perf_counter: Better align code
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / include / linux / perf_counter.h
blob1fa1a26cb1b35ed63fc82af920409c52e37ae57a
1 /*
2 * Performance counters:
4 * Copyright (C) 2008-2009, Thomas Gleixner <tglx@linutronix.de>
5 * Copyright (C) 2008-2009, Red Hat, Inc., Ingo Molnar
6 * Copyright (C) 2008-2009, Red Hat, Inc., Peter Zijlstra
8 * Data type definitions, declarations, prototypes.
10 * Started by: Thomas Gleixner and Ingo Molnar
12 * For licencing details see kernel-base/COPYING
14 #ifndef _LINUX_PERF_COUNTER_H
15 #define _LINUX_PERF_COUNTER_H
17 #include <linux/types.h>
18 #include <linux/ioctl.h>
19 #include <asm/byteorder.h>
22 * User-space ABI bits:
26 * attr.type
28 enum perf_type_id {
29 PERF_TYPE_HARDWARE = 0,
30 PERF_TYPE_SOFTWARE = 1,
31 PERF_TYPE_TRACEPOINT = 2,
32 PERF_TYPE_HW_CACHE = 3,
33 PERF_TYPE_RAW = 4,
35 PERF_TYPE_MAX, /* non-ABI */
39 * Generalized performance counter event types, used by the
40 * attr.event_id parameter of the sys_perf_counter_open()
41 * syscall:
43 enum perf_hw_id {
45 * Common hardware events, generalized by the kernel:
47 PERF_COUNT_HW_CPU_CYCLES = 0,
48 PERF_COUNT_HW_INSTRUCTIONS = 1,
49 PERF_COUNT_HW_CACHE_REFERENCES = 2,
50 PERF_COUNT_HW_CACHE_MISSES = 3,
51 PERF_COUNT_HW_BRANCH_INSTRUCTIONS = 4,
52 PERF_COUNT_HW_BRANCH_MISSES = 5,
53 PERF_COUNT_HW_BUS_CYCLES = 6,
55 PERF_COUNT_HW_MAX, /* non-ABI */
59 * Generalized hardware cache counters:
61 * { L1-D, L1-I, LLC, ITLB, DTLB, BPU } x
62 * { read, write, prefetch } x
63 * { accesses, misses }
65 enum perf_hw_cache_id {
66 PERF_COUNT_HW_CACHE_L1D = 0,
67 PERF_COUNT_HW_CACHE_L1I = 1,
68 PERF_COUNT_HW_CACHE_LL = 2,
69 PERF_COUNT_HW_CACHE_DTLB = 3,
70 PERF_COUNT_HW_CACHE_ITLB = 4,
71 PERF_COUNT_HW_CACHE_BPU = 5,
73 PERF_COUNT_HW_CACHE_MAX, /* non-ABI */
76 enum perf_hw_cache_op_id {
77 PERF_COUNT_HW_CACHE_OP_READ = 0,
78 PERF_COUNT_HW_CACHE_OP_WRITE = 1,
79 PERF_COUNT_HW_CACHE_OP_PREFETCH = 2,
81 PERF_COUNT_HW_CACHE_OP_MAX, /* non-ABI */
84 enum perf_hw_cache_op_result_id {
85 PERF_COUNT_HW_CACHE_RESULT_ACCESS = 0,
86 PERF_COUNT_HW_CACHE_RESULT_MISS = 1,
88 PERF_COUNT_HW_CACHE_RESULT_MAX, /* non-ABI */
92 * Special "software" counters provided by the kernel, even if the hardware
93 * does not support performance counters. These counters measure various
94 * physical and sw events of the kernel (and allow the profiling of them as
95 * well):
97 enum perf_sw_ids {
98 PERF_COUNT_SW_CPU_CLOCK = 0,
99 PERF_COUNT_SW_TASK_CLOCK = 1,
100 PERF_COUNT_SW_PAGE_FAULTS = 2,
101 PERF_COUNT_SW_CONTEXT_SWITCHES = 3,
102 PERF_COUNT_SW_CPU_MIGRATIONS = 4,
103 PERF_COUNT_SW_PAGE_FAULTS_MIN = 5,
104 PERF_COUNT_SW_PAGE_FAULTS_MAJ = 6,
106 PERF_COUNT_SW_MAX, /* non-ABI */
110 * Bits that can be set in attr.sample_type to request information
111 * in the overflow packets.
