xen/mmu: Add workaround "x86-64, mm: Put early page table high"
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / arch / x86 / xen / mmu.c
blob1bca25f60ff2064b97fdaf009cbf26bbce1be38f
1 /*
2 * Xen mmu operations
4 * This file contains the various mmu fetch and update operations.
5 * The most important job they must perform is the mapping between the
6 * domain's pfn and the overall machine mfns.
8 * Xen allows guests to directly update the pagetable, in a controlled
9 * fashion. In other words, the guest modifies the same pagetable
10 * that the CPU actually uses, which eliminates the overhead of having
11 * a separate shadow pagetable.
13 * In order to allow this, it falls on the guest domain to map its
14 * notion of a "physical" pfn - which is just a domain-local linear
15 * address - into a real "machine address" which the CPU's MMU can
16 * use.
18 * A pgd_t/pmd_t/pte_t will typically contain an mfn, and so can be
19 * inserted directly into the pagetable. When creating a new
20 * pte/pmd/pgd, it converts the passed pfn into an mfn. Conversely,
21 * when reading the content back with __(pgd|pmd|pte)_val, it converts
22 * the mfn back into a pfn.
24 * The other constraint is that all pages which make up a pagetable
25 * must be mapped read-only in the guest. This prevents uncontrolled
26 * guest updates to the pagetable. Xen strictly enforces this, and
27 * will disallow any pagetable update which will end up mapping a
28 * pagetable page RW, and will disallow using any writable page as a
29 * pagetable.
31 * Naively, when loading %cr3 with the base of a new pagetable, Xen
32 * would need to validate the whole pagetable before going on.
33 * Naturally, this is quite slow. The solution is to "pin" a
34 * pagetable, which enforces all the constraints on the pagetable even
35 * when it is not actively in use. This menas that Xen can be assured
36 * that it is still valid when you do load it into %cr3, and doesn't
37 * need to revalidate it.
39 * Jeremy Fitzhardinge <jeremy@xensource.com>, XenSource Inc, 2007
41 #include <linux/sched.h>
42 #include <linux/highmem.h>
43 #include <linux/debugfs.h>
44 #include <linux/bug.h>
45 #include <linux/vmalloc.h>
46 #include <linux/module.h>
47 #include <linux/gfp.h>
48 #include <linux/memblock.h>
49 #include <linux/seq_file.h>
51 #include <asm/pgtable.h>
52 #include <asm/tlbflush.h>
53 #include <asm/fixmap.h>
54 #include <asm/mmu_context.h>
55 #include <asm/setup.h>
56 #include <asm/paravirt.h>
57 #include <asm/e820.h>
58 #include <asm/linkage.h>
59 #include <asm/page.h>
60 #include <asm/init.h>
61 #include <asm/pat.h>
63 #include <asm/xen/hypercall.h>
64 #include <asm/xen/hypervisor.h>
66 #include <xen/xen.h>
67 #include <xen/page.h>
68 #include <xen/interface/xen.h>
69 #include <xen/interface/hvm/hvm_op.h>
70 #include <xen/interface/version.h>
71 #include <xen/interface/memory.h>
72 #include <xen/hvc-console.h>
74 #include "multicalls.h"
75 #include "mmu.h"
76 #include "debugfs.h"
78 #define MMU_UPDATE_HISTO 30
81 * Protects atomic reservation decrease/increase against concurrent increases.
82 * Also protects non-atomic updates of current_pages and balloon lists.
84 DEFINE_SPINLOCK(xen_reservation_lock);
86 #ifdef CONFIG_XEN_DEBUG_FS
88 static struct {
89 u32 pgd_update;
90 u32 pgd_update_pinned;
91 u32 pgd_update_batched;
93 u32 pud_update;
94 u32 pud_update_pinned;
95 u32 pud_update_batched;
97 u32 pmd_update;
98 u32 pmd_update_pinned;
99 u32 pmd_update_batched;
101 u32 pte_update;
102 u32 pte_update_pinned;
103 u32 pte_update_batched;
105 u32 mmu_update;
106 u32 mmu_update_extended;
107 u32 mmu_update_histo[MMU_UPDATE_HISTO];
109 u32 prot_commit;
110 u32 prot_commit_batched;
112 u32 set_pte_at;
113 u32 set_pte_at_batched;
114 u32 set_pte_at_pinned;
115 u32 set_pte_at_current;
116 u32 set_pte_at_kernel;
117 } mmu_stats;
119 static u8 zero_stats;
121 static inline void check_zero(void)
123 if (unlikely(zero_stats)) {
124 memset(&mmu_stats, 0, sizeof(mmu_stats));
125 zero_stats = 0;
129 #define ADD_STATS(elem, val) \
130 do { check_zero(); mmu_stats.elem += (val); } while(0)
132 #else /* !CONFIG_XEN_DEBUG_FS */
134 #define ADD_STATS(elem, val) do { (void)(val); } while(0)
136 #endif /* CONFIG_XEN_DEBUG_FS */
140 * Identity map, in addition to plain kernel map. This needs to be
141 * large enough to allocate page table pages to allocate the rest.
142 * Each page can map 2MB.
144 #define LEVEL1_IDENT_ENTRIES (PTRS_PER_PTE * 4)
145 static RESERVE_BRK_ARRAY(pte_t, level1_ident_pgt, LEVEL1_IDENT_ENTRIES);
147 #ifdef CONFIG_X86_64
148 /* l3 pud for userspace vsyscall mapping */
149 static pud_t level3_user_vsyscall[PTRS_PER_PUD] __page_aligned_bss;
150 #endif /* CONFIG_X86_64 */
153 * Note about cr3 (pagetable base) values:
155 * xen_cr3 contains the current logical cr3 value; it contains the
156 * last set cr3. This may not be the current effective cr3, because
157 * its update may be being lazily deferred. However, a vcpu looking
158 * at its own cr3 can use this value knowing that it everything will
159 * be self-consistent.
161 * xen_current_cr3 contains the actual vcpu cr3; it is set once the
162 * hypercall to set the vcpu cr3 is complete (so it may be a little
163 * out of date, but it will never be set early). If one vcpu is
164 * looking at another vcpu's cr3 value, it should use this variable.
166 DEFINE_PER_CPU(unsigned long, xen_cr3); /* cr3 stored as physaddr */
167 DEFINE_PER_CPU(unsigned long, xen_current_cr3); /* actual vcpu cr3 */
171 * Just beyond the highest usermode address. STACK_TOP_MAX has a
172 * redzone above it, so round it up to a PGD boundary.
174 #define USER_LIMIT ((STACK_TOP_MAX + PGDIR_SIZE - 1) & PGDIR_MASK)
176 unsigned long arbitrary_virt_to_mfn(void *vaddr)
178 xmaddr_t maddr = arbitrary_virt_to_machine(vaddr);
180 return PFN_DOWN(maddr.maddr);
183 xmaddr_t arbitrary_virt_to_machine(void *vaddr)
185 unsigned long address = (unsigned long)vaddr;
186 unsigned int level;
187 pte_t *pte;
188 unsigned offset;
191 * if the PFN is in the linear mapped vaddr range, we can just use
192 * the (quick) virt_to_machine() p2m lookup
194 if (virt_addr_valid(vaddr))
195 return virt_to_machine(vaddr);
197 /* otherwise we have to do a (slower) full page-table walk */
199 pte = lookup_address(address, &level);
200 BUG_ON(pte == NULL);
201 offset = address & ~PAGE_MASK;
202 return XMADDR(((phys_addr_t)pte_mfn(*pte) << PAGE_SHIFT) + offset);
204 EXPORT_SYMBOL_GPL(arbitrary_virt_to_machine);
206 void make_lowmem_page_readonly(void *vaddr)
208 pte_t *pte, ptev;
209 unsigned long address = (unsigned long)vaddr;
210 unsigned int level;
212 pte = lookup_address(address, &level);
213 if (pte == NULL)
214 return; /* vaddr missing */
216 ptev = pte_wrprotect(*pte);
218 if (HYPERVISOR_update_va_mapping(address, ptev, 0))
219 BUG();
222 void make_lowmem_page_readwrite(void *vaddr)
224 pte_t *pte, ptev;
225 unsigned long address = (unsigned long)vaddr;
226 unsigned int level;
228 pte = lookup_address(address, &level);
229 if (pte == NULL)
230 return; /* vaddr missing */
232 ptev = pte_mkwrite(*pte);
234 if (HYPERVISOR_update_va_mapping(address, ptev, 0))
235 BUG();
239 static bool xen_page_pinned(void *ptr)
241 struct page *page = virt_to_page(ptr);
243 return PagePinned(page);
246 static bool xen_iomap_pte(pte_t pte)
248 return pte_flags(pte) & _PAGE_IOMAP;
251 void xen_set_domain_pte(pte_t *ptep, pte_t pteval, unsigned domid)
253 struct multicall_space mcs;
254 struct mmu_update *u;
256 mcs = xen_mc_entry(sizeof(*u));
257 u = mcs.args;
259 /* ptep might be kmapped when using 32-bit HIGHPTE */
260 u->ptr = arbitrary_virt_to_machine(ptep).maddr;
261 u->val = pte_val_ma(pteval);
263 MULTI_mmu_update(mcs.mc, mcs.args, 1, NULL, domid);
265 xen_mc_issue(PARAVIRT_LAZY_MMU);
267 EXPORT_SYMBOL_GPL(xen_set_domain_pte);
269 static void xen_set_iomap_pte(pte_t *ptep, pte_t pteval)
271 xen_set_domain_pte(ptep, pteval, DOMID_IO);
274 static void xen_extend_mmu_update(const struct mmu_update *update)
276 struct multicall_space mcs;
277 struct mmu_update *u;
279 mcs = xen_mc_extend_args(__HYPERVISOR_mmu_update, sizeof(*u));
281 if (mcs.mc != NULL) {
282 ADD_STATS(mmu_update_extended, 1);
283 ADD_STATS(mmu_update_histo[mcs.mc->args[1]], -1);
285 mcs.mc->args[1]++;
287 if (mcs.mc->args[1] < MMU_UPDATE_HISTO)
288 ADD_STATS(mmu_update_histo[mcs.mc->args[1]], 1);
289 else
290 ADD_STATS(mmu_update_histo[0], 1);
291 } else {
292 ADD_STATS(mmu_update, 1);
293 mcs = __xen_mc_entry(sizeof(*u));
294 MULTI_mmu_update(mcs.mc, mcs.args, 1, NULL, DOMID_SELF);
295 ADD_STATS(mmu_update_histo[1], 1);
298 u = mcs.args;
299 *u = *update;
302 void xen_set_pmd_hyper(pmd_t *ptr, pmd_t val)
304 struct mmu_update u;
306 preempt_disable();
308 xen_mc_batch();
310 /* ptr may be ioremapped for 64-bit pagetable setup */
311 u.ptr = arbitrary_virt_to_machine(ptr).maddr;
312 u.val = pmd_val_ma(val);
313 xen_extend_mmu_update(&u);
315 ADD_STATS(pmd_update_batched, paravirt_get_lazy_mode() == PARAVIRT_LAZY_MMU);
317 xen_mc_issue(PARAVIRT_LAZY_MMU);
319 preempt_enable();
322 void xen_set_pmd(pmd_t *ptr, pmd_t val)
324 ADD_STATS(pmd_update, 1);
326 /* If page is not pinned, we can just update the entry
327 directly */
328 if (!xen_page_pinned(ptr)) {
329 *ptr = val;
330 return;
333 ADD_STATS(pmd_update_pinned, 1);
335 xen_set_pmd_hyper(ptr, val);
339 * Associate a virtual page frame with a given physical page frame
340 * and protection flags for that frame.
