setup_arg_pages: diagnose excessive argument size
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / fs / exec.c
blobf1bb0d21d080de6f67d68fcda01be1bac8a20237
1 /*
2 * linux/fs/exec.c
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
7 /*
8 * #!-checking implemented by tytso.
9 */
11 * Demand-loading implemented 01.12.91 - no need to read anything but
12 * the header into memory. The inode of the executable is put into
13 * "current->executable", and page faults do the actual loading. Clean.
15 * Once more I can proudly say that linux stood up to being changed: it
16 * was less than 2 hours work to get demand-loading completely implemented.
18 * Demand loading changed July 1993 by Eric Youngdale. Use mmap instead,
19 * current->executable is only used by the procfs. This allows a dispatch
20 * table to check for several different types of binary formats. We keep
21 * trying until we recognize the file or we run out of supported binary
22 * formats.
25 #include <linux/slab.h>
26 #include <linux/file.h>
27 #include <linux/fdtable.h>
28 #include <linux/mm.h>
29 #include <linux/stat.h>
30 #include <linux/fcntl.h>
31 #include <linux/smp_lock.h>
32 #include <linux/swap.h>
33 #include <linux/string.h>
34 #include <linux/init.h>
35 #include <linux/pagemap.h>
36 #include <linux/perf_event.h>
37 #include <linux/highmem.h>
38 #include <linux/spinlock.h>
39 #include <linux/key.h>
40 #include <linux/personality.h>
41 #include <linux/binfmts.h>
42 #include <linux/utsname.h>
43 #include <linux/pid_namespace.h>
44 #include <linux/module.h>
45 #include <linux/namei.h>
46 #include <linux/proc_fs.h>
47 #include <linux/mount.h>
48 #include <linux/security.h>
49 #include <linux/syscalls.h>
50 #include <linux/tsacct_kern.h>
51 #include <linux/cn_proc.h>
52 #include <linux/audit.h>
53 #include <linux/tracehook.h>
54 #include <linux/kmod.h>
55 #include <linux/fsnotify.h>
56 #include <linux/fs_struct.h>
57 #include <linux/pipe_fs_i.h>
59 #include <asm/uaccess.h>
60 #include <asm/mmu_context.h>
61 #include <asm/tlb.h>
62 #include "internal.h"
64 int core_uses_pid;
65 char core_pattern[CORENAME_MAX_SIZE] = "core";
66 unsigned int core_pipe_limit;
67 int suid_dumpable = 0;
69 /* The maximal length of core_pattern is also specified in sysctl.c */
71 static LIST_HEAD(formats);
72 static DEFINE_RWLOCK(binfmt_lock);
74 int __register_binfmt(struct linux_binfmt * fmt, int insert)
76 if (!fmt)
77 return -EINVAL;
78 write_lock(&binfmt_lock);
79 insert ? list_add(&fmt->lh, &formats) :
80 list_add_tail(&fmt->lh, &formats);
81 write_unlock(&binfmt_lock);
82 return 0;
85 EXPORT_SYMBOL(__register_binfmt);
87 void unregister_binfmt(struct linux_binfmt * fmt)
89 write_lock(&binfmt_lock);
90 list_del(&fmt->lh);
91 write_unlock(&binfmt_lock);
94 EXPORT_SYMBOL(unregister_binfmt);
96 static inline void put_binfmt(struct linux_binfmt * fmt)
98 module_put(fmt->module);
102 * Note that a shared library must be both readable and executable due to
103 * security reasons.
105 * Also note that we take the address to load from from the file itself.
107 SYSCALL_DEFINE1(uselib, const char __user *, library)
109 struct file *file;
110 char *tmp = getname(library);
111 int error = PTR_ERR(tmp);
113 if (IS_ERR(tmp))
114 goto out;
116 file = do_filp_open(AT_FDCWD, tmp,
117 O_LARGEFILE | O_RDONLY | FMODE_EXEC, 0,
118 MAY_READ | MAY_EXEC | MAY_OPEN);
119 putname(tmp);
120 error = PTR_ERR(file);
121 if (IS_ERR(file))
122 goto out;
124 error = -EINVAL;
125 if (!S_ISREG(file->f_path.dentry->d_inode->i_mode))
126 goto exit;
128 error = -EACCES;
129 if (file->f_path.mnt->mnt_flags & MNT_NOEXEC)
130 goto exit;
132 fsnotify_open(file->f_path.dentry);
134 error = -ENOEXEC;
135 if(file->f_op) {
136 struct linux_binfmt * fmt;
138 read_lock(&binfmt_lock);
139 list_for_each_entry(fmt, &formats, lh) {
140 if (!fmt->load_shlib)
141 continue;
142 if (!try_module_get(fmt->module))
143 continue;
144 read_unlock(&binfmt_lock);
145 error = fmt->load_shlib(file);
146 read_lock(&binfmt_lock);
147 put_binfmt(fmt);
148 if (error != -ENOEXEC)
149 break;
151 read_unlock(&binfmt_lock);
153 exit:
154 fput(file);
155 out:
156 return error;
159 #ifdef CONFIG_MMU
161 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
162 int write)
164 struct page *page;
165 int ret;
167 #ifdef CONFIG_STACK_GROWSUP
168 if (write) {
169 ret = expand_stack_downwards(bprm->vma, pos);
170 if (ret < 0)
171 return NULL;
173 #endif
174 ret = get_user_pages(current, bprm->mm, pos,
175 1, write, 1, &page, NULL);
176 if (ret <= 0)
177 return NULL;
179 if (write) {
180 unsigned long size = bprm->vma->vm_end - bprm->vma->vm_start;
181 struct rlimit *rlim;
184 * We've historically supported up to 32 pages (ARG_MAX)
185 * of argument strings even with small stacks
187 if (size <= ARG_MAX)
188 return page;
191 * Limit to 1/4-th the stack size for the argv+env strings.
192 * This ensures that:
193 * - the remaining binfmt code will not run out of stack space,
194 * - the program will have a reasonable amount of stack left
195 * to work from.
197 rlim = current->signal->rlim;
198 if (size > ACCESS_ONCE(rlim[RLIMIT_STACK].rlim_cur) / 4) {
199 put_page(page);
200 return NULL;
204 return page;
207 static void put_arg_page(struct page *page)
209 put_page(page);
212 static void free_arg_page(struct linux_binprm *bprm, int i)
216 static void free_arg_pages(struct linux_binprm *bprm)
220 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
221 struct page *page)
223 flush_cache_page(bprm->vma, pos, page_to_pfn(page));
226 static int __bprm_mm_init(struct linux_binprm *bprm)
228 int err;
229 struct vm_area_struct *vma = NULL;
230 struct mm_struct *mm = bprm->mm;
232 bprm->vma = vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
233 if (!vma)
234 return -ENOMEM;
236 down_write(&mm->mmap_sem);
237 vma->vm_mm = mm;
240 * Place the stack at the largest stack address the architecture
241 * supports. Later, we'll move this to an appropriate place. We don't
242 * use STACK_TOP because that can depend on attributes which aren't
243 * configured yet.
