USB: io_edgeport: checkpatch cleanups
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / kernel / sched.c
blob9584b66c249a5363131ad9eb168ec0f522eb1f67
1 /*
2 * kernel/sched.c
4 * Kernel scheduler and related syscalls
6 * Copyright (C) 1991-2002 Linus Torvalds
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
29 #include <linux/mm.h>
30 #include <linux/module.h>
31 #include <linux/nmi.h>
32 #include <linux/init.h>
33 #include <linux/uaccess.h>
34 #include <linux/highmem.h>
35 #include <linux/smp_lock.h>
36 #include <asm/mmu_context.h>
37 #include <linux/interrupt.h>
38 #include <linux/capability.h>
39 #include <linux/completion.h>
40 #include <linux/kernel_stat.h>
41 #include <linux/debug_locks.h>
42 #include <linux/perf_event.h>
43 #include <linux/security.h>
44 #include <linux/notifier.h>
45 #include <linux/profile.h>
46 #include <linux/freezer.h>
47 #include <linux/vmalloc.h>
48 #include <linux/blkdev.h>
49 #include <linux/delay.h>
50 #include <linux/pid_namespace.h>
51 #include <linux/smp.h>
52 #include <linux/threads.h>
53 #include <linux/timer.h>
54 #include <linux/rcupdate.h>
55 #include <linux/cpu.h>
56 #include <linux/cpuset.h>
57 #include <linux/percpu.h>
58 #include <linux/kthread.h>
59 #include <linux/proc_fs.h>
60 #include <linux/seq_file.h>
61 #include <linux/sysctl.h>
62 #include <linux/syscalls.h>
63 #include <linux/times.h>
64 #include <linux/tsacct_kern.h>
65 #include <linux/kprobes.h>
66 #include <linux/delayacct.h>
67 #include <linux/unistd.h>
68 #include <linux/pagemap.h>
69 #include <linux/hrtimer.h>
70 #include <linux/tick.h>
71 #include <linux/debugfs.h>
72 #include <linux/ctype.h>
73 #include <linux/ftrace.h>
74 #include <linux/slab.h>
76 #include <asm/tlb.h>
77 #include <asm/irq_regs.h>
79 #include "sched_cpupri.h"
81 #define CREATE_TRACE_POINTS
82 #include <trace/events/sched.h>
85 * Convert user-nice values [ -20 ... 0 ... 19 ]
86 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
87 * and back.
89 #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
90 #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
91 #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
94 * 'User priority' is the nice value converted to something we
95 * can work with better when scaling various scheduler parameters,
96 * it's a [ 0 ... 39 ] range.
98 #define USER_PRIO(p) ((p)-MAX_RT_PRIO)
99 #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
100 #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
103 * Helpers for converting nanosecond timing to jiffy resolution
105 #define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
107 #define NICE_0_LOAD SCHED_LOAD_SCALE
108 #define NICE_0_SHIFT SCHED_LOAD_SHIFT
111 * These are the 'tuning knobs' of the scheduler:
113 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
114 * Timeslices get refilled after they expire.
116 #define DEF_TIMESLICE (100 * HZ / 1000)
119 * single value that denotes runtime == period, ie unlimited time.
121 #define RUNTIME_INF ((u64)~0ULL)
123 static inline int rt_policy(int policy)
125 if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR))
126 return 1;
127 return 0;
130 static inline int task_has_rt_policy(struct task_struct *p)
132 return rt_policy(p->policy);
136 * This is the priority-queue data structure of the RT scheduling class:
138 struct rt_prio_array {
139 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
140 struct list_head queue[MAX_RT_PRIO];
143 struct rt_bandwidth {
144 /* nests inside the rq lock: */
145 raw_spinlock_t rt_runtime_lock;
146 ktime_t rt_period;
147 u64 rt_runtime;
148 struct hrtimer rt_period_timer;
151 static struct rt_bandwidth def_rt_bandwidth;
153 static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
155 static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
157 struct rt_bandwidth *rt_b =
158 container_of(timer, struct rt_bandwidth, rt_period_timer);
159 ktime_t now;
160 int overrun;
161 int idle = 0;
163 for (;;) {
164 now = hrtimer_cb_get_time(timer);
165 overrun = hrtimer_forward(timer, now, rt_b->rt_period);
167 if (!overrun)
168 break;
170 idle = do_sched_rt_period_timer(rt_b, overrun);
173 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
176 static
177 void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
179 rt_b->rt_period = ns_to_ktime(period);
180 rt_b->rt_runtime = runtime;
182 raw_spin_lock_init(&rt_b->rt_runtime_lock);
184 hrtimer_init(&rt_b->rt_period_timer,
185 CLOCK_MONOTONIC, HRTIMER_MODE_REL);
186 rt_b->rt_period_timer.function = sched_rt_period_timer;
189 static inline int rt_bandwidth_enabled(void)
191 return sysctl_sched_rt_runtime >= 0;
194 static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
196 ktime_t now;
198 if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
199 return;
201 if (hrtimer_active(&rt_b->rt_period_timer))
202 return;
204 raw_spin_lock(&rt_b->rt_runtime_lock);
205 for (;;) {
206 unsigned long delta;
207 ktime_t soft, hard;
209 if (hrtimer_active(&rt_b->rt_period_timer))
210 break;
212 now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
213 hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
215 soft = hrtimer_get_softexpires(&rt_b->rt_period_timer);
216 hard = hrtimer_get_expires(&rt_b->rt_period_timer);
217 delta = ktime_to_ns(ktime_sub(hard, soft));
218 __hrtimer_start_range_ns(&rt_b->rt_period_timer, soft, delta,
219 HRTIMER_MODE_ABS_PINNED, 0);
221 raw_spin_unlock(&rt_b->rt_runtime_lock);
224 #ifdef CONFIG_RT_GROUP_SCHED
225 static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
227 hrtimer_cancel(&rt_b->rt_period_timer);
229 #endif
232 * sched_domains_mutex serializes calls to arch_init_sched_domains,
233 * detach_destroy_domains and partition_sched_domains.
235 static DEFINE_MUTEX(sched_domains_mutex);
237 #ifdef CONFIG_CGROUP_SCHED
239 #include <linux/cgroup.h>
241 struct cfs_rq;
243 static LIST_HEAD(task_groups);
245 /* task group related information */
246 struct task_group {
247 struct cgroup_subsys_state css;
249 #ifdef CONFIG_FAIR_GROUP_SCHED
250 /* schedulable entities of this group on each cpu */
251 struct sched_entity **se;
252 /* runqueue "owned" by this group on each cpu */
253 struct cfs_rq **cfs_rq;
254 unsigned long shares;
255 #endif
257 #ifdef CONFIG_RT_GROUP_SCHED
258 struct sched_rt_entity **rt_se;
259 struct rt_rq **rt_rq;
261 struct rt_bandwidth rt_bandwidth;
262 #endif
264 struct rcu_head rcu;
265 struct list_head list;
267 struct task_group *parent;
268 struct list_head siblings;
269 struct list_head children;
272 #define root_task_group init_task_group
274 /* task_group_lock serializes add/remove of task groups and also changes to
275 * a task group's cpu shares.
277 static DEFINE_SPINLOCK(task_group_lock);
279 #ifdef CONFIG_FAIR_GROUP_SCHED
281 #ifdef CONFIG_SMP
282 static int root_task_group_empty(void)
284 return list_empty(&root_task_group.children);
286 #endif
288 # define INIT_TASK_GROUP_LOAD NICE_0_LOAD
291 * A weight of 0 or 1 can cause arithmetics problems.
292 * A weight of a cfs_rq is the sum of weights of which entities
293 * are queued on this cfs_rq, so a weight of a entity should not be
294 * too large, so as the shares value of a task group.
295 * (The default weight is 1024 - so there's no practical
296 * limitation from this.)
298 #define MIN_SHARES 2
299 #define MAX_SHARES (1UL << 18)
301 static int init_task_group_load = INIT_TASK_GROUP_LOAD;
302 #endif
304 /* Default task group.
305 * Every task in system belong to this group at bootup.
307 struct task_group init_task_group;
309 /* return group to which a task belongs */
310 static inline struct task_group *task_group(struct task_struct *p)
312 struct task_group *tg;
314 #ifdef CONFIG_CGROUP_SCHED
315 tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id),
316 struct task_group, css);
317 #else
318 tg = &init_task_group;
319 #endif
320 return tg;
323 /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
324 static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
327 * Strictly speaking this rcu_read_lock() is not needed since the
328 * task_group is tied to the cgroup, which in turn can never go away
329 * as long as there are tasks attached to it.
331 * However since task_group() uses task_subsys_state() which is an
332 * rcu_dereference() user, this quiets CONFIG_PROVE_RCU.
334 rcu_read_lock();
335 #ifdef CONFIG_FAIR_GROUP_SCHED
336 p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
337 p->se.parent = task_group(p)->se[cpu];
338 #endif
340 #ifdef CONFIG_RT_GROUP_SCHED
341 p->rt.rt_rq = task_group(p)->rt_rq[cpu];
342 p->rt.parent = task_group(p)->rt_se[cpu];
343 #endif
344 rcu_read_unlock();
347 #else
349 static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
350 static inline struct task_group *task_group(struct task_struct *p)
352 return NULL;
355 #endif /* CONFIG_CGROUP_SCHED */
357 /* CFS-related fields in a runqueue */
358 struct cfs_rq {
359 struct load_weight load;
360 unsigned long nr_running;
362 u64 exec_clock;
363 u64 min_vruntime;
365 struct rb_root tasks_timeline;
366 struct rb_node *rb_leftmost;
368 struct list_head tasks;
369 struct list_head *balance_iterator;
372 * 'curr' points to currently running entity on this cfs_rq.
373 * It is set to NULL otherwise (i.e when none are currently running).
375 struct sched_entity *curr, *next, *last;
377 unsigned int nr_spread_over;
379 #ifdef CONFIG_FAIR_GROUP_SCHED
380 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
383 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
384 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
385 * (like users, containers etc.)
387 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
388 * list is used during load balance.
390 struct list_head leaf_cfs_rq_list;
391 struct task_group *tg; /* group that "owns" this runqueue */
393 #ifdef CONFIG_SMP
395 * the part of load.weight contributed by tasks
397 unsigned long task_weight;
400 * h_load = weight * f(tg)
402 * Where f(tg) is the recursive weight fraction assigned to
403 * this group.
405 unsigned long h_load;
408 * this cpu's part of tg->shares
410 unsigned long shares;
413 * load.weight at the time we set shares
415 unsigned long rq_weight;
416 #endif
417 #endif
420 /* Real-Time classes' related field in a runqueue: */
421 struct rt_rq {
422 struct rt_prio_array active;
423 unsigned long rt_nr_running;
424 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
425 struct {
426 int curr; /* highest queued rt task prio */
427 #ifdef CONFIG_SMP
428 int next; /* next highest */
429 #endif
430 } highest_prio;
431 #endif
432 #ifdef CONFIG_SMP
433 unsigned long rt_nr_migratory;
434 unsigned long rt_nr_total;
435 int overloaded;
436 struct plist_head pushable_tasks;
437 #endif
438 int rt_throttled;
439 u64 rt_time;
440 u64 rt_runtime;
441 /* Nests inside the rq lock: */
442 raw_spinlock_t rt_runtime_lock;
444 #ifdef CONFIG_RT_GROUP_SCHED
445 unsigned long rt_nr_boosted;
447 struct rq *rq;
448 struct list_head leaf_rt_rq_list;
449 struct task_group *tg;
450 #endif
453 #ifdef CONFIG_SMP
456 * We add the notion of a root-domain which will be used to define per-domain
457 * variables. Each exclusive cpuset essentially defines an island domain by
458 * fully partitioning the member cpus from any other cpuset. Whenever a new
459 * exclusive cpuset is created, we also create and attach a new root-domain
460 * object.
463 struct root_domain {
464 atomic_t refcount;
465 cpumask_var_t span;
466 cpumask_var_t online;
469 * The "RT overload" flag: it gets set if a CPU has more than
470 * one runnable RT task.
472 cpumask_var_t rto_mask;
473 atomic_t rto_count;
474 #ifdef CONFIG_SMP
475 struct cpupri cpupri;
476 #endif
480 * By default the system creates a single root-domain with all cpus as
481 * members (mimicking the global state we have today).
483 static struct root_domain def_root_domain;
485 #endif
488 * This is the main, per-CPU runqueue data structure.
490 * Locking rule: those places that want to lock multiple runqueues
491 * (such as the load balancing or the thread migration code), lock
492 * acquire operations must be ordered by ascending &runqueue.
494 struct rq {
495 /* runqueue lock: */
496 raw_spinlock_t lock;
499 * nr_running and cpu_load should be in the same cacheline because
500 * remote CPUs use both these fields when doing load calculation.
502 unsigned long nr_running;
503 #define CPU_LOAD_IDX_MAX 5
504 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
505 #ifdef CONFIG_NO_HZ
506 unsigned char in_nohz_recently;
507 #endif
508 /* capture load from *all* tasks on this cpu: */
509 struct load_weight load;
510 unsigned long nr_load_updates;
511 u64 nr_switches;
513 struct cfs_rq cfs;
514 struct rt_rq rt;
516 #ifdef CONFIG_FAIR_GROUP_SCHED
517 /* list of leaf cfs_rq on this cpu: */
518 struct list_head leaf_cfs_rq_list;
519 #endif
520 #ifdef CONFIG_RT_GROUP_SCHED
521 struct list_head leaf_rt_rq_list;
522 #endif
525 * This is part of a global counter where only the total sum
526 * over all CPUs matters. A task can increase this counter on
527 * one CPU and if it got migrated afterwards it may decrease
528 * it on another CPU. Always updated under the runqueue lock:
530 unsigned long nr_uninterruptible;
532 struct task_struct *curr, *idle;
533 unsigned long next_balance;
534 struct mm_struct *prev_mm;
536 u64 clock;
538 atomic_t nr_iowait;
540 #ifdef CONFIG_SMP
541 struct root_domain *rd;
542 struct sched_domain *sd;
544 unsigned char idle_at_tick;
545 /* For active balancing */
546 int post_schedule;
547 int active_balance;
548 int push_cpu;
549 /* cpu of this runqueue: */
550 int cpu;
551 int online;
553 unsigned long avg_load_per_task;
555 struct task_struct *migration_thread;
556 struct list_head migration_queue;
558 u64 rt_avg;
559 u64 age_stamp;
560 u64 idle_stamp;
561 u64 avg_idle;
562 #endif
564 /* calc_load related fields */
565 unsigned long calc_load_update;
566 long calc_load_active;
568 #ifdef CONFIG_SCHED_HRTICK
569 #ifdef CONFIG_SMP
570 int hrtick_csd_pending;
571 struct call_single_data hrtick_csd;
572 #endif
573 struct hrtimer hrtick_timer;
574 #endif
576 #ifdef CONFIG_SCHEDSTATS
577 /* latency stats */
578 struct sched_info rq_sched_info;
579 unsigned long long rq_cpu_time;
580 /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
582 /* sys_sched_yield() stats */
583 unsigned int yld_count;
585 /* schedule() stats */
586 unsigned int sched_switch;
587 unsigned int sched_count;
588 unsigned int sched_goidle;
590 /* try_to_wake_up() stats */
591 unsigned int ttwu_count;
592 unsigned int ttwu_local;
594 /* BKL stats */
595 unsigned int bkl_count;
596 #endif
599 static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
601 static inline
602 void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
604 rq->curr->sched_class->check_preempt_curr(rq, p, flags);
607 static inline int cpu_of(struct rq *rq)
609 #ifdef CONFIG_SMP
610 return rq->cpu;
611 #else
612 return 0;
613 #endif
616 #define rcu_dereference_check_sched_domain(p) \
617 rcu_dereference_check((p), \
618 rcu_read_lock_sched_held() || \
619 lockdep_is_held(&sched_domains_mutex))
622 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
623 * See detach_destroy_domains: synchronize_sched for details.
625 * The domain tree of any CPU may only be accessed from within
626 * preempt-disabled sections.
628 #define for_each_domain(cpu, __sd) \
629 for (__sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
631 #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
632 #define this_rq() (&__get_cpu_var(runqueues))
633 #define task_rq(p) cpu_rq(task_cpu(p))
634 #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
635 #define raw_rq() (&__raw_get_cpu_var(runqueues))
637 inline void update_rq_clock(struct rq *rq)
639 rq->clock = sched_clock_cpu(cpu_of(rq));
643 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
645 #ifdef CONFIG_SCHED_DEBUG
646 # define const_debug __read_mostly
647 #else
648 # define const_debug static const
649 #endif
652 * runqueue_is_locked
653 * @cpu: the processor in question.
655 * Returns true if the current cpu runqueue is locked.
656 * This interface allows printk to be called with the runqueue lock
657 * held and know whether or not it is OK to wake up the klogd.
659 int runqueue_is_locked(int cpu)
661 return raw_spin_is_locked(&cpu_rq(cpu)->lock);
665 * Debugging: various feature bits
668 #define SCHED_FEAT(name, enabled) \
669 __SCHED_FEAT_##name ,
671 enum {
672 #include "sched_features.h"
675 #undef SCHED_FEAT
677 #define SCHED_FEAT(name, enabled) \
678 (1UL << __SCHED_FEAT_##name) * enabled |
680 const_debug unsigned int sysctl_sched_features =
681 #include "sched_features.h"
684 #undef SCHED_FEAT
686 #ifdef CONFIG_SCHED_DEBUG
687 #define SCHED_FEAT(name, enabled) \
688 #name ,
690 static __read_mostly char *sched_feat_names[] = {
691 #include "sched_features.h"
692 NULL
695 #undef SCHED_FEAT
697 static int sched_feat_show(struct seq_file *m, void *v)
699 int i;
701 for (i = 0; sched_feat_names[i]; i++) {
702 if (!(sysctl_sched_features & (1UL << i)))
703 seq_puts(m, "NO_");
704 seq_printf(m, "%s ", sched_feat_names[i]);
706 seq_puts(m, "\n");
708 return 0;
711 static ssize_t
712 sched_feat_write(struct file *filp, const char __user *ubuf,
713 size_t cnt, loff_t *ppos)
715 char buf[64];
716 char *cmp = buf;
717 int neg = 0;
718 int i;
720 if (cnt > 63)
721 cnt = 63;
723 if (copy_from_user(&buf, ubuf, cnt))
724 return -EFAULT;
726 buf[cnt] = 0;
728 if (strncmp(buf, "NO_", 3) == 0) {
729 neg = 1;
730 cmp += 3;
733 for (i = 0; sched_feat_names[i]; i++) {
734 int len = strlen(sched_feat_names[i]);
736 if (strncmp(cmp, sched_feat_names[i], len) == 0) {
737 if (neg)
738 sysctl_sched_features &= ~(1UL << i);
739 else
740 sysctl_sched_features |= (1UL << i);
741 break;
745 if (!sched_feat_names[i])
746 return -EINVAL;
748 *ppos += cnt;
750 return cnt;
753 static int sched_feat_open(struct inode *inode, struct file *filp)
755 return single_open(filp, sched_feat_show, NULL);
758 static const struct file_operations sched_feat_fops = {
759 .open = sched_feat_open,
760 .write = sched_feat_write,
761 .read = seq_read,
762 .llseek = seq_lseek,
763 .release = single_release,
766 static __init int sched_init_debug(void)
768 debugfs_create_file("sched_features", 0644, NULL, NULL,
769 &sched_feat_fops);
771 return 0;
773 late_initcall(sched_init_debug);
775 #endif
777 #define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
780 * Number of tasks to iterate in a single balance run.
781 * Limited because this is done with IRQs disabled.
783 const_debug unsigned int sysctl_sched_nr_migrate = 32;
786 * ratelimit for updating the group shares.
787 * default: 0.25ms
789 unsigned int sysctl_sched_shares_ratelimit = 250000;
790 unsigned int normalized_sysctl_sched_shares_ratelimit = 250000;
793 * Inject some fuzzyness into changing the per-cpu group shares
794 * this avoids remote rq-locks at the expense of fairness.
795 * default: 4
797 unsigned int sysctl_sched_shares_thresh = 4;
800 * period over which we average the RT time consumption, measured
801 * in ms.
803 * default: 1s
805 const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
808 * period over which we measure -rt task cpu usage in us.
809 * default: 1s
811 unsigned int sysctl_sched_rt_period = 1000000;
813 static __read_mostly int scheduler_running;
816 * part of the period that we allow rt tasks to run in us.
817 * default: 0.95s
819 int sysctl_sched_rt_runtime = 950000;
821 static inline u64 global_rt_period(void)
823 return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
826 static inline u64 global_rt_runtime(void)
828 if (sysctl_sched_rt_runtime < 0)
829 return RUNTIME_INF;
831 return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
834 #ifndef prepare_arch_switch
835 # define prepare_arch_switch(next) do { } while (0)
836 #endif
837 #ifndef finish_arch_switch
838 # define finish_arch_switch(prev) do { } while (0)
839 #endif
841 static inline int task_current(struct rq *rq, struct task_struct *p)
843 return rq->curr == p;
846 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
847 static inline int task_running(struct rq *rq, struct task_struct *p)
849 return task_current(rq, p);
852 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
856 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
858 #ifdef CONFIG_DEBUG_SPINLOCK
859 /* this is a valid case when another task releases the spinlock */
860 rq->lock.owner = current;
861 #endif
863 * If we are tracking spinlock dependencies then we have to
864 * fix up the runqueue lock - which gets 'carried over' from
865 * prev into current:
867 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
869 raw_spin_unlock_irq(&rq->lock);
872 #else /* __ARCH_WANT_UNLOCKED_CTXSW */
873 static inline int task_running(struct rq *rq, struct task_struct *p)
875 #ifdef CONFIG_SMP
876 return p->oncpu;
877 #else
878 return task_current(rq, p);
879 #endif
882 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
884 #ifdef CONFIG_SMP
886 * We can optimise this out completely for !SMP, because the
887 * SMP rebalancing from interrupt is the only thing that cares
888 * here.
890 next->oncpu = 1;
891 #endif
892 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
893 raw_spin_unlock_irq(&rq->lock);
894 #else
895 raw_spin_unlock(&rq->lock);
896 #endif
899 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
901 #ifdef CONFIG_SMP
903 * After ->oncpu is cleared, the task can be moved to a different CPU.
904 * We must ensure this doesn't happen until the switch is completely
905 * finished.
907 smp_wmb();
908 prev->oncpu = 0;
909 #endif
910 #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
911 local_irq_enable();
912 #endif
914 #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
917 * Check whether the task is waking, we use this to synchronize against
918 * ttwu() so that task_cpu() reports a stable number.
920 * We need to make an exception for PF_STARTING tasks because the fork
921 * path might require task_rq_lock() to work, eg. it can call
922 * set_cpus_allowed_ptr() from the cpuset clone_ns code.
924 static inline int task_is_waking(struct task_struct *p)
926 return unlikely((p->state == TASK_WAKING) && !(p->flags & PF_STARTING));
930 * __task_rq_lock - lock the runqueue a given task resides on.
931 * Must be called interrupts disabled.
933 static inline struct rq *__task_rq_lock(struct task_struct *p)
934 __acquires(rq->lock)
936 struct rq *rq;
938 for (;;) {
939 while (task_is_waking(p))
940 cpu_relax();
941 rq = task_rq(p);
942 raw_spin_lock(&rq->lock);
943 if (likely(rq == task_rq(p) && !task_is_waking(p)))
944 return rq;
945 raw_spin_unlock(&rq->lock);
950 * task_rq_lock - lock the runqueue a given task resides on and disable
951 * interrupts. Note the ordering: we can safely lookup the task_rq without
952 * explicitly disabling preemption.
954 static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
955 __acquires(rq->lock)
957 struct rq *rq;
959 for (;;) {
960 while (task_is_waking(p))
961 cpu_relax();
962 local_irq_save(*flags);
963 rq = task_rq(p);
964 raw_spin_lock(&rq->lock);
965 if (likely(rq == task_rq(p) && !task_is_waking(p)))
966 return rq;
967 raw_spin_unlock_irqrestore(&rq->lock, *flags);
971 void task_rq_unlock_wait(struct task_struct *p)
973 struct rq *rq = task_rq(p);
975 smp_mb(); /* spin-unlock-wait is not a full memory barrier */
976 raw_spin_unlock_wait(&rq->lock);
979 static void __task_rq_unlock(struct rq *rq)
980 __releases(rq->lock)
982 raw_spin_unlock(&rq->lock);
985 static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
986 __releases(rq->lock)
988 raw_spin_unlock_irqrestore(&rq->lock, *flags);
992 * this_rq_lock - lock this runqueue and disable interrupts.
994 static struct rq *this_rq_lock(void)
995 __acquires(rq->lock)
997 struct rq *rq;
999 local_irq_disable();
1000 rq = this_rq();
1001 raw_spin_lock(&rq->lock);
1003 return rq;
1006 #ifdef CONFIG_SCHED_HRTICK
1008 * Use HR-timers to deliver accurate preemption points.
1010 * Its all a bit involved since we cannot program an hrt while holding the
1011 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
1012 * reschedule event.
1014 * When we get rescheduled we reprogram the hrtick_timer outside of the
1015 * rq->lock.
1019 * Use hrtick when:
1020 * - enabled by features
1021 * - hrtimer is actually high res
1023 static inline int hrtick_enabled(struct rq *rq)
1025 if (!sched_feat(HRTICK))
1026 return 0;
1027 if (!cpu_active(cpu_of(rq)))
1028 return 0;
1029 return hrtimer_is_hres_active(&rq->hrtick_timer);
1032 static void hrtick_clear(struct rq *rq)
1034 if (hrtimer_active(&rq->hrtick_timer))
1035 hrtimer_cancel(&rq->hrtick_timer);
1039 * High-resolution timer tick.
1040 * Runs from hardirq context with interrupts disabled.
1042 static enum hrtimer_restart hrtick(struct hrtimer *timer)
1044 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
1046 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
1048 raw_spin_lock(&rq->lock);
1049 update_rq_clock(rq);
1050 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
1051 raw_spin_unlock(&rq->lock);
1053 return HRTIMER_NORESTART;
1056 #ifdef CONFIG_SMP
1058 * called from hardirq (IPI) context
1060 static void __hrtick_start(void *arg)
1062 struct rq *rq = arg;
1064 raw_spin_lock(&rq->lock);
1065 hrtimer_restart(&rq->hrtick_timer);
1066 rq->hrtick_csd_pending = 0;
1067 raw_spin_unlock(&rq->lock);
1071 * Called to set the hrtick timer state.
1073 * called with rq->lock held and irqs disabled
1075 static void hrtick_start(struct rq *rq, u64 delay)
1077 struct hrtimer *timer = &rq->hrtick_timer;
1078 ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
1080 hrtimer_set_expires(timer, time);
1082 if (rq == this_rq()) {
1083 hrtimer_restart(timer);
1084 } else if (!rq->hrtick_csd_pending) {
1085 __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
1086 rq->hrtick_csd_pending = 1;
1090 static int
1091 hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
1093 int cpu = (int)(long)hcpu;
1095 switch (action) {
1096 case CPU_UP_CANCELED:
1097 case CPU_UP_CANCELED_FROZEN:
1098 case CPU_DOWN_PREPARE:
1099 case CPU_DOWN_PREPARE_FROZEN:
1100 case CPU_DEAD:
1101 case CPU_DEAD_FROZEN:
1102 hrtick_clear(cpu_rq(cpu));
1103 return NOTIFY_OK;
1106 return NOTIFY_DONE;
1109 static __init void init_hrtick(void)
1111 hotcpu_notifier(hotplug_hrtick, 0);
1113 #else
1115 * Called to set the hrtick timer state.
1117 * called with rq->lock held and irqs disabled
1119 static void hrtick_start(struct rq *rq, u64 delay)
1121 __hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
1122 HRTIMER_MODE_REL_PINNED, 0);
1125 static inline void init_hrtick(void)
1128 #endif /* CONFIG_SMP */
1130 static void init_rq_hrtick(struct rq *rq)
1132 #ifdef CONFIG_SMP
1133 rq->hrtick_csd_pending = 0;
1135 rq->hrtick_csd.flags = 0;
1136 rq->hrtick_csd.func = __hrtick_start;
1137 rq->hrtick_csd.info = rq;
1138 #endif
1140 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1141 rq->hrtick_timer.function = hrtick;
1143 #else /* CONFIG_SCHED_HRTICK */
1144 static inline void hrtick_clear(struct rq *rq)
1148 static inline void init_rq_hrtick(struct rq *rq)
1152 static inline void init_hrtick(void)
1155 #endif /* CONFIG_SCHED_HRTICK */
1158 * resched_task - mark a task 'to be rescheduled now'.
1160 * On UP this means the setting of the need_resched flag, on SMP it
1161 * might also involve a cross-CPU call to trigger the scheduler on
1162 * the target CPU.
1164 #ifdef CONFIG_SMP
1166 #ifndef tsk_is_polling
1167 #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
1168 #endif
1170 static void resched_task(struct task_struct *p)
1172 int cpu;
1174 assert_raw_spin_locked(&task_rq(p)->lock);
1176 if (test_tsk_need_resched(p))
1177 return;
1179 set_tsk_need_resched(p);
1181 cpu = task_cpu(p);
1182 if (cpu == smp_processor_id())
1183 return;
1185 /* NEED_RESCHED must be visible before we test polling */
1186 smp_mb();
1187 if (!tsk_is_polling(p))
1188 smp_send_reschedule(cpu);
1191 static void resched_cpu(int cpu)
1193 struct rq *rq = cpu_rq(cpu);
1194 unsigned long flags;
1196 if (!raw_spin_trylock_irqsave(&rq->lock, flags))
1197 return;
1198 resched_task(cpu_curr(cpu));
1199 raw_spin_unlock_irqrestore(&rq->lock, flags);
1202 #ifdef CONFIG_NO_HZ
1204 * When add_timer_on() enqueues a timer into the timer wheel of an
1205 * idle CPU then this timer might expire before the next timer event
1206 * which is scheduled to wake up that CPU. In case of a completely
1207 * idle system the next event might even be infinite time into the
1208 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
1209 * leaves the inner idle loop so the newly added timer is taken into
1210 * account when the CPU goes back to idle and evaluates the timer
1211 * wheel for the next timer event.
1213 void wake_up_idle_cpu(int cpu)
1215 struct rq *rq = cpu_rq(cpu);
1217 if (cpu == smp_processor_id())
1218 return;
1221 * This is safe, as this function is called with the timer
1222 * wheel base lock of (cpu) held. When the CPU is on the way
1223 * to idle and has not yet set rq->curr to idle then it will
1224 * be serialized on the timer wheel base lock and take the new
1225 * timer into account automatically.
1227 if (rq->curr != rq->idle)
1228 return;
1231 * We can set TIF_RESCHED on the idle task of the other CPU
1232 * lockless. The worst case is that the other CPU runs the
1233 * idle task through an additional NOOP schedule()
1235 set_tsk_need_resched(rq->idle);
1237 /* NEED_RESCHED must be visible before we test polling */
1238 smp_mb();
1239 if (!tsk_is_polling(rq->idle))
1240 smp_send_reschedule(cpu);
1242 #endif /* CONFIG_NO_HZ */
1244 static u64 sched_avg_period(void)
1246 return (u64)sysctl_sched_time_avg * NSEC_PER_MSEC / 2;
1249 static void sched_avg_update(struct rq *rq)
1251 s64 period = sched_avg_period();
1253 while ((s64)(rq->clock - rq->age_stamp) > period) {
1254 rq->age_stamp += period;
1255 rq->rt_avg /= 2;
1259 static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
1261 rq->rt_avg += rt_delta;
1262 sched_avg_update(rq);
1265 #else /* !CONFIG_SMP */
1266 static void resched_task(struct task_struct *p)
1268 assert_raw_spin_locked(&task_rq(p)->lock);
1269 set_tsk_need_resched(p);
1272 static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
1275 #endif /* CONFIG_SMP */
1277 #if BITS_PER_LONG == 32
1278 # define WMULT_CONST (~0UL)
1279 #else
1280 # define WMULT_CONST (1UL << 32)
1281 #endif
1283 #define WMULT_SHIFT 32
1286 * Shift right and round:
1288 #define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
1291 * delta *= weight / lw
1293 static unsigned long
1294 calc_delta_mine(unsigned long delta_exec, unsigned long weight,
1295 struct load_weight *lw)
1297 u64 tmp;
1299 if (!lw->inv_weight) {
1300 if (BITS_PER_LONG > 32 && unlikely(lw->weight >= WMULT_CONST))
1301 lw->inv_weight = 1;
1302 else
1303 lw->inv_weight = 1 + (WMULT_CONST-lw->weight/2)
1304 / (lw->weight+1);
1307 tmp = (u64)delta_exec * weight;
1309 * Check whether we'd overflow the 64-bit multiplication:
1311 if (unlikely(tmp > WMULT_CONST))
1312 tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
1313 WMULT_SHIFT/2);
1314 else
1315 tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
1317 return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
1320 static inline void update_load_add(struct load_weight *lw, unsigned long inc)
1322 lw->weight += inc;
1323 lw->inv_weight = 0;
1326 static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
1328 lw->weight -= dec;
1329 lw->inv_weight = 0;
1333 * To aid in avoiding the subversion of "niceness" due to uneven distribution
1334 * of tasks with abnormal "nice" values across CPUs the contribution that
1335 * each task makes to its run queue's load is weighted according to its
1336 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
1337 * scaled version of the new time slice allocation that they receive on time
1338 * slice expiry etc.