113 enum perf_counter_sample_format {
114 PERF_SAMPLE_IP = 1U << 0,
115 PERF_SAMPLE_TID = 1U << 1,
116 PERF_SAMPLE_TIME = 1U << 2,
117 PERF_SAMPLE_ADDR = 1U << 3,
118 PERF_SAMPLE_GROUP = 1U << 4,
119 PERF_SAMPLE_CALLCHAIN = 1U << 5,
120 PERF_SAMPLE_ID = 1U << 6,
121 PERF_SAMPLE_CPU = 1U << 7,
122 PERF_SAMPLE_PERIOD = 1U << 8,
126 * Bits that can be set in attr.read_format to request that
127 * reads on the counter should return the indicated quantities,
128 * in increasing order of bit value, after the counter value.
130 enum perf_counter_read_format {
131 PERF_FORMAT_TOTAL_TIME_ENABLED = 1U << 0,
132 PERF_FORMAT_TOTAL_TIME_RUNNING = 1U << 1,
133 PERF_FORMAT_ID = 1U << 2,
137 * Hardware event to monitor via a performance monitoring counter:
139 struct perf_counter_attr {
141 * Major type: hardware/software/tracepoint/etc.
143 __u32 type;
144 __u32 __reserved_1;
147 * Type specific configuration information.
149 __u64 config;
151 union {
152 __u64 sample_period;
153 __u64 sample_freq;
156 __u64 sample_type;
157 __u64 read_format;
159 __u64 disabled : 1, /* off by default */
160 inherit : 1, /* children inherit it */
161 pinned : 1, /* must always be on PMU */
162 exclusive : 1, /* only group on PMU */
163 exclude_user : 1, /* don't count user */
164 exclude_kernel : 1, /* ditto kernel */
165 exclude_hv : 1, /* ditto hypervisor */
166 exclude_idle : 1, /* don't count when idle */
167 mmap : 1, /* include mmap data */
168 comm : 1, /* include comm data */
169 freq : 1, /* use freq, not period */
171 __reserved_2 : 53;
173 __u32 wakeup_events; /* wakeup every n events */
174 __u32 __reserved_3;
176 __u64 __reserved_4;
180 * Ioctls that can be done on a perf counter fd:
182 #define PERF_COUNTER_IOC_ENABLE _IO ('$', 0)
183 #define PERF_COUNTER_IOC_DISABLE _IO ('$', 1)
184 #define PERF_COUNTER_IOC_REFRESH _IO ('$', 2)
185 #define PERF_COUNTER_IOC_RESET _IO ('$', 3)
186 #define PERF_COUNTER_IOC_PERIOD _IOW('$', 4, u64)
188 enum perf_counter_ioc_flags {
189 PERF_IOC_FLAG_GROUP = 1U << 0,
193 * Structure of the page that can be mapped via mmap
195 struct perf_counter_mmap_page {
196 __u32 version; /* version number of this structure */
197 __u32 compat_version; /* lowest version this is compat with */
200 * Bits needed to read the hw counters in user-space.
202 * u32 seq;
203 * s64 count;
205 * do {
206 * seq = pc->lock;
208 * barrier()
209 * if (pc->index) {
210 * count = pmc_read(pc->index - 1);
211 * count += pc->offset;
212 * } else
213 * goto regular_read;
215 * barrier();
216 * } while (pc->lock != seq);
218 * NOTE: for obvious reason this only works on self-monitoring
219 * processes.
221 __u32 lock; /* seqlock for synchronization */
222 __u32 index; /* hardware counter identifier */
223 __s64 offset; /* add to hardware counter value */
226 * Control data for the mmap() data buffer.
228 * User-space reading this value should issue an rmb(), on SMP capable
229 * platforms, after reading this value -- see perf_counter_wakeup().
