2 * This file is part of UBIFS.
4 * Copyright (C) 2006-2008 Nokia Corporation.
5 * Copyright (C) 2006, 2007 University of Szeged, Hungary
7 * This program is free software; you can redistribute it and/or modify it
8 * under the terms of the GNU General Public License version 2 as published by
9 * the Free Software Foundation.
11 * This program is distributed in the hope that it will be useful, but WITHOUT
12 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
16 * You should have received a copy of the GNU General Public License along with
17 * this program; if not, write to the Free Software Foundation, Inc., 51
18 * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
20 * Authors: Artem Bityutskiy (Битюцкий Артём)
26 * This file implements UBIFS I/O subsystem which provides various I/O-related
27 * helper functions (reading/writing/checking/validating nodes) and implements
28 * write-buffering support. Write buffers help to save space which otherwise
29 * would have been wasted for padding to the nearest minimal I/O unit boundary.
30 * Instead, data first goes to the write-buffer and is flushed when the
31 * buffer is full or when it is not used for some time (by timer). This is
32 * similar to the mechanism is used by JFFS2.
34 * UBIFS distinguishes between minimum write size (@c->min_io_size) and maximum
35 * write size (@c->max_write_size). The latter is the maximum amount of bytes
36 * the underlying flash is able to program at a time, and writing in
37 * @c->max_write_size units should presumably be faster. Obviously,
38 * @c->min_io_size <= @c->max_write_size. Write-buffers are of
39 * @c->max_write_size bytes in size for maximum performance. However, when a
40 * write-buffer is flushed, only the portion of it (aligned to @c->min_io_size
41 * boundary) which contains data is written, not the whole write-buffer,
42 * because this is more space-efficient.
44 * This optimization adds few complications to the code. Indeed, on the one
45 * hand, we want to write in optimal @c->max_write_size bytes chunks, which
46 * also means aligning writes at the @c->max_write_size bytes offsets. On the
47 * other hand, we do not want to waste space when synchronizing the write
48 * buffer, so during synchronization we writes in smaller chunks. And this makes
49 * the next write offset to be not aligned to @c->max_write_size bytes. So the
50 * have to make sure that the write-buffer offset (@wbuf->offs) becomes aligned
51 * to @c->max_write_size bytes again. We do this by temporarily shrinking
52 * write-buffer size (@wbuf->size).
54 * Write-buffers are defined by 'struct ubifs_wbuf' objects and protected by
55 * mutexes defined inside these objects. Since sometimes upper-level code
56 * has to lock the write-buffer (e.g. journal space reservation code), many
57 * functions related to write-buffers have "nolock" suffix which means that the
58 * caller has to lock the write-buffer before calling this function.
60 * UBIFS stores nodes at 64 bit-aligned addresses. If the node length is not
61 * aligned, UBIFS starts the next node from the aligned address, and the padded
62 * bytes may contain any rubbish. In other words, UBIFS does not put padding
63 * bytes in those small gaps. Common headers of nodes store real node lengths,
64 * not aligned lengths. Indexing nodes also store real lengths in branches.
66 * UBIFS uses padding when it pads to the next min. I/O unit. In this case it
67 * uses padding nodes or padding bytes, if the padding node does not fit.
69 * All UBIFS nodes are protected by CRC checksums and UBIFS checks CRC when
70 * they are read from the flash media.
73 #include <linux/crc32.h>
74 #include <linux/slab.h>
78 * ubifs_ro_mode - switch UBIFS to read read-only mode.
79 * @c: UBIFS file-system description object
80 * @err: error code which is the reason of switching to R/O mode
82 void ubifs_ro_mode(struct ubifs_info
*c
, int err
)
86 c
->no_chk_data_crc
= 0;
87 c
->vfs_sb
->s_flags
|= MS_RDONLY
;
88 ubifs_warn("switched to read-only mode, error %d", err
);
94 * ubifs_check_node - check node.
95 * @c: UBIFS file-system description object
97 * @lnum: logical eraseblock number
98 * @offs: offset within the logical eraseblock
99 * @quiet: print no messages
100 * @must_chk_crc: indicates whether to always check the CRC
102 * This function checks node magic number and CRC checksum. This function also
103 * validates node length to prevent UBIFS from becoming crazy when an attacker
104 * feeds it a file-system image with incorrect nodes. For example, too large
105 * node length in the common header could cause UBIFS to read memory outside of
106 * allocated buffer when checking the CRC checksum.