1341 #define WEIGHT_IDLEPRIO 3
1342 #define WMULT_IDLEPRIO 1431655765
1345 * Nice levels are multiplicative, with a gentle 10% change for every
1346 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
1347 * nice 1, it will get ~10% less CPU time than another CPU-bound task
1348 * that remained on nice 0.
1350 * The "10% effect" is relative and cumulative: from _any_ nice level,
1351 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
1352 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
1353 * If a task goes up by ~10% and another task goes down by ~10% then
1354 * the relative distance between them is ~25%.)
1356 static const int prio_to_weight[40] = {
1357 /* -20 */ 88761, 71755, 56483, 46273, 36291,
1358 /* -15 */ 29154, 23254, 18705, 14949, 11916,
1359 /* -10 */ 9548, 7620, 6100, 4904, 3906,
1360 /* -5 */ 3121, 2501, 1991, 1586, 1277,
1361 /* 0 */ 1024, 820, 655, 526, 423,
1362 /* 5 */ 335, 272, 215, 172, 137,
1363 /* 10 */ 110, 87, 70, 56, 45,
1364 /* 15 */ 36, 29, 23, 18, 15,
1368 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
1370 * In cases where the weight does not change often, we can use the
1371 * precalculated inverse to speed up arithmetics by turning divisions
1372 * into multiplications:
1374 static const u32 prio_to_wmult[40] = {
1375 /* -20 */ 48388, 59856, 76040, 92818, 118348,
1376 /* -15 */ 147320, 184698, 229616, 287308, 360437,
1377 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
1378 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
1379 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
1380 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
1381 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
1382 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
1385 /* Time spent by the tasks of the cpu accounting group executing in ... */
1386 enum cpuacct_stat_index {
1387 CPUACCT_STAT_USER, /* ... user mode */
1388 CPUACCT_STAT_SYSTEM, /* ... kernel mode */
1390 CPUACCT_STAT_NSTATS,
1393 #ifdef CONFIG_CGROUP_CPUACCT
1394 static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
1395 static void cpuacct_update_stats(struct task_struct *tsk,
1396 enum cpuacct_stat_index idx, cputime_t val);
1397 #else
1398 static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
1399 static inline void cpuacct_update_stats(struct task_struct *tsk,
1400 enum cpuacct_stat_index idx, cputime_t val) {}
1401 #endif
1403 static inline void inc_cpu_load(struct rq *rq, unsigned long load)
1405 update_load_add(&rq->load, load);
1408 static inline void dec_cpu_load(struct rq *rq, unsigned long load)
1410 update_load_sub(&rq->load, load);
1413 #if (defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)) || defined(CONFIG_RT_GROUP_SCHED)
1414 typedef int (*tg_visitor)(struct task_group *, void *);
1417 * Iterate the full tree, calling @down when first entering a node and @up when
1418 * leaving it for the final time.
1420 static int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
1422 struct task_group *parent, *child;
1423 int ret;
1425 rcu_read_lock();
1426 parent = &root_task_group;
1427 down:
1428 ret = (*down)(parent, data);
1429 if (ret)
1430 goto out_unlock;
1431 list_for_each_entry_rcu(child, &parent->children, siblings) {
1432 parent = child;
1433 goto down;
1436 continue;
1438 ret = (*up)(parent, data);
1439 if (ret)
1440 goto out_unlock;
1442 child = parent;
1443 parent = parent->parent;
1444 if (parent)
1445 goto up;
1446 out_unlock:
1447 rcu_read_unlock();
1449 return ret;
1452 static int tg_nop(struct task_group *tg, void *data)
1454 return 0;
1456 #endif
1458 #ifdef CONFIG_SMP
1459 /* Used instead of source_load when we know the type == 0 */
1460 static unsigned long weighted_cpuload(const int cpu)
1462 return cpu_rq(cpu)->load.weight;
1466 * Return a low guess at the load of a migration-source cpu weighted
1467 * according to the scheduling class and "nice" value.
1469 * We want to under-estimate the load of migration sources, to
1470 * balance conservatively.
1472 static unsigned long source_load(int cpu, int type)
1474 struct rq *rq = cpu_rq(cpu);
1475 unsigned long total = weighted_cpuload(cpu);
1477 if (type == 0 || !sched_feat(LB_BIAS))
1478 return total;
1480 return min(rq->cpu_load[type-1], total);
1484 * Return a high guess at the load of a migration-target cpu weighted
1485 * according to the scheduling class and "nice" value.
1487 static unsigned long target_load(int cpu, int type)
1489 struct rq *rq = cpu_rq(cpu);
1490 unsigned long total = weighted_cpuload(cpu);
1492 if (type == 0 || !sched_feat(LB_BIAS))
1493 return total;
1495 return max(rq->cpu_load[type-1], total);
1498 static struct sched_group *group_of(int cpu)
1500 struct sched_domain *sd = rcu_dereference_sched(cpu_rq(cpu)->sd);
1502 if (!sd)
1503 return NULL;
1505 return sd->groups;
1508 static unsigned long power_of(int cpu)
1510 struct sched_group *group = group_of(cpu);
1512 if (!group)
1513 return SCHED_LOAD_SCALE;
1515 return group->cpu_power;
1518 static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
1520 static unsigned long cpu_avg_load_per_task(int cpu)
1522 struct rq *rq = cpu_rq(cpu);
1523 unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
1525 if (nr_running)
1526 rq->avg_load_per_task = rq->load.weight / nr_running;
1527 else
1528 rq->avg_load_per_task = 0;
1530 return rq->avg_load_per_task;
1533 #ifdef CONFIG_FAIR_GROUP_SCHED
1535 static __read_mostly unsigned long __percpu *update_shares_data;
1537 static void __set_se_shares(struct sched_entity *se, unsigned long shares);
1540 * Calculate and set the cpu's group shares.
1542 static void update_group_shares_cpu(struct task_group *tg, int cpu,
1543 unsigned long sd_shares,
1544 unsigned long sd_rq_weight,
1545 unsigned long *usd_rq_weight)
1547 unsigned long shares, rq_weight;
1548 int boost = 0;
1550 rq_weight = usd_rq_weight[cpu];
1551 if (!rq_weight) {
1552 boost = 1;
1553 rq_weight = NICE_0_LOAD;
1557 * \Sum_j shares_j * rq_weight_i
1558 * shares_i = -----------------------------
1559 * \Sum_j rq_weight_j
1561 shares = (sd_shares * rq_weight) / sd_rq_weight;
1562 shares = clamp_t(unsigned long, shares, MIN_SHARES, MAX_SHARES);
1564 if (abs(shares - tg->se[cpu]->load.weight) >
1565 sysctl_sched_shares_thresh) {
1566 struct rq *rq = cpu_rq(cpu);
1567 unsigned long flags;
1569 raw_spin_lock_irqsave(&rq->lock, flags);
1570 tg->cfs_rq[cpu]->rq_weight = boost ? 0 : rq_weight;
1571 tg->cfs_rq[cpu]->shares = boost ? 0 : shares;
1572 __set_se_shares(tg->se[cpu], shares);
1573 raw_spin_unlock_irqrestore(&rq->lock, flags);
1578 * Re-compute the task group their per cpu shares over the given domain.
1579 * This needs to be done in a bottom-up fashion because the rq weight of a
1580 * parent group depends on the shares of its child groups.
1582 static int tg_shares_up(struct task_group *tg, void *data)
1584 unsigned long weight, rq_weight = 0, sum_weight = 0, shares = 0;
1585 unsigned long *usd_rq_weight;
1586 struct sched_domain *sd = data;
1587 unsigned long flags;
1588 int i;
1590 if (!tg->se[0])
1591 return 0;
1593 local_irq_save(flags);
1594 usd_rq_weight = per_cpu_ptr(update_shares_data, smp_processor_id());
1596 for_each_cpu(i, sched_domain_span(sd)) {
1597 weight = tg->cfs_rq[i]->load.weight;
1598 usd_rq_weight[i] = weight;
1600 rq_weight += weight;
1602 * If there are currently no tasks on the cpu pretend there
1603 * is one of average load so that when a new task gets to
1604 * run here it will not get delayed by group starvation.
1606 if (!weight)
1607 weight = NICE_0_LOAD;
1609 sum_weight += weight;
1610 shares += tg->cfs_rq[i]->shares;
1613 if (!rq_weight)
1614 rq_weight = sum_weight;
1616 if ((!shares && rq_weight) || shares > tg->shares)
1617 shares = tg->shares;
1619 if (!sd->parent || !(sd->parent->flags & SD_LOAD_BALANCE))
1620 shares = tg->shares;
1622 for_each_cpu(i, sched_domain_span(sd))
1623 update_group_shares_cpu(tg, i, shares, rq_weight, usd_rq_weight);
1625 local_irq_restore(flags);
1627 return 0;
1631 * Compute the cpu's hierarchical load factor for each task group.
1632 * This needs to be done in a top-down fashion because the load of a child
1633 * group is a fraction of its parents load.
1635 static int tg_load_down(struct task_group *tg, void *data)
1637 unsigned long load;
1638 long cpu = (long)data;
1640 if (!tg->parent) {
1641 load = cpu_rq(cpu)->load.weight;
1642 } else {
1643 load = tg->parent->cfs_rq[cpu]->h_load;
1644 load *= tg->cfs_rq[cpu]->shares;
1645 load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
1648 tg->cfs_rq[cpu]->h_load = load;
1650 return 0;
1653 static void update_shares(struct sched_domain *sd)
1655 s64 elapsed;
1656 u64 now;
1658 if (root_task_group_empty())
1659 return;
1661 now = cpu_clock(raw_smp_processor_id());
1662 elapsed = now - sd->last_update;
1664 if (elapsed >= (s64)(u64)sysctl_sched_shares_ratelimit) {
1665 sd->last_update = now;
1666 walk_tg_tree(tg_nop, tg_shares_up, sd);
1670 static void update_h_load(long cpu)
1672 if (root_task_group_empty())
1673 return;
1675 walk_tg_tree(tg_load_down, tg_nop, (void *)cpu);
1678 #else
1680 static inline void update_shares(struct sched_domain *sd)
1684 #endif
1686 #ifdef CONFIG_PREEMPT
1688 static void double_rq_lock(struct rq *rq1, struct rq *rq2);
1691 * fair double_lock_balance: Safely acquires both rq->locks in a fair
1692 * way at the expense of forcing extra atomic operations in all
1693 * invocations. This assures that the double_lock is acquired using the
1694 * same underlying policy as the spinlock_t on this architecture, which
1695 * reduces latency compared to the unfair variant below. However, it
1696 * also adds more overhead and therefore may reduce throughput.
1698 static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1699 __releases(this_rq->lock)
1700 __acquires(busiest->lock)
1701 __acquires(this_rq->lock)
1703 raw_spin_unlock(&this_rq->lock);
1704 double_rq_lock(this_rq, busiest);
1706 return 1;
1709 #else
1711 * Unfair double_lock_balance: Optimizes throughput at the expense of
1712 * latency by eliminating extra atomic operations when the locks are
1713 * already in proper order on entry. This favors lower cpu-ids and will
1714 * grant the double lock to lower cpus over higher ids under contention,
1715 * regardless of entry order into the function.
1717 static int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1718 __releases(this_rq->lock)
1719 __acquires(busiest->lock)
1720 __acquires(this_rq->lock)
1722 int ret = 0;
1724 if (unlikely(!raw_spin_trylock(&busiest->lock))) {
1725 if (busiest < this_rq) {
1726 raw_spin_unlock(&this_rq->lock);
1727 raw_spin_lock(&busiest->lock);
1728 raw_spin_lock_nested(&this_rq->lock,
1729 SINGLE_DEPTH_NESTING);
1730 ret = 1;
1731 } else
1732 raw_spin_lock_nested(&busiest->lock,
1733 SINGLE_DEPTH_NESTING);
1735 return ret;
1738 #endif /* CONFIG_PREEMPT */
1741 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
1743 static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
1745 if (unlikely(!irqs_disabled())) {
1746 /* printk() doesn't work good under rq->lock */
1747 raw_spin_unlock(&this_rq->lock);
1748 BUG_ON(1);
1751 return _double_lock_balance(this_rq, busiest);
1754 static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
1755 __releases(busiest->lock)
1757 raw_spin_unlock(&busiest->lock);
1758 lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
1762 * double_rq_lock - safely lock two runqueues
1764 * Note this does not disable interrupts like task_rq_lock,
1765 * you need to do so manually before calling.
1767 static void double_rq_lock(struct rq *rq1, struct rq *rq2)
1768 __acquires(rq1->lock)
1769 __acquires(rq2->lock)
1771 BUG_ON(!irqs_disabled());
1772 if (rq1 == rq2) {
1773 raw_spin_lock(&rq1->lock);
1774 __acquire(rq2->lock); /* Fake it out ;) */
1775 } else {
1776 if (rq1 < rq2) {
1777 raw_spin_lock(&rq1->lock);
1778 raw_spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
1779 } else {
1780 raw_spin_lock(&rq2->lock);
1781 raw_spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
1784 update_rq_clock(rq1);
1785 update_rq_clock(rq2);
1789 * double_rq_unlock - safely unlock two runqueues
1791 * Note this does not restore interrupts like task_rq_unlock,
1792 * you need to do so manually after calling.
1794 static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1795 __releases(rq1->lock)
1796 __releases(rq2->lock)
1798 raw_spin_unlock(&rq1->lock);
1799 if (rq1 != rq2)
1800 raw_spin_unlock(&rq2->lock);
1801 else
1802 __release(rq2->lock);
1805 #endif
1807 #ifdef CONFIG_FAIR_GROUP_SCHED
1808 static void cfs_rq_set_shares(struct cfs_rq *cfs_rq, unsigned long shares)
1810 #ifdef CONFIG_SMP
1811 cfs_rq->shares = shares;
1812 #endif
1814 #endif
1816 static void calc_load_account_active(struct rq *this_rq);
1817 static void update_sysctl(void);
1818 static int get_update_sysctl_factor(void);
1820 static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
1822 set_task_rq(p, cpu);
1823 #ifdef CONFIG_SMP
1825 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
1826 * successfuly executed on another CPU. We must ensure that updates of
1827 * per-task data have been completed by this moment.
1829 smp_wmb();
1830 task_thread_info(p)->cpu = cpu;
1831 #endif
1834 static const struct sched_class rt_sched_class;
1836 #define sched_class_highest (&rt_sched_class)
1837 #define for_each_class(class) \
1838 for (class = sched_class_highest; class; class = class->next)
1840 #include "sched_stats.h"
1842 static void inc_nr_running(struct rq *rq)
1844 rq->nr_running++;
1847 static void dec_nr_running(struct rq *rq)
1849 rq->nr_running--;
1852 static void set_load_weight(struct task_struct *p)
1854 if (task_has_rt_policy(p)) {
1855 p->se.load.weight = prio_to_weight[0] * 2;
1856 p->se.load.inv_weight = prio_to_wmult[0] >> 1;
1857 return;
1861 * SCHED_IDLE tasks get minimal weight:
1863 if (p->policy == SCHED_IDLE) {
1864 p->se.load.weight = WEIGHT_IDLEPRIO;
1865 p->se.load.inv_weight = WMULT_IDLEPRIO;
1866 return;
1869 p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
1870 p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
1873 static void update_avg(u64 *avg, u64 sample)
1875 s64 diff = sample - *avg;
1876 *avg += diff >> 3;
1879 static void
1880 enqueue_task(struct rq *rq, struct task_struct *p, int wakeup, bool head)
1882 if (wakeup)
1883 p->se.start_runtime = p->se.sum_exec_runtime;
1885 sched_info_queued(p);
1886 p->sched_class->enqueue_task(rq, p, wakeup, head);
1887 p->se.on_rq = 1;
1890 static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
1892 if (sleep) {
1893 if (p->se.last_wakeup) {
1894 update_avg(&p->se.avg_overlap,
1895 p->se.sum_exec_runtime - p->se.last_wakeup);
1896 p->se.last_wakeup = 0;
1897 } else {
1898 update_avg(&p->se.avg_wakeup,
1899 sysctl_sched_wakeup_granularity);
1903 sched_info_dequeued(p);
1904 p->sched_class->dequeue_task(rq, p, sleep);
1905 p->se.on_rq = 0;
1909 * activate_task - move a task to the runqueue.
1911 static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
1913 if (task_contributes_to_load(p))
1914 rq->nr_uninterruptible--;
1916 enqueue_task(rq, p, wakeup, false);
1917 inc_nr_running(rq);
1921 * deactivate_task - remove a task from the runqueue.
1923 static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
1925 if (task_contributes_to_load(p))
1926 rq->nr_uninterruptible++;
1928 dequeue_task(rq, p, sleep);
1929 dec_nr_running(rq);
1932 #include "sched_idletask.c"
1933 #include "sched_fair.c"
1934 #include "sched_rt.c"
1935 #ifdef CONFIG_SCHED_DEBUG
1936 # include "sched_debug.c"
1937 #endif
1940 * __normal_prio - return the priority that is based on the static prio
1942 static inline int __normal_prio(struct task_struct *p)
1944 return p->static_prio;
1948 * Calculate the expected normal priority: i.e. priority
1949 * without taking RT-inheritance into account. Might be
1950 * boosted by interactivity modifiers. Changes upon fork,
1951 * setprio syscalls, and whenever the interactivity
1952 * estimator recalculates.
1954 static inline int normal_prio(struct task_struct *p)
1956 int prio;
1958 if (task_has_rt_policy(p))
1959 prio = MAX_RT_PRIO-1 - p->rt_priority;
1960 else
1961 prio = __normal_prio(p);
1962 return prio;
1966 * Calculate the current priority, i.e. the priority
1967 * taken into account by the scheduler. This value might
1968 * be boosted by RT tasks, or might be boosted by
1969 * interactivity modifiers. Will be RT if the task got
1970 * RT-boosted. If not then it returns p->normal_prio.
1972 static int effective_prio(struct task_struct *p)
1974 p->normal_prio = normal_prio(p);
1976 * If we are RT tasks or we were boosted to RT priority,
1977 * keep the priority unchanged. Otherwise, update priority
1978 * to the normal priority:
1980 if (!rt_prio(p->prio))
1981 return p->normal_prio;
1982 return p->prio;
1986 * task_curr - is this task currently executing on a CPU?
1987 * @p: the task in question.
1989 inline int task_curr(const struct task_struct *p)
1991 return cpu_curr(task_cpu(p)) == p;
1994 static inline void check_class_changed(struct rq *rq, struct task_struct *p,
1995 const struct sched_class *prev_class,
1996 int oldprio, int running)
1998 if (prev_class != p->sched_class) {
1999 if (prev_class->switched_from)
2000 prev_class->switched_from(rq, p, running);
2001 p->sched_class->switched_to(rq, p, running);
2002 } else
2003 p->sched_class->prio_changed(rq, p, oldprio, running);
2006 #ifdef CONFIG_SMP
2008 * Is this task likely cache-hot:
2010 static int
2011 task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
2013 s64 delta;
2015 if (p->sched_class != &fair_sched_class)
2016 return 0;
2019 * Buddy candidates are cache hot:
2021 if (sched_feat(CACHE_HOT_BUDDY) && this_rq()->nr_running &&
2022 (&p->se == cfs_rq_of(&p->se)->next ||
2023 &p->se == cfs_rq_of(&p->se)->last))
2024 return 1;
2026 if (sysctl_sched_migration_cost == -1)
2027 return 1;
2028 if (sysctl_sched_migration_cost == 0)
2029 return 0;
2031 delta = now - p->se.exec_start;
2033 return delta < (s64)sysctl_sched_migration_cost;
2036 void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
2038 #ifdef CONFIG_SCHED_DEBUG
2040 * We should never call set_task_cpu() on a blocked task,
2041 * ttwu() will sort out the placement.
2043 WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
2044 !(task_thread_info(p)->preempt_count & PREEMPT_ACTIVE));
2045 #endif
2047 trace_sched_migrate_task(p, new_cpu);
2049 if (task_cpu(p) != new_cpu) {
2050 p->se.nr_migrations++;
2051 perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, 1, NULL, 0);
2054 __set_task_cpu(p, new_cpu);
2057 struct migration_req {
2058 struct list_head list;
2060 struct task_struct *task;
2061 int dest_cpu;
2063 struct completion done;
2067 * The task's runqueue lock must be held.
2068 * Returns true if you have to wait for migration thread.
2070 static int
2071 migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
2073 struct rq *rq = task_rq(p);
2076 * If the task is not on a runqueue (and not running), then
2077 * the next wake-up will properly place the task.
2079 if (!p->se.on_rq && !task_running(rq, p))
2080 return 0;
2082 init_completion(&req->done);
2083 req->task = p;
2084 req->dest_cpu = dest_cpu;
2085 list_add(&req->list, &rq->migration_queue);
2087 return 1;
2091 * wait_task_context_switch - wait for a thread to complete at least one
2092 * context switch.
2094 * @p must not be current.
2096 void wait_task_context_switch(struct task_struct *p)
2098 unsigned long nvcsw, nivcsw, flags;
2099 int running;
2100 struct rq *rq;
2102 nvcsw = p->nvcsw;
2103 nivcsw = p->nivcsw;
2104 for (;;) {
2106 * The runqueue is assigned before the actual context
2107 * switch. We need to take the runqueue lock.
2109 * We could check initially without the lock but it is
2110 * very likely that we need to take the lock in every
2111 * iteration.
2113 rq = task_rq_lock(p, &flags);
2114 running = task_running(rq, p);
2115 task_rq_unlock(rq, &flags);
2117 if (likely(!running))
2118 break;
2120 * The switch count is incremented before the actual
2121 * context switch. We thus wait for two switches to be
2122 * sure at least one completed.
2124 if ((p->nvcsw - nvcsw) > 1)
2125 break;
2126 if ((p->nivcsw - nivcsw) > 1)
2127 break;
2129 cpu_relax();
2134 * wait_task_inactive - wait for a thread to unschedule.
2136 * If @match_state is nonzero, it's the @p->state value just checked and
2137 * not expected to change. If it changes, i.e. @p might have woken up,
2138 * then return zero. When we succeed in waiting for @p to be off its CPU,
2139 * we return a positive number (its total switch count). If a second call
2140 * a short while later returns the same number, the caller can be sure that
2141 * @p has remained unscheduled the whole time.
2143 * The caller must ensure that the task *will* unschedule sometime soon,
2144 * else this function might spin for a *long* time. This function can't
2145 * be called with interrupts off, or it may introduce deadlock with
2146 * smp_call_function() if an IPI is sent by the same process we are
2147 * waiting to become inactive.
2149 unsigned long wait_task_inactive(struct task_struct *p, long match_state)
2151 unsigned long flags;
2152 int running, on_rq;
2153 unsigned long ncsw;
2154 struct rq *rq;
2156 for (;;) {
2158 * We do the initial early heuristics without holding
2159 * any task-queue locks at all. We'll only try to get
2160 * the runqueue lock when things look like they will
2161 * work out!
2163 rq = task_rq(p);
2166 * If the task is actively running on another CPU
2167 * still, just relax and busy-wait without holding
2168 * any locks.
2170 * NOTE! Since we don't hold any locks, it's not
2171 * even sure that "rq" stays as the right runqueue!
2172 * But we don't care, since "task_running()" will
2173 * return false if the runqueue has changed and p
2174 * is actually now running somewhere else!
2176 while (task_running(rq, p)) {
2177 if (match_state && unlikely(p->state != match_state))
2178 return 0;
2179 cpu_relax();
2183 * Ok, time to look more closely! We need the rq
2184 * lock now, to be *sure*. If we're wrong, we'll
2185 * just go back and repeat.
2187 rq = task_rq_lock(p, &flags);
2188 trace_sched_wait_task(rq, p);
2189 running = task_running(rq, p);
2190 on_rq = p->se.on_rq;
2191 ncsw = 0;
2192 if (!match_state || p->state == match_state)
2193 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
2194 task_rq_unlock(rq, &flags);
2197 * If it changed from the expected state, bail out now.
2199 if (unlikely(!ncsw))
2200 break;
2203 * Was it really running after all now that we
2204 * checked with the proper locks actually held?
2206 * Oops. Go back and try again..
2208 if (unlikely(running)) {
2209 cpu_relax();
2210 continue;
2214 * It's not enough that it's not actively running,
2215 * it must be off the runqueue _entirely_, and not
2216 * preempted!
2218 * So if it was still runnable (but just not actively
2219 * running right now), it's preempted, and we should
2220 * yield - it could be a while.
2222 if (unlikely(on_rq)) {
2223 schedule_timeout_uninterruptible(1);
2224 continue;
2228 * Ahh, all good. It wasn't running, and it wasn't
2229 * runnable, which means that it will never become
2230 * running in the future either. We're all done!
2232 break;
2235 return ncsw;
2238 /***
2239 * kick_process - kick a running thread to enter/exit the kernel
2240 * @p: the to-be-kicked thread
2242 * Cause a process which is running on another CPU to enter
2243 * kernel-mode, without any delay. (to get signals handled.)
2245 * NOTE: this function doesnt have to take the runqueue lock,
2246 * because all it wants to ensure is that the remote task enters
2247 * the kernel. If the IPI races and the task has been migrated
2248 * to another CPU then no harm is done and the purpose has been
2249 * achieved as well.
2251 void kick_process(struct task_struct *p)
2253 int cpu;
2255 preempt_disable();
2256 cpu = task_cpu(p);
2257 if ((cpu != smp_processor_id()) && task_curr(p))
2258 smp_send_reschedule(cpu);
2259 preempt_enable();
2261 EXPORT_SYMBOL_GPL(kick_process);
2262 #endif /* CONFIG_SMP */
2265 * task_oncpu_function_call - call a function on the cpu on which a task runs
2266 * @p: the task to evaluate
2267 * @func: the function to be called
2268 * @info: the function call argument
2270 * Calls the function @func when the task is currently running. This might
2271 * be on the current CPU, which just calls the function directly
2273 void task_oncpu_function_call(struct task_struct *p,
2274 void (*func) (void *info), void *info)
2276 int cpu;
2278 preempt_disable();
2279 cpu = task_cpu(p);
2280 if (task_curr(p))
2281 smp_call_function_single(cpu, func, info, 1);
2282 preempt_enable();
2285 #ifdef CONFIG_SMP
2286 static int select_fallback_rq(int cpu, struct task_struct *p)
2288 int dest_cpu;
2289 const struct cpumask *nodemask = cpumask_of_node(cpu_to_node(cpu));
2291 /* Look for allowed, online CPU in same node. */
2292 for_each_cpu_and(dest_cpu, nodemask, cpu_active_mask)
2293 if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
2294 return dest_cpu;
2296 /* Any allowed, online CPU? */
2297 dest_cpu = cpumask_any_and(&p->cpus_allowed, cpu_active_mask);
2298 if (dest_cpu < nr_cpu_ids)
2299 return dest_cpu;
2301 /* No more Mr. Nice Guy. */
2302 if (dest_cpu >= nr_cpu_ids) {
2303 rcu_read_lock();
2304 cpuset_cpus_allowed_locked(p, &p->cpus_allowed);
2305 rcu_read_unlock();
2306 dest_cpu = cpumask_any_and(cpu_active_mask, &p->cpus_allowed);
2309 * Don't tell them about moving exiting tasks or
2310 * kernel threads (both mm NULL), since they never
2311 * leave kernel.
2313 if (p->mm && printk_ratelimit()) {
2314 printk(KERN_INFO "process %d (%s) no "
2315 "longer affine to cpu%d\n",
2316 task_pid_nr(p), p->comm, cpu);
2320 return dest_cpu;
2324 * Gets called from 3 sites (exec, fork, wakeup), since it is called without
2325 * holding rq->lock we need to ensure ->cpus_allowed is stable, this is done
2326 * by:
2328 * exec: is unstable, retry loop
2329 * fork & wake-up: serialize ->cpus_allowed against TASK_WAKING
2331 static inline
2332 int select_task_rq(struct task_struct *p, int sd_flags, int wake_flags)
2334 int cpu = p->sched_class->select_task_rq(p, sd_flags, wake_flags);
2337 * In order not to call set_task_cpu() on a blocking task we need
2338 * to rely on ttwu() to place the task on a valid ->cpus_allowed
2339 * cpu.
2341 * Since this is common to all placement strategies, this lives here.
2343 * [ this allows ->select_task() to simply return task_cpu(p) and
2344 * not worry about this generic constraint ]
2346 if (unlikely(!cpumask_test_cpu(cpu, &p->cpus_allowed) ||
2347 !cpu_online(cpu)))
2348 cpu = select_fallback_rq(task_cpu(p), p);
2350 return cpu;
2352 #endif
2354 /***
2355 * try_to_wake_up - wake up a thread
2356 * @p: the to-be-woken-up thread
2357 * @state: the mask of task states that can be woken
2358 * @sync: do a synchronous wakeup?
2360 * Put it on the run-queue if it's not already there. The "current"
2361 * thread is always on the run-queue (except when the actual
2362 * re-schedule is in progress), and as such you're allowed to do
2363 * the simpler "current->state = TASK_RUNNING" to mark yourself
2364 * runnable without the overhead of this.
2366 * returns failure only if the task is already active.
2368 static int try_to_wake_up(struct task_struct *p, unsigned int state,
2369 int wake_flags)
2371 int cpu, orig_cpu, this_cpu, success = 0;
2372 unsigned long flags;
2373 struct rq *rq;
2375 if (!sched_feat(SYNC_WAKEUPS))
2376 wake_flags &= ~WF_SYNC;
2378 this_cpu = get_cpu();
2380 smp_wmb();
2381 rq = task_rq_lock(p, &flags);
2382 update_rq_clock(rq);
2383 if (!(p->state & state))
2384 goto out;
2386 if (p->se.on_rq)
2387 goto out_running;
2389 cpu = task_cpu(p);
2390 orig_cpu = cpu;
2392 #ifdef CONFIG_SMP
2393 if (unlikely(task_running(rq, p)))
2394 goto out_activate;
2397 * In order to handle concurrent wakeups and release the rq->lock
2398 * we put the task in TASK_WAKING state.
2400 * First fix up the nr_uninterruptible count:
2402 if (task_contributes_to_load(p))
2403 rq->nr_uninterruptible--;
2404 p->state = TASK_WAKING;
2406 if (p->sched_class->task_waking)
2407 p->sched_class->task_waking(rq, p);
2409 __task_rq_unlock(rq);
2411 cpu = select_task_rq(p, SD_BALANCE_WAKE, wake_flags);
2412 if (cpu != orig_cpu) {
2414 * Since we migrate the task without holding any rq->lock,
2415 * we need to be careful with task_rq_lock(), since that
2416 * might end up locking an invalid rq.
2418 set_task_cpu(p, cpu);
2421 rq = cpu_rq(cpu);
2422 raw_spin_lock(&rq->lock);
2423 update_rq_clock(rq);
2426 * We migrated the task without holding either rq->lock, however
2427 * since the task is not on the task list itself, nobody else
2428 * will try and migrate the task, hence the rq should match the
2429 * cpu we just moved it to.
2431 WARN_ON(task_cpu(p) != cpu);
2432 WARN_ON(p->state != TASK_WAKING);
2434 #ifdef CONFIG_SCHEDSTATS
2435 schedstat_inc(rq, ttwu_count);
2436 if (cpu == this_cpu)
2437 schedstat_inc(rq, ttwu_local);
2438 else {
2439 struct sched_domain *sd;
2440 for_each_domain(this_cpu, sd) {
2441 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
2442 schedstat_inc(sd, ttwu_wake_remote);
2443 break;
2447 #endif /* CONFIG_SCHEDSTATS */
2449 out_activate:
2450 #endif /* CONFIG_SMP */
2451 schedstat_inc(p, se.nr_wakeups);
2452 if (wake_flags & WF_SYNC)
2453 schedstat_inc(p, se.nr_wakeups_sync);
2454 if (orig_cpu != cpu)
2455 schedstat_inc(p, se.nr_wakeups_migrate);
2456 if (cpu == this_cpu)
2457 schedstat_inc(p, se.nr_wakeups_local);
2458 else
2459 schedstat_inc(p, se.nr_wakeups_remote);
2460 activate_task(rq, p, 1);
2461 success = 1;
2464 * Only attribute actual wakeups done by this task.