231 __u64 data_head; /* head in the data section */
234 #define PERF_EVENT_MISC_CPUMODE_MASK (3 << 0)
235 #define PERF_EVENT_MISC_CPUMODE_UNKNOWN (0 << 0)
236 #define PERF_EVENT_MISC_KERNEL (1 << 0)
237 #define PERF_EVENT_MISC_USER (2 << 0)
238 #define PERF_EVENT_MISC_HYPERVISOR (3 << 0)
239 #define PERF_EVENT_MISC_OVERFLOW (1 << 2)
241 struct perf_event_header {
242 __u32 type;
243 __u16 misc;
244 __u16 size;
247 enum perf_event_type {
250 * The MMAP events record the PROT_EXEC mappings so that we can
251 * correlate userspace IPs to code. They have the following structure:
253 * struct {
254 * struct perf_event_header header;
256 * u32 pid, tid;
257 * u64 addr;
258 * u64 len;
259 * u64 pgoff;
260 * char filename[];
261 * };
263 PERF_EVENT_MMAP = 1,
266 * struct {
267 * struct perf_event_header header;
269 * u32 pid, tid;
270 * char comm[];
271 * };
273 PERF_EVENT_COMM = 3,
276 * struct {
277 * struct perf_event_header header;
278 * u64 time;
279 * u64 id;
280 * u64 sample_period;
281 * };
283 PERF_EVENT_PERIOD = 4,
286 * struct {
287 * struct perf_event_header header;
288 * u64 time;
289 * };
291 PERF_EVENT_THROTTLE = 5,
292 PERF_EVENT_UNTHROTTLE = 6,
295 * struct {
296 * struct perf_event_header header;
297 * u32 pid, ppid;
298 * };
300 PERF_EVENT_FORK = 7,
303 * When header.misc & PERF_EVENT_MISC_OVERFLOW the event_type field
304 * will be PERF_RECORD_*
306 * struct {
307 * struct perf_event_header header;
309 * { u64 ip; } && PERF_RECORD_IP
310 * { u32 pid, tid; } && PERF_RECORD_TID
311 * { u64 time; } && PERF_RECORD_TIME
312 * { u64 addr; } && PERF_RECORD_ADDR
313 * { u64 config; } && PERF_RECORD_CONFIG
314 * { u32 cpu, res; } && PERF_RECORD_CPU
316 * { u64 nr;
317 * { u64 id, val; } cnt[nr]; } && PERF_RECORD_GROUP
319 * { u16 nr,
320 * hv,
321 * kernel,
322 * user;
323 * u64 ips[nr]; } && PERF_RECORD_CALLCHAIN
324 * };
328 #ifdef __KERNEL__
330 * Kernel-internal data types and definitions:
333 #ifdef CONFIG_PERF_COUNTERS
334 # include <asm/perf_counter.h>
335 #endif
337 #include <linux/list.h>
338 #include <linux/mutex.h>
339 #include <linux/rculist.h>
340 #include <linux/rcupdate.h>
341 #include <linux/spinlock.h>
342 #include <linux/hrtimer.h>
343 #include <linux/fs.h>
344 #include <linux/pid_namespace.h>
345 #include <asm/atomic.h>
347 struct task_struct;
350 * struct hw_perf_counter - performance counter hardware details:
352 struct hw_perf_counter {
353 #ifdef CONFIG_PERF_COUNTERS
354 union {
355 struct { /* hardware */
356 u64 config;
357 unsigned long config_base;
358 unsigned long counter_base;
359 int idx;
361 union { /* software */
362 atomic64_t count;
363 struct hrtimer hrtimer;
366 atomic64_t prev_count;
367 u64 sample_period;
368 u64 last_period;
369 atomic64_t period_left;
370 u64 interrupts;
372 u64 freq_count;
373 u64 freq_interrupts;
374 u64 freq_stamp;
375 #endif
378 struct perf_counter;
381 * struct pmu - generic performance monitoring unit
383 struct pmu {
384 int (*enable) (struct perf_counter *counter);
385 void (*disable) (struct perf_counter *counter);
386 void (*read) (struct perf_counter *counter);
387 void (*unthrottle) (struct perf_counter *counter);
391 * enum perf_counter_active_state - the states of a counter
393 enum perf_counter_active_state {
394 PERF_COUNTER_STATE_ERROR = -2,
395 PERF_COUNTER_STATE_OFF = -1,
396 PERF_COUNTER_STATE_INACTIVE = 0,
397 PERF_COUNTER_STATE_ACTIVE = 1,
400 struct file;
402 struct perf_mmap_data {
403 struct rcu_head rcu_head;
404 int nr_pages; /* nr of data pages */
405 int nr_locked; /* nr pages mlocked */
407 atomic_t poll; /* POLL_ for wakeups */
408 atomic_t events; /* event limit */
410 atomic_long_t head; /* write position */
411 atomic_long_t done_head; /* completed head */
413 atomic_t lock; /* concurrent writes */
415 atomic_t wakeup; /* needs a wakeup */
417 struct perf_counter_mmap_page *user_page;
418 void *data_pages[0];
421 struct perf_pending_entry {
422 struct perf_pending_entry *next;
423 void (*func)(struct perf_pending_entry *);
427 * struct perf_counter - performance counter kernel representation:
429 struct perf_counter {
430 #ifdef CONFIG_PERF_COUNTERS
431 struct list_head list_entry;
432 struct list_head event_entry;
433 struct list_head sibling_list;
434 int nr_siblings;
435 struct perf_counter *group_leader;
436 const struct pmu *pmu;
438 enum perf_counter_active_state state;
439 atomic64_t count;
442 * These are the total time in nanoseconds that the counter
443 * has been enabled (i.e. eligible to run, and the task has
444 * been scheduled in, if this is a per-task counter)
445 * and running (scheduled onto the CPU), respectively.