245 BUG_ON(VM_STACK_FLAGS & VM_STACK_INCOMPLETE_SETUP);
246 vma->vm_end = STACK_TOP_MAX;
247 vma->vm_start = vma->vm_end - PAGE_SIZE;
248 vma->vm_flags = VM_STACK_FLAGS | VM_STACK_INCOMPLETE_SETUP;
249 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
250 INIT_LIST_HEAD(&vma->anon_vma_chain);
251 err = insert_vm_struct(mm, vma);
252 if (err)
253 goto err;
255 mm->stack_vm = mm->total_vm = 1;
256 up_write(&mm->mmap_sem);
257 bprm->p = vma->vm_end - sizeof(void *);
258 return 0;
259 err:
260 up_write(&mm->mmap_sem);
261 bprm->vma = NULL;
262 kmem_cache_free(vm_area_cachep, vma);
263 return err;
266 static bool valid_arg_len(struct linux_binprm *bprm, long len)
268 return len <= MAX_ARG_STRLEN;
271 #else
273 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
274 int write)
276 struct page *page;
278 page = bprm->page[pos / PAGE_SIZE];
279 if (!page && write) {
280 page = alloc_page(GFP_HIGHUSER|__GFP_ZERO);
281 if (!page)
282 return NULL;
283 bprm->page[pos / PAGE_SIZE] = page;
286 return page;
289 static void put_arg_page(struct page *page)
293 static void free_arg_page(struct linux_binprm *bprm, int i)
295 if (bprm->page[i]) {
296 __free_page(bprm->page[i]);
297 bprm->page[i] = NULL;
301 static void free_arg_pages(struct linux_binprm *bprm)
303 int i;
305 for (i = 0; i < MAX_ARG_PAGES; i++)
306 free_arg_page(bprm, i);
309 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
310 struct page *page)
314 static int __bprm_mm_init(struct linux_binprm *bprm)
316 bprm->p = PAGE_SIZE * MAX_ARG_PAGES - sizeof(void *);
317 return 0;
320 static bool valid_arg_len(struct linux_binprm *bprm, long len)
322 return len <= bprm->p;
325 #endif /* CONFIG_MMU */
328 * Create a new mm_struct and populate it with a temporary stack
329 * vm_area_struct. We don't have enough context at this point to set the stack
330 * flags, permissions, and offset, so we use temporary values. We'll update
331 * them later in setup_arg_pages().
333 int bprm_mm_init(struct linux_binprm *bprm)
335 int err;
336 struct mm_struct *mm = NULL;
338 bprm->mm = mm = mm_alloc();
339 err = -ENOMEM;
340 if (!mm)
341 goto err;
343 err = init_new_context(current, mm);
344 if (err)
345 goto err;
347 err = __bprm_mm_init(bprm);
348 if (err)
349 goto err;
351 return 0;
353 err:
354 if (mm) {
355 bprm->mm = NULL;
356 mmdrop(mm);
359 return err;
363 * count() counts the number of strings in array ARGV.
365 static int count(char __user * __user * argv, int max)
367 int i = 0;
369 if (argv != NULL) {
370 for (;;) {
371 char __user * p;
373 if (get_user(p, argv))
374 return -EFAULT;
375 if (!p)
376 break;
377 argv++;
378 if (i++ >= max)
379 return -E2BIG;
380 cond_resched();
383 return i;
387 * 'copy_strings()' copies argument/environment strings from the old
388 * processes's memory to the new process's stack. The call to get_user_pages()
389 * ensures the destination page is created and not swapped out.
391 static int copy_strings(int argc, char __user * __user * argv,
392 struct linux_binprm *bprm)
394 struct page *kmapped_page = NULL;
395 char *kaddr = NULL;
396 unsigned long kpos = 0;
397 int ret;
399 while (argc-- > 0) {
400 char __user *str;
401 int len;
402 unsigned long pos;
404 if (get_user(str, argv+argc) ||
405 !(len = strnlen_user(str, MAX_ARG_STRLEN))) {
406 ret = -EFAULT;
407 goto out;
410 if (!valid_arg_len(bprm, len)) {
411 ret = -E2BIG;
412 goto out;
415 /* We're going to work our way backwords. */
416 pos = bprm->p;
417 str += len;
418 bprm->p -= len;
420 while (len > 0) {
421 int offset, bytes_to_copy;
423 offset = pos % PAGE_SIZE;
424 if (offset == 0)
425 offset = PAGE_SIZE;
427 bytes_to_copy = offset;
428 if (bytes_to_copy > len)
429 bytes_to_copy = len;
431 offset -= bytes_to_copy;
432 pos -= bytes_to_copy;
433 str -= bytes_to_copy;
434 len -= bytes_to_copy;
436 if (!kmapped_page || kpos != (pos & PAGE_MASK)) {
437 struct page *page;
439 page = get_arg_page(bprm, pos, 1);
440 if (!page) {
441 ret = -E2BIG;
442 goto out;
445 if (kmapped_page) {
446 flush_kernel_dcache_page(kmapped_page);
447 kunmap(kmapped_page);
448 put_arg_page(kmapped_page);
450 kmapped_page = page;
451 kaddr = kmap(kmapped_page);
452 kpos = pos & PAGE_MASK;
453 flush_arg_page(bprm, kpos, kmapped_page);
455 if (copy_from_user(kaddr+offset, str, bytes_to_copy)) {
456 ret = -EFAULT;
457 goto out;
461 ret = 0;
462 out:
463 if (kmapped_page) {
464 flush_kernel_dcache_page(kmapped_page);
465 kunmap(kmapped_page);
466 put_arg_page(kmapped_page);
468 return ret;
472 * Like copy_strings, but get argv and its values from kernel memory.
474 int copy_strings_kernel(int argc,char ** argv, struct linux_binprm *bprm)
476 int r;
477 mm_segment_t oldfs = get_fs();
478 set_fs(KERNEL_DS);
479 r = copy_strings(argc, (char __user * __user *)argv, bprm);
480 set_fs(oldfs);
481 return r;
483 EXPORT_SYMBOL(copy_strings_kernel);
485 #ifdef CONFIG_MMU
488 * During bprm_mm_init(), we create a temporary stack at STACK_TOP_MAX. Once
489 * the binfmt code determines where the new stack should reside, we shift it to
490 * its final location. The process proceeds as follows:
492 * 1) Use shift to calculate the new vma endpoints.
493 * 2) Extend vma to cover both the old and new ranges. This ensures the
494 * arguments passed to subsequent functions are consistent.
495 * 3) Move vma's page tables to the new range.
496 * 4) Free up any cleared pgd range.
497 * 5) Shrink the vma to cover only the new range.
499 static int shift_arg_pages(struct vm_area_struct *vma, unsigned long shift)
501 struct mm_struct *mm = vma->vm_mm;
502 unsigned long old_start = vma->vm_start;
503 unsigned long old_end = vma->vm_end;
504 unsigned long length = old_end - old_start;
505 unsigned long new_start = old_start - shift;
506 unsigned long new_end = old_end - shift;
507 struct mmu_gather *tlb;
509 BUG_ON(new_start > new_end);
512 * ensure there are no vmas between where we want to go
513 * and where we are
515 if (vma != find_vma(mm, new_start))
516 return -EFAULT;
519 * cover the whole range: [new_start, old_end)
521 if (vma_adjust(vma, new_start, old_end, vma->vm_pgoff, NULL))
522 return -ENOMEM;
525 * move the page tables downwards, on failure we rely on
526 * process cleanup to remove whatever mess we made.
528 if (length != move_page_tables(vma, old_start,
529 vma, new_start, length))
530 return -ENOMEM;
532 lru_add_drain();
533 tlb = tlb_gather_mmu(mm, 0);
534 if (new_end > old_start) {
536 * when the old and new regions overlap clear from new_end.
538 free_pgd_range(tlb, new_end, old_end, new_end,
539 vma->vm_next ? vma->vm_next->vm_start : 0);
540 } else {
542 * otherwise, clean from old_start; this is done to not touch
543 * the address space in [new_end, old_start) some architectures
544 * have constraints on va-space that make this illegal (IA64) -
545 * for the others its just a little faster.
547 free_pgd_range(tlb, old_start, old_end, new_end,
548 vma->vm_next ? vma->vm_next->vm_start : 0);
550 tlb_finish_mmu(tlb, new_end, old_end);
553 * Shrink the vma to just the new range. Always succeeds.