2466 if (!in_interrupt()) {
2467 struct sched_entity *se = &current->se;
2468 u64 sample = se->sum_exec_runtime;
2470 if (se->last_wakeup)
2471 sample -= se->last_wakeup;
2472 else
2473 sample -= se->start_runtime;
2474 update_avg(&se->avg_wakeup, sample);
2476 se->last_wakeup = se->sum_exec_runtime;
2479 out_running:
2480 trace_sched_wakeup(rq, p, success);
2481 check_preempt_curr(rq, p, wake_flags);
2483 p->state = TASK_RUNNING;
2484 #ifdef CONFIG_SMP
2485 if (p->sched_class->task_woken)
2486 p->sched_class->task_woken(rq, p);
2488 if (unlikely(rq->idle_stamp)) {
2489 u64 delta = rq->clock - rq->idle_stamp;
2490 u64 max = 2*sysctl_sched_migration_cost;
2492 if (delta > max)
2493 rq->avg_idle = max;
2494 else
2495 update_avg(&rq->avg_idle, delta);
2496 rq->idle_stamp = 0;
2498 #endif
2499 out:
2500 task_rq_unlock(rq, &flags);
2501 put_cpu();
2503 return success;
2507 * wake_up_process - Wake up a specific process
2508 * @p: The process to be woken up.
2510 * Attempt to wake up the nominated process and move it to the set of runnable
2511 * processes. Returns 1 if the process was woken up, 0 if it was already
2512 * running.
2514 * It may be assumed that this function implies a write memory barrier before
2515 * changing the task state if and only if any tasks are woken up.
2517 int wake_up_process(struct task_struct *p)
2519 return try_to_wake_up(p, TASK_ALL, 0);
2521 EXPORT_SYMBOL(wake_up_process);
2523 int wake_up_state(struct task_struct *p, unsigned int state)
2525 return try_to_wake_up(p, state, 0);
2529 * Perform scheduler related setup for a newly forked process p.
2530 * p is forked by current.
2532 * __sched_fork() is basic setup used by init_idle() too:
2534 static void __sched_fork(struct task_struct *p)
2536 p->se.exec_start = 0;
2537 p->se.sum_exec_runtime = 0;
2538 p->se.prev_sum_exec_runtime = 0;
2539 p->se.nr_migrations = 0;
2540 p->se.last_wakeup = 0;
2541 p->se.avg_overlap = 0;
2542 p->se.start_runtime = 0;
2543 p->se.avg_wakeup = sysctl_sched_wakeup_granularity;
2545 #ifdef CONFIG_SCHEDSTATS
2546 p->se.wait_start = 0;
2547 p->se.wait_max = 0;
2548 p->se.wait_count = 0;
2549 p->se.wait_sum = 0;
2551 p->se.sleep_start = 0;
2552 p->se.sleep_max = 0;
2553 p->se.sum_sleep_runtime = 0;
2555 p->se.block_start = 0;
2556 p->se.block_max = 0;
2557 p->se.exec_max = 0;
2558 p->se.slice_max = 0;
2560 p->se.nr_migrations_cold = 0;
2561 p->se.nr_failed_migrations_affine = 0;
2562 p->se.nr_failed_migrations_running = 0;
2563 p->se.nr_failed_migrations_hot = 0;
2564 p->se.nr_forced_migrations = 0;
2566 p->se.nr_wakeups = 0;
2567 p->se.nr_wakeups_sync = 0;
2568 p->se.nr_wakeups_migrate = 0;
2569 p->se.nr_wakeups_local = 0;
2570 p->se.nr_wakeups_remote = 0;
2571 p->se.nr_wakeups_affine = 0;
2572 p->se.nr_wakeups_affine_attempts = 0;
2573 p->se.nr_wakeups_passive = 0;
2574 p->se.nr_wakeups_idle = 0;
2576 #endif
2578 INIT_LIST_HEAD(&p->rt.run_list);
2579 p->se.on_rq = 0;
2580 INIT_LIST_HEAD(&p->se.group_node);
2582 #ifdef CONFIG_PREEMPT_NOTIFIERS
2583 INIT_HLIST_HEAD(&p->preempt_notifiers);
2584 #endif
2588 * fork()/clone()-time setup:
2590 void sched_fork(struct task_struct *p, int clone_flags)
2592 int cpu = get_cpu();
2594 __sched_fork(p);
2596 * We mark the process as waking here. This guarantees that
2597 * nobody will actually run it, and a signal or other external
2598 * event cannot wake it up and insert it on the runqueue either.
2600 p->state = TASK_WAKING;
2603 * Revert to default priority/policy on fork if requested.
2605 if (unlikely(p->sched_reset_on_fork)) {
2606 if (p->policy == SCHED_FIFO || p->policy == SCHED_RR) {
2607 p->policy = SCHED_NORMAL;
2608 p->normal_prio = p->static_prio;
2611 if (PRIO_TO_NICE(p->static_prio) < 0) {
2612 p->static_prio = NICE_TO_PRIO(0);
2613 p->normal_prio = p->static_prio;
2614 set_load_weight(p);
2618 * We don't need the reset flag anymore after the fork. It has
2619 * fulfilled its duty:
2621 p->sched_reset_on_fork = 0;
2625 * Make sure we do not leak PI boosting priority to the child.
2627 p->prio = current->normal_prio;
2629 if (!rt_prio(p->prio))
2630 p->sched_class = &fair_sched_class;
2632 if (p->sched_class->task_fork)
2633 p->sched_class->task_fork(p);
2635 set_task_cpu(p, cpu);
2637 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
2638 if (likely(sched_info_on()))
2639 memset(&p->sched_info, 0, sizeof(p->sched_info));
2640 #endif
2641 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
2642 p->oncpu = 0;
2643 #endif
2644 #ifdef CONFIG_PREEMPT
2645 /* Want to start with kernel preemption disabled. */
2646 task_thread_info(p)->preempt_count = 1;
2647 #endif
2648 plist_node_init(&p->pushable_tasks, MAX_PRIO);
2650 put_cpu();
2654 * wake_up_new_task - wake up a newly created task for the first time.
2656 * This function will do some initial scheduler statistics housekeeping
2657 * that must be done for every newly created context, then puts the task
2658 * on the runqueue and wakes it.
2660 void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
2662 unsigned long flags;
2663 struct rq *rq;
2664 int cpu __maybe_unused = get_cpu();
2666 #ifdef CONFIG_SMP
2668 * Fork balancing, do it here and not earlier because:
2669 * - cpus_allowed can change in the fork path
2670 * - any previously selected cpu might disappear through hotplug
2672 * We still have TASK_WAKING but PF_STARTING is gone now, meaning
2673 * ->cpus_allowed is stable, we have preemption disabled, meaning
2674 * cpu_online_mask is stable.
2676 cpu = select_task_rq(p, SD_BALANCE_FORK, 0);
2677 set_task_cpu(p, cpu);
2678 #endif
2681 * Since the task is not on the rq and we still have TASK_WAKING set
2682 * nobody else will migrate this task.
2684 rq = cpu_rq(cpu);
2685 raw_spin_lock_irqsave(&rq->lock, flags);
2687 BUG_ON(p->state != TASK_WAKING);
2688 p->state = TASK_RUNNING;
2689 update_rq_clock(rq);
2690 activate_task(rq, p, 0);
2691 trace_sched_wakeup_new(rq, p, 1);
2692 check_preempt_curr(rq, p, WF_FORK);
2693 #ifdef CONFIG_SMP
2694 if (p->sched_class->task_woken)
2695 p->sched_class->task_woken(rq, p);
2696 #endif
2697 task_rq_unlock(rq, &flags);
2698 put_cpu();
2701 #ifdef CONFIG_PREEMPT_NOTIFIERS
2704 * preempt_notifier_register - tell me when current is being preempted & rescheduled
2705 * @notifier: notifier struct to register
2707 void preempt_notifier_register(struct preempt_notifier *notifier)
2709 hlist_add_head(&notifier->link, &current->preempt_notifiers);
2711 EXPORT_SYMBOL_GPL(preempt_notifier_register);
2714 * preempt_notifier_unregister - no longer interested in preemption notifications
2715 * @notifier: notifier struct to unregister
2717 * This is safe to call from within a preemption notifier.
2719 void preempt_notifier_unregister(struct preempt_notifier *notifier)
2721 hlist_del(&notifier->link);
2723 EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2725 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2727 struct preempt_notifier *notifier;
2728 struct hlist_node *node;
2730 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2731 notifier->ops->sched_in(notifier, raw_smp_processor_id());
2734 static void
2735 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2736 struct task_struct *next)
2738 struct preempt_notifier *notifier;
2739 struct hlist_node *node;
2741 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2742 notifier->ops->sched_out(notifier, next);
2745 #else /* !CONFIG_PREEMPT_NOTIFIERS */
2747 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2751 static void
2752 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2753 struct task_struct *next)
2757 #endif /* CONFIG_PREEMPT_NOTIFIERS */
2760 * prepare_task_switch - prepare to switch tasks
2761 * @rq: the runqueue preparing to switch
2762 * @prev: the current task that is being switched out
2763 * @next: the task we are going to switch to.
2765 * This is called with the rq lock held and interrupts off. It must
2766 * be paired with a subsequent finish_task_switch after the context
2767 * switch.
2769 * prepare_task_switch sets up locking and calls architecture specific
2770 * hooks.
2772 static inline void
2773 prepare_task_switch(struct rq *rq, struct task_struct *prev,
2774 struct task_struct *next)
2776 fire_sched_out_preempt_notifiers(prev, next);
2777 prepare_lock_switch(rq, next);
2778 prepare_arch_switch(next);
2782 * finish_task_switch - clean up after a task-switch
2783 * @rq: runqueue associated with task-switch
2784 * @prev: the thread we just switched away from.
2786 * finish_task_switch must be called after the context switch, paired
2787 * with a prepare_task_switch call before the context switch.
2788 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2789 * and do any other architecture-specific cleanup actions.
2791 * Note that we may have delayed dropping an mm in context_switch(). If
2792 * so, we finish that here outside of the runqueue lock. (Doing it
2793 * with the lock held can cause deadlocks; see schedule() for
2794 * details.)
2796 static void finish_task_switch(struct rq *rq, struct task_struct *prev)
2797 __releases(rq->lock)
2799 struct mm_struct *mm = rq->prev_mm;
2800 long prev_state;
2802 rq->prev_mm = NULL;
2805 * A task struct has one reference for the use as "current".
2806 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
2807 * schedule one last time. The schedule call will never return, and
2808 * the scheduled task must drop that reference.
2809 * The test for TASK_DEAD must occur while the runqueue locks are
2810 * still held, otherwise prev could be scheduled on another cpu, die
2811 * there before we look at prev->state, and then the reference would
2812 * be dropped twice.
2813 * Manfred Spraul <manfred@colorfullife.com>
2815 prev_state = prev->state;
2816 finish_arch_switch(prev);
2817 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
2818 local_irq_disable();
2819 #endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
2820 perf_event_task_sched_in(current);
2821 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
2822 local_irq_enable();
2823 #endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
2824 finish_lock_switch(rq, prev);
2826 fire_sched_in_preempt_notifiers(current);
2827 if (mm)
2828 mmdrop(mm);
2829 if (unlikely(prev_state == TASK_DEAD)) {
2831 * Remove function-return probe instances associated with this
2832 * task and put them back on the free list.
2834 kprobe_flush_task(prev);
2835 put_task_struct(prev);
2839 #ifdef CONFIG_SMP
2841 /* assumes rq->lock is held */
2842 static inline void pre_schedule(struct rq *rq, struct task_struct *prev)
2844 if (prev->sched_class->pre_schedule)
2845 prev->sched_class->pre_schedule(rq, prev);
2848 /* rq->lock is NOT held, but preemption is disabled */
2849 static inline void post_schedule(struct rq *rq)
2851 if (rq->post_schedule) {
2852 unsigned long flags;
2854 raw_spin_lock_irqsave(&rq->lock, flags);
2855 if (rq->curr->sched_class->post_schedule)
2856 rq->curr->sched_class->post_schedule(rq);
2857 raw_spin_unlock_irqrestore(&rq->lock, flags);
2859 rq->post_schedule = 0;
2863 #else
2865 static inline void pre_schedule(struct rq *rq, struct task_struct *p)
2869 static inline void post_schedule(struct rq *rq)
2873 #endif
2876 * schedule_tail - first thing a freshly forked thread must call.
2877 * @prev: the thread we just switched away from.
2879 asmlinkage void schedule_tail(struct task_struct *prev)
2880 __releases(rq->lock)
2882 struct rq *rq = this_rq();
2884 finish_task_switch(rq, prev);
2887 * FIXME: do we need to worry about rq being invalidated by the
2888 * task_switch?
2890 post_schedule(rq);
2892 #ifdef __ARCH_WANT_UNLOCKED_CTXSW
2893 /* In this case, finish_task_switch does not reenable preemption */
2894 preempt_enable();
2895 #endif
2896 if (current->set_child_tid)
2897 put_user(task_pid_vnr(current), current->set_child_tid);
2901 * context_switch - switch to the new MM and the new
2902 * thread's register state.
2904 static inline void
2905 context_switch(struct rq *rq, struct task_struct *prev,
2906 struct task_struct *next)
2908 struct mm_struct *mm, *oldmm;
2910 prepare_task_switch(rq, prev, next);
2911 trace_sched_switch(rq, prev, next);
2912 mm = next->mm;
2913 oldmm = prev->active_mm;
2915 * For paravirt, this is coupled with an exit in switch_to to
2916 * combine the page table reload and the switch backend into
2917 * one hypercall.
2919 arch_start_context_switch(prev);
2921 if (likely(!mm)) {
2922 next->active_mm = oldmm;
2923 atomic_inc(&oldmm->mm_count);
2924 enter_lazy_tlb(oldmm, next);
2925 } else
2926 switch_mm(oldmm, mm, next);
2928 if (likely(!prev->mm)) {
2929 prev->active_mm = NULL;
2930 rq->prev_mm = oldmm;
2933 * Since the runqueue lock will be released by the next
2934 * task (which is an invalid locking op but in the case
2935 * of the scheduler it's an obvious special-case), so we
2936 * do an early lockdep release here:
2938 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
2939 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
2940 #endif
2942 /* Here we just switch the register state and the stack. */
2943 switch_to(prev, next, prev);
2945 barrier();
2947 * this_rq must be evaluated again because prev may have moved
2948 * CPUs since it called schedule(), thus the 'rq' on its stack
2949 * frame will be invalid.
2951 finish_task_switch(this_rq(), prev);
2955 * nr_running, nr_uninterruptible and nr_context_switches:
2957 * externally visible scheduler statistics: current number of runnable
2958 * threads, current number of uninterruptible-sleeping threads, total
2959 * number of context switches performed since bootup.
2961 unsigned long nr_running(void)
2963 unsigned long i, sum = 0;
2965 for_each_online_cpu(i)
2966 sum += cpu_rq(i)->nr_running;
2968 return sum;
2971 unsigned long nr_uninterruptible(void)
2973 unsigned long i, sum = 0;
2975 for_each_possible_cpu(i)
2976 sum += cpu_rq(i)->nr_uninterruptible;
2979 * Since we read the counters lockless, it might be slightly
2980 * inaccurate. Do not allow it to go below zero though:
2982 if (unlikely((long)sum < 0))
2983 sum = 0;
2985 return sum;
2988 unsigned long long nr_context_switches(void)
2990 int i;
2991 unsigned long long sum = 0;
2993 for_each_possible_cpu(i)
2994 sum += cpu_rq(i)->nr_switches;
2996 return sum;
2999 unsigned long nr_iowait(void)
3001 unsigned long i, sum = 0;
3003 for_each_possible_cpu(i)
3004 sum += atomic_read(&cpu_rq(i)->nr_iowait);
3006 return sum;
3009 unsigned long nr_iowait_cpu(void)
3011 struct rq *this = this_rq();
3012 return atomic_read(&this->nr_iowait);
3015 unsigned long this_cpu_load(void)
3017 struct rq *this = this_rq();
3018 return this->cpu_load[0];
3022 /* Variables and functions for calc_load */
3023 static atomic_long_t calc_load_tasks;
3024 static unsigned long calc_load_update;
3025 unsigned long avenrun[3];
3026 EXPORT_SYMBOL(avenrun);
3029 * get_avenrun - get the load average array
3030 * @loads: pointer to dest load array
3031 * @offset: offset to add
3032 * @shift: shift count to shift the result left
3034 * These values are estimates at best, so no need for locking.
3036 void get_avenrun(unsigned long *loads, unsigned long offset, int shift)
3038 loads[0] = (avenrun[0] + offset) << shift;
3039 loads[1] = (avenrun[1] + offset) << shift;
3040 loads[2] = (avenrun[2] + offset) << shift;
3043 static unsigned long
3044 calc_load(unsigned long load, unsigned long exp, unsigned long active)
3046 load *= exp;
3047 load += active * (FIXED_1 - exp);
3048 return load >> FSHIFT;
3052 * calc_load - update the avenrun load estimates 10 ticks after the
3053 * CPUs have updated calc_load_tasks.
3055 void calc_global_load(void)
3057 unsigned long upd = calc_load_update + 10;
3058 long active;
3060 if (time_before(jiffies, upd))
3061 return;
3063 active = atomic_long_read(&calc_load_tasks);
3064 active = active > 0 ? active * FIXED_1 : 0;
3066 avenrun[0] = calc_load(avenrun[0], EXP_1, active);
3067 avenrun[1] = calc_load(avenrun[1], EXP_5, active);
3068 avenrun[2] = calc_load(avenrun[2], EXP_15, active);
3070 calc_load_update += LOAD_FREQ;
3074 * Either called from update_cpu_load() or from a cpu going idle
3076 static void calc_load_account_active(struct rq *this_rq)
3078 long nr_active, delta;
3080 nr_active = this_rq->nr_running;
3081 nr_active += (long) this_rq->nr_uninterruptible;
3083 if (nr_active != this_rq->calc_load_active) {
3084 delta = nr_active - this_rq->calc_load_active;
3085 this_rq->calc_load_active = nr_active;
3086 atomic_long_add(delta, &calc_load_tasks);
3091 * Update rq->cpu_load[] statistics. This function is usually called every
3092 * scheduler tick (TICK_NSEC).
3094 static void update_cpu_load(struct rq *this_rq)
3096 unsigned long this_load = this_rq->load.weight;
3097 int i, scale;
3099 this_rq->nr_load_updates++;
3101 /* Update our load: */
3102 for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
3103 unsigned long old_load, new_load;
3105 /* scale is effectively 1 << i now, and >> i divides by scale */
3107 old_load = this_rq->cpu_load[i];
3108 new_load = this_load;
3110 * Round up the averaging division if load is increasing. This
3111 * prevents us from getting stuck on 9 if the load is 10, for
3112 * example.
3114 if (new_load > old_load)
3115 new_load += scale-1;
3116 this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
3119 if (time_after_eq(jiffies, this_rq->calc_load_update)) {
3120 this_rq->calc_load_update += LOAD_FREQ;
3121 calc_load_account_active(this_rq);
3125 #ifdef CONFIG_SMP
3128 * sched_exec - execve() is a valuable balancing opportunity, because at
3129 * this point the task has the smallest effective memory and cache footprint.
3131 void sched_exec(void)
3133 struct task_struct *p = current;
3134 struct migration_req req;
3135 int dest_cpu, this_cpu;
3136 unsigned long flags;
3137 struct rq *rq;
3139 again:
3140 this_cpu = get_cpu();
3141 dest_cpu = select_task_rq(p, SD_BALANCE_EXEC, 0);
3142 if (dest_cpu == this_cpu) {
3143 put_cpu();
3144 return;
3147 rq = task_rq_lock(p, &flags);
3148 put_cpu();
3151 * select_task_rq() can race against ->cpus_allowed
3153 if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed)
3154 || unlikely(!cpu_active(dest_cpu))) {
3155 task_rq_unlock(rq, &flags);
3156 goto again;
3159 /* force the process onto the specified CPU */
3160 if (migrate_task(p, dest_cpu, &req)) {
3161 /* Need to wait for migration thread (might exit: take ref). */
3162 struct task_struct *mt = rq->migration_thread;
3164 get_task_struct(mt);
3165 task_rq_unlock(rq, &flags);
3166 wake_up_process(mt);
3167 put_task_struct(mt);
3168 wait_for_completion(&req.done);
3170 return;
3172 task_rq_unlock(rq, &flags);
3175 #endif
3177 DEFINE_PER_CPU(struct kernel_stat, kstat);
3179 EXPORT_PER_CPU_SYMBOL(kstat);
3182 * Return any ns on the sched_clock that have not yet been accounted in
3183 * @p in case that task is currently running.
3185 * Called with task_rq_lock() held on @rq.
3187 static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
3189 u64 ns = 0;
3191 if (task_current(rq, p)) {
3192 update_rq_clock(rq);
3193 ns = rq->clock - p->se.exec_start;
3194 if ((s64)ns < 0)
3195 ns = 0;
3198 return ns;
3201 unsigned long long task_delta_exec(struct task_struct *p)
3203 unsigned long flags;
3204 struct rq *rq;
3205 u64 ns = 0;
3207 rq = task_rq_lock(p, &flags);
3208 ns = do_task_delta_exec(p, rq);
3209 task_rq_unlock(rq, &flags);
3211 return ns;
3215 * Return accounted runtime for the task.
3216 * In case the task is currently running, return the runtime plus current's
3217 * pending runtime that have not been accounted yet.
3219 unsigned long long task_sched_runtime(struct task_struct *p)
3221 unsigned long flags;
3222 struct rq *rq;
3223 u64 ns = 0;
3225 rq = task_rq_lock(p, &flags);
3226 ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
3227 task_rq_unlock(rq, &flags);
3229 return ns;
3233 * Return sum_exec_runtime for the thread group.
3234 * In case the task is currently running, return the sum plus current's
3235 * pending runtime that have not been accounted yet.
3237 * Note that the thread group might have other running tasks as well,
3238 * so the return value not includes other pending runtime that other
3239 * running tasks might have.
3241 unsigned long long thread_group_sched_runtime(struct task_struct *p)
3243 struct task_cputime totals;
3244 unsigned long flags;
3245 struct rq *rq;
3246 u64 ns;
3248 rq = task_rq_lock(p, &flags);
3249 thread_group_cputime(p, &totals);
3250 ns = totals.sum_exec_runtime + do_task_delta_exec(p, rq);
3251 task_rq_unlock(rq, &flags);
3253 return ns;
3257 * Account user cpu time to a process.
3258 * @p: the process that the cpu time gets accounted to
3259 * @cputime: the cpu time spent in user space since the last update
3260 * @cputime_scaled: cputime scaled by cpu frequency
3262 void account_user_time(struct task_struct *p, cputime_t cputime,
3263 cputime_t cputime_scaled)
3265 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3266 cputime64_t tmp;
3268 /* Add user time to process. */
3269 p->utime = cputime_add(p->utime, cputime);
3270 p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
3271 account_group_user_time(p, cputime);
3273 /* Add user time to cpustat. */
3274 tmp = cputime_to_cputime64(cputime);
3275 if (TASK_NICE(p) > 0)
3276 cpustat->nice = cputime64_add(cpustat->nice, tmp);
3277 else
3278 cpustat->user = cputime64_add(cpustat->user, tmp);
3280 cpuacct_update_stats(p, CPUACCT_STAT_USER, cputime);
3281 /* Account for user time used */
3282 acct_update_integrals(p);
3286 * Account guest cpu time to a process.
3287 * @p: the process that the cpu time gets accounted to
3288 * @cputime: the cpu time spent in virtual machine since the last update
3289 * @cputime_scaled: cputime scaled by cpu frequency
3291 static void account_guest_time(struct task_struct *p, cputime_t cputime,
3292 cputime_t cputime_scaled)
3294 cputime64_t tmp;
3295 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3297 tmp = cputime_to_cputime64(cputime);
3299 /* Add guest time to process. */
3300 p->utime = cputime_add(p->utime, cputime);
3301 p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
3302 account_group_user_time(p, cputime);
3303 p->gtime = cputime_add(p->gtime, cputime);
3305 /* Add guest time to cpustat. */
3306 if (TASK_NICE(p) > 0) {
3307 cpustat->nice = cputime64_add(cpustat->nice, tmp);
3308 cpustat->guest_nice = cputime64_add(cpustat->guest_nice, tmp);
3309 } else {
3310 cpustat->user = cputime64_add(cpustat->user, tmp);
3311 cpustat->guest = cputime64_add(cpustat->guest, tmp);
3316 * Account system cpu time to a process.
3317 * @p: the process that the cpu time gets accounted to
3318 * @hardirq_offset: the offset to subtract from hardirq_count()
3319 * @cputime: the cpu time spent in kernel space since the last update
3320 * @cputime_scaled: cputime scaled by cpu frequency
3322 void account_system_time(struct task_struct *p, int hardirq_offset,
3323 cputime_t cputime, cputime_t cputime_scaled)
3325 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3326 cputime64_t tmp;
3328 if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
3329 account_guest_time(p, cputime, cputime_scaled);
3330 return;
3333 /* Add system time to process. */
3334 p->stime = cputime_add(p->stime, cputime);
3335 p->stimescaled = cputime_add(p->stimescaled, cputime_scaled);
3336 account_group_system_time(p, cputime);
3338 /* Add system time to cpustat. */
3339 tmp = cputime_to_cputime64(cputime);
3340 if (hardirq_count() - hardirq_offset)
3341 cpustat->irq = cputime64_add(cpustat->irq, tmp);
3342 else if (softirq_count())
3343 cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
3344 else
3345 cpustat->system = cputime64_add(cpustat->system, tmp);
3347 cpuacct_update_stats(p, CPUACCT_STAT_SYSTEM, cputime);
3349 /* Account for system time used */
3350 acct_update_integrals(p);
3354 * Account for involuntary wait time.
3355 * @steal: the cpu time spent in involuntary wait
3357 void account_steal_time(cputime_t cputime)
3359 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3360 cputime64_t cputime64 = cputime_to_cputime64(cputime);
3362 cpustat->steal = cputime64_add(cpustat->steal, cputime64);
3366 * Account for idle time.
3367 * @cputime: the cpu time spent in idle wait
3369 void account_idle_time(cputime_t cputime)
3371 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3372 cputime64_t cputime64 = cputime_to_cputime64(cputime);
3373 struct rq *rq = this_rq();
3375 if (atomic_read(&rq->nr_iowait) > 0)
3376 cpustat->iowait = cputime64_add(cpustat->iowait, cputime64);
3377 else
3378 cpustat->idle = cputime64_add(cpustat->idle, cputime64);
3381 #ifndef CONFIG_VIRT_CPU_ACCOUNTING
3384 * Account a single tick of cpu time.
3385 * @p: the process that the cpu time gets accounted to
3386 * @user_tick: indicates if the tick is a user or a system tick
3388 void account_process_tick(struct task_struct *p, int user_tick)
3390 cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
3391 struct rq *rq = this_rq();
3393 if (user_tick)
3394 account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
3395 else if ((p != rq->idle) || (irq_count() != HARDIRQ_OFFSET))
3396 account_system_time(p, HARDIRQ_OFFSET, cputime_one_jiffy,
3397 one_jiffy_scaled);
3398 else
3399 account_idle_time(cputime_one_jiffy);
3403 * Account multiple ticks of steal time.
3404 * @p: the process from which the cpu time has been stolen
3405 * @ticks: number of stolen ticks
3407 void account_steal_ticks(unsigned long ticks)
3409 account_steal_time(jiffies_to_cputime(ticks));
3413 * Account multiple ticks of idle time.
3414 * @ticks: number of stolen ticks
3416 void account_idle_ticks(unsigned long ticks)
3418 account_idle_time(jiffies_to_cputime(ticks));
3421 #endif
3424 * Use precise platform statistics if available:
3426 #ifdef CONFIG_VIRT_CPU_ACCOUNTING
3427 void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
3429 *ut = p->utime;
3430 *st = p->stime;
3433 void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
3435 struct task_cputime cputime;
3437 thread_group_cputime(p, &cputime);
3439 *ut = cputime.utime;
3440 *st = cputime.stime;
3442 #else
3444 #ifndef nsecs_to_cputime
3445 # define nsecs_to_cputime(__nsecs) nsecs_to_jiffies(__nsecs)
3446 #endif
3448 void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
3450 cputime_t rtime, utime = p->utime, total = cputime_add(utime, p->stime);
3453 * Use CFS's precise accounting:
3455 rtime = nsecs_to_cputime(p->se.sum_exec_runtime);
3457 if (total) {
3458 u64 temp;
3460 temp = (u64)(rtime * utime);
3461 do_div(temp, total);
3462 utime = (cputime_t)temp;
3463 } else
3464 utime = rtime;
3467 * Compare with previous values, to keep monotonicity:
3469 p->prev_utime = max(p->prev_utime, utime);
3470 p->prev_stime = max(p->prev_stime, cputime_sub(rtime, p->prev_utime));
3472 *ut = p->prev_utime;
3473 *st = p->prev_stime;
3477 * Must be called with siglock held.
3479 void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
3481 struct signal_struct *sig = p->signal;
3482 struct task_cputime cputime;
3483 cputime_t rtime, utime, total;
3485 thread_group_cputime(p, &cputime);
3487 total = cputime_add(cputime.utime, cputime.stime);
3488 rtime = nsecs_to_cputime(cputime.sum_exec_runtime);
3490 if (total) {
3491 u64 temp;
3493 temp = (u64)(rtime * cputime.utime);
3494 do_div(temp, total);
3495 utime = (cputime_t)temp;
3496 } else
3497 utime = rtime;
3499 sig->prev_utime = max(sig->prev_utime, utime);
3500 sig->prev_stime = max(sig->prev_stime,
3501 cputime_sub(rtime, sig->prev_utime));
3503 *ut = sig->prev_utime;
3504 *st = sig->prev_stime;
3506 #endif
3509 * This function gets called by the timer code, with HZ frequency.
3510 * We call it with interrupts disabled.
3512 * It also gets called by the fork code, when changing the parent's
3513 * timeslices.
3515 void scheduler_tick(void)
3517 int cpu = smp_processor_id();
3518 struct rq *rq = cpu_rq(cpu);
3519 struct task_struct *curr = rq->curr;
3521 sched_clock_tick();
3523 raw_spin_lock(&rq->lock);
3524 update_rq_clock(rq);
3525 update_cpu_load(rq);
3526 curr->sched_class->task_tick(rq, curr, 0);
3527 raw_spin_unlock(&rq->lock);
3529 perf_event_task_tick(curr);
3531 #ifdef CONFIG_SMP
3532 rq->idle_at_tick = idle_cpu(cpu);
3533 trigger_load_balance(rq, cpu);
3534 #endif
3537 notrace unsigned long get_parent_ip(unsigned long addr)
3539 if (in_lock_functions(addr)) {
3540 addr = CALLER_ADDR2;
3541 if (in_lock_functions(addr))
3542 addr = CALLER_ADDR3;
3544 return addr;
3547 #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
3548 defined(CONFIG_PREEMPT_TRACER))
3550 void __kprobes add_preempt_count(int val)
3552 #ifdef CONFIG_DEBUG_PREEMPT
3554 * Underflow?
3556 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
3557 return;
3558 #endif
3559 preempt_count() += val;
3560 #ifdef CONFIG_DEBUG_PREEMPT
3562 * Spinlock count overflowing soon?
3564 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
3565 PREEMPT_MASK - 10);
3566 #endif
3567 if (preempt_count() == val)
3568 trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
3570 EXPORT_SYMBOL(add_preempt_count);
3572 void __kprobes sub_preempt_count(int val)
3574 #ifdef CONFIG_DEBUG_PREEMPT
3576 * Underflow?
3578 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
3579 return;
3581 * Is the spinlock portion underflowing?