342 void set_pte_mfn(unsigned long vaddr, unsigned long mfn, pgprot_t flags)
344 set_pte_vaddr(vaddr, mfn_pte(mfn, flags));
347 void xen_set_pte_at(struct mm_struct *mm, unsigned long addr,
348 pte_t *ptep, pte_t pteval)
350 if (xen_iomap_pte(pteval)) {
351 xen_set_iomap_pte(ptep, pteval);
352 goto out;
355 ADD_STATS(set_pte_at, 1);
356 // ADD_STATS(set_pte_at_pinned, xen_page_pinned(ptep));
357 ADD_STATS(set_pte_at_current, mm == current->mm);
358 ADD_STATS(set_pte_at_kernel, mm == &init_mm);
360 if (mm == current->mm || mm == &init_mm) {
361 if (paravirt_get_lazy_mode() == PARAVIRT_LAZY_MMU) {
362 struct multicall_space mcs;
363 mcs = xen_mc_entry(0);
365 MULTI_update_va_mapping(mcs.mc, addr, pteval, 0);
366 ADD_STATS(set_pte_at_batched, 1);
367 xen_mc_issue(PARAVIRT_LAZY_MMU);
368 goto out;
369 } else
370 if (HYPERVISOR_update_va_mapping(addr, pteval, 0) == 0)
371 goto out;
373 xen_set_pte(ptep, pteval);
375 out: return;
378 pte_t xen_ptep_modify_prot_start(struct mm_struct *mm,
379 unsigned long addr, pte_t *ptep)
381 /* Just return the pte as-is. We preserve the bits on commit */
382 return *ptep;
385 void xen_ptep_modify_prot_commit(struct mm_struct *mm, unsigned long addr,
386 pte_t *ptep, pte_t pte)
388 struct mmu_update u;
390 xen_mc_batch();
392 u.ptr = arbitrary_virt_to_machine(ptep).maddr | MMU_PT_UPDATE_PRESERVE_AD;
393 u.val = pte_val_ma(pte);
394 xen_extend_mmu_update(&u);
396 ADD_STATS(prot_commit, 1);
397 ADD_STATS(prot_commit_batched, paravirt_get_lazy_mode() == PARAVIRT_LAZY_MMU);
399 xen_mc_issue(PARAVIRT_LAZY_MMU);
402 /* Assume pteval_t is equivalent to all the other *val_t types. */
403 static pteval_t pte_mfn_to_pfn(pteval_t val)
405 if (val & _PAGE_PRESENT) {
406 unsigned long mfn = (val & PTE_PFN_MASK) >> PAGE_SHIFT;
407 pteval_t flags = val & PTE_FLAGS_MASK;
408 val = ((pteval_t)mfn_to_pfn(mfn) << PAGE_SHIFT) | flags;
411 return val;
414 static pteval_t pte_pfn_to_mfn(pteval_t val)
416 if (val & _PAGE_PRESENT) {
417 unsigned long pfn = (val & PTE_PFN_MASK) >> PAGE_SHIFT;
418 pteval_t flags = val & PTE_FLAGS_MASK;
419 unsigned long mfn;
421 if (!xen_feature(XENFEAT_auto_translated_physmap))
422 mfn = get_phys_to_machine(pfn);
423 else
424 mfn = pfn;
426 * If there's no mfn for the pfn, then just create an
427 * empty non-present pte. Unfortunately this loses
428 * information about the original pfn, so
429 * pte_mfn_to_pfn is asymmetric.
431 if (unlikely(mfn == INVALID_P2M_ENTRY)) {
432 mfn = 0;
433 flags = 0;
434 } else {
436 * Paramount to do this test _after_ the
437 * INVALID_P2M_ENTRY as INVALID_P2M_ENTRY &
438 * IDENTITY_FRAME_BIT resolves to true.
440 mfn &= ~FOREIGN_FRAME_BIT;
441 if (mfn & IDENTITY_FRAME_BIT) {
442 mfn &= ~IDENTITY_FRAME_BIT;
443 flags |= _PAGE_IOMAP;
446 val = ((pteval_t)mfn << PAGE_SHIFT) | flags;
449 return val;
452 static pteval_t iomap_pte(pteval_t val)
454 if (val & _PAGE_PRESENT) {
455 unsigned long pfn = (val & PTE_PFN_MASK) >> PAGE_SHIFT;
456 pteval_t flags = val & PTE_FLAGS_MASK;
458 /* We assume the pte frame number is a MFN, so
459 just use it as-is. */
460 val = ((pteval_t)pfn << PAGE_SHIFT) | flags;
463 return val;
466 pteval_t xen_pte_val(pte_t pte)
468 pteval_t pteval = pte.pte;
470 /* If this is a WC pte, convert back from Xen WC to Linux WC */
471 if ((pteval & (_PAGE_PAT | _PAGE_PCD | _PAGE_PWT)) == _PAGE_PAT) {
472 WARN_ON(!pat_enabled);
473 pteval = (pteval & ~_PAGE_PAT) | _PAGE_PWT;
476 if (xen_initial_domain() && (pteval & _PAGE_IOMAP))
477 return pteval;
479 return pte_mfn_to_pfn(pteval);
481 PV_CALLEE_SAVE_REGS_THUNK(xen_pte_val);
483 pgdval_t xen_pgd_val(pgd_t pgd)
485 return pte_mfn_to_pfn(pgd.pgd);
487 PV_CALLEE_SAVE_REGS_THUNK(xen_pgd_val);
490 * Xen's PAT setup is part of its ABI, though I assume entries 6 & 7
491 * are reserved for now, to correspond to the Intel-reserved PAT
492 * types.
494 * We expect Linux's PAT set as follows:
496 * Idx PTE flags Linux Xen Default
497 * 0 WB WB WB
498 * 1 PWT WC WT WT
499 * 2 PCD UC- UC- UC-
500 * 3 PCD PWT UC UC UC
501 * 4 PAT WB WC WB
502 * 5 PAT PWT WC WP WT
503 * 6 PAT PCD UC- UC UC-
504 * 7 PAT PCD PWT UC UC UC
507 void xen_set_pat(u64 pat)
509 /* We expect Linux to use a PAT setting of
510 * UC UC- WC WB (ignoring the PAT flag) */
511 WARN_ON(pat != 0x0007010600070106ull);
514 pte_t xen_make_pte(pteval_t pte)
516 phys_addr_t addr = (pte & PTE_PFN_MASK);
518 /* If Linux is trying to set a WC pte, then map to the Xen WC.
519 * If _PAGE_PAT is set, then it probably means it is really
520 * _PAGE_PSE, so avoid fiddling with the PAT mapping and hope
521 * things work out OK...
523 * (We should never see kernel mappings with _PAGE_PSE set,
524 * but we could see hugetlbfs mappings, I think.).
526 if (pat_enabled && !WARN_ON(pte & _PAGE_PAT)) {
527 if ((pte & (_PAGE_PCD | _PAGE_PWT)) == _PAGE_PWT)
528 pte = (pte & ~(_PAGE_PCD | _PAGE_PWT)) | _PAGE_PAT;
532 * Unprivileged domains are allowed to do IOMAPpings for
533 * PCI passthrough, but not map ISA space. The ISA
534 * mappings are just dummy local mappings to keep other
535 * parts of the kernel happy.
537 if (unlikely(pte & _PAGE_IOMAP) &&
538 (xen_initial_domain() || addr >= ISA_END_ADDRESS)) {
539 pte = iomap_pte(pte);
540 } else {
541 pte &= ~_PAGE_IOMAP;
542 pte = pte_pfn_to_mfn(pte);
545 return native_make_pte(pte);
547 PV_CALLEE_SAVE_REGS_THUNK(xen_make_pte);
549 #ifdef CONFIG_XEN_DEBUG
550 pte_t xen_make_pte_debug(pteval_t pte)
552 phys_addr_t addr = (pte & PTE_PFN_MASK);
553 phys_addr_t other_addr;
554 bool io_page = false;
555 pte_t _pte;
557 if (pte & _PAGE_IOMAP)
558 io_page = true;
560 _pte = xen_make_pte(pte);
562 if (!addr)
563 return _pte;
565 if (io_page &&
566 (xen_initial_domain() || addr >= ISA_END_ADDRESS)) {
567 other_addr = pfn_to_mfn(addr >> PAGE_SHIFT) << PAGE_SHIFT;
568 WARN_ONCE(addr != other_addr,
569 "0x%lx is using VM_IO, but it is 0x%lx!\n",
570 (unsigned long)addr, (unsigned long)other_addr);
571 } else {
572 pteval_t iomap_set = (_pte.pte & PTE_FLAGS_MASK) & _PAGE_IOMAP;
573 other_addr = (_pte.pte & PTE_PFN_MASK);
574 WARN_ONCE((addr == other_addr) && (!io_page) && (!iomap_set),
575 "0x%lx is missing VM_IO (and wasn't fixed)!\n",
576 (unsigned long)addr);
579 return _pte;
581 PV_CALLEE_SAVE_REGS_THUNK(xen_make_pte_debug);
582 #endif
584 pgd_t xen_make_pgd(pgdval_t pgd)
586 pgd = pte_pfn_to_mfn(pgd);
587 return native_make_pgd(pgd);
589 PV_CALLEE_SAVE_REGS_THUNK(xen_make_pgd);
591 pmdval_t xen_pmd_val(pmd_t pmd)
593 return pte_mfn_to_pfn(pmd.pmd);
595 PV_CALLEE_SAVE_REGS_THUNK(xen_pmd_val);
597 void xen_set_pud_hyper(pud_t *ptr, pud_t val)
599 struct mmu_update u;
601 preempt_disable();
603 xen_mc_batch();
605 /* ptr may be ioremapped for 64-bit pagetable setup */
606 u.ptr = arbitrary_virt_to_machine(ptr).maddr;
607 u.val = pud_val_ma(val);
608 xen_extend_mmu_update(&u);
610 ADD_STATS(pud_update_batched, paravirt_get_lazy_mode() == PARAVIRT_LAZY_MMU);
612 xen_mc_issue(PARAVIRT_LAZY_MMU);
614 preempt_enable();
617 void xen_set_pud(pud_t *ptr, pud_t val)
619 ADD_STATS(pud_update, 1);
621 /* If page is not pinned, we can just update the entry
622 directly */
623 if (!xen_page_pinned(ptr)) {
624 *ptr = val;
625 return;
628 ADD_STATS(pud_update_pinned, 1);
630 xen_set_pud_hyper(ptr, val);
633 void xen_set_pte(pte_t *ptep, pte_t pte)
635 if (xen_iomap_pte(pte)) {
636 xen_set_iomap_pte(ptep, pte);
637 return;
640 ADD_STATS(pte_update, 1);
641 // ADD_STATS(pte_update_pinned, xen_page_pinned(ptep));
642 ADD_STATS(pte_update_batched, paravirt_get_lazy_mode() == PARAVIRT_LAZY_MMU);
644 #ifdef CONFIG_X86_PAE
645 ptep->pte_high = pte.pte_high;
646 smp_wmb();
647 ptep->pte_low = pte.pte_low;
648 #else
649 *ptep = pte;
650 #endif
653 #ifdef CONFIG_X86_PAE
654 void xen_set_pte_atomic(pte_t *ptep, pte_t pte)
656 if (xen_iomap_pte(pte)) {
657 xen_set_iomap_pte(ptep, pte);
658 return;
661 set_64bit((u64 *)ptep, native_pte_val(pte));
664 void xen_pte_clear(struct mm_struct *mm, unsigned long addr, pte_t *ptep)
666 ptep->pte_low = 0;
667 smp_wmb(); /* make sure low gets written first */
668 ptep->pte_high = 0;
671 void xen_pmd_clear(pmd_t *pmdp)
673 set_pmd(pmdp, __pmd(0));
675 #endif /* CONFIG_X86_PAE */
677 pmd_t xen_make_pmd(pmdval_t pmd)
679 pmd = pte_pfn_to_mfn(pmd);
680 return native_make_pmd(pmd);
682 PV_CALLEE_SAVE_REGS_THUNK(xen_make_pmd);
684 #if PAGETABLE_LEVELS == 4
685 pudval_t xen_pud_val(pud_t pud)
687 return pte_mfn_to_pfn(pud.pud);
689 PV_CALLEE_SAVE_REGS_THUNK(xen_pud_val);
691 pud_t xen_make_pud(pudval_t pud)
693 pud = pte_pfn_to_mfn(pud);
695 return native_make_pud(pud);
697 PV_CALLEE_SAVE_REGS_THUNK(xen_make_pud);
699 pgd_t *xen_get_user_pgd(pgd_t *pgd)
701 pgd_t *pgd_page = (pgd_t *)(((unsigned long)pgd) & PAGE_MASK);
702 unsigned offset = pgd - pgd_page;
703 pgd_t *user_ptr = NULL;
705 if (offset < pgd_index(USER_LIMIT)) {
706 struct page *page = virt_to_page(pgd_page);
707 user_ptr = (pgd_t *)page->private;
708 if (user_ptr)
709 user_ptr += offset;
712 return user_ptr;
715 static void __xen_set_pgd_hyper(pgd_t *ptr, pgd_t val)
717 struct mmu_update u;
719 u.ptr = virt_to_machine(ptr).maddr;
720 u.val = pgd_val_ma(val);
721 xen_extend_mmu_update(&u);
725 * Raw hypercall-based set_pgd, intended for in early boot before
726 * there's a page structure. This implies:
727 * 1. The only existing pagetable is the kernel's
728 * 2. It is always pinned
729 * 3. It has no user pagetable attached to it
731 void __init xen_set_pgd_hyper(pgd_t *ptr, pgd_t val)
733 preempt_disable();
735 xen_mc_batch();
737 __xen_set_pgd_hyper(ptr, val);
739 xen_mc_issue(PARAVIRT_LAZY_MMU);
741 preempt_enable();
744 void xen_set_pgd(pgd_t *ptr, pgd_t val)
746 pgd_t *user_ptr = xen_get_user_pgd(ptr);
748 ADD_STATS(pgd_update, 1);
750 /* If page is not pinned, we can just update the entry
751 directly */
752 if (!xen_page_pinned(ptr)) {
753 *ptr = val;
754 if (user_ptr) {
755 WARN_ON(xen_page_pinned(user_ptr));
756 *user_ptr = val;
758 return;
761 ADD_STATS(pgd_update_pinned, 1);
762 ADD_STATS(pgd_update_batched, paravirt_get_lazy_mode() == PARAVIRT_LAZY_MMU);
764 /* If it's pinned, then we can at least batch the kernel and
765 user updates together. */
766 xen_mc_batch();
768 __xen_set_pgd_hyper(ptr, val);
769 if (user_ptr)
770 __xen_set_pgd_hyper(user_ptr, val);
772 xen_mc_issue(PARAVIRT_LAZY_MMU);
774 #endif /* PAGETABLE_LEVELS == 4 */
777 * (Yet another) pagetable walker. This one is intended for pinning a
778 * pagetable. This means that it walks a pagetable and calls the
779 * callback function on each page it finds making up the page table,
780 * at every level. It walks the entire pagetable, but it only bothers
781 * pinning pte pages which are below limit. In the normal case this
782 * will be STACK_TOP_MAX, but at boot we need to pin up to
783 * FIXADDR_TOP.
