ASoC: add missing clk_put to nuc900-ac97
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / fs / ext4 / fsync.c
blobe9473cbe80dfd00a7245e13f4de57229011a7bb2
1 /*
2 * linux/fs/ext4/fsync.c
4 * Copyright (C) 1993 Stephen Tweedie (sct@redhat.com)
5 * from
6 * Copyright (C) 1992 Remy Card (card@masi.ibp.fr)
7 * Laboratoire MASI - Institut Blaise Pascal
8 * Universite Pierre et Marie Curie (Paris VI)
9 * from
10 * linux/fs/minix/truncate.c Copyright (C) 1991, 1992 Linus Torvalds
12 * ext4fs fsync primitive
14 * Big-endian to little-endian byte-swapping/bitmaps by
15 * David S. Miller (davem@caip.rutgers.edu), 1995
17 * Removed unnecessary code duplication for little endian machines
18 * and excessive __inline__s.
19 * Andi Kleen, 1997
21 * Major simplications and cleanup - we only need to do the metadata, because
22 * we can depend on generic_block_fdatasync() to sync the data blocks.
25 #include <linux/time.h>
26 #include <linux/fs.h>
27 #include <linux/sched.h>
28 #include <linux/writeback.h>
29 #include <linux/jbd2.h>
30 #include <linux/blkdev.h>
32 #include "ext4.h"
33 #include "ext4_jbd2.h"
35 #include <trace/events/ext4.h>
37 static void dump_completed_IO(struct inode * inode)
39 #ifdef EXT4_DEBUG
40 struct list_head *cur, *before, *after;
41 ext4_io_end_t *io, *io0, *io1;
42 unsigned long flags;
44 if (list_empty(&EXT4_I(inode)->i_completed_io_list)){
45 ext4_debug("inode %lu completed_io list is empty\n", inode->i_ino);
46 return;
49 ext4_debug("Dump inode %lu completed_io list \n", inode->i_ino);
50 spin_lock_irqsave(&EXT4_I(inode)->i_completed_io_lock, flags);
51 list_for_each_entry(io, &EXT4_I(inode)->i_completed_io_list, list){
52 cur = &io->list;
53 before = cur->prev;
54 io0 = container_of(before, ext4_io_end_t, list);
55 after = cur->next;
56 io1 = container_of(after, ext4_io_end_t, list);
58 ext4_debug("io 0x%p from inode %lu,prev 0x%p,next 0x%p\n",
59 io, inode->i_ino, io0, io1);
61 spin_unlock_irqrestore(&EXT4_I(inode)->i_completed_io_lock, flags);
62 #endif
66 * This function is called from ext4_sync_file().
68 * When IO is completed, the work to convert unwritten extents to
69 * written is queued on workqueue but may not get immediately
70 * scheduled. When fsync is called, we need to ensure the
71 * conversion is complete before fsync returns.
72 * The inode keeps track of a list of pending/completed IO that
73 * might needs to do the conversion. This function walks through
74 * the list and convert the related unwritten extents for completed IO
75 * to written.
76 * The function return the number of pending IOs on success.
78 extern int ext4_flush_completed_IO(struct inode *inode)
80 ext4_io_end_t *io;
81 struct ext4_inode_info *ei = EXT4_I(inode);
82 unsigned long flags;
83 int ret = 0;
84 int ret2 = 0;
86 if (list_empty(&ei->i_completed_io_list))
87 return ret;
89 dump_completed_IO(inode);
90 spin_lock_irqsave(&ei->i_completed_io_lock, flags);
91 while (!list_empty(&ei->i_completed_io_list)){
92 io = list_entry(ei->i_completed_io_list.next,
93 ext4_io_end_t, list);
95 * Calling ext4_end_io_nolock() to convert completed
96 * IO to written.
98 * When ext4_sync_file() is called, run_queue() may already
99 * about to flush the work corresponding to this io structure.
100 * It will be upset if it founds the io structure related
101 * to the work-to-be schedule is freed.
103 * Thus we need to keep the io structure still valid here after
104 * conversion finished. The io structure has a flag to
105 * avoid double converting from both fsync and background work
106 * queue work.
