&priv
->rxlock
);
380 spin_lock_init(&priv
->bflock
);
381 INIT_WORK(&priv
->reset_task
, gfar_reset_task
);
383 dev_set_drvdata(&ofdev
->dev
, priv
);
385 /* Stop the DMA engine now, in case it was running before */
386 /* (The firmware could have used it, and left it running). */
389 /* Reset MAC layer */
390 gfar_write(&priv
->regs
->maccfg1
, MACCFG1_SOFT_RESET
);
392 /* We need to delay at least 3 TX clocks */
395 tempval
= (MACCFG1_TX_FLOW
| MACCFG1_RX_FLOW
);
396 gfar_write(&priv
->regs
->maccfg1
, tempval
);
398 /* Initialize MACCFG2. */
399 gfar_write(&priv
->regs
->maccfg2
, MACCFG2_INIT_SETTINGS
);
401 /* Initialize ECNTRL */
402 gfar_write(&priv
->regs
->ecntrl
, ECNTRL_INIT_SETTINGS
);
404 /* Set the dev->base_addr to the gfar reg region */
405 dev
->base_addr
= (unsigned long) (priv
->regs
);
407 SET_NETDEV_DEV(dev
, &ofdev
->dev
);
409 /* Fill in the dev structure */
410 dev
->watchdog_timeo
= TX_TIMEOUT
;
411 netif_napi_add(dev
, &priv
->napi
, gfar_poll
, GFAR_DEV_WEIGHT
);
414 dev
->netdev_ops
= &gfar_netdev_ops
;
415 dev
->ethtool_ops
= &gfar_ethtool_ops
;
417 if (priv
->device_flags
& FSL_GIANFAR_DEV_HAS_CSUM
) {
418 priv
->rx_csum_enable
= 1;
419 dev
->features
|= NETIF_F_IP_CSUM
| NETIF_F_SG
| NETIF_F_HIGHDMA
;
421 priv
->rx_csum_enable
= 0;
425 if (priv
->device_flags
& FSL_GIANFAR_DEV_HAS_VLAN
)
426 dev
->features
|= NETIF_F_HW_VLAN_TX
| NETIF_F_HW_VLAN_RX
;
428 if (priv
->device_flags
& FSL_GIANFAR_DEV_HAS_EXTENDED_HASH
) {
429 priv
->extended_hash
= 1;
430 priv
->hash_width
= 9;
432 priv
->hash_regs
[0] = &priv
->regs
->igaddr0
;
433 priv
->hash_regs
[1] = &priv
->regs
->igaddr1
;
434 priv
->hash_regs
[2] = &priv
->regs
->igaddr2
;
435 priv
->hash_regs
[3] = &priv
->regs
->igaddr3
;
436 priv
->hash_regs
[4] = &priv
->regs
->igaddr4
;
437 priv
->hash_regs
[5] = &priv
->regs
->igaddr5
;
438 priv
->hash_regs
[6] = &priv
->regs
->igaddr6
;
439 priv
->hash_regs
[7] = &priv
->regs
->igaddr7
;
440 priv
->hash_regs
[8] = &priv
->regs
->gaddr0
;
441 priv
->hash_regs
[9] = &priv
->regs
->gaddr1
;
442 priv
->hash_regs
[10] = &priv
->regs
->gaddr2
;
443 priv
->hash_regs
[11] = &priv
->regs
->gaddr3
;
444 priv
->hash_regs
[12] = &priv
->regs
->gaddr4
;
445 priv
->hash_regs
[13] = &priv
->regs
->gaddr5
;
446 priv
->hash_regs
[14] = &priv
->regs
->gaddr6
;
447 priv
->hash_regs
[15] = &priv
->regs
->gaddr7
;
450 priv
->extended_hash
= 0;
451 priv
->hash_width
= 8;
453 priv
->hash_regs
[0] = &priv
->regs
->gaddr0
;
454 priv
->hash_regs
[1] = &priv
->regs
->gaddr1
;
455 priv
->hash_regs
[2] = &priv
->regs
->gaddr2
;
456 priv
->hash_regs
[3] = &priv
->regs
->gaddr3
;
457 priv
->hash_regs
[4] = &priv
->regs
->gaddr4
;
458 priv
->hash_regs
[5] = &priv
->regs
->gaddr5
;
459 priv
->hash_regs
[6] = &priv
->regs
->gaddr6
;
460 priv
->hash_regs
[7] = &priv
->regs
->gaddr7
;
463 if (priv
->device_flags
& FSL_GIANFAR_DEV_HAS_PADDING
)
464 priv
->padding
= DEFAULT_PADDING
;
468 if (dev
->features
& NETIF_F_IP_CSUM
)
469 dev
->hard_header_len
+= GMAC_FCB_LEN
;
471 priv
->rx_buffer_size
= DEFAULT_RX_BUFFER_SIZE
;
472 priv
->tx_ring_size
= DEFAULT_TX_RING_SIZE
;
473 priv
->rx_ring_size
= DEFAULT_RX_RING_SIZE
;
474 priv
->num_txbdfree
= DEFAULT_TX_RING_SIZE
;
476 priv
->txcoalescing
= DEFAULT_TX_COALESCE
;
477 priv
->txic
= DEFAULT_TXIC
;
478 priv
->rxcoalescing
= DEFAULT_RX_COALESCE
;
479 priv
->rxic
= DEFAULT_RXIC
;
481 /* Enable most messages by default */
482 priv
->msg_enable
= (NETIF_MSG_IFUP
<< 1 ) - 1;
484 /* Carrier starts down, phylib will bring it up */
485 netif_carrier_off(dev
);
487 err
= register_netdev(dev
);
490 printk(KERN_ERR
"%s: Cannot register net device, aborting.\n",
495 device_init_wakeup(&dev
->dev
,
496 priv
->device_flags
& FSL_GIANFAR_DEV_HAS_MAGIC_PACKET
);
498 /* fill out IRQ number and name fields */
499 len_devname
= strlen(dev
->name
);
500 strncpy(&priv
->int_name_tx
[0], dev
->name
, len_devname
);
501 if (priv
->device_flags
& FSL_GIANFAR_DEV_HAS_MULTI_INTR
) {
502 strncpy(&priv
->int_name_tx
[len_devname
],
503 "_tx", sizeof("_tx") + 1);
505 strncpy(&priv
->int_name_rx
[0], dev
->name
, len_devname
);
506 strncpy(&priv
->int_name_rx
[len_devname
],
507 "_rx", sizeof("_rx") + 1);
509 strncpy(&priv
->int_name_er
[0], dev
->name
, len_devname
);
510 strncpy(&priv
->int_name_er
[len_devname
],
511 "_er", sizeof("_er") + 1);
513 priv
->int_name_tx
[len_devname
] = '\0';
515 /* Create all the sysfs files */
516 gfar_init_sysfs(dev
);
518 /* Print out the device info */
519 printk(KERN_INFO DEVICE_NAME
"%pM\n", dev
->name
, dev
->dev_addr
);
521 /* Even more device info helps when determining which kernel */
522 /* provided which set of benchmarks. */
523 printk(KERN_INFO
"%s: Running with NAPI enabled\n", dev
->name
);
524 printk(KERN_INFO
"%s: %d/%d RX/TX BD ring size\n",
525 dev
->name
, priv
->rx_ring_size
, priv
->tx_ring_size
);
536 static int gfar_remove(struct of_device
*ofdev
)
538 struct gfar_private
*priv
= dev_get_drvdata(&ofdev
->dev
);
540 dev_set_drvdata(&ofdev
->dev
, NULL
);
543 free_netdev(priv
->ndev
);
549 static int gfar_suspend(struct of_device
*ofdev
, pm_message_t state
)
551 struct gfar_private
*priv
= dev_get_drvdata(&ofdev
->dev
);
552 struct net_device
*dev
= priv
->ndev
;
556 int magic_packet
= priv
->wol_en
&&
557 (priv
->device_flags
& FSL_GIANFAR_DEV_HAS_MAGIC_PACKET
);
559 netif_device_detach(dev
);
561 if (netif_running(dev
)) {
562 spin_lock_irqsave(&priv
->txlock
, flags
);
563 spin_lock(&priv
->rxlock
);
565 gfar_halt_nodisable(dev
);
567 /* Disable Tx, and Rx if wake-on-LAN is disabled. */
568 tempval
= gfar_read(&priv
->regs
->maccfg1
);
570 tempval
&= ~MACCFG1_TX_EN
;
573 tempval
&= ~MACCFG1_RX_EN
;
575 gfar_write(&priv
->regs
->maccfg1
, tempval
);
577 spin_unlock(&priv
->rxlock
);
578 spin_unlock_irqrestore(&priv
->txlock
, flags
);
580 napi_disable(&priv
->napi
);
583 /* Enable interrupt on Magic Packet */
584 gfar_write(&priv
->regs
->imask
, IMASK_MAG
);
586 /* Enable Magic Packet mode */
587 tempval
= gfar_read(&priv
->regs
->maccfg2
);
588 tempval
|= MACCFG2_MPEN
;
589 gfar_write(&priv
->regs
->maccfg2
, tempval
);
591 phy_stop(priv
->phydev
);
598 static int gfar_resume(struct of_device
*ofdev
)
600 struct gfar_private
*priv
= dev_get_drvdata(&ofdev
->dev
);
601 struct net_device
*dev
= priv
->ndev
;
604 int magic_packet
= priv
->wol_en
&&
605 (priv
->device_flags
& FSL_GIANFAR_DEV_HAS_MAGIC_PACKET
);
607 if (!netif_running(dev
)) {
608 netif_device_attach(dev
);
612 if (!magic_packet
&& priv
->phydev
)
613 phy_start(priv
->phydev
);
615 /* Disable Magic Packet mode, in case something
619 spin_lock_irqsave(&priv
->txlock
, flags
);
620 spin_lock(&priv
->rxlock
);
622 tempval
= gfar_read(&priv
->regs
->maccfg2
);
623 tempval
&= ~MACCFG2_MPEN
;
624 gfar_write(&priv
->regs
->maccfg2
, tempval
);
628 spin_unlock(&priv
->rxlock
);
629 spin_unlock_irqrestore(&priv
->txlock
, flags
);
631 netif_device_attach(dev
);
633 napi_enable(&priv
->napi
);
638 #define gfar_suspend NULL
639 #define gfar_resume NULL
642 /* Reads the controller's registers to determine what interface
643 * connects it to the PHY.