108 * This function may skip data nodes CRC checking if @c->no_chk_data_crc is
109 * true, which is controlled by corresponding UBIFS mount option. However, if
110 * @must_chk_crc is true, then @c->no_chk_data_crc is ignored and CRC is
111 * checked. Similarly, if @c->mounting or @c->remounting_rw is true (we are
112 * mounting or re-mounting to R/W mode), @c->no_chk_data_crc is ignored and CRC
113 * is checked. This is because during mounting or re-mounting from R/O mode to
114 * R/W mode we may read journal nodes (when replying the journal or doing the
115 * recovery) and the journal nodes may potentially be corrupted, so checking is
118 * This function returns zero in case of success and %-EUCLEAN in case of bad
121 int ubifs_check_node(const struct ubifs_info
*c
, const void *buf
, int lnum
,
122 int offs
, int quiet
, int must_chk_crc
)
124 int err
= -EINVAL
, type
, node_len
;
125 uint32_t crc
, node_crc
, magic
;
126 const struct ubifs_ch
*ch
= buf
;
128 ubifs_assert(lnum
>= 0 && lnum
< c
->leb_cnt
&& offs
>= 0);
129 ubifs_assert(!(offs
& 7) && offs
< c
->leb_size
);
131 magic
= le32_to_cpu(ch
->magic
);
132 if (magic
!= UBIFS_NODE_MAGIC
) {
134 ubifs_err("bad magic %#08x, expected %#08x",
135 magic
, UBIFS_NODE_MAGIC
);
140 type
= ch
->node_type
;
141 if (type
< 0 || type
>= UBIFS_NODE_TYPES_CNT
) {
143 ubifs_err("bad node type %d", type
);
147 node_len
= le32_to_cpu(ch
->len
);
148 if (node_len
+ offs
> c
->leb_size
)
151 if (c
->ranges
[type
].max_len
== 0) {
152 if (node_len
!= c
->ranges
[type
].len
)
154 } else if (node_len
< c
->ranges
[type
].min_len
||
155 node_len
> c
->ranges
[type
].max_len
)
158 if (!must_chk_crc
&& type
== UBIFS_DATA_NODE
&& !c
->mounting
&&
159 !c
->remounting_rw
&& c
->no_chk_data_crc
)
162 crc
= crc32(UBIFS_CRC32_INIT
, buf
+ 8, node_len
- 8);
163 node_crc
= le32_to_cpu(ch
->crc
);
164 if (crc
!= node_crc
) {
166 ubifs_err("bad CRC: calculated %#08x, read %#08x",
176 ubifs_err("bad node length %d", node_len
);
179 ubifs_err("bad node at LEB %d:%d", lnum
, offs
);
180 dbg_dump_node(c
, buf
);
187 * ubifs_pad - pad flash space.
188 * @c: UBIFS file-system description object
189 * @buf: buffer to put padding to
190 * @pad: how many bytes to pad
192 * The flash media obliges us to write only in chunks of %c->min_io_size and
193 * when we have to write less data we add padding node to the write-buffer and
194 * pad it to the next minimal I/O unit's boundary. Padding nodes help when the
195 * media is being scanned. If the amount of wasted space is not enough to fit a
196 * padding node which takes %UBIFS_PAD_NODE_SZ bytes, we write padding bytes
197 * pattern (%UBIFS_PADDING_BYTE).
199 * Padding nodes are also used to fill gaps when the "commit-in-gaps" method is
202 void ubifs_pad(const struct ubifs_info
*c
, void *buf
, int pad
)
206 ubifs_assert(pad
>= 0 && !(pad
& 7));
208 if (pad
>= UBIFS_PAD_NODE_SZ
) {
209 struct ubifs_ch
*ch
= buf
;
210 struct ubifs_pad_node
*pad_node
= buf
;
212 ch
->magic
= cpu_to_le32(UBIFS_NODE_MAGIC
);
213 ch
->node_type
= UBIFS_PAD_NODE
;
214 ch
->group_type
= UBIFS_NO_NODE_GROUP
;
215 ch
->padding
[0] = ch
->padding
[1] = 0;
217 ch
->len
= cpu_to_le32(UBIFS_PAD_NODE_SZ
);
218 pad
-= UBIFS_PAD_NODE_SZ
;
219 pad_node
->pad_len
= cpu_to_le32(pad
);
220 crc
= crc32(UBIFS_CRC32_INIT
, buf
+ 8, UBIFS_PAD_NODE_SZ
- 8);
221 ch
->crc
= cpu_to_le32(crc
);
222 memset(buf
+ UBIFS_PAD_NODE_SZ
, 0, pad
);
224 /* Too little space, padding node won't fit */
225 memset(buf
, UBIFS_PADDING_BYTE
, pad
);
229 * next_sqnum - get next sequence number.
230 * @c: UBIFS file-system description object
232 static unsigned long long next_sqnum(struct ubifs_info
*c
)
234 unsigned long long sqnum
;
236 spin_lock(&c
->cnt_lock
);
237 sqnum
= ++c
->max_sqnum
;
238 spin_unlock(&c
->cnt_lock
);
240 if (unlikely(sqnum
>= SQNUM_WARN_WATERMARK
)) {
241 if (sqnum
>= SQNUM_WATERMARK
) {
242 ubifs_err("sequence number overflow %llu, end of life",
244 ubifs_ro_mode(c
, -EINVAL
);
246 ubifs_warn("running out of sequence numbers, end of life soon");
253 * ubifs_prepare_node - prepare node to be written to flash.
