ASoC: add missing clk_put to nuc900-ac97
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / fs / btrfs / super.c
blob58e7de9cc90cb47d2c4047acb9a8d14cdc933f40
1 /*
2 * Copyright (C) 2007 Oracle. All rights reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
19 #include <linux/blkdev.h>
20 #include <linux/module.h>
21 #include <linux/buffer_head.h>
22 #include <linux/fs.h>
23 #include <linux/pagemap.h>
24 #include <linux/highmem.h>
25 #include <linux/time.h>
26 #include <linux/init.h>
27 #include <linux/seq_file.h>
28 #include <linux/string.h>
29 #include <linux/backing-dev.h>
30 #include <linux/mount.h>
31 #include <linux/mpage.h>
32 #include <linux/swap.h>
33 #include <linux/writeback.h>
34 #include <linux/statfs.h>
35 #include <linux/compat.h>
36 #include <linux/parser.h>
37 #include <linux/ctype.h>
38 #include <linux/namei.h>
39 #include <linux/miscdevice.h>
40 #include <linux/magic.h>
41 #include <linux/slab.h>
42 #include "compat.h"
43 #include "ctree.h"
44 #include "disk-io.h"
45 #include "transaction.h"
46 #include "btrfs_inode.h"
47 #include "ioctl.h"
48 #include "print-tree.h"
49 #include "xattr.h"
50 #include "volumes.h"
51 #include "version.h"
52 #include "export.h"
53 #include "compression.h"
55 #define CREATE_TRACE_POINTS
56 #include <trace/events/btrfs.h>
58 static const struct super_operations btrfs_super_ops;
60 static const char *btrfs_decode_error(struct btrfs_fs_info *fs_info, int errno,
61 char nbuf[16])
63 char *errstr = NULL;
65 switch (errno) {
66 case -EIO:
67 errstr = "IO failure";
68 break;
69 case -ENOMEM:
70 errstr = "Out of memory";
71 break;
72 case -EROFS:
73 errstr = "Readonly filesystem";
74 break;
75 default:
76 if (nbuf) {
77 if (snprintf(nbuf, 16, "error %d", -errno) >= 0)
78 errstr = nbuf;
80 break;
83 return errstr;
86 static void __save_error_info(struct btrfs_fs_info *fs_info)
89 * today we only save the error info into ram. Long term we'll
90 * also send it down to the disk
92 fs_info->fs_state = BTRFS_SUPER_FLAG_ERROR;
95 /* NOTE:
96 * We move write_super stuff at umount in order to avoid deadlock
97 * for umount hold all lock.
99 static void save_error_info(struct btrfs_fs_info *fs_info)
101 __save_error_info(fs_info);
104 /* btrfs handle error by forcing the filesystem readonly */
105 static void btrfs_handle_error(struct btrfs_fs_info *fs_info)
107 struct super_block *sb = fs_info->sb;
109 if (sb->s_flags & MS_RDONLY)
110 return;
112 if (fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR) {
113 sb->s_flags |= MS_RDONLY;
114 printk(KERN_INFO "btrfs is forced readonly\n");
119 * __btrfs_std_error decodes expected errors from the caller and
120 * invokes the approciate error response.
122 void __btrfs_std_error(struct btrfs_fs_info *fs_info, const char *function,
123 unsigned int line, int errno)
125 struct super_block *sb = fs_info->sb;
126 char nbuf[16];
127 const char *errstr;
130 * Special case: if the error is EROFS, and we're already
131 * under MS_RDONLY, then it is safe here.
133 if (errno == -EROFS && (sb->s_flags & MS_RDONLY))
134 return;
136 errstr = btrfs_decode_error(fs_info, errno, nbuf);
137 printk(KERN_CRIT "BTRFS error (device %s) in %s:%d: %s\n",
138 sb->s_id, function, line, errstr);
139 save_error_info(fs_info);
141 btrfs_handle_error(fs_info);
144 static void btrfs_put_super(struct super_block *sb)
146 struct btrfs_root *root = btrfs_sb(sb);
147 int ret;
149 ret = close_ctree(root);
150 sb->s_fs_info = NULL;
152 (void)ret; /* FIXME: need to fix VFS to return error? */
155 enum {
156 Opt_degraded, Opt_subvol, Opt_subvolid, Opt_device, Opt_nodatasum,
157 Opt_nodatacow, Opt_max_inline, Opt_alloc_start, Opt_nobarrier, Opt_ssd,
158 Opt_nossd, Opt_ssd_spread, Opt_thread_pool, Opt_noacl, Opt_compress,
159 Opt_compress_type, Opt_compress_force, Opt_compress_force_type,
160 Opt_notreelog, Opt_ratio, Opt_flushoncommit, Opt_discard,
161 Opt_space_cache, Opt_clear_cache, Opt_user_subvol_rm_allowed,
162 Opt_enospc_debug, Opt_err,
165 static match_table_t tokens = {
166 {Opt_degraded, "degraded"},
167 {Opt_subvol, "subvol=%s"},
168 {Opt_subvolid, "subvolid=%d"},
169 {Opt_device, "device=%s"},
170 {Opt_nodatasum, "nodatasum"},
171 {Opt_nodatacow, "nodatacow"},
172 {Opt_nobarrier, "nobarrier"},
173 {Opt_max_inline, "max_inline=%s"},
174 {Opt_alloc_start, "alloc_start=%s"},
175 {Opt_thread_pool, "thread_pool=%d"},
176 {Opt_compress, "compress"},
177 {Opt_compress_type, "compress=%s"},
178 {Opt_compress_force, "compress-force"},
179 {Opt_compress_force_type, "compress-force=%s"},
180 {Opt_ssd, "ssd"},
181 {Opt_ssd_spread, "ssd_spread"},
182 {Opt_nossd, "nossd"},
183 {Opt_noacl, "noacl"},
184 {Opt_notreelog, "notreelog"},
185 {Opt_flushoncommit, "flushoncommit"},
186 {Opt_ratio, "metadata_ratio=%d"},
187 {Opt_discard, "discard"},
188 {Opt_space_cache, "space_cache"},
189 {Opt_clear_cache, "clear_cache"},
190 {Opt_user_subvol_rm_allowed, "user_subvol_rm_allowed"},
191 {Opt_enospc_debug, "enospc_debug"},
192 {Opt_err, NULL},
196 * Regular mount options parser. Everything that is needed only when
197 * reading in a new superblock is parsed here.