447 * They are computed from tstamp_enabled, tstamp_running and
448 * tstamp_stopped when the counter is in INACTIVE or ACTIVE state.
450 u64 total_time_enabled;
451 u64 total_time_running;
454 * These are timestamps used for computing total_time_enabled
455 * and total_time_running when the counter is in INACTIVE or
456 * ACTIVE state, measured in nanoseconds from an arbitrary point
457 * in time.
458 * tstamp_enabled: the notional time when the counter was enabled
459 * tstamp_running: the notional time when the counter was scheduled on
460 * tstamp_stopped: in INACTIVE state, the notional time when the
461 * counter was scheduled off.
463 u64 tstamp_enabled;
464 u64 tstamp_running;
465 u64 tstamp_stopped;
467 struct perf_counter_attr attr;
468 struct hw_perf_counter hw;
470 struct perf_counter_context *ctx;
471 struct file *filp;
474 * These accumulate total time (in nanoseconds) that children
475 * counters have been enabled and running, respectively.
477 atomic64_t child_total_time_enabled;
478 atomic64_t child_total_time_running;
481 * Protect attach/detach and child_list:
483 struct mutex child_mutex;
484 struct list_head child_list;
485 struct perf_counter *parent;
487 int oncpu;
488 int cpu;
490 struct list_head owner_entry;
491 struct task_struct *owner;
493 /* mmap bits */
494 struct mutex mmap_mutex;
495 atomic_t mmap_count;
496 struct perf_mmap_data *data;
498 /* poll related */
499 wait_queue_head_t waitq;
500 struct fasync_struct *fasync;
502 /* delayed work for NMIs and such */
503 int pending_wakeup;
504 int pending_kill;
505 int pending_disable;
506 struct perf_pending_entry pending;
508 atomic_t event_limit;
510 void (*destroy)(struct perf_counter *);
511 struct rcu_head rcu_head;
513 struct pid_namespace *ns;
514 u64 id;
515 #endif
519 * struct perf_counter_context - counter context structure
521 * Used as a container for task counters and CPU counters as well:
523 struct perf_counter_context {
525 * Protect the states of the counters in the list,
526 * nr_active, and the list:
528 spinlock_t lock;
530 * Protect the list of counters. Locking either mutex or lock
531 * is sufficient to ensure the list doesn't change; to change
532 * the list you need to lock both the mutex and the spinlock.
534 struct mutex mutex;
536 struct list_head counter_list;
537 struct list_head event_list;
538 int nr_counters;
539 int nr_active;
540 int is_active;
541 atomic_t refcount;
542 struct task_struct *task;
545 * Context clock, runs when context enabled.
547 u64 time;
548 u64 timestamp;
551 * These fields let us detect when two contexts have both
552 * been cloned (inherited) from a common ancestor.