645 static phy_interface_t
gfar_get_interface(struct net_device
*dev
)
647 struct gfar_private
*priv
= netdev_priv(dev
);
648 u32 ecntrl
= gfar_read(&priv
->regs
->ecntrl
);
650 if (ecntrl
& ECNTRL_SGMII_MODE
)
651 return PHY_INTERFACE_MODE_SGMII
;
653 if (ecntrl
& ECNTRL_TBI_MODE
) {
654 if (ecntrl
& ECNTRL_REDUCED_MODE
)
655 return PHY_INTERFACE_MODE_RTBI
;
657 return PHY_INTERFACE_MODE_TBI
;
660 if (ecntrl
& ECNTRL_REDUCED_MODE
) {
661 if (ecntrl
& ECNTRL_REDUCED_MII_MODE
)
662 return PHY_INTERFACE_MODE_RMII
;
664 phy_interface_t interface
= priv
->interface
;
667 * This isn't autodetected right now, so it must
668 * be set by the device tree or platform code.
670 if (interface
== PHY_INTERFACE_MODE_RGMII_ID
)
671 return PHY_INTERFACE_MODE_RGMII_ID
;
673 return PHY_INTERFACE_MODE_RGMII
;
677 if (priv
->device_flags
& FSL_GIANFAR_DEV_HAS_GIGABIT
)
678 return PHY_INTERFACE_MODE_GMII
;
680 return PHY_INTERFACE_MODE_MII
;
684 /* Initializes driver's PHY state, and attaches to the PHY.
685 * Returns 0 on success.
687 static int init_phy(struct net_device
*dev
)
689 struct gfar_private
*priv
= netdev_priv(dev
);
690 uint gigabit_support
=
691 priv
->device_flags
& FSL_GIANFAR_DEV_HAS_GIGABIT
?
692 SUPPORTED_1000baseT_Full
: 0;
693 struct phy_device
*phydev
;
694 phy_interface_t interface
;
698 priv
->oldduplex
= -1;
700 interface
= gfar_get_interface(dev
);
702 phydev
= phy_connect(dev
, priv
->phy_bus_id
, &adjust_link
, 0, interface
);
704 if (interface
== PHY_INTERFACE_MODE_SGMII
)
705 gfar_configure_serdes(dev
);
707 if (IS_ERR(phydev
)) {
708 printk(KERN_ERR
"%s: Could not attach to PHY\n", dev
->name
);
709 return PTR_ERR(phydev
);
712 /* Remove any features not supported by the controller */
713 phydev
->supported
&= (GFAR_SUPPORTED
| gigabit_support
);
714 phydev
->advertising
= phydev
->supported
;
716 priv
->phydev
= phydev
;
722 * Initialize TBI PHY interface for communicating with the
723 * SERDES lynx PHY on the chip. We communicate with this PHY
724 * through the MDIO bus on each controller, treating it as a
725 * "normal" PHY at the address found in the TBIPA register. We assume
726 * that the TBIPA register is valid. Either the MDIO bus code will set
727 * it to a value that doesn't conflict with other PHYs on the bus, or the
728 * value doesn't matter, as there are no other PHYs on the bus.
730 static void gfar_configure_serdes(struct net_device
*dev
)
732 struct gfar_private
*priv
= netdev_priv(dev
);
735 printk(KERN_WARNING
"SGMII mode requires that the device "
736 "tree specify a tbi-handle\n");
741 * If the link is already up, we must already be ok, and don't need to
742 * configure and reset the TBI<->SerDes link. Maybe U-Boot configured
743 * everything for us? Resetting it takes the link down and requires
744 * several seconds for it to come back.
746 if (phy_read(priv
->tbiphy
, MII_BMSR
) & BMSR_LSTATUS
)
749 /* Single clk mode, mii mode off(for serdes communication) */
750 phy_write(priv
->tbiphy
, MII_TBICON
, TBICON_CLK_SELECT
);
752 phy_write(priv
->tbiphy
, MII_ADVERTISE
,
753 ADVERTISE_1000XFULL
| ADVERTISE_1000XPAUSE
|
754 ADVERTISE_1000XPSE_ASYM
);
756 phy_write(priv
->tbiphy
, MII_BMCR
, BMCR_ANENABLE
|
757 BMCR_ANRESTART
| BMCR_FULLDPLX
| BMCR_SPEED1000
);
760 static void init_registers(struct net_device
*dev
)
762 struct gfar_private
*priv
= netdev_priv(dev
);
765 gfar_write(&priv
->regs
->ievent
, IEVENT_INIT_CLEAR
);
767 /* Initialize IMASK */
768 gfar_write(&priv
->regs
->imask
, IMASK_INIT_CLEAR
);
770 /* Init hash registers to zero */
771 gfar_write(&priv
->regs
->igaddr0
, 0);
772 gfar_write(&priv
->regs
->igaddr1
, 0);
773 gfar_write(&priv
->regs
->igaddr2
, 0);
774 gfar_write(&priv
->regs
->igaddr3
, 0);
775 gfar_write(&priv
->regs
->igaddr4
, 0);
776 gfar_write(&priv
->regs
->igaddr5
, 0);
777 gfar_write(&priv
->regs
->igaddr6
, 0);
778 gfar_write(&priv
->regs
->igaddr7
, 0);
780 gfar_write(&priv
->regs
->gaddr0
, 0);
781 gfar_write(&priv
->regs
->gaddr1
, 0);
782 gfar_write(&priv
->regs
->gaddr2
, 0);
783 gfar_write(&priv
->regs
->gaddr3
, 0);
784 gfar_write(&priv
->regs
->gaddr4
, 0);
785 gfar_write(&priv
->regs
->gaddr5
, 0);
786 gfar_write(&priv
->regs
->gaddr6
, 0);
787 gfar_write(&priv
->regs
->gaddr7
, 0);
789 /* Zero out the rmon mib registers if it has them */
790 if (priv
->device_flags
& FSL_GIANFAR_DEV_HAS_RMON
) {
791 memset_io(&(priv
->regs
->rmon
), 0, sizeof (struct rmon_mib
));
793 /* Mask off the CAM interrupts */
794 gfar_write(&priv
->regs
->rmon
.cam1
, 0xffffffff);
795 gfar_write(&priv
->regs
->rmon
.cam2
, 0xffffffff);
798 /* Initialize the max receive buffer length */
799 gfar_write(&priv
->regs
->mrblr
, priv
->rx_buffer_size
);
801 /* Initialize the Minimum Frame Length Register */
802 gfar_write(&priv
->regs
->minflr
, MINFLR_INIT_SETTINGS
);
806 /* Halt the receive and transmit queues */
807 static void gfar_halt_nodisable(struct net_device
*dev
)
809 struct gfar_private
*priv
= netdev_priv(dev
);
810 struct gfar __iomem
*regs
= priv
->regs
;
813 /* Mask all interrupts */
814 gfar_write(®s
->imask
, IMASK_INIT_CLEAR
);
816 /* Clear all interrupts */
817 gfar_write(®s
->ievent
, IEVENT_INIT_CLEAR
);
819 /* Stop the DMA, and wait for it to stop */
820 tempval
= gfar_read(&priv
->regs
->dmactrl
);
821 if ((tempval
& (DMACTRL_GRS
| DMACTRL_GTS
))
822 != (DMACTRL_GRS
| DMACTRL_GTS
)) {
823 tempval
|= (DMACTRL_GRS
| DMACTRL_GTS
);
824 gfar_write(&priv
->regs
->dmactrl
, tempval
);
826 while (!(gfar_read(&priv
->regs
->ievent
) &
827 (IEVENT_GRSC
| IEVENT_GTSC
)))
832 /* Halt the receive and transmit queues */
833 void gfar_halt(struct net_device
*dev
)
835 struct gfar_private
*priv
= netdev_priv(dev
);
836 struct gfar __iomem
*regs
= priv
->regs
;
839 gfar_halt_nodisable(dev
);
841 /* Disable Rx and Tx */
842 tempval
= gfar_read(®s
->maccfg1
);
843 tempval
&= ~(MACCFG1_RX_EN
| MACCFG1_TX_EN
);
844 gfar_write(®s
->maccfg1
, tempval
);
847 void stop_gfar(struct net_device
*dev
)
849 struct gfar_private
*priv
= netdev_priv(dev
);
850 struct gfar __iomem
*regs
= priv
->regs
;
853 phy_stop(priv
->phydev
);
856 spin_lock_irqsave(&priv
->txlock
, flags
);
857 spin_lock(&priv
->rxlock
);
861 spin_unlock(&priv
->rxlock
);
862 spin_unlock_irqrestore(&priv
->txlock
, flags
);
865 if (priv
->device_flags
& FSL_GIANFAR_DEV_HAS_MULTI_INTR
) {
866 free_irq(priv
->interruptError
, dev
);
867 free_irq(priv
->interruptTransmit
, dev
);
868 free_irq(priv
->interruptReceive
, dev
);
870 free_irq(priv
->interruptTransmit
, dev
);
873 free_skb_resources(priv
);
875 dma_free_coherent(&priv
->ofdev
->dev
,
876 sizeof(struct txbd8
)*priv
->tx_ring_size
877 + sizeof(struct rxbd8
)*priv
->rx_ring_size
,
879 gfar_read(®s
->tbase0
));
882 /* If there are any tx skbs or rx skbs still around, free them.