199 int btrfs_parse_options(struct btrfs_root *root, char *options)
201 struct btrfs_fs_info *info = root->fs_info;
202 substring_t args[MAX_OPT_ARGS];
203 char *p, *num, *orig;
204 int intarg;
205 int ret = 0;
206 char *compress_type;
207 bool compress_force = false;
209 if (!options)
210 return 0;
213 * strsep changes the string, duplicate it because parse_options
214 * gets called twice
216 options = kstrdup(options, GFP_NOFS);
217 if (!options)
218 return -ENOMEM;
220 orig = options;
222 while ((p = strsep(&options, ",")) != NULL) {
223 int token;
224 if (!*p)
225 continue;
227 token = match_token(p, tokens, args);
228 switch (token) {
229 case Opt_degraded:
230 printk(KERN_INFO "btrfs: allowing degraded mounts\n");
231 btrfs_set_opt(info->mount_opt, DEGRADED);
232 break;
233 case Opt_subvol:
234 case Opt_subvolid:
235 case Opt_device:
237 * These are parsed by btrfs_parse_early_options
238 * and can be happily ignored here.
240 break;
241 case Opt_nodatasum:
242 printk(KERN_INFO "btrfs: setting nodatasum\n");
243 btrfs_set_opt(info->mount_opt, NODATASUM);
244 break;
245 case Opt_nodatacow:
246 printk(KERN_INFO "btrfs: setting nodatacow\n");
247 btrfs_set_opt(info->mount_opt, NODATACOW);
248 btrfs_set_opt(info->mount_opt, NODATASUM);
249 break;
250 case Opt_compress_force:
251 case Opt_compress_force_type:
252 compress_force = true;
253 case Opt_compress:
254 case Opt_compress_type:
255 if (token == Opt_compress ||
256 token == Opt_compress_force ||
257 strcmp(args[0].from, "zlib") == 0) {
258 compress_type = "zlib";
259 info->compress_type = BTRFS_COMPRESS_ZLIB;
260 } else if (strcmp(args[0].from, "lzo") == 0) {
261 compress_type = "lzo";
262 info->compress_type = BTRFS_COMPRESS_LZO;
263 } else {
264 ret = -EINVAL;
265 goto out;
268 btrfs_set_opt(info->mount_opt, COMPRESS);
269 if (compress_force) {
270 btrfs_set_opt(info->mount_opt, FORCE_COMPRESS);
271 pr_info("btrfs: force %s compression\n",
272 compress_type);
273 } else
274 pr_info("btrfs: use %s compression\n",
275 compress_type);
276 break;
277 case Opt_ssd:
278 printk(KERN_INFO "btrfs: use ssd allocation scheme\n");
279 btrfs_set_opt(info->mount_opt, SSD);
280 break;
281 case Opt_ssd_spread:
282 printk(KERN_INFO "btrfs: use spread ssd "
283 "allocation scheme\n");
284 btrfs_set_opt(info->mount_opt, SSD);
285 btrfs_set_opt(info->mount_opt, SSD_SPREAD);
286 break;
287 case Opt_nossd:
288 printk(KERN_INFO "btrfs: not using ssd allocation "
289 "scheme\n");
290 btrfs_set_opt(info->mount_opt, NOSSD);
291 btrfs_clear_opt(info->mount_opt, SSD);
292 btrfs_clear_opt(info->mount_opt, SSD_SPREAD);
293 break;
294 case Opt_nobarrier:
295 printk(KERN_INFO "btrfs: turning off barriers\n");
296 btrfs_set_opt(info->mount_opt, NOBARRIER);
297 break;
298 case Opt_thread_pool:
299 intarg = 0;
300 match_int(&args[0], &intarg);
301 if (intarg) {
302 info->thread_pool_size = intarg;
303 printk(KERN_INFO "btrfs: thread pool %d\n",
304 info->thread_pool_size);
306 break;
307 case Opt_max_inline:
308 num = match_strdup(&args[0]);
309 if (num) {
310 info->max_inline = memparse(num, NULL);
311 kfree(num);
313 if (info->max_inline) {
314 info->max_inline = max_t(u64,
315 info->max_inline,
316 root->sectorsize);
318 printk(KERN_INFO "btrfs: max_inline at %llu\n",
319 (unsigned long long)info->max_inline);
321 break;
322 case Opt_alloc_start:
323 num = match_strdup(&args[0]);
324 if (num) {
325 info->alloc_start = memparse(num, NULL);
326 kfree(num);
327 printk(KERN_INFO
328 "btrfs: allocations start at %llu\n",
329 (unsigned long long)info->alloc_start);