254 * @c: UBIFS file-system description object
255 * @node: the node to pad
257 * @pad: if the buffer has to be padded
259 * This function prepares node at @node to be written to the media - it
260 * calculates node CRC, fills the common header, and adds proper padding up to
261 * the next minimum I/O unit if @pad is not zero.
263 void ubifs_prepare_node(struct ubifs_info
*c
, void *node
, int len
, int pad
)
266 struct ubifs_ch
*ch
= node
;
267 unsigned long long sqnum
= next_sqnum(c
);
269 ubifs_assert(len
>= UBIFS_CH_SZ
);
271 ch
->magic
= cpu_to_le32(UBIFS_NODE_MAGIC
);
272 ch
->len
= cpu_to_le32(len
);
273 ch
->group_type
= UBIFS_NO_NODE_GROUP
;
274 ch
->sqnum
= cpu_to_le64(sqnum
);
275 ch
->padding
[0] = ch
->padding
[1] = 0;
276 crc
= crc32(UBIFS_CRC32_INIT
, node
+ 8, len
- 8);
277 ch
->crc
= cpu_to_le32(crc
);
281 pad
= ALIGN(len
, c
->min_io_size
) - len
;
282 ubifs_pad(c
, node
+ len
, pad
);
287 * ubifs_prep_grp_node - prepare node of a group to be written to flash.
288 * @c: UBIFS file-system description object
289 * @node: the node to pad
291 * @last: indicates the last node of the group
293 * This function prepares node at @node to be written to the media - it
294 * calculates node CRC and fills the common header.
296 void ubifs_prep_grp_node(struct ubifs_info
*c
, void *node
, int len
, int last
)
299 struct ubifs_ch
*ch
= node
;
300 unsigned long long sqnum
= next_sqnum(c
);
302 ubifs_assert(len
>= UBIFS_CH_SZ
);
304 ch
->magic
= cpu_to_le32(UBIFS_NODE_MAGIC
);
305 ch
->len
= cpu_to_le32(len
);
307 ch
->group_type
= UBIFS_LAST_OF_NODE_GROUP
;
309 ch
->group_type
= UBIFS_IN_NODE_GROUP
;
310 ch
->sqnum
= cpu_to_le64(sqnum
);
311 ch
->padding
[0] = ch
->padding
[1] = 0;
312 crc
= crc32(UBIFS_CRC32_INIT
, node
+ 8, len
- 8);
313 ch
->crc
= cpu_to_le32(crc
);
317 * wbuf_timer_callback - write-buffer timer callback function.
318 * @data: timer data (write-buffer descriptor)
320 * This function is called when the write-buffer timer expires.
322 static enum hrtimer_restart
wbuf_timer_callback_nolock(struct hrtimer
*timer
)
324 struct ubifs_wbuf
*wbuf
= container_of(timer
, struct ubifs_wbuf
, timer
);
326 dbg_io("jhead %s", dbg_jhead(wbuf
->jhead
));
328 wbuf
->c
->need_wbuf_sync
= 1;
329 ubifs_wake_up_bgt(wbuf
->c
);
330 return HRTIMER_NORESTART
;
334 * new_wbuf_timer - start new write-buffer timer.
335 * @wbuf: write-buffer descriptor
337 static void new_wbuf_timer_nolock(struct ubifs_wbuf
*wbuf
)
339 ubifs_assert(!hrtimer_active(&wbuf
->timer
));
343 dbg_io("set timer for jhead %s, %llu-%llu millisecs",
344 dbg_jhead(wbuf
->jhead
),
345 div_u64(ktime_to_ns(wbuf
->softlimit
), USEC_PER_SEC
),
346 div_u64(ktime_to_ns(wbuf
->softlimit
) + wbuf
->delta
,
348 hrtimer_start_range_ns(&wbuf
->timer
, wbuf
->softlimit
, wbuf
->delta
,
353 * cancel_wbuf_timer - cancel write-buffer timer.
354 * @wbuf: write-buffer descriptor
356 static void cancel_wbuf_timer_nolock(struct ubifs_wbuf
*wbuf
)
361 hrtimer_cancel(&wbuf
->timer
);
365 * ubifs_wbuf_sync_nolock - synchronize write-buffer.
366 * @wbuf: write-buffer to synchronize
368 * This function synchronizes write-buffer @buf and returns zero in case of
369 * success or a negative error code in case of failure.
371 * Note, although write-buffers are of @c->max_write_size, this function does
372 * not necessarily writes all @c->max_write_size bytes to the flash. Instead,
373 * if the write-buffer is only partially filled with data, only the used part
374 * of the write-buffer (aligned on @c->min_io_size boundary) is synchronized.
375 * This way we waste less space.