555 vma_adjust(vma, new_start, new_end, vma->vm_pgoff, NULL);
557 return 0;
561 * Finalizes the stack vm_area_struct. The flags and permissions are updated,
562 * the stack is optionally relocated, and some extra space is added.
564 int setup_arg_pages(struct linux_binprm *bprm,
565 unsigned long stack_top,
566 int executable_stack)
568 unsigned long ret;
569 unsigned long stack_shift;
570 struct mm_struct *mm = current->mm;
571 struct vm_area_struct *vma = bprm->vma;
572 struct vm_area_struct *prev = NULL;
573 unsigned long vm_flags;
574 unsigned long stack_base;
575 unsigned long stack_size;
576 unsigned long stack_expand;
577 unsigned long rlim_stack;
579 #ifdef CONFIG_STACK_GROWSUP
580 /* Limit stack size to 1GB */
581 stack_base = rlimit_max(RLIMIT_STACK);
582 if (stack_base > (1 << 30))
583 stack_base = 1 << 30;
585 /* Make sure we didn't let the argument array grow too large. */
586 if (vma->vm_end - vma->vm_start > stack_base)
587 return -ENOMEM;
589 stack_base = PAGE_ALIGN(stack_top - stack_base);
591 stack_shift = vma->vm_start - stack_base;
592 mm->arg_start = bprm->p - stack_shift;
593 bprm->p = vma->vm_end - stack_shift;
594 #else
595 stack_top = arch_align_stack(stack_top);
596 stack_top = PAGE_ALIGN(stack_top);
598 if (unlikely(stack_top < mmap_min_addr) ||
599 unlikely(vma->vm_end - vma->vm_start >= stack_top - mmap_min_addr))
600 return -ENOMEM;
602 stack_shift = vma->vm_end - stack_top;
604 bprm->p -= stack_shift;
605 mm->arg_start = bprm->p;
606 #endif
608 if (bprm->loader)
609 bprm->loader -= stack_shift;
610 bprm->exec -= stack_shift;
612 down_write(&mm->mmap_sem);
613 vm_flags = VM_STACK_FLAGS;
616 * Adjust stack execute permissions; explicitly enable for
617 * EXSTACK_ENABLE_X, disable for EXSTACK_DISABLE_X and leave alone
618 * (arch default) otherwise.
620 if (unlikely(executable_stack == EXSTACK_ENABLE_X))
621 vm_flags |= VM_EXEC;
622 else if (executable_stack == EXSTACK_DISABLE_X)
623 vm_flags &= ~VM_EXEC;
624 vm_flags |= mm->def_flags;
625 vm_flags |= VM_STACK_INCOMPLETE_SETUP;
627 ret = mprotect_fixup(vma, &prev, vma->vm_start, vma->vm_end,
628 vm_flags);
629 if (ret)
630 goto out_unlock;
631 BUG_ON(prev != vma);
633 /* Move stack pages down in memory. */
634 if (stack_shift) {
635 ret = shift_arg_pages(vma, stack_shift);
636 if (ret)
637 goto out_unlock;
640 /* mprotect_fixup is overkill to remove the temporary stack flags */
641 vma->vm_flags &= ~VM_STACK_INCOMPLETE_SETUP;
643 stack_expand = 131072UL; /* randomly 32*4k (or 2*64k) pages */
644 stack_size = vma->vm_end - vma->vm_start;
646 * Align this down to a page boundary as expand_stack
647 * will align it up.
649 rlim_stack = rlimit(RLIMIT_STACK) & PAGE_MASK;
650 #ifdef CONFIG_STACK_GROWSUP
651 if (stack_size + stack_expand > rlim_stack)
652 stack_base = vma->vm_start + rlim_stack;
653 else
654 stack_base = vma->vm_end + stack_expand;
655 #else
656 if (stack_size + stack_expand > rlim_stack)
657 stack_base = vma->vm_end - rlim_stack;
658 else
659 stack_base = vma->vm_start - stack_expand;
660 #endif
661 ret = expand_stack(vma, stack_base);
662 if (ret)
663 ret = -EFAULT;
665 out_unlock:
666 up_write(&mm->mmap_sem);
667 return ret;
669 EXPORT_SYMBOL(setup_arg_pages);
671 #endif /* CONFIG_MMU */
673 struct file *open_exec(const char *name)
675 struct file *file;
676 int err;
678 file = do_filp_open(AT_FDCWD, name,
679 O_LARGEFILE | O_RDONLY | FMODE_EXEC, 0,
680 MAY_EXEC | MAY_OPEN);
681 if (IS_ERR(file))
682 goto out;
684 err = -EACCES;
685 if (!S_ISREG(file->f_path.dentry->d_inode->i_mode))
686 goto exit;
688 if (file->f_path.mnt->mnt_flags & MNT_NOEXEC)
689 goto exit;
691 fsnotify_open(file->f_path.dentry);
693 err = deny_write_access(file);
694 if (err)
695 goto exit;
697 out:
698 return file;
700 exit:
701 fput(file);
702 return ERR_PTR(err);
704 EXPORT_SYMBOL(open_exec);
706 int kernel_read(struct file *file, loff_t offset,
707 char *addr, unsigned long count)
709 mm_segment_t old_fs;
710 loff_t pos = offset;
711 int result;
713 old_fs = get_fs();
714 set_fs(get_ds());
715 /* The cast to a user pointer is valid due to the set_fs() */
716 result = vfs_read(file, (void __user *)addr, count, &pos);
717 set_fs(old_fs);
718 return result;
721 EXPORT_SYMBOL(kernel_read);
723 static int exec_mmap(struct mm_struct *mm)
725 struct task_struct *tsk;
726 struct mm_struct * old_mm, *active_mm;
728 /* Notify parent that we're no longer interested in the old VM */
729 tsk = current;
730 old_mm = current->mm;
731 sync_mm_rss(tsk, old_mm);
732 mm_release(tsk, old_mm);
734 if (old_mm) {
736 * Make sure that if there is a core dump in progress
737 * for the old mm, we get out and die instead of going
738 * through with the exec. We must hold mmap_sem around
739 * checking core_state and changing tsk->mm.
741 down_read(&old_mm->mmap_sem);
742 if (unlikely(old_mm->core_state)) {
743 up_read(&old_mm->mmap_sem);
744 return -EINTR;
747 task_lock(tsk);
748 active_mm = tsk->active_mm;
749 tsk->mm = mm;
750 tsk->active_mm = mm;
751 activate_mm(active_mm, mm);
752 task_unlock(tsk);
753 arch_pick_mmap_layout(mm);
754 if (old_mm) {
755 up_read(&old_mm->mmap_sem);
756 BUG_ON(active_mm != old_mm);
757 mm_update_next_owner(old_mm);
758 mmput(old_mm);
759 return 0;
761 mmdrop(active_mm);
762 return 0;
766 * This function makes sure the current process has its own signal table,
767 * so that flush_signal_handlers can later reset the handlers without
768 * disturbing other processes. (Other processes might share the signal
769 * table via the CLONE_SIGHAND option to clone().)
771 static int de_thread(struct task_struct *tsk)
773 struct signal_struct *sig = tsk->signal;
774 struct sighand_struct *oldsighand = tsk->sighand;
775 spinlock_t *lock = &oldsighand->siglock;
777 if (thread_group_empty(tsk))
778 goto no_thread_group;
781 * Kill all other threads in the thread group.
783 spin_lock_irq(lock);
784 if (signal_group_exit(sig)) {
786 * Another group action in progress, just
787 * return so that the signal is processed.