883 * Then free tx_skbuff and rx_skbuff */
884 static void free_skb_resources(struct gfar_private
*priv
)
890 /* Go through all the buffer descriptors and free their data buffers */
891 txbdp
= priv
->tx_bd_base
;
893 for (i
= 0; i
< priv
->tx_ring_size
; i
++) {
894 if (!priv
->tx_skbuff
[i
])
897 dma_unmap_single(&priv
->ofdev
->dev
, txbdp
->bufPtr
,
898 txbdp
->length
, DMA_TO_DEVICE
);
900 for (j
= 0; j
< skb_shinfo(priv
->tx_skbuff
[i
])->nr_frags
; j
++) {
902 dma_unmap_page(&priv
->ofdev
->dev
, txbdp
->bufPtr
,
903 txbdp
->length
, DMA_TO_DEVICE
);
906 dev_kfree_skb_any(priv
->tx_skbuff
[i
]);
907 priv
->tx_skbuff
[i
] = NULL
;
910 kfree(priv
->tx_skbuff
);
912 rxbdp
= priv
->rx_bd_base
;
914 /* rx_skbuff is not guaranteed to be allocated, so only
915 * free it and its contents if it is allocated */
916 if(priv
->rx_skbuff
!= NULL
) {
917 for (i
= 0; i
< priv
->rx_ring_size
; i
++) {
918 if (priv
->rx_skbuff
[i
]) {
919 dma_unmap_single(&priv
->ofdev
->dev
, rxbdp
->bufPtr
,
920 priv
->rx_buffer_size
,
923 dev_kfree_skb_any(priv
->rx_skbuff
[i
]);
924 priv
->rx_skbuff
[i
] = NULL
;
933 kfree(priv
->rx_skbuff
);
937 void gfar_start(struct net_device
*dev
)
939 struct gfar_private
*priv
= netdev_priv(dev
);
940 struct gfar __iomem
*regs
= priv
->regs
;
943 /* Enable Rx and Tx in MACCFG1 */
944 tempval
= gfar_read(®s
->maccfg1
);
945 tempval
|= (MACCFG1_RX_EN
| MACCFG1_TX_EN
);
946 gfar_write(®s
->maccfg1
, tempval
);
948 /* Initialize DMACTRL to have WWR and WOP */
949 tempval
= gfar_read(&priv
->regs
->dmactrl
);
950 tempval
|= DMACTRL_INIT_SETTINGS
;
951 gfar_write(&priv
->regs
->dmactrl
, tempval
);
953 /* Make sure we aren't stopped */
954 tempval
= gfar_read(&priv
->regs
->dmactrl
);
955 tempval
&= ~(DMACTRL_GRS
| DMACTRL_GTS
);
956 gfar_write(&priv
->regs
->dmactrl
, tempval
);
958 /* Clear THLT/RHLT, so that the DMA starts polling now */
959 gfar_write(®s
->tstat
, TSTAT_CLEAR_THALT
);
960 gfar_write(®s
->rstat
, RSTAT_CLEAR_RHALT
);
962 /* Unmask the interrupts we look for */
963 gfar_write(®s
->imask
, IMASK_DEFAULT
);
965 dev
->trans_start
= jiffies
;
968 /* Bring the controller up and running */
969 int startup_gfar(struct net_device
*dev
)
976 struct gfar_private
*priv
= netdev_priv(dev
);
977 struct gfar __iomem
*regs
= priv
->regs
;
982 gfar_write(®s
->imask
, IMASK_INIT_CLEAR
);
984 /* Allocate memory for the buffer descriptors */
985 vaddr
= (unsigned long) dma_alloc_coherent(&priv
->ofdev
->dev
,
986 sizeof (struct txbd8
) * priv
->tx_ring_size
+
987 sizeof (struct rxbd8
) * priv
->rx_ring_size
,
991 if (netif_msg_ifup(priv
))
992 printk(KERN_ERR
"%s: Could not allocate buffer descriptors!\n",
997 priv
->tx_bd_base
= (struct txbd8
*) vaddr
;
999 /* enet DMA only understands physical addresses */
1000 gfar_write(®s
->tbase0
, addr
);
1002 /* Start the rx descriptor ring where the tx ring leaves off */
1003 addr
= addr
+ sizeof (struct txbd8
) * priv
->tx_ring_size
;
1004 vaddr
= vaddr
+ sizeof (struct txbd8
) * priv
->tx_ring_size
;
1005 priv
->rx_bd_base
= (struct rxbd8
*) vaddr
;
1006 gfar_write(®s
->rbase0
, addr
);
1008 /* Setup the skbuff rings */
1010 (struct sk_buff
**) kmalloc(sizeof (struct sk_buff
*) *
1011 priv
->tx_ring_size
, GFP_KERNEL
);
1013 if (NULL
== priv
->tx_skbuff
) {
1014 if (netif_msg_ifup(priv
))
1015 printk(KERN_ERR
"%s: Could not allocate tx_skbuff\n",
1021 for (i
= 0; i
< priv
->tx_ring_size
; i
++)
1022 priv
->tx_skbuff
[i
] = NULL
;
1025 (struct sk_buff
**) kmalloc(sizeof (struct sk_buff
*) *
1026 priv
->rx_ring_size
, GFP_KERNEL
);
1028 if (NULL
== priv
->rx_skbuff
) {
1029 if (netif_msg_ifup(priv
))
1030 printk(KERN_ERR
"%s: Could not allocate rx_skbuff\n",
1036 for (i
= 0; i
< priv
->rx_ring_size
; i
++)
1037 priv
->rx_skbuff
[i
] = NULL
;
1039 /* Initialize some variables in our dev structure */
1040 priv
->num_txbdfree
= priv
->tx_ring_size
;
1041 priv
->dirty_tx
= priv
->cur_tx
= priv
->tx_bd_base
;
1042 priv
->cur_rx
= priv
->rx_bd_base
;
1043 priv
->skb_curtx
= priv
->skb_dirtytx
= 0;
1044 priv
->skb_currx
= 0;
1046 /* Initialize Transmit Descriptor Ring */
1047 txbdp
= priv
->tx_bd_base
;
1048 for (i
= 0; i
< priv
->tx_ring_size
; i
++) {
1054 /* Set the last descriptor in the ring to indicate wrap */
1056 txbdp
->status
|= TXBD_WRAP
;
1058 rxbdp
= priv
->rx_bd_base
;
1059 for (i
= 0; i
< priv
->rx_ring_size
; i
++) {
1060 struct sk_buff
*skb
;
1062 skb
= gfar_new_skb(dev
);
1065 printk(KERN_ERR
"%s: Can't allocate RX buffers\n",
1068 goto err_rxalloc_fail
;
1071 priv
->rx_skbuff
[i
] = skb
;
1073 gfar_new_rxbdp(dev
, rxbdp
, skb
);
1078 /* Set the last descriptor in the ring to wrap */
1080 rxbdp
->status
|= RXBD_WRAP
;
1082 /* If the device has multiple interrupts, register for
1083 * them. Otherwise, only register for the one */
1084 if (priv
->device_flags
& FSL_GIANFAR_DEV_HAS_MULTI_INTR
) {
1085 /* Install our interrupt handlers for Error,
1086 * Transmit, and Receive */
1087 if (request_irq(priv
->interruptError
, gfar_error
,
1088 0, priv
->int_name_er
, dev
) < 0) {
1089 if (netif_msg_intr(priv
))
1090 printk(KERN_ERR
"%s: Can't get IRQ %d\n",
1091 dev
->name
, priv
->interruptError
);
1097 if (request_irq(priv
->interruptTransmit
, gfar_transmit
,
1098 0, priv
->int_name_tx
, dev
) < 0) {
1099 if (netif_msg_intr(priv
))
1100 printk(KERN_ERR
"%s: Can't get IRQ %d\n",
1101 dev
->name
, priv
->interruptTransmit
);
1108 if (request_irq(priv
->interruptReceive
, gfar_receive
,
1109 0, priv
->int_name_rx
, dev
) < 0) {
1110 if (netif_msg_intr(priv
))
1111 printk(KERN_ERR
"%s: Can't get IRQ %d (receive0)\n",
1112 dev
->name
, priv
->interruptReceive
);
1118 if (request_irq(priv
->interruptTransmit
, gfar_interrupt
,
1119 0, priv
->int_name_tx
, dev
) < 0) {
1120 if (netif_msg_intr(priv
))
1121 printk(KERN_ERR
"%s: Can't get IRQ %d\n",
1122 dev
->name
, priv
->interruptTransmit
);
1129 phy_start(priv
->phydev
);
1131 /* Configure the coalescing support */
1132 gfar_write(®s
->txic
, 0);
1133 if (priv
->txcoalescing
)
1134 gfar_write(®s
->txic
, priv
->txic
);
1136 gfar_write(®s
->rxic
, 0);
1137 if (priv
->rxcoalescing
)
1138 gfar_write(®s
->rxic
, priv
->rxic
);
1140 if (priv
->rx_csum_enable
)
1141 rctrl
|= RCTRL_CHECKSUMMING
;
1143 if (priv
->extended_hash
) {
1144 rctrl
|= RCTRL_EXTHASH
;
1146 gfar_clear_exact_match(dev
);
1147 rctrl
|= RCTRL_EMEN
;
1150 if (priv
->padding
) {
1151 rctrl
&= ~RCTRL_PAL_MASK
;
1152 rctrl
|= RCTRL_PADDING(priv
->padding
);
1155 /* Init rctrl based on our settings */
1156 gfar_write(&priv
->regs
->rctrl
, rctrl
);
1158 if (dev