377 int ubifs_wbuf_sync_nolock(struct ubifs_wbuf
*wbuf
)
379 struct ubifs_info
*c
= wbuf
->c
;
380 int err
, dirt
, sync_len
;
382 cancel_wbuf_timer_nolock(wbuf
);
383 if (!wbuf
->used
|| wbuf
->lnum
== -1)
384 /* Write-buffer is empty or not seeked */
387 dbg_io("LEB %d:%d, %d bytes, jhead %s",
388 wbuf
->lnum
, wbuf
->offs
, wbuf
->used
, dbg_jhead(wbuf
->jhead
));
389 ubifs_assert(!(wbuf
->avail
& 7));
390 ubifs_assert(wbuf
->offs
+ wbuf
->size
<= c
->leb_size
);
391 ubifs_assert(wbuf
->size
>= c
->min_io_size
);
392 ubifs_assert(wbuf
->size
<= c
->max_write_size
);
393 ubifs_assert(wbuf
->size
% c
->min_io_size
== 0);
394 ubifs_assert(!c
->ro_media
&& !c
->ro_mount
);
395 if (c
->leb_size
- wbuf
->offs
>= c
->max_write_size
)
396 ubifs_assert(!((wbuf
->offs
+ wbuf
->size
) % c
->max_write_size
));
402 * Do not write whole write buffer but write only the minimum necessary
403 * amount of min. I/O units.
405 sync_len
= ALIGN(wbuf
->used
, c
->min_io_size
);
406 dirt
= sync_len
- wbuf
->used
;
408 ubifs_pad(c
, wbuf
->buf
+ wbuf
->used
, dirt
);
409 err
= ubi_leb_write(c
->ubi
, wbuf
->lnum
, wbuf
->buf
, wbuf
->offs
,
410 sync_len
, wbuf
->dtype
);
412 ubifs_err("cannot write %d bytes to LEB %d:%d",
413 sync_len
, wbuf
->lnum
, wbuf
->offs
);
418 spin_lock(&wbuf
->lock
);
419 wbuf
->offs
+= sync_len
;
421 * Now @wbuf->offs is not necessarily aligned to @c->max_write_size.
422 * But our goal is to optimize writes and make sure we write in
423 * @c->max_write_size chunks and to @c->max_write_size-aligned offset.
424 * Thus, if @wbuf->offs is not aligned to @c->max_write_size now, make
425 * sure that @wbuf->offs + @wbuf->size is aligned to
426 * @c->max_write_size. This way we make sure that after next
427 * write-buffer flush we are again at the optimal offset (aligned to
428 * @c->max_write_size).
430 if (c
->leb_size
- wbuf
->offs
< c
->max_write_size
)
431 wbuf
->size
= c
->leb_size
- wbuf
->offs
;
432 else if (wbuf
->offs
& (c
->max_write_size
- 1))
433 wbuf
->size
= ALIGN(wbuf
->offs
, c
->max_write_size
) - wbuf
->offs
;
435 wbuf
->size
= c
->max_write_size
;
436 wbuf
->avail
= wbuf
->size
;
439 spin_unlock(&wbuf
->lock
);
441 if (wbuf
->sync_callback
)
442 err
= wbuf
->sync_callback(c
, wbuf
->lnum
,
443 c
->leb_size
- wbuf
->offs
, dirt
);
448 * ubifs_wbuf_seek_nolock - seek write-buffer.
449 * @wbuf: write-buffer
450 * @lnum: logical eraseblock number to seek to
451 * @offs: logical eraseblock offset to seek to
454 * This function targets the write-buffer to logical eraseblock @lnum:@offs.
455 * The write-buffer is synchronized if it is not empty. Returns zero in case of
456 * success and a negative error code in case of failure.
458 int ubifs_wbuf_seek_nolock(struct ubifs_wbuf
*wbuf
, int lnum
, int offs
,
461 const struct ubifs_info
*c
= wbuf
->c
;
463 dbg_io("LEB %d:%d, jhead %s", lnum
, offs
, dbg_jhead(wbuf
->jhead
));
464 ubifs_assert(lnum
>= 0 && lnum
< c
->leb_cnt
);
465 ubifs_assert(offs
>= 0 && offs
<= c
->leb_size
);
466 ubifs_assert(offs
% c
->min_io_size
== 0 && !(offs
& 7));
467 ubifs_assert(lnum
!= wbuf
->lnum
);
469 if (wbuf
->used
> 0) {
470 int err
= ubifs_wbuf_sync_nolock(wbuf
);
476 spin_lock(&wbuf
->lock
);
479 if (c
->leb_size
- wbuf
->offs
< c
->max_write_size
)
480 wbuf
->size
= c
->leb_size
- wbuf
->offs
;
481 else if (wbuf
->offs
& (c
->max_write_size
- 1))
482 wbuf
->size
= ALIGN(wbuf
->offs
, c
->max_write_size
) - wbuf
->offs
;
484 wbuf
->size
= c
->max_write_size
;
485 wbuf
->avail
= wbuf
->size
;
487 spin_unlock(&wbuf
->lock
);
494 * ubifs_bg_wbufs_sync - synchronize write-buffers.