789 spin_unlock_irq(lock);
790 return -EAGAIN;
793 sig->group_exit_task = tsk;
794 sig->notify_count = zap_other_threads(tsk);
795 if (!thread_group_leader(tsk))
796 sig->notify_count--;
798 while (sig->notify_count) {
799 __set_current_state(TASK_UNINTERRUPTIBLE);
800 spin_unlock_irq(lock);
801 schedule();
802 spin_lock_irq(lock);
804 spin_unlock_irq(lock);
807 * At this point all other threads have exited, all we have to
808 * do is to wait for the thread group leader to become inactive,
809 * and to assume its PID:
811 if (!thread_group_leader(tsk)) {
812 struct task_struct *leader = tsk->group_leader;
814 sig->notify_count = -1; /* for exit_notify() */
815 for (;;) {
816 write_lock_irq(&tasklist_lock);
817 if (likely(leader->exit_state))
818 break;
819 __set_current_state(TASK_UNINTERRUPTIBLE);
820 write_unlock_irq(&tasklist_lock);
821 schedule();
825 * The only record we have of the real-time age of a
826 * process, regardless of execs it's done, is start_time.
827 * All the past CPU time is accumulated in signal_struct
828 * from sister threads now dead. But in this non-leader
829 * exec, nothing survives from the original leader thread,
830 * whose birth marks the true age of this process now.
831 * When we take on its identity by switching to its PID, we
832 * also take its birthdate (always earlier than our own).
834 tsk->start_time = leader->start_time;
836 BUG_ON(!same_thread_group(leader, tsk));
837 BUG_ON(has_group_leader_pid(tsk));
839 * An exec() starts a new thread group with the
840 * TGID of the previous thread group. Rehash the
841 * two threads with a switched PID, and release
842 * the former thread group leader:
845 /* Become a process group leader with the old leader's pid.
846 * The old leader becomes a thread of the this thread group.
847 * Note: The old leader also uses this pid until release_task
848 * is called. Odd but simple and correct.
850 detach_pid(tsk, PIDTYPE_PID);
851 tsk->pid = leader->pid;
852 attach_pid(tsk, PIDTYPE_PID, task_pid(leader));
853 transfer_pid(leader, tsk, PIDTYPE_PGID);
854 transfer_pid(leader, tsk, PIDTYPE_SID);
856 list_replace_rcu(&leader->tasks, &tsk->tasks);
857 list_replace_init(&leader->sibling, &tsk->sibling);
859 tsk->group_leader = tsk;
860 leader->group_leader = tsk;
862 tsk->exit_signal = SIGCHLD;
864 BUG_ON(leader->exit_state != EXIT_ZOMBIE);
865 leader->exit_state = EXIT_DEAD;
866 write_unlock_irq(&tasklist_lock);
868 release_task(leader);
871 sig->group_exit_task = NULL;
872 sig->notify_count = 0;
874 no_thread_group:
875 if (current->mm)
876 setmax_mm_hiwater_rss(&sig->maxrss, current->mm);
878 exit_itimers(sig);
879 flush_itimer_signals();
881 if (atomic_read(&oldsighand->count) != 1) {
882 struct sighand_struct *newsighand;
884 * This ->sighand is shared with the CLONE_SIGHAND
885 * but not CLONE_THREAD task, switch to the new one.
887 newsighand = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
888 if (!newsighand)
889 return -ENOMEM;
891 atomic_set(&newsighand->count, 1);
892 memcpy(newsighand->action, oldsighand->action,
893 sizeof(newsighand->action));
895 write_lock_irq(&tasklist_lock);
896 spin_lock(&oldsighand->siglock);
897 rcu_assign_pointer(tsk->sighand, newsighand);
898 spin_unlock(&oldsighand->siglock);
899 write_unlock_irq(&tasklist_lock);
901 __cleanup_sighand(oldsighand);
904 BUG_ON(!thread_group_leader(tsk));
905 return 0;
909 * These functions flushes out all traces of the currently running executable
910 * so that a new one can be started
912 static void flush_old_files(struct files_struct * files)
914 long j = -1;
915 struct fdtable *fdt;
917 spin_lock(&files->file_lock);
918 for (;;) {
919 unsigned long set, i;
921 j++;
922 i = j * __NFDBITS;
923 fdt = files_fdtable(files);
924 if (i >= fdt->max_fds)
925 break;
926 set = fdt->close_on_exec->fds_bits[j];
927 if (!set)
928 continue;
929 fdt->close_on_exec->fds_bits[j] = 0;
930 spin_unlock(&files->file_lock);
931 for ( ; set ; i++,set >>= 1) {
932 if (set & 1) {
933 sys_close(i);
936 spin_lock(&files->file_lock);
939 spin_unlock(&files->file_lock);
942 char *get_task_comm(char *buf, struct task_struct *tsk)
944 /* buf must be at least sizeof(tsk->comm) in size */
945 task_lock(tsk);
946 strncpy(buf, tsk->comm, sizeof(tsk->comm));
947 task_unlock(tsk);
948 return buf;
951 void set_task_comm(struct task_struct *tsk, char *buf)
953 task_lock(tsk);
956 * Threads may access current->comm without holding
957 * the task lock, so write the string carefully.
958 * Readers without a lock may see incomplete new
959 * names but are safe from non-terminating string reads.
961 memset(tsk->comm, 0, TASK_COMM_LEN);
962 wmb();
963 strlcpy(tsk->comm, buf, sizeof(tsk->comm));
964 task_unlock(tsk);
965 perf_event_comm(tsk);
968 int flush_old_exec(struct linux_binprm * bprm)
970 int retval;
973 * Make sure we have a private signal table and that
974 * we are unassociated from the previous thread group.
976 retval = de_thread(current);
977 if (retval)
978 goto out;
980 set_mm_exe_file(bprm->mm, bprm->file);
983 * Release all of the old mmap stuff
985 retval = exec_mmap(bprm->mm);
986 if (retval)
987 goto out;
989 bprm->mm = NULL; /* We're using it now */
991 current->flags &= ~PF_RANDOMIZE;
992 flush_thread();
993 current->personality &= ~bprm->per_clear;
995 return 0;
997 out:
998 return retval;
1000 EXPORT_SYMBOL(flush_old_exec);
1002 void setup_new_exec(struct linux_binprm * bprm)
1004 int i, ch;
1005 char * name;
1006 char tcomm[sizeof(current->comm)];
1008 arch_pick_mmap_layout(current->mm);
1010 /* This is the point of no return */
1011 current->sas_ss_sp = current->sas_ss_size = 0;
1013 if (current_euid() == current_uid() && current_egid() == current_gid())
1014 set_dumpable(current->mm, 1);
1015 else
1016 set_dumpable(current->mm, suid_dumpable);
1018 name = bprm->filename;
1020 /* Copies the binary name from after last slash */
1021 for (i=0; (ch = *(name++)) != '\0';) {
1022 if (ch == '/')
1023 i = 0; /* overwrite what we wrote */
1024 else
1025 if (i < (sizeof(tcomm) - 1))
1026 tcomm[i++] = ch;
1028 tcomm[i] = '\0';
1029 set_task_comm(current, tcomm);
1031 /* Set the new mm task size. We have to do that late because it may
1032 * depend on TIF_32BIT which is only updated in flush_thread() on
1033 * some architectures like powerpc
1035 current->mm->task_size = TASK_SIZE;
1037 /* install the new credentials */
1038 if (bprm->cred->uid != current_euid() ||
1039 bprm->cred->gid != current_egid()) {
1040 current->pdeath_signal = 0;
1041 } else if (file_permission(bprm->file, MAY_READ) ||
1042 bprm->interp_flags & BINPRM_FLAGS_ENFORCE_NONDUMP) {
1043 set_dumpable(current->mm, suid_dumpable);
1047 * Flush performance counters when crossing a
1048 * security domain:
1050 if (!get_dumpable(current->mm))
1051 perf_event_exit_task(current);
1053 /* An exec changes our domain. We are no longer part of the thread
1054 group */
1056 current->self_exec_id++;
1058 flush_signal_handlers(current, 0);
1059 flush_old_files(current->files);
1061 EXPORT_SYMBOL(setup_new_exec);
1064 * Prepare credentials and lock ->cred_guard_mutex.
