PCI: remove pci_get_device_reverse from calgary driver
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / drivers / net / s2io.c
blobdcbe01b0ca0de05d3c21d75f5661858d88157232
1 /************************************************************************
2 * s2io.c: A Linux PCI-X Ethernet driver for Neterion 10GbE Server NIC
3 * Copyright(c) 2002-2007 Neterion Inc.
5 * This software may be used and distributed according to the terms of
6 * the GNU General Public License (GPL), incorporated herein by reference.
7 * Drivers based on or derived from this code fall under the GPL and must
8 * retain the authorship, copyright and license notice. This file is not
9 * a complete program and may only be used when the entire operating
10 * system is licensed under the GPL.
11 * See the file COPYING in this distribution for more information.
13 * Credits:
14 * Jeff Garzik : For pointing out the improper error condition
15 * check in the s2io_xmit routine and also some
16 * issues in the Tx watch dog function. Also for
17 * patiently answering all those innumerable
18 * questions regaring the 2.6 porting issues.
19 * Stephen Hemminger : Providing proper 2.6 porting mechanism for some
20 * macros available only in 2.6 Kernel.
21 * Francois Romieu : For pointing out all code part that were
22 * deprecated and also styling related comments.
23 * Grant Grundler : For helping me get rid of some Architecture
24 * dependent code.
25 * Christopher Hellwig : Some more 2.6 specific issues in the driver.
27 * The module loadable parameters that are supported by the driver and a brief
28 * explaination of all the variables.
30 * rx_ring_num : This can be used to program the number of receive rings used
31 * in the driver.
32 * rx_ring_sz: This defines the number of receive blocks each ring can have.
33 * This is also an array of size 8.
34 * rx_ring_mode: This defines the operation mode of all 8 rings. The valid
35 * values are 1, 2.
36 * tx_fifo_num: This defines the number of Tx FIFOs thats used int the driver.
37 * tx_fifo_len: This too is an array of 8. Each element defines the number of
38 * Tx descriptors that can be associated with each corresponding FIFO.
39 * intr_type: This defines the type of interrupt. The values can be 0(INTA),
40 * 2(MSI_X). Default value is '2(MSI_X)'
41 * lro_enable: Specifies whether to enable Large Receive Offload (LRO) or not.
42 * Possible values '1' for enable '0' for disable. Default is '0'
43 * lro_max_pkts: This parameter defines maximum number of packets can be
44 * aggregated as a single large packet
45 * napi: This parameter used to enable/disable NAPI (polling Rx)
46 * Possible values '1' for enable and '0' for disable. Default is '1'
47 * ufo: This parameter used to enable/disable UDP Fragmentation Offload(UFO)
48 * Possible values '1' for enable and '0' for disable. Default is '0'
49 * vlan_tag_strip: This can be used to enable or disable vlan stripping.
50 * Possible values '1' for enable , '0' for disable.
51 * Default is '2' - which means disable in promisc mode
52 * and enable in non-promiscuous mode.
53 * multiq: This parameter used to enable/disable MULTIQUEUE support.
54 * Possible values '1' for enable and '0' for disable. Default is '0'
55 ************************************************************************/
57 #include <linux/module.h>
58 #include <linux/types.h>
59 #include <linux/errno.h>
60 #include <linux/ioport.h>
61 #include <linux/pci.h>
62 #include <linux/dma-mapping.h>
63 #include <linux/kernel.h>
64 #include <linux/netdevice.h>
65 #include <linux/etherdevice.h>
66 #include <linux/skbuff.h>
67 #include <linux/init.h>
68 #include <linux/delay.h>
69 #include <linux/stddef.h>
70 #include <linux/ioctl.h>
71 #include <linux/timex.h>
72 #include <linux/ethtool.h>
73 #include <linux/workqueue.h>
74 #include <linux/if_vlan.h>
75 #include <linux/ip.h>
76 #include <linux/tcp.h>
77 #include <net/tcp.h>
79 #include <asm/system.h>
80 #include <asm/uaccess.h>
81 #include <asm/io.h>
82 #include <asm/div64.h>
83 #include <asm/irq.h>
85 /* local include */
86 #include "s2io.h"
87 #include "s2io-regs.h"
89 #define DRV_VERSION "2.0.26.20"
91 /* S2io Driver name & version. */
92 static char s2io_driver_name[] = "Neterion";
93 static char s2io_driver_version[] = DRV_VERSION;
95 static int rxd_size[2] = {32,48};
96 static int rxd_count[2] = {127,85};
98 static inline int RXD_IS_UP2DT(struct RxD_t *rxdp)
100 int ret;
102 ret = ((!(rxdp->Control_1 & RXD_OWN_XENA)) &&
103 (GET_RXD_MARKER(rxdp->Control_2) != THE_RXD_MARK));
105 return ret;
109 * Cards with following subsystem_id have a link state indication
110 * problem, 600B, 600C, 600D, 640B, 640C and 640D.
111 * macro below identifies these cards given the subsystem_id.
113 #define CARDS_WITH_FAULTY_LINK_INDICATORS(dev_type, subid) \
114 (dev_type == XFRAME_I_DEVICE) ? \
115 ((((subid >= 0x600B) && (subid <= 0x600D)) || \
116 ((subid >= 0x640B) && (subid <= 0x640D))) ? 1 : 0) : 0
118 #define LINK_IS_UP(val64) (!(val64 & (ADAPTER_STATUS_RMAC_REMOTE_FAULT | \
119 ADAPTER_STATUS_RMAC_LOCAL_FAULT)))
120 #define TASKLET_IN_USE test_and_set_bit(0, (&sp->tasklet_status))
121 #define PANIC 1
122 #define LOW 2
123 static inline int rx_buffer_level(struct s2io_nic * sp, int rxb_size, int ring)
125 struct mac_info *mac_control;
127 mac_control = &sp->mac_control;
128 if (rxb_size <= rxd_count[sp->rxd_mode])
129 return PANIC;
130 else if ((mac_control->rings[ring].pkt_cnt - rxb_size) > 16)
131 return LOW;
132 return 0;
135 static inline int is_s2io_card_up(const struct s2io_nic * sp)
137 return test_bit(__S2IO_STATE_CARD_UP, &sp->state);
140 /* Ethtool related variables and Macros. */
141 static char s2io_gstrings[][ETH_GSTRING_LEN] = {
142 "Register test\t(offline)",
143 "Eeprom test\t(offline)",
144 "Link test\t(online)",
145 "RLDRAM test\t(offline)",
146 "BIST Test\t(offline)"
149 static char ethtool_xena_stats_keys[][ETH_GSTRING_LEN] = {
150 {"tmac_frms"},
151 {"tmac_data_octets"},
152 {"tmac_drop_frms"},
153 {"tmac_mcst_frms"},
154 {"tmac_bcst_frms"},
155 {"tmac_pause_ctrl_frms"},
156 {"tmac_ttl_octets"},
157 {"tmac_ucst_frms"},
158 {"tmac_nucst_frms"},
159 {"tmac_any_err_frms"},
160 {"tmac_ttl_less_fb_octets"},
161 {"tmac_vld_ip_octets"},
162 {"tmac_vld_ip"},
163 {"tmac_drop_ip"},
164 {"tmac_icmp"},
165 {"tmac_rst_tcp"},
166 {"tmac_tcp"},
167 {"tmac_udp"},
168 {"rmac_vld_frms"},
169 {"rmac_data_octets"},
170 {"rmac_fcs_err_frms"},
171 {"rmac_drop_frms"},
172 {"rmac_vld_mcst_frms"},
173 {"rmac_vld_bcst_frms"},
174 {"rmac_in_rng_len_err_frms"},
175 {"rmac_out_rng_len_err_frms"},
176 {"rmac_long_frms"},
177 {"rmac_pause_ctrl_frms"},
178 {"rmac_unsup_ctrl_frms"},
179 {"rmac_ttl_octets"},
180 {"rmac_accepted_ucst_frms"},
181 {"rmac_accepted_nucst_frms"},
182 {"rmac_discarded_frms"},
183 {"rmac_drop_events"},
184 {"rmac_ttl_less_fb_octets"},
185 {"rmac_ttl_frms"},
186 {"rmac_usized_frms"},
187 {"rmac_osized_frms"},
188 {"rmac_frag_frms"},
189 {"rmac_jabber_frms"},
190 {"rmac_ttl_64_frms"},
191 {"rmac_ttl_65_127_frms"},
192 {"rmac_ttl_128_255_frms"},
193 {"rmac_ttl_256_511_frms"},
194 {"rmac_ttl_512_1023_frms"},
195 {"rmac_ttl_1024_1518_frms"},
196 {"rmac_ip"},
197 {"rmac_ip_octets"},
198 {"rmac_hdr_err_ip"},
199 {"rmac_drop_ip"},
200 {"rmac_icmp"},
201 {"rmac_tcp"},
202 {"rmac_udp"},
203 {"rmac_err_drp_udp"},
204 {"rmac_xgmii_err_sym"},
205 {"rmac_frms_q0"},
206 {"rmac_frms_q1"},
207 {"rmac_frms_q2"},
208 {"rmac_frms_q3"},
209 {"rmac_frms_q4"},
210 {"rmac_frms_q5"},
211 {"rmac_frms_q6"},
212 {"rmac_frms_q7"},
213 {"rmac_full_q0"},
214 {"rmac_full_q1"},
215 {"rmac_full_q2"},
216 {"rmac_full_q3"},
217 {"rmac_full_q4"},
218 {"rmac_full_q5"},
219 {"rmac_full_q6"},
220 {"rmac_full_q7"},
221 {"rmac_pause_cnt"},
222 {"rmac_xgmii_data_err_cnt"},
223 {"rmac_xgmii_ctrl_err_cnt"},
224 {"rmac_accepted_ip"},
225 {"rmac_err_tcp"},
226 {"rd_req_cnt"},
227 {"new_rd_req_cnt"},
228 {"new_rd_req_rtry_cnt"},
229 {"rd_rtry_cnt"},
230 {"wr_rtry_rd_ack_cnt"},
231 {"wr_req_cnt"},
232 {"new_wr_req_cnt"},
233 {"new_wr_req_rtry_cnt"},
234 {"wr_rtry_cnt"},
235 {"wr_disc_cnt"},
236 {"rd_rtry_wr_ack_cnt"},
237 {"txp_wr_cnt"},
238 {"txd_rd_cnt"},
239 {"txd_wr_cnt"},
240 {"rxd_rd_cnt"},
241 {"rxd_wr_cnt"},
242 {"txf_rd_cnt"},
243 {"rxf_wr_cnt"}
246 static char ethtool_enhanced_stats_keys[][ETH_GSTRING_LEN] = {
247 {"rmac_ttl_1519_4095_frms"},
248 {"rmac_ttl_4096_8191_frms"},
249 {"rmac_ttl_8192_max_frms"},
250 {"rmac_ttl_gt_max_frms"},
251 {"rmac_osized_alt_frms"},
252 {"rmac_jabber_alt_frms"},
253 {"rmac_gt_max_alt_frms"},
254 {"rmac_vlan_frms"},
255 {"rmac_len_discard"},
256 {"rmac_fcs_discard"},
257 {"rmac_pf_discard"},
258 {"rmac_da_discard"},
259 {"rmac_red_discard"},
260 {"rmac_rts_discard"},
261 {"rmac_ingm_full_discard"},
262 {"link_fault_cnt"}
265 static char ethtool_driver_stats_keys[][ETH_GSTRING_LEN] = {
266 {"\n DRIVER STATISTICS"},
267 {"single_bit_ecc_errs"},
268 {"double_bit_ecc_errs"},
269 {"parity_err_cnt"},
270 {"serious_err_cnt"},
271 {"soft_reset_cnt"},
272 {"fifo_full_cnt"},
273 {"ring_0_full_cnt"},
274 {"ring_1_full_cnt"},
275 {"ring_2_full_cnt"},
276 {"ring_3_full_cnt"},
277 {"ring_4_full_cnt"},
278 {"ring_5_full_cnt"},
279 {"ring_6_full_cnt"},
280 {"ring_7_full_cnt"},
281 {"alarm_transceiver_temp_high"},
282 {"alarm_transceiver_temp_low"},
283 {"alarm_laser_bias_current_high"},
284 {"alarm_laser_bias_current_low"},
285 {"alarm_laser_output_power_high"},
286 {"alarm_laser_output_power_low"},
287 {"warn_transceiver_temp_high"},
288 {"warn_transceiver_temp_low"},
289 {"warn_laser_bias_current_high"},
290 {"warn_laser_bias_current_low"},
291 {"warn_laser_output_power_high"},
292 {"warn_laser_output_power_low"},
293 {"lro_aggregated_pkts"},
294 {"lro_flush_both_count"},
295 {"lro_out_of_sequence_pkts"},
296 {"lro_flush_due_to_max_pkts"},
297 {"lro_avg_aggr_pkts"},
298 {"mem_alloc_fail_cnt"},
299 {"pci_map_fail_cnt"},
300 {"watchdog_timer_cnt"},
301 {"mem_allocated"},
302 {"mem_freed"},
303 {"link_up_cnt"},
304 {"link_down_cnt"},
305 {"link_up_time"},
306 {"link_down_time"},
307 {"tx_tcode_buf_abort_cnt"},
308 {"tx_tcode_desc_abort_cnt"},
309 {"tx_tcode_parity_err_cnt"},
310 {"tx_tcode_link_loss_cnt"},
311 {"tx_tcode_list_proc_err_cnt"},
312 {"rx_tcode_parity_err_cnt"},
313 {"rx_tcode_abort_cnt"},
314 {"rx_tcode_parity_abort_cnt"},
315 {"rx_tcode_rda_fail_cnt"},
316 {"rx_tcode_unkn_prot_cnt"},
317 {"rx_tcode_fcs_err_cnt"},
318 {"rx_tcode_buf_size_err_cnt"},
319 {"rx_tcode_rxd_corrupt_cnt"},
320 {"rx_tcode_unkn_err_cnt"},
321 {"tda_err_cnt"},
322 {"pfc_err_cnt"},
323 {"pcc_err_cnt"},
324 {"tti_err_cnt"},
325 {"tpa_err_cnt"},
326 {"sm_err_cnt"},
327 {"lso_err_cnt"},
328 {"mac_tmac_err_cnt"},
329 {"mac_rmac_err_cnt"},
330 {"xgxs_txgxs_err_cnt"},
331 {"xgxs_rxgxs_err_cnt"},
332 {"rc_err_cnt"},
333 {"prc_pcix_err_cnt"},
334 {"rpa_err_cnt"},
335 {"rda_err_cnt"},
336 {"rti_err_cnt"},
337 {"mc_err_cnt"}
340 #define S2IO_XENA_STAT_LEN ARRAY_SIZE(ethtool_xena_stats_keys)
341 #define S2IO_ENHANCED_STAT_LEN ARRAY_SIZE(ethtool_enhanced_stats_keys)
342 #define S2IO_DRIVER_STAT_LEN ARRAY_SIZE(ethtool_driver_stats_keys)
344 #define XFRAME_I_STAT_LEN (S2IO_XENA_STAT_LEN + S2IO_DRIVER_STAT_LEN )
345 #define XFRAME_II_STAT_LEN (XFRAME_I_STAT_LEN + S2IO_ENHANCED_STAT_LEN )
347 #define XFRAME_I_STAT_STRINGS_LEN ( XFRAME_I_STAT_LEN * ETH_GSTRING_LEN )
348 #define XFRAME_II_STAT_STRINGS_LEN ( XFRAME_II_STAT_LEN * ETH_GSTRING_LEN )
350 #define S2IO_TEST_LEN ARRAY_SIZE(s2io_gstrings)
351 #define S2IO_STRINGS_LEN S2IO_TEST_LEN * ETH_GSTRING_LEN
353 #define S2IO_TIMER_CONF(timer, handle, arg, exp) \
354 init_timer(&timer); \
355 timer.function = handle; \
356 timer.data = (unsigned long) arg; \
357 mod_timer(&timer, (jiffies + exp)) \
359 /* copy mac addr to def_mac_addr array */
360 static void do_s2io_copy_mac_addr(struct s2io_nic *sp, int offset, u64 mac_addr)
362 sp->def_mac_addr[offset].mac_addr[5] = (u8) (mac_addr);
363 sp->def_mac_addr[offset].mac_addr[4] = (u8) (mac_addr >> 8);
364 sp->def_mac_addr[offset].mac_addr[3] = (u8) (mac_addr >> 16);
365 sp->def_mac_addr[offset].mac_addr[2] = (u8) (mac_addr >> 24);
366 sp->def_mac_addr[offset].mac_addr[1] = (u8) (mac_addr >> 32);
367 sp->def_mac_addr[offset].mac_addr[0] = (u8) (mac_addr >> 40);
369 /* Add the vlan */
370 static void s2io_vlan_rx_register(struct net_device *dev,
371 struct vlan_group *grp)
373 int i;
374 struct s2io_nic *nic = dev->priv;
375 unsigned long flags[MAX_TX_FIFOS];
376 struct mac_info *mac_control = &nic->mac_control;
377 struct config_param *config = &nic->config;
379 for (i = 0; i < config->tx_fifo_num; i++)
380 spin_lock_irqsave(&mac_control->fifos[i].tx_lock, flags[i]);
382 nic->vlgrp = grp;
383 for (i = config->tx_fifo_num - 1; i >= 0; i--)
384 spin_unlock_irqrestore(&mac_control->fifos[i].tx_lock,
385 flags[i]);
388 /* A flag indicating whether 'RX_PA_CFG_STRIP_VLAN_TAG' bit is set or not */
389 static int vlan_strip_flag;
391 /* Unregister the vlan */
392 static void s2io_vlan_rx_kill_vid(struct net_device *dev, unsigned long vid)
394 int i;
395 struct s2io_nic *nic = dev->priv;
396 unsigned long flags[MAX_TX_FIFOS];
397 struct mac_info *mac_control = &nic->mac_control;
398 struct config_param *config = &nic->config;
400 for (i = 0; i < config->tx_fifo_num; i++)
401 spin_lock_irqsave(&mac_control->fifos[i].tx_lock, flags[i]);
403 if (nic->vlgrp)
404 vlan_group_set_device(nic->vlgrp, vid, NULL);
406 for (i = config->tx_fifo_num - 1; i >= 0; i--)
407 spin_unlock_irqrestore(&mac_control->fifos[i].tx_lock,
408 flags[i]);
412 * Constants to be programmed into the Xena's registers, to configure
413 * the XAUI.