785 * For 32-bit the important bit is that we don't pin beyond there,
786 * because then we start getting into Xen's ptes.
788 * For 64-bit, we must skip the Xen hole in the middle of the address
789 * space, just after the big x86-64 virtual hole.
791 static int __xen_pgd_walk(struct mm_struct *mm, pgd_t *pgd,
792 int (*func)(struct mm_struct *mm, struct page *,
793 enum pt_level),
794 unsigned long limit)
796 int flush = 0;
797 unsigned hole_low, hole_high;
798 unsigned pgdidx_limit, pudidx_limit, pmdidx_limit;
799 unsigned pgdidx, pudidx, pmdidx;
801 /* The limit is the last byte to be touched */
802 limit--;
803 BUG_ON(limit >= FIXADDR_TOP);
805 if (xen_feature(XENFEAT_auto_translated_physmap))
806 return 0;
809 * 64-bit has a great big hole in the middle of the address
810 * space, which contains the Xen mappings. On 32-bit these
811 * will end up making a zero-sized hole and so is a no-op.
813 hole_low = pgd_index(USER_LIMIT);
814 hole_high = pgd_index(PAGE_OFFSET);
816 pgdidx_limit = pgd_index(limit);
817 #if PTRS_PER_PUD > 1
818 pudidx_limit = pud_index(limit);
819 #else
820 pudidx_limit = 0;
821 #endif
822 #if PTRS_PER_PMD > 1
823 pmdidx_limit = pmd_index(limit);
824 #else
825 pmdidx_limit = 0;
826 #endif
828 for (pgdidx = 0; pgdidx <= pgdidx_limit; pgdidx++) {
829 pud_t *pud;
831 if (pgdidx >= hole_low && pgdidx < hole_high)
832 continue;
834 if (!pgd_val(pgd[pgdidx]))
835 continue;
837 pud = pud_offset(&pgd[pgdidx], 0);
839 if (PTRS_PER_PUD > 1) /* not folded */
840 flush |= (*func)(mm, virt_to_page(pud), PT_PUD);
842 for (pudidx = 0; pudidx < PTRS_PER_PUD; pudidx++) {
843 pmd_t *pmd;
845 if (pgdidx == pgdidx_limit &&
846 pudidx > pudidx_limit)
847 goto out;
849 if (pud_none(pud[pudidx]))
850 continue;
852 pmd = pmd_offset(&pud[pudidx], 0);
854 if (PTRS_PER_PMD > 1) /* not folded */
855 flush |= (*func)(mm, virt_to_page(pmd), PT_PMD);
857 for (pmdidx = 0; pmdidx < PTRS_PER_PMD; pmdidx++) {
858 struct page *pte;
860 if (pgdidx == pgdidx_limit &&
861 pudidx == pudidx_limit &&
862 pmdidx > pmdidx_limit)
863 goto out;
865 if (pmd_none(pmd[pmdidx]))
866 continue;
868 pte = pmd_page(pmd[pmdidx]);
869 flush |= (*func)(mm, pte, PT_PTE);
874 out:
875 /* Do the top level last, so that the callbacks can use it as
876 a cue to do final things like tlb flushes. */
877 flush |= (*func)(mm, virt_to_page(pgd), PT_PGD);
879 return flush;
882 static int xen_pgd_walk(struct mm_struct *mm,
883 int (*func)(struct mm_struct *mm, struct page *,
884 enum pt_level),
885 unsigned long limit)
887 return __xen_pgd_walk(mm, mm->pgd, func, limit);
890 /* If we're using split pte locks, then take the page's lock and
891 return a pointer to it. Otherwise return NULL. */
892 static spinlock_t *xen_pte_lock(struct page *page, struct mm_struct *mm)
894 spinlock_t *ptl = NULL;
896 #if USE_SPLIT_PTLOCKS
897 ptl = __pte_lockptr(page);
898 spin_lock_nest_lock(ptl, &mm->page_table_lock);
899 #endif
901 return ptl;
904 static void xen_pte_unlock(void *v)
906 spinlock_t *ptl = v;
907 spin_unlock(ptl);
910 static void xen_do_pin(unsigned level, unsigned long pfn)
912 struct mmuext_op *op;
913 struct multicall_space mcs;
915 mcs = __xen_mc_entry(sizeof(*op));
916 op = mcs.args;
917 op->cmd = level;
918 op->arg1.mfn = pfn_to_mfn(pfn);
919 MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);
922 static int xen_pin_page(struct mm_struct *mm, struct page *page,
923 enum pt_level level)
925 unsigned pgfl = TestSetPagePinned(page);
926 int flush;
928 if (pgfl)
929 flush = 0; /* already pinned */
930 else if (PageHighMem(page))
931 /* kmaps need flushing if we found an unpinned
932 highpage */
933 flush = 1;
934 else {
935 void *pt = lowmem_page_address(page);
936 unsigned long pfn = page_to_pfn(page);
937 struct multicall_space mcs = __xen_mc_entry(0);
938 spinlock_t *ptl;
940 flush = 0;
943 * We need to hold the pagetable lock between the time
944 * we make the pagetable RO and when we actually pin
945 * it. If we don't, then other users may come in and
946 * attempt to update the pagetable by writing it,
947 * which will fail because the memory is RO but not
948 * pinned, so Xen won't do the trap'n'emulate.
950 * If we're using split pte locks, we can't hold the
951 * entire pagetable's worth of locks during the
952 * traverse, because we may wrap the preempt count (8
953 * bits). The solution is to mark RO and pin each PTE
954 * page while holding the lock. This means the number
955 * of locks we end up holding is never more than a
956 * batch size (~32 entries, at present).
958 * If we're not using split pte locks, we needn't pin
959 * the PTE pages independently, because we're
960 * protected by the overall pagetable lock.
962 ptl = NULL;
963 if (level == PT_PTE)
964 ptl = xen_pte_lock(page, mm);
966 MULTI_update_va_mapping(mcs.mc, (unsigned long)pt,
967 pfn_pte(pfn, PAGE_KERNEL_RO),
968 level == PT_PGD ? UVMF_TLB_FLUSH : 0);
970 if (ptl) {
971 xen_do_pin(MMUEXT_PIN_L1_TABLE, pfn);
973 /* Queue a deferred unlock for when this batch
974 is completed. */
975 xen_mc_callback(xen_pte_unlock, ptl);
979 return flush;
982 /* This is called just after a mm has been created, but it has not
983 been used yet. We need to make sure that its pagetable is all
984 read-only, and can be pinned. */
985 static void __xen_pgd_pin(struct mm_struct *mm, pgd_t *pgd)
987 xen_mc_batch();
989 if (__xen_pgd_walk(mm, pgd, xen_pin_page, USER_LIMIT)) {
990 /* re-enable interrupts for flushing */
991 xen_mc_issue(0);
993 kmap_flush_unused();
995 xen_mc_batch();
998 #ifdef CONFIG_X86_64
1000 pgd_t *user_pgd = xen_get_user_pgd(pgd);
1002 xen_do_pin(MMUEXT_PIN_L4_TABLE, PFN_DOWN(__pa(pgd)));
1004 if (user_pgd) {
1005 xen_pin_page(mm, virt_to_page(user_pgd), PT_PGD);
1006 xen_do_pin(MMUEXT_PIN_L4_TABLE,
1007 PFN_DOWN(__pa(user_pgd)));
1010 #else /* CONFIG_X86_32 */
1011 #ifdef CONFIG_X86_PAE
1012 /* Need to make sure unshared kernel PMD is pinnable */
1013 xen_pin_page(mm, pgd_page(pgd[pgd_index(TASK_SIZE)]),
1014 PT_PMD);
1015 #endif
1016 xen_do_pin(MMUEXT_PIN_L3_TABLE, PFN_DOWN(__pa(pgd)));
1017 #endif /* CONFIG_X86_64 */
1018 xen_mc_issue(0);
1021 static void xen_pgd_pin(struct mm_struct *mm)
1023 __xen_pgd_pin(mm, mm->pgd);
1027 * On save, we need to pin all pagetables to make sure they get their
1028 * mfns turned into pfns. Search the list for any unpinned pgds and pin
1029 * them (unpinned pgds are not currently in use, probably because the
1030 * process is under construction or destruction).
1032 * Expected to be called in stop_machine() ("equivalent to taking
1033 * every spinlock in the system"), so the locking doesn't really
1034 * matter all that much.