108 spin_unlock_irqrestore(&ei->i_completed_io_lock, flags);
109 ret = ext4_end_io_nolock(io);
110 spin_lock_irqsave(&ei->i_completed_io_lock, flags);
111 if (ret < 0)
112 ret2 = ret;
113 else
114 list_del_init(&io->list);
116 spin_unlock_irqrestore(&ei->i_completed_io_lock, flags);
117 return (ret2 < 0) ? ret2 : 0;
121 * If we're not journaling and this is a just-created file, we have to
122 * sync our parent directory (if it was freshly created) since
123 * otherwise it will only be written by writeback, leaving a huge
124 * window during which a crash may lose the file. This may apply for
125 * the parent directory's parent as well, and so on recursively, if
126 * they are also freshly created.
128 static int ext4_sync_parent(struct inode *inode)
130 struct writeback_control wbc;
131 struct dentry *dentry = NULL;
132 int ret = 0;
134 while (inode && ext4_test_inode_state(inode, EXT4_STATE_NEWENTRY)) {
135 ext4_clear_inode_state(inode, EXT4_STATE_NEWENTRY);
136 dentry = list_entry(inode->i_dentry.next,
137 struct dentry, d_alias);
138 if (!dentry || !dentry->d_parent || !dentry->d_parent->d_inode)
139 break;
140 inode = dentry->d_parent->d_inode;
141 ret = sync_mapping_buffers(inode->i_mapping);
142 if (ret)
143 break;
144 memset(&wbc, 0, sizeof(wbc));
145 wbc.sync_mode = WB_SYNC_ALL;
146 wbc.nr_to_write = 0; /* only write out the inode */
147 ret = sync_inode(inode, &wbc);
148 if (ret)
149 break;
151 return ret;
155 * akpm: A new design for ext4_sync_file().
157 * This is only called from sys_fsync(), sys_fdatasync() and sys_msync().
158 * There cannot be a transaction open by this task.
159 * Another task could have dirtied this inode. Its data can be in any
160 * state in the journalling system.
162 * What we do is just kick off a commit and wait on it. This will snapshot the
163 * inode to disk.
165 * i_mutex lock is held when entering and exiting this function
168 int ext4_sync_file(struct file *file, int datasync)
170 struct inode *inode = file->f_mapping->host;
171 struct ext4_inode_info *ei = EXT4_I(inode);
172 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
173 int ret;
174 tid_t commit_tid;
176 J_ASSERT(ext4_journal_current_handle() == NULL);
178 trace_ext4_sync_file_enter(file, datasync);
180 if (inode->i_sb->s_flags & MS_RDONLY)
181 return 0;
183 ret = ext4_flush_completed_IO(inode);
184 if (ret < 0)
185 goto out;
187 if (!journal) {
188 ret = generic_file_fsync(file, datasync);
189 if (!ret && !list_empty(&inode->i_dentry))
190 ret = ext4_sync_parent(inode);
191 goto out;
195 * data=writeback,ordered:
196 * The caller's filemap_fdatawrite()/wait will sync the data.
197 * Metadata is in the journal, we wait for proper transaction to
198 * commit here.
200 * data=journal:
201 * filemap_fdatawrite won't do anything (the buffers are clean).
202 * ext4_force_commit will write the file data into the journal and
203 * will wait on that.
204 * filemap_fdatawait() will encounter a ton of newly-dirtied pages
205 * (they were dirtied by commit). But that's OK - the blocks are
206 * safe in-journal, which is all fsync() needs to ensure.
208 if (ext4_should_journal_data(inode)) {
209 ret = ext4_force_commit(inode->i_sb);
210 goto out;
213 commit_tid = datasync ? ei->i_datasync_tid : ei->i_sync_tid;
214 if (jbd2_log_start_commit(journal, commit_tid)) {
216 * When the journal is on a different device than the
217 * fs data disk, we need to issue the barrier in
218 * writeback mode. (In ordered mode, the jbd2 layer
219 * will take care of issuing the barrier. In
220 * data=journal, all of the data blocks are written to
221 * the journal device.)
223 if (ext4_should_writeback_data(inode) &&
224 (journal->j_fs_dev != journal->j_dev) &&
225 (journal->j_flags & JBD2_BARRIER))
226 blkdev_issue_flush(inode->i_sb->s_bdev, GFP_KERNEL,
227 NULL);
228 ret = jbd2_log_wait_commit(journal, commit_tid);
229 } else if (journal->j_flags & JBD2_BARRIER)
230 blkdev_issue_flush(inode->i_sb->s_bdev, GFP_KERNEL, NULL);
231 out:
232 trace_ext4_sync_file_exit(inode, ret);
233 return ret;