331 break;
332 case Opt_noacl:
333 root->fs_info->sb->s_flags &= ~MS_POSIXACL;
334 break;
335 case Opt_notreelog:
336 printk(KERN_INFO "btrfs: disabling tree log\n");
337 btrfs_set_opt(info->mount_opt, NOTREELOG);
338 break;
339 case Opt_flushoncommit:
340 printk(KERN_INFO "btrfs: turning on flush-on-commit\n");
341 btrfs_set_opt(info->mount_opt, FLUSHONCOMMIT);
342 break;
343 case Opt_ratio:
344 intarg = 0;
345 match_int(&args[0], &intarg);
346 if (intarg) {
347 info->metadata_ratio = intarg;
348 printk(KERN_INFO "btrfs: metadata ratio %d\n",
349 info->metadata_ratio);
351 break;
352 case Opt_discard:
353 btrfs_set_opt(info->mount_opt, DISCARD);
354 break;
355 case Opt_space_cache:
356 printk(KERN_INFO "btrfs: enabling disk space caching\n");
357 btrfs_set_opt(info->mount_opt, SPACE_CACHE);
358 break;
359 case Opt_clear_cache:
360 printk(KERN_INFO "btrfs: force clearing of disk cache\n");
361 btrfs_set_opt(info->mount_opt, CLEAR_CACHE);
362 break;
363 case Opt_user_subvol_rm_allowed:
364 btrfs_set_opt(info->mount_opt, USER_SUBVOL_RM_ALLOWED);
365 break;
366 case Opt_enospc_debug:
367 btrfs_set_opt(info->mount_opt, ENOSPC_DEBUG);
368 break;
369 case Opt_err:
370 printk(KERN_INFO "btrfs: unrecognized mount option "
371 "'%s'\n", p);
372 ret = -EINVAL;
373 goto out;
374 default:
375 break;
378 out:
379 kfree(orig);
380 return ret;
384 * Parse mount options that are required early in the mount process.
386 * All other options will be parsed on much later in the mount process and
387 * only when we need to allocate a new super block.
389 static int btrfs_parse_early_options(const char *options, fmode_t flags,
390 void *holder, char **subvol_name, u64 *subvol_objectid,
391 struct btrfs_fs_devices **fs_devices)
393 substring_t args[MAX_OPT_ARGS];
394 char *opts, *orig, *p;
395 int error = 0;
396 int intarg;
398 if (!options)
399 goto out;
402 * strsep changes the string, duplicate it because parse_options
403 * gets called twice
405 opts = kstrdup(options, GFP_KERNEL);
406 if (!opts)
407 return -ENOMEM;
408 orig = opts;
410 while ((p = strsep(&opts, ",")) != NULL) {
411 int token;
412 if (!*p)
413 continue;
415 token = match_token(p, tokens, args);
416 switch (token) {
417 case Opt_subvol:
418 *subvol_name = match_strdup(&args[0]);
419 break;
420 case Opt_subvolid:
421 intarg = 0;
422 error = match_int(&args[0], &intarg);
423 if (!error) {
424 /* we want the original fs_tree */
425 if (!intarg)
426 *subvol_objectid =
427 BTRFS_FS_TREE_OBJECTID;
428 else
429 *subvol_objectid = intarg;
431 break;
432 case Opt_device:
433 error = btrfs_scan_one_device(match_strdup(&args[0]),
434 flags, holder, fs_devices);
435 if (error)
436 goto out_free_opts;
437 break;
438 default:
439 break;
443 out_free_opts:
444 kfree(orig);
445 out:
447 * If no subvolume name is specified we use the default one. Allocate
448 * a copy of the string "." here so that code later in the
449 * mount path doesn't care if it's the default volume or another one.
451 if (!*subvol_name) {
452 *subvol_name = kstrdup(".", GFP_KERNEL);
453 if (!*subvol_name)
454 return -ENOMEM;
456 return error;
459 static struct dentry *get_default_root(struct super_block *sb,
460 u64 subvol_objectid)
462 struct btrfs_root *root = sb->s_fs_info;
463 struct btrfs_root *new_root;
464 struct btrfs_dir_item *di;
465 struct btrfs_path *path;
466 struct btrfs_key location;
467 struct inode *inode;
468 struct dentry *dentry;
469 u64 dir_id;
470 int new = 0;
473 * We have a specific subvol we want to mount, just setup location and
474 * go look up the root.