1036 void xen_mm_pin_all(void)
1038 struct page *page;
1040 spin_lock(&pgd_lock);
1042 list_for_each_entry(page, &pgd_list, lru) {
1043 if (!PagePinned(page)) {
1044 __xen_pgd_pin(&init_mm, (pgd_t *)page_address(page));
1045 SetPageSavePinned(page);
1049 spin_unlock(&pgd_lock);
1053 * The init_mm pagetable is really pinned as soon as its created, but
1054 * that's before we have page structures to store the bits. So do all
1055 * the book-keeping now.
1057 static __init int xen_mark_pinned(struct mm_struct *mm, struct page *page,
1058 enum pt_level level)
1060 SetPagePinned(page);
1061 return 0;
1064 static void __init xen_mark_init_mm_pinned(void)
1066 xen_pgd_walk(&init_mm, xen_mark_pinned, FIXADDR_TOP);
1069 static int xen_unpin_page(struct mm_struct *mm, struct page *page,
1070 enum pt_level level)
1072 unsigned pgfl = TestClearPagePinned(page);
1074 if (pgfl && !PageHighMem(page)) {
1075 void *pt = lowmem_page_address(page);
1076 unsigned long pfn = page_to_pfn(page);
1077 spinlock_t *ptl = NULL;
1078 struct multicall_space mcs;
1081 * Do the converse to pin_page. If we're using split
1082 * pte locks, we must be holding the lock for while
1083 * the pte page is unpinned but still RO to prevent
1084 * concurrent updates from seeing it in this
1085 * partially-pinned state.
1087 if (level == PT_PTE) {
1088 ptl = xen_pte_lock(page, mm);
1090 if (ptl)
1091 xen_do_pin(MMUEXT_UNPIN_TABLE, pfn);
1094 mcs = __xen_mc_entry(0);
1096 MULTI_update_va_mapping(mcs.mc, (unsigned long)pt,
1097 pfn_pte(pfn, PAGE_KERNEL),
1098 level == PT_PGD ? UVMF_TLB_FLUSH : 0);
1100 if (ptl) {
1101 /* unlock when batch completed */
1102 xen_mc_callback(xen_pte_unlock, ptl);
1106 return 0; /* never need to flush on unpin */
1109 /* Release a pagetables pages back as normal RW */
1110 static void __xen_pgd_unpin(struct mm_struct *mm, pgd_t *pgd)
1112 xen_mc_batch();
1114 xen_do_pin(MMUEXT_UNPIN_TABLE, PFN_DOWN(__pa(pgd)));
1116 #ifdef CONFIG_X86_64
1118 pgd_t *user_pgd = xen_get_user_pgd(pgd);
1120 if (user_pgd) {
1121 xen_do_pin(MMUEXT_UNPIN_TABLE,
1122 PFN_DOWN(__pa(user_pgd)));
1123 xen_unpin_page(mm, virt_to_page(user_pgd), PT_PGD);
1126 #endif
1128 #ifdef CONFIG_X86_PAE
1129 /* Need to make sure unshared kernel PMD is unpinned */
1130 xen_unpin_page(mm, pgd_page(pgd[pgd_index(TASK_SIZE)]),
1131 PT_PMD);
1132 #endif
1134 __xen_pgd_walk(mm, pgd, xen_unpin_page, USER_LIMIT);
1136 xen_mc_issue(0);
1139 static void xen_pgd_unpin(struct mm_struct *mm)
1141 __xen_pgd_unpin(mm, mm->pgd);
1145 * On resume, undo any pinning done at save, so that the rest of the
1146 * kernel doesn't see any unexpected pinned pagetables.
1148 void xen_mm_unpin_all(void)
1150 struct page *page;
1152 spin_lock(&pgd_lock);
1154 list_for_each_entry(page, &pgd_list, lru) {
1155 if (PageSavePinned(page)) {
1156 BUG_ON(!PagePinned(page));
1157 __xen_pgd_unpin(&init_mm, (pgd_t *)page_address(page));
1158 ClearPageSavePinned(page);
1162 spin_unlock(&pgd_lock);
1165 void xen_activate_mm(struct mm_struct *prev, struct mm_struct *next)
1167 spin_lock(&next->page_table_lock);
1168 xen_pgd_pin(next);
1169 spin_unlock(&next->page_table_lock);
1172 void xen_dup_mmap(struct mm_struct *oldmm, struct mm_struct *mm)
1174 spin_lock(&mm->page_table_lock);
1175 xen_pgd_pin(mm);
1176 spin_unlock(&mm->page_table_lock);
1180 #ifdef CONFIG_SMP
1181 /* Another cpu may still have their %cr3 pointing at the pagetable, so
1182 we need to repoint it somewhere else before we can unpin it. */
1183 static void drop_other_mm_ref(void *info)
1185 struct mm_struct *mm = info;
1186 struct mm_struct *active_mm;
1188 active_mm = percpu_read(cpu_tlbstate.active_mm);
1190 if (active_mm == mm)
1191 leave_mm(smp_processor_id());
1193 /* If this cpu still has a stale cr3 reference, then make sure
1194 it has been flushed. */
1195 if (percpu_read(xen_current_cr3) == __pa(mm->pgd))
1196 load_cr3(swapper_pg_dir);
1199 static void xen_drop_mm_ref(struct mm_struct *mm)
1201 cpumask_var_t mask;
1202 unsigned cpu;
1204 if (current->active_mm == mm) {
1205 if (current->mm == mm)
1206 load_cr3(swapper_pg_dir);
1207 else
1208 leave_mm(smp_processor_id());
1211 /* Get the "official" set of cpus referring to our pagetable. */
1212 if (!alloc_cpumask_var(&mask, GFP_ATOMIC)) {
1213 for_each_online_cpu(cpu) {
1214 if (!cpumask_test_cpu(cpu, mm_cpumask(mm))
1215 && per_cpu(xen_current_cr3, cpu) != __pa(mm->pgd))
1216 continue;
1217 smp_call_function_single(cpu, drop_other_mm_ref, mm, 1);
1219 return;
1221 cpumask_copy(mask, mm_cpumask(mm));
1223 /* It's possible that a vcpu may have a stale reference to our
1224 cr3, because its in lazy mode, and it hasn't yet flushed
1225 its set of pending hypercalls yet. In this case, we can
1226 look at its actual current cr3 value, and force it to flush
1227 if needed. */
1228 for_each_online_cpu(cpu) {
1229 if (per_cpu(xen_current_cr3, cpu) == __pa(mm->pgd))
1230 cpumask_set_cpu(cpu, mask);
1233 if (!cpumask_empty(mask))
1234 smp_call_function_many(mask, drop_other_mm_ref, mm, 1);
1235 free_cpumask_var(mask);
1237 #else
1238 static void xen_drop_mm_ref(struct mm_struct *mm)
1240 if (current->active_mm == mm)
1241 load_cr3(swapper_pg_dir);
1243 #endif
1246 * While a process runs, Xen pins its pagetables, which means that the
1247 * hypervisor forces it to be read-only, and it controls all updates
1248 * to it. This means that all pagetable updates have to go via the
1249 * hypervisor, which is moderately expensive.
1251 * Since we're pulling the pagetable down, we switch to use init_mm,
1252 * unpin old process pagetable and mark it all read-write, which
1253 * allows further operations on it to be simple memory accesses.
1255 * The only subtle point is that another CPU may be still using the
1256 * pagetable because of lazy tlb flushing. This means we need need to
1257 * switch all CPUs off this pagetable before we can unpin it.
1259 void xen_exit_mmap(struct mm_struct *mm)
1261 get_cpu(); /* make sure we don't move around */
1262 xen_drop_mm_ref(mm);
1263 put_cpu();
1265 spin_lock(&mm->page_table_lock);
1267 /* pgd may not be pinned in the error exit path of execve */
1268 if (xen_page_pinned(mm->pgd))
1269 xen_pgd_unpin(mm);
1271 spin_unlock(&mm->page_table_lock);
1274 static __init void xen_pagetable_setup_start(pgd_t *base)
1278 static void xen_post_allocator_init(void);
1280 static __init void xen_pagetable_setup_done(pgd_t *base)
1282 xen_setup_shared_info();
1283 xen_post_allocator_init();
1286 static void xen_write_cr2(unsigned long cr2)
1288 percpu_read(xen_vcpu)->arch.cr2 = cr2;
1291 static unsigned long xen_read_cr2(void)
1293 return percpu_read(xen_vcpu)->arch.cr2;
1296 unsigned long xen_read_cr2_direct(void)
1298 return percpu_read(xen_vcpu_info.arch.cr2);
1301 static void xen_flush_tlb(void)
1303 struct mmuext_op *op;
1304 struct multicall_space mcs;
1306 preempt_disable();
1308 mcs = xen_mc_entry(sizeof(*op));
1310 op = mcs.args;
1311 op->cmd = MMUEXT_TLB_FLUSH_LOCAL;
1312 MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);
1314 xen_mc_issue(PARAVIRT_LAZY_MMU);
1316 preempt_enable();
1319 static void xen_flush_tlb_single(unsigned long addr)
1321 struct mmuext_op *op;
1322 struct multicall_space mcs;
1324 preempt_disable();
1326 mcs = xen_mc_entry(sizeof(*op));
1327 op = mcs.args;
1328 op->cmd = MMUEXT_INVLPG_LOCAL;
1329 op->arg1.linear_addr = addr & PAGE_MASK;
1330 MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);
1332 xen_mc_issue(PARAVIRT_LAZY_MMU);
1334 preempt_enable();
1337 static void xen_flush_tlb_others(const struct cpumask *cpus,
1338 struct mm_struct *mm, unsigned long va)
1340 struct {
1341 struct mmuext_op op;
1342 DECLARE_BITMAP(mask, NR_CPUS);
1343 } *args;
1344 struct multicall_space mcs;
1346 if (cpumask_empty(cpus))
1347 return; /* nothing to do */
1349 mcs = xen_mc_entry(sizeof(*args));
1350 args = mcs.args;
1351 args->op.arg2.vcpumask = to_cpumask(args->mask);
1353 /* Remove us, and any offline CPUS. */
1354 cpumask_and(to_cpumask(args->mask), cpus, cpu_online_mask);
1355 cpumask_clear_cpu(smp_processor_id(), to_cpumask(args->mask));
1357 if (va == TLB_FLUSH_ALL) {
1358 args->op.cmd = MMUEXT_TLB_FLUSH_MULTI;
1359 } else {
1360 args->op.cmd = MMUEXT_INVLPG_MULTI;
1361 args->op.arg1.linear_addr = va;
1364 MULTI_mmuext_op(mcs.mc, &args->op, 1, NULL, DOMID_SELF);
1366 xen_mc_issue(PARAVIRT_LAZY_MMU);
1369 static unsigned long xen_read_cr3(void)
1371 return percpu_read(xen_cr3);
1374 static void set_current_cr3(void *v)
1376 percpu_write(xen_current_cr3, (unsigned long)v);
1379 static void __xen_write_cr3(bool kernel, unsigned long cr3)
1381 struct mmuext_op *op;
1382 struct multicall_space mcs;
1383 unsigned long mfn;
1385 if (cr3)
1386 mfn = pfn_to_mfn(PFN_DOWN(cr3));
1387 else
1388 mfn = 0;
1390 WARN_ON(mfn == 0 && kernel);
1392 mcs = __xen_mc_entry(sizeof(*op));
1394 op = mcs.args;
1395 op->cmd = kernel ? MMUEXT_NEW_BASEPTR : MMUEXT_NEW_USER_BASEPTR;
1396 op->arg1.mfn = mfn;
1398 MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);
1400 if (kernel) {
1401 percpu_write(xen_cr3, cr3);
1403 /* Update xen_current_cr3 once the batch has actually
1404 been submitted. */
1405 xen_mc_callback(set_current_cr3, (void *)cr3);
1409 static void xen_write_cr3(unsigned long cr3)
1411 BUG_ON(preemptible());
1413 xen_mc_batch(); /* disables interrupts */
1415 /* Update while interrupts are disabled, so its atomic with
1416 respect to ipis */
1417 percpu_write(xen_cr3, cr3);
1419 __xen_write_cr3(true, cr3);
1421 #ifdef CONFIG_X86_64
1423 pgd_t *user_pgd = xen_get_user_pgd(__va(cr3));
1424 if (user_pgd)
1425 __xen_write_cr3(false, __pa(user_pgd));
1426 else
1427 __xen_write_cr3(false, 0);
1429 #endif
1431 xen_mc_issue(PARAVIRT_LAZY_CPU); /* interrupts restored */
1434 static int xen_pgd_alloc(struct mm_struct *mm)
1436 pgd_t *pgd = mm->pgd;
1437 int ret = 0;
1439 BUG_ON(PagePinned(virt_to_page(pgd)));
1441 #ifdef CONFIG_X86_64
1443 struct page *page = virt_to_page(pgd);
1444 pgd_t *user_pgd;
1446 BUG_ON(page->private != 0);
1448 ret = -ENOMEM;
1450 user_pgd = (pgd_t *)__get_free_page(GFP_KERNEL | __GFP_ZERO);
1451 page->private = (unsigned long)user_pgd;
1453 if (user_pgd != NULL) {
1454 user_pgd[pgd_index(VSYSCALL_START)] =
1455 __pgd(__pa(level3_user_vsyscall) | _PAGE_TABLE);
1456 ret = 0;
1459 BUG_ON(PagePinned(virt_to_page(xen_get_user_pgd(pgd))));
1461 #endif
1463 return ret;
1466 #ifdef CONFIG_X86_64
1467 static __initdata u64 __last_pgt_set_rw = 0;
1468 static __initdata u64 __pgt_buf_start = 0;
1469 static __initdata u64 __pgt_buf_end = 0;
1470 static __initdata u64 __pgt_buf_top = 0;
1472 * As a consequence of the commit:
1474 * commit 4b239f458c229de044d6905c2b0f9fe16ed9e01e
1475 * Author: Yinghai Lu <yinghai@kernel.org>
1476 * Date: Fri Dec 17 16:58:28 2010 -0800
1478 * x86-64, mm: Put early page table high
1480 * at some point init_memory_mapping is going to reach the pagetable pages
1481 * area and map those pages too (mapping them as normal memory that falls
1482 * in the range of addresses passed to init_memory_mapping as argument).