416 #define END_SIGN 0x0
417 static const u64 herc_act_dtx_cfg[] = {
418 /* Set address */
419 0x8000051536750000ULL, 0x80000515367500E0ULL,
420 /* Write data */
421 0x8000051536750004ULL, 0x80000515367500E4ULL,
422 /* Set address */
423 0x80010515003F0000ULL, 0x80010515003F00E0ULL,
424 /* Write data */
425 0x80010515003F0004ULL, 0x80010515003F00E4ULL,
426 /* Set address */
427 0x801205150D440000ULL, 0x801205150D4400E0ULL,
428 /* Write data */
429 0x801205150D440004ULL, 0x801205150D4400E4ULL,
430 /* Set address */
431 0x80020515F2100000ULL, 0x80020515F21000E0ULL,
432 /* Write data */
433 0x80020515F2100004ULL, 0x80020515F21000E4ULL,
434 /* Done */
435 END_SIGN
438 static const u64 xena_dtx_cfg[] = {
439 /* Set address */
440 0x8000051500000000ULL, 0x80000515000000E0ULL,
441 /* Write data */
442 0x80000515D9350004ULL, 0x80000515D93500E4ULL,
443 /* Set address */
444 0x8001051500000000ULL, 0x80010515000000E0ULL,
445 /* Write data */
446 0x80010515001E0004ULL, 0x80010515001E00E4ULL,
447 /* Set address */
448 0x8002051500000000ULL, 0x80020515000000E0ULL,
449 /* Write data */
450 0x80020515F2100004ULL, 0x80020515F21000E4ULL,
451 END_SIGN
455 * Constants for Fixing the MacAddress problem seen mostly on
456 * Alpha machines.
458 static const u64 fix_mac[] = {
459 0x0060000000000000ULL, 0x0060600000000000ULL,
460 0x0040600000000000ULL, 0x0000600000000000ULL,
461 0x0020600000000000ULL, 0x0060600000000000ULL,
462 0x0020600000000000ULL, 0x0060600000000000ULL,
463 0x0020600000000000ULL, 0x0060600000000000ULL,
464 0x0020600000000000ULL, 0x0060600000000000ULL,
465 0x0020600000000000ULL, 0x0060600000000000ULL,
466 0x0020600000000000ULL, 0x0060600000000000ULL,
467 0x0020600000000000ULL, 0x0060600000000000ULL,
468 0x0020600000000000ULL, 0x0060600000000000ULL,
469 0x0020600000000000ULL, 0x0060600000000000ULL,
470 0x0020600000000000ULL, 0x0060600000000000ULL,
471 0x0020600000000000ULL, 0x0000600000000000ULL,
472 0x0040600000000000ULL, 0x0060600000000000ULL,
473 END_SIGN
476 MODULE_LICENSE("GPL");
477 MODULE_VERSION(DRV_VERSION);
480 /* Module Loadable parameters. */
481 S2IO_PARM_INT(tx_fifo_num, FIFO_DEFAULT_NUM);
482 S2IO_PARM_INT(rx_ring_num, 1);
483 S2IO_PARM_INT(multiq, 0);
484 S2IO_PARM_INT(rx_ring_mode, 1);
485 S2IO_PARM_INT(use_continuous_tx_intrs, 1);
486 S2IO_PARM_INT(rmac_pause_time, 0x100);
487 S2IO_PARM_INT(mc_pause_threshold_q0q3, 187);
488 S2IO_PARM_INT(mc_pause_threshold_q4q7, 187);
489 S2IO_PARM_INT(shared_splits, 0);
490 S2IO_PARM_INT(tmac_util_period, 5);
491 S2IO_PARM_INT(rmac_util_period, 5);
492 S2IO_PARM_INT(l3l4hdr_size, 128);
493 /* 0 is no steering, 1 is Priority steering, 2 is Default steering */
494 S2IO_PARM_INT(tx_steering_type, TX_DEFAULT_STEERING);
495 /* Frequency of Rx desc syncs expressed as power of 2 */
496 S2IO_PARM_INT(rxsync_frequency, 3);
497 /* Interrupt type. Values can be 0(INTA), 2(MSI_X) */
498 S2IO_PARM_INT(intr_type, 2);
499 /* Large receive offload feature */
500 static unsigned int lro_enable;
501 module_param_named(lro, lro_enable, uint, 0);
503 /* Max pkts to be aggregated by LRO at one time. If not specified,
504 * aggregation happens until we hit max IP pkt size(64K)
506 S2IO_PARM_INT(lro_max_pkts, 0xFFFF);
507 S2IO_PARM_INT(indicate_max_pkts, 0);
509 S2IO_PARM_INT(napi, 1);
510 S2IO_PARM_INT(ufo, 0);
511 S2IO_PARM_INT(vlan_tag_strip, NO_STRIP_IN_PROMISC);
513 static unsigned int tx_fifo_len[MAX_TX_FIFOS] =
514 {DEFAULT_FIFO_0_LEN, [1 ...(MAX_TX_FIFOS - 1)] = DEFAULT_FIFO_1_7_LEN};
515 static unsigned int rx_ring_sz[MAX_RX_RINGS] =
516 {[0 ...(MAX_RX_RINGS - 1)] = SMALL_BLK_CNT};
517 static unsigned int rts_frm_len[MAX_RX_RINGS] =
518 {[0 ...(MAX_RX_RINGS - 1)] = 0 };
520 module_param_array(tx_fifo_len, uint, NULL, 0);
521 module_param_array(rx_ring_sz, uint, NULL, 0);
522 module_param_array(rts_frm_len, uint, NULL, 0);
525 * S2IO device table.
526 * This table lists all the devices that this driver supports.
528 static struct pci_device_id s2io_tbl[] __devinitdata = {
529 {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_S2IO_WIN,
530 PCI_ANY_ID, PCI_ANY_ID},
531 {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_S2IO_UNI,
532 PCI_ANY_ID, PCI_ANY_ID},
533 {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_HERC_WIN,
534 PCI_ANY_ID, PCI_ANY_ID},
535 {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_HERC_UNI,
536 PCI_ANY_ID, PCI_ANY_ID},
537 {0,}
540 MODULE_DEVICE_TABLE(pci, s2io_tbl);
542 static struct pci_error_handlers s2io_err_handler = {
543 .error_detected = s2io_io_error_detected,
544 .slot_reset = s2io_io_slot_reset,
545 .resume = s2io_io_resume,
548 static struct pci_driver s2io_driver = {
549 .name = "S2IO",
550 .id_table = s2io_tbl,
551 .probe = s2io_init_nic,
552 .remove = __devexit_p(s2io_rem_nic),
553 .err_handler = &s2io_err_handler,
556 /* A simplifier macro used both by init and free shared_mem Fns(). */
557 #define TXD_MEM_PAGE_CNT(len, per_each) ((len+per_each - 1) / per_each)
559 /* netqueue manipulation helper functions */
560 static inline void s2io_stop_all_tx_queue(struct s2io_nic *sp)
562 int i;
563 #ifdef CONFIG_NETDEVICES_MULTIQUEUE
564 if (sp->config.multiq) {
565 for (i = 0; i < sp->config.tx_fifo_num; i++)
566 netif_stop_subqueue(sp->dev, i);
567 } else
568 #endif
570 for (i = 0; i < sp->config.tx_fifo_num; i++)
571 sp->mac_control.fifos[i].queue_state = FIFO_QUEUE_STOP;
572 netif_stop_queue(sp->dev);
576 static inline void s2io_stop_tx_queue(struct s2io_nic *sp, int fifo_no)
578 #ifdef CONFIG_NETDEVICES_MULTIQUEUE
579 if (sp->config.multiq)
580 netif_stop_subqueue(sp->dev, fifo_no);
581 else
582 #endif
584 sp->mac_control.fifos[fifo_no].queue_state =
585 FIFO_QUEUE_STOP;
586 netif_stop_queue(sp->dev);
590 static inline void s2io_start_all_tx_queue(struct s2io_nic *sp)
592 int i;
593 #ifdef CONFIG_NETDEVICES_MULTIQUEUE
594 if (sp->config.multiq) {
595 for (i = 0; i < sp->config.tx_fifo_num; i++)
596 netif_start_subqueue(sp->dev, i);
597 } else
598 #endif
600 for (i = 0; i < sp->config.tx_fifo_num; i++)
601 sp->mac_control.fifos[i].queue_state = FIFO_QUEUE_START;
602 netif_start_queue(sp->dev);
606 static inline void s2io_start_tx_queue(struct s2io_nic *sp, int fifo_no)
608 #ifdef CONFIG_NETDEVICES_MULTIQUEUE
609 if (sp->config.multiq)
610 netif_start_subqueue(sp->dev, fifo_no);
611 else
612 #endif
614 sp->mac_control.fifos[fifo_no].queue_state =
615 FIFO_QUEUE_START;
616 netif_start_queue(sp->dev);
620 static inline void s2io_wake_all_tx_queue(struct s2io_nic *sp)
622 int i;
623 #ifdef CONFIG_NETDEVICES_MULTIQUEUE
624 if (sp->config.multiq) {
625 for (i = 0; i < sp->config.tx_fifo_num; i++)
626 netif_wake_subqueue(sp->dev, i);
627 } else
628 #endif
630 for (i = 0; i < sp->config.tx_fifo_num; i++)
631 sp->mac_control.fifos[i].queue_state = FIFO_QUEUE_START;
632 netif_wake_queue(sp->dev);
636 static inline void s2io_wake_tx_queue(
637 struct fifo_info *fifo, int cnt, u8 multiq)
640 #ifdef CONFIG_NETDEVICES_MULTIQUEUE
641 if (multiq) {
642 if (cnt && __netif_subqueue_stopped(fifo->dev, fifo->fifo_no))
643 netif_wake_subqueue(fifo->dev, fifo->fifo_no);
644 } else
645 #endif
646 if (cnt && (fifo->queue_state == FIFO_QUEUE_STOP)) {
647 if (netif_queue_stopped(fifo->dev)) {
648 fifo->queue_state = FIFO_QUEUE_START;
649 netif_wake_queue(fifo->dev);
655 * init_shared_mem - Allocation and Initialization of Memory
656 * @nic: Device private variable.
657 * Description: The function allocates all the memory areas shared
658 * between the NIC and the driver. This includes Tx descriptors,
659 * Rx descriptors and the statistics block.
662 static int init_shared_mem(struct s2io_nic *nic)
664 u32 size;
665 void *tmp_v_addr, *tmp_v_addr_next;
666 dma_addr_t tmp_p_addr, tmp_p_addr_next;
667 struct RxD_block *pre_rxd_blk = NULL;
668 int i, j, blk_cnt;
669 int lst_size, lst_per_page;
670 struct net_device *dev = nic->dev;
671 unsigned long tmp;
672 struct buffAdd *ba;
674 struct mac_info *mac_control;
675 struct config_param *config;
676 unsigned long long mem_allocated = 0;
678 mac_control = &nic->mac_control;
679 config = &nic->config;
682 /* Allocation and initialization of TXDLs in FIOFs */
683 size = 0;
684 for (i = 0; i < config->tx_fifo_num; i++) {
685 size += config->tx_cfg[i].fifo_len;
687 if (size > MAX_AVAILABLE_TXDS) {
688 DBG_PRINT(ERR_DBG, "s2io: Requested TxDs too high, ");
689 DBG_PRINT(ERR_DBG, "Requested: %d, max supported: 8192\n", size);
690 return -EINVAL;
693 size = 0;
694 for (i = 0; i < config->tx_fifo_num; i++) {
695 size = config->tx_cfg[i].fifo_len;
697 * Legal values are from 2 to 8192
699 if (size < 2) {
700 DBG_PRINT(ERR_DBG, "s2io: Invalid fifo len (%d)", size);
701 DBG_PRINT(ERR_DBG, "for fifo %d\n", i);
702 DBG_PRINT(ERR_DBG, "s2io: Legal values for fifo len"
703 "are 2 to 8192\n");
704 return -EINVAL;
708 lst_size = (sizeof(struct TxD) * config->max_txds);
709 lst_per_page = PAGE_SIZE / lst_size;
711 for (i = 0; i < config->tx_fifo_num; i++) {
712 int fifo_len = config->tx_cfg[i].fifo_len;
713 int list_holder_size = fifo_len * sizeof(struct list_info_hold);
714 mac_control->fifos[i].list_info = kzalloc(list_holder_size,
715 GFP_KERNEL);
716 if (!mac_control->fifos[i].list_info) {
717 DBG_PRINT(INFO_DBG,
718 "Malloc failed for list_info\n");
719 return -ENOMEM;
721 mem_allocated += list_holder_size;
723 for (i = 0; i < config->tx_fifo_num; i++) {
724 int page_num = TXD_MEM_PAGE_CNT(config->tx_cfg[i].fifo_len,
725 lst_per_page);
726 mac_control->fifos[i].tx_curr_put_info.offset = 0;
727 mac_control->fifos[i].tx_curr_put_info.fifo_len =
728 config->tx_cfg[i].fifo_len - 1;
729 mac_control->fifos[i].tx_curr_get_info.offset = 0;
730 mac_control->fifos[i].tx_curr_get_info.fifo_len =
731 config->tx_cfg[i].fifo_len - 1;
732 mac_control->fifos[i].fifo_no = i;
733 mac_control->fifos[i].nic = nic;
734 mac_control->fifos[i].max_txds = MAX_SKB_FRAGS + 2;
735 mac_control->fifos[i].dev = dev;
737 for (j = 0; j < page_num; j++) {
738 int k = 0;
739 dma_addr_t tmp_p;
740 void *tmp_v;
741 tmp_v = pci_alloc_consistent(nic->pdev,
742 PAGE_SIZE, &tmp_p);
743 if (!tmp_v) {
744 DBG_PRINT(INFO_DBG,
745 "pci_alloc_consistent ");
746 DBG_PRINT(INFO_DBG, "failed for TxDL\n");
747 return -ENOMEM;
749 /* If we got a zero DMA address(can happen on
750 * certain platforms like PPC), reallocate.
751 * Store virtual address of page we don't want,
752 * to be freed later.
754 if (!tmp_p) {
755 mac_control->zerodma_virt_addr = tmp_v;
756 DBG_PRINT(INIT_DBG,
757 "%s: Zero DMA address for TxDL. ", dev->name);
758 DBG_PRINT(INIT_DBG,
759 "Virtual address %p\n", tmp_v);
760 tmp_v = pci_alloc_consistent(nic->pdev,
761 PAGE_SIZE, &tmp_p);
762 if (!tmp_v) {
763 DBG_PRINT(INFO_DBG,
764 "pci_alloc_consistent ");
765 DBG_PRINT(INFO_DBG, "failed for TxDL\n");
766 return -ENOMEM;
768 mem_allocated += PAGE_SIZE;
770 while (k < lst_per_page) {
771 int l = (j * lst_per_page) + k;
772 if (l == config->tx_cfg[i].fifo_len)
773 break;
774 mac_control->fifos[i].list_info[l].list_virt_addr =
775 tmp_v + (k * lst_size);
776 mac_control->fifos[i].list_info[l].list_phy_addr =
777 tmp_p + (k * lst_size);
778 k++;
783 for (i = 0; i < config->tx_fifo_num; i++) {
784 size = config->tx_cfg[i].fifo_len;
785 mac_control->fifos[i].ufo_in_band_v
786 = kcalloc(size, sizeof(u64), GFP_KERNEL);
787 if (!mac_control->fifos[i].ufo_in_band_v)
788 return -ENOMEM;
789 mem_allocated += (size * sizeof(u64));
792 /* Allocation and initialization of RXDs in Rings */
793 size = 0;
794 for (i = 0; i < config->rx_ring_num; i++) {
795 if (config->rx_cfg[i].num_rxd %
796 (rxd_count[nic->rxd_mode] + 1)) {
797 DBG_PRINT(ERR_DBG, "%s: RxD count of ", dev->name);
798 DBG_PRINT(ERR_DBG, "Ring%d is not a multiple of ",
800 DBG_PRINT(ERR_DBG, "RxDs per Block");
801 return FAILURE;
803 size += config->rx_cfg[i].num_rxd;
804 mac_control->rings[i].block_count =
805 config->rx_cfg[i].num_rxd /
806 (rxd_count[nic->rxd_mode] + 1 );
807 mac_control->rings[i].pkt_cnt = config->rx_cfg[i].num_rxd -
808 mac_control->rings[i].block_count;
810 if (nic->rxd_mode == RXD_MODE_1)
811 size = (size * (sizeof(struct RxD1)));
812 else
813 size = (size * (sizeof(struct RxD3)));
815 for (i = 0; i < config->rx_ring_num; i++) {
816 mac_control->rings[i].rx_curr_get_info.block_index = 0;
817 mac_control->rings[i].rx_curr_get_info.offset = 0;
818 mac_control->rings[i].rx_curr_get_info.ring_len =
819 config->rx_cfg[i].num_rxd - 1;
820 mac_control->rings[i].rx_curr_put_info.block_index = 0;
821 mac_control->rings[i].rx_curr_put_info.offset = 0;
822 mac_control->rings[i].rx_curr_put_info.ring_len =
823 config->rx_cfg[i].num_rxd - 1;
824 mac_control->rings[i].nic = nic;
825 mac_control->rings[i].ring_no = i;
827 blk_cnt = config->rx_cfg[i].num_rxd /
828 (rxd_count[nic->rxd_mode] + 1);
829 /* Allocating all the Rx blocks */
830 for (j = 0; j < blk_cnt; j++) {
831 struct rx_block_info *rx_blocks;
832 int l;
834 rx_blocks = &mac_control->rings[i].rx_blocks[j];
835 size = SIZE_OF_BLOCK; //size is always page size
836 tmp_v_addr = pci_alloc_consistent(nic->pdev, size,
837 &tmp_p_addr);
838 if (tmp_v_addr == NULL) {
840 * In case of failure, free_shared_mem()
841 * is called, which should free any
842 * memory that was alloced till the
843 * failure happened.
845 rx_blocks->block_virt_addr = tmp_v_addr;
846 return -ENOMEM;
848 mem_allocated += size;
849 memset(tmp_v_addr, 0, size);
850 rx_blocks->block_virt_addr = tmp_v_addr;
851 rx_blocks->block_dma_addr = tmp_p_addr;
852 rx_blocks->rxds = kmalloc(sizeof(struct rxd_info)*
853 rxd_count[nic->rxd_mode],
854 GFP_KERNEL);
855 if (!rx_blocks->rxds)
856 return -ENOMEM;
857 mem_allocated +=
858 (sizeof(struct rxd_info)* rxd_count[nic->rxd_mode]);
859 for (l=0; l<rxd_count[nic->rxd_mode];l++) {
860 rx_blocks->rxds[l].virt_addr =
861 rx_blocks->block_virt_addr +
862 (rxd_size[nic->rxd_mode] * l);
863 rx_blocks->rxds[l].dma_addr =
864 rx_blocks->block_dma_addr +
865 (rxd_size[nic->rxd_mode] * l);
868 /* Interlinking all Rx Blocks */
869 for (j = 0; j < blk_cnt; j++) {
870 tmp_v_addr =
871 mac_control->rings[i].rx_blocks[j].block_virt_addr;
872 tmp_v_addr_next =
873 mac_control->rings[i].rx_blocks[(j + 1) %
874 blk_cnt].block_virt_addr;
875 tmp_p_addr =
876 mac_control->rings[i].rx_blocks[j].block_dma_addr;
877 tmp_p_addr_next =
878 mac_control->rings[i].rx_blocks[(j + 1) %
879 blk_cnt].block_dma_addr;
881 pre_rxd_blk = (struct RxD_block *) tmp_v_addr;
882 pre_rxd_blk->reserved_2_pNext_RxD_block =
883 (unsigned long) tmp_v_addr_next;
884 pre_rxd_blk->pNext_RxD_Blk_physical =
885 (u64) tmp_p_addr_next;
888 if (nic->rxd_mode == RXD_MODE_3B) {
890 * Allocation of Storages for buffer addresses in 2BUFF mode
891 * and the buffers as well.