1065 * install_exec_creds() commits the new creds and drops the lock.
1066 * Or, if exec fails before, free_bprm() should release ->cred and
1067 * and unlock.
1069 int prepare_bprm_creds(struct linux_binprm *bprm)
1071 if (mutex_lock_interruptible(&current->cred_guard_mutex))
1072 return -ERESTARTNOINTR;
1074 bprm->cred = prepare_exec_creds();
1075 if (likely(bprm->cred))
1076 return 0;
1078 mutex_unlock(&current->cred_guard_mutex);
1079 return -ENOMEM;
1082 void free_bprm(struct linux_binprm *bprm)
1084 free_arg_pages(bprm);
1085 if (bprm->cred) {
1086 mutex_unlock(&current->cred_guard_mutex);
1087 abort_creds(bprm->cred);
1089 kfree(bprm);
1093 * install the new credentials for this executable
1095 void install_exec_creds(struct linux_binprm *bprm)
1097 security_bprm_committing_creds(bprm);
1099 commit_creds(bprm->cred);
1100 bprm->cred = NULL;
1102 * cred_guard_mutex must be held at least to this point to prevent
1103 * ptrace_attach() from altering our determination of the task's
1104 * credentials; any time after this it may be unlocked.
1106 security_bprm_committed_creds(bprm);
1107 mutex_unlock(&current->cred_guard_mutex);
1109 EXPORT_SYMBOL(install_exec_creds);
1112 * determine how safe it is to execute the proposed program
1113 * - the caller must hold current->cred_guard_mutex to protect against
1114 * PTRACE_ATTACH
1116 int check_unsafe_exec(struct linux_binprm *bprm)
1118 struct task_struct *p = current, *t;
1119 unsigned n_fs;
1120 int res = 0;
1122 bprm->unsafe = tracehook_unsafe_exec(p);
1124 n_fs = 1;
1125 write_lock(&p->fs->lock);
1126 rcu_read_lock();
1127 for (t = next_thread(p); t != p; t = next_thread(t)) {
1128 if (t->fs == p->fs)
1129 n_fs++;
1131 rcu_read_unlock();
1133 if (p->fs->users > n_fs) {
1134 bprm->unsafe |= LSM_UNSAFE_SHARE;
1135 } else {
1136 res = -EAGAIN;
1137 if (!p->fs->in_exec) {
1138 p->fs->in_exec = 1;
1139 res = 1;
1142 write_unlock(&p->fs->lock);
1144 return res;
1148 * Fill the binprm structure from the inode.
1149 * Check permissions, then read the first 128 (BINPRM_BUF_SIZE) bytes
1151 * This may be called multiple times for binary chains (scripts for example).
1153 int prepare_binprm(struct linux_binprm *bprm)
1155 umode_t mode;
1156 struct inode * inode = bprm->file->f_path.dentry->d_inode;
1157 int retval;
1159 mode = inode->i_mode;
1160 if (bprm->file->f_op == NULL)
1161 return -EACCES;
1163 /* clear any previous set[ug]id data from a previous binary */
1164 bprm->cred->euid = current_euid();
1165 bprm->cred->egid = current_egid();
1167 if (!(bprm->file->f_path.mnt->mnt_flags & MNT_NOSUID)) {
1168 /* Set-uid? */
1169 if (mode & S_ISUID) {
1170 bprm->per_clear |= PER_CLEAR_ON_SETID;
1171 bprm->cred->euid = inode->i_uid;
1174 /* Set-gid? */
1176 * If setgid is set but no group execute bit then this
1177 * is a candidate for mandatory locking, not a setgid
1178 * executable.
1180 if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP)) {
1181 bprm->per_clear |= PER_CLEAR_ON_SETID;
1182 bprm->cred->egid = inode->i_gid;
1186 /* fill in binprm security blob */
1187 retval = security_bprm_set_creds(bprm);
1188 if (retval)
1189 return retval;
1190 bprm->cred_prepared = 1;
1192 memset(bprm->buf, 0, BINPRM_BUF_SIZE);
1193 return kernel_read(bprm->file, 0, bprm->buf, BINPRM_BUF_SIZE);
1196 EXPORT_SYMBOL(prepare_binprm);
1199 * Arguments are '\0' separated strings found at the location bprm->p
1200 * points to; chop off the first by relocating brpm->p to right after
1201 * the first '\0' encountered.
1203 int remove_arg_zero(struct linux_binprm *bprm)
1205 int ret = 0;
1206 unsigned long offset;
1207 char *kaddr;
1208 struct page *page;
1210 if (!bprm->argc)
1211 return 0;
1213 do {
1214 offset = bprm->p & ~PAGE_MASK;
1215 page = get_arg_page(bprm, bprm->p, 0);
1216 if (!page) {
1217 ret = -EFAULT;
1218 goto out;
1220 kaddr = kmap_atomic(page, KM_USER0);
1222 for (; offset < PAGE_SIZE && kaddr[offset];
1223 offset++, bprm->p++)
1226 kunmap_atomic(kaddr, KM_USER0);
1227 put_arg_page(page);
1229 if (offset == PAGE_SIZE)
1230 free_arg_page(bprm, (bprm->p >> PAGE_SHIFT) - 1);
1231 } while (offset == PAGE_SIZE);
1233 bprm->p++;
1234 bprm->argc--;
1235 ret = 0;
1237 out:
1238 return ret;
1240 EXPORT_SYMBOL(remove_arg_zero);
1243 * cycle the list of binary formats handler, until one recognizes the image
1245 int search_binary_handler(struct linux_binprm *bprm,struct pt_regs *regs)
1247 unsigned int depth = bprm->recursion_depth;
1248 int try,retval;
1249 struct linux_binfmt *fmt;
1251 retval = security_bprm_check(bprm);
1252 if (retval)
1253 return retval;
1255 /* kernel module loader fixup */
1256 /* so we don't try to load run modprobe in kernel space. */
1257 set_fs(USER_DS);
1259 retval = audit_bprm(bprm);
1260 if (retval)
1261 return retval;
1263 retval = -ENOENT;
1264 for (try=0; try<2; try++) {
1265 read_lock(&binfmt_lock);
1266 list_for_each_entry(fmt, &formats, lh) {
1267 int (*fn)(struct linux_binprm *, struct pt_regs *) = fmt->load_binary;
1268 if (!fn)
1269 continue;
1270 if (!try_module_get(fmt->module))
1271 continue;
1272 read_unlock(&binfmt_lock);
1273 retval = fn(bprm, regs);
1275 * Restore the depth counter to its starting value
1276 * in this call, so we don't have to rely on every
1277 * load_binary function to restore it on return.