1483 * Some of those pages are already pagetable pages (they are in the range
1484 * pgt_buf_start-pgt_buf_end) therefore they are going to be mapped RO and
1485 * everything is fine.
1486 * Some of these pages are not pagetable pages yet (they fall in the range
1487 * pgt_buf_end-pgt_buf_top; for example the page at pgt_buf_end) so they
1488 * are going to be mapped RW. When these pages become pagetable pages and
1489 * are hooked into the pagetable, xen will find that the guest has already
1490 * a RW mapping of them somewhere and fail the operation.
1491 * The reason Xen requires pagetables to be RO is that the hypervisor needs
1492 * to verify that the pagetables are valid before using them. The validation
1493 * operations are called "pinning".
1495 * In order to fix the issue we mark all the pages in the entire range
1496 * pgt_buf_start-pgt_buf_top as RO, however when the pagetable allocation
1497 * is completed only the range pgt_buf_start-pgt_buf_end is reserved by
1498 * init_memory_mapping. Hence the kernel is going to crash as soon as one
1499 * of the pages in the range pgt_buf_end-pgt_buf_top is reused (b/c those
1500 * ranges are RO).
1502 * For this reason, 'mark_rw_past_pgt' is introduced which is called _after_
1503 * the init_memory_mapping has completed (in a perfect world we would
1504 * call this function from init_memory_mapping, but lets ignore that).
1506 * Because we are called _after_ init_memory_mapping the pgt_buf_[start,
1507 * end,top] have all changed to new values (b/c init_memory_mapping
1508 * is called and setting up another new page-table). Hence, the first time
1509 * we enter this function, we save away the pgt_buf_start value and update
1510 * the pgt_buf_[end,top].
1512 * When we detect that the "old" pgt_buf_start through pgt_buf_end
1513 * PFNs have been reserved (so memblock_x86_reserve_range has been called),
1514 * we immediately set out to RW the "old" pgt_buf_end through pgt_buf_top.
1516 * And then we update those "old" pgt_buf_[end|top] with the new ones
1517 * so that we can redo this on the next pagetable.
1519 static __init void mark_rw_past_pgt(void) {
1521 if (pgt_buf_end > pgt_buf_start) {
1522 u64 addr, size;
1524 /* Save it away. */
1525 if (!__pgt_buf_start) {
1526 __pgt_buf_start = pgt_buf_start;
1527 __pgt_buf_end = pgt_buf_end;
1528 __pgt_buf_top = pgt_buf_top;
1529 return;
1531 /* If we get the range that starts at __pgt_buf_end that means
1532 * the range is reserved, and that in 'init_memory_mapping'
1533 * the 'memblock_x86_reserve_range' has been called with the
1534 * outdated __pgt_buf_start, __pgt_buf_end (the "new"
1535 * pgt_buf_[start|end|top] refer now to a new pagetable.
1536 * Note: we are called _after_ the pgt_buf_[..] have been
1537 * updated.*/
1539 addr = memblock_x86_find_in_range_size(PFN_PHYS(__pgt_buf_start),
1540 &size, PAGE_SIZE);
1542 /* Still not reserved, meaning 'memblock_x86_reserve_range'
1543 * hasn't been called yet. Update the _end and _top.*/
1544 if (addr == PFN_PHYS(__pgt_buf_start)) {
1545 __pgt_buf_end = pgt_buf_end;
1546 __pgt_buf_top = pgt_buf_top;
1547 return;
1550 /* OK, the area is reserved, meaning it is time for us to
1551 * set RW for the old end->top PFNs. */
1553 /* ..unless we had already done this. */
1554 if (__pgt_buf_end == __last_pgt_set_rw)
1555 return;
1557 addr = PFN_PHYS(__pgt_buf_end);
1559 /* set as RW the rest */
1560 printk(KERN_DEBUG "xen: setting RW the range %llx - %llx\n",
1561 PFN_PHYS(__pgt_buf_end), PFN_PHYS(__pgt_buf_top));
1563 while (addr < PFN_PHYS(__pgt_buf_top)) {
1564 make_lowmem_page_readwrite(__va(addr));
1565 addr += PAGE_SIZE;
1567 /* And update everything so that we are ready for the next
1568 * pagetable (the one created for regions past 4GB) */
1569 __last_pgt_set_rw = __pgt_buf_end;
1570 __pgt_buf_start = pgt_buf_start;
1571 __pgt_buf_end = pgt_buf_end;
1572 __pgt_buf_top = pgt_buf_top;
1574 return;
1576 #else
1577 static __init void mark_rw_past_pgt(void) { }
1578 #endif
1579 static void xen_pgd_free(struct mm_struct *mm, pgd_t *pgd)
1581 #ifdef CONFIG_X86_64
1582 pgd_t *user_pgd = xen_get_user_pgd(pgd);
1584 if (user_pgd)
1585 free_page((unsigned long)user_pgd);
1586 #endif
1589 #ifdef CONFIG_X86_32
1590 static __init pte_t mask_rw_pte(pte_t *ptep, pte_t pte)
1592 /* If there's an existing pte, then don't allow _PAGE_RW to be set */
1593 if (pte_val_ma(*ptep) & _PAGE_PRESENT)
1594 pte = __pte_ma(((pte_val_ma(*ptep) & _PAGE_RW) | ~_PAGE_RW) &
1595 pte_val_ma(pte));
1597 return pte;
1599 #else /* CONFIG_X86_64 */
1600 static __init pte_t mask_rw_pte(pte_t *ptep, pte_t pte)
1602 unsigned long pfn = pte_pfn(pte);
1605 * A bit of optimization. We do not need to call the workaround
1606 * when xen_set_pte_init is called with a PTE with 0 as PFN.
1607 * That is b/c the pagetable at that point are just being populated
1608 * with empty values and we can save some cycles by not calling
1609 * the 'memblock' code.*/
1610 if (pfn)
1611 mark_rw_past_pgt();
1613 * If the new pfn is within the range of the newly allocated
1614 * kernel pagetable, and it isn't being mapped into an
1615 * early_ioremap fixmap slot as a freshly allocated page, make sure
1616 * it is RO.
1618 if (((!is_early_ioremap_ptep(ptep) &&
1619 pfn >= pgt_buf_start && pfn < pgt_buf_end)) ||
1620 (is_early_ioremap_ptep(ptep) && pfn != (pgt_buf_end - 1)))
1621 pte = pte_wrprotect(pte);
1623 return pte;
1625 #endif /* CONFIG_X86_64 */
1627 /* Init-time set_pte while constructing initial pagetables, which
1628 doesn't allow RO pagetable pages to be remapped RW */
1629 static __init void xen_set_pte_init(pte_t *ptep, pte_t pte)
1631 pte = mask_rw_pte(ptep, pte);
1633 xen_set_pte(ptep, pte);
1636 static void pin_pagetable_pfn(unsigned cmd, unsigned long pfn)
1638 struct mmuext_op op;
1639 op.cmd = cmd;
1640 op.arg1.mfn = pfn_to_mfn(pfn);
1641 if (HYPERVISOR_mmuext_op(&op, 1, NULL, DOMID_SELF))
1642 BUG();
1645 /* Early in boot, while setting up the initial pagetable, assume
1646 everything is pinned. */
1647 static __init void xen_alloc_pte_init(struct mm_struct *mm, unsigned long pfn)
1649 #ifdef CONFIG_FLATMEM
1650 BUG_ON(mem_map); /* should only be used early */
1651 #endif
1652 make_lowmem_page_readonly(__va(PFN_PHYS(pfn)));
1653 pin_pagetable_pfn(MMUEXT_PIN_L1_TABLE, pfn);
1656 /* Used for pmd and pud */
1657 static __init void xen_alloc_pmd_init(struct mm_struct *mm, unsigned long pfn)
1659 #ifdef CONFIG_FLATMEM
1660 BUG_ON(mem_map); /* should only be used early */
1661 #endif
1662 make_lowmem_page_readonly(__va(PFN_PHYS(pfn)));
1665 /* Early release_pte assumes that all pts are pinned, since there's
1666 only init_mm and anything attached to that is pinned. */
1667 static __init void xen_release_pte_init(unsigned long pfn)
1669 pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, pfn);
1670 make_lowmem_page_readwrite(__va(PFN_PHYS(pfn)));
1673 static __init void xen_release_pmd_init(unsigned long pfn)
1675 make_lowmem_page_readwrite(__va(PFN_PHYS(pfn)));
1678 /* This needs to make sure the new pte page is pinned iff its being
1679 attached to a pinned pagetable. */
1680 static void xen_alloc_ptpage(struct mm_struct *mm, unsigned long pfn, unsigned level)
1682 struct page *page = pfn_to_page(pfn);
1684 if (PagePinned(virt_to_page(mm->pgd))) {
1685 SetPagePinned(page);
1687 if (!PageHighMem(page)) {
1688 make_lowmem_page_readonly(__va(PFN_PHYS((unsigned long)pfn)));
1689 if (level == PT_PTE && USE_SPLIT_PTLOCKS)
1690 pin_pagetable_pfn(MMUEXT_PIN_L1_TABLE, pfn);
1691 } else {
1692 /* make sure there are no stray mappings of
1693 this page */
1694 kmap_flush_unused();
1699 static void xen_alloc_pte(struct mm_struct *mm, unsigned long pfn)
1701 xen_alloc_ptpage(mm, pfn, PT_PTE);
1704 static void xen_alloc_pmd(struct mm_struct *mm, unsigned long pfn)
1706 xen_alloc_ptpage(mm, pfn, PT_PMD);
1709 /* This should never happen until we're OK to use struct page */
1710 static void xen_release_ptpage(unsigned long pfn, unsigned level)
1712 struct page *page = pfn_to_page(pfn);
1714 if (PagePinned(page)) {
1715 if (!PageHighMem(page)) {
1716 if (level == PT_PTE && USE_SPLIT_PTLOCKS)
1717 pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, pfn);
1718 make_lowmem_page_readwrite(__va(PFN_PHYS(pfn)));
1720 ClearPagePinned(page);
1724 static void xen_release_pte(unsigned long pfn)
1726 xen_release_ptpage(pfn, PT_PTE);
1729 static void xen_release_pmd(unsigned long pfn)
1731 xen_release_ptpage(pfn, PT_PMD);
1734 #if PAGETABLE_LEVELS == 4
1735 static void xen_alloc_pud(struct mm_struct *mm, unsigned long pfn)
1737 xen_alloc_ptpage(mm, pfn, PT_PUD);
1740 static void xen_release_pud(unsigned long pfn)
1742 xen_release_ptpage(pfn, PT_PUD);
1744 #endif
1746 void __init xen_reserve_top(void)
1748 #ifdef CONFIG_X86_32
1749 unsigned long top = HYPERVISOR_VIRT_START;
1750 struct xen_platform_parameters pp;
1752 if (HYPERVISOR_xen_version(XENVER_platform_parameters, &pp) == 0)
1753 top = pp.virt_start;
1755 reserve_top_address(-top);
1756 #endif /* CONFIG_X86_32 */
1760 * Like __va(), but returns address in the kernel mapping (which is
1761 * all we have until the physical memory mapping has been set up.