893 for (i = 0; i < config->rx_ring_num; i++) {
894 blk_cnt = config->rx_cfg[i].num_rxd /
895 (rxd_count[nic->rxd_mode]+ 1);
896 mac_control->rings[i].ba =
897 kmalloc((sizeof(struct buffAdd *) * blk_cnt),
898 GFP_KERNEL);
899 if (!mac_control->rings[i].ba)
900 return -ENOMEM;
901 mem_allocated +=(sizeof(struct buffAdd *) * blk_cnt);
902 for (j = 0; j < blk_cnt; j++) {
903 int k = 0;
904 mac_control->rings[i].ba[j] =
905 kmalloc((sizeof(struct buffAdd) *
906 (rxd_count[nic->rxd_mode] + 1)),
907 GFP_KERNEL);
908 if (!mac_control->rings[i].ba[j])
909 return -ENOMEM;
910 mem_allocated += (sizeof(struct buffAdd) * \
911 (rxd_count[nic->rxd_mode] + 1));
912 while (k != rxd_count[nic->rxd_mode]) {
913 ba = &mac_control->rings[i].ba[j][k];
915 ba->ba_0_org = (void *) kmalloc
916 (BUF0_LEN + ALIGN_SIZE, GFP_KERNEL);
917 if (!ba->ba_0_org)
918 return -ENOMEM;
919 mem_allocated +=
920 (BUF0_LEN + ALIGN_SIZE);
921 tmp = (unsigned long)ba->ba_0_org;
922 tmp += ALIGN_SIZE;
923 tmp &= ~((unsigned long) ALIGN_SIZE);
924 ba->ba_0 = (void *) tmp;
926 ba->ba_1_org = (void *) kmalloc
927 (BUF1_LEN + ALIGN_SIZE, GFP_KERNEL);
928 if (!ba->ba_1_org)
929 return -ENOMEM;
930 mem_allocated
931 += (BUF1_LEN + ALIGN_SIZE);
932 tmp = (unsigned long) ba->ba_1_org;
933 tmp += ALIGN_SIZE;
934 tmp &= ~((unsigned long) ALIGN_SIZE);
935 ba->ba_1 = (void *) tmp;
936 k++;
942 /* Allocation and initialization of Statistics block */
943 size = sizeof(struct stat_block);
944 mac_control->stats_mem = pci_alloc_consistent
945 (nic->pdev, size, &mac_control->stats_mem_phy);
947 if (!mac_control->stats_mem) {
949 * In case of failure, free_shared_mem() is called, which
950 * should free any memory that was alloced till the
951 * failure happened.
953 return -ENOMEM;
955 mem_allocated += size;
956 mac_control->stats_mem_sz = size;
958 tmp_v_addr = mac_control->stats_mem;
959 mac_control->stats_info = (struct stat_block *) tmp_v_addr;
960 memset(tmp_v_addr, 0, size);
961 DBG_PRINT(INIT_DBG, "%s:Ring Mem PHY: 0x%llx\n", dev->name,
962 (unsigned long long) tmp_p_addr);
963 mac_control->stats_info->sw_stat.mem_allocated += mem_allocated;
964 return SUCCESS;
968 * free_shared_mem - Free the allocated Memory
969 * @nic: Device private variable.
970 * Description: This function is to free all memory locations allocated by
971 * the init_shared_mem() function and return it to the kernel.
974 static void free_shared_mem(struct s2io_nic *nic)
976 int i, j, blk_cnt, size;
977 void *tmp_v_addr;
978 dma_addr_t tmp_p_addr;
979 struct mac_info *mac_control;
980 struct config_param *config;
981 int lst_size, lst_per_page;
982 struct net_device *dev;
983 int page_num = 0;
985 if (!nic)
986 return;
988 dev = nic->dev;
990 mac_control = &nic->mac_control;
991 config = &nic->config;
993 lst_size = (sizeof(struct TxD) * config->max_txds);
994 lst_per_page = PAGE_SIZE / lst_size;
996 for (i = 0; i < config->tx_fifo_num; i++) {
997 page_num = TXD_MEM_PAGE_CNT(config->tx_cfg[i].fifo_len,
998 lst_per_page);
999 for (j = 0; j < page_num; j++) {
1000 int mem_blks = (j * lst_per_page);
1001 if (!mac_control->fifos[i].list_info)
1002 return;
1003 if (!mac_control->fifos[i].list_info[mem_blks].
1004 list_virt_addr)
1005 break;
1006 pci_free_consistent(nic->pdev, PAGE_SIZE,
1007 mac_control->fifos[i].
1008 list_info[mem_blks].
1009 list_virt_addr,
1010 mac_control->fifos[i].
1011 list_info[mem_blks].
1012 list_phy_addr);
1013 nic->mac_control.stats_info->sw_stat.mem_freed
1014 += PAGE_SIZE;
1016 /* If we got a zero DMA address during allocation,
1017 * free the page now
1019 if (mac_control->zerodma_virt_addr) {
1020 pci_free_consistent(nic->pdev, PAGE_SIZE,
1021 mac_control->zerodma_virt_addr,
1022 (dma_addr_t)0);
1023 DBG_PRINT(INIT_DBG,
1024 "%s: Freeing TxDL with zero DMA addr. ",
1025 dev->name);
1026 DBG_PRINT(INIT_DBG, "Virtual address %p\n",
1027 mac_control->zerodma_virt_addr);
1028 nic->mac_control.stats_info->sw_stat.mem_freed
1029 += PAGE_SIZE;
1031 kfree(mac_control->fifos[i].list_info);
1032 nic->mac_control.stats_info->sw_stat.mem_freed +=
1033 (nic->config.tx_cfg[i].fifo_len *sizeof(struct list_info_hold));
1036 size = SIZE_OF_BLOCK;
1037 for (i = 0; i < config->rx_ring_num; i++) {
1038 blk_cnt = mac_control->rings[i].block_count;
1039 for (j = 0; j < blk_cnt; j++) {
1040 tmp_v_addr = mac_control->rings[i].rx_blocks[j].
1041 block_virt_addr;
1042 tmp_p_addr = mac_control->rings[i].rx_blocks[j].
1043 block_dma_addr;
1044 if (tmp_v_addr == NULL)
1045 break;
1046 pci_free_consistent(nic->pdev, size,
1047 tmp_v_addr, tmp_p_addr);
1048 nic->mac_control.stats_info->sw_stat.mem_freed += size;
1049 kfree(mac_control->rings[i].rx_blocks[j].rxds);
1050 nic->mac_control.stats_info->sw_stat.mem_freed +=
1051 ( sizeof(struct rxd_info)* rxd_count[nic->rxd_mode]);
1055 if (nic->rxd_mode == RXD_MODE_3B) {
1056 /* Freeing buffer storage addresses in 2BUFF mode. */
1057 for (i = 0; i < config->rx_ring_num; i++) {
1058 blk_cnt = config->rx_cfg[i].num_rxd /
1059 (rxd_count[nic->rxd_mode] + 1);
1060 for (j = 0; j < blk_cnt; j++) {
1061 int k = 0;
1062 if (!mac_control->rings[i].ba[j])
1063 continue;
1064 while (k != rxd_count[nic->rxd_mode]) {
1065 struct buffAdd *ba =
1066 &mac_control->rings[i].ba[j][k];
1067 kfree(ba->ba_0_org);
1068 nic->mac_control.stats_info->sw_stat.\
1069 mem_freed += (BUF0_LEN + ALIGN_SIZE);
1070 kfree(ba->ba_1_org);
1071 nic->mac_control.stats_info->sw_stat.\
1072 mem_freed += (BUF1_LEN + ALIGN_SIZE);
1073 k++;
1075 kfree(mac_control->rings[i].ba[j]);
1076 nic->mac_control.stats_info->sw_stat.mem_freed +=
1077 (sizeof(struct buffAdd) *
1078 (rxd_count[nic->rxd_mode] + 1));
1080 kfree(mac_control->rings[i].ba);
1081 nic->mac_control.stats_info->sw_stat.mem_freed +=
1082 (sizeof(struct buffAdd *) * blk_cnt);
1086 for (i = 0; i < nic->config.tx_fifo_num; i++) {
1087 if (mac_control->fifos[i].ufo_in_band_v) {
1088 nic->mac_control.stats_info->sw_stat.mem_freed
1089 += (config->tx_cfg[i].fifo_len * sizeof(u64));
1090 kfree(mac_control->fifos[i].ufo_in_band_v);
1094 if (mac_control->stats_mem) {
1095 nic->mac_control.stats_info->sw_stat.mem_freed +=
1096 mac_control->stats_mem_sz;
1097 pci_free_consistent(nic->pdev,
1098 mac_control->stats_mem_sz,
1099 mac_control->stats_mem,
1100 mac_control->stats_mem_phy);
1105 * s2io_verify_pci_mode -
1108 static int s2io_verify_pci_mode(struct s2io_nic *nic)
1110 struct XENA_dev_config __iomem *bar0 = nic->bar0;
1111 register u64 val64 = 0;
1112 int mode;
1114 val64 = readq(&bar0->pci_mode);
1115 mode = (u8)GET_PCI_MODE(val64);
1117 if ( val64 & PCI_MODE_UNKNOWN_MODE)
1118 return -1; /* Unknown PCI mode */
1119 return mode;
1122 #define NEC_VENID 0x1033
1123 #define NEC_DEVID 0x0125
1124 static int s2io_on_nec_bridge(struct pci_dev *s2io_pdev)
1126 struct pci_dev *tdev = NULL;
1127 while ((tdev = pci_get_device(PCI_ANY_ID, PCI_ANY_ID, tdev)) != NULL) {
1128 if (tdev->vendor == NEC_VENID && tdev->device == NEC_DEVID) {
1129 if (tdev->bus == s2io_pdev->bus->parent)
1130 pci_dev_put(tdev);
1131 return 1;
1134 return 0;
1137 static int bus_speed[8] = {33, 133, 133, 200, 266, 133, 200, 266};
1139 * s2io_print_pci_mode -
1141 static int s2io_print_pci_mode(struct s2io_nic *nic)
1143 struct XENA_dev_config __iomem *bar0 = nic->bar0;
1144 register u64 val64 = 0;
1145 int mode;
1146 struct config_param *config = &nic->config;
1148 val64 = readq(&bar0->pci_mode);
1149 mode = (u8)GET_PCI_MODE(val64);
1151 if ( val64 & PCI_MODE_UNKNOWN_MODE)
1152 return -1; /* Unknown PCI mode */
1154 config->bus_speed = bus_speed[mode];
1156 if (s2io_on_nec_bridge(nic->pdev)) {
1157 DBG_PRINT(ERR_DBG, "%s: Device is on PCI-E bus\n",
1158 nic->dev->name);
1159 return mode;
1162 if (val64 & PCI_MODE_32_BITS) {
1163 DBG_PRINT(ERR_DBG, "%s: Device is on 32 bit ", nic->dev->name);
1164 } else {
1165 DBG_PRINT(ERR_DBG, "%s: Device is on 64 bit ", nic->dev->name);
1168 switch(mode) {
1169 case PCI_MODE_PCI_33:
1170 DBG_PRINT(ERR_DBG, "33MHz PCI bus\n");
1171 break;
1172 case PCI_MODE_PCI_66:
1173 DBG_PRINT(ERR_DBG, "66MHz PCI bus\n");
1174 break;
1175 case PCI_MODE_PCIX_M1_66:
1176 DBG_PRINT(ERR_DBG, "66MHz PCIX(M1) bus\n");
1177 break;
1178 case PCI_MODE_PCIX_M1_100:
1179 DBG_PRINT(ERR_DBG, "100MHz PCIX(M1) bus\n");
1180 break;
1181 case PCI_MODE_PCIX_M1_133:
1182 DBG_PRINT(ERR_DBG, "133MHz PCIX(M1) bus\n");
1183 break;
1184 case PCI_MODE_PCIX_M2_66:
1185 DBG_PRINT(ERR_DBG, "133MHz PCIX(M2) bus\n");
1186 break;
1187 case PCI_MODE_PCIX_M2_100:
1188 DBG_PRINT(ERR_DBG, "200MHz PCIX(M2) bus\n");
1189 break;
1190 case PCI_MODE_PCIX_M2_133:
1191 DBG_PRINT(ERR_DBG, "266MHz PCIX(M2) bus\n");
1192 break;
1193 default:
1194 return -1; /* Unsupported bus speed */
1197 return mode;
1201 * init_tti - Initialization transmit traffic interrupt scheme
1202 * @nic: device private variable
1203 * @link: link status (UP/DOWN) used to enable/disable continuous
1204 * transmit interrupts
1205 * Description: The function configures transmit traffic interrupts
1206 * Return Value: SUCCESS on success and
1207 * '-1' on failure
1210 static int init_tti(struct s2io_nic *nic, int link)
1212 struct XENA_dev_config __iomem *bar0 = nic->bar0;
1213 register u64 val64 = 0;
1214 int i;
1215 struct config_param *config;
1217 config = &nic->config;
1219 for (i = 0; i < config->tx_fifo_num; i++) {
1221 * TTI Initialization. Default Tx timer gets us about
1222 * 250 interrupts per sec. Continuous interrupts are enabled
1223 * by default.
1225 if (nic->device_type == XFRAME_II_DEVICE) {
1226 int count = (nic->config.bus_speed * 125)/2;
1227 val64 = TTI_DATA1_MEM_TX_TIMER_VAL(count);
1228 } else
1229 val64 = TTI_DATA1_MEM_TX_TIMER_VAL(0x2078);
1231 val64 |= TTI_DATA1_MEM_TX_URNG_A(0xA) |
1232 TTI_DATA1_MEM_TX_URNG_B(0x10) |
1233 TTI_DATA1_MEM_TX_URNG_C(0x30) |
1234 TTI_DATA1_MEM_TX_TIMER_AC_EN;
1236 if (use_continuous_tx_intrs && (link == LINK_UP))
1237 val64 |= TTI_DATA1_MEM_TX_TIMER_CI_EN;
1238 writeq(val64, &bar0->tti_data1_mem);
1240 val64 = TTI_DATA2_MEM_TX_UFC_A(0x10) |
1241 TTI_DATA2_MEM_TX_UFC_B(0x20) |
1242 TTI_DATA2_MEM_TX_UFC_C(0x40) |
1243 TTI_DATA2_MEM_TX_UFC_D(0x80);
1245 writeq(val64, &bar0->tti_data2_mem);
1247 val64 = TTI_CMD_MEM_WE | TTI_CMD_MEM_STROBE_NEW_CMD |
1248 TTI_CMD_MEM_OFFSET(i);
1249 writeq(val64, &bar0->tti_command_mem);
1251 if (wait_for_cmd_complete(&bar0->tti_command_mem,
1252 TTI_CMD_MEM_STROBE_NEW_CMD, S2IO_BIT_RESET) != SUCCESS)
1253 return FAILURE;
1256 return SUCCESS;
1260 * init_nic - Initialization of hardware
1261 * @nic: device private variable
1262 * Description: The function sequentially configures every block
1263 * of the H/W from their reset values.
1264 * Return Value: SUCCESS on success and
1265 * '-1' on failure (endian settings incorrect).
1268 static int init_nic(struct s2io_nic *nic)
1270 struct XENA_dev_config __iomem *bar0 = nic->bar0;
1271 struct net_device *dev = nic->dev;
1272 register u64 val64 = 0;
1273 void __iomem *add;
1274 u32 time;
1275 int i, j;
1276 struct mac_info *mac_control;
1277 struct config_param *config;
1278 int dtx_cnt = 0;
1279 unsigned long long mem_share;
1280 int mem_size;
1282 mac_control = &nic->mac_control;
1283 config = &nic->config;
1285 /* to set the swapper controle on the card */
1286 if(s2io_set_swapper(nic)) {
1287 DBG_PRINT(ERR_DBG,"ERROR: Setting Swapper failed\n");
1288 return -EIO;
1292 * Herc requires EOI to be removed from reset before XGXS, so..
1294 if (nic->device_type & XFRAME_II_DEVICE) {
1295 val64 = 0xA500000000ULL;
1296 writeq(val64, &bar0->sw_reset);
1297 msleep(500);
1298 val64 = readq(&bar0->sw_reset);
1301 /* Remove XGXS from reset state */
1302 val64 = 0;
1303 writeq(val64, &bar0->sw_reset);
1304 msleep(500);
1305 val64 = readq(&bar0->sw_reset);
1307 /* Ensure that it's safe to access registers by checking
1308 * RIC_RUNNING bit is reset. Check is valid only for XframeII.
1310 if (nic->device_type == XFRAME_II_DEVICE) {
1311 for (i = 0; i < 50; i++) {
1312 val64 = readq(&bar0->adapter_status);
1313 if (!(val64 & ADAPTER_STATUS_RIC_RUNNING))
1314 break;
1315 msleep(10);
1317 if (i == 50)
1318 return -ENODEV;
1321 /* Enable Receiving broadcasts */
1322 add = &bar0->mac_cfg;
1323 val64 = readq(&bar0->mac_cfg);
1324 val64 |= MAC_RMAC_BCAST_ENABLE;
1325 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1326 writel((u32) val64, add);
1327 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1328 writel((u32) (val64 >> 32), (add + 4));
1330 /* Read registers in all blocks */
1331 val64 = readq(&bar0->mac_int_mask);
1332 val64 = readq(&bar0->mc_int_mask);
1333 val64 = readq(&bar0->xgxs_int_mask);
1335 /* Set MTU */
1336 val64 = dev->mtu;
1337 writeq(vBIT(val64, 2, 14), &bar0->rmac_max_pyld_len);
1339 if (nic->device_type & XFRAME_II_DEVICE) {
1340 while (herc_act_dtx_cfg[dtx_cnt] != END_SIGN) {
1341 SPECIAL_REG_WRITE(herc_act_dtx_cfg[dtx_cnt],
1342 &bar0->dtx_control, UF);
1343 if (dtx_cnt & 0x1)
1344 msleep(1); /* Necessary!! */
1345 dtx_cnt++;
1347 } else {
1348 while (xena_dtx_cfg[dtx_cnt] != END_SIGN) {
1349 SPECIAL_REG_WRITE(xena_dtx_cfg[dtx_cnt],
1350 &bar0->dtx_control, UF);
1351 val64 = readq(&bar0->dtx_control);
1352 dtx_cnt++;
1356 /* Tx DMA Initialization */
1357 val64 = 0;
1358 writeq(val64, &bar0->tx_fifo_partition_0);
1359 writeq(val64, &bar0->tx_fifo_partition_1);
1360 writeq(val64, &bar0->tx_fifo_partition_2);
1361 writeq(val64, &bar0->tx_fifo_partition_3);
1364 for (i = 0, j = 0; i < config->tx_fifo_num; i++) {
1365 val64 |=
1366 vBIT(config->tx_cfg[i].fifo_len - 1, ((j * 32) + 19),
1367 13) | vBIT(config->tx_cfg[i].fifo_priority,
1368 ((j * 32) + 5), 3);
1370 if (i == (config->tx_fifo_num - 1)) {
1371 if (i % 2 == 0)
1372 i++;
1375 switch (i) {
1376 case 1:
1377 writeq(val64, &bar0->tx_fifo_partition_0);
1378 val64 = 0;
1379 j = 0;
1380 break;
1381 case 3:
1382 writeq(val64, &bar0->tx_fifo_partition_1);
1383 val64 = 0;
1384 j = 0;
1385 break;
1386 case 5:
1387 writeq(val64, &bar0->tx_fifo_partition_2);
1388 val64 = 0;
1389 j = 0;
1390 break;
1391 case 7:
1392 writeq(val64, &bar0->tx_fifo_partition_3);
1393 val64 = 0;
1394 j = 0;
1395 break;
1396 default:
1397 j++;
1398 break;
1403 * Disable 4 PCCs for Xena1, 2 and 3 as per H/W bug
1404 * SXE-008 TRANSMIT DMA ARBITRATION ISSUE.