3583 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
3584 !(preempt_count() & PREEMPT_MASK)))
3585 return;
3586 #endif
3588 if (preempt_count() == val)
3589 trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
3590 preempt_count() -= val;
3592 EXPORT_SYMBOL(sub_preempt_count);
3594 #endif
3597 * Print scheduling while atomic bug:
3599 static noinline void __schedule_bug(struct task_struct *prev)
3601 struct pt_regs *regs = get_irq_regs();
3603 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
3604 prev->comm, prev->pid, preempt_count());
3606 debug_show_held_locks(prev);
3607 print_modules();
3608 if (irqs_disabled())
3609 print_irqtrace_events(prev);
3611 if (regs)
3612 show_regs(regs);
3613 else
3614 dump_stack();
3618 * Various schedule()-time debugging checks and statistics:
3620 static inline void schedule_debug(struct task_struct *prev)
3623 * Test if we are atomic. Since do_exit() needs to call into
3624 * schedule() atomically, we ignore that path for now.
3625 * Otherwise, whine if we are scheduling when we should not be.
3627 if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
3628 __schedule_bug(prev);
3630 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
3632 schedstat_inc(this_rq(), sched_count);
3633 #ifdef CONFIG_SCHEDSTATS
3634 if (unlikely(prev->lock_depth >= 0)) {
3635 schedstat_inc(this_rq(), bkl_count);
3636 schedstat_inc(prev, sched_info.bkl_count);
3638 #endif
3641 static void put_prev_task(struct rq *rq, struct task_struct *prev)
3643 if (prev->state == TASK_RUNNING) {
3644 u64 runtime = prev->se.sum_exec_runtime;
3646 runtime -= prev->se.prev_sum_exec_runtime;
3647 runtime = min_t(u64, runtime, 2*sysctl_sched_migration_cost);
3650 * In order to avoid avg_overlap growing stale when we are
3651 * indeed overlapping and hence not getting put to sleep, grow
3652 * the avg_overlap on preemption.
3654 * We use the average preemption runtime because that
3655 * correlates to the amount of cache footprint a task can
3656 * build up.
3658 update_avg(&prev->se.avg_overlap, runtime);
3660 prev->sched_class->put_prev_task(rq, prev);
3664 * Pick up the highest-prio task:
3666 static inline struct task_struct *
3667 pick_next_task(struct rq *rq)
3669 const struct sched_class *class;
3670 struct task_struct *p;
3673 * Optimization: we know that if all tasks are in
3674 * the fair class we can call that function directly:
3676 if (likely(rq->nr_running == rq->cfs.nr_running)) {
3677 p = fair_sched_class.pick_next_task(rq);
3678 if (likely(p))
3679 return p;
3682 class = sched_class_highest;
3683 for ( ; ; ) {
3684 p = class->pick_next_task(rq);
3685 if (p)
3686 return p;
3688 * Will never be NULL as the idle class always
3689 * returns a non-NULL p:
3691 class = class->next;
3696 * schedule() is the main scheduler function.
3698 asmlinkage void __sched schedule(void)
3700 struct task_struct *prev, *next;
3701 unsigned long *switch_count;
3702 struct rq *rq;
3703 int cpu;
3705 need_resched:
3706 preempt_disable();
3707 cpu = smp_processor_id();
3708 rq = cpu_rq(cpu);
3709 rcu_sched_qs(cpu);
3710 prev = rq->curr;
3711 switch_count = &prev->nivcsw;
3713 release_kernel_lock(prev);
3714 need_resched_nonpreemptible:
3716 schedule_debug(prev);
3718 if (sched_feat(HRTICK))
3719 hrtick_clear(rq);
3721 raw_spin_lock_irq(&rq->lock);
3722 update_rq_clock(rq);
3723 clear_tsk_need_resched(prev);
3725 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
3726 if (unlikely(signal_pending_state(prev->state, prev)))
3727 prev->state = TASK_RUNNING;
3728 else
3729 deactivate_task(rq, prev, 1);
3730 switch_count = &prev->nvcsw;
3733 pre_schedule(rq, prev);
3735 if (unlikely(!rq->nr_running))
3736 idle_balance(cpu, rq);
3738 put_prev_task(rq, prev);
3739 next = pick_next_task(rq);
3741 if (likely(prev != next)) {
3742 sched_info_switch(prev, next);
3743 perf_event_task_sched_out(prev, next);
3745 rq->nr_switches++;
3746 rq->curr = next;
3747 ++*switch_count;
3749 context_switch(rq, prev, next); /* unlocks the rq */
3751 * the context switch might have flipped the stack from under
3752 * us, hence refresh the local variables.
3754 cpu = smp_processor_id();
3755 rq = cpu_rq(cpu);
3756 } else
3757 raw_spin_unlock_irq(&rq->lock);
3759 post_schedule(rq);
3761 if (unlikely(reacquire_kernel_lock(current) < 0)) {
3762 prev = rq->curr;
3763 switch_count = &prev->nivcsw;
3764 goto need_resched_nonpreemptible;
3767 preempt_enable_no_resched();
3768 if (need_resched())
3769 goto need_resched;
3771 EXPORT_SYMBOL(schedule);
3773 #ifdef CONFIG_MUTEX_SPIN_ON_OWNER
3775 * Look out! "owner" is an entirely speculative pointer
3776 * access and not reliable.
3778 int mutex_spin_on_owner(struct mutex *lock, struct thread_info *owner)
3780 unsigned int cpu;
3781 struct rq *rq;
3783 if (!sched_feat(OWNER_SPIN))
3784 return 0;
3786 #ifdef CONFIG_DEBUG_PAGEALLOC
3788 * Need to access the cpu field knowing that
3789 * DEBUG_PAGEALLOC could have unmapped it if
3790 * the mutex owner just released it and exited.
3792 if (probe_kernel_address(&owner->cpu, cpu))
3793 return 0;
3794 #else
3795 cpu = owner->cpu;
3796 #endif
3799 * Even if the access succeeded (likely case),
3800 * the cpu field may no longer be valid.
3802 if (cpu >= nr_cpumask_bits)
3803 return 0;
3806 * We need to validate that we can do a
3807 * get_cpu() and that we have the percpu area.
3809 if (!cpu_online(cpu))
3810 return 0;
3812 rq = cpu_rq(cpu);
3814 for (;;) {
3816 * Owner changed, break to re-assess state.
3818 if (lock->owner != owner)
3819 break;
3822 * Is that owner really running on that cpu?
3824 if (task_thread_info(rq->curr) != owner || need_resched())
3825 return 0;
3827 cpu_relax();
3830 return 1;
3832 #endif
3834 #ifdef CONFIG_PREEMPT
3836 * this is the entry point to schedule() from in-kernel preemption
3837 * off of preempt_enable. Kernel preemptions off return from interrupt
3838 * occur there and call schedule directly.
3840 asmlinkage void __sched preempt_schedule(void)
3842 struct thread_info *ti = current_thread_info();
3845 * If there is a non-zero preempt_count or interrupts are disabled,
3846 * we do not want to preempt the current task. Just return..
3848 if (likely(ti->preempt_count || irqs_disabled()))
3849 return;
3851 do {
3852 add_preempt_count(PREEMPT_ACTIVE);
3853 schedule();
3854 sub_preempt_count(PREEMPT_ACTIVE);
3857 * Check again in case we missed a preemption opportunity
3858 * between schedule and now.
3860 barrier();
3861 } while (need_resched());
3863 EXPORT_SYMBOL(preempt_schedule);
3866 * this is the entry point to schedule() from kernel preemption
3867 * off of irq context.
3868 * Note, that this is called and return with irqs disabled. This will
3869 * protect us against recursive calling from irq.
3871 asmlinkage void __sched preempt_schedule_irq(void)
3873 struct thread_info *ti = current_thread_info();
3875 /* Catch callers which need to be fixed */
3876 BUG_ON(ti->preempt_count || !irqs_disabled());
3878 do {
3879 add_preempt_count(PREEMPT_ACTIVE);
3880 local_irq_enable();
3881 schedule();
3882 local_irq_disable();
3883 sub_preempt_count(PREEMPT_ACTIVE);
3886 * Check again in case we missed a preemption opportunity
3887 * between schedule and now.
3889 barrier();
3890 } while (need_resched());
3893 #endif /* CONFIG_PREEMPT */
3895 int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
3896 void *key)
3898 return try_to_wake_up(curr->private, mode, wake_flags);
3900 EXPORT_SYMBOL(default_wake_function);
3903 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
3904 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
3905 * number) then we wake all the non-exclusive tasks and one exclusive task.
3907 * There are circumstances in which we can try to wake a task which has already
3908 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
3909 * zero in this (rare) case, and we handle it by continuing to scan the queue.
3911 static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
3912 int nr_exclusive, int wake_flags, void *key)
3914 wait_queue_t *curr, *next;
3916 list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
3917 unsigned flags = curr->flags;
3919 if (curr->func(curr, mode, wake_flags, key) &&
3920 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
3921 break;
3926 * __wake_up - wake up threads blocked on a waitqueue.
3927 * @q: the waitqueue
3928 * @mode: which threads
3929 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3930 * @key: is directly passed to the wakeup function
3932 * It may be assumed that this function implies a write memory barrier before
3933 * changing the task state if and only if any tasks are woken up.
3935 void __wake_up(wait_queue_head_t *q, unsigned int mode,
3936 int nr_exclusive, void *key)
3938 unsigned long flags;
3940 spin_lock_irqsave(&q->lock, flags);
3941 __wake_up_common(q, mode, nr_exclusive, 0, key);
3942 spin_unlock_irqrestore(&q->lock, flags);
3944 EXPORT_SYMBOL(__wake_up);
3947 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
3949 void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
3951 __wake_up_common(q, mode, 1, 0, NULL);
3953 EXPORT_SYMBOL_GPL(__wake_up_locked);
3955 void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
3957 __wake_up_common(q, mode, 1, 0, key);
3961 * __wake_up_sync_key - wake up threads blocked on a waitqueue.
3962 * @q: the waitqueue
3963 * @mode: which threads
3964 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3965 * @key: opaque value to be passed to wakeup targets
3967 * The sync wakeup differs that the waker knows that it will schedule
3968 * away soon, so while the target thread will be woken up, it will not
3969 * be migrated to another CPU - ie. the two threads are 'synchronized'
3970 * with each other. This can prevent needless bouncing between CPUs.
3972 * On UP it can prevent extra preemption.
3974 * It may be assumed that this function implies a write memory barrier before
3975 * changing the task state if and only if any tasks are woken up.
3977 void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
3978 int nr_exclusive, void *key)
3980 unsigned long flags;
3981 int wake_flags = WF_SYNC;
3983 if (unlikely(!q))
3984 return;
3986 if (unlikely(!nr_exclusive))
3987 wake_flags = 0;
3989 spin_lock_irqsave(&q->lock, flags);
3990 __wake_up_common(q, mode, nr_exclusive, wake_flags, key);
3991 spin_unlock_irqrestore(&q->lock, flags);
3993 EXPORT_SYMBOL_GPL(__wake_up_sync_key);
3996 * __wake_up_sync - see __wake_up_sync_key()
3998 void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
4000 __wake_up_sync_key(q, mode, nr_exclusive, NULL);
4002 EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
4005 * complete: - signals a single thread waiting on this completion
4006 * @x: holds the state of this particular completion
4008 * This will wake up a single thread waiting on this completion. Threads will be
4009 * awakened in the same order in which they were queued.
4011 * See also complete_all(), wait_for_completion() and related routines.
4013 * It may be assumed that this function implies a write memory barrier before
4014 * changing the task state if and only if any tasks are woken up.
4016 void complete(struct completion *x)
4018 unsigned long flags;
4020 spin_lock_irqsave(&x->wait.lock, flags);
4021 x->done++;
4022 __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
4023 spin_unlock_irqrestore(&x->wait.lock, flags);
4025 EXPORT_SYMBOL(complete);
4028 * complete_all: - signals all threads waiting on this completion
4029 * @x: holds the state of this particular completion
4031 * This will wake up all threads waiting on this particular completion event.
4033 * It may be assumed that this function implies a write memory barrier before
4034 * changing the task state if and only if any tasks are woken up.
4036 void complete_all(struct completion *x)
4038 unsigned long flags;
4040 spin_lock_irqsave(&x->wait.lock, flags);
4041 x->done += UINT_MAX/2;
4042 __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
4043 spin_unlock_irqrestore(&x->wait.lock, flags);
4045 EXPORT_SYMBOL(complete_all);
4047 static inline long __sched
4048 do_wait_for_common(struct completion *x, long timeout, int state)
4050 if (!x->done) {
4051 DECLARE_WAITQUEUE(wait, current);
4053 wait.flags |= WQ_FLAG_EXCLUSIVE;
4054 __add_wait_queue_tail(&x->wait, &wait);
4055 do {
4056 if (signal_pending_state(state, current)) {
4057 timeout = -ERESTARTSYS;
4058 break;
4060 __set_current_state(state);
4061 spin_unlock_irq(&x->wait.lock);
4062 timeout = schedule_timeout(timeout);
4063 spin_lock_irq(&x->wait.lock);
4064 } while (!x->done && timeout);
4065 __remove_wait_queue(&x->wait, &wait);
4066 if (!x->done)
4067 return timeout;
4069 x->done--;
4070 return timeout ?: 1;
4073 static long __sched
4074 wait_for_common(struct completion *x, long timeout, int state)
4076 might_sleep();
4078 spin_lock_irq(&x->wait.lock);
4079 timeout = do_wait_for_common(x, timeout, state);
4080 spin_unlock_irq(&x->wait.lock);
4081 return timeout;
4085 * wait_for_completion: - waits for completion of a task
4086 * @x: holds the state of this particular completion
4088 * This waits to be signaled for completion of a specific task. It is NOT
4089 * interruptible and there is no timeout.
4091 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
4092 * and interrupt capability. Also see complete().
4094 void __sched wait_for_completion(struct completion *x)
4096 wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
4098 EXPORT_SYMBOL(wait_for_completion);
4101 * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
4102 * @x: holds the state of this particular completion
4103 * @timeout: timeout value in jiffies
4105 * This waits for either a completion of a specific task to be signaled or for a
4106 * specified timeout to expire. The timeout is in jiffies. It is not
4107 * interruptible.
4109 unsigned long __sched
4110 wait_for_completion_timeout(struct completion *x, unsigned long timeout)
4112 return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
4114 EXPORT_SYMBOL(wait_for_completion_timeout);
4117 * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
4118 * @x: holds the state of this particular completion
4120 * This waits for completion of a specific task to be signaled. It is
4121 * interruptible.
4123 int __sched wait_for_completion_interruptible(struct completion *x)
4125 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
4126 if (t == -ERESTARTSYS)
4127 return t;
4128 return 0;
4130 EXPORT_SYMBOL(wait_for_completion_interruptible);
4133 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
4134 * @x: holds the state of this particular completion
4135 * @timeout: timeout value in jiffies
4137 * This waits for either a completion of a specific task to be signaled or for a
4138 * specified timeout to expire. It is interruptible. The timeout is in jiffies.
4140 unsigned long __sched
4141 wait_for_completion_interruptible_timeout(struct completion *x,
4142 unsigned long timeout)
4144 return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
4146 EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
4149 * wait_for_completion_killable: - waits for completion of a task (killable)
4150 * @x: holds the state of this particular completion
4152 * This waits to be signaled for completion of a specific task. It can be
4153 * interrupted by a kill signal.
4155 int __sched wait_for_completion_killable(struct completion *x)
4157 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
4158 if (t == -ERESTARTSYS)
4159 return t;
4160 return 0;
4162 EXPORT_SYMBOL(wait_for_completion_killable);
4165 * try_wait_for_completion - try to decrement a completion without blocking
4166 * @x: completion structure
4168 * Returns: 0 if a decrement cannot be done without blocking
4169 * 1 if a decrement succeeded.
4171 * If a completion is being used as a counting completion,
4172 * attempt to decrement the counter without blocking. This
4173 * enables us to avoid waiting if the resource the completion
4174 * is protecting is not available.
4176 bool try_wait_for_completion(struct completion *x)
4178 unsigned long flags;
4179 int ret = 1;
4181 spin_lock_irqsave(&x->wait.lock, flags);
4182 if (!x->done)
4183 ret = 0;
4184 else
4185 x->done--;
4186 spin_unlock_irqrestore(&x->wait.lock, flags);
4187 return ret;
4189 EXPORT_SYMBOL(try_wait_for_completion);
4192 * completion_done - Test to see if a completion has any waiters
4193 * @x: completion structure
4195 * Returns: 0 if there are waiters (wait_for_completion() in progress)
4196 * 1 if there are no waiters.
4199 bool completion_done(struct completion *x)
4201 unsigned long flags;
4202 int ret = 1;
4204 spin_lock_irqsave(&x->wait.lock, flags);
4205 if (!x->done)
4206 ret = 0;
4207 spin_unlock_irqrestore(&x->wait.lock, flags);
4208 return ret;
4210 EXPORT_SYMBOL(completion_done);
4212 static long __sched
4213 sleep_on_common(wait_queue_head_t *q, int state, long timeout)
4215 unsigned long flags;
4216 wait_queue_t wait;
4218 init_waitqueue_entry(&wait, current);
4220 __set_current_state(state);
4222 spin_lock_irqsave(&q->lock, flags);
4223 __add_wait_queue(q, &wait);
4224 spin_unlock(&q->lock);
4225 timeout = schedule_timeout(timeout);
4226 spin_lock_irq(&q->lock);
4227 __remove_wait_queue(q, &wait);
4228 spin_unlock_irqrestore(&q->lock, flags);
4230 return timeout;
4233 void __sched interruptible_sleep_on(wait_queue_head_t *q)
4235 sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
4237 EXPORT_SYMBOL(interruptible_sleep_on);
4239 long __sched
4240 interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
4242 return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
4244 EXPORT_SYMBOL(interruptible_sleep_on_timeout);
4246 void __sched sleep_on(wait_queue_head_t *q)
4248 sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
4250 EXPORT_SYMBOL(sleep_on);
4252 long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
4254 return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
4256 EXPORT_SYMBOL(sleep_on_timeout);
4258 #ifdef CONFIG_RT_MUTEXES
4261 * rt_mutex_setprio - set the current priority of a task
4262 * @p: task
4263 * @prio: prio value (kernel-internal form)
4265 * This function changes the 'effective' priority of a task. It does
4266 * not touch ->normal_prio like __setscheduler().
4268 * Used by the rt_mutex code to implement priority inheritance logic.
4270 void rt_mutex_setprio(struct task_struct *p, int prio)
4272 unsigned long flags;
4273 int oldprio, on_rq, running;
4274 struct rq *rq;
4275 const struct sched_class *prev_class;
4277 BUG_ON(prio < 0 || prio > MAX_PRIO);
4279 rq = task_rq_lock(p, &flags);
4280 update_rq_clock(rq);
4282 oldprio = p->prio;
4283 prev_class = p->sched_class;
4284 on_rq = p->se.on_rq;
4285 running = task_current(rq, p);
4286 if (on_rq)
4287 dequeue_task(rq, p, 0);
4288 if (running)
4289 p->sched_class->put_prev_task(rq, p);
4291 if (rt_prio(prio))
4292 p->sched_class = &rt_sched_class;
4293 else
4294 p->sched_class = &fair_sched_class;
4296 p->prio = prio;
4298 if (running)
4299 p->sched_class->set_curr_task(rq);
4300 if (on_rq) {
4301 enqueue_task(rq, p, 0, oldprio < prio);
4303 check_class_changed(rq, p, prev_class, oldprio, running);
4305 task_rq_unlock(rq, &flags);
4308 #endif
4310 void set_user_nice(struct task_struct *p, long nice)
4312 int old_prio, delta, on_rq;
4313 unsigned long flags;
4314 struct rq *rq;
4316 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
4317 return;
4319 * We have to be careful, if called from sys_setpriority(),
4320 * the task might be in the middle of scheduling on another CPU.
4322 rq = task_rq_lock(p, &flags);
4323 update_rq_clock(rq);
4325 * The RT priorities are set via sched_setscheduler(), but we still
4326 * allow the 'normal' nice value to be set - but as expected
4327 * it wont have any effect on scheduling until the task is
4328 * SCHED_FIFO/SCHED_RR:
4330 if (task_has_rt_policy(p)) {
4331 p->static_prio = NICE_TO_PRIO(nice);
4332 goto out_unlock;
4334 on_rq = p->se.on_rq;
4335 if (on_rq)
4336 dequeue_task(rq, p, 0);
4338 p->static_prio = NICE_TO_PRIO(nice);
4339 set_load_weight(p);
4340 old_prio = p->prio;
4341 p->prio = effective_prio(p);
4342 delta = p->prio - old_prio;
4344 if (on_rq) {
4345 enqueue_task(rq, p, 0, false);
4347 * If the task increased its priority or is running and
4348 * lowered its priority, then reschedule its CPU:
4350 if (delta < 0 || (delta > 0 && task_running(rq, p)))
4351 resched_task(rq->curr);
4353 out_unlock:
4354 task_rq_unlock(rq, &flags);
4356 EXPORT_SYMBOL(set_user_nice);
4359 * can_nice - check if a task can reduce its nice value
4360 * @p: task
4361 * @nice: nice value
4363 int can_nice(const struct task_struct *p, const int nice)
4365 /* convert nice value [19,-20] to rlimit style value [1,40] */
4366 int nice_rlim = 20 - nice;
4368 return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
4369 capable(CAP_SYS_NICE));
4372 #ifdef __ARCH_WANT_SYS_NICE
4375 * sys_nice - change the priority of the current process.
4376 * @increment: priority increment
4378 * sys_setpriority is a more generic, but much slower function that
4379 * does similar things.
4381 SYSCALL_DEFINE1(nice, int, increment)
4383 long nice, retval;
4386 * Setpriority might change our priority at the same moment.
4387 * We don't have to worry. Conceptually one call occurs first
4388 * and we have a single winner.
4390 if (increment < -40)
4391 increment = -40;
4392 if (increment > 40)
4393 increment = 40;
4395 nice = TASK_NICE(current) + increment;
4396 if (nice < -20)
4397 nice = -20;
4398 if (nice > 19)
4399 nice = 19;
4401 if (increment < 0 && !can_nice(current, nice))
4402 return -EPERM;
4404 retval = security_task_setnice(current, nice);
4405 if (retval)
4406 return retval;
4408 set_user_nice(current, nice);
4409 return 0;
4412 #endif
4415 * task_prio - return the priority value of a given task.
4416 * @p: the task in question.
4418 * This is the priority value as seen by users in /proc.
4419 * RT tasks are offset by -200. Normal tasks are centered
4420 * around 0, value goes from -16 to +15.
4422 int task_prio(const struct task_struct *p)
4424 return p->prio - MAX_RT_PRIO;
4428 * task_nice - return the nice value of a given task.
4429 * @p: the task in question.
4431 int task_nice(const struct task_struct *p)
4433 return TASK_NICE(p);
4435 EXPORT_SYMBOL(task_nice);
4438 * idle_cpu - is a given cpu idle currently?
4439 * @cpu: the processor in question.
4441 int idle_cpu(int cpu)
4443 return cpu_curr(cpu) == cpu_rq(cpu)->idle;
4447 * idle_task - return the idle task for a given cpu.
4448 * @cpu: the processor in question.
4450 struct task_struct *idle_task(int cpu)
4452 return cpu_rq(cpu)->idle;
4456 * find_process_by_pid - find a process with a matching PID value.
4457 * @pid: the pid in question.
4459 static struct task_struct *find_process_by_pid(pid_t pid)
4461 return pid ? find_task_by_vpid(pid) : current;
4464 /* Actually do priority change: must hold rq lock. */
4465 static void
4466 __setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
4468 BUG_ON(p->se.on_rq);
4470 p->policy = policy;
4471 p->rt_priority = prio;
4472 p->normal_prio = normal_prio(p);
4473 /* we are holding p->pi_lock already */
4474 p->prio = rt_mutex_getprio(p);
4475 if (rt_prio(p->prio))
4476 p->sched_class = &rt_sched_class;
4477 else
4478 p->sched_class = &fair_sched_class;
4479 set_load_weight(p);
4483 * check the target process has a UID that matches the current process's
4485 static bool check_same_owner(struct task_struct *p)
4487 const struct cred *cred = current_cred(), *pcred;
4488 bool match;
4490 rcu_read_lock();
4491 pcred = __task_cred(p);
4492 match = (cred->euid == pcred->euid ||
4493 cred->euid == pcred->uid);
4494 rcu_read_unlock();
4495 return match;
4498 static int __sched_setscheduler(struct task_struct *p, int policy,
4499 struct sched_param *param, bool user)
4501 int retval, oldprio, oldpolicy = -1, on_rq, running;
4502 unsigned long flags;
4503 const struct sched_class *prev_class;
4504 struct rq *rq;
4505 int reset_on_fork;
4507 /* may grab non-irq protected spin_locks */
4508 BUG_ON(in_interrupt());
4509 recheck:
4510 /* double check policy once rq lock held */
4511 if (policy < 0) {
4512 reset_on_fork = p->sched_reset_on_fork;
4513 policy = oldpolicy = p->policy;
4514 } else {
4515 reset_on_fork = !!(policy & SCHED_RESET_ON_FORK);
4516 policy &= ~SCHED_RESET_ON_FORK;
4518 if (policy != SCHED_FIFO && policy != SCHED_RR &&
4519 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
4520 policy != SCHED_IDLE)
4521 return -EINVAL;
4525 * Valid priorities for SCHED_FIFO and SCHED_RR are
4526 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
4527 * SCHED_BATCH and SCHED_IDLE is 0.
4529 if (param->sched_priority < 0 ||
4530 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
4531 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
4532 return -EINVAL;
4533 if (rt_policy(policy) != (param->sched_priority != 0))
4534 return -EINVAL;
4537 * Allow unprivileged RT tasks to decrease priority:
4539 if (user && !capable(CAP_SYS_NICE)) {
4540 if (rt_policy(policy)) {
4541 unsigned long rlim_rtprio;
4543 if (!lock_task_sighand(p, &flags))
4544 return -ESRCH;
4545 rlim_rtprio = task_rlimit(p, RLIMIT_RTPRIO);
4546 unlock_task_sighand(p, &flags);
4548 /* can't set/change the rt policy */
4549 if (policy != p->policy && !rlim_rtprio)
4550 return -EPERM;
4552 /* can't increase priority */
4553 if (param->sched_priority > p->rt_priority &&
4554 param->sched_priority > rlim_rtprio)
4555 return -EPERM;
4558 * Like positive nice levels, dont allow tasks to
4559 * move out of SCHED_IDLE either:
4561 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
4562 return -EPERM;
4564 /* can't change other user's priorities */
4565 if (!check_same_owner(p))
4566 return -EPERM;
4568 /* Normal users shall not reset the sched_reset_on_fork flag */
4569 if (p->sched_reset_on_fork && !reset_on_fork)
4570 return -EPERM;
4573 if (user) {
4574 #ifdef CONFIG_RT_GROUP_SCHED
4576 * Do not allow realtime tasks into groups that have no runtime
4577 * assigned.
4579 if (rt_bandwidth_enabled() && rt_policy(policy) &&
4580 task_group(p)->rt_bandwidth.rt_runtime == 0)
4581 return -EPERM;
4582 #endif
4584 retval = security_task_setscheduler(p, policy, param);
4585 if (retval)
4586 return retval;
4590 * make sure no PI-waiters arrive (or leave) while we are
4591 * changing the priority of the task:
4593 raw_spin_lock_irqsave(&p->pi_lock, flags);
4595 * To be able to change p->policy safely, the apropriate
4596 * runqueue lock must be held.
4598 rq = __task_rq_lock(p);
4599 /* recheck policy now with rq lock held */
4600 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
4601 policy = oldpolicy = -1;
4602 __task_rq_unlock(rq);
4603 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
4604 goto recheck;
4606 update_rq_clock(rq);
4607 on_rq = p->se.on_rq;
4608 running = task_current(rq, p);
4609 if (on_rq)
4610 deactivate_task(rq, p, 0);
4611 if (running)
4612 p->sched_class->put_prev_task(rq, p);
4614 p->sched_reset_on_fork = reset_on_fork;
4616 oldprio = p->prio;
4617 prev_class = p->sched_class;
4618 __setscheduler(rq, p, policy, param->sched_priority);
4620 if (running)
4621 p->sched_class->set_curr_task(rq);
4622 if (on_rq) {
4623 activate_task(rq, p, 0);
4625 check_class_changed(rq, p, prev_class, oldprio, running);
4627 __task_rq_unlock(rq);
4628 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
4630 rt_mutex_adjust_pi(p);
4632 return 0;
4636 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
4637 * @p: the task in question.
4638 * @policy: new policy.
4639 * @param: structure containing the new RT priority.
4641 * NOTE that the task may be already dead.
4643 int sched_setscheduler(struct task_struct *p, int policy,
4644 struct sched_param *param)
4646 return __sched_setscheduler(p, policy, param, true);
4648 EXPORT_SYMBOL_GPL(sched_setscheduler);
4651 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
4652 * @p: the task in question.
4653 * @policy: new policy.
4654 * @param: structure containing the new RT priority.
4656 * Just like sched_setscheduler, only don't bother checking if the
4657 * current context has permission. For example, this is needed in
4658 * stop_machine(): we create temporary high priority worker threads,
4659 * but our caller might not have that capability.
4661 int sched_setscheduler_nocheck(struct task_struct *p, int policy,
4662 struct sched_param *param)
4664 return __sched_setscheduler(p, policy, param, false);
4667 static int
4668 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
4670 struct sched_param lparam;
4671 struct task_struct *p;
4672 int retval;
4674 if (!param || pid < 0)
4675 return -EINVAL;
4676 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
4677 return -EFAULT;
4679 rcu_read_lock();
4680 retval = -ESRCH;
4681 p = find_process_by_pid(pid);
4682 if (p != NULL)
4683 retval = sched_setscheduler(p, policy, &lparam);
4684 rcu_read_unlock();
4686 return retval;
4690 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
4691 * @pid: the pid in question.
4692 * @policy: new policy.
4693 * @param: structure containing the new RT priority.
4695 SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
4696 struct sched_param __user *, param)
4698 /* negative values for policy are not valid */
4699 if (policy < 0)
4700 return -EINVAL;
4702 return do_sched_setscheduler(pid, policy, param);
4706 * sys_sched_setparam - set/change the RT priority of a thread
4707 * @pid: the pid in question.
4708 * @param: structure containing the new RT priority.
4710 SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
4712 return do_sched_setscheduler(pid, -1, param);
4716 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
4717 * @pid: the pid in question.
4719 SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
4721 struct task_struct *p;
4722 int retval;
4724 if (pid < 0)
4725 return -EINVAL;
4727 retval = -ESRCH;
4728 rcu_read_lock();
4729 p = find_process_by_pid(pid);
4730 if (p) {
4731 retval = security_task_getscheduler(p);
4732 if (!retval)
4733 retval = p->policy
4734 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
4736 rcu_read_unlock();
4737 return retval;
4741 * sys_sched_getparam - get the RT priority of a thread
4742 * @pid: the pid in question.
4743 * @param: structure containing the RT priority.
4745 SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
4747 struct sched_param lp;
4748 struct task_struct *p;
4749 int retval;
4751 if (!param || pid < 0)
4752 return -EINVAL;
4754 rcu_read_lock();
4755 p = find_process_by_pid(pid);
4756 retval = -ESRCH;
4757 if (!p)
4758 goto out_unlock;
4760 retval = security_task_getscheduler(p);
4761 if (retval)
4762 goto out_unlock;
4764 lp.sched_priority = p->rt_priority;
4765 rcu_read_unlock();
4768 * This one might sleep, we cannot do it with a spinlock held ...