495 * @c: UBIFS file-system description object
497 * This function is called by background thread to synchronize write-buffers.
498 * Returns zero in case of success and a negative error code in case of
501 int ubifs_bg_wbufs_sync(struct ubifs_info
*c
)
505 ubifs_assert(!c
->ro_media
&& !c
->ro_mount
);
506 if (!c
->need_wbuf_sync
)
508 c
->need_wbuf_sync
= 0;
515 dbg_io("synchronize");
516 for (i
= 0; i
< c
->jhead_cnt
; i
++) {
517 struct ubifs_wbuf
*wbuf
= &c
->jheads
[i
].wbuf
;
522 * If the mutex is locked then wbuf is being changed, so
523 * synchronization is not necessary.
525 if (mutex_is_locked(&wbuf
->io_mutex
))
528 mutex_lock_nested(&wbuf
->io_mutex
, wbuf
->jhead
);
529 if (!wbuf
->need_sync
) {
530 mutex_unlock(&wbuf
->io_mutex
);
534 err
= ubifs_wbuf_sync_nolock(wbuf
);
535 mutex_unlock(&wbuf
->io_mutex
);
537 ubifs_err("cannot sync write-buffer, error %d", err
);
538 ubifs_ro_mode(c
, err
);
546 /* Cancel all timers to prevent repeated errors */
547 for (i
= 0; i
< c
->jhead_cnt
; i
++) {
548 struct ubifs_wbuf
*wbuf
= &c
->jheads
[i
].wbuf
;
550 mutex_lock_nested(&wbuf
->io_mutex
, wbuf
->jhead
);
551 cancel_wbuf_timer_nolock(wbuf
);
552 mutex_unlock(&wbuf
->io_mutex
);
558 * ubifs_wbuf_write_nolock - write data to flash via write-buffer.
559 * @wbuf: write-buffer
560 * @buf: node to write
563 * This function writes data to flash via write-buffer @wbuf. This means that
564 * the last piece of the node won't reach the flash media immediately if it
565 * does not take whole max. write unit (@c->max_write_size). Instead, the node
566 * will sit in RAM until the write-buffer is synchronized (e.g., by timer, or
567 * because more data are appended to the write-buffer).
569 * This function returns zero in case of success and a negative error code in
570 * case of failure. If the node cannot be written because there is no more
571 * space in this logical eraseblock, %-ENOSPC is returned.
573 int ubifs_wbuf_write_nolock(struct ubifs_wbuf
*wbuf
, void *buf
, int len
)
575 struct ubifs_info
*c
= wbuf
->c
;
576 int err
, written
, n
, aligned_len
= ALIGN(len
, 8), offs
;
578 dbg_io("%d bytes (%s) to jhead %s wbuf at LEB %d:%d", len
,
579 dbg_ntype(((struct ubifs_ch
*)buf
)->node_type
),
580 dbg_jhead(wbuf
->jhead
), wbuf
->lnum
, wbuf
->offs
+ wbuf
->used
);
581 ubifs_assert(len
> 0 && wbuf
->lnum
>= 0 && wbuf
->lnum
< c
->leb_cnt
);
582 ubifs_assert(wbuf
->offs
>= 0 && wbuf
->offs
% c
->min_io_size
== 0);
583 ubifs_assert(!(wbuf
->offs
& 7) && wbuf
->offs
<= c
->leb_size
);
584 ubifs_assert(wbuf
->avail
> 0 && wbuf
->avail
<= wbuf
->size
);
585 ubifs_assert(wbuf
->size
>= c
->min_io_size
);
586 ubifs_assert(wbuf
->size
<= c
->max_write_size
);
587 ubifs_assert(wbuf
->size
% c
->min_io_size
== 0);
588 ubifs_assert(mutex_is_locked(&wbuf
->io_mutex
));
589 ubifs_assert(!c
->ro_media
&& !c
->ro_mount
);
590 if (c
->leb_size
- wbuf
->offs
>= c
->max_write_size
)
591 ubifs_assert(!((wbuf
->offs
+ wbuf
->size
) % c
->max_write_size
));
593 if (c
->leb_size
- wbuf
->offs
- wbuf
->used
< aligned_len
) {
598 cancel_wbuf_timer_nolock(wbuf
);
603 if (aligned_len
<= wbuf
->avail
) {
605 * The node is not very large and fits entirely within
608 memcpy(wbuf
->buf
+ wbuf
->used
, buf
, len
);
610 if (aligned_len
== wbuf
->avail
) {
611 dbg_io("flush jhead %s wbuf to LEB %d:%d",
612 dbg_jhead(wbuf
->jhead
), wbuf
->lnum
, wbuf
->offs
);
613 err
= ubi_leb_write(c
->ubi
, wbuf
->lnum
, wbuf
->buf
,
614 wbuf
->offs
, wbuf
->size
,
619 spin_lock(&wbuf
->lock
);
620 wbuf
->offs
+= wbuf
->size
;
621 if (c
->leb_size
- wbuf
->offs
>= c
->max_write_size
)
622 wbuf
->size
= c
->max_write_size
;
624 wbuf
->size
= c
->leb_size
- wbuf
->offs
;
625 wbuf
->avail
= wbuf
->size
;
628 spin_unlock(&wbuf
->lock
);
630 spin_lock(&wbuf
->lock
);
631 wbuf
->avail
-= aligned_len
;
632 wbuf
->used
+= aligned_len
;
633 spin_unlock(&wbuf
->lock
);
644 * The node is large enough and does not fit entirely within
645 * current available space. We have to fill and flush
646 * write-buffer and switch to the next max. write unit.