1406 if ((nic->device_type == XFRAME_I_DEVICE) &&
1407 (nic->pdev->revision < 4))
1408 writeq(PCC_ENABLE_FOUR, &bar0->pcc_enable);
1410 val64 = readq(&bar0->tx_fifo_partition_0);
1411 DBG_PRINT(INIT_DBG, "Fifo partition at: 0x%p is: 0x%llx\n",
1412 &bar0->tx_fifo_partition_0, (unsigned long long) val64);
1415 * Initialization of Tx_PA_CONFIG register to ignore packet
1416 * integrity checking.
1418 val64 = readq(&bar0->tx_pa_cfg);
1419 val64 |= TX_PA_CFG_IGNORE_FRM_ERR | TX_PA_CFG_IGNORE_SNAP_OUI |
1420 TX_PA_CFG_IGNORE_LLC_CTRL | TX_PA_CFG_IGNORE_L2_ERR;
1421 writeq(val64, &bar0->tx_pa_cfg);
1423 /* Rx DMA intialization. */
1424 val64 = 0;
1425 for (i = 0; i < config->rx_ring_num; i++) {
1426 val64 |=
1427 vBIT(config->rx_cfg[i].ring_priority, (5 + (i * 8)),
1430 writeq(val64, &bar0->rx_queue_priority);
1433 * Allocating equal share of memory to all the
1434 * configured Rings.
1436 val64 = 0;
1437 if (nic->device_type & XFRAME_II_DEVICE)
1438 mem_size = 32;
1439 else
1440 mem_size = 64;
1442 for (i = 0; i < config->rx_ring_num; i++) {
1443 switch (i) {
1444 case 0:
1445 mem_share = (mem_size / config->rx_ring_num +
1446 mem_size % config->rx_ring_num);
1447 val64 |= RX_QUEUE_CFG_Q0_SZ(mem_share);
1448 continue;
1449 case 1:
1450 mem_share = (mem_size / config->rx_ring_num);
1451 val64 |= RX_QUEUE_CFG_Q1_SZ(mem_share);
1452 continue;
1453 case 2:
1454 mem_share = (mem_size / config->rx_ring_num);
1455 val64 |= RX_QUEUE_CFG_Q2_SZ(mem_share);
1456 continue;
1457 case 3:
1458 mem_share = (mem_size / config->rx_ring_num);
1459 val64 |= RX_QUEUE_CFG_Q3_SZ(mem_share);
1460 continue;
1461 case 4:
1462 mem_share = (mem_size / config->rx_ring_num);
1463 val64 |= RX_QUEUE_CFG_Q4_SZ(mem_share);
1464 continue;
1465 case 5:
1466 mem_share = (mem_size / config->rx_ring_num);
1467 val64 |= RX_QUEUE_CFG_Q5_SZ(mem_share);
1468 continue;
1469 case 6:
1470 mem_share = (mem_size / config->rx_ring_num);
1471 val64 |= RX_QUEUE_CFG_Q6_SZ(mem_share);
1472 continue;
1473 case 7:
1474 mem_share = (mem_size / config->rx_ring_num);
1475 val64 |= RX_QUEUE_CFG_Q7_SZ(mem_share);
1476 continue;
1479 writeq(val64, &bar0->rx_queue_cfg);
1482 * Filling Tx round robin registers
1483 * as per the number of FIFOs for equal scheduling priority
1485 switch (config->tx_fifo_num) {
1486 case 1:
1487 val64 = 0x0;
1488 writeq(val64, &bar0->tx_w_round_robin_0);
1489 writeq(val64, &bar0->tx_w_round_robin_1);
1490 writeq(val64, &bar0->tx_w_round_robin_2);
1491 writeq(val64, &bar0->tx_w_round_robin_3);
1492 writeq(val64, &bar0->tx_w_round_robin_4);
1493 break;
1494 case 2:
1495 val64 = 0x0001000100010001ULL;
1496 writeq(val64, &bar0->tx_w_round_robin_0);
1497 writeq(val64, &bar0->tx_w_round_robin_1);
1498 writeq(val64, &bar0->tx_w_round_robin_2);
1499 writeq(val64, &bar0->tx_w_round_robin_3);
1500 val64 = 0x0001000100000000ULL;
1501 writeq(val64, &bar0->tx_w_round_robin_4);
1502 break;
1503 case 3:
1504 val64 = 0x0001020001020001ULL;
1505 writeq(val64, &bar0->tx_w_round_robin_0);
1506 val64 = 0x0200010200010200ULL;
1507 writeq(val64, &bar0->tx_w_round_robin_1);
1508 val64 = 0x0102000102000102ULL;
1509 writeq(val64, &bar0->tx_w_round_robin_2);
1510 val64 = 0x0001020001020001ULL;
1511 writeq(val64, &bar0->tx_w_round_robin_3);
1512 val64 = 0x0200010200000000ULL;
1513 writeq(val64, &bar0->tx_w_round_robin_4);
1514 break;
1515 case 4:
1516 val64 = 0x0001020300010203ULL;
1517 writeq(val64, &bar0->tx_w_round_robin_0);
1518 writeq(val64, &bar0->tx_w_round_robin_1);
1519 writeq(val64, &bar0->tx_w_round_robin_2);
1520 writeq(val64, &bar0->tx_w_round_robin_3);
1521 val64 = 0x0001020300000000ULL;
1522 writeq(val64, &bar0->tx_w_round_robin_4);
1523 break;
1524 case 5:
1525 val64 = 0x0001020304000102ULL;
1526 writeq(val64, &bar0->tx_w_round_robin_0);
1527 val64 = 0x0304000102030400ULL;
1528 writeq(val64, &bar0->tx_w_round_robin_1);
1529 val64 = 0x0102030400010203ULL;
1530 writeq(val64, &bar0->tx_w_round_robin_2);
1531 val64 = 0x0400010203040001ULL;
1532 writeq(val64, &bar0->tx_w_round_robin_3);
1533 val64 = 0x0203040000000000ULL;
1534 writeq(val64, &bar0->tx_w_round_robin_4);
1535 break;
1536 case 6:
1537 val64 = 0x0001020304050001ULL;
1538 writeq(val64, &bar0->tx_w_round_robin_0);
1539 val64 = 0x0203040500010203ULL;
1540 writeq(val64, &bar0->tx_w_round_robin_1);
1541 val64 = 0x0405000102030405ULL;
1542 writeq(val64, &bar0->tx_w_round_robin_2);
1543 val64 = 0x0001020304050001ULL;
1544 writeq(val64, &bar0->tx_w_round_robin_3);
1545 val64 = 0x0203040500000000ULL;
1546 writeq(val64, &bar0->tx_w_round_robin_4);
1547 break;
1548 case 7:
1549 val64 = 0x0001020304050600ULL;
1550 writeq(val64, &bar0->tx_w_round_robin_0);
1551 val64 = 0x0102030405060001ULL;
1552 writeq(val64, &bar0->tx_w_round_robin_1);
1553 val64 = 0x0203040506000102ULL;
1554 writeq(val64, &bar0->tx_w_round_robin_2);
1555 val64 = 0x0304050600010203ULL;
1556 writeq(val64, &bar0->tx_w_round_robin_3);
1557 val64 = 0x0405060000000000ULL;
1558 writeq(val64, &bar0->tx_w_round_robin_4);
1559 break;
1560 case 8:
1561 val64 = 0x0001020304050607ULL;
1562 writeq(val64, &bar0->tx_w_round_robin_0);
1563 writeq(val64, &bar0->tx_w_round_robin_1);
1564 writeq(val64, &bar0->tx_w_round_robin_2);
1565 writeq(val64, &bar0->tx_w_round_robin_3);
1566 val64 = 0x0001020300000000ULL;
1567 writeq(val64, &bar0->tx_w_round_robin_4);
1568 break;
1571 /* Enable all configured Tx FIFO partitions */
1572 val64 = readq(&bar0->tx_fifo_partition_0);
1573 val64 |= (TX_FIFO_PARTITION_EN);
1574 writeq(val64, &bar0->tx_fifo_partition_0);
1576 /* Filling the Rx round robin registers as per the
1577 * number of Rings and steering based on QoS.
1579 switch (config->rx_ring_num) {
1580 case 1:
1581 val64 = 0x8080808080808080ULL;
1582 writeq(val64, &bar0->rts_qos_steering);
1583 break;
1584 case 2:
1585 val64 = 0x0000010000010000ULL;
1586 writeq(val64, &bar0->rx_w_round_robin_0);
1587 val64 = 0x0100000100000100ULL;
1588 writeq(val64, &bar0->rx_w_round_robin_1);
1589 val64 = 0x0001000001000001ULL;
1590 writeq(val64, &bar0->rx_w_round_robin_2);
1591 val64 = 0x0000010000010000ULL;
1592 writeq(val64, &bar0->rx_w_round_robin_3);
1593 val64 = 0x0100000000000000ULL;
1594 writeq(val64, &bar0->rx_w_round_robin_4);
1596 val64 = 0x8080808040404040ULL;
1597 writeq(val64, &bar0->rts_qos_steering);
1598 break;
1599 case 3:
1600 val64 = 0x0001000102000001ULL;
1601 writeq(val64, &bar0->rx_w_round_robin_0);
1602 val64 = 0x0001020000010001ULL;
1603 writeq(val64, &bar0->rx_w_round_robin_1);
1604 val64 = 0x0200000100010200ULL;
1605 writeq(val64, &bar0->rx_w_round_robin_2);
1606 val64 = 0x0001000102000001ULL;
1607 writeq(val64, &bar0->rx_w_round_robin_3);
1608 val64 = 0x0001020000000000ULL;
1609 writeq(val64, &bar0->rx_w_round_robin_4);
1611 val64 = 0x8080804040402020ULL;
1612 writeq(val64, &bar0->rts_qos_steering);
1613 break;
1614 case 4:
1615 val64 = 0x0001020300010200ULL;
1616 writeq(val64, &bar0->rx_w_round_robin_0);
1617 val64 = 0x0100000102030001ULL;
1618 writeq(val64, &bar0->rx_w_round_robin_1);
1619 val64 = 0x0200010000010203ULL;
1620 writeq(val64, &bar0->rx_w_round_robin_2);
1621 val64 = 0x0001020001000001ULL;
1622 writeq(val64, &bar0->rx_w_round_robin_3);
1623 val64 = 0x0203000100000000ULL;
1624 writeq(val64, &bar0->rx_w_round_robin_4);
1626 val64 = 0x8080404020201010ULL;
1627 writeq(val64, &bar0->rts_qos_steering);
1628 break;
1629 case 5:
1630 val64 = 0x0001000203000102ULL;
1631 writeq(val64, &bar0->rx_w_round_robin_0);
1632 val64 = 0x0001020001030004ULL;
1633 writeq(val64, &bar0->rx_w_round_robin_1);
1634 val64 = 0x0001000203000102ULL;
1635 writeq(val64, &bar0->rx_w_round_robin_2);
1636 val64 = 0x0001020001030004ULL;
1637 writeq(val64, &bar0->rx_w_round_robin_3);
1638 val64 = 0x0001000000000000ULL;
1639 writeq(val64, &bar0->rx_w_round_robin_4);
1641 val64 = 0x8080404020201008ULL;
1642 writeq(val64, &bar0->rts_qos_steering);
1643 break;
1644 case 6:
1645 val64 = 0x0001020304000102ULL;
1646 writeq(val64, &bar0->rx_w_round_robin_0);
1647 val64 = 0x0304050001020001ULL;
1648 writeq(val64, &bar0->rx_w_round_robin_1);
1649 val64 = 0x0203000100000102ULL;
1650 writeq(val64, &bar0->rx_w_round_robin_2);
1651 val64 = 0x0304000102030405ULL;
1652 writeq(val64, &bar0->rx_w_round_robin_3);
1653 val64 = 0x0001000200000000ULL;
1654 writeq(val64, &bar0->rx_w_round_robin_4);
1656 val64 = 0x8080404020100804ULL;
1657 writeq(val64, &bar0->rts_qos_steering);
1658 break;
1659 case 7:
1660 val64 = 0x0001020001020300ULL;
1661 writeq(val64, &bar0->rx_w_round_robin_0);
1662 val64 = 0x0102030400010203ULL;
1663 writeq(val64, &bar0->rx_w_round_robin_1);
1664 val64 = 0x0405060001020001ULL;
1665 writeq(val64, &bar0->rx_w_round_robin_2);
1666 val64 = 0x0304050000010200ULL;
1667 writeq(val64, &bar0->rx_w_round_robin_3);
1668 val64 = 0x0102030000000000ULL;
1669 writeq(val64, &bar0->rx_w_round_robin_4);
1671 val64 = 0x8080402010080402ULL;
1672 writeq(val64, &bar0->rts_qos_steering);
1673 break;
1674 case 8:
1675 val64 = 0x0001020300040105ULL;
1676 writeq(val64, &bar0->rx_w_round_robin_0);
1677 val64 = 0x0200030106000204ULL;
1678 writeq(val64, &bar0->rx_w_round_robin_1);
1679 val64 = 0x0103000502010007ULL;
1680 writeq(val64, &bar0->rx_w_round_robin_2);
1681 val64 = 0x0304010002060500ULL;
1682 writeq(val64, &bar0->rx_w_round_robin_3);
1683 val64 = 0x0103020400000000ULL;
1684 writeq(val64, &bar0->rx_w_round_robin_4);
1686 val64 = 0x8040201008040201ULL;
1687 writeq(val64, &bar0->rts_qos_steering);
1688 break;
1691 /* UDP Fix */
1692 val64 = 0;
1693 for (i = 0; i < 8; i++)
1694 writeq(val64, &bar0->rts_frm_len_n[i]);
1696 /* Set the default rts frame length for the rings configured */
1697 val64 = MAC_RTS_FRM_LEN_SET(dev->mtu+22);
1698 for (i = 0 ; i < config->rx_ring_num ; i++)
1699 writeq(val64, &bar0->rts_frm_len_n[i]);
1701 /* Set the frame length for the configured rings
1702 * desired by the user
1704 for (i = 0; i < config->rx_ring_num; i++) {
1705 /* If rts_frm_len[i] == 0 then it is assumed that user not
1706 * specified frame length steering.
1707 * If the user provides the frame length then program
1708 * the rts_frm_len register for those values or else
1709 * leave it as it is.
1711 if (rts_frm_len[i] != 0) {
1712 writeq(MAC_RTS_FRM_LEN_SET(rts_frm_len[i]),
1713 &bar0->rts_frm_len_n[i]);
1717 /* Disable differentiated services steering logic */
1718 for (i = 0; i < 64; i++) {
1719 if (rts_ds_steer(nic, i, 0) == FAILURE) {
1720 DBG_PRINT(ERR_DBG, "%s: failed rts ds steering",
1721 dev->name);
1722 DBG_PRINT(ERR_DBG, "set on codepoint %d\n", i);
1723 return -ENODEV;
1727 /* Program statistics memory */
1728 writeq(mac_control->stats_mem_phy, &bar0->stat_addr);
1730 if (nic->device_type == XFRAME_II_DEVICE) {
1731 val64 = STAT_BC(0x320);
1732 writeq(val64, &bar0->stat_byte_cnt);
1736 * Initializing the sampling rate for the device to calculate the
1737 * bandwidth utilization.
1739 val64 = MAC_TX_LINK_UTIL_VAL(tmac_util_period) |
1740 MAC_RX_LINK_UTIL_VAL(rmac_util_period);
1741 writeq(val64, &bar0->mac_link_util);
1744 * Initializing the Transmit and Receive Traffic Interrupt
1745 * Scheme.
1748 /* Initialize TTI */
1749 if (SUCCESS != init_tti(nic, nic->last_link_state))
1750 return -ENODEV;
1752 /* RTI Initialization */
1753 if (nic->device_type == XFRAME_II_DEVICE) {
1755 * Programmed to generate Apprx 500 Intrs per
1756 * second
1758 int count = (nic->config.bus_speed * 125)/4;
1759 val64 = RTI_DATA1_MEM_RX_TIMER_VAL(count);
1760 } else
1761 val64 = RTI_DATA1_MEM_RX_TIMER_VAL(0xFFF);
1762 val64 |= RTI_DATA1_MEM_RX_URNG_A(0xA) |
1763 RTI_DATA1_MEM_RX_URNG_B(0x10) |
1764 RTI_DATA1_MEM_RX_URNG_C(0x30) | RTI_DATA1_MEM_RX_TIMER_AC_EN;
1766 writeq(val64, &bar0->rti_data1_mem);
1768 val64 = RTI_DATA2_MEM_RX_UFC_A(0x1) |
1769 RTI_DATA2_MEM_RX_UFC_B(0x2) ;
1770 if (nic->config.intr_type == MSI_X)
1771 val64 |= (RTI_DATA2_MEM_RX_UFC_C(0x20) | \
1772 RTI_DATA2_MEM_RX_UFC_D(0x40));
1773 else
1774 val64 |= (RTI_DATA2_MEM_RX_UFC_C(0x40) | \
1775 RTI_DATA2_MEM_RX_UFC_D(0x80));
1776 writeq(val64, &bar0->rti_data2_mem);
1778 for (i = 0; i < config->rx_ring_num; i++) {
1779 val64 = RTI_CMD_MEM_WE | RTI_CMD_MEM_STROBE_NEW_CMD
1780 | RTI_CMD_MEM_OFFSET(i);
1781 writeq(val64, &bar0->rti_command_mem);
1784 * Once the operation completes, the Strobe bit of the
1785 * command register will be reset. We poll for this
1786 * particular condition. We wait for a maximum of 500ms
1787 * for the operation to complete, if it's not complete
1788 * by then we return error.