4770 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
4772 return retval;
4774 out_unlock:
4775 rcu_read_unlock();
4776 return retval;
4779 long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
4781 cpumask_var_t cpus_allowed, new_mask;
4782 struct task_struct *p;
4783 int retval;
4785 get_online_cpus();
4786 rcu_read_lock();
4788 p = find_process_by_pid(pid);
4789 if (!p) {
4790 rcu_read_unlock();
4791 put_online_cpus();
4792 return -ESRCH;
4795 /* Prevent p going away */
4796 get_task_struct(p);
4797 rcu_read_unlock();
4799 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
4800 retval = -ENOMEM;
4801 goto out_put_task;
4803 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
4804 retval = -ENOMEM;
4805 goto out_free_cpus_allowed;
4807 retval = -EPERM;
4808 if (!check_same_owner(p) && !capable(CAP_SYS_NICE))
4809 goto out_unlock;
4811 retval = security_task_setscheduler(p, 0, NULL);
4812 if (retval)
4813 goto out_unlock;
4815 cpuset_cpus_allowed(p, cpus_allowed);
4816 cpumask_and(new_mask, in_mask, cpus_allowed);
4817 again:
4818 retval = set_cpus_allowed_ptr(p, new_mask);
4820 if (!retval) {
4821 cpuset_cpus_allowed(p, cpus_allowed);
4822 if (!cpumask_subset(new_mask, cpus_allowed)) {
4824 * We must have raced with a concurrent cpuset
4825 * update. Just reset the cpus_allowed to the
4826 * cpuset's cpus_allowed
4828 cpumask_copy(new_mask, cpus_allowed);
4829 goto again;
4832 out_unlock:
4833 free_cpumask_var(new_mask);
4834 out_free_cpus_allowed:
4835 free_cpumask_var(cpus_allowed);
4836 out_put_task:
4837 put_task_struct(p);
4838 put_online_cpus();
4839 return retval;
4842 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
4843 struct cpumask *new_mask)
4845 if (len < cpumask_size())
4846 cpumask_clear(new_mask);
4847 else if (len > cpumask_size())
4848 len = cpumask_size();
4850 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
4854 * sys_sched_setaffinity - set the cpu affinity of a process
4855 * @pid: pid of the process
4856 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4857 * @user_mask_ptr: user-space pointer to the new cpu mask
4859 SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
4860 unsigned long __user *, user_mask_ptr)
4862 cpumask_var_t new_mask;
4863 int retval;
4865 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
4866 return -ENOMEM;
4868 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
4869 if (retval == 0)
4870 retval = sched_setaffinity(pid, new_mask);
4871 free_cpumask_var(new_mask);
4872 return retval;
4875 long sched_getaffinity(pid_t pid, struct cpumask *mask)
4877 struct task_struct *p;
4878 unsigned long flags;
4879 struct rq *rq;
4880 int retval;
4882 get_online_cpus();
4883 rcu_read_lock();
4885 retval = -ESRCH;
4886 p = find_process_by_pid(pid);
4887 if (!p)
4888 goto out_unlock;
4890 retval = security_task_getscheduler(p);
4891 if (retval)
4892 goto out_unlock;
4894 rq = task_rq_lock(p, &flags);
4895 cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
4896 task_rq_unlock(rq, &flags);
4898 out_unlock:
4899 rcu_read_unlock();
4900 put_online_cpus();
4902 return retval;
4906 * sys_sched_getaffinity - get the cpu affinity of a process
4907 * @pid: pid of the process
4908 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4909 * @user_mask_ptr: user-space pointer to hold the current cpu mask
4911 SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
4912 unsigned long __user *, user_mask_ptr)
4914 int ret;
4915 cpumask_var_t mask;
4917 if ((len * BITS_PER_BYTE) < nr_cpu_ids)
4918 return -EINVAL;
4919 if (len & (sizeof(unsigned long)-1))
4920 return -EINVAL;
4922 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
4923 return -ENOMEM;
4925 ret = sched_getaffinity(pid, mask);
4926 if (ret == 0) {
4927 size_t retlen = min_t(size_t, len, cpumask_size());
4929 if (copy_to_user(user_mask_ptr, mask, retlen))
4930 ret = -EFAULT;
4931 else
4932 ret = retlen;
4934 free_cpumask_var(mask);
4936 return ret;
4940 * sys_sched_yield - yield the current processor to other threads.
4942 * This function yields the current CPU to other tasks. If there are no
4943 * other threads running on this CPU then this function will return.
4945 SYSCALL_DEFINE0(sched_yield)
4947 struct rq *rq = this_rq_lock();
4949 schedstat_inc(rq, yld_count);
4950 current->sched_class->yield_task(rq);
4953 * Since we are going to call schedule() anyway, there's
4954 * no need to preempt or enable interrupts:
4956 __release(rq->lock);
4957 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
4958 do_raw_spin_unlock(&rq->lock);
4959 preempt_enable_no_resched();
4961 schedule();
4963 return 0;
4966 static inline int should_resched(void)
4968 return need_resched() && !(preempt_count() & PREEMPT_ACTIVE);
4971 static void __cond_resched(void)
4973 add_preempt_count(PREEMPT_ACTIVE);
4974 schedule();
4975 sub_preempt_count(PREEMPT_ACTIVE);
4978 int __sched _cond_resched(void)
4980 if (should_resched()) {
4981 __cond_resched();
4982 return 1;
4984 return 0;
4986 EXPORT_SYMBOL(_cond_resched);
4989 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
4990 * call schedule, and on return reacquire the lock.
4992 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
4993 * operations here to prevent schedule() from being called twice (once via
4994 * spin_unlock(), once by hand).
4996 int __cond_resched_lock(spinlock_t *lock)
4998 int resched = should_resched();
4999 int ret = 0;
5001 lockdep_assert_held(lock);
5003 if (spin_needbreak(lock) || resched) {
5004 spin_unlock(lock);
5005 if (resched)
5006 __cond_resched();
5007 else
5008 cpu_relax();
5009 ret = 1;
5010 spin_lock(lock);
5012 return ret;
5014 EXPORT_SYMBOL(__cond_resched_lock);
5016 int __sched __cond_resched_softirq(void)
5018 BUG_ON(!in_softirq());
5020 if (should_resched()) {
5021 local_bh_enable();
5022 __cond_resched();
5023 local_bh_disable();
5024 return 1;
5026 return 0;
5028 EXPORT_SYMBOL(__cond_resched_softirq);
5031 * yield - yield the current processor to other threads.
5033 * This is a shortcut for kernel-space yielding - it marks the
5034 * thread runnable and calls sys_sched_yield().
5036 void __sched yield(void)
5038 set_current_state(TASK_RUNNING);
5039 sys_sched_yield();
5041 EXPORT_SYMBOL(yield);
5044 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
5045 * that process accounting knows that this is a task in IO wait state.
5047 void __sched io_schedule(void)
5049 struct rq *rq = raw_rq();
5051 delayacct_blkio_start();
5052 atomic_inc(&rq->nr_iowait);
5053 current->in_iowait = 1;
5054 schedule();
5055 current->in_iowait = 0;
5056 atomic_dec(&rq->nr_iowait);
5057 delayacct_blkio_end();
5059 EXPORT_SYMBOL(io_schedule);
5061 long __sched io_schedule_timeout(long timeout)
5063 struct rq *rq = raw_rq();
5064 long ret;
5066 delayacct_blkio_start();
5067 atomic_inc(&rq->nr_iowait);
5068 current->in_iowait = 1;
5069 ret = schedule_timeout(timeout);
5070 current->in_iowait = 0;
5071 atomic_dec(&rq->nr_iowait);
5072 delayacct_blkio_end();
5073 return ret;
5077 * sys_sched_get_priority_max - return maximum RT priority.
5078 * @policy: scheduling class.
5080 * this syscall returns the maximum rt_priority that can be used
5081 * by a given scheduling class.
5083 SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
5085 int ret = -EINVAL;
5087 switch (policy) {
5088 case SCHED_FIFO:
5089 case SCHED_RR:
5090 ret = MAX_USER_RT_PRIO-1;
5091 break;
5092 case SCHED_NORMAL:
5093 case SCHED_BATCH:
5094 case SCHED_IDLE:
5095 ret = 0;
5096 break;
5098 return ret;
5102 * sys_sched_get_priority_min - return minimum RT priority.
5103 * @policy: scheduling class.
5105 * this syscall returns the minimum rt_priority that can be used
5106 * by a given scheduling class.
5108 SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
5110 int ret = -EINVAL;
5112 switch (policy) {
5113 case SCHED_FIFO:
5114 case SCHED_RR:
5115 ret = 1;
5116 break;
5117 case SCHED_NORMAL:
5118 case SCHED_BATCH:
5119 case SCHED_IDLE:
5120 ret = 0;
5122 return ret;
5126 * sys_sched_rr_get_interval - return the default timeslice of a process.
5127 * @pid: pid of the process.
5128 * @interval: userspace pointer to the timeslice value.
5130 * this syscall writes the default timeslice value of a given process
5131 * into the user-space timespec buffer. A value of '0' means infinity.
5133 SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
5134 struct timespec __user *, interval)
5136 struct task_struct *p;
5137 unsigned int time_slice;
5138 unsigned long flags;
5139 struct rq *rq;
5140 int retval;
5141 struct timespec t;
5143 if (pid < 0)
5144 return -EINVAL;
5146 retval = -ESRCH;
5147 rcu_read_lock();
5148 p = find_process_by_pid(pid);
5149 if (!p)
5150 goto out_unlock;
5152 retval = security_task_getscheduler(p);
5153 if (retval)
5154 goto out_unlock;
5156 rq = task_rq_lock(p, &flags);
5157 time_slice = p->sched_class->get_rr_interval(rq, p);
5158 task_rq_unlock(rq, &flags);
5160 rcu_read_unlock();
5161 jiffies_to_timespec(time_slice, &t);
5162 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
5163 return retval;
5165 out_unlock:
5166 rcu_read_unlock();
5167 return retval;
5170 static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
5172 void sched_show_task(struct task_struct *p)
5174 unsigned long free = 0;
5175 unsigned state;
5177 state = p->state ? __ffs(p->state) + 1 : 0;
5178 printk(KERN_INFO "%-13.13s %c", p->comm,
5179 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
5180 #if BITS_PER_LONG == 32
5181 if (state == TASK_RUNNING)
5182 printk(KERN_CONT " running ");
5183 else
5184 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
5185 #else
5186 if (state == TASK_RUNNING)
5187 printk(KERN_CONT " running task ");
5188 else
5189 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
5190 #endif
5191 #ifdef CONFIG_DEBUG_STACK_USAGE
5192 free = stack_not_used(p);
5193 #endif
5194 printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
5195 task_pid_nr(p), task_pid_nr(p->real_parent),
5196 (unsigned long)task_thread_info(p)->flags);
5198 show_stack(p, NULL);
5201 void show_state_filter(unsigned long state_filter)
5203 struct task_struct *g, *p;
5205 #if BITS_PER_LONG == 32
5206 printk(KERN_INFO
5207 " task PC stack pid father\n");
5208 #else
5209 printk(KERN_INFO
5210 " task PC stack pid father\n");
5211 #endif
5212 read_lock(&tasklist_lock);
5213 do_each_thread(g, p) {
5215 * reset the NMI-timeout, listing all files on a slow
5216 * console might take alot of time:
5218 touch_nmi_watchdog();
5219 if (!state_filter || (p->state & state_filter))
5220 sched_show_task(p);
5221 } while_each_thread(g, p);
5223 touch_all_softlockup_watchdogs();
5225 #ifdef CONFIG_SCHED_DEBUG
5226 sysrq_sched_debug_show();
5227 #endif
5228 read_unlock(&tasklist_lock);
5230 * Only show locks if all tasks are dumped:
5232 if (!state_filter)
5233 debug_show_all_locks();
5236 void __cpuinit init_idle_bootup_task(struct task_struct *idle)
5238 idle->sched_class = &idle_sched_class;
5242 * init_idle - set up an idle thread for a given CPU
5243 * @idle: task in question
5244 * @cpu: cpu the idle task belongs to
5246 * NOTE: this function does not set the idle thread's NEED_RESCHED
5247 * flag, to make booting more robust.
5249 void __cpuinit init_idle(struct task_struct *idle, int cpu)
5251 struct rq *rq = cpu_rq(cpu);
5252 unsigned long flags;
5254 raw_spin_lock_irqsave(&rq->lock, flags);
5256 __sched_fork(idle);
5257 idle->state = TASK_RUNNING;
5258 idle->se.exec_start = sched_clock();
5260 cpumask_copy(&idle->cpus_allowed, cpumask_of(cpu));
5261 __set_task_cpu(idle, cpu);
5263 rq->curr = rq->idle = idle;
5264 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
5265 idle->oncpu = 1;
5266 #endif
5267 raw_spin_unlock_irqrestore(&rq->lock, flags);
5269 /* Set the preempt count _outside_ the spinlocks! */
5270 #if defined(CONFIG_PREEMPT)
5271 task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
5272 #else
5273 task_thread_info(idle)->preempt_count = 0;
5274 #endif
5276 * The idle tasks have their own, simple scheduling class:
5278 idle->sched_class = &idle_sched_class;
5279 ftrace_graph_init_task(idle);
5283 * In a system that switches off the HZ timer nohz_cpu_mask
5284 * indicates which cpus entered this state. This is used
5285 * in the rcu update to wait only for active cpus. For system
5286 * which do not switch off the HZ timer nohz_cpu_mask should
5287 * always be CPU_BITS_NONE.
5289 cpumask_var_t nohz_cpu_mask;
5292 * Increase the granularity value when there are more CPUs,
5293 * because with more CPUs the 'effective latency' as visible
5294 * to users decreases. But the relationship is not linear,
5295 * so pick a second-best guess by going with the log2 of the
5296 * number of CPUs.
5298 * This idea comes from the SD scheduler of Con Kolivas:
5300 static int get_update_sysctl_factor(void)
5302 unsigned int cpus = min_t(int, num_online_cpus(), 8);
5303 unsigned int factor;
5305 switch (sysctl_sched_tunable_scaling) {
5306 case SCHED_TUNABLESCALING_NONE:
5307 factor = 1;
5308 break;
5309 case SCHED_TUNABLESCALING_LINEAR:
5310 factor = cpus;
5311 break;
5312 case SCHED_TUNABLESCALING_LOG:
5313 default:
5314 factor = 1 + ilog2(cpus);
5315 break;
5318 return factor;
5321 static void update_sysctl(void)
5323 unsigned int factor = get_update_sysctl_factor();
5325 #define SET_SYSCTL(name) \
5326 (sysctl_##name = (factor) * normalized_sysctl_##name)
5327 SET_SYSCTL(sched_min_granularity);
5328 SET_SYSCTL(sched_latency);
5329 SET_SYSCTL(sched_wakeup_granularity);
5330 SET_SYSCTL(sched_shares_ratelimit);
5331 #undef SET_SYSCTL
5334 static inline void sched_init_granularity(void)
5336 update_sysctl();
5339 #ifdef CONFIG_SMP
5341 * This is how migration works:
5343 * 1) we queue a struct migration_req structure in the source CPU's
5344 * runqueue and wake up that CPU's migration thread.
5345 * 2) we down() the locked semaphore => thread blocks.
5346 * 3) migration thread wakes up (implicitly it forces the migrated
5347 * thread off the CPU)
5348 * 4) it gets the migration request and checks whether the migrated
5349 * task is still in the wrong runqueue.
5350 * 5) if it's in the wrong runqueue then the migration thread removes
5351 * it and puts it into the right queue.
5352 * 6) migration thread up()s the semaphore.
5353 * 7) we wake up and the migration is done.
5357 * Change a given task's CPU affinity. Migrate the thread to a
5358 * proper CPU and schedule it away if the CPU it's executing on
5359 * is removed from the allowed bitmask.
5361 * NOTE: the caller must have a valid reference to the task, the
5362 * task must not exit() & deallocate itself prematurely. The
5363 * call is not atomic; no spinlocks may be held.
5365 int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
5367 struct migration_req req;
5368 unsigned long flags;
5369 struct rq *rq;
5370 int ret = 0;
5372 rq = task_rq_lock(p, &flags);
5374 if (!cpumask_intersects(new_mask, cpu_active_mask)) {
5375 ret = -EINVAL;
5376 goto out;
5379 if (unlikely((p->flags & PF_THREAD_BOUND) && p != current &&
5380 !cpumask_equal(&p->cpus_allowed, new_mask))) {
5381 ret = -EINVAL;
5382 goto out;
5385 if (p->sched_class->set_cpus_allowed)
5386 p->sched_class->set_cpus_allowed(p, new_mask);
5387 else {
5388 cpumask_copy(&p->cpus_allowed, new_mask);
5389 p->rt.nr_cpus_allowed = cpumask_weight(new_mask);
5392 /* Can the task run on the task's current CPU? If so, we're done */
5393 if (cpumask_test_cpu(task_cpu(p), new_mask))
5394 goto out;
5396 if (migrate_task(p, cpumask_any_and(cpu_active_mask, new_mask), &req)) {
5397 /* Need help from migration thread: drop lock and wait. */
5398 struct task_struct *mt = rq->migration_thread;
5400 get_task_struct(mt);
5401 task_rq_unlock(rq, &flags);
5402 wake_up_process(mt);
5403 put_task_struct(mt);
5404 wait_for_completion(&req.done);
5405 tlb_migrate_finish(p->mm);
5406 return 0;
5408 out:
5409 task_rq_unlock(rq, &flags);
5411 return ret;
5413 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
5416 * Move (not current) task off this cpu, onto dest cpu. We're doing
5417 * this because either it can't run here any more (set_cpus_allowed()
5418 * away from this CPU, or CPU going down), or because we're
5419 * attempting to rebalance this task on exec (sched_exec).
5421 * So we race with normal scheduler movements, but that's OK, as long
5422 * as the task is no longer on this CPU.
5424 * Returns non-zero if task was successfully migrated.
5426 static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
5428 struct rq *rq_dest, *rq_src;
5429 int ret = 0;
5431 if (unlikely(!cpu_active(dest_cpu)))
5432 return ret;
5434 rq_src = cpu_rq(src_cpu);
5435 rq_dest = cpu_rq(dest_cpu);
5437 double_rq_lock(rq_src, rq_dest);
5438 /* Already moved. */
5439 if (task_cpu(p) != src_cpu)
5440 goto done;
5441 /* Affinity changed (again). */
5442 if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
5443 goto fail;
5446 * If we're not on a rq, the next wake-up will ensure we're
5447 * placed properly.
5449 if (p->se.on_rq) {
5450 deactivate_task(rq_src, p, 0);
5451 set_task_cpu(p, dest_cpu);
5452 activate_task(rq_dest, p, 0);
5453 check_preempt_curr(rq_dest, p, 0);
5455 done:
5456 ret = 1;
5457 fail:
5458 double_rq_unlock(rq_src, rq_dest);
5459 return ret;
5462 #define RCU_MIGRATION_IDLE 0
5463 #define RCU_MIGRATION_NEED_QS 1
5464 #define RCU_MIGRATION_GOT_QS 2
5465 #define RCU_MIGRATION_MUST_SYNC 3
5468 * migration_thread - this is a highprio system thread that performs
5469 * thread migration by bumping thread off CPU then 'pushing' onto
5470 * another runqueue.
5472 static int migration_thread(void *data)
5474 int badcpu;
5475 int cpu = (long)data;
5476 struct rq *rq;
5478 rq = cpu_rq(cpu);
5479 BUG_ON(rq->migration_thread != current);
5481 set_current_state(TASK_INTERRUPTIBLE);
5482 while (!kthread_should_stop()) {
5483 struct migration_req *req;
5484 struct list_head *head;
5486 raw_spin_lock_irq(&rq->lock);
5488 if (cpu_is_offline(cpu)) {
5489 raw_spin_unlock_irq(&rq->lock);
5490 break;
5493 if (rq->active_balance) {
5494 active_load_balance(rq, cpu);
5495 rq->active_balance = 0;
5498 head = &rq->migration_queue;
5500 if (list_empty(head)) {
5501 raw_spin_unlock_irq(&rq->lock);
5502 schedule();
5503 set_current_state(TASK_INTERRUPTIBLE);
5504 continue;
5506 req = list_entry(head->next, struct migration_req, list);
5507 list_del_init(head->next);
5509 if (req->task != NULL) {
5510 raw_spin_unlock(&rq->lock);
5511 __migrate_task(req->task, cpu, req->dest_cpu);
5512 } else if (likely(cpu == (badcpu = smp_processor_id()))) {
5513 req->dest_cpu = RCU_MIGRATION_GOT_QS;
5514 raw_spin_unlock(&rq->lock);
5515 } else {
5516 req->dest_cpu = RCU_MIGRATION_MUST_SYNC;
5517 raw_spin_unlock(&rq->lock);
5518 WARN_ONCE(1, "migration_thread() on CPU %d, expected %d\n", badcpu, cpu);
5520 local_irq_enable();
5522 complete(&req->done);
5524 __set_current_state(TASK_RUNNING);
5526 return 0;
5529 #ifdef CONFIG_HOTPLUG_CPU
5531 static int __migrate_task_irq(struct task_struct *p, int src_cpu, int dest_cpu)
5533 int ret;
5535 local_irq_disable();
5536 ret = __migrate_task(p, src_cpu, dest_cpu);
5537 local_irq_enable();
5538 return ret;
5542 * Figure out where task on dead CPU should go, use force if necessary.
5544 static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
5546 int dest_cpu;
5548 again:
5549 dest_cpu = select_fallback_rq(dead_cpu, p);
5551 /* It can have affinity changed while we were choosing. */
5552 if (unlikely(!__migrate_task_irq(p, dead_cpu, dest_cpu)))
5553 goto again;
5557 * While a dead CPU has no uninterruptible tasks queued at this point,
5558 * it might still have a nonzero ->nr_uninterruptible counter, because
5559 * for performance reasons the counter is not stricly tracking tasks to
5560 * their home CPUs. So we just add the counter to another CPU's counter,
5561 * to keep the global sum constant after CPU-down:
5563 static void migrate_nr_uninterruptible(struct rq *rq_src)
5565 struct rq *rq_dest = cpu_rq(cpumask_any(cpu_active_mask));
5566 unsigned long flags;
5568 local_irq_save(flags);
5569 double_rq_lock(rq_src, rq_dest);
5570 rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
5571 rq_src->nr_uninterruptible = 0;
5572 double_rq_unlock(rq_src, rq_dest);
5573 local_irq_restore(flags);
5576 /* Run through task list and migrate tasks from the dead cpu. */
5577 static void migrate_live_tasks(int src_cpu)
5579 struct task_struct *p, *t;
5581 read_lock(&tasklist_lock);
5583 do_each_thread(t, p) {
5584 if (p == current)
5585 continue;
5587 if (task_cpu(p) == src_cpu)
5588 move_task_off_dead_cpu(src_cpu, p);
5589 } while_each_thread(t, p);
5591 read_unlock(&tasklist_lock);
5595 * Schedules idle task to be the next runnable task on current CPU.
5596 * It does so by boosting its priority to highest possible.
5597 * Used by CPU offline code.
5599 void sched_idle_next(void)
5601 int this_cpu = smp_processor_id();
5602 struct rq *rq = cpu_rq(this_cpu);
5603 struct task_struct *p = rq->idle;
5604 unsigned long flags;
5606 /* cpu has to be offline */
5607 BUG_ON(cpu_online(this_cpu));
5610 * Strictly not necessary since rest of the CPUs are stopped by now
5611 * and interrupts disabled on the current cpu.
5613 raw_spin_lock_irqsave(&rq->lock, flags);
5615 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
5617 update_rq_clock(rq);
5618 activate_task(rq, p, 0);
5620 raw_spin_unlock_irqrestore(&rq->lock, flags);
5624 * Ensures that the idle task is using init_mm right before its cpu goes
5625 * offline.
5627 void idle_task_exit(void)
5629 struct mm_struct *mm = current->active_mm;
5631 BUG_ON(cpu_online(smp_processor_id()));
5633 if (mm != &init_mm)
5634 switch_mm(mm, &init_mm, current);
5635 mmdrop(mm);
5638 /* called under rq->lock with disabled interrupts */
5639 static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
5641 struct rq *rq = cpu_rq(dead_cpu);
5643 /* Must be exiting, otherwise would be on tasklist. */
5644 BUG_ON(!p->exit_state);
5646 /* Cannot have done final schedule yet: would have vanished. */
5647 BUG_ON(p->state == TASK_DEAD);
5649 get_task_struct(p);
5652 * Drop lock around migration; if someone else moves it,
5653 * that's OK. No task can be added to this CPU, so iteration is
5654 * fine.
5656 raw_spin_unlock_irq(&rq->lock);
5657 move_task_off_dead_cpu(dead_cpu, p);
5658 raw_spin_lock_irq(&rq->lock);
5660 put_task_struct(p);
5663 /* release_task() removes task from tasklist, so we won't find dead tasks. */
5664 static void migrate_dead_tasks(unsigned int dead_cpu)
5666 struct rq *rq = cpu_rq(dead_cpu);
5667 struct task_struct *next;
5669 for ( ; ; ) {
5670 if (!rq->nr_running)
5671 break;
5672 update_rq_clock(rq);
5673 next = pick_next_task(rq);
5674 if (!next)
5675 break;
5676 next->sched_class->put_prev_task(rq, next);
5677 migrate_dead(dead_cpu, next);
5683 * remove the tasks which were accounted by rq from calc_load_tasks.
5685 static void calc_global_load_remove(struct rq *rq)
5687 atomic_long_sub(rq->calc_load_active, &calc_load_tasks);
5688 rq->calc_load_active = 0;
5690 #endif /* CONFIG_HOTPLUG_CPU */
5692 #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
5694 static struct ctl_table sd_ctl_dir[] = {
5696 .procname = "sched_domain",
5697 .mode = 0555,
5702 static struct ctl_table sd_ctl_root[] = {
5704 .procname = "kernel",
5705 .mode = 0555,
5706 .child = sd_ctl_dir,
5711 static struct ctl_table *sd_alloc_ctl_entry(int n)
5713 struct ctl_table *entry =
5714 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
5716 return entry;
5719 static void sd_free_ctl_entry(struct ctl_table **tablep)
5721 struct ctl_table *entry;
5724 * In the intermediate directories, both the child directory and
5725 * procname are dynamically allocated and could fail but the mode
5726 * will always be set. In the lowest directory the names are
5727 * static strings and all have proc handlers.
5729 for (entry = *tablep; entry->mode; entry++) {
5730 if (entry->child)
5731 sd_free_ctl_entry(&entry->child);
5732 if (entry->proc_handler == NULL)
5733 kfree(entry->procname);
5736 kfree(*tablep);
5737 *tablep = NULL;
5740 static void
5741 set_table_entry(struct ctl_table *entry,
5742 const char *procname, void *data, int maxlen,
5743 mode_t mode, proc_handler *proc_handler)
5745 entry->procname = procname;
5746 entry->data = data;
5747 entry->maxlen = maxlen;
5748 entry->mode = mode;
5749 entry->proc_handler = proc_handler;
5752 static struct ctl_table *
5753 sd_alloc_ctl_domain_table(struct sched_domain *sd)
5755 struct ctl_table *table = sd_alloc_ctl_entry(13);
5757 if (table == NULL)
5758 return NULL;
5760 set_table_entry(&table[0], "min_interval", &sd->min_interval,
5761 sizeof(long), 0644, proc_doulongvec_minmax);
5762 set_table_entry(&table[1], "max_interval", &sd->max_interval,
5763 sizeof(long), 0644, proc_doulongvec_minmax);
5764 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
5765 sizeof(int), 0644, proc_dointvec_minmax);
5766 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
5767 sizeof(int), 0644, proc_dointvec_minmax);
5768 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
5769 sizeof(int), 0644, proc_dointvec_minmax);
5770 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
5771 sizeof(int), 0644, proc_dointvec_minmax);
5772 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
5773 sizeof(int), 0644, proc_dointvec_minmax);
5774 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
5775 sizeof(int), 0644, proc_dointvec_minmax);
5776 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
5777 sizeof(int), 0644, proc_dointvec_minmax);
5778 set_table_entry(&table[9], "cache_nice_tries",
5779 &sd->cache_nice_tries,
5780 sizeof(int), 0644, proc_dointvec_minmax);
5781 set_table_entry(&table[10], "flags", &sd->flags,
5782 sizeof(int), 0644, proc_dointvec_minmax);
5783 set_table_entry(&table[11], "name", sd->name,
5784 CORENAME_MAX_SIZE, 0444, proc_dostring);
5785 /* &table[12] is terminator */
5787 return table;
5790 static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
5792 struct ctl_table *entry, *table;
5793 struct sched_domain *sd;
5794 int domain_num = 0, i;
5795 char buf[32];
5797 for_each_domain(cpu, sd)
5798 domain_num++;
5799 entry = table = sd_alloc_ctl_entry(domain_num + 1);
5800 if (table == NULL)
5801 return NULL;
5803 i = 0;
5804 for_each_domain(cpu, sd) {
5805 snprintf(buf, 32, "domain%d", i);
5806 entry->procname = kstrdup(buf, GFP_KERNEL);
5807 entry->mode = 0555;
5808 entry->child = sd_alloc_ctl_domain_table(sd);
5809 entry++;
5810 i++;
5812 return table;
5815 static struct ctl_table_header *sd_sysctl_header;
5816 static void register_sched_domain_sysctl(void)
5818 int i, cpu_num = num_possible_cpus();
5819 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
5820 char buf[32];
5822 WARN_ON(sd_ctl_dir[0].child);
5823 sd_ctl_dir[0].child = entry;
5825 if (entry == NULL)
5826 return;
5828 for_each_possible_cpu(i) {
5829 snprintf(buf, 32, "cpu%d", i);
5830 entry->procname = kstrdup(buf, GFP_KERNEL);
5831 entry->mode = 0555;
5832 entry->child = sd_alloc_ctl_cpu_table(i);
5833 entry++;
5836 WARN_ON(sd_sysctl_header);
5837 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
5840 /* may be called multiple times per register */
5841 static void unregister_sched_domain_sysctl(void)
5843 if (sd_sysctl_header)
5844 unregister_sysctl_table(sd_sysctl_header);
5845 sd_sysctl_header = NULL;
5846 if (sd_ctl_dir[0].child)
5847 sd_free_ctl_entry(&sd_ctl_dir[0].child);
5849 #else
5850 static void register_sched_domain_sysctl(void)
5853 static void unregister_sched_domain_sysctl(void)
5856 #endif
5858 static void set_rq_online(struct rq *rq)
5860 if (!rq->online) {
5861 const struct sched_class *class;
5863 cpumask_set_cpu(rq->cpu, rq->rd->online);
5864 rq->online = 1;
5866 for_each_class(class) {
5867 if (class->rq_online)
5868 class->rq_online(rq);
5873 static void set_rq_offline(struct rq *rq)
5875 if (rq->online) {
5876 const struct sched_class *class;
5878 for_each_class(class) {
5879 if (class->rq_offline)
5880 class->rq_offline(rq);
5883 cpumask_clear_cpu(rq->cpu, rq->rd->online);
5884 rq->online = 0;
5889 * migration_call - callback that gets triggered when a CPU is added.
5890 * Here we can start up the necessary migration thread for the new CPU.
5892 static int __cpuinit
5893 migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
5895 struct task_struct *p;
5896 int cpu = (long)hcpu;
5897 unsigned long flags;
5898 struct rq *rq;
5900 switch (action) {
5902 case CPU_UP_PREPARE:
5903 case CPU_UP_PREPARE_FROZEN:
5904 p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
5905 if (IS_ERR(p))
5906 return NOTIFY_BAD;
5907 kthread_bind(p, cpu);
5908 /* Must be high prio: stop_machine expects to yield to it. */
5909 rq = task_rq_lock(p, &flags);
5910 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
5911 task_rq_unlock(rq, &flags);
5912 get_task_struct(p);
5913 cpu_rq(cpu)->migration_thread = p;
5914 rq->calc_load_update = calc_load_update;
5915 break;
5917 case CPU_ONLINE:
5918 case CPU_ONLINE_FROZEN:
5919 /* Strictly unnecessary, as first user will wake it. */
5920 wake_up_process(cpu_rq(cpu)->migration_thread);
5922 /* Update our root-domain */
5923 rq = cpu_rq(cpu);
5924 raw_spin_lock_irqsave(&rq->lock, flags);
5925 if (rq->rd) {
5926 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5928 set_rq_online(rq);
5930 raw_spin_unlock_irqrestore(&rq->lock, flags);
5931 break;
5933 #ifdef CONFIG_HOTPLUG_CPU
5934 case CPU_UP_CANCELED:
5935 case CPU_UP_CANCELED_FROZEN:
5936 if (!cpu_rq(cpu)->migration_thread)
5937 break;
5938 /* Unbind it from offline cpu so it can run. Fall thru. */
5939 kthread_bind(cpu_rq(cpu)->migration_thread,
5940 cpumask_any(cpu_online_mask));
5941 kthread_stop(cpu_rq(cpu)->migration_thread);
5942 put_task_struct(cpu_rq(cpu)->migration_thread);
5943 cpu_rq(cpu)->migration_thread = NULL;
5944 break;
5946 case CPU_DEAD:
5947 case CPU_DEAD_FROZEN:
5948 cpuset_lock(); /* around calls to cpuset_cpus_allowed_lock() */
5949 migrate_live_tasks(cpu);
5950 rq = cpu_rq(cpu);
5951 kthread_stop(rq->migration_thread);
5952 put_task_struct(rq->migration_thread);
5953 rq->migration_thread = NULL;
5954 /* Idle task back to normal (off runqueue, low prio) */
5955 raw_spin_lock_irq(&rq->lock);
5956 update_rq_clock(rq);
5957 deactivate_task(rq, rq->idle, 0);
5958 __setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
5959 rq->idle->sched_class = &idle_sched_class;
5960 migrate_dead_tasks(cpu);
5961 raw_spin_unlock_irq(&rq->lock);
5962 cpuset_unlock();
5963 migrate_nr_uninterruptible(rq);
5964 BUG_ON(rq->nr_running != 0);
5965 calc_global_load_remove(rq);
5967 * No need to migrate the tasks: it was best-effort if
5968 * they didn't take sched_hotcpu_mutex. Just wake up
5969 * the requestors.