->features
& NETIF_F_IP_CSUM
)
1159 gfar_write(&priv
->regs
->tctrl
, TCTRL_INIT_CSUM
);
1161 /* Set the extraction length and index */
1162 attrs
= ATTRELI_EL(priv
->rx_stash_size
) |
1163 ATTRELI_EI(priv
->rx_stash_index
);
1165 gfar_write(&priv
->regs
->attreli
, attrs
);
1167 /* Start with defaults, and add stashing or locking
1168 * depending on the approprate variables */
1169 attrs
= ATTR_INIT_SETTINGS
;
1171 if (priv
->bd_stash_en
)
1172 attrs
|= ATTR_BDSTASH
;
1174 if (priv
->rx_stash_size
!= 0)
1175 attrs
|= ATTR_BUFSTASH
;
1177 gfar_write(&priv
->regs
->attr
, attrs
);
1179 gfar_write(&priv
->regs
->fifo_tx_thr
, priv
->fifo_threshold
);
1180 gfar_write(&priv
->regs
->fifo_tx_starve
, priv
->fifo_starve
);
1181 gfar_write(&priv
->regs
->fifo_tx_starve_shutoff
, priv
->fifo_starve_off
);
1183 /* Start the controller */
1189 free_irq(priv
->interruptTransmit
, dev
);
1191 free_irq(priv
->interruptError
, dev
);
1195 free_skb_resources(priv
);
1197 dma_free_coherent(&priv
->ofdev
->dev
,
1198 sizeof(struct txbd8
)*priv
->tx_ring_size
1199 + sizeof(struct rxbd8
)*priv
->rx_ring_size
,
1201 gfar_read(®s
->tbase0
));
1206 /* Called when something needs to use the ethernet device */
1207 /* Returns 0 for success. */
1208 static int gfar_enet_open(struct net_device
*dev
)
1210 struct gfar_private
*priv
= netdev_priv(dev
);
1213 napi_enable(&priv
->napi
);
1215 skb_queue_head_init(&priv
->rx_recycle
);
1217 /* Initialize a bunch of registers */
1218 init_registers(dev
);
1220 gfar_set_mac_address(dev
);
1222 err
= init_phy(dev
);
1225 napi_disable(&priv
->napi
);
1229 err
= startup_gfar(dev
);
1231 napi_disable(&priv
->napi
);
1235 netif_start_queue(dev
);
1237 device_set_wakeup_enable(&dev
->dev
, priv
->wol_en
);
1242 static inline struct txfcb
*gfar_add_fcb(struct sk_buff
*skb
)
1244 struct txfcb
*fcb
= (struct txfcb
*)skb_push(skb
, GMAC_FCB_LEN
);
1245 cacheable_memzero(fcb
, GMAC_FCB_LEN
);
1250 static inline void gfar_tx_checksum(struct sk_buff
*skb
, struct txfcb
*fcb
)
1254 /* If we're here, it's a IP packet with a TCP or UDP
1255 * payload. We set it to checksum, using a pseudo-header
1258 flags
= TXFCB_DEFAULT
;
1260 /* Tell the controller what the protocol is */
1261 /* And provide the already calculated phcs */
1262 if (ip_hdr(skb
)->protocol
== IPPROTO_UDP
) {
1264 fcb
->phcs
= udp_hdr(skb
)->check
;
1266 fcb
->phcs
= tcp_hdr(skb
)->check
;
1268 /* l3os is the distance between the start of the
1269 * frame (skb->data) and the start of the IP hdr.
1270 * l4os is the distance between the start of the
1271 * l3 hdr and the l4 hdr */
1272 fcb
->l3os
= (u16
)(skb_network_offset(skb
) - GMAC_FCB_LEN
);
1273 fcb
->l4os
= skb_network_header_len(skb
);
1278 void inline gfar_tx_vlan(struct sk_buff
*skb
, struct txfcb
*fcb
)
1280 fcb
->flags
|= TXFCB_VLN
;
1281 fcb
->vlctl
= vlan_tx_tag_get(skb
);
1284 static inline struct txbd8
*skip_txbd(struct txbd8
*bdp
, int stride
,
1285 struct txbd8
*base
, int ring_size
)
1287 struct txbd8
*new_bd
= bdp
+ stride
;
1289 return (new_bd
>= (base
+ ring_size
)) ? (new_bd
- ring_size
) : new_bd
;
1292 static inline struct txbd8
*next_txbd(struct txbd8
*bdp
, struct txbd8
*base
,
1295 return skip_txbd(bdp
, 1, base
, ring_size
);
1298 /* This is called by the kernel when a frame is ready for transmission. */
1299 /* It is pointed to by the dev->hard_start_xmit function pointer */
1300 static int gfar_start_xmit(struct sk_buff
*skb
, struct net_device
*dev
)
1302 struct gfar_private
*priv
= netdev_priv(dev
);
1303 struct txfcb
*fcb
= NULL
;
1304 struct txbd8
*txbdp
, *txbdp_start
, *base
;
1308 unsigned long flags
;
1309 unsigned int nr_frags
, length
;
1311 base
= priv
->tx_bd_base
;
1313 /* make space for additional header when fcb is needed */
1314 if (((skb
->ip_summed
== CHECKSUM_PARTIAL
) ||
1315 (priv
->vlgrp
&& vlan_tx_tag_present(skb
))) &&
1316 (skb_headroom(skb
) < GMAC_FCB_LEN
)) {
1317 struct sk_buff
*skb_new
;
1319 skb_new
= skb_realloc_headroom(skb
, GMAC_FCB_LEN
);
1321 dev
->stats
.tx_errors
++;
1323 return NETDEV_TX_OK
;
1329 /* total number of fragments in the SKB */
1330 nr_frags
= skb_shinfo(skb
)->nr_frags
;
1332 spin_lock_irqsave(&priv
->txlock
, flags
);
1334 /* check if there is space to queue this packet */
1335 if ((nr_frags
+1) > priv
->num_txbdfree
) {
1336 /* no space, stop the queue */
1337 netif_stop_queue(dev
);
1338 dev
->stats
.tx_fifo_errors
++;
1339 spin_unlock_irqrestore(&priv
->txlock
, flags
);
1340 return NETDEV_TX_BUSY
;
1343 /* Update transmit stats */
1344 dev
->stats
.tx_bytes
+= skb
->len
;
1346 txbdp
= txbdp_start
= priv
->cur_tx
;
1348 if (nr_frags
== 0) {
1349 lstatus
= txbdp
->lstatus
| BD_LFLAG(TXBD_LAST
| TXBD_INTERRUPT
);
1351 /* Place the fragment addresses and lengths into the TxBDs */
1352 for (i
= 0; i
< nr_frags
; i
++) {
1353 /* Point at the next BD, wrapping as needed */
1354 txbdp
= next_txbd(txbdp
, base
, priv
->tx_ring_size
);
1356 length
= skb_shinfo(skb
)->frags
[i
].size
;
1358 lstatus
= txbdp
->lstatus
| length
|
1359 BD_LFLAG(TXBD_READY
);
1361 /* Handle the last BD specially */
1362 if (i
== nr_frags
- 1)
1363 lstatus
|= BD_LFLAG(TXBD_LAST
| TXBD_INTERRUPT
);
1365 bufaddr
= dma_map_page(&priv
->ofdev
->dev
,
1366 skb_shinfo(skb
)->frags
[i
].page
,
1367 skb_shinfo(skb
)->frags
[i
].page_offset
,
1371 /* set the TxBD length and buffer pointer */
1372 txbdp
->bufPtr
= bufaddr
;
1373 txbdp
->lstatus
= lstatus
;
1376 lstatus
= txbdp_start
->lstatus
;
1379 /* Set up checksumming */
1380 if (CHECKSUM_PARTIAL
== skb
->ip_summed
) {
1381 fcb
= gfar_add_fcb(skb
);
1382 lstatus
|= BD_LFLAG(TXBD_TOE
);
1383 gfar_tx_checksum(skb
, fcb
);
1386 if (priv
->vlgrp
&& vlan_tx_tag_present(skb
)) {
1387 if (unlikely(NULL
== fcb
)) {
1388 fcb
= gfar_add_fcb(skb
);
1389 lstatus
|= BD_LFLAG(TXBD_TOE
);
1392 gfar_tx_vlan(skb
, fcb
);
1395 /* setup the TxBD length and buffer pointer for the first BD */
1396 priv
->tx_skbuff
[priv
->skb_curtx
] = skb
;
1397 txbdp_start
->bufPtr
= dma_map_single(&priv
->ofdev
->dev
, skb
->data
,
1398 skb_headlen(skb
), DMA_TO_DEVICE
);
1400 lstatus
|= BD_LFLAG(TXBD_CRC
| TXBD_READY
) | skb_headlen(skb
);
1403 * The powerpc-specific eieio() is used, as wmb() has too strong
1404 * semantics (it requires synchronization between cacheable and
1405 * uncacheable mappings, which eieio doesn't provide and which we
1406 * don't need), thus requiring a more expensive sync instruction. At
1407 * some point, the set of architecture-independent barrier functions
1408 * should be expanded to include weaker barriers.