1790 time = 0;
1791 while (TRUE) {
1792 val64 = readq(&bar0->rti_command_mem);
1793 if (!(val64 & RTI_CMD_MEM_STROBE_NEW_CMD))
1794 break;
1796 if (time > 10) {
1797 DBG_PRINT(ERR_DBG, "%s: RTI init Failed\n",
1798 dev->name);
1799 return -ENODEV;
1801 time++;
1802 msleep(50);
1807 * Initializing proper values as Pause threshold into all
1808 * the 8 Queues on Rx side.
1810 writeq(0xffbbffbbffbbffbbULL, &bar0->mc_pause_thresh_q0q3);
1811 writeq(0xffbbffbbffbbffbbULL, &bar0->mc_pause_thresh_q4q7);
1813 /* Disable RMAC PAD STRIPPING */
1814 add = &bar0->mac_cfg;
1815 val64 = readq(&bar0->mac_cfg);
1816 val64 &= ~(MAC_CFG_RMAC_STRIP_PAD);
1817 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1818 writel((u32) (val64), add);
1819 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1820 writel((u32) (val64 >> 32), (add + 4));
1821 val64 = readq(&bar0->mac_cfg);
1823 /* Enable FCS stripping by adapter */
1824 add = &bar0->mac_cfg;
1825 val64 = readq(&bar0->mac_cfg);
1826 val64 |= MAC_CFG_RMAC_STRIP_FCS;
1827 if (nic->device_type == XFRAME_II_DEVICE)
1828 writeq(val64, &bar0->mac_cfg);
1829 else {
1830 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1831 writel((u32) (val64), add);
1832 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1833 writel((u32) (val64 >> 32), (add + 4));
1837 * Set the time value to be inserted in the pause frame
1838 * generated by xena.
1840 val64 = readq(&bar0->rmac_pause_cfg);
1841 val64 &= ~(RMAC_PAUSE_HG_PTIME(0xffff));
1842 val64 |= RMAC_PAUSE_HG_PTIME(nic->mac_control.rmac_pause_time);
1843 writeq(val64, &bar0->rmac_pause_cfg);
1846 * Set the Threshold Limit for Generating the pause frame
1847 * If the amount of data in any Queue exceeds ratio of
1848 * (mac_control.mc_pause_threshold_q0q3 or q4q7)/256
1849 * pause frame is generated
1851 val64 = 0;
1852 for (i = 0; i < 4; i++) {
1853 val64 |=
1854 (((u64) 0xFF00 | nic->mac_control.
1855 mc_pause_threshold_q0q3)
1856 << (i * 2 * 8));
1858 writeq(val64, &bar0->mc_pause_thresh_q0q3);
1860 val64 = 0;
1861 for (i = 0; i < 4; i++) {
1862 val64 |=
1863 (((u64) 0xFF00 | nic->mac_control.
1864 mc_pause_threshold_q4q7)
1865 << (i * 2 * 8));
1867 writeq(val64, &bar0->mc_pause_thresh_q4q7);
1870 * TxDMA will stop Read request if the number of read split has
1871 * exceeded the limit pointed by shared_splits
1873 val64 = readq(&bar0->pic_control);
1874 val64 |= PIC_CNTL_SHARED_SPLITS(shared_splits);
1875 writeq(val64, &bar0->pic_control);
1877 if (nic->config.bus_speed == 266) {
1878 writeq(TXREQTO_VAL(0x7f) | TXREQTO_EN, &bar0->txreqtimeout);
1879 writeq(0x0, &bar0->read_retry_delay);
1880 writeq(0x0, &bar0->write_retry_delay);
1884 * Programming the Herc to split every write transaction
1885 * that does not start on an ADB to reduce disconnects.
1887 if (nic->device_type == XFRAME_II_DEVICE) {
1888 val64 = FAULT_BEHAVIOUR | EXT_REQ_EN |
1889 MISC_LINK_STABILITY_PRD(3);
1890 writeq(val64, &bar0->misc_control);
1891 val64 = readq(&bar0->pic_control2);
1892 val64 &= ~(s2BIT(13)|s2BIT(14)|s2BIT(15));
1893 writeq(val64, &bar0->pic_control2);
1895 if (strstr(nic->product_name, "CX4")) {
1896 val64 = TMAC_AVG_IPG(0x17);
1897 writeq(val64, &bar0->tmac_avg_ipg);
1900 return SUCCESS;
1902 #define LINK_UP_DOWN_INTERRUPT 1
1903 #define MAC_RMAC_ERR_TIMER 2
1905 static int s2io_link_fault_indication(struct s2io_nic *nic)
1907 if (nic->config.intr_type != INTA)
1908 return MAC_RMAC_ERR_TIMER;
1909 if (nic->device_type == XFRAME_II_DEVICE)
1910 return LINK_UP_DOWN_INTERRUPT;
1911 else
1912 return MAC_RMAC_ERR_TIMER;
1916 * do_s2io_write_bits - update alarm bits in alarm register
1917 * @value: alarm bits
1918 * @flag: interrupt status
1919 * @addr: address value
1920 * Description: update alarm bits in alarm register
1921 * Return Value:
1922 * NONE.
1924 static void do_s2io_write_bits(u64 value, int flag, void __iomem *addr)
1926 u64 temp64;
1928 temp64 = readq(addr);
1930 if(flag == ENABLE_INTRS)
1931 temp64 &= ~((u64) value);
1932 else
1933 temp64 |= ((u64) value);
1934 writeq(temp64, addr);
1937 static void en_dis_err_alarms(struct s2io_nic *nic, u16 mask, int flag)
1939 struct XENA_dev_config __iomem *bar0 = nic->bar0;
1940 register u64 gen_int_mask = 0;
1942 if (mask & TX_DMA_INTR) {
1944 gen_int_mask |= TXDMA_INT_M;
1946 do_s2io_write_bits(TXDMA_TDA_INT | TXDMA_PFC_INT |
1947 TXDMA_PCC_INT | TXDMA_TTI_INT |
1948 TXDMA_LSO_INT | TXDMA_TPA_INT |
1949 TXDMA_SM_INT, flag, &bar0->txdma_int_mask);
1951 do_s2io_write_bits(PFC_ECC_DB_ERR | PFC_SM_ERR_ALARM |
1952 PFC_MISC_0_ERR | PFC_MISC_1_ERR |
1953 PFC_PCIX_ERR | PFC_ECC_SG_ERR, flag,
1954 &bar0->pfc_err_mask);
1956 do_s2io_write_bits(TDA_Fn_ECC_DB_ERR | TDA_SM0_ERR_ALARM |
1957 TDA_SM1_ERR_ALARM | TDA_Fn_ECC_SG_ERR |
1958 TDA_PCIX_ERR, flag, &bar0->tda_err_mask);
1960 do_s2io_write_bits(PCC_FB_ECC_DB_ERR | PCC_TXB_ECC_DB_ERR |
1961 PCC_SM_ERR_ALARM | PCC_WR_ERR_ALARM |
1962 PCC_N_SERR | PCC_6_COF_OV_ERR |
1963 PCC_7_COF_OV_ERR | PCC_6_LSO_OV_ERR |
1964 PCC_7_LSO_OV_ERR | PCC_FB_ECC_SG_ERR |
1965 PCC_TXB_ECC_SG_ERR, flag, &bar0->pcc_err_mask);
1967 do_s2io_write_bits(TTI_SM_ERR_ALARM | TTI_ECC_SG_ERR |
1968 TTI_ECC_DB_ERR, flag, &bar0->tti_err_mask);
1970 do_s2io_write_bits(LSO6_ABORT | LSO7_ABORT |
1971 LSO6_SM_ERR_ALARM | LSO7_SM_ERR_ALARM |
1972 LSO6_SEND_OFLOW | LSO7_SEND_OFLOW,
1973 flag, &bar0->lso_err_mask);
1975 do_s2io_write_bits(TPA_SM_ERR_ALARM | TPA_TX_FRM_DROP,
1976 flag, &bar0->tpa_err_mask);
1978 do_s2io_write_bits(SM_SM_ERR_ALARM, flag, &bar0->sm_err_mask);
1982 if (mask & TX_MAC_INTR) {
1983 gen_int_mask |= TXMAC_INT_M;
1984 do_s2io_write_bits(MAC_INT_STATUS_TMAC_INT, flag,
1985 &bar0->mac_int_mask);
1986 do_s2io_write_bits(TMAC_TX_BUF_OVRN | TMAC_TX_SM_ERR |
1987 TMAC_ECC_SG_ERR | TMAC_ECC_DB_ERR |
1988 TMAC_DESC_ECC_SG_ERR | TMAC_DESC_ECC_DB_ERR,
1989 flag, &bar0->mac_tmac_err_mask);
1992 if (mask & TX_XGXS_INTR) {
1993 gen_int_mask |= TXXGXS_INT_M;
1994 do_s2io_write_bits(XGXS_INT_STATUS_TXGXS, flag,
1995 &bar0->xgxs_int_mask);
1996 do_s2io_write_bits(TXGXS_ESTORE_UFLOW | TXGXS_TX_SM_ERR |
1997 TXGXS_ECC_SG_ERR | TXGXS_ECC_DB_ERR,
1998 flag, &bar0->xgxs_txgxs_err_mask);
2001 if (mask & RX_DMA_INTR) {
2002 gen_int_mask |= RXDMA_INT_M;
2003 do_s2io_write_bits(RXDMA_INT_RC_INT_M | RXDMA_INT_RPA_INT_M |
2004 RXDMA_INT_RDA_INT_M | RXDMA_INT_RTI_INT_M,
2005 flag, &bar0->rxdma_int_mask);
2006 do_s2io_write_bits(RC_PRCn_ECC_DB_ERR | RC_FTC_ECC_DB_ERR |
2007 RC_PRCn_SM_ERR_ALARM | RC_FTC_SM_ERR_ALARM |
2008 RC_PRCn_ECC_SG_ERR | RC_FTC_ECC_SG_ERR |
2009 RC_RDA_FAIL_WR_Rn, flag, &bar0->rc_err_mask);
2010 do_s2io_write_bits(PRC_PCI_AB_RD_Rn | PRC_PCI_AB_WR_Rn |
2011 PRC_PCI_AB_F_WR_Rn | PRC_PCI_DP_RD_Rn |
2012 PRC_PCI_DP_WR_Rn | PRC_PCI_DP_F_WR_Rn, flag,
2013 &bar0->prc_pcix_err_mask);
2014 do_s2io_write_bits(RPA_SM_ERR_ALARM | RPA_CREDIT_ERR |
2015 RPA_ECC_SG_ERR | RPA_ECC_DB_ERR, flag,
2016 &bar0->rpa_err_mask);
2017 do_s2io_write_bits(RDA_RXDn_ECC_DB_ERR | RDA_FRM_ECC_DB_N_AERR |
2018 RDA_SM1_ERR_ALARM | RDA_SM0_ERR_ALARM |
2019 RDA_RXD_ECC_DB_SERR | RDA_RXDn_ECC_SG_ERR |
2020 RDA_FRM_ECC_SG_ERR | RDA_MISC_ERR|RDA_PCIX_ERR,
2021 flag, &bar0->rda_err_mask);
2022 do_s2io_write_bits(RTI_SM_ERR_ALARM |
2023 RTI_ECC_SG_ERR | RTI_ECC_DB_ERR,
2024 flag, &bar0->rti_err_mask);
2027 if (mask & RX_MAC_INTR) {
2028 gen_int_mask |= RXMAC_INT_M;
2029 do_s2io_write_bits(MAC_INT_STATUS_RMAC_INT, flag,
2030 &bar0->mac_int_mask);
2031 do_s2io_write_bits(RMAC_RX_BUFF_OVRN | RMAC_RX_SM_ERR |
2032 RMAC_UNUSED_INT | RMAC_SINGLE_ECC_ERR |
2033 RMAC_DOUBLE_ECC_ERR |
2034 RMAC_LINK_STATE_CHANGE_INT,
2035 flag, &bar0->mac_rmac_err_mask);
2038 if (mask & RX_XGXS_INTR)
2040 gen_int_mask |= RXXGXS_INT_M;
2041 do_s2io_write_bits(XGXS_INT_STATUS_RXGXS, flag,
2042 &bar0->xgxs_int_mask);
2043 do_s2io_write_bits(RXGXS_ESTORE_OFLOW | RXGXS_RX_SM_ERR, flag,
2044 &bar0->xgxs_rxgxs_err_mask);
2047 if (mask & MC_INTR) {
2048 gen_int_mask |= MC_INT_M;
2049 do_s2io_write_bits(MC_INT_MASK_MC_INT, flag, &bar0->mc_int_mask);
2050 do_s2io_write_bits(MC_ERR_REG_SM_ERR | MC_ERR_REG_ECC_ALL_SNG |
2051 MC_ERR_REG_ECC_ALL_DBL | PLL_LOCK_N, flag,
2052 &bar0->mc_err_mask);
2054 nic->general_int_mask = gen_int_mask;
2056 /* Remove this line when alarm interrupts are enabled */
2057 nic->general_int_mask = 0;
2060 * en_dis_able_nic_intrs - Enable or Disable the interrupts
2061 * @nic: device private variable,
2062 * @mask: A mask indicating which Intr block must be modified and,
2063 * @flag: A flag indicating whether to enable or disable the Intrs.
2064 * Description: This function will either disable or enable the interrupts
2065 * depending on the flag argument. The mask argument can be used to
2066 * enable/disable any Intr block.
2067 * Return Value: NONE.
2070 static void en_dis_able_nic_intrs(struct s2io_nic *nic, u16 mask, int flag)
2072 struct XENA_dev_config __iomem *bar0 = nic->bar0;
2073 register u64 temp64 = 0, intr_mask = 0;
2075 intr_mask = nic->general_int_mask;
2077 /* Top level interrupt classification */
2078 /* PIC Interrupts */
2079 if (mask & TX_PIC_INTR) {
2080 /* Enable PIC Intrs in the general intr mask register */
2081 intr_mask |= TXPIC_INT_M;
2082 if (flag == ENABLE_INTRS) {
2084 * If Hercules adapter enable GPIO otherwise
2085 * disable all PCIX, Flash, MDIO, IIC and GPIO
2086 * interrupts for now.
2087 * TODO
2089 if (s2io_link_fault_indication(nic) ==
2090 LINK_UP_DOWN_INTERRUPT ) {
2091 do_s2io_write_bits(PIC_INT_GPIO, flag,
2092 &bar0->pic_int_mask);
2093 do_s2io_write_bits(GPIO_INT_MASK_LINK_UP, flag,
2094 &bar0->gpio_int_mask);
2095 } else
2096 writeq(DISABLE_ALL_INTRS, &bar0->pic_int_mask);
2097 } else if (flag == DISABLE_INTRS) {
2099 * Disable PIC Intrs in the general
2100 * intr mask register
2102 writeq(DISABLE_ALL_INTRS, &bar0->pic_int_mask);
2106 /* Tx traffic interrupts */
2107 if (mask & TX_TRAFFIC_INTR) {
2108 intr_mask |= TXTRAFFIC_INT_M;
2109 if (flag == ENABLE_INTRS) {
2111 * Enable all the Tx side interrupts
2112 * writing 0 Enables all 64 TX interrupt levels
2114 writeq(0x0, &bar0->tx_traffic_mask);
2115 } else if (flag == DISABLE_INTRS) {
2117 * Disable Tx Traffic Intrs in the general intr mask
2118 * register.
2120 writeq(DISABLE_ALL_INTRS, &bar0->tx_traffic_mask);
2124 /* Rx traffic interrupts */
2125 if (mask & RX_TRAFFIC_INTR) {
2126 intr_mask |= RXTRAFFIC_INT_M;
2127 if (flag == ENABLE_INTRS) {
2128 /* writing 0 Enables all 8 RX interrupt levels */
2129 writeq(0x0, &bar0->rx_traffic_mask);
2130 } else if (flag == DISABLE_INTRS) {
2132 * Disable Rx Traffic Intrs in the general intr mask
2133 * register.
2135 writeq(DISABLE_ALL_INTRS, &bar0->rx_traffic_mask);
2139 temp64 = readq(&bar0->general_int_mask);
2140 if (flag == ENABLE_INTRS)
2141 temp64 &= ~((u64) intr_mask);
2142 else
2143 temp64 = DISABLE_ALL_INTRS;
2144 writeq(temp64, &bar0->general_int_mask);
2146 nic->general_int_mask = readq(&bar0->general_int_mask);
2150 * verify_pcc_quiescent- Checks for PCC quiescent state
2151 * Return: 1 If PCC is quiescence
2152 * 0 If PCC is not quiescence
2154 static int verify_pcc_quiescent(struct s2io_nic *sp, int flag)
2156 int ret = 0, herc;
2157 struct XENA_dev_config __iomem *bar0 = sp->bar0;
2158 u64 val64 = readq(&bar0->adapter_status);
2160 herc = (sp->device_type == XFRAME_II_DEVICE);
2162 if (flag == FALSE) {
2163 if ((!herc && (sp->pdev->revision >= 4)) || herc) {
2164 if (!(val64 & ADAPTER_STATUS_RMAC_PCC_IDLE))
2165 ret = 1;
2166 } else {
2167 if (!(val64 & ADAPTER_STATUS_RMAC_PCC_FOUR_IDLE))
2168 ret = 1;
2170 } else {
2171 if ((!herc && (sp->pdev->revision >= 4)) || herc) {
2172 if (((val64 & ADAPTER_STATUS_RMAC_PCC_IDLE) ==
2173 ADAPTER_STATUS_RMAC_PCC_IDLE))
2174 ret = 1;
2175 } else {
2176 if (((val64 & ADAPTER_STATUS_RMAC_PCC_FOUR_IDLE) ==
2177 ADAPTER_STATUS_RMAC_PCC_FOUR_IDLE))
2178 ret = 1;
2182 return ret;
2185 * verify_xena_quiescence - Checks whether the H/W is ready
2186 * Description: Returns whether the H/W is ready to go or not. Depending
2187 * on whether adapter enable bit was written or not the comparison
2188 * differs and the calling function passes the input argument flag to
2189 * indicate this.