476 if (subvol_objectid) {
477 location.objectid = subvol_objectid;
478 location.type = BTRFS_ROOT_ITEM_KEY;
479 location.offset = (u64)-1;
480 goto find_root;
483 path = btrfs_alloc_path();
484 if (!path)
485 return ERR_PTR(-ENOMEM);
486 path->leave_spinning = 1;
489 * Find the "default" dir item which points to the root item that we
490 * will mount by default if we haven't been given a specific subvolume
491 * to mount.
493 dir_id = btrfs_super_root_dir(&root->fs_info->super_copy);
494 di = btrfs_lookup_dir_item(NULL, root, path, dir_id, "default", 7, 0);
495 if (IS_ERR(di))
496 return ERR_CAST(di);
497 if (!di) {
499 * Ok the default dir item isn't there. This is weird since
500 * it's always been there, but don't freak out, just try and
501 * mount to root most subvolume.
503 btrfs_free_path(path);
504 dir_id = BTRFS_FIRST_FREE_OBJECTID;
505 new_root = root->fs_info->fs_root;
506 goto setup_root;
509 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
510 btrfs_free_path(path);
512 find_root:
513 new_root = btrfs_read_fs_root_no_name(root->fs_info, &location);
514 if (IS_ERR(new_root))
515 return ERR_CAST(new_root);
517 if (btrfs_root_refs(&new_root->root_item) == 0)
518 return ERR_PTR(-ENOENT);
520 dir_id = btrfs_root_dirid(&new_root->root_item);
521 setup_root:
522 location.objectid = dir_id;
523 location.type = BTRFS_INODE_ITEM_KEY;
524 location.offset = 0;
526 inode = btrfs_iget(sb, &location, new_root, &new);
527 if (IS_ERR(inode))
528 return ERR_CAST(inode);
531 * If we're just mounting the root most subvol put the inode and return
532 * a reference to the dentry. We will have already gotten a reference
533 * to the inode in btrfs_fill_super so we're good to go.
535 if (!new && sb->s_root->d_inode == inode) {
536 iput(inode);
537 return dget(sb->s_root);
540 if (new) {
541 const struct qstr name = { .name = "/", .len = 1 };
544 * New inode, we need to make the dentry a sibling of s_root so
545 * everything gets cleaned up properly on unmount.
547 dentry = d_alloc(sb->s_root, &name);
548 if (!dentry) {
549 iput(inode);
550 return ERR_PTR(-ENOMEM);
552 d_splice_alias(inode, dentry);
553 } else {
555 * We found the inode in cache, just find a dentry for it and
556 * put the reference to the inode we just got.
558 dentry = d_find_alias(inode);
559 iput(inode);
562 return dentry;
565 static int btrfs_fill_super(struct super_block *sb,
566 struct btrfs_fs_devices *fs_devices,
567 void *data, int silent)
569 struct inode *inode;
570 struct dentry *root_dentry;
571 struct btrfs_root *tree_root;
572 struct btrfs_key key;
573 int err;
575 sb->s_maxbytes = MAX_LFS_FILESIZE;
576 sb->s_magic = BTRFS_SUPER_MAGIC;
577 sb->s_op = &btrfs_super_ops;
578 sb->s_d_op = &btrfs_dentry_operations;
579 sb->s_export_op = &btrfs_export_ops;
580 sb->s_xattr = btrfs_xattr_handlers;
581 sb->s_time_gran = 1;
582 #ifdef CONFIG_BTRFS_FS_POSIX_ACL
583 sb->s_flags |= MS_POSIXACL;
584 #endif
586 tree_root = open_ctree(sb, fs_devices, (char *)data);
588 if (IS_ERR(tree_root)) {
589 printk("btrfs: open_ctree failed\n");
590 return PTR_ERR(tree_root);
592 sb->s_fs_info = tree_root;
594 key.objectid = BTRFS_FIRST_FREE_OBJECTID;
595 key.type = BTRFS_INODE_ITEM_KEY;
596 key.offset = 0;
597 inode = btrfs_iget(sb, &key, tree_root->fs_info->fs_root, NULL);
598 if (IS_ERR(inode)) {
599 err = PTR_ERR(inode);
600 goto fail_close;
603 root_dentry = d_alloc_root(inode);
604 if (!root_dentry) {
605 iput(inode);
606 err = -ENOMEM;
607 goto fail_close;
610 sb->s_root = root_dentry;
612 save_mount_options(sb, data);
613 return 0;
615 fail_close:
616 close_ctree(tree_root);
617 return err;
620 int btrfs_sync_fs(struct super_block *sb, int wait)
622 struct btrfs_trans_handle *trans;
623 struct btrfs_root *root = btrfs_sb(sb);
624 int ret;
626 trace_btrfs_sync_fs(wait);
628 if (!wait) {
629 filemap_flush(root->fs_info->btree_inode->i_mapping);
630 return 0;
633 btrfs_start_delalloc_inodes(root, 0);
634 btrfs_wait_ordered_extents(root, 0, 0);
636 trans = btrfs_start_transaction(root, 0);
637 if (IS_ERR(trans))
638 return PTR_ERR(trans);