1412 txbdp_start
->lstatus
= lstatus
;
1414 /* Update the current skb pointer to the next entry we will use
1415 * (wrapping if necessary) */
1416 priv
->skb_curtx
= (priv
->skb_curtx
+ 1) &
1417 TX_RING_MOD_MASK(priv
->tx_ring_size
);
1419 priv
->cur_tx
= next_txbd(txbdp
, base
, priv
->tx_ring_size
);
1421 /* reduce TxBD free count */
1422 priv
->num_txbdfree
-= (nr_frags
+ 1);
1424 dev
->trans_start
= jiffies
;
1426 /* If the next BD still needs to be cleaned up, then the bds
1427 are full. We need to tell the kernel to stop sending us stuff. */
1428 if (!priv
->num_txbdfree
) {
1429 netif_stop_queue(dev
);
1431 dev
->stats
.tx_fifo_errors
++;
1434 /* Tell the DMA to go go go */
1435 gfar_write(&priv
->regs
->tstat
, TSTAT_CLEAR_THALT
);
1438 spin_unlock_irqrestore(&priv
->txlock
, flags
);
1440 return NETDEV_TX_OK
;
1443 /* Stops the kernel queue, and halts the controller */
1444 static int gfar_close(struct net_device
*dev
)
1446 struct gfar_private
*priv
= netdev_priv(dev
);
1448 napi_disable(&priv
->napi
);
1450 skb_queue_purge(&priv
->rx_recycle
);
1451 cancel_work_sync(&priv
->reset_task
);
1454 /* Disconnect from the PHY */
1455 phy_disconnect(priv
->phydev
);
1456 priv
->phydev
= NULL
;
1458 netif_stop_queue(dev
);
1463 /* Changes the mac address if the controller is not running. */
1464 static int gfar_set_mac_address(struct net_device
*dev
)
1466 gfar_set_mac_for_addr(dev
, 0, dev
->dev_addr
);
1472 /* Enables and disables VLAN insertion/extraction */
1473 static void gfar_vlan_rx_register(struct net_device
*dev
,
1474 struct vlan_group
*grp
)
1476 struct gfar_private
*priv
= netdev_priv(dev
);
1477 unsigned long flags
;
1480 spin_lock_irqsave(&priv
->rxlock
, flags
);
1485 /* Enable VLAN tag insertion */
1486 tempval
= gfar_read(&priv
->regs
->tctrl
);
1487 tempval
|= TCTRL_VLINS
;
1489 gfar_write(&priv
->regs
->tctrl
, tempval
);
1491 /* Enable VLAN tag extraction */
1492 tempval
= gfar_read(&priv
->regs
->rctrl
);
1493 tempval
|= RCTRL_VLEX
;
1494 tempval
|= (RCTRL_VLEX
| RCTRL_PRSDEP_INIT
);
1495 gfar_write(&priv
->regs
->rctrl
, tempval
);
1497 /* Disable VLAN tag insertion */
1498 tempval
= gfar_read(&priv
->regs
->tctrl
);
1499 tempval
&= ~TCTRL_VLINS
;
1500 gfar_write(&priv
->regs
->tctrl
, tempval
);
1502 /* Disable VLAN tag extraction */
1503 tempval
= gfar_read(&priv
->regs
->rctrl
);
1504 tempval
&= ~RCTRL_VLEX
;
1505 /* If parse is no longer required, then disable parser */
1506 if (tempval
& RCTRL_REQ_PARSER
)
1507 tempval
|= RCTRL_PRSDEP_INIT
;
1509 tempval
&= ~RCTRL_PRSDEP_INIT
;
1510 gfar_write(&priv
->regs
->rctrl
, tempval
);
1513 gfar_change_mtu(dev
, dev
->mtu
);
1515 spin_unlock_irqrestore(&priv
->rxlock
, flags
);
1518 static int gfar_change_mtu(struct net_device
*dev
, int new_mtu
)
1520 int tempsize
, tempval
;
1521 struct gfar_private
*priv
= netdev_priv(dev
);
1522 int oldsize
= priv
->rx_buffer_size
;
1523 int frame_size
= new_mtu
+ ETH_HLEN
;
1526 frame_size
+= VLAN_HLEN
;
1528 if ((frame_size
< 64) || (frame_size
> JUMBO_FRAME_SIZE
)) {
1529 if (netif_msg_drv(priv
))
1530 printk(KERN_ERR
"%s: Invalid MTU setting\n",
1535 if (gfar_uses_fcb(priv
))
1536 frame_size
+= GMAC_FCB_LEN
;
1538 frame_size
+= priv
->padding
;
1541 (frame_size
& ~(INCREMENTAL_BUFFER_SIZE
- 1)) +
1542 INCREMENTAL_BUFFER_SIZE
;
1544 /* Only stop and start the controller if it isn't already
1545 * stopped, and we changed something */
1546 if ((oldsize
!= tempsize
) && (dev
->flags
& IFF_UP
))
1549 priv
->rx_buffer_size
= tempsize
;
1553 gfar_write(&priv
->regs
->mrblr
, priv
->rx_buffer_size
);
1554 gfar_write(&priv
->regs
->maxfrm
, priv
->rx_buffer_size
);
1556 /* If the mtu is larger than the max size for standard
1557 * ethernet frames (ie, a jumbo frame), then set maccfg2
1558 * to allow huge frames, and to check the length */
1559 tempval
= gfar_read(&priv
->regs
->maccfg2
);
1561 if (priv
->rx_buffer_size
> DEFAULT_RX_BUFFER_SIZE
)
1562 tempval
|= (MACCFG2_HUGEFRAME
| MACCFG2_LENGTHCHECK
);
1564 tempval
&= ~(MACCFG2_HUGEFRAME
| MACCFG2_LENGTHCHECK
);
1566 gfar_write(&priv
->regs
->maccfg2
, tempval
);
1568 if ((oldsize
!= tempsize
) && (dev
->flags
& IFF_UP
))
1574 /* gfar_reset_task gets scheduled when a packet has not been
1575 * transmitted after a set amount of time.
1576 * For now, assume that clearing out all the structures, and
1577 * starting over will fix the problem.