648 dbg_io("flush jhead %s wbuf to LEB %d:%d",
649 dbg_jhead(wbuf
->jhead
), wbuf
->lnum
, wbuf
->offs
);
650 memcpy(wbuf
->buf
+ wbuf
->used
, buf
, wbuf
->avail
);
651 err
= ubi_leb_write(c
->ubi
, wbuf
->lnum
, wbuf
->buf
, wbuf
->offs
,
652 wbuf
->size
, wbuf
->dtype
);
658 aligned_len
-= wbuf
->avail
;
659 written
+= wbuf
->avail
;
660 } else if (wbuf
->offs
& (c
->max_write_size
- 1)) {
662 * The write-buffer offset is not aligned to
663 * @c->max_write_size and @wbuf->size is less than
664 * @c->max_write_size. Write @wbuf->size bytes to make sure the
665 * following writes are done in optimal @c->max_write_size
668 dbg_io("write %d bytes to LEB %d:%d",
669 wbuf
->size
, wbuf
->lnum
, wbuf
->offs
);
670 err
= ubi_leb_write(c
->ubi
, wbuf
->lnum
, buf
, wbuf
->offs
,
671 wbuf
->size
, wbuf
->dtype
);
677 aligned_len
-= wbuf
->size
;
678 written
+= wbuf
->size
;
682 * The remaining data may take more whole max. write units, so write the
683 * remains multiple to max. write unit size directly to the flash media.
684 * We align node length to 8-byte boundary because we anyway flash wbuf
685 * if the remaining space is less than 8 bytes.
687 n
= aligned_len
>> c
->max_write_shift
;
689 n
<<= c
->max_write_shift
;
690 dbg_io("write %d bytes to LEB %d:%d", n
, wbuf
->lnum
, offs
);
691 err
= ubi_leb_write(c
->ubi
, wbuf
->lnum
, buf
+ written
, offs
, n
,
701 spin_lock(&wbuf
->lock
);
704 * And now we have what's left and what does not take whole
705 * max. write unit, so write it to the write-buffer and we are
708 memcpy(wbuf
->buf
, buf
+ written
, len
);
711 if (c
->leb_size
- wbuf
->offs
>= c
->max_write_size
)
712 wbuf
->size
= c
->max_write_size
;
714 wbuf
->size
= c
->leb_size
- wbuf
->offs
;
715 wbuf
->avail
= wbuf
->size
- aligned_len
;
716 wbuf
->used
= aligned_len
;
718 spin_unlock(&wbuf
->lock
);
721 if (wbuf
->sync_callback
) {
722 int free
= c
->leb_size
- wbuf
->offs
- wbuf
->used
;
724 err
= wbuf
->sync_callback(c
, wbuf
->lnum
, free
, 0);
730 new_wbuf_timer_nolock(wbuf
);
735 ubifs_err("cannot write %d bytes to LEB %d:%d, error %d",
736 len
, wbuf
->lnum
, wbuf
->offs
, err
);
737 dbg_dump_node(c
, buf
);
739 dbg_dump_leb(c
, wbuf
->lnum
);
744 * ubifs_write_node - write node to the media.
745 * @c: UBIFS file-system description object
746 * @buf: the node to write
748 * @lnum: logical eraseblock number
749 * @offs: offset within the logical eraseblock
750 * @dtype: node life-time hint (%UBI_LONGTERM, %UBI_SHORTTERM, %UBI_UNKNOWN)
752 * This function automatically fills node magic number, assigns sequence
753 * number, and calculates node CRC checksum. The length of the @buf buffer has
754 * to be aligned to the minimal I/O unit size. This function automatically
755 * appends padding node and padding bytes if needed. Returns zero in case of
756 * success and a negative error code in case of failure.