639 ret = btrfs_commit_transaction(trans, root);
640 return ret;
643 static int btrfs_show_options(struct seq_file *seq, struct vfsmount *vfs)
645 struct btrfs_root *root = btrfs_sb(vfs->mnt_sb);
646 struct btrfs_fs_info *info = root->fs_info;
647 char *compress_type;
649 if (btrfs_test_opt(root, DEGRADED))
650 seq_puts(seq, ",degraded");
651 if (btrfs_test_opt(root, NODATASUM))
652 seq_puts(seq, ",nodatasum");
653 if (btrfs_test_opt(root, NODATACOW))
654 seq_puts(seq, ",nodatacow");
655 if (btrfs_test_opt(root, NOBARRIER))
656 seq_puts(seq, ",nobarrier");
657 if (info->max_inline != 8192 * 1024)
658 seq_printf(seq, ",max_inline=%llu",
659 (unsigned long long)info->max_inline);
660 if (info->alloc_start != 0)
661 seq_printf(seq, ",alloc_start=%llu",
662 (unsigned long long)info->alloc_start);
663 if (info->thread_pool_size != min_t(unsigned long,
664 num_online_cpus() + 2, 8))
665 seq_printf(seq, ",thread_pool=%d", info->thread_pool_size);
666 if (btrfs_test_opt(root, COMPRESS)) {
667 if (info->compress_type == BTRFS_COMPRESS_ZLIB)
668 compress_type = "zlib";
669 else
670 compress_type = "lzo";
671 if (btrfs_test_opt(root, FORCE_COMPRESS))
672 seq_printf(seq, ",compress-force=%s", compress_type);
673 else
674 seq_printf(seq, ",compress=%s", compress_type);
676 if (btrfs_test_opt(root, NOSSD))
677 seq_puts(seq, ",nossd");
678 if (btrfs_test_opt(root, SSD_SPREAD))
679 seq_puts(seq, ",ssd_spread");
680 else if (btrfs_test_opt(root, SSD))
681 seq_puts(seq, ",ssd");
682 if (btrfs_test_opt(root, NOTREELOG))
683 seq_puts(seq, ",notreelog");
684 if (btrfs_test_opt(root, FLUSHONCOMMIT))
685 seq_puts(seq, ",flushoncommit");
686 if (btrfs_test_opt(root, DISCARD))
687 seq_puts(seq, ",discard");
688 if (!(root->fs_info->sb->s_flags & MS_POSIXACL))
689 seq_puts(seq, ",noacl");
690 if (btrfs_test_opt(root, SPACE_CACHE))
691 seq_puts(seq, ",space_cache");
692 if (btrfs_test_opt(root, CLEAR_CACHE))
693 seq_puts(seq, ",clear_cache");
694 if (btrfs_test_opt(root, USER_SUBVOL_RM_ALLOWED))
695 seq_puts(seq, ",user_subvol_rm_allowed");
696 return 0;
699 static int btrfs_test_super(struct super_block *s, void *data)
701 struct btrfs_root *test_root = data;
702 struct btrfs_root *root = btrfs_sb(s);
705 * If this super block is going away, return false as it
706 * can't match as an existing super block.
708 if (!atomic_read(&s->s_active))
709 return 0;
710 return root->fs_info->fs_devices == test_root->fs_info->fs_devices;
713 static int btrfs_set_super(struct super_block *s, void *data)
715 s->s_fs_info = data;
717 return set_anon_super(s, data);
722 * Find a superblock for the given device / mount point.
724 * Note: This is based on get_sb_bdev from fs/super.c with a few additions
725 * for multiple device setup. Make sure to keep it in sync.
727 static struct dentry *btrfs_mount(struct file_system_type *fs_type, int flags,
728 const char *dev_name, void *data)
730 struct block_device *bdev = NULL;
731 struct super_block *s;
732 struct dentry *root;
733 struct btrfs_fs_devices *fs_devices = NULL;
734 struct btrfs_root *tree_root = NULL;
735 struct btrfs_fs_info *fs_info = NULL;
736 fmode_t mode = FMODE_READ;
737 char *subvol_name = NULL;
738 u64 subvol_objectid = 0;
739 int error = 0;
741 if (!(flags & MS_RDONLY))
742 mode |= FMODE_WRITE;
744 error = btrfs_parse_early_options(data, mode, fs_type,
745 &subvol_name, &subvol_objectid,
746 &fs_devices);
747 if (error)
748 return ERR_PTR(error);
750 error = btrfs_scan_one_device(dev_name, mode, fs_type, &fs_devices);
751 if (error)
752 goto error_free_subvol_name;
754 error = btrfs_open_devices(fs_devices, mode, fs_type);
755 if (error)
756 goto error_free_subvol_name;
758 if (!(flags & MS_RDONLY) && fs_devices->rw_devices == 0) {
759 error = -EACCES;
760 goto error_close_devices;
764 * Setup a dummy root and fs_info for test/set super. This is because
765 * we don't actually fill this stuff out until open_ctree, but we need
766 * it for searching for existing supers, so this lets us do that and
767 * then open_ctree will properly initialize everything later.