5971 raw_spin_lock_irq(&rq->lock);
5972 while (!list_empty(&rq->migration_queue)) {
5973 struct migration_req *req;
5975 req = list_entry(rq->migration_queue.next,
5976 struct migration_req, list);
5977 list_del_init(&req->list);
5978 raw_spin_unlock_irq(&rq->lock);
5979 complete(&req->done);
5980 raw_spin_lock_irq(&rq->lock);
5982 raw_spin_unlock_irq(&rq->lock);
5983 break;
5985 case CPU_DYING:
5986 case CPU_DYING_FROZEN:
5987 /* Update our root-domain */
5988 rq = cpu_rq(cpu);
5989 raw_spin_lock_irqsave(&rq->lock, flags);
5990 if (rq->rd) {
5991 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5992 set_rq_offline(rq);
5994 raw_spin_unlock_irqrestore(&rq->lock, flags);
5995 break;
5996 #endif
5998 return NOTIFY_OK;
6002 * Register at high priority so that task migration (migrate_all_tasks)
6003 * happens before everything else. This has to be lower priority than
6004 * the notifier in the perf_event subsystem, though.
6006 static struct notifier_block __cpuinitdata migration_notifier = {
6007 .notifier_call = migration_call,
6008 .priority = 10
6011 static int __init migration_init(void)
6013 void *cpu = (void *)(long)smp_processor_id();
6014 int err;
6016 /* Start one for the boot CPU: */
6017 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
6018 BUG_ON(err == NOTIFY_BAD);
6019 migration_call(&migration_notifier, CPU_ONLINE, cpu);
6020 register_cpu_notifier(&migration_notifier);
6022 return 0;
6024 early_initcall(migration_init);
6025 #endif
6027 #ifdef CONFIG_SMP
6029 #ifdef CONFIG_SCHED_DEBUG
6031 static __read_mostly int sched_domain_debug_enabled;
6033 static int __init sched_domain_debug_setup(char *str)
6035 sched_domain_debug_enabled = 1;
6037 return 0;
6039 early_param("sched_debug", sched_domain_debug_setup);
6041 static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
6042 struct cpumask *groupmask)
6044 struct sched_group *group = sd->groups;
6045 char str[256];
6047 cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
6048 cpumask_clear(groupmask);
6050 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
6052 if (!(sd->flags & SD_LOAD_BALANCE)) {
6053 printk("does not load-balance\n");
6054 if (sd->parent)
6055 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
6056 " has parent");
6057 return -1;
6060 printk(KERN_CONT "span %s level %s\n", str, sd->name);
6062 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
6063 printk(KERN_ERR "ERROR: domain->span does not contain "
6064 "CPU%d\n", cpu);
6066 if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
6067 printk(KERN_ERR "ERROR: domain->groups does not contain"
6068 " CPU%d\n", cpu);
6071 printk(KERN_DEBUG "%*s groups:", level + 1, "");
6072 do {
6073 if (!group) {
6074 printk("\n");
6075 printk(KERN_ERR "ERROR: group is NULL\n");
6076 break;
6079 if (!group->cpu_power) {
6080 printk(KERN_CONT "\n");
6081 printk(KERN_ERR "ERROR: domain->cpu_power not "
6082 "set\n");
6083 break;
6086 if (!cpumask_weight(sched_group_cpus(group))) {
6087 printk(KERN_CONT "\n");
6088 printk(KERN_ERR "ERROR: empty group\n");
6089 break;
6092 if (cpumask_intersects(groupmask, sched_group_cpus(group))) {
6093 printk(KERN_CONT "\n");
6094 printk(KERN_ERR "ERROR: repeated CPUs\n");
6095 break;
6098 cpumask_or(groupmask, groupmask, sched_group_cpus(group));
6100 cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
6102 printk(KERN_CONT " %s", str);
6103 if (group->cpu_power != SCHED_LOAD_SCALE) {
6104 printk(KERN_CONT " (cpu_power = %d)",
6105 group->cpu_power);
6108 group = group->next;
6109 } while (group != sd->groups);
6110 printk(KERN_CONT "\n");
6112 if (!cpumask_equal(sched_domain_span(sd), groupmask))
6113 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
6115 if (sd->parent &&
6116 !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
6117 printk(KERN_ERR "ERROR: parent span is not a superset "
6118 "of domain->span\n");
6119 return 0;
6122 static void sched_domain_debug(struct sched_domain *sd, int cpu)
6124 cpumask_var_t groupmask;
6125 int level = 0;
6127 if (!sched_domain_debug_enabled)
6128 return;
6130 if (!sd) {
6131 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
6132 return;
6135 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
6137 if (!alloc_cpumask_var(&groupmask, GFP_KERNEL)) {
6138 printk(KERN_DEBUG "Cannot load-balance (out of memory)\n");
6139 return;
6142 for (;;) {
6143 if (sched_domain_debug_one(sd, cpu, level, groupmask))
6144 break;
6145 level++;
6146 sd = sd->parent;
6147 if (!sd)
6148 break;
6150 free_cpumask_var(groupmask);
6152 #else /* !CONFIG_SCHED_DEBUG */
6153 # define sched_domain_debug(sd, cpu) do { } while (0)
6154 #endif /* CONFIG_SCHED_DEBUG */
6156 static int sd_degenerate(struct sched_domain *sd)
6158 if (cpumask_weight(sched_domain_span(sd)) == 1)
6159 return 1;
6161 /* Following flags need at least 2 groups */
6162 if (sd->flags & (SD_LOAD_BALANCE |
6163 SD_BALANCE_NEWIDLE |
6164 SD_BALANCE_FORK |
6165 SD_BALANCE_EXEC |
6166 SD_SHARE_CPUPOWER |
6167 SD_SHARE_PKG_RESOURCES)) {
6168 if (sd->groups != sd->groups->next)
6169 return 0;
6172 /* Following flags don't use groups */
6173 if (sd->flags & (SD_WAKE_AFFINE))
6174 return 0;
6176 return 1;
6179 static int
6180 sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
6182 unsigned long cflags = sd->flags, pflags = parent->flags;
6184 if (sd_degenerate(parent))
6185 return 1;
6187 if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
6188 return 0;
6190 /* Flags needing groups don't count if only 1 group in parent */
6191 if (parent->groups == parent->groups->next) {
6192 pflags &= ~(SD_LOAD_BALANCE |
6193 SD_BALANCE_NEWIDLE |
6194 SD_BALANCE_FORK |
6195 SD_BALANCE_EXEC |
6196 SD_SHARE_CPUPOWER |
6197 SD_SHARE_PKG_RESOURCES);
6198 if (nr_node_ids == 1)
6199 pflags &= ~SD_SERIALIZE;
6201 if (~cflags & pflags)
6202 return 0;
6204 return 1;
6207 static void free_rootdomain(struct root_domain *rd)
6209 synchronize_sched();
6211 cpupri_cleanup(&rd->cpupri);
6213 free_cpumask_var(rd->rto_mask);
6214 free_cpumask_var(rd->online);
6215 free_cpumask_var(rd->span);
6216 kfree(rd);
6219 static void rq_attach_root(struct rq *rq, struct root_domain *rd)
6221 struct root_domain *old_rd = NULL;
6222 unsigned long flags;
6224 raw_spin_lock_irqsave(&rq->lock, flags);
6226 if (rq->rd) {
6227 old_rd = rq->rd;
6229 if (cpumask_test_cpu(rq->cpu, old_rd->online))
6230 set_rq_offline(rq);
6232 cpumask_clear_cpu(rq->cpu, old_rd->span);
6235 * If we dont want to free the old_rt yet then
6236 * set old_rd to NULL to skip the freeing later
6237 * in this function:
6239 if (!atomic_dec_and_test(&old_rd->refcount))
6240 old_rd = NULL;
6243 atomic_inc(&rd->refcount);
6244 rq->rd = rd;
6246 cpumask_set_cpu(rq->cpu, rd->span);
6247 if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
6248 set_rq_online(rq);
6250 raw_spin_unlock_irqrestore(&rq->lock, flags);
6252 if (old_rd)
6253 free_rootdomain(old_rd);
6256 static int init_rootdomain(struct root_domain *rd, bool bootmem)
6258 gfp_t gfp = GFP_KERNEL;
6260 memset(rd, 0, sizeof(*rd));
6262 if (bootmem)
6263 gfp = GFP_NOWAIT;
6265 if (!alloc_cpumask_var(&rd->span, gfp))
6266 goto out;
6267 if (!alloc_cpumask_var(&rd->online, gfp))
6268 goto free_span;
6269 if (!alloc_cpumask_var(&rd->rto_mask, gfp))
6270 goto free_online;
6272 if (cpupri_init(&rd->cpupri, bootmem) != 0)
6273 goto free_rto_mask;
6274 return 0;
6276 free_rto_mask:
6277 free_cpumask_var(rd->rto_mask);
6278 free_online:
6279 free_cpumask_var(rd->online);
6280 free_span:
6281 free_cpumask_var(rd->span);
6282 out:
6283 return -ENOMEM;
6286 static void init_defrootdomain(void)
6288 init_rootdomain(&def_root_domain, true);
6290 atomic_set(&def_root_domain.refcount, 1);
6293 static struct root_domain *alloc_rootdomain(void)
6295 struct root_domain *rd;
6297 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
6298 if (!rd)
6299 return NULL;
6301 if (init_rootdomain(rd, false) != 0) {
6302 kfree(rd);
6303 return NULL;
6306 return rd;
6310 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
6311 * hold the hotplug lock.
6313 static void
6314 cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
6316 struct rq *rq = cpu_rq(cpu);
6317 struct sched_domain *tmp;
6319 /* Remove the sched domains which do not contribute to scheduling. */
6320 for (tmp = sd; tmp; ) {
6321 struct sched_domain *parent = tmp->parent;
6322 if (!parent)
6323 break;
6325 if (sd_parent_degenerate(tmp, parent)) {
6326 tmp->parent = parent->parent;
6327 if (parent->parent)
6328 parent->parent->child = tmp;
6329 } else
6330 tmp = tmp->parent;
6333 if (sd && sd_degenerate(sd)) {
6334 sd = sd->parent;
6335 if (sd)
6336 sd->child = NULL;
6339 sched_domain_debug(sd, cpu);
6341 rq_attach_root(rq, rd);
6342 rcu_assign_pointer(rq->sd, sd);
6345 /* cpus with isolated domains */
6346 static cpumask_var_t cpu_isolated_map;
6348 /* Setup the mask of cpus configured for isolated domains */
6349 static int __init isolated_cpu_setup(char *str)
6351 alloc_bootmem_cpumask_var(&cpu_isolated_map);
6352 cpulist_parse(str, cpu_isolated_map);
6353 return 1;
6356 __setup("isolcpus=", isolated_cpu_setup);
6359 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
6360 * to a function which identifies what group(along with sched group) a CPU
6361 * belongs to. The return value of group_fn must be a >= 0 and < nr_cpu_ids
6362 * (due to the fact that we keep track of groups covered with a struct cpumask).
6364 * init_sched_build_groups will build a circular linked list of the groups
6365 * covered by the given span, and will set each group's ->cpumask correctly,
6366 * and ->cpu_power to 0.
6368 static void
6369 init_sched_build_groups(const struct cpumask *span,
6370 const struct cpumask *cpu_map,
6371 int (*group_fn)(int cpu, const struct cpumask *cpu_map,
6372 struct sched_group **sg,
6373 struct cpumask *tmpmask),
6374 struct cpumask *covered, struct cpumask *tmpmask)
6376 struct sched_group *first = NULL, *last = NULL;
6377 int i;
6379 cpumask_clear(covered);
6381 for_each_cpu(i, span) {
6382 struct sched_group *sg;
6383 int group = group_fn(i, cpu_map, &sg, tmpmask);
6384 int j;
6386 if (cpumask_test_cpu(i, covered))
6387 continue;
6389 cpumask_clear(sched_group_cpus(sg));
6390 sg->cpu_power = 0;
6392 for_each_cpu(j, span) {
6393 if (group_fn(j, cpu_map, NULL, tmpmask) != group)
6394 continue;
6396 cpumask_set_cpu(j, covered);
6397 cpumask_set_cpu(j, sched_group_cpus(sg));
6399 if (!first)
6400 first = sg;
6401 if (last)
6402 last->next = sg;
6403 last = sg;
6405 last->next = first;
6408 #define SD_NODES_PER_DOMAIN 16
6410 #ifdef CONFIG_NUMA
6413 * find_next_best_node - find the next node to include in a sched_domain
6414 * @node: node whose sched_domain we're building
6415 * @used_nodes: nodes already in the sched_domain
6417 * Find the next node to include in a given scheduling domain. Simply
6418 * finds the closest node not already in the @used_nodes map.
6420 * Should use nodemask_t.
6422 static int find_next_best_node(int node, nodemask_t *used_nodes)
6424 int i, n, val, min_val, best_node = 0;
6426 min_val = INT_MAX;
6428 for (i = 0; i < nr_node_ids; i++) {
6429 /* Start at @node */
6430 n = (node + i) % nr_node_ids;
6432 if (!nr_cpus_node(n))
6433 continue;
6435 /* Skip already used nodes */
6436 if (node_isset(n, *used_nodes))
6437 continue;
6439 /* Simple min distance search */
6440 val = node_distance(node, n);
6442 if (val < min_val) {
6443 min_val = val;
6444 best_node = n;
6448 node_set(best_node, *used_nodes);
6449 return best_node;
6453 * sched_domain_node_span - get a cpumask for a node's sched_domain
6454 * @node: node whose cpumask we're constructing
6455 * @span: resulting cpumask
6457 * Given a node, construct a good cpumask for its sched_domain to span. It
6458 * should be one that prevents unnecessary balancing, but also spreads tasks
6459 * out optimally.
6461 static void sched_domain_node_span(int node, struct cpumask *span)
6463 nodemask_t used_nodes;
6464 int i;
6466 cpumask_clear(span);
6467 nodes_clear(used_nodes);
6469 cpumask_or(span, span, cpumask_of_node(node));
6470 node_set(node, used_nodes);
6472 for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
6473 int next_node = find_next_best_node(node, &used_nodes);
6475 cpumask_or(span, span, cpumask_of_node(next_node));
6478 #endif /* CONFIG_NUMA */
6480 int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
6483 * The cpus mask in sched_group and sched_domain hangs off the end.
6485 * ( See the the comments in include/linux/sched.h:struct sched_group
6486 * and struct sched_domain. )
6488 struct static_sched_group {
6489 struct sched_group sg;
6490 DECLARE_BITMAP(cpus, CONFIG_NR_CPUS);
6493 struct static_sched_domain {
6494 struct sched_domain sd;
6495 DECLARE_BITMAP(span, CONFIG_NR_CPUS);
6498 struct s_data {
6499 #ifdef CONFIG_NUMA
6500 int sd_allnodes;
6501 cpumask_var_t domainspan;
6502 cpumask_var_t covered;
6503 cpumask_var_t notcovered;
6504 #endif
6505 cpumask_var_t nodemask;
6506 cpumask_var_t this_sibling_map;
6507 cpumask_var_t this_core_map;
6508 cpumask_var_t send_covered;
6509 cpumask_var_t tmpmask;
6510 struct sched_group **sched_group_nodes;
6511 struct root_domain *rd;
6514 enum s_alloc {
6515 sa_sched_groups = 0,
6516 sa_rootdomain,
6517 sa_tmpmask,
6518 sa_send_covered,
6519 sa_this_core_map,
6520 sa_this_sibling_map,
6521 sa_nodemask,
6522 sa_sched_group_nodes,
6523 #ifdef CONFIG_NUMA
6524 sa_notcovered,
6525 sa_covered,
6526 sa_domainspan,
6527 #endif
6528 sa_none,
6532 * SMT sched-domains:
6534 #ifdef CONFIG_SCHED_SMT
6535 static DEFINE_PER_CPU(struct static_sched_domain, cpu_domains);
6536 static DEFINE_PER_CPU(struct static_sched_group, sched_groups);
6538 static int
6539 cpu_to_cpu_group(int cpu, const struct cpumask *cpu_map,
6540 struct sched_group **sg, struct cpumask *unused)
6542 if (sg)
6543 *sg = &per_cpu(sched_groups, cpu).sg;
6544 return cpu;
6546 #endif /* CONFIG_SCHED_SMT */
6549 * multi-core sched-domains:
6551 #ifdef CONFIG_SCHED_MC
6552 static DEFINE_PER_CPU(struct static_sched_domain, core_domains);
6553 static DEFINE_PER_CPU(struct static_sched_group, sched_group_core);
6554 #endif /* CONFIG_SCHED_MC */
6556 #if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
6557 static int
6558 cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
6559 struct sched_group **sg, struct cpumask *mask)
6561 int group;
6563 cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
6564 group = cpumask_first(mask);
6565 if (sg)
6566 *sg = &per_cpu(sched_group_core, group).sg;
6567 return group;
6569 #elif defined(CONFIG_SCHED_MC)
6570 static int
6571 cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
6572 struct sched_group **sg, struct cpumask *unused)
6574 if (sg)
6575 *sg = &per_cpu(sched_group_core, cpu).sg;
6576 return cpu;
6578 #endif
6580 static DEFINE_PER_CPU(struct static_sched_domain, phys_domains);
6581 static DEFINE_PER_CPU(struct static_sched_group, sched_group_phys);
6583 static int
6584 cpu_to_phys_group(int cpu, const struct cpumask *cpu_map,
6585 struct sched_group **sg, struct cpumask *mask)
6587 int group;
6588 #ifdef CONFIG_SCHED_MC
6589 cpumask_and(mask, cpu_coregroup_mask(cpu), cpu_map);
6590 group = cpumask_first(mask);
6591 #elif defined(CONFIG_SCHED_SMT)
6592 cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
6593 group = cpumask_first(mask);
6594 #else
6595 group = cpu;
6596 #endif
6597 if (sg)
6598 *sg = &per_cpu(sched_group_phys, group).sg;
6599 return group;
6602 #ifdef CONFIG_NUMA
6604 * The init_sched_build_groups can't handle what we want to do with node
6605 * groups, so roll our own. Now each node has its own list of groups which
6606 * gets dynamically allocated.
6608 static DEFINE_PER_CPU(struct static_sched_domain, node_domains);
6609 static struct sched_group ***sched_group_nodes_bycpu;
6611 static DEFINE_PER_CPU(struct static_sched_domain, allnodes_domains);
6612 static DEFINE_PER_CPU(struct static_sched_group, sched_group_allnodes);
6614 static int cpu_to_allnodes_group(int cpu, const struct cpumask *cpu_map,
6615 struct sched_group **sg,
6616 struct cpumask *nodemask)
6618 int group;
6620 cpumask_and(nodemask, cpumask_of_node(cpu_to_node(cpu)), cpu_map);
6621 group = cpumask_first(nodemask);
6623 if (sg)
6624 *sg = &per_cpu(sched_group_allnodes, group).sg;
6625 return group;
6628 static void init_numa_sched_groups_power(struct sched_group *group_head)
6630 struct sched_group *sg = group_head;
6631 int j;
6633 if (!sg)
6634 return;
6635 do {
6636 for_each_cpu(j, sched_group_cpus(sg)) {
6637 struct sched_domain *sd;
6639 sd = &per_cpu(phys_domains, j).sd;
6640 if (j != group_first_cpu(sd->groups)) {
6642 * Only add "power" once for each
6643 * physical package.
6645 continue;
6648 sg->cpu_power += sd->groups->cpu_power;
6650 sg = sg->next;
6651 } while (sg != group_head);
6654 static int build_numa_sched_groups(struct s_data *d,
6655 const struct cpumask *cpu_map, int num)
6657 struct sched_domain *sd;
6658 struct sched_group *sg, *prev;
6659 int n, j;
6661 cpumask_clear(d->covered);
6662 cpumask_and(d->nodemask, cpumask_of_node(num), cpu_map);
6663 if (cpumask_empty(d->nodemask)) {
6664 d->sched_group_nodes[num] = NULL;
6665 goto out;
6668 sched_domain_node_span(num, d->domainspan);
6669 cpumask_and(d->domainspan, d->domainspan, cpu_map);
6671 sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
6672 GFP_KERNEL, num);
6673 if (!sg) {
6674 printk(KERN_WARNING "Can not alloc domain group for node %d\n",
6675 num);
6676 return -ENOMEM;
6678 d->sched_group_nodes[num] = sg;
6680 for_each_cpu(j, d->nodemask) {
6681 sd = &per_cpu(node_domains, j).sd;
6682 sd->groups = sg;
6685 sg->cpu_power = 0;
6686 cpumask_copy(sched_group_cpus(sg), d->nodemask);
6687 sg->next = sg;
6688 cpumask_or(d->covered, d->covered, d->nodemask);
6690 prev = sg;
6691 for (j = 0; j < nr_node_ids; j++) {
6692 n = (num + j) % nr_node_ids;
6693 cpumask_complement(d->notcovered, d->covered);
6694 cpumask_and(d->tmpmask, d->notcovered, cpu_map);
6695 cpumask_and(d->tmpmask, d->tmpmask, d->domainspan);
6696 if (cpumask_empty(d->tmpmask))
6697 break;
6698 cpumask_and(d->tmpmask, d->tmpmask, cpumask_of_node(n));
6699 if (cpumask_empty(d->tmpmask))
6700 continue;
6701 sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
6702 GFP_KERNEL, num);
6703 if (!sg) {
6704 printk(KERN_WARNING
6705 "Can not alloc domain group for node %d\n", j);
6706 return -ENOMEM;
6708 sg->cpu_power = 0;
6709 cpumask_copy(sched_group_cpus(sg), d->tmpmask);
6710 sg->next = prev->next;
6711 cpumask_or(d->covered, d->covered, d->tmpmask);
6712 prev->next = sg;
6713 prev = sg;
6715 out:
6716 return 0;
6718 #endif /* CONFIG_NUMA */
6720 #ifdef CONFIG_NUMA
6721 /* Free memory allocated for various sched_group structures */
6722 static void free_sched_groups(const struct cpumask *cpu_map,
6723 struct cpumask *nodemask)
6725 int cpu, i;
6727 for_each_cpu(cpu, cpu_map) {
6728 struct sched_group **sched_group_nodes
6729 = sched_group_nodes_bycpu[cpu];
6731 if (!sched_group_nodes)
6732 continue;
6734 for (i = 0; i < nr_node_ids; i++) {
6735 struct sched_group *oldsg, *sg = sched_group_nodes[i];
6737 cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
6738 if (cpumask_empty(nodemask))
6739 continue;
6741 if (sg == NULL)
6742 continue;
6743 sg = sg->next;
6744 next_sg:
6745 oldsg = sg;
6746 sg = sg->next;
6747 kfree(oldsg);
6748 if (oldsg != sched_group_nodes[i])
6749 goto next_sg;
6751 kfree(sched_group_nodes);
6752 sched_group_nodes_bycpu[cpu] = NULL;
6755 #else /* !CONFIG_NUMA */
6756 static void free_sched_groups(const struct cpumask *cpu_map,
6757 struct cpumask *nodemask)
6760 #endif /* CONFIG_NUMA */
6763 * Initialize sched groups cpu_power.
6765 * cpu_power indicates the capacity of sched group, which is used while
6766 * distributing the load between different sched groups in a sched domain.
6767 * Typically cpu_power for all the groups in a sched domain will be same unless
6768 * there are asymmetries in the topology. If there are asymmetries, group
6769 * having more cpu_power will pickup more load compared to the group having
6770 * less cpu_power.
6772 static void init_sched_groups_power(int cpu, struct sched_domain *sd)
6774 struct sched_domain *child;
6775 struct sched_group *group;
6776 long power;
6777 int weight;
6779 WARN_ON(!sd || !sd->groups);
6781 if (cpu != group_first_cpu(sd->groups))
6782 return;
6784 child = sd->child;
6786 sd->groups->cpu_power = 0;
6788 if (!child) {
6789 power = SCHED_LOAD_SCALE;
6790 weight = cpumask_weight(sched_domain_span(sd));
6792 * SMT siblings share the power of a single core.
6793 * Usually multiple threads get a better yield out of
6794 * that one core than a single thread would have,
6795 * reflect that in sd->smt_gain.
6797 if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
6798 power *= sd->smt_gain;
6799 power /= weight;
6800 power >>= SCHED_LOAD_SHIFT;
6802 sd->groups->cpu_power += power;
6803 return;
6807 * Add cpu_power of each child group to this groups cpu_power.
6809 group = child->groups;
6810 do {
6811 sd->groups->cpu_power += group->cpu_power;
6812 group = group->next;
6813 } while (group != child->groups);
6817 * Initializers for schedule domains
6818 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
6821 #ifdef CONFIG_SCHED_DEBUG
6822 # define SD_INIT_NAME(sd, type) sd->name = #type
6823 #else
6824 # define SD_INIT_NAME(sd, type) do { } while (0)
6825 #endif
6827 #define SD_INIT(sd, type) sd_init_##type(sd)
6829 #define SD_INIT_FUNC(type) \
6830 static noinline void sd_init_##type(struct sched_domain *sd) \
6832 memset(sd, 0, sizeof(*sd)); \
6833 *sd = SD_##type##_INIT; \
6834 sd->level = SD_LV_##type; \
6835 SD_INIT_NAME(sd, type); \
6838 SD_INIT_FUNC(CPU)
6839 #ifdef CONFIG_NUMA
6840 SD_INIT_FUNC(ALLNODES)
6841 SD_INIT_FUNC(NODE)
6842 #endif
6843 #ifdef CONFIG_SCHED_SMT
6844 SD_INIT_FUNC(SIBLING)
6845 #endif
6846 #ifdef CONFIG_SCHED_MC
6847 SD_INIT_FUNC(MC)
6848 #endif
6850 static int default_relax_domain_level = -1;
6852 static int __init setup_relax_domain_level(char *str)
6854 unsigned long val;
6856 val = simple_strtoul(str, NULL, 0);
6857 if (val < SD_LV_MAX)
6858 default_relax_domain_level = val;
6860 return 1;
6862 __setup("relax_domain_level=", setup_relax_domain_level);
6864 static void set_domain_attribute(struct sched_domain *sd,
6865 struct sched_domain_attr *attr)
6867 int request;
6869 if (!attr || attr->relax_domain_level < 0) {
6870 if (default_relax_domain_level < 0)
6871 return;
6872 else
6873 request = default_relax_domain_level;
6874 } else
6875 request = attr->relax_domain_level;
6876 if (request < sd->level) {
6877 /* turn off idle balance on this domain */
6878 sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
6879 } else {
6880 /* turn on idle balance on this domain */
6881 sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
6885 static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
6886 const struct cpumask *cpu_map)
6888 switch (what) {
6889 case sa_sched_groups:
6890 free_sched_groups(cpu_map, d->tmpmask); /* fall through */
6891 d->sched_group_nodes = NULL;
6892 case sa_rootdomain:
6893 free_rootdomain(d->rd); /* fall through */
6894 case sa_tmpmask:
6895 free_cpumask_var(d->tmpmask); /* fall through */
6896 case sa_send_covered:
6897 free_cpumask_var(d->send_covered); /* fall through */
6898 case sa_this_core_map:
6899 free_cpumask_var(d->this_core_map); /* fall through */
6900 case sa_this_sibling_map:
6901 free_cpumask_var(d->this_sibling_map); /* fall through */
6902 case sa_nodemask:
6903 free_cpumask_var(d->nodemask); /* fall through */
6904 case sa_sched_group_nodes:
6905 #ifdef CONFIG_NUMA
6906 kfree(d->sched_group_nodes); /* fall through */
6907 case sa_notcovered:
6908 free_cpumask_var(d->notcovered); /* fall through */
6909 case sa_covered:
6910 free_cpumask_var(d->covered); /* fall through */
6911 case sa_domainspan:
6912 free_cpumask_var(d->domainspan); /* fall through */
6913 #endif
6914 case sa_none:
6915 break;
6919 static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
6920 const struct cpumask *cpu_map)
6922 #ifdef CONFIG_NUMA
6923 if (!alloc_cpumask_var(&d->domainspan, GFP_KERNEL))
6924 return sa_none;
6925 if (!alloc_cpumask_var(&d->covered, GFP_KERNEL))
6926 return sa_domainspan;
6927 if (!alloc_cpumask_var(&d->notcovered, GFP_KERNEL))
6928 return sa_covered;
6929 /* Allocate the per-node list of sched groups */
6930 d->sched_group_nodes = kcalloc(nr_node_ids,
6931 sizeof(struct sched_group *), GFP_KERNEL);
6932 if (!d->sched_group_nodes) {
6933 printk(KERN_WARNING "Can not alloc sched group node list\n");
6934 return sa_notcovered;
6936 sched_group_nodes_bycpu[cpumask_first(cpu_map)] = d->sched_group_nodes;
6937 #endif
6938 if (!alloc_cpumask_var(&d->nodemask, GFP_KERNEL))
6939 return sa_sched_group_nodes;
6940 if (!alloc_cpumask_var(&d->this_sibling_map, GFP_KERNEL))
6941 return sa_nodemask;
6942 if (!alloc_cpumask_var(&d->this_core_map, GFP_KERNEL))
6943 return sa_this_sibling_map;
6944 if (!alloc_cpumask_var(&d->send_covered, GFP_KERNEL))
6945 return sa_this_core_map;
6946 if (!alloc_cpumask_var(&d->tmpmask, GFP_KERNEL))
6947 return sa_send_covered;
6948 d->rd = alloc_rootdomain();
6949 if (!d->rd) {
6950 printk(KERN_WARNING "Cannot alloc root domain\n");
6951 return sa_tmpmask;
6953 return sa_rootdomain;
6956 static struct sched_domain *__build_numa_sched_domains(struct s_data *d,
6957 const struct cpumask *cpu_map, struct sched_domain_attr *attr, int i)
6959 struct sched_domain *sd = NULL;
6960 #ifdef CONFIG_NUMA
6961 struct sched_domain *parent;
6963 d->sd_allnodes = 0;
6964 if (cpumask_weight(cpu_map) >
6965 SD_NODES_PER_DOMAIN * cpumask_weight(d->nodemask)) {
6966 sd = &per_cpu(allnodes_domains, i).sd;
6967 SD_INIT(sd, ALLNODES);
6968 set_domain_attribute(sd, attr);
6969 cpumask_copy(sched_domain_span(sd), cpu_map);
6970 cpu_to_allnodes_group(i, cpu_map, &sd->groups, d->tmpmask);
6971 d->sd_allnodes = 1;
6973 parent = sd;
6975 sd = &per_cpu(node_domains, i).sd;
6976 SD_INIT(sd, NODE);
6977 set_domain_attribute(sd, attr);
6978 sched_domain_node_span(cpu_to_node(i), sched_domain_span(sd));
6979 sd->parent = parent;
6980 if (parent)
6981 parent->child = sd;
6982 cpumask_and(sched_domain_span(sd), sched_domain_span(sd), cpu_map);
6983 #endif
6984 return sd;
6987 static struct sched_domain *__build_cpu_sched_domain(struct s_data *d,
6988 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
6989 struct sched_domain *parent, int i)
6991 struct sched_domain *sd;
6992 sd = &per_cpu(phys_domains, i).sd;
6993 SD_INIT(sd, CPU);
6994 set_domain_attribute(sd, attr);
6995 cpumask_copy(sched_domain_span(sd), d->nodemask);
6996 sd->parent = parent;
6997 if (parent)
6998 parent->child = sd;
6999 cpu_to_phys_group(i, cpu_map, &sd->groups, d->tmpmask);
7000 return sd;
7003 static struct sched_domain *__build_mc_sched_domain(struct s_data *d,
7004 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
7005 struct sched_domain *parent, int i)
7007 struct sched_domain *sd = parent;
7008 #ifdef CONFIG_SCHED_MC
7009 sd = &per_cpu(core_domains, i).sd;
7010 SD_INIT(sd, MC);
7011 set_domain_attribute(sd, attr);
7012 cpumask_and(sched_domain_span(sd), cpu_map, cpu_coregroup_mask(i));
7013 sd->parent = parent;
7014 parent->child = sd;
7015 cpu_to_core_group(i, cpu_map, &sd->groups, d->tmpmask);
7016 #endif
7017 return sd;
7020 static struct sched_domain *__build_smt_sched_domain(struct s_data *d,
7021 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
7022 struct sched_domain *parent, int i)
7024 struct sched_domain *sd = parent;
7025 #ifdef CONFIG_SCHED_SMT
7026 sd = &per_cpu(cpu_domains, i).sd;
7027 SD_INIT(sd, SIBLING);
7028 set_domain_attribute(sd, attr);
7029 cpumask_and(sched_domain_span(sd), cpu_map, topology_thread_cpumask(i));
7030 sd->parent = parent;
7031 parent->child = sd;
7032 cpu_to_cpu_group(i, cpu_map, &sd->groups, d->tmpmask);
7033 #endif
7034 return sd;
7037 static void build_sched_groups(struct s_data *d, enum sched_domain_level l,
7038 const struct cpumask *cpu_map, int cpu)
7040 switch (l) {
7041 #ifdef CONFIG_SCHED_SMT
7042 case SD_LV_SIBLING: /* set up CPU (sibling) groups */
7043 cpumask_and(d->this_sibling_map, cpu_map,
7044 topology_thread_cpumask(cpu));
7045 if (cpu == cpumask_first(d->this_sibling_map))
7046 init_sched_build_groups(d->this_sibling_map, cpu_map,
7047 &cpu_to_cpu_group,
7048 d->send_covered, d->tmpmask);
7049 break;
7050 #endif
7051 #ifdef CONFIG_SCHED_MC
7052 case SD_LV_MC: /* set up multi-core groups */
7053 cpumask_and(d->this_core_map, cpu_map, cpu_coregroup_mask(cpu));
7054 if (cpu == cpumask_first(d->this_core_map))
7055 init_sched_build_groups(d->this_core_map, cpu_map,
7056 &cpu_to_core_group,
7057 d->send_covered, d->tmpmask);
7058 break;
7059 #endif
7060 case SD_LV_CPU: /* set up physical groups */
7061 cpumask_and(d->nodemask, cpumask_of_node(cpu), cpu_map);
7062 if (!cpumask_empty(d->nodemask))
7063 init_sched_build_groups(d->nodemask, cpu_map,
7064 &cpu_to_phys_group,
7065 d->send_covered, d->tmpmask);
7066 break;
7067 #ifdef CONFIG_NUMA
7068 case SD_LV_ALLNODES:
7069 init_sched_build_groups(cpu_map, cpu_map, &cpu_to_allnodes_group,
7070 d->send_covered, d->tmpmask);
7071 break;
7072 #endif
7073 default:
7074 break;
7079 * Build sched domains for a given set of cpus and attach the sched domains
7080 * to the individual cpus
7082 static int __build_sched_domains(const struct cpumask *cpu_map,
7083 struct sched_domain_attr *attr)
7085 enum s_alloc alloc_state = sa_none;
7086 struct s_data d;
7087 struct sched_domain *sd;
7088 int i;
7089 #ifdef CONFIG_NUMA
7090 d.sd_allnodes = 0;
7091 #endif
7093 alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
7094 if (alloc_state != sa_rootdomain)
7095 goto error;
7096 alloc_state = sa_sched_groups;
7099 * Set up domains for cpus specified by the cpu_map.