758 int ubifs_write_node(struct ubifs_info
*c
, void *buf
, int len
, int lnum
,
761 int err
, buf_len
= ALIGN(len
, c
->min_io_size
);
763 dbg_io("LEB %d:%d, %s, length %d (aligned %d)",
764 lnum
, offs
, dbg_ntype(((struct ubifs_ch
*)buf
)->node_type
), len
,
766 ubifs_assert(lnum
>= 0 && lnum
< c
->leb_cnt
&& offs
>= 0);
767 ubifs_assert(offs
% c
->min_io_size
== 0 && offs
< c
->leb_size
);
768 ubifs_assert(!c
->ro_media
&& !c
->ro_mount
);
773 ubifs_prepare_node(c
, buf
, len
, 1);
774 err
= ubi_leb_write(c
->ubi
, lnum
, buf
, offs
, buf_len
, dtype
);
776 ubifs_err("cannot write %d bytes to LEB %d:%d, error %d",
777 buf_len
, lnum
, offs
, err
);
778 dbg_dump_node(c
, buf
);
786 * ubifs_read_node_wbuf - read node from the media or write-buffer.
787 * @wbuf: wbuf to check for un-written data
788 * @buf: buffer to read to
791 * @lnum: logical eraseblock number
792 * @offs: offset within the logical eraseblock
794 * This function reads a node of known type and length, checks it and stores
795 * in @buf. If the node partially or fully sits in the write-buffer, this
796 * function takes data from the buffer, otherwise it reads the flash media.
797 * Returns zero in case of success, %-EUCLEAN if CRC mismatched and a negative
798 * error code in case of failure.
800 int ubifs_read_node_wbuf(struct ubifs_wbuf
*wbuf
, void *buf
, int type
, int len
,
803 const struct ubifs_info
*c
= wbuf
->c
;
804 int err
, rlen
, overlap
;
805 struct ubifs_ch
*ch
= buf
;
807 dbg_io("LEB %d:%d, %s, length %d, jhead %s", lnum
, offs
,
808 dbg_ntype(type
), len
, dbg_jhead(wbuf
->jhead
));
809 ubifs_assert(wbuf
&& lnum
>= 0 && lnum
< c
->leb_cnt
&& offs
>= 0);
810 ubifs_assert(!(offs
& 7) && offs
< c
->leb_size
);
811 ubifs_assert(type
>= 0 && type
< UBIFS_NODE_TYPES_CNT
);
813 spin_lock(&wbuf
->lock
);
814 overlap
= (lnum
== wbuf
->lnum
&& offs
+ len
> wbuf
->offs
);
816 /* We may safely unlock the write-buffer and read the data */
817 spin_unlock(&wbuf
->lock
);
818 return ubifs_read_node(c
, buf
, type
, len
, lnum
, offs
);
821 /* Don't read under wbuf */
822 rlen
= wbuf
->offs
- offs
;
826 /* Copy the rest from the write-buffer */
827 memcpy(buf
+ rlen
, wbuf
->buf
+ offs
+ rlen
- wbuf
->offs
, len
- rlen
);
828 spin_unlock(&wbuf
->lock
);
831 /* Read everything that goes before write-buffer */
832 err
= ubi_read(c
->ubi
, lnum
, buf
, offs
, rlen
);
833 if (err
&& err
!= -EBADMSG
) {
834 ubifs_err("failed to read node %d from LEB %d:%d, "
835 "error %d", type
, lnum
, offs
, err
);
841 if (type
!= ch
->node_type
) {
842 ubifs_err("bad node type (%d but expected %d)",
843 ch
->node_type
, type
);
847 err
= ubifs_check_node(c
, buf
, lnum
, offs
, 0, 0);
849 ubifs_err("expected node type %d", type
);
853 rlen
= le32_to_cpu(ch
->len
);
855 ubifs_err("bad node length %d, expected %d", rlen
, len
);
862 ubifs_err("bad node at LEB %d:%d", lnum
, offs
);
863 dbg_dump_node(c
, buf
);
869 * ubifs_read_node - read node.
870 * @c: UBIFS file-system description object
871 * @buf: buffer to read to
873 * @len: node length (not aligned)
874 * @lnum: logical eraseblock number
875 * @offs: offset within the logical eraseblock
877 * This function reads a node of known type and and length, checks it and
878 * stores in @buf. Returns zero in case of success, %-EUCLEAN if CRC mismatched
879 * and a negative error code in case of failure.
881 int ubifs_read_node(const struct ubifs_info
*c
, void *buf
, int type
, int len
,
885 struct ubifs_ch
*ch
= buf
;
887 dbg_io("LEB %d:%d, %s, length %d", lnum
, offs
, dbg_ntype(type
), len
);
888 ubifs_assert(lnum
>= 0 && lnum
< c
->leb_cnt
&& offs
>= 0);
889 ubifs_assert(len
>= UBIFS_CH_SZ
&& offs
+ len
<= c
->leb_size
);
890 ubifs_assert(!(offs
& 7) && offs
< c
->leb_size
);
891 ubifs_assert(type
>= 0 && type
< UBIFS_NODE_TYPES_CNT
);
893 err
= ubi_read(c
->ubi
, lnum
, buf
, offs
, len
);
894 if (err
&& err
!= -EBADMSG
) {
895 ubifs_err("cannot read node %d from LEB %d:%d, error %d",
896 type
, lnum
, offs
, err
);
900 if (type
!= ch
->node_type
) {
901 ubifs_err("bad node type (%d but expected %d)",
902 ch
->node_type
, type
);
906 err
= ubifs_check_node(c
, buf
, lnum
, offs
, 0, 0);
908 ubifs_err("expected node type %d", type
);
912 l
= le32_to_cpu(ch
->len
);
914 ubifs_err("bad node length %d, expected %d", l
, len
);
921 ubifs_err("bad node at LEB %d:%d, LEB mapping status %d", lnum
, offs
,
922 ubi_is_mapped(c
->ubi
, lnum
));
923 dbg_dump_node(c
, buf
);
929 * ubifs_wbuf_init - initialize write-buffer.