1579 static void gfar_reset_task(struct work_struct
*work
)
1581 struct gfar_private
*priv
= container_of(work
, struct gfar_private
,
1583 struct net_device
*dev
= priv
->ndev
;
1585 if (dev
->flags
& IFF_UP
) {
1586 netif_stop_queue(dev
);
1589 netif_start_queue(dev
);
1592 netif_tx_schedule_all(dev
);
1595 static void gfar_timeout(struct net_device
*dev
)
1597 struct gfar_private
*priv
= netdev_priv(dev
);
1599 dev
->stats
.tx_errors
++;
1600 schedule_work(&priv
->reset_task
);
1603 /* Interrupt Handler for Transmit complete */
1604 static int gfar_clean_tx_ring(struct net_device
*dev
)
1606 struct gfar_private
*priv
= netdev_priv(dev
);
1608 struct txbd8
*lbdp
= NULL
;
1609 struct txbd8
*base
= priv
->tx_bd_base
;
1610 struct sk_buff
*skb
;
1612 int tx_ring_size
= priv
->tx_ring_size
;
1618 bdp
= priv
->dirty_tx
;
1619 skb_dirtytx
= priv
->skb_dirtytx
;
1621 while ((skb
= priv
->tx_skbuff
[skb_dirtytx
])) {
1622 frags
= skb_shinfo(skb
)->nr_frags
;
1623 lbdp
= skip_txbd(bdp
, frags
, base
, tx_ring_size
);
1625 lstatus
= lbdp
->lstatus
;
1627 /* Only clean completed frames */
1628 if ((lstatus
& BD_LFLAG(TXBD_READY
)) &&
1629 (lstatus
& BD_LENGTH_MASK
))
1632 dma_unmap_single(&priv
->ofdev
->dev
,
1637 bdp
->lstatus
&= BD_LFLAG(TXBD_WRAP
);
1638 bdp
= next_txbd(bdp
, base
, tx_ring_size
);
1640 for (i
= 0; i
< frags
; i
++) {
1641 dma_unmap_page(&priv
->ofdev
->dev
,
1645 bdp
->lstatus
&= BD_LFLAG(TXBD_WRAP
);
1646 bdp
= next_txbd(bdp
, base
, tx_ring_size
);
1650 * If there's room in the queue (limit it to rx_buffer_size)
1651 * we add this skb back into the pool, if it's the right size
1653 if (skb_queue_len(&priv
->rx_recycle
) < priv
->rx_ring_size
&&
1654 skb_recycle_check(skb
, priv
->rx_buffer_size
+
1656 __skb_queue_head(&priv
->rx_recycle
, skb
);
1658 dev_kfree_skb_any(skb
);
1660 priv
->tx_skbuff
[skb_dirtytx
] = NULL
;
1662 skb_dirtytx
= (skb_dirtytx
+ 1) &
1663 TX_RING_MOD_MASK(tx_ring_size
);
1666 priv
->num_txbdfree
+= frags
+ 1;
1669 /* If we freed a buffer, we can restart transmission, if necessary */
1670 if (netif_queue_stopped(dev
) && priv
->num_txbdfree
)
1671 netif_wake_queue(dev
);
1673 /* Update dirty indicators */
1674 priv
->skb_dirtytx
= skb_dirtytx
;
1675 priv
->dirty_tx
= bdp
;
1677 dev
->stats
.tx_packets
+= howmany
;
1682 static void gfar_schedule_cleanup(struct net_device
*dev
)
1684 struct gfar_private
*priv
= netdev_priv(dev
);
1685 unsigned long flags
;
1687 spin_lock_irqsave(&priv
->txlock
, flags
);
1688 spin_lock(&priv
->rxlock
);
1690 if (napi_schedule_prep(&priv
->napi
)) {
1691 gfar_write(&priv
->regs
->imask
, IMASK_RTX_DISABLED
);
1692 __napi_schedule(&priv
->napi
);
1695 * Clear IEVENT, so interrupts aren't called again
1696 * because of the packets that have already arrived.
1698 gfar_write(&priv
->regs
->ievent
, IEVENT_RTX_MASK
);
1701 spin_unlock(&priv
->rxlock
);
1702 spin_unlock_irqrestore(&priv
->txlock
, flags
);
1705 /* Interrupt Handler for Transmit complete */
1706 static irqreturn_t
gfar_transmit(int irq
, void *dev_id
)
1708 gfar_schedule_cleanup((struct net_device
*)dev_id
);
1712 static void gfar_new_rxbdp(struct net_device
*dev
, struct rxbd8
*bdp
,
1713 struct sk_buff
*skb
)
1715 struct gfar_private
*priv
= netdev_priv(dev
);
1718 bdp
->bufPtr
= dma_map_single(&priv
->ofdev
->dev
, skb
->data
,
1719 priv
->rx_buffer_size
, DMA_FROM_DEVICE
);
1721 lstatus
= BD_LFLAG(RXBD_EMPTY
| RXBD_INTERRUPT
);
1723 if (bdp
== priv
->rx_bd_base
+ priv
->rx_ring_size
- 1)
1724 lstatus
|= BD_LFLAG(RXBD_WRAP
);
1728 bdp
->lstatus
= lstatus
;
1732 struct sk_buff
* gfar_new_skb(struct net_device
*dev
)
1734 unsigned int alignamount
;
1735 struct gfar_private
*priv
= netdev_priv(dev
);
1736 struct sk_buff
*skb
= NULL
;
1738 skb
= __skb_dequeue(&priv
->rx_recycle
);
1740 skb
= netdev_alloc_skb(dev
,
1741 priv
->rx_buffer_size
+ RXBUF_ALIGNMENT
);
1746 alignamount
= RXBUF_ALIGNMENT
-
1747 (((unsigned long) skb
->data
) & (RXBUF_ALIGNMENT
- 1));
1749 /* We need the data buffer to be aligned properly. We will reserve
1750 * as many bytes as needed to align the data properly
1752 skb_reserve(skb
, alignamount
);
1757 static inline void count_errors(unsigned short status
, struct net_device
*dev
)
1759 struct gfar_private
*priv
= netdev_priv(dev
);
1760 struct net_device_stats
*stats
= &dev
->stats
;
1761 struct gfar_extra_stats
*estats
= &priv
->extra_stats
;
1763 /* If the packet was truncated, none of the other errors
1765 if (status
& RXBD_TRUNCATED
) {
1766 stats
->rx_length_errors
++;
1772 /* Count the errors, if there were any */
1773 if (status
& (RXBD_LARGE
| RXBD_SHORT
)) {
1774 stats
->rx_length_errors
++;
1776 if (status
& RXBD_LARGE
)
1781 if (status
& RXBD_NONOCTET
) {
1782 stats
->rx_frame_errors
++;
1783 estats
->rx_nonoctet
++;
1785 if (status
& RXBD_CRCERR
) {
1786 estats
->rx_crcerr
++;
1787 stats
->rx_crc_errors
++;
1789 if (status
& RXBD_OVERRUN
) {
1790 estats
->rx_overrun
++;
1791 stats
->rx_crc_errors
++;
1795 irqreturn_t
gfar_receive(int irq
, void *dev_id
)
1797 gfar_schedule_cleanup((struct net_device
*)dev_id
);
1801 static inline void gfar_rx_checksum(struct sk_buff
*skb
, struct rxfcb
*fcb
)
1803 /* If valid headers were found, and valid sums
1804 * were verified, then we tell the kernel that no
1805 * checksumming is necessary. Otherwise, it is */
1806 if ((fcb
->flags
& RXFCB_CSUM_MASK
) == (RXFCB_CIP
| RXFCB_CTU
))
1807 skb
->ip_summed
= CHECKSUM_UNNECESSARY
;
1809 skb
->ip_summed
= CHECKSUM_NONE
;
1813 /* gfar_process_frame() -- handle one incoming packet if skb
1815 static int gfar_process_frame(struct net_device
*dev
, struct sk_buff
*skb
,
1818 struct gfar_private
*priv
= netdev_priv(dev
);
1819 struct rxfcb
*fcb
= NULL
;
1823 /* fcb is at the beginning if exists */
1824 fcb
= (struct rxfcb
*)skb
->data
;
1826 /* Remove the FCB from the skb */
1827 /* Remove the padded bytes, if there are any */
1829 skb_pull(skb
, amount_pull
);
1831 if (priv
->rx_csum_enable
)
1832 gfar_rx_checksum(skb
, fcb
);
1834 /* Tell the skb what kind of packet this is */
1835 skb
->protocol
= eth_type_trans(skb
, dev
);
1837 /* Send the packet up the stack */
1838 if (unlikely(priv
->vlgrp
&& (fcb
->flags
& RXFCB_VLN
)))
1839 ret
= vlan_hwaccel_receive_skb(skb
, priv
->vlgrp
, fcb
->vlctl
);
1841 ret
= netif_receive_skb(skb
);
1843 if (NET_RX_DROP
== ret
)
1844 priv
->extra_stats
.kernel_dropped
++;
1849 /* gfar_clean_rx_ring() -- Processes each frame in the rx ring
1850 * until the budget/quota has been reached. Returns the number
1853 int gfar_clean_rx_ring(struct net_device
*dev
, int rx_work_limit
)
1855 struct rxbd8
*bdp
, *base
;
1856 struct sk_buff
*skb
;
1860 struct gfar_private
*priv
= netdev_priv(dev
);
1862 /* Get the first full descriptor */
1864 base
= priv
->rx_bd_base
;
1866 amount_pull
= (gfar_uses_fcb(priv
) ? GMAC_FCB_LEN
: 0) +
1869 while (!((bdp
->status
& RXBD_EMPTY
) || (--rx_work_limit
< 0))) {
1870 struct sk_buff
*newskb
;
1873 /* Add another skb for the future */
1874 newskb