1279 bprm->recursion_depth = depth;
1280 if (retval >= 0) {
1281 if (depth == 0)
1282 tracehook_report_exec(fmt, bprm, regs);
1283 put_binfmt(fmt);
1284 allow_write_access(bprm->file);
1285 if (bprm->file)
1286 fput(bprm->file);
1287 bprm->file = NULL;
1288 current->did_exec = 1;
1289 proc_exec_connector(current);
1290 return retval;
1292 read_lock(&binfmt_lock);
1293 put_binfmt(fmt);
1294 if (retval != -ENOEXEC || bprm->mm == NULL)
1295 break;
1296 if (!bprm->file) {
1297 read_unlock(&binfmt_lock);
1298 return retval;
1301 read_unlock(&binfmt_lock);
1302 if (retval != -ENOEXEC || bprm->mm == NULL) {
1303 break;
1304 #ifdef CONFIG_MODULES
1305 } else {
1306 #define printable(c) (((c)=='\t') || ((c)=='\n') || (0x20<=(c) && (c)<=0x7e))
1307 if (printable(bprm->buf[0]) &&
1308 printable(bprm->buf[1]) &&
1309 printable(bprm->buf[2]) &&
1310 printable(bprm->buf[3]))
1311 break; /* -ENOEXEC */
1312 request_module("binfmt-%04x", *(unsigned short *)(&bprm->buf[2]));
1313 #endif
1316 return retval;
1319 EXPORT_SYMBOL(search_binary_handler);
1322 * sys_execve() executes a new program.
1324 int do_execve(char * filename,
1325 char __user *__user *argv,
1326 char __user *__user *envp,
1327 struct pt_regs * regs)
1329 struct linux_binprm *bprm;
1330 struct file *file;
1331 struct files_struct *displaced;
1332 bool clear_in_exec;
1333 int retval;
1335 retval = unshare_files(&displaced);
1336 if (retval)
1337 goto out_ret;
1339 retval = -ENOMEM;
1340 bprm = kzalloc(sizeof(*bprm), GFP_KERNEL);
1341 if (!bprm)
1342 goto out_files;
1344 retval = prepare_bprm_creds(bprm);
1345 if (retval)
1346 goto out_free;
1348 retval = check_unsafe_exec(bprm);
1349 if (retval < 0)
1350 goto out_free;
1351 clear_in_exec = retval;
1352 current->in_execve = 1;
1354 file = open_exec(filename);
1355 retval = PTR_ERR(file);
1356 if (IS_ERR(file))
1357 goto out_unmark;
1359 sched_exec();
1361 bprm->file = file;
1362 bprm->filename = filename;
1363 bprm->interp = filename;
1365 retval = bprm_mm_init(bprm);
1366 if (retval)
1367 goto out_file;
1369 bprm->argc = count(argv, MAX_ARG_STRINGS);
1370 if ((retval = bprm->argc) < 0)
1371 goto out;
1373 bprm->envc = count(envp, MAX_ARG_STRINGS);
1374 if ((retval = bprm->envc) < 0)
1375 goto out;
1377 retval = prepare_binprm(bprm);
1378 if (retval < 0)
1379 goto out;
1381 retval = copy_strings_kernel(1, &bprm->filename, bprm);
1382 if (retval < 0)
1383 goto out;
1385 bprm->exec = bprm->p;
1386 retval = copy_strings(bprm->envc, envp, bprm);
1387 if (retval < 0)
1388 goto out;
1390 retval = copy_strings(bprm->argc, argv, bprm);
1391 if (retval < 0)
1392 goto out;
1394 current->flags &= ~PF_KTHREAD;
1395 retval = search_binary_handler(bprm,regs);
1396 if (retval < 0)
1397 goto out;
1399 /* execve succeeded */
1400 current->fs->in_exec = 0;
1401 current->in_execve = 0;
1402 acct_update_integrals(current);
1403 free_bprm(bprm);
1404 if (displaced)
1405 put_files_struct(displaced);
1406 return retval;
1408 out:
1409 if (bprm->mm)
1410 mmput (bprm->mm);
1412 out_file:
1413 if (bprm->file) {
1414 allow_write_access(bprm->file);
1415 fput(bprm->file);
1418 out_unmark:
1419 if (clear_in_exec)
1420 current->fs->in_exec = 0;
1421 current->in_execve = 0;
1423 out_free:
1424 free_bprm(bprm);
1426 out_files:
1427 if (displaced)
1428 reset_files_struct(displaced);
1429 out_ret:
1430 return retval;
1433 void set_binfmt(struct linux_binfmt *new)
1435 struct mm_struct *mm = current->mm;
1437 if (mm->binfmt)
1438 module_put(mm->binfmt->module);
1440 mm->binfmt = new;
1441 if (new)
1442 __module_get(new->module);
1445 EXPORT_SYMBOL(set_binfmt);
1447 /* format_corename will inspect the pattern parameter, and output a
1448 * name into corename, which must have space for at least
1449 * CORENAME_MAX_SIZE bytes plus one byte for the zero terminator.
1451 static int format_corename(char *corename, long signr)
1453 const struct cred *cred = current_cred();
1454 const char *pat_ptr = core_pattern;
1455 int ispipe = (*pat_ptr == '|');
1456 char *out_ptr = corename;
1457 char *const out_end = corename + CORENAME_MAX_SIZE;
1458 int rc;
1459 int pid_in_pattern = 0;
1461 /* Repeat as long as we have more pattern to process and more output
1462 space */
1463 while (*pat_ptr) {
1464 if (*pat_ptr != '%') {
1465 if (out_ptr == out_end)
1466 goto out;
1467 *out_ptr++ = *pat_ptr++;
1468 } else {
1469 switch (*++pat_ptr) {
1470 case 0:
1471 goto out;
1472 /* Double percent, output one percent */
1473 case '%':
1474 if (out_ptr == out_end)
1475 goto out;
1476 *out_ptr++ = '%';
1477 break;
1478 /* pid */
1479 case 'p':
1480 pid_in_pattern = 1;
1481 rc = snprintf(out_ptr, out_end - out_ptr,
1482 "%d", task_tgid_vnr(current));
1483 if (rc > out_end - out_ptr)
1484 goto out;
1485 out_ptr += rc;
1486 break;
1487 /* uid */
1488 case 'u':
1489 rc = snprintf(out_ptr, out_end - out_ptr,
1490 "%d", cred->uid);
1491 if (rc > out_end - out_ptr)
1492 goto out;
1493 out_ptr += rc;
1494 break;
1495 /* gid */
1496 case 'g':
1497 rc = snprintf(out_ptr, out_end - out_ptr,
1498 "%d", cred->gid);
1499 if (rc > out_end - out_ptr)
1500 goto out;
1501 out_ptr += rc;
1502 break;
1503 /* signal that caused the coredump */
1504 case 's':
1505 rc = snprintf(out_ptr, out_end - out_ptr,
1506 "%ld", signr);
1507 if (rc > out_end - out_ptr)
1508 goto out;
1509 out_ptr += rc;
1510 break;
1511 /* UNIX time of coredump */
1512 case 't': {
1513 struct timeval tv;
1514 do_gettimeofday(&tv);
1515 rc = snprintf(out_ptr, out_end - out_ptr,
1516 "%lu", tv.tv_sec);
1517 if (rc > out_end - out_ptr)
1518 goto out;
1519 out_ptr += rc;
1520 break;
1522 /* hostname */
1523 case 'h':
1524 down_read(&uts_sem);
1525 rc = snprintf(out_ptr, out_end - out_ptr,
1526 "%s", utsname()->nodename);
1527 up_read(&uts_sem);
1528 if (rc > out_end - out_ptr)
1529 goto out;
1530 out_ptr += rc;
1531 break;
1532 /* executable */
1533 case 'e':
1534 rc = snprintf(out_ptr, out_end - out_ptr,
1535 "%s", current->comm);
1536 if (rc > out_end - out_ptr)
1537 goto out;
1538 out_ptr += rc;
1539 break;
1540 /* core limit size */
1541 case 'c':
1542 rc = snprintf(out_ptr, out_end - out_ptr,
1543 "%lu", rlimit(RLIMIT_CORE));
1544 if (rc > out_end - out_ptr)
1545 goto out;
1546 out_ptr += rc;
1547 break;
1548 default:
1549 break;
1551 ++pat_ptr;
1554 /* Backward compatibility with core_uses_pid:
1556 * If core_pattern does not include a %p (as is the default)
1557 * and core_uses_pid is set, then .%pid will be appended to
1558 * the filename. Do not do this for piped commands. */