554 struct perf_counter_context *parent_ctx;
555 u64 parent_gen;
556 u64 generation;
557 int pin_count;
558 struct rcu_head rcu_head;
562 * struct perf_counter_cpu_context - per cpu counter context structure
564 struct perf_cpu_context {
565 struct perf_counter_context ctx;
566 struct perf_counter_context *task_ctx;
567 int active_oncpu;
568 int max_pertask;
569 int exclusive;
572 * Recursion avoidance:
574 * task, softirq, irq, nmi context
576 int recursion[4];
579 #ifdef CONFIG_PERF_COUNTERS
582 * Set by architecture code:
584 extern int perf_max_counters;
586 extern const struct pmu *hw_perf_counter_init(struct perf_counter *counter);
588 extern void perf_counter_task_sched_in(struct task_struct *task, int cpu);
589 extern void perf_counter_task_sched_out(struct task_struct *task,
590 struct task_struct *next, int cpu);
591 extern void perf_counter_task_tick(struct task_struct *task, int cpu);
592 extern int perf_counter_init_task(struct task_struct *child);
593 extern void perf_counter_exit_task(struct task_struct *child);
594 extern void perf_counter_free_task(struct task_struct *task);
595 extern void perf_counter_do_pending(void);
596 extern void perf_counter_print_debug(void);
597 extern void __perf_disable(void);
598 extern bool __perf_enable(void);
599 extern void perf_disable(void);
600 extern void perf_enable(void);
601 extern int perf_counter_task_disable(void);
602 extern int perf_counter_task_enable(void);
603 extern int hw_perf_group_sched_in(struct perf_counter *group_leader,
604 struct perf_cpu_context *cpuctx,
605 struct perf_counter_context *ctx, int cpu);
606 extern void perf_counter_update_userpage(struct perf_counter *counter);
608 struct perf_sample_data {
609 struct pt_regs *regs;
610 u64 addr;
611 u64 period;
614 extern int perf_counter_overflow(struct perf_counter *counter, int nmi,
615 struct perf_sample_data *data);
618 * Return 1 for a software counter, 0 for a hardware counter
620 static inline int is_software_counter(struct perf_counter *counter)
622 return (counter->attr.type != PERF_TYPE_RAW) &&
623 (counter->attr.type != PERF_TYPE_HARDWARE);
626 extern void perf_swcounter_event(u32, u64, int, struct pt_regs *, u64);
628 extern void __perf_counter_mmap(struct vm_area_struct *vma);
630 static inline void perf_counter_mmap(struct vm_area_struct *vma)
632 if (vma->vm_flags & VM_EXEC)
633 __perf_counter_mmap(vma);
636 extern void perf_counter_comm(struct task_struct *tsk);
637 extern void perf_counter_fork(struct task_struct *tsk);
639 extern void perf_counter_task_migration(struct task_struct *task, int cpu);
641 #define MAX_STACK_DEPTH 255
643 struct perf_callchain_entry {
644 u16 nr;
645 u16 hv;
646 u16 kernel;
647 u16 user;
648 u64 ip[MAX_STACK_DEPTH];
651 extern struct perf_callchain_entry *perf_callchain(struct pt_regs *regs);
653 extern int sysctl_perf_counter_paranoid;
654 extern int sysctl_perf_counter_mlock;
655 extern int sysctl_perf_counter_sample_rate;
657 extern void perf_counter_init(void);
659 #ifndef perf_misc_flags
660 #define perf_misc_flags(regs) (user_mode(regs) ? PERF_EVENT_MISC_USER : \
661 PERF_EVENT_MISC_KERNEL)
662 #define perf_instruction_pointer(regs) instruction_pointer(regs)
663 #endif
665 #else
666 static inline void
667 perf_counter_task_sched_in(struct task_struct *task, int cpu) { }
668 static inline void
669 perf_counter_task_sched_out(struct task_struct *task,
670 struct task_struct *next, int cpu) { }
671 static inline void
672 perf_counter_task_tick(struct task_struct *task, int cpu) { }
673 static inline int perf_counter_init_task(struct task_struct *child) { return 0; }
674 static inline void perf_counter_exit_task(struct task_struct *child) { }
675 static inline void perf_counter_free_task(struct task_struct *task) { }
676 static inline void perf_counter_do_pending(void) { }
677 static inline void perf_counter_print_debug(void) { }
678 static inline void perf_disable(void) { }
679 static inline void perf_enable(void) { }
680 static inline int perf_counter_task_disable(void) { return -EINVAL; }
681 static inline int perf_counter_task_enable(void) { return -EINVAL; }
683 static inline void
684 perf_swcounter_event(u32 event, u64 nr, int nmi,
685 struct pt_regs *regs, u64 addr) { }
687 static inline void perf_counter_mmap(struct vm_area_struct *vma) { }
688 static inline void perf_counter_comm(struct task_struct *tsk) { }
689 static inline void perf_counter_fork(struct task_struct *tsk) { }
690 static inline void perf_counter_init(void) { }
691 static inline void perf_counter_task_migration(struct task_struct *task,
692 int cpu) { }
693 #endif
695 #endif /* __KERNEL__ */
696 #endif /* _LINUX_PERF_COUNTER_H */