930 * @c: UBIFS file-system description object
931 * @wbuf: write-buffer to initialize
933 * This function initializes write-buffer. Returns zero in case of success
934 * %-ENOMEM in case of failure.
936 int ubifs_wbuf_init(struct ubifs_info
*c
, struct ubifs_wbuf
*wbuf
)
940 wbuf
->buf
= kmalloc(c
->max_write_size
, GFP_KERNEL
);
944 size
= (c
->max_write_size
/ UBIFS_CH_SZ
+ 1) * sizeof(ino_t
);
945 wbuf
->inodes
= kmalloc(size
, GFP_KERNEL
);
953 wbuf
->lnum
= wbuf
->offs
= -1;
955 * If the LEB starts at the max. write size aligned address, then
956 * write-buffer size has to be set to @c->max_write_size. Otherwise,
957 * set it to something smaller so that it ends at the closest max.
958 * write size boundary.
960 size
= c
->max_write_size
- (c
->leb_start
% c
->max_write_size
);
961 wbuf
->avail
= wbuf
->size
= size
;
962 wbuf
->dtype
= UBI_UNKNOWN
;
963 wbuf
->sync_callback
= NULL
;
964 mutex_init(&wbuf
->io_mutex
);
965 spin_lock_init(&wbuf
->lock
);
969 hrtimer_init(&wbuf
->timer
, CLOCK_MONOTONIC
, HRTIMER_MODE_REL
);
970 wbuf
->timer
.function
= wbuf_timer_callback_nolock
;
971 wbuf
->softlimit
= ktime_set(WBUF_TIMEOUT_SOFTLIMIT
, 0);
972 wbuf
->delta
= WBUF_TIMEOUT_HARDLIMIT
- WBUF_TIMEOUT_SOFTLIMIT
;
973 wbuf
->delta
*= 1000000000ULL;
974 ubifs_assert(wbuf
->delta
<= ULONG_MAX
);
979 * ubifs_wbuf_add_ino_nolock - add an inode number into the wbuf inode array.
980 * @wbuf: the write-buffer where to add
981 * @inum: the inode number
983 * This function adds an inode number to the inode array of the write-buffer.
985 void ubifs_wbuf_add_ino_nolock(struct ubifs_wbuf
*wbuf
, ino_t inum
)
988 /* NOR flash or something similar */
991 spin_lock(&wbuf
->lock
);
993 wbuf
->inodes
[wbuf
->next_ino
++] = inum
;
994 spin_unlock(&wbuf
->lock
);
998 * wbuf_has_ino - returns if the wbuf contains data from the inode.
999 * @wbuf: the write-buffer
1000 * @inum: the inode number
1002 * This function returns with %1 if the write-buffer contains some data from the
1003 * given inode otherwise it returns with %0.
1005 static int wbuf_has_ino(struct ubifs_wbuf
*wbuf
, ino_t inum
)
1009 spin_lock(&wbuf
->lock
);
1010 for (i
= 0; i
< wbuf
->next_ino
; i
++)
1011 if (inum
== wbuf
->inodes
[i
]) {
1015 spin_unlock(&wbuf
->lock
);
1021 * ubifs_sync_wbufs_by_inode - synchronize write-buffers for an inode.
1022 * @c: UBIFS file-system description object
1023 * @inode: inode to synchronize
1025 * This function synchronizes write-buffers which contain nodes belonging to
1026 * @inode. Returns zero in case of success and a negative error code in case of
1029 int ubifs_sync_wbufs_by_inode(struct ubifs_info
*c
, struct inode
*inode
)
1033 for (i
= 0; i
< c
->jhead_cnt
; i
++) {
1034 struct ubifs_wbuf
*wbuf
= &c
->jheads
[i
].wbuf
;
1038 * GC head is special, do not look at it. Even if the
1039 * head contains something related to this inode, it is
1040 * a _copy_ of corresponding on-flash node which sits
1045 if (!wbuf_has_ino(wbuf
, inode
->i_ino
))
1048 mutex_lock_nested(&wbuf
->io_mutex
, wbuf
->jhead
);
1049 if (wbuf_has_ino(wbuf
, inode
->i_ino
))
1050 err
= ubifs_wbuf_sync_nolock(wbuf
);
1051 mutex_unlock(&wbuf
->io_mutex
);
1054 ubifs_ro_mode(c
, err
);