7101 for_each_cpu(i, cpu_map) {
7102 cpumask_and(d.nodemask, cpumask_of_node(cpu_to_node(i)),
7103 cpu_map);
7105 sd = __build_numa_sched_domains(&d, cpu_map, attr, i);
7106 sd = __build_cpu_sched_domain(&d, cpu_map, attr, sd, i);
7107 sd = __build_mc_sched_domain(&d, cpu_map, attr, sd, i);
7108 sd = __build_smt_sched_domain(&d, cpu_map, attr, sd, i);
7111 for_each_cpu(i, cpu_map) {
7112 build_sched_groups(&d, SD_LV_SIBLING, cpu_map, i);
7113 build_sched_groups(&d, SD_LV_MC, cpu_map, i);
7116 /* Set up physical groups */
7117 for (i = 0; i < nr_node_ids; i++)
7118 build_sched_groups(&d, SD_LV_CPU, cpu_map, i);
7120 #ifdef CONFIG_NUMA
7121 /* Set up node groups */
7122 if (d.sd_allnodes)
7123 build_sched_groups(&d, SD_LV_ALLNODES, cpu_map, 0);
7125 for (i = 0; i < nr_node_ids; i++)
7126 if (build_numa_sched_groups(&d, cpu_map, i))
7127 goto error;
7128 #endif
7130 /* Calculate CPU power for physical packages and nodes */
7131 #ifdef CONFIG_SCHED_SMT
7132 for_each_cpu(i, cpu_map) {
7133 sd = &per_cpu(cpu_domains, i).sd;
7134 init_sched_groups_power(i, sd);
7136 #endif
7137 #ifdef CONFIG_SCHED_MC
7138 for_each_cpu(i, cpu_map) {
7139 sd = &per_cpu(core_domains, i).sd;
7140 init_sched_groups_power(i, sd);
7142 #endif
7144 for_each_cpu(i, cpu_map) {
7145 sd = &per_cpu(phys_domains, i).sd;
7146 init_sched_groups_power(i, sd);
7149 #ifdef CONFIG_NUMA
7150 for (i = 0; i < nr_node_ids; i++)
7151 init_numa_sched_groups_power(d.sched_group_nodes[i]);
7153 if (d.sd_allnodes) {
7154 struct sched_group *sg;
7156 cpu_to_allnodes_group(cpumask_first(cpu_map), cpu_map, &sg,
7157 d.tmpmask);
7158 init_numa_sched_groups_power(sg);
7160 #endif
7162 /* Attach the domains */
7163 for_each_cpu(i, cpu_map) {
7164 #ifdef CONFIG_SCHED_SMT
7165 sd = &per_cpu(cpu_domains, i).sd;
7166 #elif defined(CONFIG_SCHED_MC)
7167 sd = &per_cpu(core_domains, i).sd;
7168 #else
7169 sd = &per_cpu(phys_domains, i).sd;
7170 #endif
7171 cpu_attach_domain(sd, d.rd, i);
7174 d.sched_group_nodes = NULL; /* don't free this we still need it */
7175 __free_domain_allocs(&d, sa_tmpmask, cpu_map);
7176 return 0;
7178 error:
7179 __free_domain_allocs(&d, alloc_state, cpu_map);
7180 return -ENOMEM;
7183 static int build_sched_domains(const struct cpumask *cpu_map)
7185 return __build_sched_domains(cpu_map, NULL);
7188 static cpumask_var_t *doms_cur; /* current sched domains */
7189 static int ndoms_cur; /* number of sched domains in 'doms_cur' */
7190 static struct sched_domain_attr *dattr_cur;
7191 /* attribues of custom domains in 'doms_cur' */
7194 * Special case: If a kmalloc of a doms_cur partition (array of
7195 * cpumask) fails, then fallback to a single sched domain,
7196 * as determined by the single cpumask fallback_doms.
7198 static cpumask_var_t fallback_doms;
7201 * arch_update_cpu_topology lets virtualized architectures update the
7202 * cpu core maps. It is supposed to return 1 if the topology changed
7203 * or 0 if it stayed the same.
7205 int __attribute__((weak)) arch_update_cpu_topology(void)
7207 return 0;
7210 cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
7212 int i;
7213 cpumask_var_t *doms;
7215 doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
7216 if (!doms)
7217 return NULL;
7218 for (i = 0; i < ndoms; i++) {
7219 if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
7220 free_sched_domains(doms, i);
7221 return NULL;
7224 return doms;
7227 void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
7229 unsigned int i;
7230 for (i = 0; i < ndoms; i++)
7231 free_cpumask_var(doms[i]);
7232 kfree(doms);
7236 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
7237 * For now this just excludes isolated cpus, but could be used to
7238 * exclude other special cases in the future.
7240 static int arch_init_sched_domains(const struct cpumask *cpu_map)
7242 int err;
7244 arch_update_cpu_topology();
7245 ndoms_cur = 1;
7246 doms_cur = alloc_sched_domains(ndoms_cur);
7247 if (!doms_cur)
7248 doms_cur = &fallback_doms;
7249 cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
7250 dattr_cur = NULL;
7251 err = build_sched_domains(doms_cur[0]);
7252 register_sched_domain_sysctl();
7254 return err;
7257 static void arch_destroy_sched_domains(const struct cpumask *cpu_map,
7258 struct cpumask *tmpmask)
7260 free_sched_groups(cpu_map, tmpmask);
7264 * Detach sched domains from a group of cpus specified in cpu_map
7265 * These cpus will now be attached to the NULL domain
7267 static void detach_destroy_domains(const struct cpumask *cpu_map)
7269 /* Save because hotplug lock held. */
7270 static DECLARE_BITMAP(tmpmask, CONFIG_NR_CPUS);
7271 int i;
7273 for_each_cpu(i, cpu_map)
7274 cpu_attach_domain(NULL, &def_root_domain, i);
7275 synchronize_sched();
7276 arch_destroy_sched_domains(cpu_map, to_cpumask(tmpmask));
7279 /* handle null as "default" */
7280 static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
7281 struct sched_domain_attr *new, int idx_new)
7283 struct sched_domain_attr tmp;
7285 /* fast path */
7286 if (!new && !cur)
7287 return 1;
7289 tmp = SD_ATTR_INIT;
7290 return !memcmp(cur ? (cur + idx_cur) : &tmp,
7291 new ? (new + idx_new) : &tmp,
7292 sizeof(struct sched_domain_attr));
7296 * Partition sched domains as specified by the 'ndoms_new'
7297 * cpumasks in the array doms_new[] of cpumasks. This compares
7298 * doms_new[] to the current sched domain partitioning, doms_cur[].
7299 * It destroys each deleted domain and builds each new domain.
7301 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
7302 * The masks don't intersect (don't overlap.) We should setup one
7303 * sched domain for each mask. CPUs not in any of the cpumasks will
7304 * not be load balanced. If the same cpumask appears both in the
7305 * current 'doms_cur' domains and in the new 'doms_new', we can leave
7306 * it as it is.
7308 * The passed in 'doms_new' should be allocated using
7309 * alloc_sched_domains. This routine takes ownership of it and will
7310 * free_sched_domains it when done with it. If the caller failed the
7311 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
7312 * and partition_sched_domains() will fallback to the single partition
7313 * 'fallback_doms', it also forces the domains to be rebuilt.
7315 * If doms_new == NULL it will be replaced with cpu_online_mask.
7316 * ndoms_new == 0 is a special case for destroying existing domains,
7317 * and it will not create the default domain.
7319 * Call with hotplug lock held
7321 void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
7322 struct sched_domain_attr *dattr_new)
7324 int i, j, n;
7325 int new_topology;
7327 mutex_lock(&sched_domains_mutex);
7329 /* always unregister in case we don't destroy any domains */
7330 unregister_sched_domain_sysctl();
7332 /* Let architecture update cpu core mappings. */
7333 new_topology = arch_update_cpu_topology();
7335 n = doms_new ? ndoms_new : 0;
7337 /* Destroy deleted domains */
7338 for (i = 0; i < ndoms_cur; i++) {
7339 for (j = 0; j < n && !new_topology; j++) {
7340 if (cpumask_equal(doms_cur[i], doms_new[j])
7341 && dattrs_equal(dattr_cur, i, dattr_new, j))
7342 goto match1;
7344 /* no match - a current sched domain not in new doms_new[] */
7345 detach_destroy_domains(doms_cur[i]);
7346 match1:
7350 if (doms_new == NULL) {
7351 ndoms_cur = 0;
7352 doms_new = &fallback_doms;
7353 cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
7354 WARN_ON_ONCE(dattr_new);
7357 /* Build new domains */
7358 for (i = 0; i < ndoms_new; i++) {
7359 for (j = 0; j < ndoms_cur && !new_topology; j++) {
7360 if (cpumask_equal(doms_new[i], doms_cur[j])
7361 && dattrs_equal(dattr_new, i, dattr_cur, j))
7362 goto match2;
7364 /* no match - add a new doms_new */
7365 __build_sched_domains(doms_new[i],
7366 dattr_new ? dattr_new + i : NULL);
7367 match2:
7371 /* Remember the new sched domains */
7372 if (doms_cur != &fallback_doms)
7373 free_sched_domains(doms_cur, ndoms_cur);
7374 kfree(dattr_cur); /* kfree(NULL) is safe */
7375 doms_cur = doms_new;
7376 dattr_cur = dattr_new;
7377 ndoms_cur = ndoms_new;
7379 register_sched_domain_sysctl();
7381 mutex_unlock(&sched_domains_mutex);
7384 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
7385 static void arch_reinit_sched_domains(void)
7387 get_online_cpus();
7389 /* Destroy domains first to force the rebuild */
7390 partition_sched_domains(0, NULL, NULL);
7392 rebuild_sched_domains();
7393 put_online_cpus();
7396 static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
7398 unsigned int level = 0;
7400 if (sscanf(buf, "%u", &level) != 1)
7401 return -EINVAL;
7404 * level is always be positive so don't check for
7405 * level < POWERSAVINGS_BALANCE_NONE which is 0
7406 * What happens on 0 or 1 byte write,
7407 * need to check for count as well?
7410 if (level >= MAX_POWERSAVINGS_BALANCE_LEVELS)
7411 return -EINVAL;
7413 if (smt)
7414 sched_smt_power_savings = level;
7415 else
7416 sched_mc_power_savings = level;
7418 arch_reinit_sched_domains();
7420 return count;
7423 #ifdef CONFIG_SCHED_MC
7424 static ssize_t sched_mc_power_savings_show(struct sysdev_class *class,
7425 struct sysdev_class_attribute *attr,
7426 char *page)
7428 return sprintf(page, "%u\n", sched_mc_power_savings);
7430 static ssize_t sched_mc_power_savings_store(struct sysdev_class *class,
7431 struct sysdev_class_attribute *attr,
7432 const char *buf, size_t count)
7434 return sched_power_savings_store(buf, count, 0);
7436 static SYSDEV_CLASS_ATTR(sched_mc_power_savings, 0644,
7437 sched_mc_power_savings_show,
7438 sched_mc_power_savings_store);
7439 #endif
7441 #ifdef CONFIG_SCHED_SMT
7442 static ssize_t sched_smt_power_savings_show(struct sysdev_class *dev,
7443 struct sysdev_class_attribute *attr,
7444 char *page)
7446 return sprintf(page, "%u\n", sched_smt_power_savings);
7448 static ssize_t sched_smt_power_savings_store(struct sysdev_class *dev,
7449 struct sysdev_class_attribute *attr,
7450 const char *buf, size_t count)
7452 return sched_power_savings_store(buf, count, 1);
7454 static SYSDEV_CLASS_ATTR(sched_smt_power_savings, 0644,
7455 sched_smt_power_savings_show,
7456 sched_smt_power_savings_store);
7457 #endif
7459 int __init sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
7461 int err = 0;
7463 #ifdef CONFIG_SCHED_SMT
7464 if (smt_capable())
7465 err = sysfs_create_file(&cls->kset.kobj,
7466 &attr_sched_smt_power_savings.attr);
7467 #endif
7468 #ifdef CONFIG_SCHED_MC
7469 if (!err && mc_capable())
7470 err = sysfs_create_file(&cls->kset.kobj,
7471 &attr_sched_mc_power_savings.attr);
7472 #endif
7473 return err;
7475 #endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
7477 #ifndef CONFIG_CPUSETS
7479 * Add online and remove offline CPUs from the scheduler domains.
7480 * When cpusets are enabled they take over this function.
7482 static int update_sched_domains(struct notifier_block *nfb,
7483 unsigned long action, void *hcpu)
7485 switch (action) {
7486 case CPU_ONLINE:
7487 case CPU_ONLINE_FROZEN:
7488 case CPU_DOWN_PREPARE:
7489 case CPU_DOWN_PREPARE_FROZEN:
7490 case CPU_DOWN_FAILED:
7491 case CPU_DOWN_FAILED_FROZEN:
7492 partition_sched_domains(1, NULL, NULL);
7493 return NOTIFY_OK;
7495 default:
7496 return NOTIFY_DONE;
7499 #endif
7501 static int update_runtime(struct notifier_block *nfb,
7502 unsigned long action, void *hcpu)
7504 int cpu = (int)(long)hcpu;
7506 switch (action) {
7507 case CPU_DOWN_PREPARE:
7508 case CPU_DOWN_PREPARE_FROZEN:
7509 disable_runtime(cpu_rq(cpu));
7510 return NOTIFY_OK;
7512 case CPU_DOWN_FAILED:
7513 case CPU_DOWN_FAILED_FROZEN:
7514 case CPU_ONLINE:
7515 case CPU_ONLINE_FROZEN:
7516 enable_runtime(cpu_rq(cpu));
7517 return NOTIFY_OK;
7519 default:
7520 return NOTIFY_DONE;
7524 void __init sched_init_smp(void)
7526 cpumask_var_t non_isolated_cpus;
7528 alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
7529 alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
7531 #if defined(CONFIG_NUMA)
7532 sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **),
7533 GFP_KERNEL);
7534 BUG_ON(sched_group_nodes_bycpu == NULL);
7535 #endif
7536 get_online_cpus();
7537 mutex_lock(&sched_domains_mutex);
7538 arch_init_sched_domains(cpu_active_mask);
7539 cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
7540 if (cpumask_empty(non_isolated_cpus))
7541 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
7542 mutex_unlock(&sched_domains_mutex);
7543 put_online_cpus();
7545 #ifndef CONFIG_CPUSETS
7546 /* XXX: Theoretical race here - CPU may be hotplugged now */
7547 hotcpu_notifier(update_sched_domains, 0);
7548 #endif
7550 /* RT runtime code needs to handle some hotplug events */
7551 hotcpu_notifier(update_runtime, 0);
7553 init_hrtick();
7555 /* Move init over to a non-isolated CPU */
7556 if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
7557 BUG();
7558 sched_init_granularity();
7559 free_cpumask_var(non_isolated_cpus);
7561 init_sched_rt_class();
7563 #else
7564 void __init sched_init_smp(void)
7566 sched_init_granularity();
7568 #endif /* CONFIG_SMP */
7570 const_debug unsigned int sysctl_timer_migration = 1;
7572 int in_sched_functions(unsigned long addr)
7574 return in_lock_functions(addr) ||
7575 (addr >= (unsigned long)__sched_text_start
7576 && addr < (unsigned long)__sched_text_end);
7579 static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
7581 cfs_rq->tasks_timeline = RB_ROOT;
7582 INIT_LIST_HEAD(&cfs_rq->tasks);
7583 #ifdef CONFIG_FAIR_GROUP_SCHED
7584 cfs_rq->rq = rq;
7585 #endif
7586 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
7589 static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
7591 struct rt_prio_array *array;
7592 int i;
7594 array = &rt_rq->active;
7595 for (i = 0; i < MAX_RT_PRIO; i++) {
7596 INIT_LIST_HEAD(array->queue + i);
7597 __clear_bit(i, array->bitmap);
7599 /* delimiter for bitsearch: */
7600 __set_bit(MAX_RT_PRIO, array->bitmap);
7602 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
7603 rt_rq->highest_prio.curr = MAX_RT_PRIO;
7604 #ifdef CONFIG_SMP
7605 rt_rq->highest_prio.next = MAX_RT_PRIO;
7606 #endif
7607 #endif
7608 #ifdef CONFIG_SMP
7609 rt_rq->rt_nr_migratory = 0;
7610 rt_rq->overloaded = 0;
7611 plist_head_init_raw(&rt_rq->pushable_tasks, &rq->lock);
7612 #endif
7614 rt_rq->rt_time = 0;
7615 rt_rq->rt_throttled = 0;
7616 rt_rq->rt_runtime = 0;
7617 raw_spin_lock_init(&rt_rq->rt_runtime_lock);
7619 #ifdef CONFIG_RT_GROUP_SCHED
7620 rt_rq->rt_nr_boosted = 0;
7621 rt_rq->rq = rq;
7622 #endif
7625 #ifdef CONFIG_FAIR_GROUP_SCHED
7626 static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
7627 struct sched_entity *se, int cpu, int add,
7628 struct sched_entity *parent)
7630 struct rq *rq = cpu_rq(cpu);
7631 tg->cfs_rq[cpu] = cfs_rq;
7632 init_cfs_rq(cfs_rq, rq);
7633 cfs_rq->tg = tg;
7634 if (add)
7635 list_add(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
7637 tg->se[cpu] = se;
7638 /* se could be NULL for init_task_group */
7639 if (!se)
7640 return;
7642 if (!parent)
7643 se->cfs_rq = &rq->cfs;
7644 else
7645 se->cfs_rq = parent->my_q;
7647 se->my_q = cfs_rq;
7648 se->load.weight = tg->shares;
7649 se->load.inv_weight = 0;
7650 se->parent = parent;
7652 #endif
7654 #ifdef CONFIG_RT_GROUP_SCHED
7655 static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
7656 struct sched_rt_entity *rt_se, int cpu, int add,
7657 struct sched_rt_entity *parent)
7659 struct rq *rq = cpu_rq(cpu);
7661 tg->rt_rq[cpu] = rt_rq;
7662 init_rt_rq(rt_rq, rq);
7663 rt_rq->tg = tg;
7664 rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
7665 if (add)
7666 list_add(&rt_rq->leaf_rt_rq_list, &rq->leaf_rt_rq_list);
7668 tg->rt_se[cpu] = rt_se;
7669 if (!rt_se)
7670 return;
7672 if (!parent)
7673 rt_se->rt_rq = &rq->rt;
7674 else
7675 rt_se->rt_rq = parent->my_q;
7677 rt_se->my_q = rt_rq;
7678 rt_se->parent = parent;
7679 INIT_LIST_HEAD(&rt_se->run_list);
7681 #endif
7683 void __init sched_init(void)
7685 int i, j;
7686 unsigned long alloc_size = 0, ptr;
7688 #ifdef CONFIG_FAIR_GROUP_SCHED
7689 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
7690 #endif
7691 #ifdef CONFIG_RT_GROUP_SCHED
7692 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
7693 #endif
7694 #ifdef CONFIG_CPUMASK_OFFSTACK
7695 alloc_size += num_possible_cpus() * cpumask_size();
7696 #endif
7697 if (alloc_size) {
7698 ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
7700 #ifdef CONFIG_FAIR_GROUP_SCHED
7701 init_task_group.se = (struct sched_entity **)ptr;
7702 ptr += nr_cpu_ids * sizeof(void **);
7704 init_task_group.cfs_rq = (struct cfs_rq **)ptr;
7705 ptr += nr_cpu_ids * sizeof(void **);
7707 #endif /* CONFIG_FAIR_GROUP_SCHED */
7708 #ifdef CONFIG_RT_GROUP_SCHED
7709 init_task_group.rt_se = (struct sched_rt_entity **)ptr;
7710 ptr += nr_cpu_ids * sizeof(void **);
7712 init_task_group.rt_rq = (struct rt_rq **)ptr;
7713 ptr += nr_cpu_ids * sizeof(void **);
7715 #endif /* CONFIG_RT_GROUP_SCHED */
7716 #ifdef CONFIG_CPUMASK_OFFSTACK
7717 for_each_possible_cpu(i) {
7718 per_cpu(load_balance_tmpmask, i) = (void *)ptr;
7719 ptr += cpumask_size();
7721 #endif /* CONFIG_CPUMASK_OFFSTACK */
7724 #ifdef CONFIG_SMP
7725 init_defrootdomain();
7726 #endif
7728 init_rt_bandwidth(&def_rt_bandwidth,
7729 global_rt_period(), global_rt_runtime());
7731 #ifdef CONFIG_RT_GROUP_SCHED
7732 init_rt_bandwidth(&init_task_group.rt_bandwidth,
7733 global_rt_period(), global_rt_runtime());
7734 #endif /* CONFIG_RT_GROUP_SCHED */
7736 #ifdef CONFIG_CGROUP_SCHED
7737 list_add(&init_task_group.list, &task_groups);
7738 INIT_LIST_HEAD(&init_task_group.children);
7740 #endif /* CONFIG_CGROUP_SCHED */
7742 #if defined CONFIG_FAIR_GROUP_SCHED && defined CONFIG_SMP
7743 update_shares_data = __alloc_percpu(nr_cpu_ids * sizeof(unsigned long),
7744 __alignof__(unsigned long));
7745 #endif
7746 for_each_possible_cpu(i) {
7747 struct rq *rq;
7749 rq = cpu_rq(i);
7750 raw_spin_lock_init(&rq->lock);
7751 rq->nr_running = 0;
7752 rq->calc_load_active = 0;
7753 rq->calc_load_update = jiffies + LOAD_FREQ;
7754 init_cfs_rq(&rq->cfs, rq);
7755 init_rt_rq(&rq->rt, rq);
7756 #ifdef CONFIG_FAIR_GROUP_SCHED
7757 init_task_group.shares = init_task_group_load;
7758 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
7759 #ifdef CONFIG_CGROUP_SCHED
7761 * How much cpu bandwidth does init_task_group get?
7763 * In case of task-groups formed thr' the cgroup filesystem, it
7764 * gets 100% of the cpu resources in the system. This overall
7765 * system cpu resource is divided among the tasks of
7766 * init_task_group and its child task-groups in a fair manner,
7767 * based on each entity's (task or task-group's) weight
7768 * (se->load.weight).
7770 * In other words, if init_task_group has 10 tasks of weight
7771 * 1024) and two child groups A0 and A1 (of weight 1024 each),
7772 * then A0's share of the cpu resource is:
7774 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
7776 * We achieve this by letting init_task_group's tasks sit
7777 * directly in rq->cfs (i.e init_task_group->se[] = NULL).
7779 init_tg_cfs_entry(&init_task_group, &rq->cfs, NULL, i, 1, NULL);
7780 #endif
7781 #endif /* CONFIG_FAIR_GROUP_SCHED */
7783 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
7784 #ifdef CONFIG_RT_GROUP_SCHED
7785 INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
7786 #ifdef CONFIG_CGROUP_SCHED
7787 init_tg_rt_entry(&init_task_group, &rq->rt, NULL, i, 1, NULL);
7788 #endif
7789 #endif
7791 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
7792 rq->cpu_load[j] = 0;
7793 #ifdef CONFIG_SMP
7794 rq->sd = NULL;
7795 rq->rd = NULL;
7796 rq->post_schedule = 0;
7797 rq->active_balance = 0;
7798 rq->next_balance = jiffies;
7799 rq->push_cpu = 0;
7800 rq->cpu = i;
7801 rq->online = 0;
7802 rq->migration_thread = NULL;
7803 rq->idle_stamp = 0;
7804 rq->avg_idle = 2*sysctl_sched_migration_cost;
7805 INIT_LIST_HEAD(&rq->migration_queue);
7806 rq_attach_root(rq, &def_root_domain);
7807 #endif
7808 init_rq_hrtick(rq);
7809 atomic_set(&rq->nr_iowait, 0);
7812 set_load_weight(&init_task);
7814 #ifdef CONFIG_PREEMPT_NOTIFIERS
7815 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
7816 #endif
7818 #ifdef CONFIG_SMP
7819 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
7820 #endif
7822 #ifdef CONFIG_RT_MUTEXES
7823 plist_head_init_raw(&init_task.pi_waiters, &init_task.pi_lock);
7824 #endif
7827 * The boot idle thread does lazy MMU switching as well:
7829 atomic_inc(&init_mm.mm_count);
7830 enter_lazy_tlb(&init_mm, current);
7833 * Make us the idle thread. Technically, schedule() should not be
7834 * called from this thread, however somewhere below it might be,
7835 * but because we are the idle thread, we just pick up running again
7836 * when this runqueue becomes "idle".
7838 init_idle(current, smp_processor_id());
7840 calc_load_update = jiffies + LOAD_FREQ;
7843 * During early bootup we pretend to be a normal task:
7845 current->sched_class = &fair_sched_class;
7847 /* Allocate the nohz_cpu_mask if CONFIG_CPUMASK_OFFSTACK */
7848 zalloc_cpumask_var(&nohz_cpu_mask, GFP_NOWAIT);
7849 #ifdef CONFIG_SMP
7850 #ifdef CONFIG_NO_HZ
7851 zalloc_cpumask_var(&nohz.cpu_mask, GFP_NOWAIT);
7852 alloc_cpumask_var(&nohz.ilb_grp_nohz_mask, GFP_NOWAIT);
7853 #endif
7854 /* May be allocated at isolcpus cmdline parse time */
7855 if (cpu_isolated_map == NULL)
7856 zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
7857 #endif /* SMP */
7859 perf_event_init();
7861 scheduler_running = 1;
7864 #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
7865 static inline int preempt_count_equals(int preempt_offset)
7867 int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
7869 return (nested == PREEMPT_INATOMIC_BASE + preempt_offset);
7872 void __might_sleep(const char *file, int line, int preempt_offset)
7874 #ifdef in_atomic
7875 static unsigned long prev_jiffy; /* ratelimiting */
7877 if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) ||
7878 system_state != SYSTEM_RUNNING || oops_in_progress)
7879 return;
7880 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
7881 return;
7882 prev_jiffy = jiffies;
7884 printk(KERN_ERR
7885 "BUG: sleeping function called from invalid context at %s:%d\n",
7886 file, line);
7887 printk(KERN_ERR
7888 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
7889 in_atomic(), irqs_disabled(),
7890 current->pid, current->comm);
7892 debug_show_held_locks(current);
7893 if (irqs_disabled())
7894 print_irqtrace_events(current);
7895 dump_stack();
7896 #endif
7898 EXPORT_SYMBOL(__might_sleep);
7899 #endif
7901 #ifdef CONFIG_MAGIC_SYSRQ
7902 static void normalize_task(struct rq *rq, struct task_struct *p)
7904 int on_rq;
7906 update_rq_clock(rq);
7907 on_rq = p->se.on_rq;
7908 if (on_rq)
7909 deactivate_task(rq, p, 0);
7910 __setscheduler(rq, p, SCHED_NORMAL, 0);
7911 if (on_rq) {
7912 activate_task(rq, p, 0);
7913 resched_task(rq->curr);
7917 void normalize_rt_tasks(void)
7919 struct task_struct *g, *p;
7920 unsigned long flags;
7921 struct rq *rq;
7923 read_lock_irqsave(&tasklist_lock, flags);
7924 do_each_thread(g, p) {
7926 * Only normalize user tasks:
7928 if (!p->mm)
7929 continue;
7931 p->se.exec_start = 0;
7932 #ifdef CONFIG_SCHEDSTATS
7933 p->se.wait_start = 0;
7934 p->se.sleep_start = 0;
7935 p->se.block_start = 0;
7936 #endif
7938 if (!rt_task(p)) {
7940 * Renice negative nice level userspace
7941 * tasks back to 0:
7943 if (TASK_NICE(p) < 0 && p->mm)
7944 set_user_nice(p, 0);
7945 continue;
7948 raw_spin_lock(&p->pi_lock);
7949 rq = __task_rq_lock(p);
7951 normalize_task(rq, p);
7953 __task_rq_unlock(rq);
7954 raw_spin_unlock(&p->pi_lock);
7955 } while_each_thread(g, p);
7957 read_unlock_irqrestore(&tasklist_lock, flags);
7960 #endif /* CONFIG_MAGIC_SYSRQ */
7962 #ifdef CONFIG_IA64
7964 * These functions are only useful for the IA64 MCA handling.
7966 * They can only be called when the whole system has been
7967 * stopped - every CPU needs to be quiescent, and no scheduling
7968 * activity can take place. Using them for anything else would
7969 * be a serious bug, and as a result, they aren't even visible
7970 * under any other configuration.
7974 * curr_task - return the current task for a given cpu.
7975 * @cpu: the processor in question.
7977 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7979 struct task_struct *curr_task(int cpu)
7981 return cpu_curr(cpu);
7985 * set_curr_task - set the current task for a given cpu.
7986 * @cpu: the processor in question.
7987 * @p: the task pointer to set.
7989 * Description: This function must only be used when non-maskable interrupts
7990 * are serviced on a separate stack. It allows the architecture to switch the
7991 * notion of the current task on a cpu in a non-blocking manner. This function
7992 * must be called with all CPU's synchronized, and interrupts disabled, the
7993 * and caller must save the original value of the current task (see
7994 * curr_task() above) and restore that value before reenabling interrupts and
7995 * re-starting the system.