769 fs_info = kzalloc(sizeof(struct btrfs_fs_info), GFP_NOFS);
770 tree_root = kzalloc(sizeof(struct btrfs_root), GFP_NOFS);
771 if (!fs_info || !tree_root) {
772 error = -ENOMEM;
773 goto error_close_devices;
775 fs_info->tree_root = tree_root;
776 fs_info->fs_devices = fs_devices;
777 tree_root->fs_info = fs_info;
779 bdev = fs_devices->latest_bdev;
780 s = sget(fs_type, btrfs_test_super, btrfs_set_super, tree_root);
781 if (IS_ERR(s))
782 goto error_s;
784 if (s->s_root) {
785 if ((flags ^ s->s_flags) & MS_RDONLY) {
786 deactivate_locked_super(s);
787 error = -EBUSY;
788 goto error_close_devices;
791 btrfs_close_devices(fs_devices);
792 kfree(fs_info);
793 kfree(tree_root);
794 } else {
795 char b[BDEVNAME_SIZE];
797 s->s_flags = flags;
798 strlcpy(s->s_id, bdevname(bdev, b), sizeof(s->s_id));
799 error = btrfs_fill_super(s, fs_devices, data,
800 flags & MS_SILENT ? 1 : 0);
801 if (error) {
802 deactivate_locked_super(s);
803 goto error_free_subvol_name;
806 btrfs_sb(s)->fs_info->bdev_holder = fs_type;
807 s->s_flags |= MS_ACTIVE;
810 root = get_default_root(s, subvol_objectid);
811 if (IS_ERR(root)) {
812 error = PTR_ERR(root);
813 deactivate_locked_super(s);
814 goto error_free_subvol_name;
816 /* if they gave us a subvolume name bind mount into that */
817 if (strcmp(subvol_name, ".")) {
818 struct dentry *new_root;
819 mutex_lock(&root->d_inode->i_mutex);
820 new_root = lookup_one_len(subvol_name, root,
821 strlen(subvol_name));
822 mutex_unlock(&root->d_inode->i_mutex);
824 if (IS_ERR(new_root)) {
825 dput(root);
826 deactivate_locked_super(s);
827 error = PTR_ERR(new_root);
828 goto error_free_subvol_name;
830 if (!new_root->d_inode) {
831 dput(root);
832 dput(new_root);
833 deactivate_locked_super(s);
834 error = -ENXIO;
835 goto error_free_subvol_name;
837 dput(root);
838 root = new_root;
841 kfree(subvol_name);
842 return root;
844 error_s:
845 error = PTR_ERR(s);
846 error_close_devices:
847 btrfs_close_devices(fs_devices);
848 kfree(fs_info);
849 kfree(tree_root);
850 error_free_subvol_name:
851 kfree(subvol_name);
852 return ERR_PTR(error);
855 static int btrfs_remount(struct super_block *sb, int *flags, char *data)
857 struct btrfs_root *root = btrfs_sb(sb);
858 int ret;
860 ret = btrfs_parse_options(root, data);
861 if (ret)
862 return -EINVAL;
864 if ((*flags & MS_RDONLY) == (sb->s_flags & MS_RDONLY))
865 return 0;
867 if (*flags & MS_RDONLY) {
868 sb->s_flags |= MS_RDONLY;
870 ret = btrfs_commit_super(root);
871 WARN_ON(ret);
872 } else {
873 if (root->fs_info->fs_devices->rw_devices == 0)
874 return -EACCES;
876 if (btrfs_super_log_root(&root->fs_info->super_copy) != 0)
877 return -EINVAL;
879 ret = btrfs_cleanup_fs_roots(root->fs_info);
880 WARN_ON(ret);
882 /* recover relocation */
883 ret = btrfs_recover_relocation(root);
884 WARN_ON(ret);
886 sb->s_flags &= ~MS_RDONLY;
889 return 0;
893 * The helper to calc the free space on the devices that can be used to store
894 * file data.
896 static int btrfs_calc_avail_data_space(struct btrfs_root *root, u64 *free_bytes)
898 struct btrfs_fs_info *fs_info = root->fs_info;
899 struct btrfs_device_info *devices_info;
900 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
901 struct btrfs_device *device;
902 u64 skip_space;
903 u64 type;
904 u64 avail_space;
905 u64 used_space;
906 u64 min_stripe_size;
907 int min_stripes = 1;
908 int i = 0, nr_devices;
909 int ret;
911 nr_devices = fs_info->fs_devices->rw_devices;
912 BUG_ON(!nr_devices);
914 devices_info = kmalloc(sizeof(*devices_info) * nr_devices,
915 GFP_NOFS);
916 if (!devices_info)
917 return -ENOMEM;
919 /* calc min stripe number for data space alloction */
920 type = btrfs_get_alloc_profile(root, 1);
921 if (type & BTRFS_BLOCK_GROUP_RAID0)
922 min_stripes = 2;
923 else if (type & BTRFS_BLOCK_GROUP_RAID1)
924 min_stripes = 2;
925 else if (type & BTRFS_BLOCK_GROUP_RAID10)
926 min_stripes = 4;
928 if (type & BTRFS_BLOCK_GROUP_DUP)
929 min_stripe_size = 2 * BTRFS_STRIPE_LEN;
930 else
931 min_stripe_size = BTRFS_STRIPE_LEN;
933 list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) {
934 if (!device->in_fs_metadata)
935 continue;
937 avail_space = device->total_bytes - device->bytes_used;
939 /* align with stripe_len */
940 do_div(avail_space, BTRFS_STRIPE_LEN);
941 avail_space *= BTRFS_STRIPE_LEN;
944 * In order to avoid overwritting the superblock on the drive,
945 * btrfs starts at an offset of at least 1MB when doing chunk
946 * allocation.