1559 if (!ispipe && !pid_in_pattern && core_uses_pid) {
1560 rc = snprintf(out_ptr, out_end - out_ptr,
1561 ".%d", task_tgid_vnr(current));
1562 if (rc > out_end - out_ptr)
1563 goto out;
1564 out_ptr += rc;
1566 out:
1567 *out_ptr = 0;
1568 return ispipe;
1571 static int zap_process(struct task_struct *start, int exit_code)
1573 struct task_struct *t;
1574 int nr = 0;
1576 start->signal->flags = SIGNAL_GROUP_EXIT;
1577 start->signal->group_exit_code = exit_code;
1578 start->signal->group_stop_count = 0;
1580 t = start;
1581 do {
1582 if (t != current && t->mm) {
1583 sigaddset(&t->pending.signal, SIGKILL);
1584 signal_wake_up(t, 1);
1585 nr++;
1587 } while_each_thread(start, t);
1589 return nr;
1592 static inline int zap_threads(struct task_struct *tsk, struct mm_struct *mm,
1593 struct core_state *core_state, int exit_code)
1595 struct task_struct *g, *p;
1596 unsigned long flags;
1597 int nr = -EAGAIN;
1599 spin_lock_irq(&tsk->sighand->siglock);
1600 if (!signal_group_exit(tsk->signal)) {
1601 mm->core_state = core_state;
1602 nr = zap_process(tsk, exit_code);
1604 spin_unlock_irq(&tsk->sighand->siglock);
1605 if (unlikely(nr < 0))
1606 return nr;
1608 if (atomic_read(&mm->mm_users) == nr + 1)
1609 goto done;
1611 * We should find and kill all tasks which use this mm, and we should
1612 * count them correctly into ->nr_threads. We don't take tasklist
1613 * lock, but this is safe wrt:
1615 * fork:
1616 * None of sub-threads can fork after zap_process(leader). All
1617 * processes which were created before this point should be
1618 * visible to zap_threads() because copy_process() adds the new
1619 * process to the tail of init_task.tasks list, and lock/unlock
1620 * of ->siglock provides a memory barrier.
1622 * do_exit:
1623 * The caller holds mm->mmap_sem. This means that the task which
1624 * uses this mm can't pass exit_mm(), so it can't exit or clear
1625 * its ->mm.
1627 * de_thread:
1628 * It does list_replace_rcu(&leader->tasks, &current->tasks),
1629 * we must see either old or new leader, this does not matter.
1630 * However, it can change p->sighand, so lock_task_sighand(p)
1631 * must be used. Since p->mm != NULL and we hold ->mmap_sem
1632 * it can't fail.
1634 * Note also that "g" can be the old leader with ->mm == NULL
1635 * and already unhashed and thus removed from ->thread_group.
1636 * This is OK, __unhash_process()->list_del_rcu() does not
1637 * clear the ->next pointer, we will find the new leader via
1638 * next_thread().
1640 rcu_read_lock();
1641 for_each_process(g) {
1642 if (g == tsk->group_leader)
1643 continue;
1644 if (g->flags & PF_KTHREAD)
1645 continue;
1646 p = g;
1647 do {
1648 if (p->mm) {
1649 if (unlikely(p->mm == mm)) {
1650 lock_task_sighand(p, &flags);
1651 nr += zap_process(p, exit_code);
1652 unlock_task_sighand(p, &flags);
1654 break;
1656 } while_each_thread(g, p);
1658 rcu_read_unlock();
1659 done:
1660 atomic_set(&core_state->nr_threads, nr);
1661 return nr;
1664 static int coredump_wait(int exit_code, struct core_state *core_state)
1666 struct task_struct *tsk = current;
1667 struct mm_struct *mm = tsk->mm;
1668 struct completion *vfork_done;
1669 int core_waiters = -EBUSY;
1671 init_completion(&core_state->startup);
1672 core_state->dumper.task = tsk;
1673 core_state->dumper.next = NULL;
1675 down_write(&mm->mmap_sem);
1676 if (!mm->core_state)
1677 core_waiters = zap_threads(tsk, mm, core_state, exit_code);
1678 up_write(&mm->mmap_sem);
1680 if (unlikely(core_waiters < 0))
1681 goto fail;
1684 * Make sure nobody is waiting for us to release the VM,
1685 * otherwise we can deadlock when we wait on each other
1687 vfork_done = tsk->vfork_done;
1688 if (vfork_done) {
1689 tsk->vfork_done = NULL;
1690 complete(vfork_done);
1693 if (core_waiters)
1694 wait_for_completion(&core_state->startup);
1695 fail:
1696 return core_waiters;
1699 static void coredump_finish(struct mm_struct *mm)
1701 struct core_thread *curr, *next;
1702 struct task_struct *task;
1704 next = mm->core_state->dumper.next;
1705 while ((curr = next) != NULL) {
1706 next = curr->next;
1707 task = curr->task;
1709 * see exit_mm(), curr->task must not see
1710 * ->task == NULL before we read ->next.
1712 smp_mb();
1713 curr->task = NULL;
1714 wake_up_process(task);
1717 mm->core_state = NULL;
1721 * set_dumpable converts traditional three-value dumpable to two flags and
1722 * stores them into mm->flags. It modifies lower two bits of mm->flags, but
1723 * these bits are not changed atomically. So get_dumpable can observe the
1724 * intermediate state. To avoid doing unexpected behavior, get get_dumpable
1725 * return either old dumpable or new one by paying attention to the order of
1726 * modifying the bits.
1728 * dumpable | mm->flags (binary)
1729 * old new | initial interim final
1730 * ---------+-----------------------
1731 * 0 1 | 00 01 01
1732 * 0 2 | 00 10(*) 11
1733 * 1 0 | 01 00 00
1734 * 1 2 | 01 11 11
1735 * 2 0 | 11 10(*) 00
1736 * 2 1 | 11 11 01
1738 * (*) get_dumpable regards interim value of 10 as 11.
1740 void set_dumpable(struct mm_struct *mm, int value)
1742 switch (value) {
1743 case 0:
1744 clear_bit(MMF_DUMPABLE, &mm->flags);
1745 smp_wmb();
1746 clear_bit(MMF_DUMP_SECURELY, &mm->flags);
1747 break;
1748 case 1:
1749 set_bit(MMF_DUMPABLE, &mm->flags);
1750 smp_wmb();
1751 clear_bit(MMF_DUMP_SECURELY, &mm->flags);
1752 break;
1753 case 2:
1754 set_bit(MMF_DUMP_SECURELY, &mm->flags);
1755 smp_wmb();
1756 set_bit(MMF_DUMPABLE, &mm->flags);
1757 break;
1761 static int __get_dumpable(unsigned long mm_flags)
1763 int ret;
1765 ret = mm_flags & MMF_DUMPABLE_MASK;
1766 return (ret >= 2) ? 2 : ret;
1769 int get_dumpable(struct mm_struct *mm)
1771 return __get_dumpable(mm->flags);
1774 static void wait_for_dump_helpers(struct file *file)
1776 struct pipe_inode_info *pipe;
1778 pipe = file->f_path.dentry->d_inode->i_pipe;
1780 pipe_lock(pipe);
1781 pipe->readers++;
1782 pipe->writers--;
1784 while ((pipe->readers > 1) && (!signal_pending(current))) {
1785 wake_up_interruptible_sync(&pipe->wait);
1786 kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
1787 pipe_wait(pipe);
1790 pipe->readers--;
1791 pipe->writers++;
1792 pipe_unlock(pipe);
1798 * uhm_pipe_setup
1799 * helper function to customize the process used
1800 * to collect the core in userspace. Specifically
1801 * it sets up a pipe and installs it as fd 0 (stdin)
1802 * for the process. Returns 0 on success, or
1803 * PTR_ERR on failure.