1763 static void *__ka(phys_addr_t paddr)
1765 #ifdef CONFIG_X86_64
1766 return (void *)(paddr + __START_KERNEL_map);
1767 #else
1768 return __va(paddr);
1769 #endif
1772 /* Convert a machine address to physical address */
1773 static unsigned long m2p(phys_addr_t maddr)
1775 phys_addr_t paddr;
1777 maddr &= PTE_PFN_MASK;
1778 paddr = mfn_to_pfn(maddr >> PAGE_SHIFT) << PAGE_SHIFT;
1780 return paddr;
1783 /* Convert a machine address to kernel virtual */
1784 static void *m2v(phys_addr_t maddr)
1786 return __ka(m2p(maddr));
1789 /* Set the page permissions on an identity-mapped pages */
1790 static void set_page_prot(void *addr, pgprot_t prot)
1792 unsigned long pfn = __pa(addr) >> PAGE_SHIFT;
1793 pte_t pte = pfn_pte(pfn, prot);
1795 if (HYPERVISOR_update_va_mapping((unsigned long)addr, pte, 0))
1796 BUG();
1799 static __init void xen_map_identity_early(pmd_t *pmd, unsigned long max_pfn)
1801 unsigned pmdidx, pteidx;
1802 unsigned ident_pte;
1803 unsigned long pfn;
1805 level1_ident_pgt = extend_brk(sizeof(pte_t) * LEVEL1_IDENT_ENTRIES,
1806 PAGE_SIZE);
1808 ident_pte = 0;
1809 pfn = 0;
1810 for (pmdidx = 0; pmdidx < PTRS_PER_PMD && pfn < max_pfn; pmdidx++) {
1811 pte_t *pte_page;
1813 /* Reuse or allocate a page of ptes */
1814 if (pmd_present(pmd[pmdidx]))
1815 pte_page = m2v(pmd[pmdidx].pmd);
1816 else {
1817 /* Check for free pte pages */
1818 if (ident_pte == LEVEL1_IDENT_ENTRIES)
1819 break;
1821 pte_page = &level1_ident_pgt[ident_pte];
1822 ident_pte += PTRS_PER_PTE;
1824 pmd[pmdidx] = __pmd(__pa(pte_page) | _PAGE_TABLE);
1827 /* Install mappings */
1828 for (pteidx = 0; pteidx < PTRS_PER_PTE; pteidx++, pfn++) {
1829 pte_t pte;
1831 if (!pte_none(pte_page[pteidx]))
1832 continue;
1834 pte = pfn_pte(pfn, PAGE_KERNEL_EXEC);
1835 pte_page[pteidx] = pte;
1839 for (pteidx = 0; pteidx < ident_pte; pteidx += PTRS_PER_PTE)
1840 set_page_prot(&level1_ident_pgt[pteidx], PAGE_KERNEL_RO);
1842 set_page_prot(pmd, PAGE_KERNEL_RO);
1845 void __init xen_setup_machphys_mapping(void)
1847 struct xen_machphys_mapping mapping;
1848 unsigned long machine_to_phys_nr_ents;
1850 if (HYPERVISOR_memory_op(XENMEM_machphys_mapping, &mapping) == 0) {
1851 machine_to_phys_mapping = (unsigned long *)mapping.v_start;
1852 machine_to_phys_nr_ents = mapping.max_mfn + 1;
1853 } else {
1854 machine_to_phys_nr_ents = MACH2PHYS_NR_ENTRIES;
1856 machine_to_phys_order = fls(machine_to_phys_nr_ents - 1);
1859 #ifdef CONFIG_X86_64
1860 static void convert_pfn_mfn(void *v)
1862 pte_t *pte = v;
1863 int i;
1865 /* All levels are converted the same way, so just treat them
1866 as ptes. */
1867 for (i = 0; i < PTRS_PER_PTE; i++)
1868 pte[i] = xen_make_pte(pte[i].pte);
1872 * Set up the initial kernel pagetable.
1874 * We can construct this by grafting the Xen provided pagetable into
1875 * head_64.S's preconstructed pagetables. We copy the Xen L2's into
1876 * level2_ident_pgt, level2_kernel_pgt and level2_fixmap_pgt. This
1877 * means that only the kernel has a physical mapping to start with -
1878 * but that's enough to get __va working. We need to fill in the rest
1879 * of the physical mapping once some sort of allocator has been set
1880 * up.
1882 __init pgd_t *xen_setup_kernel_pagetable(pgd_t *pgd,
1883 unsigned long max_pfn)
1885 pud_t *l3;
1886 pmd_t *l2;
1888 /* max_pfn_mapped is the last pfn mapped in the initial memory
1889 * mappings. Considering that on Xen after the kernel mappings we
1890 * have the mappings of some pages that don't exist in pfn space, we
1891 * set max_pfn_mapped to the last real pfn mapped. */
1892 max_pfn_mapped = PFN_DOWN(__pa(xen_start_info->mfn_list));
1894 /* Zap identity mapping */
1895 init_level4_pgt[0] = __pgd(0);
1897 /* Pre-constructed entries are in pfn, so convert to mfn */
1898 convert_pfn_mfn(init_level4_pgt);
1899 convert_pfn_mfn(level3_ident_pgt);
1900 convert_pfn_mfn(level3_kernel_pgt);
1902 l3 = m2v(pgd[pgd_index(__START_KERNEL_map)].pgd);
1903 l2 = m2v(l3[pud_index(__START_KERNEL_map)].pud);
1905 memcpy(level2_ident_pgt, l2, sizeof(pmd_t) * PTRS_PER_PMD);
1906 memcpy(level2_kernel_pgt, l2, sizeof(pmd_t) * PTRS_PER_PMD);
1908 l3 = m2v(pgd[pgd_index(__START_KERNEL_map + PMD_SIZE)].pgd);
1909 l2 = m2v(l3[pud_index(__START_KERNEL_map + PMD_SIZE)].pud);
1910 memcpy(level2_fixmap_pgt, l2, sizeof(pmd_t) * PTRS_PER_PMD);
1912 /* Set up identity map */
1913 xen_map_identity_early(level2_ident_pgt, max_pfn);
1915 /* Make pagetable pieces RO */
1916 set_page_prot(init_level4_pgt, PAGE_KERNEL_RO);
1917 set_page_prot(level3_ident_pgt, PAGE_KERNEL_RO);
1918 set_page_prot(level3_kernel_pgt, PAGE_KERNEL_RO);
1919 set_page_prot(level3_user_vsyscall, PAGE_KERNEL_RO);
1920 set_page_prot(level2_kernel_pgt, PAGE_KERNEL_RO);
1921 set_page_prot(level2_fixmap_pgt, PAGE_KERNEL_RO);
1923 /* Pin down new L4 */
1924 pin_pagetable_pfn(MMUEXT_PIN_L4_TABLE,
1925 PFN_DOWN(__pa_symbol(init_level4_pgt)));
1927 /* Unpin Xen-provided one */
1928 pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, PFN_DOWN(__pa(pgd)));
1930 /* Switch over */
1931 pgd = init_level4_pgt;
1934 * At this stage there can be no user pgd, and no page
1935 * structure to attach it to, so make sure we just set kernel
1936 * pgd.
1938 xen_mc_batch();
1939 __xen_write_cr3(true, __pa(pgd));
1940 xen_mc_issue(PARAVIRT_LAZY_CPU);
1942 memblock_x86_reserve_range(__pa(xen_start_info->pt_base),
1943 __pa(xen_start_info->pt_base +
1944 xen_start_info->nr_pt_frames * PAGE_SIZE),
1945 "XEN PAGETABLES");
1947 return pgd;
1949 #else /* !CONFIG_X86_64 */
1950 static RESERVE_BRK_ARRAY(pmd_t, initial_kernel_pmd, PTRS_PER_PMD);
1951 static RESERVE_BRK_ARRAY(pmd_t, swapper_kernel_pmd, PTRS_PER_PMD);
1953 static __init void xen_write_cr3_init(unsigned long cr3)
1955 unsigned long pfn = PFN_DOWN(__pa(swapper_pg_dir));
1957 BUG_ON(read_cr3() != __pa(initial_page_table));
1958 BUG_ON(cr3 != __pa(swapper_pg_dir));
1961 * We are switching to swapper_pg_dir for the first time (from
1962 * initial_page_table) and therefore need to mark that page
1963 * read-only and then pin it.
1965 * Xen disallows sharing of kernel PMDs for PAE
1966 * guests. Therefore we must copy the kernel PMD from
1967 * initial_page_table into a new kernel PMD to be used in
1968 * swapper_pg_dir.