= gfar_new_skb(dev
);
1876 skb
= priv
->rx_skbuff
[priv
->skb_currx
];
1878 dma_unmap_single(&priv
->ofdev
->dev
, bdp
->bufPtr
,
1879 priv
->rx_buffer_size
, DMA_FROM_DEVICE
);
1881 /* We drop the frame if we failed to allocate a new buffer */
1882 if (unlikely(!newskb
|| !(bdp
->status
& RXBD_LAST
) ||
1883 bdp
->status
& RXBD_ERR
)) {
1884 count_errors(bdp
->status
, dev
);
1886 if (unlikely(!newskb
))
1890 * We need to reset ->data to what it
1891 * was before gfar_new_skb() re-aligned
1892 * it to an RXBUF_ALIGNMENT boundary
1893 * before we put the skb back on the
1896 skb
->data
= skb
->head
+ NET_SKB_PAD
;
1897 __skb_queue_head(&priv
->rx_recycle
, skb
);
1900 /* Increment the number of packets */
1901 dev
->stats
.rx_packets
++;
1905 pkt_len
= bdp
->length
- ETH_FCS_LEN
;
1906 /* Remove the FCS from the packet length */
1907 skb_put(skb
, pkt_len
);
1908 dev
->stats
.rx_bytes
+= pkt_len
;
1910 if (in_irq() || irqs_disabled())
1911 printk("Interrupt problem!\n");
1912 gfar_process_frame(dev
, skb
, amount_pull
);
1915 if (netif_msg_rx_err(priv
))
1917 "%s: Missing skb!\n", dev
->name
);
1918 dev
->stats
.rx_dropped
++;
1919 priv
->extra_stats
.rx_skbmissing
++;
1924 priv
->rx_skbuff
[priv
->skb_currx
] = newskb
;
1926 /* Setup the new bdp */
1927 gfar_new_rxbdp(dev
, bdp
, newskb
);
1929 /* Update to the next pointer */
1930 bdp
= next_bd(bdp
, base
, priv
->rx_ring_size
);
1932 /* update to point at the next skb */
1934 (priv
->skb_currx
+ 1) &
1935 RX_RING_MOD_MASK(priv
->rx_ring_size
);
1938 /* Update the current rxbd pointer to be the next one */
1944 static int gfar_poll(struct napi_struct
*napi
, int budget
)
1946 struct gfar_private
*priv
= container_of(napi
, struct gfar_private
, napi
);
1947 struct net_device
*dev
= priv
->ndev
;
1950 unsigned long flags
;
1952 /* Clear IEVENT, so interrupts aren't called again
1953 * because of the packets that have already arrived */
1954 gfar_write(&priv
->regs
->ievent
, IEVENT_RTX_MASK
);
1956 /* If we fail to get the lock, don't bother with the TX BDs */
1957 if (spin_trylock_irqsave(&priv
->txlock
, flags
)) {
1958 tx_cleaned
= gfar_clean_tx_ring(dev
);
1959 spin_unlock_irqrestore(&priv
->txlock
, flags
);
1962 rx_cleaned
= gfar_clean_rx_ring(dev
, budget
);
1967 if (rx_cleaned
< budget
) {
1968 napi_complete(napi
);
1970 /* Clear the halt bit in RSTAT */
1971 gfar_write(&priv
->regs
->rstat
, RSTAT_CLEAR_RHALT
);
1973 gfar_write(&priv
->regs
->imask
, IMASK_DEFAULT
);
1975 /* If we are coalescing interrupts, update the timer */
1976 /* Otherwise, clear it */
1977 if (likely(priv
->rxcoalescing
)) {
1978 gfar_write(&priv
->regs
->rxic
, 0);
1979 gfar_write(&priv
->regs
->rxic
, priv
->rxic
);
1981 if (likely(priv
->txcoalescing
)) {
1982 gfar_write(&priv
->regs
->txic
, 0);
1983 gfar_write(&priv
->regs
->txic
, priv
->txic
);
1990 #ifdef CONFIG_NET_POLL_CONTROLLER
1992 * Polling 'interrupt' - used by things like netconsole to send skbs
1993 * without having to re-enable interrupts. It's not called while
1994 * the interrupt routine is executing.
1996 static void gfar_netpoll(struct net_device
*dev
)
1998 struct gfar_private
*priv
= netdev_priv(dev
);
2000 /* If the device has multiple interrupts, run tx/rx */
2001 if (priv
->device_flags
& FSL_GIANFAR_DEV_HAS_MULTI_INTR
) {
2002 disable_irq(priv
->interruptTransmit
);
2003 disable_irq(priv
->interruptReceive
);
2004 disable_irq(priv
->interruptError
);
2005 gfar_interrupt(priv
->interruptTransmit
, dev
);
2006 enable_irq(priv
->interruptError
);
2007 enable_irq(priv
->interruptReceive
);
2008 enable_irq(priv
->interruptTransmit
);
2010 disable_irq(priv
->interruptTransmit
);
2011 gfar_interrupt(priv
->interruptTransmit
, dev
);
2012 enable_irq(priv
->interruptTransmit
);
2017 /* The interrupt handler for devices with one interrupt */
2018 static irqreturn_t
gfar_interrupt(int irq
, void *dev_id
)
2020 struct net_device
*dev
= dev_id
;
2021 struct gfar_private
*priv
= netdev_priv(dev
);
2023 /* Save ievent for future reference */
2024 u32 events
= gfar_read(&priv
->regs
->ievent
);
2026 /* Check for reception */
2027 if (events
& IEVENT_RX_MASK
)
2028 gfar_receive(irq
, dev_id
);
2030 /* Check for transmit completion */
2031 if (events
& IEVENT_TX_MASK
)
2032 gfar_transmit(irq
, dev_id
);
2034 /* Check for errors */
2035 if (events
& IEVENT_ERR_MASK
)
2036 gfar_error(irq
, dev_id
);
2041 /* Called every time the controller might need to be made
2042 * aware of new link state. The PHY code conveys this
2043 * information through variables in the phydev structure, and this
2044 * function converts those variables into the appropriate
2045 * register values, and can bring down the device if needed.
2047 static void adjust_link(struct net_device
*dev
)
2049 struct gfar_private
*priv
= netdev_priv(dev
);
2050 struct gfar __iomem
*regs
= priv
->regs
;
2051 unsigned long flags
;
2052 struct phy_device
*phydev
= priv
->phydev
;
2055 spin_lock_irqsave(&priv
->txlock
, flags
);
2057 u32 tempval
= gfar_read(®s
->maccfg2
);
2058 u32 ecntrl
= gfar_read(®s
->ecntrl
);
2060 /* Now we make sure that we can be in full duplex mode.
2061 * If not, we operate in half-duplex mode. */
2062 if (phydev
->duplex
!= priv
->oldduplex
) {
2064 if (!(phydev
->duplex
))
2065 tempval
&= ~(MACCFG2_FULL_DUPLEX
);
2067 tempval
|= MACCFG2_FULL_DUPLEX
;
2069 priv
->oldduplex
= phydev
->duplex
;
2072 if (phydev
->speed
!= priv
->oldspeed
) {
2074 switch (phydev
->speed
) {
2077 ((tempval
& ~(MACCFG2_IF
)) | MACCFG2_GMII
);
2079 ecntrl
&= ~(ECNTRL_R100
);
2084 ((tempval
& ~(MACCFG2_IF
)) | MACCFG2_MII
);
2086 /* Reduced mode distinguishes
2087 * between 10 and 100 */
2088 if (phydev
->speed
== SPEED_100
)
2089 ecntrl
|= ECNTRL_R100
;
2091 ecntrl
&= ~(ECNTRL_R100
);
2094 if (netif_msg_link(priv
))
2096 "%s: Ack! Speed (%d) is not 10/100/1000!\n",
2097 dev
->name
, phydev
->speed
);
2101 priv
->oldspeed
= phydev
->speed
;
2104 gfar_write(®s
->maccfg2
, tempval
);
2105 gfar_write(®s
->ecntrl
, ecntrl
);
2107 if (!priv
->oldlink
) {
2111 } else if (priv
->oldlink
) {
2115 priv
->oldduplex
= -1;
2118 if (new_state
&& netif_msg_link(priv
))
2119 phy_print_status(phydev
);
2121 spin_unlock_irqrestore(&priv
->txlock
, flags
);
2124 /* Update the hash table based on the current list of multicast
2125 * addresses we subscribe to. Also, change the promiscuity of
2126 * the device based on the flags (this function is called
2127 * whenever dev->flags is changed */
2128 static void gfar_set_multi(struct net_device
*dev
)
2130 struct dev_mc_list
*mc_ptr
;
2131 struct gfar_private
*priv
= netdev_priv(dev
);
2132 struct gfar __iomem
*regs
= priv
->regs
;
2135 if(dev
->flags
& IFF_PROMISC
) {
2136 /* Set RCTRL to PROM */
2137 tempval
= gfar_read(®s
->rctrl
);
2138 tempval
|= RCTRL_PROM
;
2139 gfar_write(®s
->rctrl
, tempval
);
2141 /* Set RCTRL to not PROM */
2142 tempval
= gfar_read(®s
->rctrl
);
2143 tempval
&= ~(RCTRL_PROM
);
2144 gfar_write(®s
->rctrl
, tempval
);
2147 if(dev
->flags
& IFF_ALLMULTI
) {