2190 * Return: 1 If xena is quiescence
2191 * 0 If Xena is not quiescence
2194 static int verify_xena_quiescence(struct s2io_nic *sp)
2196 int mode;
2197 struct XENA_dev_config __iomem *bar0 = sp->bar0;
2198 u64 val64 = readq(&bar0->adapter_status);
2199 mode = s2io_verify_pci_mode(sp);
2201 if (!(val64 & ADAPTER_STATUS_TDMA_READY)) {
2202 DBG_PRINT(ERR_DBG, "%s", "TDMA is not ready!");
2203 return 0;
2205 if (!(val64 & ADAPTER_STATUS_RDMA_READY)) {
2206 DBG_PRINT(ERR_DBG, "%s", "RDMA is not ready!");
2207 return 0;
2209 if (!(val64 & ADAPTER_STATUS_PFC_READY)) {
2210 DBG_PRINT(ERR_DBG, "%s", "PFC is not ready!");
2211 return 0;
2213 if (!(val64 & ADAPTER_STATUS_TMAC_BUF_EMPTY)) {
2214 DBG_PRINT(ERR_DBG, "%s", "TMAC BUF is not empty!");
2215 return 0;
2217 if (!(val64 & ADAPTER_STATUS_PIC_QUIESCENT)) {
2218 DBG_PRINT(ERR_DBG, "%s", "PIC is not QUIESCENT!");
2219 return 0;
2221 if (!(val64 & ADAPTER_STATUS_MC_DRAM_READY)) {
2222 DBG_PRINT(ERR_DBG, "%s", "MC_DRAM is not ready!");
2223 return 0;
2225 if (!(val64 & ADAPTER_STATUS_MC_QUEUES_READY)) {
2226 DBG_PRINT(ERR_DBG, "%s", "MC_QUEUES is not ready!");
2227 return 0;
2229 if (!(val64 & ADAPTER_STATUS_M_PLL_LOCK)) {
2230 DBG_PRINT(ERR_DBG, "%s", "M_PLL is not locked!");
2231 return 0;
2235 * In PCI 33 mode, the P_PLL is not used, and therefore,
2236 * the the P_PLL_LOCK bit in the adapter_status register will
2237 * not be asserted.
2239 if (!(val64 & ADAPTER_STATUS_P_PLL_LOCK) &&
2240 sp->device_type == XFRAME_II_DEVICE && mode !=
2241 PCI_MODE_PCI_33) {
2242 DBG_PRINT(ERR_DBG, "%s", "P_PLL is not locked!");
2243 return 0;
2245 if (!((val64 & ADAPTER_STATUS_RC_PRC_QUIESCENT) ==
2246 ADAPTER_STATUS_RC_PRC_QUIESCENT)) {
2247 DBG_PRINT(ERR_DBG, "%s", "RC_PRC is not QUIESCENT!");
2248 return 0;
2250 return 1;
2254 * fix_mac_address - Fix for Mac addr problem on Alpha platforms
2255 * @sp: Pointer to device specifc structure
2256 * Description :
2257 * New procedure to clear mac address reading problems on Alpha platforms
2261 static void fix_mac_address(struct s2io_nic * sp)
2263 struct XENA_dev_config __iomem *bar0 = sp->bar0;
2264 u64 val64;
2265 int i = 0;
2267 while (fix_mac[i] != END_SIGN) {
2268 writeq(fix_mac[i++], &bar0->gpio_control);
2269 udelay(10);
2270 val64 = readq(&bar0->gpio_control);
2275 * start_nic - Turns the device on
2276 * @nic : device private variable.
2277 * Description:
2278 * This function actually turns the device on. Before this function is
2279 * called,all Registers are configured from their reset states
2280 * and shared memory is allocated but the NIC is still quiescent. On
2281 * calling this function, the device interrupts are cleared and the NIC is
2282 * literally switched on by writing into the adapter control register.
2283 * Return Value:
2284 * SUCCESS on success and -1 on failure.
2287 static int start_nic(struct s2io_nic *nic)
2289 struct XENA_dev_config __iomem *bar0 = nic->bar0;
2290 struct net_device *dev = nic->dev;
2291 register u64 val64 = 0;
2292 u16 subid, i;
2293 struct mac_info *mac_control;
2294 struct config_param *config;
2296 mac_control = &nic->mac_control;
2297 config = &nic->config;
2299 /* PRC Initialization and configuration */
2300 for (i = 0; i < config->rx_ring_num; i++) {
2301 writeq((u64) mac_control->rings[i].rx_blocks[0].block_dma_addr,
2302 &bar0->prc_rxd0_n[i]);
2304 val64 = readq(&bar0->prc_ctrl_n[i]);
2305 if (nic->rxd_mode == RXD_MODE_1)
2306 val64 |= PRC_CTRL_RC_ENABLED;
2307 else
2308 val64 |= PRC_CTRL_RC_ENABLED | PRC_CTRL_RING_MODE_3;
2309 if (nic->device_type == XFRAME_II_DEVICE)
2310 val64 |= PRC_CTRL_GROUP_READS;
2311 val64 &= ~PRC_CTRL_RXD_BACKOFF_INTERVAL(0xFFFFFF);
2312 val64 |= PRC_CTRL_RXD_BACKOFF_INTERVAL(0x1000);
2313 writeq(val64, &bar0->prc_ctrl_n[i]);
2316 if (nic->rxd_mode == RXD_MODE_3B) {
2317 /* Enabling 2 buffer mode by writing into Rx_pa_cfg reg. */
2318 val64 = readq(&bar0->rx_pa_cfg);
2319 val64 |= RX_PA_CFG_IGNORE_L2_ERR;
2320 writeq(val64, &bar0->rx_pa_cfg);
2323 if (vlan_tag_strip == 0) {
2324 val64 = readq(&bar0->rx_pa_cfg);
2325 val64 &= ~RX_PA_CFG_STRIP_VLAN_TAG;
2326 writeq(val64, &bar0->rx_pa_cfg);
2327 vlan_strip_flag = 0;
2331 * Enabling MC-RLDRAM. After enabling the device, we timeout
2332 * for around 100ms, which is approximately the time required
2333 * for the device to be ready for operation.
2335 val64 = readq(&bar0->mc_rldram_mrs);
2336 val64 |= MC_RLDRAM_QUEUE_SIZE_ENABLE | MC_RLDRAM_MRS_ENABLE;
2337 SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_mrs, UF);
2338 val64 = readq(&bar0->mc_rldram_mrs);
2340 msleep(100); /* Delay by around 100 ms. */
2342 /* Enabling ECC Protection. */
2343 val64 = readq(&bar0->adapter_control);
2344 val64 &= ~ADAPTER_ECC_EN;
2345 writeq(val64, &bar0->adapter_control);
2348 * Verify if the device is ready to be enabled, if so enable
2349 * it.
2351 val64 = readq(&bar0->adapter_status);
2352 if (!verify_xena_quiescence(nic)) {
2353 DBG_PRINT(ERR_DBG, "%s: device is not ready, ", dev->name);
2354 DBG_PRINT(ERR_DBG, "Adapter status reads: 0x%llx\n",
2355 (unsigned long long) val64);
2356 return FAILURE;
2360 * With some switches, link might be already up at this point.
2361 * Because of this weird behavior, when we enable laser,
2362 * we may not get link. We need to handle this. We cannot
2363 * figure out which switch is misbehaving. So we are forced to
2364 * make a global change.
2367 /* Enabling Laser. */
2368 val64 = readq(&bar0->adapter_control);
2369 val64 |= ADAPTER_EOI_TX_ON;
2370 writeq(val64, &bar0->adapter_control);
2372 if (s2io_link_fault_indication(nic) == MAC_RMAC_ERR_TIMER) {
2374 * Dont see link state interrupts initally on some switches,
2375 * so directly scheduling the link state task here.
2377 schedule_work(&nic->set_link_task);
2379 /* SXE-002: Initialize link and activity LED */
2380 subid = nic->pdev->subsystem_device;
2381 if (((subid & 0xFF) >= 0x07) &&
2382 (nic->device_type == XFRAME_I_DEVICE)) {
2383 val64 = readq(&bar0->gpio_control);
2384 val64 |= 0x0000800000000000ULL;
2385 writeq(val64, &bar0->gpio_control);
2386 val64 = 0x0411040400000000ULL;
2387 writeq(val64, (void __iomem *)bar0 + 0x2700);
2390 return SUCCESS;
2393 * s2io_txdl_getskb - Get the skb from txdl, unmap and return skb
2395 static struct sk_buff *s2io_txdl_getskb(struct fifo_info *fifo_data, struct \
2396 TxD *txdlp, int get_off)
2398 struct s2io_nic *nic = fifo_data->nic;
2399 struct sk_buff *skb;
2400 struct TxD *txds;
2401 u16 j, frg_cnt;
2403 txds = txdlp;
2404 if (txds->Host_Control == (u64)(long)fifo_data->ufo_in_band_v) {
2405 pci_unmap_single(nic->pdev, (dma_addr_t)
2406 txds->Buffer_Pointer, sizeof(u64),
2407 PCI_DMA_TODEVICE);
2408 txds++;
2411 skb = (struct sk_buff *) ((unsigned long)
2412 txds->Host_Control);
2413 if (!skb) {
2414 memset(txdlp, 0, (sizeof(struct TxD) * fifo_data->max_txds));
2415 return NULL;
2417 pci_unmap_single(nic->pdev, (dma_addr_t)
2418 txds->Buffer_Pointer,
2419 skb->len - skb->data_len,
2420 PCI_DMA_TODEVICE);
2421 frg_cnt = skb_shinfo(skb)->nr_frags;
2422 if (frg_cnt) {
2423 txds++;
2424 for (j = 0; j < frg_cnt; j++, txds++) {
2425 skb_frag_t *frag = &skb_shinfo(skb)->frags[j];
2426 if (!txds->Buffer_Pointer)
2427 break;
2428 pci_unmap_page(nic->pdev, (dma_addr_t)
2429 txds->Buffer_Pointer,
2430 frag->size, PCI_DMA_TODEVICE);
2433 memset(txdlp,0, (sizeof(struct TxD) * fifo_data->max_txds));
2434 return(skb);
2438 * free_tx_buffers - Free all queued Tx buffers
2439 * @nic : device private variable.
2440 * Description:
2441 * Free all queued Tx buffers.
2442 * Return Value: void
2445 static void free_tx_buffers(struct s2io_nic *nic)
2447 struct net_device *dev = nic->dev;
2448 struct sk_buff *skb;
2449 struct TxD *txdp;
2450 int i, j;
2451 struct mac_info *mac_control;
2452 struct config_param *config;
2453 int cnt = 0;
2455 mac_control = &nic->mac_control;
2456 config = &nic->config;
2458 for (i = 0; i < config->tx_fifo_num; i++) {
2459 unsigned long flags;
2460 spin_lock_irqsave(&mac_control->fifos[i].tx_lock, flags);
2461 for (j = 0; j < config->tx_cfg[i].fifo_len - 1; j++) {
2462 txdp = (struct TxD *) \
2463 mac_control->fifos[i].list_info[j].list_virt_addr;
2464 skb = s2io_txdl_getskb(&mac_control->fifos[i], txdp, j);
2465 if (skb) {
2466 nic->mac_control.stats_info->sw_stat.mem_freed
2467 += skb->truesize;
2468 dev_kfree_skb(skb);
2469 cnt++;
2472 DBG_PRINT(INTR_DBG,
2473 "%s:forcibly freeing %d skbs on FIFO%d\n",
2474 dev->name, cnt, i);
2475 mac_control->fifos[i].tx_curr_get_info.offset = 0;
2476 mac_control->fifos[i].tx_curr_put_info.offset = 0;
2477 spin_unlock_irqrestore(&mac_control->fifos[i].tx_lock, flags);
2482 * stop_nic - To stop the nic
2483 * @nic ; device private variable.
2484 * Description:
2485 * This function does exactly the opposite of what the start_nic()
2486 * function does. This function is called to stop the device.
2487 * Return Value:
2488 * void.
2491 static void stop_nic(struct s2io_nic *nic)
2493 struct XENA_dev_config __iomem *bar0 = nic->bar0;
2494 register u64 val64 = 0;
2495 u16 interruptible;
2496 struct mac_info *mac_control;
2497 struct config_param *config;
2499 mac_control = &nic->mac_control;
2500 config = &nic->config;
2502 /* Disable all interrupts */
2503 en_dis_err_alarms(nic, ENA_ALL_INTRS, DISABLE_INTRS);
2504 interruptible = TX_TRAFFIC_INTR | RX_TRAFFIC_INTR;
2505 interruptible |= TX_PIC_INTR;
2506 en_dis_able_nic_intrs(nic, interruptible, DISABLE_INTRS);
2508 /* Clearing Adapter_En bit of ADAPTER_CONTROL Register */
2509 val64 = readq(&bar0->adapter_control);
2510 val64 &= ~(ADAPTER_CNTL_EN);
2511 writeq(val64, &bar0->adapter_control);
2515 * fill_rx_buffers - Allocates the Rx side skbs
2516 * @nic: device private variable
2517 * @ring_no: ring number
2518 * Description:
2519 * The function allocates Rx side skbs and puts the physical
2520 * address of these buffers into the RxD buffer pointers, so that the NIC
2521 * can DMA the received frame into these locations.
2522 * The NIC supports 3 receive modes, viz
2523 * 1. single buffer,
2524 * 2. three buffer and
2525 * 3. Five buffer modes.
2526 * Each mode defines how many fragments the received frame will be split
2527 * up into by the NIC. The frame is split into L3 header, L4 Header,
2528 * L4 payload in three buffer mode and in 5 buffer mode, L4 payload itself
2529 * is split into 3 fragments. As of now only single buffer mode is
2530 * supported.
2531 * Return Value:
2532 * SUCCESS on success or an appropriate -ve value on failure.
2535 static int fill_rx_buffers(struct s2io_nic *nic, int ring_no)
2537 struct net_device *dev = nic->dev;
2538 struct sk_buff *skb;
2539 struct RxD_t *rxdp;
2540 int off, off1, size, block_no, block_no1;
2541 u32 alloc_tab = 0;
2542 u32 alloc_cnt;
2543 struct mac_info *mac_control;
2544 struct config_param *config;
2545 u64 tmp;
2546 struct buffAdd *ba;
2547 unsigned long flags;
2548 struct RxD_t *first_rxdp = NULL;
2549 u64 Buffer0_ptr = 0, Buffer1_ptr = 0;
2550 struct RxD1 *rxdp1;
2551 struct RxD3 *rxdp3;
2552 struct swStat *stats = &nic->mac_control.stats_info->sw_stat;
2554 mac_control = &nic->mac_control;
2555 config = &nic->config;
2556 alloc_cnt = mac_control->rings[ring_no].pkt_cnt -
2557 atomic_read(&nic->rx_bufs_left[ring_no]);
2559 block_no1 = mac_control->rings[ring_no].rx_curr_get_info.block_index;
2560 off1 = mac_control->rings[ring_no].rx_curr_get_info.offset;
2561 while (alloc_tab < alloc_cnt) {
2562 block_no = mac_control->rings[ring_no].rx_curr_put_info.
2563 block_index;
2564 off = mac_control->rings[ring_no].rx_curr_put_info.offset;
2566 rxdp = mac_control->rings[ring_no].
2567 rx_blocks[block_no].rxds[off].virt_addr;
2569 if ((block_no == block_no1) && (off == off1) &&
2570 (rxdp->Host_Control)) {
2571 DBG_PRINT(INTR_DBG, "%s: Get and Put",
2572 dev->name);
2573 DBG_PRINT(INTR_DBG, " info equated\n");
2574 goto end;
2576 if (off && (off == rxd_count[nic->rxd_mode])) {
2577 mac_control->rings[ring_no].rx_curr_put_info.
2578 block_index++;
2579 if (mac_control->rings[ring_no].rx_curr_put_info.
2580 block_index == mac_control->rings[ring_no].
2581 block_count)
2582 mac_control->rings[ring_no].rx_curr_put_info.
2583 block_index = 0;
2584 block_no = mac_control->rings[ring_no].
2585 rx_curr_put_info.block_index;
2586 if (off == rxd_count[nic->rxd_mode])
2587 off = 0;
2588 mac_control->rings[ring_no].rx_curr_put_info.
2589 offset = off;
2590 rxdp = mac_control->rings[ring_no].
2591 rx_blocks[block_no].block_virt_addr;
2592 DBG_PRINT(INTR_DBG, "%s: Next block at: %p\n",
2593 dev->name, rxdp);
2595 if(!napi) {
2596 spin_lock_irqsave(&nic->put_lock, flags);
2597 mac_control->rings[ring_no].put_pos =
2598 (block_no * (rxd_count[nic->rxd_mode] + 1)) + off;
2599 spin_unlock_irqrestore(&nic->put_lock, flags);
2600 } else {
2601 mac_control->rings[ring_no].put_pos =
2602 (block_no * (rxd_count[nic->rxd_mode] + 1)) + off;
2604 if ((rxdp->Control_1 & RXD_OWN_XENA) &&
2605 ((nic->rxd_mode == RXD_MODE_3B) &&
2606 (rxdp->Control_2 & s2BIT(0)))) {
2607 mac_control->rings[ring_no].rx_curr_put_info.
2608 offset = off;
2609 goto end;
2611 /* calculate size of skb based on ring mode */
2612 size = dev->mtu + HEADER_ETHERNET_II_802_3_SIZE +
2613 HEADER_802_2_SIZE + HEADER_SNAP_SIZE;
2614 if (nic->rxd_mode == RXD_MODE_1)
2615 size += NET_IP_ALIGN;
2616 else
2617 size = dev->mtu + ALIGN_SIZE + BUF0_LEN + 4;
2619 /* allocate skb */
2620 skb = dev_alloc_skb(size);
2621 if(!skb) {
2622 DBG_PRINT(INFO_DBG, "%s: Out of ", dev->name);
2623 DBG_PRINT(INFO_DBG, "memory to allocate SKBs\n");
2624 if (first_rxdp) {
2625 wmb();
2626 first_rxdp->Control_1 |= RXD_OWN_XENA;
2628 nic->mac_control.stats_info->sw_stat. \
2629 mem_alloc_fail_cnt++;
2630 return -ENOMEM ;
2632 nic->mac_control.stats_info->sw_stat.mem_allocated
2633 += skb->truesize;
2634 if (nic->rxd_mode == RXD_MODE_1) {
2635 /* 1 buffer mode - normal operation mode */
2636 rxdp1 = (struct RxD1*)rxdp;
2637 memset(rxdp, 0, sizeof(struct RxD1));
2638 skb_reserve(skb, NET_IP_ALIGN);
2639 rxdp1->Buffer0_ptr = pci_map_single
2640 (nic->pdev, skb->data, size - NET_IP_ALIGN,
2641 PCI_DMA_FROMDEVICE);
2642 if( (rxdp1->Buffer0_ptr == 0) ||
2643 (rxdp1->Buffer0_ptr ==
2644 DMA_ERROR_CODE))
2645 goto pci_map_failed;
2647 rxdp->Control_2 =
2648 SET_BUFFER0_SIZE_1(size - NET_IP_ALIGN);
2650 } else if (nic->rxd_mode == RXD_MODE_3B) {
2652 * 2 buffer mode -
2653 * 2 buffer mode provides 128
2654 * byte aligned receive buffers.