7997 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7999 void set_curr_task(int cpu, struct task_struct *p)
8001 cpu_curr(cpu) = p;
8004 #endif
8006 #ifdef CONFIG_FAIR_GROUP_SCHED
8007 static void free_fair_sched_group(struct task_group *tg)
8009 int i;
8011 for_each_possible_cpu(i) {
8012 if (tg->cfs_rq)
8013 kfree(tg->cfs_rq[i]);
8014 if (tg->se)
8015 kfree(tg->se[i]);
8018 kfree(tg->cfs_rq);
8019 kfree(tg->se);
8022 static
8023 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
8025 struct cfs_rq *cfs_rq;
8026 struct sched_entity *se;
8027 struct rq *rq;
8028 int i;
8030 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
8031 if (!tg->cfs_rq)
8032 goto err;
8033 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
8034 if (!tg->se)
8035 goto err;
8037 tg->shares = NICE_0_LOAD;
8039 for_each_possible_cpu(i) {
8040 rq = cpu_rq(i);
8042 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
8043 GFP_KERNEL, cpu_to_node(i));
8044 if (!cfs_rq)
8045 goto err;
8047 se = kzalloc_node(sizeof(struct sched_entity),
8048 GFP_KERNEL, cpu_to_node(i));
8049 if (!se)
8050 goto err_free_rq;
8052 init_tg_cfs_entry(tg, cfs_rq, se, i, 0, parent->se[i]);
8055 return 1;
8057 err_free_rq:
8058 kfree(cfs_rq);
8059 err:
8060 return 0;
8063 static inline void register_fair_sched_group(struct task_group *tg, int cpu)
8065 list_add_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list,
8066 &cpu_rq(cpu)->leaf_cfs_rq_list);
8069 static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
8071 list_del_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list);
8073 #else /* !CONFG_FAIR_GROUP_SCHED */
8074 static inline void free_fair_sched_group(struct task_group *tg)
8078 static inline
8079 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
8081 return 1;
8084 static inline void register_fair_sched_group(struct task_group *tg, int cpu)
8088 static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
8091 #endif /* CONFIG_FAIR_GROUP_SCHED */
8093 #ifdef CONFIG_RT_GROUP_SCHED
8094 static void free_rt_sched_group(struct task_group *tg)
8096 int i;
8098 destroy_rt_bandwidth(&tg->rt_bandwidth);
8100 for_each_possible_cpu(i) {
8101 if (tg->rt_rq)
8102 kfree(tg->rt_rq[i]);
8103 if (tg->rt_se)
8104 kfree(tg->rt_se[i]);
8107 kfree(tg->rt_rq);
8108 kfree(tg->rt_se);
8111 static
8112 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
8114 struct rt_rq *rt_rq;
8115 struct sched_rt_entity *rt_se;
8116 struct rq *rq;
8117 int i;
8119 tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
8120 if (!tg->rt_rq)
8121 goto err;
8122 tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
8123 if (!tg->rt_se)
8124 goto err;
8126 init_rt_bandwidth(&tg->rt_bandwidth,
8127 ktime_to_ns(def_rt_bandwidth.rt_period), 0);
8129 for_each_possible_cpu(i) {
8130 rq = cpu_rq(i);
8132 rt_rq = kzalloc_node(sizeof(struct rt_rq),
8133 GFP_KERNEL, cpu_to_node(i));
8134 if (!rt_rq)
8135 goto err;
8137 rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
8138 GFP_KERNEL, cpu_to_node(i));
8139 if (!rt_se)
8140 goto err_free_rq;
8142 init_tg_rt_entry(tg, rt_rq, rt_se, i, 0, parent->rt_se[i]);
8145 return 1;
8147 err_free_rq:
8148 kfree(rt_rq);
8149 err:
8150 return 0;
8153 static inline void register_rt_sched_group(struct task_group *tg, int cpu)
8155 list_add_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list,
8156 &cpu_rq(cpu)->leaf_rt_rq_list);
8159 static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
8161 list_del_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list);
8163 #else /* !CONFIG_RT_GROUP_SCHED */
8164 static inline void free_rt_sched_group(struct task_group *tg)
8168 static inline
8169 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
8171 return 1;
8174 static inline void register_rt_sched_group(struct task_group *tg, int cpu)
8178 static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
8181 #endif /* CONFIG_RT_GROUP_SCHED */
8183 #ifdef CONFIG_CGROUP_SCHED
8184 static void free_sched_group(struct task_group *tg)
8186 free_fair_sched_group(tg);
8187 free_rt_sched_group(tg);
8188 kfree(tg);
8191 /* allocate runqueue etc for a new task group */
8192 struct task_group *sched_create_group(struct task_group *parent)
8194 struct task_group *tg;
8195 unsigned long flags;
8196 int i;
8198 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
8199 if (!tg)
8200 return ERR_PTR(-ENOMEM);
8202 if (!alloc_fair_sched_group(tg, parent))
8203 goto err;
8205 if (!alloc_rt_sched_group(tg, parent))
8206 goto err;
8208 spin_lock_irqsave(&task_group_lock, flags);
8209 for_each_possible_cpu(i) {
8210 register_fair_sched_group(tg, i);
8211 register_rt_sched_group(tg, i);
8213 list_add_rcu(&tg->list, &task_groups);
8215 WARN_ON(!parent); /* root should already exist */
8217 tg->parent = parent;
8218 INIT_LIST_HEAD(&tg->children);
8219 list_add_rcu(&tg->siblings, &parent->children);
8220 spin_unlock_irqrestore(&task_group_lock, flags);
8222 return tg;
8224 err:
8225 free_sched_group(tg);
8226 return ERR_PTR(-ENOMEM);
8229 /* rcu callback to free various structures associated with a task group */
8230 static void free_sched_group_rcu(struct rcu_head *rhp)
8232 /* now it should be safe to free those cfs_rqs */
8233 free_sched_group(container_of(rhp, struct task_group, rcu));
8236 /* Destroy runqueue etc associated with a task group */
8237 void sched_destroy_group(struct task_group *tg)
8239 unsigned long flags;
8240 int i;
8242 spin_lock_irqsave(&task_group_lock, flags);
8243 for_each_possible_cpu(i) {
8244 unregister_fair_sched_group(tg, i);
8245 unregister_rt_sched_group(tg, i);
8247 list_del_rcu(&tg->list);
8248 list_del_rcu(&tg->siblings);
8249 spin_unlock_irqrestore(&task_group_lock, flags);
8251 /* wait for possible concurrent references to cfs_rqs complete */
8252 call_rcu(&tg->rcu, free_sched_group_rcu);
8255 /* change task's runqueue when it moves between groups.
8256 * The caller of this function should have put the task in its new group
8257 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
8258 * reflect its new group.
8260 void sched_move_task(struct task_struct *tsk)
8262 int on_rq, running;
8263 unsigned long flags;
8264 struct rq *rq;
8266 rq = task_rq_lock(tsk, &flags);
8268 update_rq_clock(rq);
8270 running = task_current(rq, tsk);
8271 on_rq = tsk->se.on_rq;
8273 if (on_rq)
8274 dequeue_task(rq, tsk, 0);
8275 if (unlikely(running))
8276 tsk->sched_class->put_prev_task(rq, tsk);
8278 set_task_rq(tsk, task_cpu(tsk));
8280 #ifdef CONFIG_FAIR_GROUP_SCHED
8281 if (tsk->sched_class->moved_group)
8282 tsk->sched_class->moved_group(tsk, on_rq);
8283 #endif
8285 if (unlikely(running))
8286 tsk->sched_class->set_curr_task(rq);
8287 if (on_rq)
8288 enqueue_task(rq, tsk, 0, false);
8290 task_rq_unlock(rq, &flags);
8292 #endif /* CONFIG_CGROUP_SCHED */
8294 #ifdef CONFIG_FAIR_GROUP_SCHED
8295 static void __set_se_shares(struct sched_entity *se, unsigned long shares)
8297 struct cfs_rq *cfs_rq = se->cfs_rq;
8298 int on_rq;
8300 on_rq = se->on_rq;
8301 if (on_rq)
8302 dequeue_entity(cfs_rq, se, 0);
8304 se->load.weight = shares;
8305 se->load.inv_weight = 0;
8307 if (on_rq)
8308 enqueue_entity(cfs_rq, se, 0);
8311 static void set_se_shares(struct sched_entity *se, unsigned long shares)
8313 struct cfs_rq *cfs_rq = se->cfs_rq;
8314 struct rq *rq = cfs_rq->rq;
8315 unsigned long flags;
8317 raw_spin_lock_irqsave(&rq->lock, flags);
8318 __set_se_shares(se, shares);
8319 raw_spin_unlock_irqrestore(&rq->lock, flags);
8322 static DEFINE_MUTEX(shares_mutex);
8324 int sched_group_set_shares(struct task_group *tg, unsigned long shares)
8326 int i;
8327 unsigned long flags;
8330 * We can't change the weight of the root cgroup.
8332 if (!tg->se[0])
8333 return -EINVAL;
8335 if (shares < MIN_SHARES)
8336 shares = MIN_SHARES;
8337 else if (shares > MAX_SHARES)
8338 shares = MAX_SHARES;
8340 mutex_lock(&shares_mutex);
8341 if (tg->shares == shares)
8342 goto done;
8344 spin_lock_irqsave(&task_group_lock, flags);
8345 for_each_possible_cpu(i)
8346 unregister_fair_sched_group(tg, i);
8347 list_del_rcu(&tg->siblings);
8348 spin_unlock_irqrestore(&task_group_lock, flags);
8350 /* wait for any ongoing reference to this group to finish */
8351 synchronize_sched();
8354 * Now we are free to modify the group's share on each cpu
8355 * w/o tripping rebalance_share or load_balance_fair.
8357 tg->shares = shares;
8358 for_each_possible_cpu(i) {
8360 * force a rebalance
8362 cfs_rq_set_shares(tg->cfs_rq[i], 0);
8363 set_se_shares(tg->se[i], shares);
8367 * Enable load balance activity on this group, by inserting it back on
8368 * each cpu's rq->leaf_cfs_rq_list.
8370 spin_lock_irqsave(&task_group_lock, flags);
8371 for_each_possible_cpu(i)
8372 register_fair_sched_group(tg, i);
8373 list_add_rcu(&tg->siblings, &tg->parent->children);
8374 spin_unlock_irqrestore(&task_group_lock, flags);
8375 done:
8376 mutex_unlock(&shares_mutex);
8377 return 0;
8380 unsigned long sched_group_shares(struct task_group *tg)
8382 return tg->shares;
8384 #endif
8386 #ifdef CONFIG_RT_GROUP_SCHED
8388 * Ensure that the real time constraints are schedulable.
8390 static DEFINE_MUTEX(rt_constraints_mutex);
8392 static unsigned long to_ratio(u64 period, u64 runtime)
8394 if (runtime == RUNTIME_INF)
8395 return 1ULL << 20;
8397 return div64_u64(runtime << 20, period);
8400 /* Must be called with tasklist_lock held */
8401 static inline int tg_has_rt_tasks(struct task_group *tg)
8403 struct task_struct *g, *p;
8405 do_each_thread(g, p) {
8406 if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
8407 return 1;
8408 } while_each_thread(g, p);
8410 return 0;
8413 struct rt_schedulable_data {
8414 struct task_group *tg;
8415 u64 rt_period;
8416 u64 rt_runtime;
8419 static int tg_schedulable(struct task_group *tg, void *data)
8421 struct rt_schedulable_data *d = data;
8422 struct task_group *child;
8423 unsigned long total, sum = 0;
8424 u64 period, runtime;
8426 period = ktime_to_ns(tg->rt_bandwidth.rt_period);
8427 runtime = tg->rt_bandwidth.rt_runtime;
8429 if (tg == d->tg) {
8430 period = d->rt_period;
8431 runtime = d->rt_runtime;
8435 * Cannot have more runtime than the period.
8437 if (runtime > period && runtime != RUNTIME_INF)
8438 return -EINVAL;
8441 * Ensure we don't starve existing RT tasks.
8443 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
8444 return -EBUSY;
8446 total = to_ratio(period, runtime);
8449 * Nobody can have more than the global setting allows.
8451 if (total > to_ratio(global_rt_period(), global_rt_runtime()))
8452 return -EINVAL;
8455 * The sum of our children's runtime should not exceed our own.
8457 list_for_each_entry_rcu(child, &tg->children, siblings) {
8458 period = ktime_to_ns(child->rt_bandwidth.rt_period);
8459 runtime = child->rt_bandwidth.rt_runtime;
8461 if (child == d->tg) {
8462 period = d->rt_period;
8463 runtime = d->rt_runtime;
8466 sum += to_ratio(period, runtime);
8469 if (sum > total)
8470 return -EINVAL;
8472 return 0;
8475 static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
8477 struct rt_schedulable_data data = {
8478 .tg = tg,
8479 .rt_period = period,
8480 .rt_runtime = runtime,
8483 return walk_tg_tree(tg_schedulable, tg_nop, &data);
8486 static int tg_set_bandwidth(struct task_group *tg,
8487 u64 rt_period, u64 rt_runtime)
8489 int i, err = 0;
8491 mutex_lock(&rt_constraints_mutex);
8492 read_lock(&tasklist_lock);
8493 err = __rt_schedulable(tg, rt_period, rt_runtime);
8494 if (err)
8495 goto unlock;
8497 raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
8498 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
8499 tg->rt_bandwidth.rt_runtime = rt_runtime;
8501 for_each_possible_cpu(i) {
8502 struct rt_rq *rt_rq = tg->rt_rq[i];
8504 raw_spin_lock(&rt_rq->rt_runtime_lock);
8505 rt_rq->rt_runtime = rt_runtime;
8506 raw_spin_unlock(&rt_rq->rt_runtime_lock);
8508 raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
8509 unlock:
8510 read_unlock(&tasklist_lock);
8511 mutex_unlock(&rt_constraints_mutex);
8513 return err;
8516 int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
8518 u64 rt_runtime, rt_period;
8520 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
8521 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
8522 if (rt_runtime_us < 0)
8523 rt_runtime = RUNTIME_INF;
8525 return tg_set_bandwidth(tg, rt_period, rt_runtime);
8528 long sched_group_rt_runtime(struct task_group *tg)
8530 u64 rt_runtime_us;
8532 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
8533 return -1;
8535 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
8536 do_div(rt_runtime_us, NSEC_PER_USEC);
8537 return rt_runtime_us;
8540 int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
8542 u64 rt_runtime, rt_period;
8544 rt_period = (u64)rt_period_us * NSEC_PER_USEC;
8545 rt_runtime = tg->rt_bandwidth.rt_runtime;
8547 if (rt_period == 0)
8548 return -EINVAL;
8550 return tg_set_bandwidth(tg, rt_period, rt_runtime);
8553 long sched_group_rt_period(struct task_group *tg)
8555 u64 rt_period_us;
8557 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
8558 do_div(rt_period_us, NSEC_PER_USEC);
8559 return rt_period_us;
8562 static int sched_rt_global_constraints(void)
8564 u64 runtime, period;
8565 int ret = 0;
8567 if (sysctl_sched_rt_period <= 0)
8568 return -EINVAL;
8570 runtime = global_rt_runtime();
8571 period = global_rt_period();
8574 * Sanity check on the sysctl variables.
8576 if (runtime > period && runtime != RUNTIME_INF)
8577 return -EINVAL;
8579 mutex_lock(&rt_constraints_mutex);
8580 read_lock(&tasklist_lock);
8581 ret = __rt_schedulable(NULL, 0, 0);
8582 read_unlock(&tasklist_lock);
8583 mutex_unlock(&rt_constraints_mutex);
8585 return ret;
8588 int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
8590 /* Don't accept realtime tasks when there is no way for them to run */
8591 if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
8592 return 0;
8594 return 1;
8597 #else /* !CONFIG_RT_GROUP_SCHED */
8598 static int sched_rt_global_constraints(void)
8600 unsigned long flags;
8601 int i;
8603 if (sysctl_sched_rt_period <= 0)
8604 return -EINVAL;
8607 * There's always some RT tasks in the root group
8608 * -- migration, kstopmachine etc..
8610 if (sysctl_sched_rt_runtime == 0)
8611 return -EBUSY;
8613 raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
8614 for_each_possible_cpu(i) {
8615 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
8617 raw_spin_lock(&rt_rq->rt_runtime_lock);
8618 rt_rq->rt_runtime = global_rt_runtime();
8619 raw_spin_unlock(&rt_rq->rt_runtime_lock);
8621 raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
8623 return 0;
8625 #endif /* CONFIG_RT_GROUP_SCHED */
8627 int sched_rt_handler(struct ctl_table *table, int write,
8628 void __user *buffer, size_t *lenp,
8629 loff_t *ppos)
8631 int ret;
8632 int old_period, old_runtime;
8633 static DEFINE_MUTEX(mutex);
8635 mutex_lock(&mutex);
8636 old_period = sysctl_sched_rt_period;
8637 old_runtime = sysctl_sched_rt_runtime;
8639 ret = proc_dointvec(table, write, buffer, lenp, ppos);
8641 if (!ret && write) {
8642 ret = sched_rt_global_constraints();
8643 if (ret) {
8644 sysctl_sched_rt_period = old_period;
8645 sysctl_sched_rt_runtime = old_runtime;
8646 } else {
8647 def_rt_bandwidth.rt_runtime = global_rt_runtime();
8648 def_rt_bandwidth.rt_period =
8649 ns_to_ktime(global_rt_period());
8652 mutex_unlock(&mutex);
8654 return ret;
8657 #ifdef CONFIG_CGROUP_SCHED
8659 /* return corresponding task_group object of a cgroup */
8660 static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
8662 return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
8663 struct task_group, css);
8666 static struct cgroup_subsys_state *
8667 cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
8669 struct task_group *tg, *parent;
8671 if (!cgrp->parent) {
8672 /* This is early initialization for the top cgroup */
8673 return &init_task_group.css;
8676 parent = cgroup_tg(cgrp->parent);
8677 tg = sched_create_group(parent);
8678 if (IS_ERR(tg))
8679 return ERR_PTR(-ENOMEM);
8681 return &tg->css;
8684 static void
8685 cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
8687 struct task_group *tg = cgroup_tg(cgrp);
8689 sched_destroy_group(tg);
8692 static int
8693 cpu_cgroup_can_attach_task(struct cgroup *cgrp, struct task_struct *tsk)
8695 #ifdef CONFIG_RT_GROUP_SCHED
8696 if (!sched_rt_can_attach(cgroup_tg(cgrp), tsk))
8697 return -EINVAL;
8698 #else
8699 /* We don't support RT-tasks being in separate groups */
8700 if (tsk->sched_class != &fair_sched_class)
8701 return -EINVAL;
8702 #endif
8703 return 0;
8706 static int
8707 cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
8708 struct task_struct *tsk, bool threadgroup)
8710 int retval = cpu_cgroup_can_attach_task(cgrp, tsk);
8711 if (retval)
8712 return retval;
8713 if (threadgroup) {
8714 struct task_struct *c;
8715 rcu_read_lock();
8716 list_for_each_entry_rcu(c, &tsk->thread_group, thread_group) {
8717 retval = cpu_cgroup_can_attach_task(cgrp, c);
8718 if (retval) {
8719 rcu_read_unlock();
8720 return retval;
8723 rcu_read_unlock();
8725 return 0;
8728 static void
8729 cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
8730 struct cgroup *old_cont, struct task_struct *tsk,
8731 bool threadgroup)
8733 sched_move_task(tsk);
8734 if (threadgroup) {
8735 struct task_struct *c;
8736 rcu_read_lock();
8737 list_for_each_entry_rcu(c, &tsk->thread_group, thread_group) {
8738 sched_move_task(c);
8740 rcu_read_unlock();
8744 #ifdef CONFIG_FAIR_GROUP_SCHED
8745 static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
8746 u64 shareval)
8748 return sched_group_set_shares(cgroup_tg(cgrp), shareval);
8751 static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
8753 struct task_group *tg = cgroup_tg(cgrp);
8755 return (u64) tg->shares;
8757 #endif /* CONFIG_FAIR_GROUP_SCHED */
8759 #ifdef CONFIG_RT_GROUP_SCHED
8760 static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
8761 s64 val)
8763 return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
8766 static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
8768 return sched_group_rt_runtime(cgroup_tg(cgrp));
8771 static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
8772 u64 rt_period_us)
8774 return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
8777 static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
8779 return sched_group_rt_period(cgroup_tg(cgrp));
8781 #endif /* CONFIG_RT_GROUP_SCHED */
8783 static struct cftype cpu_files[] = {
8784 #ifdef CONFIG_FAIR_GROUP_SCHED
8786 .name = "shares",
8787 .read_u64 = cpu_shares_read_u64,
8788 .write_u64 = cpu_shares_write_u64,
8790 #endif
8791 #ifdef CONFIG_RT_GROUP_SCHED
8793 .name = "rt_runtime_us",
8794 .read_s64 = cpu_rt_runtime_read,
8795 .write_s64 = cpu_rt_runtime_write,
8798 .name = "rt_period_us",
8799 .read_u64 = cpu_rt_period_read_uint,
8800 .write_u64 = cpu_rt_period_write_uint,
8802 #endif
8805 static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
8807 return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
8810 struct cgroup_subsys cpu_cgroup_subsys = {
8811 .name = "cpu",
8812 .create = cpu_cgroup_create,
8813 .destroy = cpu_cgroup_destroy,
8814 .can_attach = cpu_cgroup_can_attach,
8815 .attach = cpu_cgroup_attach,
8816 .populate = cpu_cgroup_populate,
8817 .subsys_id = cpu_cgroup_subsys_id,
8818 .early_init = 1,
8821 #endif /* CONFIG_CGROUP_SCHED */
8823 #ifdef CONFIG_CGROUP_CPUACCT
8826 * CPU accounting code for task groups.
8828 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
8829 * (balbir@in.ibm.com).
8832 /* track cpu usage of a group of tasks and its child groups */
8833 struct cpuacct {
8834 struct cgroup_subsys_state css;
8835 /* cpuusage holds pointer to a u64-type object on every cpu */
8836 u64 __percpu *cpuusage;
8837 struct percpu_counter cpustat[CPUACCT_STAT_NSTATS];
8838 struct cpuacct *parent;
8841 struct cgroup_subsys cpuacct_subsys;
8843 /* return cpu accounting group corresponding to this container */
8844 static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
8846 return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
8847 struct cpuacct, css);
8850 /* return cpu accounting group to which this task belongs */
8851 static inline struct cpuacct *task_ca(struct task_struct *tsk)
8853 return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
8854 struct cpuacct, css);
8857 /* create a new cpu accounting group */
8858 static struct cgroup_subsys_state *cpuacct_create(
8859 struct cgroup_subsys *ss, struct cgroup *cgrp)
8861 struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
8862 int i;
8864 if (!ca)
8865 goto out;
8867 ca->cpuusage = alloc_percpu(u64);
8868 if (!ca->cpuusage)
8869 goto out_free_ca;
8871 for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
8872 if (percpu_counter_init(&ca->cpustat[i], 0))
8873 goto out_free_counters;
8875 if (cgrp->parent)
8876 ca->parent = cgroup_ca(cgrp->parent);
8878 return &ca->css;
8880 out_free_counters:
8881 while (--i >= 0)
8882 percpu_counter_destroy(&ca->cpustat[i]);
8883 free_percpu(ca->cpuusage);
8884 out_free_ca:
8885 kfree(ca);
8886 out:
8887 return ERR_PTR(-ENOMEM);
8890 /* destroy an existing cpu accounting group */
8891 static void
8892 cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
8894 struct cpuacct *ca = cgroup_ca(cgrp);
8895 int i;
8897 for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
8898 percpu_counter_destroy(&ca->cpustat[i]);
8899 free_percpu(ca->cpuusage);
8900 kfree(ca);
8903 static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu)
8905 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
8906 u64 data;
8908 #ifndef CONFIG_64BIT
8910 * Take rq->lock to make 64-bit read safe on 32-bit platforms.
8912 raw_spin_lock_irq(&cpu_rq(cpu)->lock);
8913 data = *cpuusage;
8914 raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
8915 #else
8916 data = *cpuusage;
8917 #endif
8919 return data;
8922 static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val)
8924 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
8926 #ifndef CONFIG_64BIT
8928 * Take rq->lock to make 64-bit write safe on 32-bit platforms.
8930 raw_spin_lock_irq(&cpu_rq(cpu)->lock);
8931 *cpuusage = val;
8932 raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
8933 #else
8934 *cpuusage = val;
8935 #endif
8938 /* return total cpu usage (in nanoseconds) of a group */
8939 static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
8941 struct cpuacct *ca = cgroup_ca(cgrp);
8942 u64 totalcpuusage = 0;
8943 int i;
8945 for_each_present_cpu(i)
8946 totalcpuusage += cpuacct_cpuusage_read(ca, i);
8948 return totalcpuusage;
8951 static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
8952 u64 reset)
8954 struct cpuacct *ca = cgroup_ca(cgrp);
8955 int err = 0;
8956 int i;
8958 if (reset) {
8959 err = -EINVAL;
8960 goto out;
8963 for_each_present_cpu(i)
8964 cpuacct_cpuusage_write(ca, i, 0);
8966 out:
8967 return err;
8970 static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft,
8971 struct seq_file *m)
8973 struct cpuacct *ca = cgroup_ca(cgroup);
8974 u64 percpu;
8975 int i;
8977 for_each_present_cpu(i) {
8978 percpu = cpuacct_cpuusage_read(ca, i);
8979 seq_printf(m, "%llu ", (unsigned long long) percpu);
8981 seq_printf(m, "\n");
8982 return 0;
8985 static const char *cpuacct_stat_desc[] = {
8986 [CPUACCT_STAT_USER] = "user",
8987 [CPUACCT_STAT_SYSTEM] = "system",
8990 static int cpuacct_stats_show(struct cgroup *cgrp, struct cftype *cft,
8991 struct cgroup_map_cb *cb)
8993 struct cpuacct *ca = cgroup_ca(cgrp);
8994 int i;
8996 for (i = 0; i < CPUACCT_STAT_NSTATS; i++) {
8997 s64 val = percpu_counter_read(&ca->cpustat[i]);
8998 val = cputime64_to_clock_t(val);
8999 cb->fill(cb, cpuacct_stat_desc[i], val);
9001 return 0;
9004 static struct cftype files[] = {
9006 .name = "usage",
9007 .read_u64 = cpuusage_read,
9008 .write_u64 = cpuusage_write,
9011 .name = "usage_percpu",
9012 .read_seq_string = cpuacct_percpu_seq_read,
9015 .name = "stat",
9016 .read_map = cpuacct_stats_show,
9020 static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
9022 return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
9026 * charge this task's execution time to its accounting group.
9028 * called with rq->lock held.
9030 static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
9032 struct cpuacct *ca;
9033 int cpu;
9035 if (unlikely(!cpuacct_subsys.active))
9036 return;
9038 cpu = task_cpu(tsk);
9040 rcu_read_lock();
9042 ca = task_ca(tsk);
9044 for (; ca; ca = ca->parent) {
9045 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
9046 *cpuusage += cputime;
9049 rcu_read_unlock();
9053 * When CONFIG_VIRT_CPU_ACCOUNTING is enabled one jiffy can be very large
9054 * in cputime_t units. As a result, cpuacct_update_stats calls
9055 * percpu_counter_add with values large enough to always overflow the
9056 * per cpu batch limit causing bad SMP scalability.
9058 * To fix this we scale percpu_counter_batch by cputime_one_jiffy so we
9059 * batch the same amount of time with CONFIG_VIRT_CPU_ACCOUNTING disabled
9060 * and enabled. We cap it at INT_MAX which is the largest allowed batch value.
9062 #ifdef CONFIG_SMP
9063 #define CPUACCT_BATCH \
9064 min_t(long, percpu_counter_batch * cputime_one_jiffy, INT_MAX)
9065 #else
9066 #define CPUACCT_BATCH 0
9067 #endif
9070 * Charge the system/user time to the task's accounting group.
9072 static void cpuacct_update_stats(struct task_struct *tsk,
9073 enum cpuacct_stat_index idx, cputime_t val)
9075 struct cpuacct *ca;
9076 int batch = CPUACCT_BATCH;
9078 if (unlikely(!cpuacct_subsys.active))
9079 return;
9081 rcu_read_lock();
9082 ca = task_ca(tsk);
9084 do {
9085 __percpu_counter_add(&ca->cpustat[idx], val, batch);
9086 ca = ca->parent;
9087 } while (ca);
9088 rcu_read_unlock();
9091 struct cgroup_subsys cpuacct_subsys = {
9092 .name = "cpuacct",
9093 .create = cpuacct_create,
9094 .destroy = cpuacct_destroy,
9095 .populate = cpuacct_populate,
9096 .subsys_id = cpuacct_subsys_id,
9098 #endif /* CONFIG_CGROUP_CPUACCT */
9100 #ifndef CONFIG_SMP
9102 int rcu_expedited_torture_stats(char *page)
9104 return 0;
9106 EXPORT_SYMBOL_GPL(rcu_expedited_torture_stats);
9108 void synchronize_sched_expedited(void)
9111 EXPORT_SYMBOL_GPL(synchronize_sched_expedited);
9113 #else /* #ifndef CONFIG_SMP */
9115 static DEFINE_PER_CPU(struct migration_req, rcu_migration_req);
9116 static DEFINE_MUTEX(rcu_sched_expedited_mutex);
9118 #define RCU_EXPEDITED_STATE_POST -2
9119 #define RCU_EXPEDITED_STATE_IDLE -1
9121 static int rcu_expedited_state = RCU_EXPEDITED_STATE_IDLE;
9123 int rcu_expedited_torture_stats(char *page)
9125 int cnt = 0;
9126 int cpu;
9128 cnt += sprintf(&page[cnt], "state: %d /", rcu_expedited_state);
9129 for_each_online_cpu(cpu) {
9130 cnt += sprintf(&page[cnt], " %d:%d",
9131 cpu, per_cpu(rcu_migration_req, cpu).dest_cpu);
9133 cnt += sprintf(&page[cnt], "\n");
9134 return cnt;
9136 EXPORT_SYMBOL_GPL(rcu_expedited_torture_stats);
9138 static long synchronize_sched_expedited_count;
9141 * Wait for an rcu-sched grace period to elapse, but use "big hammer"
9142 * approach to force grace period to end quickly. This consumes
9143 * significant time on all CPUs, and is thus not recommended for
9144 * any sort of common-case code.
9146 * Note that it is illegal to call this function while holding any
9147 * lock that is acquired by a CPU-hotplug notifier. Failing to
9148 * observe this restriction will result in deadlock.
9150 void synchronize_sched_expedited(void)
9152 int cpu;
9153 unsigned long flags;
9154 bool need_full_sync = 0;
9155 struct rq *rq;
9156 struct migration_req *req;
9157 long snap;
9158 int trycount = 0;
9160 smp_mb(); /* ensure prior mod happens before capturing snap. */
9161 snap = ACCESS_ONCE(synchronize_sched_expedited_count) + 1;
9162 get_online_cpus();
9163 while (!mutex_trylock(&rcu_sched_expedited_mutex)) {
9164 put_online_cpus();
9165 if (trycount++ < 10)
9166 udelay(trycount * num_online_cpus());
9167 else {
9168 synchronize_sched();
9169 return;
9171 if (ACCESS_ONCE(synchronize_sched_expedited_count) - snap > 0) {
9172 smp_mb(); /* ensure test happens before caller kfree */
9173 return;
9175 get_online_cpus();
9177 rcu_expedited_state = RCU_EXPEDITED_STATE_POST;
9178 for_each_online_cpu(cpu) {
9179 rq = cpu_rq(cpu);
9180 req = &per_cpu(rcu_migration_req, cpu);
9181 init_completion(&req->done);
9182 req->task = NULL;
9183 req->dest_cpu = RCU_MIGRATION_NEED_QS;
9184 raw_spin_lock_irqsave(&rq->lock, flags);
9185 list_add(&req->list, &rq->migration_queue);
9186 raw_spin_unlock_irqrestore(&rq->lock, flags);
9187 wake_up_process(rq->migration_thread);
9189 for_each_online_cpu(cpu) {
9190 rcu_expedited_state = cpu;
9191 req = &per_cpu(rcu_migration_req, cpu);
9192 rq = cpu_rq(cpu);
9193 wait_for_completion(&req->done);
9194 raw_spin_lock_irqsave(&rq->lock, flags);
9195 if (unlikely(req->dest_cpu == RCU_MIGRATION_MUST_SYNC))
9196 need_full_sync = 1;
9197 req->dest_cpu = RCU_MIGRATION_IDLE;
9198 raw_spin_unlock_irqrestore(&rq->lock, flags);
9200 rcu_expedited_state = RCU_EXPEDITED_STATE_IDLE;
9201 synchronize_sched_expedited_count++;
9202 mutex_unlock(&rcu_sched_expedited_mutex);
9203 put_online_cpus();
9204 if (need_full_sync)
9205 synchronize_sched();
9207 EXPORT_SYMBOL_GPL(synchronize_sched_expedited);
9209 #endif /* #else #ifndef CONFIG_SMP */