2148 /* Set the hash to rx all multicast frames */
2149 gfar_write(®s
->igaddr0
, 0xffffffff);
2150 gfar_write(®s
->igaddr1
, 0xffffffff);
2151 gfar_write(®s
->igaddr2
, 0xffffffff);
2152 gfar_write(®s
->igaddr3
, 0xffffffff);
2153 gfar_write(®s
->igaddr4
, 0xffffffff);
2154 gfar_write(®s
->igaddr5
, 0xffffffff);
2155 gfar_write(®s
->igaddr6
, 0xffffffff);
2156 gfar_write(®s
->igaddr7
, 0xffffffff);
2157 gfar_write(®s
->gaddr0
, 0xffffffff);
2158 gfar_write(®s
->gaddr1
, 0xffffffff);
2159 gfar_write(®s
->gaddr2
, 0xffffffff);
2160 gfar_write(®s
->gaddr3
, 0xffffffff);
2161 gfar_write(®s
->gaddr4
, 0xffffffff);
2162 gfar_write(®s
->gaddr5
, 0xffffffff);
2163 gfar_write(®s
->gaddr6
, 0xffffffff);
2164 gfar_write(®s
->gaddr7
, 0xffffffff);
2169 /* zero out the hash */
2170 gfar_write(®s
->igaddr0
, 0x0);
2171 gfar_write(®s
->igaddr1
, 0x0);
2172 gfar_write(®s
->igaddr2
, 0x0);
2173 gfar_write(®s
->igaddr3
, 0x0);
2174 gfar_write(®s
->igaddr4
, 0x0);
2175 gfar_write(®s
->igaddr5
, 0x0);
2176 gfar_write(®s
->igaddr6
, 0x0);
2177 gfar_write(®s
->igaddr7
, 0x0);
2178 gfar_write(®s
->gaddr0
, 0x0);
2179 gfar_write(®s
->gaddr1
, 0x0);
2180 gfar_write(®s
->gaddr2
, 0x0);
2181 gfar_write(®s
->gaddr3
, 0x0);
2182 gfar_write(®s
->gaddr4
, 0x0);
2183 gfar_write(®s
->gaddr5
, 0x0);
2184 gfar_write(®s
->gaddr6
, 0x0);
2185 gfar_write(®s
->gaddr7
, 0x0);
2187 /* If we have extended hash tables, we need to
2188 * clear the exact match registers to prepare for
2190 if (priv
->extended_hash
) {
2191 em_num
= GFAR_EM_NUM
+ 1;
2192 gfar_clear_exact_match(dev
);
2199 if(dev
->mc_count
== 0)
2202 /* Parse the list, and set the appropriate bits */
2203 for(mc_ptr
= dev
->mc_list
; mc_ptr
; mc_ptr
= mc_ptr
->next
) {
2205 gfar_set_mac_for_addr(dev
, idx
,
2209 gfar_set_hash_for_addr(dev
, mc_ptr
->dmi_addr
);
2217 /* Clears each of the exact match registers to zero, so they
2218 * don't interfere with normal reception */
2219 static void gfar_clear_exact_match(struct net_device
*dev
)
2222 u8 zero_arr
[MAC_ADDR_LEN
] = {0,0,0,0,0,0};
2224 for(idx
= 1;idx
< GFAR_EM_NUM
+ 1;idx
++)
2225 gfar_set_mac_for_addr(dev
, idx
, (u8
*)zero_arr
);
2228 /* Set the appropriate hash bit for the given addr */
2229 /* The algorithm works like so:
2230 * 1) Take the Destination Address (ie the multicast address), and
2231 * do a CRC on it (little endian), and reverse the bits of the
2233 * 2) Use the 8 most significant bits as a hash into a 256-entry
2234 * table. The table is controlled through 8 32-bit registers:
2235 * gaddr0-7. gaddr0's MSB is entry 0, and gaddr7's LSB is
2236 * gaddr7. This means that the 3 most significant bits in the
2237 * hash index which gaddr register to use, and the 5 other bits
2238 * indicate which bit (assuming an IBM numbering scheme, which
2239 * for PowerPC (tm) is usually the case) in the register holds
2241 static void gfar_set_hash_for_addr(struct net_device
*dev
, u8
*addr
)
2244 struct gfar_private
*priv
= netdev_priv(dev
);
2245 u32 result
= ether_crc(MAC_ADDR_LEN
, addr
);
2246 int width
= priv
->hash_width
;
2247 u8 whichbit
= (result
>> (32 - width
)) & 0x1f;
2248 u8 whichreg
= result
>> (32 - width
+ 5);
2249 u32 value
= (1 << (31-whichbit
));
2251 tempval
= gfar_read(priv
->hash_regs
[whichreg
]);
2253 gfar_write(priv
->hash_regs
[whichreg
], tempval
);
2259 /* There are multiple MAC Address register pairs on some controllers
2260 * This function sets the numth pair to a given address
2262 static void gfar_set_mac_for_addr(struct net_device
*dev
, int num
, u8
*addr
)
2264 struct gfar_private
*priv
= netdev_priv(dev
);
2266 char tmpbuf
[MAC_ADDR_LEN
];
2268 u32 __iomem
*macptr
= &priv
->regs
->macstnaddr1
;
2272 /* Now copy it into the mac registers backwards, cuz */
2273 /* little endian is silly */
2274 for (idx
= 0; idx
< MAC_ADDR_LEN
; idx
++)
2275 tmpbuf
[MAC_ADDR_LEN
- 1 - idx
] = addr
[idx
];
2277 gfar_write(macptr
, *((u32
*) (tmpbuf
)));
2279 tempval
= *((u32
*) (tmpbuf
+ 4));
2281 gfar_write(macptr
+1, tempval
);
2284 /* GFAR error interrupt handler */
2285 static irqreturn_t
gfar_error(int irq
, void *dev_id
)
2287 struct net_device
*dev
= dev_id
;
2288 struct gfar_private
*priv
= netdev_priv(dev
);
2290 /* Save ievent for future reference */
2291 u32 events
= gfar_read(&priv
->regs
->ievent
);
2294 gfar_write(&priv
->regs
->ievent
, events
& IEVENT_ERR_MASK
);
2296 /* Magic Packet is not an error. */
2297 if ((priv
->device_flags
& FSL_GIANFAR_DEV_HAS_MAGIC_PACKET
) &&
2298 (events
& IEVENT_MAG
))
2299 events
&= ~IEVENT_MAG
;
2302 if (netif_msg_rx_err(priv
) || netif_msg_tx_err(priv
))
2303 printk(KERN_DEBUG
"%s: error interrupt (ievent=0x%08x imask=0x%08x)\n",
2304 dev
->name
, events
, gfar_read(&priv
->regs
->imask
));
2306 /* Update the error counters */
2307 if (events
& IEVENT_TXE
) {
2308 dev
->stats
.tx_errors
++;
2310 if (events
& IEVENT_LC
)
2311 dev
->stats
.tx_window_errors
++;
2312 if (events
& IEVENT_CRL
)
2313 dev
->stats
.tx_aborted_errors
++;
2314 if (events
& IEVENT_XFUN
) {
2315 if (netif_msg_tx_err(priv
))
2316 printk(KERN_DEBUG
"%s: TX FIFO underrun, "
2317 "packet dropped.\n", dev
->name
);
2318 dev
->stats
.tx_dropped
++;
2319 priv
->extra_stats
.tx_underrun
++;
2321 /* Reactivate the Tx Queues */
2322 gfar_write(&priv
->regs
->tstat
, TSTAT_CLEAR_THALT
);
2324 if (netif_msg_tx_err(priv
))
2325 printk(KERN_DEBUG
"%s: Transmit Error\n", dev
->name
);
2327 if (events
& IEVENT_BSY
) {
2328 dev
->stats
.rx_errors
++;
2329 priv
->extra_stats
.rx_bsy
++;
2331 gfar_receive(irq
, dev_id
);
2333 if (netif_msg_rx_err(priv
))
2334 printk(KERN_DEBUG
"%s: busy error (rstat: %x)\n",
2335 dev
->name
, gfar_read(&priv
->regs
->rstat
));
2337 if (events
& IEVENT_BABR
) {
2338 dev
->stats
.rx_errors
++;
2339 priv
->extra_stats
.rx_babr
++;
2341 if (netif_msg_rx_err(priv
))
2342 printk(KERN_DEBUG
"%s: babbling RX error\n", dev
->name
);
2344 if (events
& IEVENT_EBERR
) {
2345 priv
->extra_stats
.eberr
++;
2346 if (netif_msg_rx_err(priv
))
2347 printk(KERN_DEBUG
"%s: bus error\n", dev
->name
);
2349 if ((events
& IEVENT_RXC
) && netif_msg_rx_status(priv
))
2350 printk(KERN_DEBUG
"%s: control frame\n", dev
->name
);
2352 if (events
& IEVENT_BABT
) {
2353 priv
->extra_stats
.tx_babt
++;
2354 if (netif_msg_tx_err(priv
))
2355 printk(KERN_DEBUG
"%s: babbling TX error\n", dev
->name
);
2360 /* work with hotplug and coldplug */
2361 MODULE_ALIAS("platform:fsl-gianfar");
2363 static struct of_device_id gfar_match
[] =
2367 .compatible
= "gianfar",
2372 /* Structure for a device driver */
2373 static struct of_platform_driver gfar_driver
= {
2374 .name
= "fsl-gianfar",
2375 .match_table
= gfar_match
,
2377 .probe
= gfar_probe
,
2378 .remove
= gfar_remove
,
2379 .suspend
= gfar_suspend
,
2380 .resume
= gfar_resume
,
2383 static int __init
gfar_init(void)
2385 return of_register_platform_driver(&gfar_driver
);
2388 static void __exit
gfar_exit(void)
2390 of_unregister_platform_driver(&gfar_driver
);
2393 module_init(gfar_init
);
2394 module_exit(gfar_exit
);