1804 * Note that it also sets the core limit to 1. This
1805 * is a special value that we use to trap recursive
1806 * core dumps
1808 static int umh_pipe_setup(struct subprocess_info *info)
1810 struct file *rp, *wp;
1811 struct fdtable *fdt;
1812 struct coredump_params *cp = (struct coredump_params *)info->data;
1813 struct files_struct *cf = current->files;
1815 wp = create_write_pipe(0);
1816 if (IS_ERR(wp))
1817 return PTR_ERR(wp);
1819 rp = create_read_pipe(wp, 0);
1820 if (IS_ERR(rp)) {
1821 free_write_pipe(wp);
1822 return PTR_ERR(rp);
1825 cp->file = wp;
1827 sys_close(0);
1828 fd_install(0, rp);
1829 spin_lock(&cf->file_lock);
1830 fdt = files_fdtable(cf);
1831 FD_SET(0, fdt->open_fds);
1832 FD_CLR(0, fdt->close_on_exec);
1833 spin_unlock(&cf->file_lock);
1835 /* and disallow core files too */
1836 current->signal->rlim[RLIMIT_CORE] = (struct rlimit){1, 1};
1838 return 0;
1841 void do_coredump(long signr, int exit_code, struct pt_regs *regs)
1843 struct core_state core_state;
1844 char corename[CORENAME_MAX_SIZE + 1];
1845 struct mm_struct *mm = current->mm;
1846 struct linux_binfmt * binfmt;
1847 const struct cred *old_cred;
1848 struct cred *cred;
1849 int retval = 0;
1850 int flag = 0;
1851 int ispipe;
1852 static atomic_t core_dump_count = ATOMIC_INIT(0);
1853 struct coredump_params cprm = {
1854 .signr = signr,
1855 .regs = regs,
1856 .limit = rlimit(RLIMIT_CORE),
1858 * We must use the same mm->flags while dumping core to avoid
1859 * inconsistency of bit flags, since this flag is not protected
1860 * by any locks.
1862 .mm_flags = mm->flags,
1865 audit_core_dumps(signr);
1867 binfmt = mm->binfmt;
1868 if (!binfmt || !binfmt->core_dump)
1869 goto fail;
1870 if (!__get_dumpable(cprm.mm_flags))
1871 goto fail;
1873 cred = prepare_creds();
1874 if (!cred)
1875 goto fail;
1877 * We cannot trust fsuid as being the "true" uid of the
1878 * process nor do we know its entire history. We only know it
1879 * was tainted so we dump it as root in mode 2.
1881 if (__get_dumpable(cprm.mm_flags) == 2) {
1882 /* Setuid core dump mode */
1883 flag = O_EXCL; /* Stop rewrite attacks */
1884 cred->fsuid = 0; /* Dump root private */
1887 retval = coredump_wait(exit_code, &core_state);
1888 if (retval < 0)
1889 goto fail_creds;
1891 old_cred = override_creds(cred);
1894 * Clear any false indication of pending signals that might
1895 * be seen by the filesystem code called to write the core file.
1897 clear_thread_flag(TIF_SIGPENDING);
1900 * lock_kernel() because format_corename() is controlled by sysctl, which
1901 * uses lock_kernel()
1903 lock_kernel();
1904 ispipe = format_corename(corename, signr);
1905 unlock_kernel();
1907 if (ispipe) {
1908 int dump_count;
1909 char **helper_argv;
1911 if (cprm.limit == 1) {
1913 * Normally core limits are irrelevant to pipes, since
1914 * we're not writing to the file system, but we use
1915 * cprm.limit of 1 here as a speacial value. Any
1916 * non-1 limit gets set to RLIM_INFINITY below, but
1917 * a limit of 0 skips the dump. This is a consistent
1918 * way to catch recursive crashes. We can still crash
1919 * if the core_pattern binary sets RLIM_CORE = !1
1920 * but it runs as root, and can do lots of stupid things
1921 * Note that we use task_tgid_vnr here to grab the pid
1922 * of the process group leader. That way we get the
1923 * right pid if a thread in a multi-threaded
1924 * core_pattern process dies.
1926 printk(KERN_WARNING
1927 "Process %d(%s) has RLIMIT_CORE set to 1\n",
1928 task_tgid_vnr(current), current->comm);
1929 printk(KERN_WARNING "Aborting core\n");
1930 goto fail_unlock;
1932 cprm.limit = RLIM_INFINITY;
1934 dump_count = atomic_inc_return(&core_dump_count);
1935 if (core_pipe_limit && (core_pipe_limit < dump_count)) {
1936 printk(KERN_WARNING "Pid %d(%s) over core_pipe_limit\n",
1937 task_tgid_vnr(current), current->comm);
1938 printk(KERN_WARNING "Skipping core dump\n");
1939 goto fail_dropcount;
1942 helper_argv = argv_split(GFP_KERNEL, corename+1, NULL);
1943 if (!helper_argv) {
1944 printk(KERN_WARNING "%s failed to allocate memory\n",
1945 __func__);
1946 goto fail_dropcount;
1949 retval = call_usermodehelper_fns(helper_argv[0], helper_argv,
1950 NULL, UMH_WAIT_EXEC, umh_pipe_setup,
1951 NULL, &cprm);
1952 argv_free(helper_argv);
1953 if (retval) {
1954 printk(KERN_INFO "Core dump to %s pipe failed\n",
1955 corename);
1956 goto close_fail;
1958 } else {
1959 struct inode *inode;
1961 if (cprm.limit < binfmt->min_coredump)
1962 goto fail_unlock;
1964 cprm.file = filp_open(corename,
1965 O_CREAT | 2 | O_NOFOLLOW | O_LARGEFILE | flag,
1966 0600);
1967 if (IS_ERR(cprm.file))
1968 goto fail_unlock;
1970 inode = cprm.file->f_path.dentry->d_inode;
1971 if (inode->i_nlink > 1)
1972 goto close_fail;
1973 if (d_unhashed(cprm.file->f_path.dentry))
1974 goto close_fail;
1976 * AK: actually i see no reason to not allow this for named
1977 * pipes etc, but keep the previous behaviour for now.
1979 if (!S_ISREG(inode->i_mode))
1980 goto close_fail;
1982 * Dont allow local users get cute and trick others to coredump
1983 * into their pre-created files.
1985 if (inode->i_uid != current_fsuid())
1986 goto close_fail;
1987 if (!cprm.file->f_op || !cprm.file->f_op->write)
1988 goto close_fail;
1989 if (do_truncate(cprm.file->f_path.dentry, 0, 0, cprm.file))
1990 goto close_fail;
1993 retval = binfmt->core_dump(&cprm);
1994 if (retval)
1995 current->signal->group_exit_code |= 0x80;
1997 if (ispipe && core_pipe_limit)
1998 wait_for_dump_helpers(cprm.file);
1999 close_fail:
2000 if (cprm.file)
2001 filp_close(cprm.file, NULL);
2002 fail_dropcount:
2003 if (ispipe)
2004 atomic_dec(&core_dump_count);
2005 fail_unlock:
2006 coredump_finish(mm);
2007 revert_creds(old_cred);
2008 fail_creds:
2009 put_cred(cred);
2010 fail:
2011 return;