1970 swapper_kernel_pmd =
1971 extend_brk(sizeof(pmd_t) * PTRS_PER_PMD, PAGE_SIZE);
1972 memcpy(swapper_kernel_pmd, initial_kernel_pmd,
1973 sizeof(pmd_t) * PTRS_PER_PMD);
1974 swapper_pg_dir[KERNEL_PGD_BOUNDARY] =
1975 __pgd(__pa(swapper_kernel_pmd) | _PAGE_PRESENT);
1976 set_page_prot(swapper_kernel_pmd, PAGE_KERNEL_RO);
1978 set_page_prot(swapper_pg_dir, PAGE_KERNEL_RO);
1979 xen_write_cr3(cr3);
1980 pin_pagetable_pfn(MMUEXT_PIN_L3_TABLE, pfn);
1982 pin_pagetable_pfn(MMUEXT_UNPIN_TABLE,
1983 PFN_DOWN(__pa(initial_page_table)));
1984 set_page_prot(initial_page_table, PAGE_KERNEL);
1985 set_page_prot(initial_kernel_pmd, PAGE_KERNEL);
1987 pv_mmu_ops.write_cr3 = &xen_write_cr3;
1990 __init pgd_t *xen_setup_kernel_pagetable(pgd_t *pgd,
1991 unsigned long max_pfn)
1993 pmd_t *kernel_pmd;
1995 initial_kernel_pmd =
1996 extend_brk(sizeof(pmd_t) * PTRS_PER_PMD, PAGE_SIZE);
1998 max_pfn_mapped = PFN_DOWN(__pa(xen_start_info->mfn_list));
2000 kernel_pmd = m2v(pgd[KERNEL_PGD_BOUNDARY].pgd);
2001 memcpy(initial_kernel_pmd, kernel_pmd, sizeof(pmd_t) * PTRS_PER_PMD);
2003 xen_map_identity_early(initial_kernel_pmd, max_pfn);
2005 memcpy(initial_page_table, pgd, sizeof(pgd_t) * PTRS_PER_PGD);
2006 initial_page_table[KERNEL_PGD_BOUNDARY] =
2007 __pgd(__pa(initial_kernel_pmd) | _PAGE_PRESENT);
2009 set_page_prot(initial_kernel_pmd, PAGE_KERNEL_RO);
2010 set_page_prot(initial_page_table, PAGE_KERNEL_RO);
2011 set_page_prot(empty_zero_page, PAGE_KERNEL_RO);
2013 pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, PFN_DOWN(__pa(pgd)));
2015 pin_pagetable_pfn(MMUEXT_PIN_L3_TABLE,
2016 PFN_DOWN(__pa(initial_page_table)));
2017 xen_write_cr3(__pa(initial_page_table));
2019 memblock_x86_reserve_range(__pa(xen_start_info->pt_base),
2020 __pa(xen_start_info->pt_base +
2021 xen_start_info->nr_pt_frames * PAGE_SIZE),
2022 "XEN PAGETABLES");
2024 return initial_page_table;
2026 #endif /* CONFIG_X86_64 */
2028 static unsigned char dummy_mapping[PAGE_SIZE] __page_aligned_bss;
2030 static void xen_set_fixmap(unsigned idx, phys_addr_t phys, pgprot_t prot)
2032 pte_t pte;
2034 phys >>= PAGE_SHIFT;
2036 switch (idx) {
2037 case FIX_BTMAP_END ... FIX_BTMAP_BEGIN:
2038 #ifdef CONFIG_X86_F00F_BUG
2039 case FIX_F00F_IDT:
2040 #endif
2041 #ifdef CONFIG_X86_32
2042 case FIX_WP_TEST:
2043 case FIX_VDSO:
2044 # ifdef CONFIG_HIGHMEM
2045 case FIX_KMAP_BEGIN ... FIX_KMAP_END:
2046 # endif
2047 #else
2048 case VSYSCALL_LAST_PAGE ... VSYSCALL_FIRST_PAGE:
2049 #endif
2050 case FIX_TEXT_POKE0:
2051 case FIX_TEXT_POKE1:
2052 /* All local page mappings */
2053 pte = pfn_pte(phys, prot);
2054 break;
2056 #ifdef CONFIG_X86_LOCAL_APIC
2057 case FIX_APIC_BASE: /* maps dummy local APIC */
2058 pte = pfn_pte(PFN_DOWN(__pa(dummy_mapping)), PAGE_KERNEL);
2059 break;
2060 #endif
2062 #ifdef CONFIG_X86_IO_APIC
2063 case FIX_IO_APIC_BASE_0 ... FIX_IO_APIC_BASE_END:
2065 * We just don't map the IO APIC - all access is via
2066 * hypercalls. Keep the address in the pte for reference.
2068 pte = pfn_pte(PFN_DOWN(__pa(dummy_mapping)), PAGE_KERNEL);
2069 break;
2070 #endif
2072 case FIX_PARAVIRT_BOOTMAP:
2073 /* This is an MFN, but it isn't an IO mapping from the
2074 IO domain */
2075 pte = mfn_pte(phys, prot);
2076 break;
2078 default:
2079 /* By default, set_fixmap is used for hardware mappings */
2080 pte = mfn_pte(phys, __pgprot(pgprot_val(prot) | _PAGE_IOMAP));
2081 break;
2084 __native_set_fixmap(idx, pte);
2086 #ifdef CONFIG_X86_64
2087 /* Replicate changes to map the vsyscall page into the user
2088 pagetable vsyscall mapping. */
2089 if (idx >= VSYSCALL_LAST_PAGE && idx <= VSYSCALL_FIRST_PAGE) {
2090 unsigned long vaddr = __fix_to_virt(idx);
2091 set_pte_vaddr_pud(level3_user_vsyscall, vaddr, pte);
2093 #endif
2096 __init void xen_ident_map_ISA(void)
2098 unsigned long pa;
2101 * If we're dom0, then linear map the ISA machine addresses into
2102 * the kernel's address space.
2104 if (!xen_initial_domain())
2105 return;
2107 xen_raw_printk("Xen: setup ISA identity maps\n");
2109 for (pa = ISA_START_ADDRESS; pa < ISA_END_ADDRESS; pa += PAGE_SIZE) {
2110 pte_t pte = mfn_pte(PFN_DOWN(pa), PAGE_KERNEL_IO);
2112 if (HYPERVISOR_update_va_mapping(PAGE_OFFSET + pa, pte, 0))
2113 BUG();
2116 xen_flush_tlb();
2119 static __init void xen_post_allocator_init(void)
2121 mark_rw_past_pgt();
2123 #ifdef CONFIG_XEN_DEBUG
2124 pv_mmu_ops.make_pte = PV_CALLEE_SAVE(xen_make_pte_debug);
2125 #endif
2126 pv_mmu_ops.set_pte = xen_set_pte;
2127 pv_mmu_ops.set_pmd = xen_set_pmd;
2128 pv_mmu_ops.set_pud = xen_set_pud;
2129 #if PAGETABLE_LEVELS == 4
2130 pv_mmu_ops.set_pgd = xen_set_pgd;
2131 #endif
2133 /* This will work as long as patching hasn't happened yet
2134 (which it hasn't) */
2135 pv_mmu_ops.alloc_pte = xen_alloc_pte;
2136 pv_mmu_ops.alloc_pmd = xen_alloc_pmd;
2137 pv_mmu_ops.release_pte = xen_release_pte;
2138 pv_mmu_ops.release_pmd = xen_release_pmd;
2139 #if PAGETABLE_LEVELS == 4
2140 pv_mmu_ops.alloc_pud = xen_alloc_pud;
2141 pv_mmu_ops.release_pud = xen_release_pud;
2142 #endif
2144 #ifdef CONFIG_X86_64
2145 SetPagePinned(virt_to_page(level3_user_vsyscall));
2146 #endif
2147 xen_mark_init_mm_pinned();
2150 static void xen_leave_lazy_mmu(void)
2152 preempt_disable();
2153 xen_mc_flush();
2154 paravirt_leave_lazy_mmu();
2155 preempt_enable();
2158 static const struct pv_mmu_ops xen_mmu_ops __initdata = {
2159 .read_cr2 = xen_read_cr2,
2160 .write_cr2 = xen_write_cr2,
2162 .read_cr3 = xen_read_cr3,
2163 #ifdef CONFIG_X86_32
2164 .write_cr3 = xen_write_cr3_init,
2165 #else
2166 .write_cr3 = xen_write_cr3,
2167 #endif
2169 .flush_tlb_user = xen_flush_tlb,
2170 .flush_tlb_kernel = xen_flush_tlb,
2171 .flush_tlb_single = xen_flush_tlb_single,
2172 .flush_tlb_others = xen_flush_tlb_others,
2174 .pte_update = paravirt_nop,
2175 .pte_update_defer = paravirt_nop,
2177 .pgd_alloc = xen_pgd_alloc,
2178 .pgd_free = xen_pgd_free,
2180 .alloc_pte = xen_alloc_pte_init,
2181 .release_pte = xen_release_pte_init,
2182 .alloc_pmd = xen_alloc_pmd_init,
2183 .release_pmd = xen_release_pmd_init,
2185 .set_pte = xen_set_pte_init,
2186 .set_pte_at = xen_set_pte_at,
2187 .set_pmd = xen_set_pmd_hyper,
2189 .ptep_modify_prot_start = __ptep_modify_prot_start,
2190 .ptep_modify_prot_commit = __ptep_modify_prot_commit,
2192 .pte_val = PV_CALLEE_SAVE(xen_pte_val),
2193 .pgd_val = PV_CALLEE_SAVE(xen_pgd_val),
2195 .make_pte = PV_CALLEE_SAVE(xen_make_pte),
2196 .make_pgd = PV_CALLEE_SAVE(xen_make_pgd),
2198 #ifdef CONFIG_X86_PAE
2199 .set_pte_atomic = xen_set_pte_atomic,
2200 .pte_clear = xen_pte_clear,
2201 .pmd_clear = xen_pmd_clear,
2202 #endif /* CONFIG_X86_PAE */
2203 .set_pud = xen_set_pud_hyper,
2205 .make_pmd = PV_CALLEE_SAVE(xen_make_pmd),
2206 .pmd_val = PV_CALLEE_SAVE(xen_pmd_val),
2208 #if PAGETABLE_LEVELS == 4
2209 .pud_val = PV_CALLEE_SAVE(xen_pud_val),
2210 .make_pud = PV_CALLEE_SAVE(xen_make_pud),
2211 .set_pgd = xen_set_pgd_hyper,
2213 .alloc_pud = xen_alloc_pmd_init,
2214 .release_pud = xen_release_pmd_init,
2215 #endif /* PAGETABLE_LEVELS == 4 */
2217 .activate_mm = xen_activate_mm,
2218 .dup_mmap = xen_dup_mmap,
2219 .exit_mmap = xen_exit_mmap,
2221 .lazy_mode = {
2222 .enter = paravirt_enter_lazy_mmu,
2223 .leave = xen_leave_lazy_mmu,
2226 .set_fixmap = xen_set_fixmap,
2229 void __init xen_init_mmu_ops(void)
2231 x86_init.paging.pagetable_setup_start = xen_pagetable_setup_start;
2232 x86_init.paging.pagetable_setup_done = xen_pagetable_setup_done;
2233 pv_mmu_ops = xen_mmu_ops;
2235 memset(dummy_mapping, 0xff, PAGE_SIZE);
2238 /* Protected by xen_reservation_lock. */
2239 #define MAX_CONTIG_ORDER 9 /* 2MB */
2240 static unsigned long discontig_frames[1<<MAX_CONTIG_ORDER];
2242 #define VOID_PTE (mfn_pte(0, __pgprot(0)))
2243 static void xen_zap_pfn_range(unsigned long vaddr, unsigned int order,
2244 unsigned long *in_frames,
2245 unsigned long *out_frames)
2247 int i;
2248 struct multicall_space mcs;
2250 xen_mc_batch();
2251 for (i = 0; i < (1UL<<order); i++, vaddr += PAGE_SIZE) {
2252 mcs = __xen_mc_entry(0);
2254 if (in_frames)
2255 in_frames[i] = virt_to_mfn(vaddr);
2257 MULTI_update_va_mapping(mcs.mc, vaddr, VOID_PTE, 0);
2258 __set_phys_to_machine(virt_to_pfn(vaddr), INVALID_P2M_ENTRY);
2260 if (out_frames)
2261 out_frames[i] = virt_to_pfn(vaddr);
2263 xen_mc_issue(0);
2267 * Update the pfn-to-mfn mappings for a virtual address range, either to
2268 * point to an array of mfns, or contiguously from a single starting
2269 * mfn.
2271 static void xen_remap_exchanged_ptes(unsigned long vaddr, int order,
2272 unsigned long *mfns,
2273 unsigned long first_mfn)
2275 unsigned i, limit;
2276 unsigned long mfn;
2278 xen_mc_batch();
2280 limit = 1u << order;
2281 for (i = 0; i < limit; i++, vaddr += PAGE_SIZE) {
2282 struct multicall_space mcs;
2283 unsigned flags;
2285 mcs = __xen_mc_entry(0);
2286 if (mfns)
2287 mfn = mfns[i];
2288 else
2289 mfn = first_mfn + i;
2291 if (i < (limit - 1))
2292 flags = 0;
2293 else {
2294 if (order == 0)
2295 flags = UVMF_INVLPG | UVMF_ALL;
2296 else
2297 flags = UVMF_TLB_FLUSH | UVMF_ALL;
2300 MULTI_update_va_mapping(mcs.mc, vaddr,
2301 mfn_pte(mfn, PAGE_KERNEL), flags);
2303 set_phys_to_machine(virt_to_pfn(vaddr), mfn);
2306 xen_mc_issue(0);
2310 * Perform the hypercall to exchange a region of our pfns to point to
2311 * memory with the required contiguous alignment. Takes the pfns as
2312 * input, and populates mfns as output.