2657 rxdp3 = (struct RxD3*)rxdp;
2658 /* save buffer pointers to avoid frequent dma mapping */
2659 Buffer0_ptr = rxdp3->Buffer0_ptr;
2660 Buffer1_ptr = rxdp3->Buffer1_ptr;
2661 memset(rxdp, 0, sizeof(struct RxD3));
2662 /* restore the buffer pointers for dma sync*/
2663 rxdp3->Buffer0_ptr = Buffer0_ptr;
2664 rxdp3->Buffer1_ptr = Buffer1_ptr;
2666 ba = &mac_control->rings[ring_no].ba[block_no][off];
2667 skb_reserve(skb, BUF0_LEN);
2668 tmp = (u64)(unsigned long) skb->data;
2669 tmp += ALIGN_SIZE;
2670 tmp &= ~ALIGN_SIZE;
2671 skb->data = (void *) (unsigned long)tmp;
2672 skb_reset_tail_pointer(skb);
2674 if (!(rxdp3->Buffer0_ptr))
2675 rxdp3->Buffer0_ptr =
2676 pci_map_single(nic->pdev, ba->ba_0, BUF0_LEN,
2677 PCI_DMA_FROMDEVICE);
2678 else
2679 pci_dma_sync_single_for_device(nic->pdev,
2680 (dma_addr_t) rxdp3->Buffer0_ptr,
2681 BUF0_LEN, PCI_DMA_FROMDEVICE);
2682 if( (rxdp3->Buffer0_ptr == 0) ||
2683 (rxdp3->Buffer0_ptr == DMA_ERROR_CODE))
2684 goto pci_map_failed;
2686 rxdp->Control_2 = SET_BUFFER0_SIZE_3(BUF0_LEN);
2687 if (nic->rxd_mode == RXD_MODE_3B) {
2688 /* Two buffer mode */
2691 * Buffer2 will have L3/L4 header plus
2692 * L4 payload
2694 rxdp3->Buffer2_ptr = pci_map_single
2695 (nic->pdev, skb->data, dev->mtu + 4,
2696 PCI_DMA_FROMDEVICE);
2698 if( (rxdp3->Buffer2_ptr == 0) ||
2699 (rxdp3->Buffer2_ptr == DMA_ERROR_CODE))
2700 goto pci_map_failed;
2702 rxdp3->Buffer1_ptr =
2703 pci_map_single(nic->pdev,
2704 ba->ba_1, BUF1_LEN,
2705 PCI_DMA_FROMDEVICE);
2706 if( (rxdp3->Buffer1_ptr == 0) ||
2707 (rxdp3->Buffer1_ptr == DMA_ERROR_CODE)) {
2708 pci_unmap_single
2709 (nic->pdev,
2710 (dma_addr_t)rxdp3->Buffer2_ptr,
2711 dev->mtu + 4,
2712 PCI_DMA_FROMDEVICE);
2713 goto pci_map_failed;
2715 rxdp->Control_2 |= SET_BUFFER1_SIZE_3(1);
2716 rxdp->Control_2 |= SET_BUFFER2_SIZE_3
2717 (dev->mtu + 4);
2719 rxdp->Control_2 |= s2BIT(0);
2721 rxdp->Host_Control = (unsigned long) (skb);
2722 if (alloc_tab & ((1 << rxsync_frequency) - 1))
2723 rxdp->Control_1 |= RXD_OWN_XENA;
2724 off++;
2725 if (off == (rxd_count[nic->rxd_mode] + 1))
2726 off = 0;
2727 mac_control->rings[ring_no].rx_curr_put_info.offset = off;
2729 rxdp->Control_2 |= SET_RXD_MARKER;
2730 if (!(alloc_tab & ((1 << rxsync_frequency) - 1))) {
2731 if (first_rxdp) {
2732 wmb();
2733 first_rxdp->Control_1 |= RXD_OWN_XENA;
2735 first_rxdp = rxdp;
2737 atomic_inc(&nic->rx_bufs_left[ring_no]);
2738 alloc_tab++;
2741 end:
2742 /* Transfer ownership of first descriptor to adapter just before
2743 * exiting. Before that, use memory barrier so that ownership
2744 * and other fields are seen by adapter correctly.
2746 if (first_rxdp) {
2747 wmb();
2748 first_rxdp->Control_1 |= RXD_OWN_XENA;
2751 return SUCCESS;
2752 pci_map_failed:
2753 stats->pci_map_fail_cnt++;
2754 stats->mem_freed += skb->truesize;
2755 dev_kfree_skb_irq(skb);
2756 return -ENOMEM;
2759 static void free_rxd_blk(struct s2io_nic *sp, int ring_no, int blk)
2761 struct net_device *dev = sp->dev;
2762 int j;
2763 struct sk_buff *skb;
2764 struct RxD_t *rxdp;
2765 struct mac_info *mac_control;
2766 struct buffAdd *ba;
2767 struct RxD1 *rxdp1;
2768 struct RxD3 *rxdp3;
2770 mac_control = &sp->mac_control;
2771 for (j = 0 ; j < rxd_count[sp->rxd_mode]; j++) {
2772 rxdp = mac_control->rings[ring_no].
2773 rx_blocks[blk].rxds[j].virt_addr;
2774 skb = (struct sk_buff *)
2775 ((unsigned long) rxdp->Host_Control);
2776 if (!skb) {
2777 continue;
2779 if (sp->rxd_mode == RXD_MODE_1) {
2780 rxdp1 = (struct RxD1*)rxdp;
2781 pci_unmap_single(sp->pdev, (dma_addr_t)
2782 rxdp1->Buffer0_ptr,
2783 dev->mtu +
2784 HEADER_ETHERNET_II_802_3_SIZE
2785 + HEADER_802_2_SIZE +
2786 HEADER_SNAP_SIZE,
2787 PCI_DMA_FROMDEVICE);
2788 memset(rxdp, 0, sizeof(struct RxD1));
2789 } else if(sp->rxd_mode == RXD_MODE_3B) {
2790 rxdp3 = (struct RxD3*)rxdp;
2791 ba = &mac_control->rings[ring_no].
2792 ba[blk][j];
2793 pci_unmap_single(sp->pdev, (dma_addr_t)
2794 rxdp3->Buffer0_ptr,
2795 BUF0_LEN,
2796 PCI_DMA_FROMDEVICE);
2797 pci_unmap_single(sp->pdev, (dma_addr_t)
2798 rxdp3->Buffer1_ptr,
2799 BUF1_LEN,
2800 PCI_DMA_FROMDEVICE);
2801 pci_unmap_single(sp->pdev, (dma_addr_t)
2802 rxdp3->Buffer2_ptr,
2803 dev->mtu + 4,
2804 PCI_DMA_FROMDEVICE);
2805 memset(rxdp, 0, sizeof(struct RxD3));
2807 sp->mac_control.stats_info->sw_stat.mem_freed += skb->truesize;
2808 dev_kfree_skb(skb);
2809 atomic_dec(&sp->rx_bufs_left[ring_no]);
2814 * free_rx_buffers - Frees all Rx buffers
2815 * @sp: device private variable.
2816 * Description:
2817 * This function will free all Rx buffers allocated by host.
2818 * Return Value:
2819 * NONE.
2822 static void free_rx_buffers(struct s2io_nic *sp)
2824 struct net_device *dev = sp->dev;
2825 int i, blk = 0, buf_cnt = 0;
2826 struct mac_info *mac_control;
2827 struct config_param *config;
2829 mac_control = &sp->mac_control;
2830 config = &sp->config;
2832 for (i = 0; i < config->rx_ring_num; i++) {
2833 for (blk = 0; blk < rx_ring_sz[i]; blk++)
2834 free_rxd_blk(sp,i,blk);
2836 mac_control->rings[i].rx_curr_put_info.block_index = 0;
2837 mac_control->rings[i].rx_curr_get_info.block_index = 0;
2838 mac_control->rings[i].rx_curr_put_info.offset = 0;
2839 mac_control->rings[i].rx_curr_get_info.offset = 0;
2840 atomic_set(&sp->rx_bufs_left[i], 0);
2841 DBG_PRINT(INIT_DBG, "%s:Freed 0x%x Rx Buffers on ring%d\n",
2842 dev->name, buf_cnt, i);
2847 * s2io_poll - Rx interrupt handler for NAPI support
2848 * @napi : pointer to the napi structure.
2849 * @budget : The number of packets that were budgeted to be processed
2850 * during one pass through the 'Poll" function.
2851 * Description:
2852 * Comes into picture only if NAPI support has been incorporated. It does
2853 * the same thing that rx_intr_handler does, but not in a interrupt context
2854 * also It will process only a given number of packets.
2855 * Return value:
2856 * 0 on success and 1 if there are No Rx packets to be processed.
2859 static int s2io_poll(struct napi_struct *napi, int budget)
2861 struct s2io_nic *nic = container_of(napi, struct s2io_nic, napi);
2862 struct net_device *dev = nic->dev;
2863 int pkt_cnt = 0, org_pkts_to_process;
2864 struct mac_info *mac_control;
2865 struct config_param *config;
2866 struct XENA_dev_config __iomem *bar0 = nic->bar0;
2867 int i;
2869 mac_control = &nic->mac_control;
2870 config = &nic->config;
2872 nic->pkts_to_process = budget;
2873 org_pkts_to_process = nic->pkts_to_process;
2875 writeq(S2IO_MINUS_ONE, &bar0->rx_traffic_int);
2876 readl(&bar0->rx_traffic_int);
2878 for (i = 0; i < config->rx_ring_num; i++) {
2879 rx_intr_handler(&mac_control->rings[i]);
2880 pkt_cnt = org_pkts_to_process - nic->pkts_to_process;
2881 if (!nic->pkts_to_process) {
2882 /* Quota for the current iteration has been met */
2883 goto no_rx;
2887 netif_rx_complete(dev, napi);
2889 for (i = 0; i < config->rx_ring_num; i++) {
2890 if (fill_rx_buffers(nic, i) == -ENOMEM) {
2891 DBG_PRINT(INFO_DBG, "%s:Out of memory", dev->name);
2892 DBG_PRINT(INFO_DBG, " in Rx Poll!!\n");
2893 break;
2896 /* Re enable the Rx interrupts. */
2897 writeq(0x0, &bar0->rx_traffic_mask);
2898 readl(&bar0->rx_traffic_mask);
2899 return pkt_cnt;
2901 no_rx:
2902 for (i = 0; i < config->rx_ring_num; i++) {
2903 if (fill_rx_buffers(nic, i) == -ENOMEM) {
2904 DBG_PRINT(INFO_DBG, "%s:Out of memory", dev->name);
2905 DBG_PRINT(INFO_DBG, " in Rx Poll!!\n");
2906 break;
2909 return pkt_cnt;
2912 #ifdef CONFIG_NET_POLL_CONTROLLER
2914 * s2io_netpoll - netpoll event handler entry point
2915 * @dev : pointer to the device structure.
2916 * Description:
2917 * This function will be called by upper layer to check for events on the
2918 * interface in situations where interrupts are disabled. It is used for
2919 * specific in-kernel networking tasks, such as remote consoles and kernel
2920 * debugging over the network (example netdump in RedHat).
2922 static void s2io_netpoll(struct net_device *dev)
2924 struct s2io_nic *nic = dev->priv;
2925 struct mac_info *mac_control;
2926 struct config_param *config;
2927 struct XENA_dev_config __iomem *bar0 = nic->bar0;
2928 u64 val64 = 0xFFFFFFFFFFFFFFFFULL;
2929 int i;
2931 if (pci_channel_offline(nic->pdev))
2932 return;
2934 disable_irq(dev->irq);
2936 mac_control = &nic->mac_control;
2937 config = &nic->config;
2939 writeq(val64, &bar0->rx_traffic_int);
2940 writeq(val64, &bar0->tx_traffic_int);
2942 /* we need to free up the transmitted skbufs or else netpoll will
2943 * run out of skbs and will fail and eventually netpoll application such
2944 * as netdump will fail.
2946 for (i = 0; i < config->tx_fifo_num; i++)
2947 tx_intr_handler(&mac_control->fifos[i]);
2949 /* check for received packet and indicate up to network */
2950 for (i = 0; i < config->rx_ring_num; i++)
2951 rx_intr_handler(&mac_control->rings[i]);
2953 for (i = 0; i < config->rx_ring_num; i++) {
2954 if (fill_rx_buffers(nic, i) == -ENOMEM) {
2955 DBG_PRINT(INFO_DBG, "%s:Out of memory", dev->name);
2956 DBG_PRINT(INFO_DBG, " in Rx Netpoll!!\n");
2957 break;
2960 enable_irq(dev->irq);
2961 return;
2963 #endif
2966 * rx_intr_handler - Rx interrupt handler
2967 * @nic: device private variable.
2968 * Description:
2969 * If the interrupt is because of a received frame or if the
2970 * receive ring contains fresh as yet un-processed frames,this function is
2971 * called. It picks out the RxD at which place the last Rx processing had
2972 * stopped and sends the skb to the OSM's Rx handler and then increments
2973 * the offset.
2974 * Return Value:
2975 * NONE.
2977 static void rx_intr_handler(struct ring_info *ring_data)
2979 struct s2io_nic *nic = ring_data->nic;
2980 struct net_device *dev = (struct net_device *) nic->dev;
2981 int get_block, put_block, put_offset;
2982 struct rx_curr_get_info get_info, put_info;
2983 struct RxD_t *rxdp;
2984 struct sk_buff *skb;
2985 int pkt_cnt = 0;
2986 int i;
2987 struct RxD1* rxdp1;
2988 struct RxD3* rxdp3;
2990 spin_lock(&nic->rx_lock);
2992 get_info = ring_data->rx_curr_get_info;
2993 get_block = get_info.block_index;
2994 memcpy(&put_info, &ring_data->rx_curr_put_info, sizeof(put_info));
2995 put_block = put_info.block_index;
2996 rxdp = ring_data->rx_blocks[get_block].rxds[get_info.offset].virt_addr;
2997 if (!napi) {
2998 spin_lock(&nic->put_lock);
2999 put_offset = ring_data->put_pos;
3000 spin_unlock(&nic->put_lock);
3001 } else
3002 put_offset = ring_data->put_pos;
3004 while (RXD_IS_UP2DT(rxdp)) {
3006 * If your are next to put index then it's
3007 * FIFO full condition
3009 if ((get_block == put_block) &&
3010 (get_info.offset + 1) == put_info.offset) {
3011 DBG_PRINT(INTR_DBG, "%s: Ring Full\n",dev->name);
3012 break;
3014 skb = (struct sk_buff *) ((unsigned long)rxdp->Host_Control);
3015 if (skb == NULL) {
3016 DBG_PRINT(ERR_DBG, "%s: The skb is ",
3017 dev->name);
3018 DBG_PRINT(ERR_DBG, "Null in Rx Intr\n");
3019 spin_unlock(&nic->rx_lock);
3020 return;
3022 if (nic->rxd_mode == RXD_MODE_1) {
3023 rxdp1 = (struct RxD1*)rxdp;
3024 pci_unmap_single(nic->pdev, (dma_addr_t)
3025 rxdp1->Buffer0_ptr,
3026 dev->mtu +
3027 HEADER_ETHERNET_II_802_3_SIZE +
3028 HEADER_802_2_SIZE +
3029 HEADER_SNAP_SIZE,
3030 PCI_DMA_FROMDEVICE);
3031 } else if (nic->rxd_mode == RXD_MODE_3B) {
3032 rxdp3 = (struct RxD3*)rxdp;
3033 pci_dma_sync_single_for_cpu(nic->pdev, (dma_addr_t)
3034 rxdp3->Buffer0_ptr,
3035 BUF0_LEN, PCI_DMA_FROMDEVICE);
3036 pci_unmap_single(nic->pdev, (dma_addr_t)
3037 rxdp3->Buffer2_ptr,
3038 dev->mtu + 4,
3039 PCI_DMA_FROMDEVICE);
3041 prefetch(skb->data);
3042 rx_osm_handler(ring_data, rxdp);
3043 get_info.offset++;
3044 ring_data->rx_curr_get_info.offset = get_info.offset;
3045 rxdp = ring_data->rx_blocks[get_block].
3046 rxds[get_info.offset].virt_addr;
3047 if (get_info.offset == rxd_count[nic->rxd_mode]) {
3048 get_info.offset = 0;
3049 ring_data->rx_curr_get_info.offset = get_info.offset;
3050 get_block++;
3051 if (get_block == ring_data->block_count)
3052 get_block = 0;
3053 ring_data->rx_curr_get_info.block_index = get_block;
3054 rxdp = ring_data->rx_blocks[get_block].block_virt_addr;
3057 nic->pkts_to_process -= 1;
3058 if ((napi) && (!nic->pkts_to_process))
3059 break;
3060 pkt_cnt++;
3061 if ((indicate_max_pkts) && (pkt_cnt > indicate_max_pkts))
3062 break;
3064 if (nic->lro) {
3065 /* Clear all LRO sessions before exiting */
3066 for (i=0; i<MAX_LRO_SESSIONS; i++) {
3067 struct lro *lro = &nic->lro0_n[i];
3068 if (lro->in_use) {
3069 update_L3L4_header(nic, lro);
3070 queue_rx_frame(lro->parent, lro->vlan_tag);
3071 clear_lro_session(lro);
3076 spin_unlock(&nic->rx_lock);
3080 * tx_intr_handler - Transmit interrupt handler
3081 * @nic : device private variable
3082 * Description:
3083 * If an interrupt was raised to indicate DMA complete of the
3084 * Tx packet, this function is called. It identifies the last TxD
3085 * whose buffer was freed and frees all skbs whose data have already
3086 * DMA'ed into the NICs internal memory.
3087 * Return Value:
3088 * NONE
3091 static void tx_intr_handler(struct fifo_info *fifo_data)
3093 struct s2io_nic *nic = fifo_data->nic;
3094 struct tx_curr_get_info get_info, put_info;
3095 struct sk_buff *skb = NULL;
3096 struct TxD *txdlp;
3097 int pkt_cnt = 0;
3098 unsigned long flags = 0;
3099 u8 err_mask;
3101 if (!spin_trylock_irqsave(&fifo_data->tx_lock, flags))
3102 return;
3104 get_info = fifo_data->tx_curr_get_info;
3105 memcpy(&put_info, &fifo_data->tx_curr_put_info, sizeof(put_info));
3106 txdlp = (struct TxD *) fifo_data->list_info[get_info.offset].
3107 list_virt_addr;
3108 while ((!(txdlp->Control_1 & TXD_LIST_OWN_XENA)) &&
3109 (get_info.offset != put_info.offset) &&
3110 (txdlp->Host_Control)) {
3111 /* Check for TxD errors */
3112 if (txdlp->Control_1 & TXD_T_CODE) {
3113 unsigned long long err;
3114 err = txdlp->Control_1 & TXD_T_CODE;
3115 if (err & 0x1) {
3116 nic->mac_control.stats_info->sw_stat.
3117 parity_err_cnt++;
3120 /* update t_code statistics */
3121 err_mask = err >> 48;
3122 switch(err_mask) {
3123 case 2:
3124 nic->mac_control.stats_info->sw_stat.
3125 tx_buf_abort_cnt++;
3126 break;
3128 case 3:
3129 nic->mac_control.stats_info->sw_stat.