948 skip_space = 1024 * 1024;
950 /* user can set the offset in fs_info->alloc_start. */
951 if (fs_info->alloc_start + BTRFS_STRIPE_LEN <=
952 device->total_bytes)
953 skip_space = max(fs_info->alloc_start, skip_space);
956 * btrfs can not use the free space in [0, skip_space - 1],
957 * we must subtract it from the total. In order to implement
958 * it, we account the used space in this range first.
960 ret = btrfs_account_dev_extents_size(device, 0, skip_space - 1,
961 &used_space);
962 if (ret) {
963 kfree(devices_info);
964 return ret;
967 /* calc the free space in [0, skip_space - 1] */
968 skip_space -= used_space;
971 * we can use the free space in [0, skip_space - 1], subtract
972 * it from the total.
974 if (avail_space && avail_space >= skip_space)
975 avail_space -= skip_space;
976 else
977 avail_space = 0;
979 if (avail_space < min_stripe_size)
980 continue;
982 devices_info[i].dev = device;
983 devices_info[i].max_avail = avail_space;
985 i++;
988 nr_devices = i;
990 btrfs_descending_sort_devices(devices_info, nr_devices);
992 i = nr_devices - 1;
993 avail_space = 0;
994 while (nr_devices >= min_stripes) {
995 if (devices_info[i].max_avail >= min_stripe_size) {
996 int j;
997 u64 alloc_size;
999 avail_space += devices_info[i].max_avail * min_stripes;
1000 alloc_size = devices_info[i].max_avail;
1001 for (j = i + 1 - min_stripes; j <= i; j++)
1002 devices_info[j].max_avail -= alloc_size;
1004 i--;
1005 nr_devices--;
1008 kfree(devices_info);
1009 *free_bytes = avail_space;
1010 return 0;
1013 static int btrfs_statfs(struct dentry *dentry, struct kstatfs *buf)
1015 struct btrfs_root *root = btrfs_sb(dentry->d_sb);
1016 struct btrfs_super_block *disk_super = &root->fs_info->super_copy;
1017 struct list_head *head = &root->fs_info->space_info;
1018 struct btrfs_space_info *found;
1019 u64 total_used = 0;
1020 u64 total_free_data = 0;
1021 int bits = dentry->d_sb->s_blocksize_bits;
1022 __be32 *fsid = (__be32 *)root->fs_info->fsid;
1023 int ret;
1025 /* holding chunk_muext to avoid allocating new chunks */
1026 mutex_lock(&root->fs_info->chunk_mutex);
1027 rcu_read_lock();
1028 list_for_each_entry_rcu(found, head, list) {
1029 if (found->flags & BTRFS_BLOCK_GROUP_DATA) {
1030 total_free_data += found->disk_total - found->disk_used;
1031 total_free_data -=
1032 btrfs_account_ro_block_groups_free_space(found);
1035 total_used += found->disk_used;
1037 rcu_read_unlock();
1039 buf->f_namelen = BTRFS_NAME_LEN;
1040 buf->f_blocks = btrfs_super_total_bytes(disk_super) >> bits;
1041 buf->f_bfree = buf->f_blocks - (total_used >> bits);
1042 buf->f_bsize = dentry->d_sb->s_blocksize;
1043 buf->f_type = BTRFS_SUPER_MAGIC;
1044 buf->f_bavail = total_free_data;
1045 ret = btrfs_calc_avail_data_space(root, &total_free_data);
1046 if (ret) {
1047 mutex_unlock(&root->fs_info->chunk_mutex);
1048 return ret;
1050 buf->f_bavail += total_free_data;
1051 buf->f_bavail = buf->f_bavail >> bits;
1052 mutex_unlock(&root->fs_info->chunk_mutex);
1054 /* We treat it as constant endianness (it doesn't matter _which_)
1055 because we want the fsid to come out the same whether mounted
1056 on a big-endian or little-endian host */
1057 buf->f_fsid.val[0] = be32_to_cpu(fsid[0]) ^ be32_to_cpu(fsid[2]);
1058 buf->f_fsid.val[1] = be32_to_cpu(fsid[1]) ^ be32_to_cpu(fsid[3]);
1059 /* Mask in the root object ID too, to disambiguate subvols */
1060 buf->f_fsid.val[0] ^= BTRFS_I(dentry->d_inode)->root->objectid >> 32;
1061 buf->f_fsid.val[1] ^= BTRFS_I(dentry->d_inode)->root->objectid;
1063 return 0;
1066 static struct file_system_type btrfs_fs_type = {
1067 .owner = THIS_MODULE,
1068 .name = "btrfs",