2314 * Returns a success code indicating whether the hypervisor was able to
2315 * satisfy the request or not.
2317 static int xen_exchange_memory(unsigned long extents_in, unsigned int order_in,
2318 unsigned long *pfns_in,
2319 unsigned long extents_out,
2320 unsigned int order_out,
2321 unsigned long *mfns_out,
2322 unsigned int address_bits)
2324 long rc;
2325 int success;
2327 struct xen_memory_exchange exchange = {
2328 .in = {
2329 .nr_extents = extents_in,
2330 .extent_order = order_in,
2331 .extent_start = pfns_in,
2332 .domid = DOMID_SELF
2334 .out = {
2335 .nr_extents = extents_out,
2336 .extent_order = order_out,
2337 .extent_start = mfns_out,
2338 .address_bits = address_bits,
2339 .domid = DOMID_SELF
2343 BUG_ON(extents_in << order_in != extents_out << order_out);
2345 rc = HYPERVISOR_memory_op(XENMEM_exchange, &exchange);
2346 success = (exchange.nr_exchanged == extents_in);
2348 BUG_ON(!success && ((exchange.nr_exchanged != 0) || (rc == 0)));
2349 BUG_ON(success && (rc != 0));
2351 return success;
2354 int xen_create_contiguous_region(unsigned long vstart, unsigned int order,
2355 unsigned int address_bits)
2357 unsigned long *in_frames = discontig_frames, out_frame;
2358 unsigned long flags;
2359 int success;
2362 * Currently an auto-translated guest will not perform I/O, nor will
2363 * it require PAE page directories below 4GB. Therefore any calls to
2364 * this function are redundant and can be ignored.
2367 if (xen_feature(XENFEAT_auto_translated_physmap))
2368 return 0;
2370 if (unlikely(order > MAX_CONTIG_ORDER))
2371 return -ENOMEM;
2373 memset((void *) vstart, 0, PAGE_SIZE << order);
2375 spin_lock_irqsave(&xen_reservation_lock, flags);
2377 /* 1. Zap current PTEs, remembering MFNs. */
2378 xen_zap_pfn_range(vstart, order, in_frames, NULL);
2380 /* 2. Get a new contiguous memory extent. */
2381 out_frame = virt_to_pfn(vstart);
2382 success = xen_exchange_memory(1UL << order, 0, in_frames,
2383 1, order, &out_frame,
2384 address_bits);
2386 /* 3. Map the new extent in place of old pages. */
2387 if (success)
2388 xen_remap_exchanged_ptes(vstart, order, NULL, out_frame);
2389 else
2390 xen_remap_exchanged_ptes(vstart, order, in_frames, 0);
2392 spin_unlock_irqrestore(&xen_reservation_lock, flags);
2394 return success ? 0 : -ENOMEM;
2396 EXPORT_SYMBOL_GPL(xen_create_contiguous_region);
2398 void xen_destroy_contiguous_region(unsigned long vstart, unsigned int order)
2400 unsigned long *out_frames = discontig_frames, in_frame;
2401 unsigned long flags;
2402 int success;
2404 if (xen_feature(XENFEAT_auto_translated_physmap))
2405 return;
2407 if (unlikely(order > MAX_CONTIG_ORDER))
2408 return;
2410 memset((void *) vstart, 0, PAGE_SIZE << order);
2412 spin_lock_irqsave(&xen_reservation_lock, flags);
2414 /* 1. Find start MFN of contiguous extent. */
2415 in_frame = virt_to_mfn(vstart);
2417 /* 2. Zap current PTEs. */
2418 xen_zap_pfn_range(vstart, order, NULL, out_frames);
2420 /* 3. Do the exchange for non-contiguous MFNs. */
2421 success = xen_exchange_memory(1, order, &in_frame, 1UL << order,
2422 0, out_frames, 0);
2424 /* 4. Map new pages in place of old pages. */
2425 if (success)
2426 xen_remap_exchanged_ptes(vstart, order, out_frames, 0);
2427 else
2428 xen_remap_exchanged_ptes(vstart, order, NULL, in_frame);
2430 spin_unlock_irqrestore(&xen_reservation_lock, flags);
2432 EXPORT_SYMBOL_GPL(xen_destroy_contiguous_region);
2434 #ifdef CONFIG_XEN_PVHVM
2435 static void xen_hvm_exit_mmap(struct mm_struct *mm)
2437 struct xen_hvm_pagetable_dying a;
2438 int rc;
2440 a.domid = DOMID_SELF;
2441 a.gpa = __pa(mm->pgd);
2442 rc = HYPERVISOR_hvm_op(HVMOP_pagetable_dying, &a);
2443 WARN_ON_ONCE(rc < 0);
2446 static int is_pagetable_dying_supported(void)
2448 struct xen_hvm_pagetable_dying a;
2449 int rc = 0;
2451 a.domid = DOMID_SELF;
2452 a.gpa = 0x00;
2453 rc = HYPERVISOR_hvm_op(HVMOP_pagetable_dying, &a);
2454 if (rc < 0) {
2455 printk(KERN_DEBUG "HVMOP_pagetable_dying not supported\n");
2456 return 0;
2458 return 1;
2461 void __init xen_hvm_init_mmu_ops(void)
2463 if (is_pagetable_dying_supported())
2464 pv_mmu_ops.exit_mmap = xen_hvm_exit_mmap;
2466 #endif
2468 #define REMAP_BATCH_SIZE 16
2470 struct remap_data {
2471 unsigned long mfn;
2472 pgprot_t prot;
2473 struct mmu_update *mmu_update;
2476 static int remap_area_mfn_pte_fn(pte_t *ptep, pgtable_t token,
2477 unsigned long addr, void *data)
2479 struct remap_data *rmd = data;
2480 pte_t pte = pte_mkspecial(pfn_pte(rmd->mfn++, rmd->prot));
2482 rmd->mmu_update->ptr = arbitrary_virt_to_machine(ptep).maddr;
2483 rmd->mmu_update->val = pte_val_ma(pte);
2484 rmd->mmu_update++;
2486 return 0;
2489 int xen_remap_domain_mfn_range(struct vm_area_struct *vma,
2490 unsigned long addr,
2491 unsigned long mfn, int nr,
2492 pgprot_t prot, unsigned domid)
2494 struct remap_data rmd;
2495 struct mmu_update mmu_update[REMAP_BATCH_SIZE];
2496 int batch;
2497 unsigned long range;
2498 int err = 0;
2500 prot = __pgprot(pgprot_val(prot) | _PAGE_IOMAP);
2502 BUG_ON(!((vma->vm_flags & (VM_PFNMAP | VM_RESERVED | VM_IO)) ==
2503 (VM_PFNMAP | VM_RESERVED | VM_IO)));
2505 rmd.mfn = mfn;
2506 rmd.prot = prot;
2508 while (nr) {
2509 batch = min(REMAP_BATCH_SIZE, nr);
2510 range = (unsigned long)batch << PAGE_SHIFT;
2512 rmd.mmu_update = mmu_update;
2513 err = apply_to_page_range(vma->vm_mm, addr, range,
2514 remap_area_mfn_pte_fn, &rmd);
2515 if (err)
2516 goto out;
2518 err = -EFAULT;
2519 if (HYPERVISOR_mmu_update(mmu_update, batch, NULL, domid) < 0)
2520 goto out;
2522 nr -= batch;
2523 addr += range;
2526 err = 0;
2527 out:
2529 flush_tlb_all();
2531 return err;
2533 EXPORT_SYMBOL_GPL(xen_remap_domain_mfn_range);
2535 #ifdef CONFIG_XEN_DEBUG_FS
2537 static int p2m_dump_open(struct inode *inode, struct file *filp)
2539 return single_open(filp, p2m_dump_show, NULL);
2542 static const struct file_operations p2m_dump_fops = {
2543 .open = p2m_dump_open,
2544 .read = seq_read,
2545 .llseek = seq_lseek,
2546 .release = single_release,
2549 static struct dentry *d_mmu_debug;
2551 static int __init xen_mmu_debugfs(void)
2553 struct dentry *d_xen = xen_init_debugfs();
2555 if (d_xen == NULL)
2556 return -ENOMEM;
2558 d_mmu_debug = debugfs_create_dir("mmu", d_xen);
2560 debugfs_create_u8("zero_stats", 0644, d_mmu_debug, &zero_stats);
2562 debugfs_create_u32("pgd_update", 0444, d_mmu_debug, &mmu_stats.pgd_update);
2563 debugfs_create_u32("pgd_update_pinned", 0444, d_mmu_debug,
2564 &mmu_stats.pgd_update_pinned);
2565 debugfs_create_u32("pgd_update_batched", 0444, d_mmu_debug,
2566 &mmu_stats.pgd_update_pinned);
2568 debugfs_create_u32("pud_update", 0444, d_mmu_debug, &mmu_stats.pud_update);
2569 debugfs_create_u32("pud_update_pinned", 0444, d_mmu_debug,
2570 &mmu_stats.pud_update_pinned);
2571 debugfs_create_u32("pud_update_batched", 0444, d_mmu_debug,
2572 &mmu_stats.pud_update_pinned);
2574 debugfs_create_u32("pmd_update", 0444, d_mmu_debug, &mmu_stats.pmd_update);
2575 debugfs_create_u32("pmd_update_pinned", 0444, d_mmu_debug,
2576 &mmu_stats.pmd_update_pinned);
2577 debugfs_create_u32("pmd_update_batched", 0444, d_mmu_debug,
2578 &mmu_stats.pmd_update_pinned);
2580 debugfs_create_u32("pte_update", 0444, d_mmu_debug, &mmu_stats.pte_update);
2581 // debugfs_create_u32("pte_update_pinned", 0444, d_mmu_debug,
2582 // &mmu_stats.pte_update_pinned);
2583 debugfs_create_u32("pte_update_batched", 0444, d_mmu_debug,
2584 &mmu_stats.pte_update_pinned);
2586 debugfs_create_u32("mmu_update", 0444, d_mmu_debug, &mmu_stats.mmu_update);
2587 debugfs_create_u32("mmu_update_extended", 0444, d_mmu_debug,
2588 &mmu_stats.mmu_update_extended);
2589 xen_debugfs_create_u32_array("mmu_update_histo", 0444, d_mmu_debug,
2590 mmu_stats.mmu_update_histo, 20);
2592 debugfs_create_u32("set_pte_at", 0444, d_mmu_debug, &mmu_stats.set_pte_at);
2593 debugfs_create_u32("set_pte_at_batched", 0444, d_mmu_debug,
2594 &mmu_stats.set_pte_at_batched);
2595 debugfs_create_u32("set_pte_at_current", 0444, d_mmu_debug,
2596 &mmu_stats.set_pte_at_current);
2597 debugfs_create_u32("set_pte_at_kernel", 0444, d_mmu_debug,
2598 &mmu_stats.set_pte_at_kernel);
2600 debugfs_create_u32("prot_commit", 0444, d_mmu_debug, &mmu_stats.prot_commit);
2601 debugfs_create_u32("prot_commit_batched", 0444, d_mmu_debug,
2602 &mmu_stats.prot_commit_batched);
2604 debugfs_create_file("p2m", 0600, d_mmu_debug, NULL, &p2m_dump_fops);
2605 return 0;
2607 fs_initcall(xen_mmu_debugfs);
2609 #endif /* CONFIG_XEN_DEBUG_FS */