1069 .mount = btrfs_mount,
1070 .kill_sb = kill_anon_super,
1071 .fs_flags = FS_REQUIRES_DEV,
1075 * used by btrfsctl to scan devices when no FS is mounted
1077 static long btrfs_control_ioctl(struct file *file, unsigned int cmd,
1078 unsigned long arg)
1080 struct btrfs_ioctl_vol_args *vol;
1081 struct btrfs_fs_devices *fs_devices;
1082 int ret = -ENOTTY;
1084 if (!capable(CAP_SYS_ADMIN))
1085 return -EPERM;
1087 vol = memdup_user((void __user *)arg, sizeof(*vol));
1088 if (IS_ERR(vol))
1089 return PTR_ERR(vol);
1091 switch (cmd) {
1092 case BTRFS_IOC_SCAN_DEV:
1093 ret = btrfs_scan_one_device(vol->name, FMODE_READ,
1094 &btrfs_fs_type, &fs_devices);
1095 break;
1098 kfree(vol);
1099 return ret;
1102 static int btrfs_freeze(struct super_block *sb)
1104 struct btrfs_root *root = btrfs_sb(sb);
1105 mutex_lock(&root->fs_info->transaction_kthread_mutex);
1106 mutex_lock(&root->fs_info->cleaner_mutex);
1107 return 0;
1110 static int btrfs_unfreeze(struct super_block *sb)
1112 struct btrfs_root *root = btrfs_sb(sb);
1113 mutex_unlock(&root->fs_info->cleaner_mutex);
1114 mutex_unlock(&root->fs_info->transaction_kthread_mutex);
1115 return 0;
1118 static const struct super_operations btrfs_super_ops = {
1119 .drop_inode = btrfs_drop_inode,
1120 .evict_inode = btrfs_evict_inode,
1121 .put_super = btrfs_put_super,
1122 .sync_fs = btrfs_sync_fs,
1123 .show_options = btrfs_show_options,
1124 .write_inode = btrfs_write_inode,
1125 .dirty_inode = btrfs_dirty_inode,
1126 .alloc_inode = btrfs_alloc_inode,
1127 .destroy_inode = btrfs_destroy_inode,
1128 .statfs = btrfs_statfs,
1129 .remount_fs = btrfs_remount,
1130 .freeze_fs = btrfs_freeze,
1131 .unfreeze_fs = btrfs_unfreeze,
1134 static const struct file_operations btrfs_ctl_fops = {
1135 .unlocked_ioctl = btrfs_control_ioctl,
1136 .compat_ioctl = btrfs_control_ioctl,
1137 .owner = THIS_MODULE,
1138 .llseek = noop_llseek,
1141 static struct miscdevice btrfs_misc = {
1142 .minor = BTRFS_MINOR,
1143 .name = "btrfs-control",
1144 .fops = &btrfs_ctl_fops
1147 MODULE_ALIAS_MISCDEV(BTRFS_MINOR);
1148 MODULE_ALIAS("devname:btrfs-control");
1150 static int btrfs_interface_init(void)
1152 return misc_register(&btrfs_misc);
1155 static void btrfs_interface_exit(void)
1157 if (misc_deregister(&btrfs_misc) < 0)
1158 printk(KERN_INFO "misc_deregister failed for control device");
1161 static int __init init_btrfs_fs(void)
1163 int err;
1165 err = btrfs_init_sysfs();
1166 if (err)
1167 return err;
1169 err = btrfs_init_compress();
1170 if (err)
1171 goto free_sysfs;
1173 err = btrfs_init_cachep();
1174 if (err)
1175 goto free_compress;
1177 err = extent_io_init();
1178 if (err)
1179 goto free_cachep;
1181 err = extent_map_init();
1182 if (err)
1183 goto free_extent_io;
1185 err = btrfs_interface_init();
1186 if (err)
1187 goto free_extent_map;
1189 err = register_filesystem(&btrfs_fs_type);
1190 if (err)
1191 goto unregister_ioctl;
1193 printk(KERN_INFO "%s loaded\n", BTRFS_BUILD_VERSION);
1194 return 0;
1196 unregister_ioctl:
1197 btrfs_interface_exit();
1198 free_extent_map:
1199 extent_map_exit();
1200 free_extent_io:
1201 extent_io_exit();
1202 free_cachep:
1203 btrfs_destroy_cachep();
1204 free_compress:
1205 btrfs_exit_compress();
1206 free_sysfs:
1207 btrfs_exit_sysfs();
1208 return err;
1211 static void __exit exit_btrfs_fs(void)
1213 btrfs_destroy_cachep();
1214 extent_map_exit();
1215 extent_io_exit();
1216 btrfs_interface_exit();
1217 unregister_filesystem(&btrfs_fs_type);
1218 btrfs_exit_sysfs();
1219 btrfs_cleanup_fs_uuids();
1220 btrfs_exit_compress();
1223 module_init(init_btrfs_fs)
1224 module_exit(exit_btrfs_fs)
1226 MODULE_LICENSE("GPL");