3130 tx_desc_abort_cnt++;
3131 break;
3133 case 7:
3134 nic->mac_control.stats_info->sw_stat.
3135 tx_parity_err_cnt++;
3136 break;
3138 case 10:
3139 nic->mac_control.stats_info->sw_stat.
3140 tx_link_loss_cnt++;
3141 break;
3143 case 15:
3144 nic->mac_control.stats_info->sw_stat.
3145 tx_list_proc_err_cnt++;
3146 break;
3150 skb = s2io_txdl_getskb(fifo_data, txdlp, get_info.offset);
3151 if (skb == NULL) {
3152 spin_unlock_irqrestore(&fifo_data->tx_lock, flags);
3153 DBG_PRINT(ERR_DBG, "%s: Null skb ",
3154 __FUNCTION__);
3155 DBG_PRINT(ERR_DBG, "in Tx Free Intr\n");
3156 return;
3158 pkt_cnt++;
3160 /* Updating the statistics block */
3161 nic->stats.tx_bytes += skb->len;
3162 nic->mac_control.stats_info->sw_stat.mem_freed += skb->truesize;
3163 dev_kfree_skb_irq(skb);
3165 get_info.offset++;
3166 if (get_info.offset == get_info.fifo_len + 1)
3167 get_info.offset = 0;
3168 txdlp = (struct TxD *) fifo_data->list_info
3169 [get_info.offset].list_virt_addr;
3170 fifo_data->tx_curr_get_info.offset =
3171 get_info.offset;
3174 s2io_wake_tx_queue(fifo_data, pkt_cnt, nic->config.multiq);
3176 spin_unlock_irqrestore(&fifo_data->tx_lock, flags);
3180 * s2io_mdio_write - Function to write in to MDIO registers
3181 * @mmd_type : MMD type value (PMA/PMD/WIS/PCS/PHYXS)
3182 * @addr : address value
3183 * @value : data value
3184 * @dev : pointer to net_device structure
3185 * Description:
3186 * This function is used to write values to the MDIO registers
3187 * NONE
3189 static void s2io_mdio_write(u32 mmd_type, u64 addr, u16 value, struct net_device *dev)
3191 u64 val64 = 0x0;
3192 struct s2io_nic *sp = dev->priv;
3193 struct XENA_dev_config __iomem *bar0 = sp->bar0;
3195 //address transaction
3196 val64 = val64 | MDIO_MMD_INDX_ADDR(addr)
3197 | MDIO_MMD_DEV_ADDR(mmd_type)
3198 | MDIO_MMS_PRT_ADDR(0x0);
3199 writeq(val64, &bar0->mdio_control);
3200 val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
3201 writeq(val64, &bar0->mdio_control);
3202 udelay(100);
3204 //Data transaction
3205 val64 = 0x0;
3206 val64 = val64 | MDIO_MMD_INDX_ADDR(addr)
3207 | MDIO_MMD_DEV_ADDR(mmd_type)
3208 | MDIO_MMS_PRT_ADDR(0x0)
3209 | MDIO_MDIO_DATA(value)
3210 | MDIO_OP(MDIO_OP_WRITE_TRANS);
3211 writeq(val64, &bar0->mdio_control);
3212 val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
3213 writeq(val64, &bar0->mdio_control);
3214 udelay(100);
3216 val64 = 0x0;
3217 val64 = val64 | MDIO_MMD_INDX_ADDR(addr)
3218 | MDIO_MMD_DEV_ADDR(mmd_type)
3219 | MDIO_MMS_PRT_ADDR(0x0)
3220 | MDIO_OP(MDIO_OP_READ_TRANS);
3221 writeq(val64, &bar0->mdio_control);
3222 val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
3223 writeq(val64, &bar0->mdio_control);
3224 udelay(100);
3229 * s2io_mdio_read - Function to write in to MDIO registers
3230 * @mmd_type : MMD type value (PMA/PMD/WIS/PCS/PHYXS)
3231 * @addr : address value
3232 * @dev : pointer to net_device structure
3233 * Description:
3234 * This function is used to read values to the MDIO registers
3235 * NONE
3237 static u64 s2io_mdio_read(u32 mmd_type, u64 addr, struct net_device *dev)
3239 u64 val64 = 0x0;
3240 u64 rval64 = 0x0;
3241 struct s2io_nic *sp = dev->priv;
3242 struct XENA_dev_config __iomem *bar0 = sp->bar0;
3244 /* address transaction */
3245 val64 = val64 | MDIO_MMD_INDX_ADDR(addr)
3246 | MDIO_MMD_DEV_ADDR(mmd_type)
3247 | MDIO_MMS_PRT_ADDR(0x0);
3248 writeq(val64, &bar0->mdio_control);
3249 val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
3250 writeq(val64, &bar0->mdio_control);
3251 udelay(100);
3253 /* Data transaction */
3254 val64 = 0x0;
3255 val64 = val64 | MDIO_MMD_INDX_ADDR(addr)
3256 | MDIO_MMD_DEV_ADDR(mmd_type)
3257 | MDIO_MMS_PRT_ADDR(0x0)
3258 | MDIO_OP(MDIO_OP_READ_TRANS);
3259 writeq(val64, &bar0->mdio_control);
3260 val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
3261 writeq(val64, &bar0->mdio_control);
3262 udelay(100);
3264 /* Read the value from regs */
3265 rval64 = readq(&bar0->mdio_control);
3266 rval64 = rval64 & 0xFFFF0000;
3267 rval64 = rval64 >> 16;
3268 return rval64;
3271 * s2io_chk_xpak_counter - Function to check the status of the xpak counters
3272 * @counter : couter value to be updated
3273 * @flag : flag to indicate the status
3274 * @type : counter type
3275 * Description:
3276 * This function is to check the status of the xpak counters value
3277 * NONE
3280 static void s2io_chk_xpak_counter(u64 *counter, u64 * regs_stat, u32 index, u16 flag, u16 type)
3282 u64 mask = 0x3;
3283 u64 val64;
3284 int i;
3285 for(i = 0; i <index; i++)
3286 mask = mask << 0x2;
3288 if(flag > 0)
3290 *counter = *counter + 1;
3291 val64 = *regs_stat & mask;
3292 val64 = val64 >> (index * 0x2);
3293 val64 = val64 + 1;
3294 if(val64 == 3)
3296 switch(type)
3298 case 1:
3299 DBG_PRINT(ERR_DBG, "Take Xframe NIC out of "
3300 "service. Excessive temperatures may "
3301 "result in premature transceiver "
3302 "failure \n");
3303 break;
3304 case 2:
3305 DBG_PRINT(ERR_DBG, "Take Xframe NIC out of "
3306 "service Excessive bias currents may "
3307 "indicate imminent laser diode "
3308 "failure \n");
3309 break;
3310 case 3:
3311 DBG_PRINT(ERR_DBG, "Take Xframe NIC out of "
3312 "service Excessive laser output "
3313 "power may saturate far-end "
3314 "receiver\n");
3315 break;
3316 default:
3317 DBG_PRINT(ERR_DBG, "Incorrect XPAK Alarm "
3318 "type \n");
3320 val64 = 0x0;
3322 val64 = val64 << (index * 0x2);
3323 *regs_stat = (*regs_stat & (~mask)) | (val64);
3325 } else {
3326 *regs_stat = *regs_stat & (~mask);
3331 * s2io_updt_xpak_counter - Function to update the xpak counters
3332 * @dev : pointer to net_device struct
3333 * Description:
3334 * This function is to upate the status of the xpak counters value
3335 * NONE
3337 static void s2io_updt_xpak_counter(struct net_device *dev)
3339 u16 flag = 0x0;
3340 u16 type = 0x0;
3341 u16 val16 = 0x0;
3342 u64 val64 = 0x0;
3343 u64 addr = 0x0;
3345 struct s2io_nic *sp = dev->priv;
3346 struct stat_block *stat_info = sp->mac_control.stats_info;
3348 /* Check the communication with the MDIO slave */
3349 addr = 0x0000;
3350 val64 = 0x0;
3351 val64 = s2io_mdio_read(MDIO_MMD_PMA_DEV_ADDR, addr, dev);
3352 if((val64 == 0xFFFF) || (val64 == 0x0000))
3354 DBG_PRINT(ERR_DBG, "ERR: MDIO slave access failed - "
3355 "Returned %llx\n", (unsigned long long)val64);
3356 return;
3359 /* Check for the expecte value of 2040 at PMA address 0x0000 */
3360 if(val64 != 0x2040)
3362 DBG_PRINT(ERR_DBG, "Incorrect value at PMA address 0x0000 - ");
3363 DBG_PRINT(ERR_DBG, "Returned: %llx- Expected: 0x2040\n",
3364 (unsigned long long)val64);
3365 return;
3368 /* Loading the DOM register to MDIO register */
3369 addr = 0xA100;
3370 s2io_mdio_write(MDIO_MMD_PMA_DEV_ADDR, addr, val16, dev);
3371 val64 = s2io_mdio_read(MDIO_MMD_PMA_DEV_ADDR, addr, dev);
3373 /* Reading the Alarm flags */
3374 addr = 0xA070;
3375 val64 = 0x0;
3376 val64 = s2io_mdio_read(MDIO_MMD_PMA_DEV_ADDR, addr, dev);
3378 flag = CHECKBIT(val64, 0x7);
3379 type = 1;
3380 s2io_chk_xpak_counter(&stat_info->xpak_stat.alarm_transceiver_temp_high,
3381 &stat_info->xpak_stat.xpak_regs_stat,
3382 0x0, flag, type);
3384 if(CHECKBIT(val64, 0x6))
3385 stat_info->xpak_stat.alarm_transceiver_temp_low++;
3387 flag = CHECKBIT(val64, 0x3);
3388 type = 2;
3389 s2io_chk_xpak_counter(&stat_info->xpak_stat.alarm_laser_bias_current_high,
3390 &stat_info->xpak_stat.xpak_regs_stat,
3391 0x2, flag, type);
3393 if(CHECKBIT(val64, 0x2))
3394 stat_info->xpak_stat.alarm_laser_bias_current_low++;
3396 flag = CHECKBIT(val64, 0x1);
3397 type = 3;
3398 s2io_chk_xpak_counter(&stat_info->xpak_stat.alarm_laser_output_power_high,
3399 &stat_info->xpak_stat.xpak_regs_stat,
3400 0x4, flag, type);
3402 if(CHECKBIT(val64, 0x0))
3403 stat_info->xpak_stat.alarm_laser_output_power_low++;
3405 /* Reading the Warning flags */
3406 addr = 0xA074;
3407 val64 = 0x0;
3408 val64 = s2io_mdio_read(MDIO_MMD_PMA_DEV_ADDR, addr, dev);
3410 if(CHECKBIT(val64, 0x7))
3411 stat_info->xpak_stat.warn_transceiver_temp_high++;
3413 if(CHECKBIT(val64, 0x6))
3414 stat_info->xpak_stat.warn_transceiver_temp_low++;
3416 if(CHECKBIT(val64, 0x3))
3417 stat_info->xpak_stat.warn_laser_bias_current_high++;
3419 if(CHECKBIT(val64, 0x2))
3420 stat_info->xpak_stat.warn_laser_bias_current_low++;
3422 if(CHECKBIT(val64, 0x1))
3423 stat_info->xpak_stat.warn_laser_output_power_high++;
3425 if(CHECKBIT(val64, 0x0))
3426 stat_info->xpak_stat.warn_laser_output_power_low++;
3430 * wait_for_cmd_complete - waits for a command to complete.
3431 * @sp : private member of the device structure, which is a pointer to the
3432 * s2io_nic structure.
3433 * Description: Function that waits for a command to Write into RMAC
3434 * ADDR DATA registers to be completed and returns either success or
3435 * error depending on whether the command was complete or not.
3436 * Return value:
3437 * SUCCESS on success and FAILURE on failure.
3440 static int wait_for_cmd_complete(void __iomem *addr, u64 busy_bit,
3441 int bit_state)
3443 int ret = FAILURE, cnt = 0, delay = 1;
3444 u64 val64;
3446 if ((bit_state != S2IO_BIT_RESET) && (bit_state != S2IO_BIT_SET))
3447 return FAILURE;
3449 do {
3450 val64 = readq(addr);
3451 if (bit_state == S2IO_BIT_RESET) {
3452 if (!(val64 & busy_bit)) {
3453 ret = SUCCESS;
3454 break;
3456 } else {
3457 if (!(val64 & busy_bit)) {
3458 ret = SUCCESS;
3459 break;
3463 if(in_interrupt())
3464 mdelay(delay);
3465 else
3466 msleep(delay);
3468 if (++cnt >= 10)
3469 delay = 50;
3470 } while (cnt < 20);
3471 return ret;
3474 * check_pci_device_id - Checks if the device id is supported
3475 * @id : device id
3476 * Description: Function to check if the pci device id is supported by driver.
3477 * Return value: Actual device id if supported else PCI_ANY_ID
3479 static u16 check_pci_device_id(u16 id)
3481 switch (id) {
3482 case PCI_DEVICE_ID_HERC_WIN:
3483 case PCI_DEVICE_ID_HERC_UNI:
3484 return XFRAME_II_DEVICE;
3485 case PCI_DEVICE_ID_S2IO_UNI:
3486 case PCI_DEVICE_ID_S2IO_WIN:
3487 return XFRAME_I_DEVICE;
3488 default:
3489 return PCI_ANY_ID;
3494 * s2io_reset - Resets the card.
3495 * @sp : private member of the device structure.
3496 * Description: Function to Reset the card. This function then also
3497 * restores the previously saved PCI configuration space registers as
3498 * the card reset also resets the configuration space.
3499 * Return value:
3500 * void.
3503 static void s2io_reset(struct s2io_nic * sp)
3505 struct XENA_dev_config __iomem *bar0 = sp->bar0;
3506 u64 val64;
3507 u16 subid, pci_cmd;
3508 int i;
3509 u16 val16;
3510 unsigned long long up_cnt, down_cnt, up_time, down_time, reset_cnt;
3511 unsigned long long mem_alloc_cnt, mem_free_cnt, watchdog_cnt;
3513 DBG_PRINT(INIT_DBG,"%s - Resetting XFrame card %s\n",
3514 __FUNCTION__, sp->dev->name);
3516 /* Back up the PCI-X CMD reg, dont want to lose MMRBC, OST settings */
3517 pci_read_config_word(sp->pdev, PCIX_COMMAND_REGISTER, &(pci_cmd));
3519 val64 = SW_RESET_ALL;
3520 writeq(val64, &bar0->sw_reset);
3521 if (strstr(sp->product_name, "CX4")) {
3522 msleep(750);
3524 msleep(250);
3525 for (i = 0; i < S2IO_MAX_PCI_CONFIG_SPACE_REINIT; i++) {
3527 /* Restore the PCI state saved during initialization. */
3528 pci_restore_state(sp->pdev);
3529 pci_read_config_word(sp->pdev, 0x2, &val16);
3530 if (check_pci_device_id(val16) != (u16)PCI_ANY_ID)
3531 break;
3532 msleep(200);
3535 if (check_pci_device_id(val16) == (u16)PCI_ANY_ID) {
3536 DBG_PRINT(ERR_DBG,"%s SW_Reset failed!\n", __FUNCTION__);
3539 pci_write_config_word(sp->pdev, PCIX_COMMAND_REGISTER, pci_cmd);
3541 s2io_init_pci(sp);
3543 /* Set swapper to enable I/O register access */
3544 s2io_set_swapper(sp);
3546 /* restore mac_addr entries */
3547 do_s2io_restore_unicast_mc(sp);
3549 /* Restore the MSIX table entries from local variables */
3550 restore_xmsi_data(sp);
3552 /* Clear certain PCI/PCI-X fields after reset */
3553 if (sp->device_type == XFRAME_II_DEVICE) {
3554 /* Clear "detected parity error" bit */
3555 pci_write_config_word(sp->pdev, PCI_STATUS, 0x8000);
3557 /* Clearing PCIX Ecc status register */
3558 pci_write_config_dword(sp->pdev, 0x68, 0x7C);
3560 /* Clearing PCI_STATUS error reflected here */
3561 writeq(s2BIT(62), &bar0->txpic_int_reg);
3564 /* Reset device statistics maintained by OS */
3565 memset(&sp->stats, 0, sizeof (struct net_device_stats));
3567 up_cnt = sp->mac_control.stats_info->sw_stat.link_up_cnt;
3568 down_cnt = sp->mac_control.stats_info->sw_stat.link_down_cnt;
3569 up_time = sp->mac_control.stats_info->sw_stat.link_up_time;
3570 down_time = sp->mac_control.stats_info->sw_stat.link_down_time;
3571 reset_cnt = sp->mac_control.stats_info->sw_stat.soft_reset_cnt;
3572 mem_alloc_cnt = sp->mac_control.stats_info->sw_stat.mem_allocated;
3573 mem_free_cnt = sp->mac_control.stats_info->sw_stat.mem_freed;
3574 watchdog_cnt = sp->mac_control.stats_info->sw_stat.watchdog_timer_cnt;
3575 /* save link up/down time/cnt, reset/memory/watchdog cnt */
3576 memset(sp->mac_control.stats_info, 0, sizeof(struct stat_block));
3577 /* restore link up/down time/cnt, reset/memory/watchdog cnt */
3578 sp->mac_control.stats_info->sw_stat.link_up_cnt = up_cnt;
3579 sp->mac_control.stats_info->sw_stat.link_down_cnt = down_cnt;
3580 sp->mac_control.stats_info->sw_stat.link_up_time = up_time;
3581 sp->mac_control.stats_info->sw_stat.link_down_time = down_time;
3582 sp->mac_control.stats_info->sw_stat.soft_reset_cnt = reset_cnt;
3583 sp->mac_control.stats_info->sw_stat.mem_allocated = mem_alloc_cnt;
3584 sp->mac_control.stats_info->sw_stat.mem_freed = mem_free_cnt;
3585 sp->mac_control.stats_info->sw_stat.watchdog_timer_cnt = watchdog_cnt;
3587 /* SXE-002: Configure link and activity LED to turn it off */
3588 subid = sp->pdev->subsystem_device;
3589 if (((subid & 0xFF) >= 0x07) &&
3590 (sp->device_type == XFRAME_I_DEVICE)) {
3591 val64 = readq(&bar0->gpio_control);
3592 val64 |= 0x0000800000000000ULL;
3593 writeq(val64, &bar0->gpio_control);
3594 val64 = 0x0411040400000000ULL;
3595 writeq(val64, (void __iomem *)bar0 + 0x2700);
3599 * Clear spurious ECC interrupts that would have occured on
3600 * XFRAME II cards after reset.
3602 if (sp->device_type == XFRAME_II_DEVICE) {
3603 val64 = readq(&bar0->pcc_err_reg);
3604 writeq(val64, &bar0->pcc_err_reg);
3607 sp->device_enabled_once = FALSE;
3611 * s2io_set_swapper - to set the swapper controle on the card
3612 * @sp : private member of the device structure,
3613 * pointer to the s2io_nic structure.
3614 * Description: Function to set the swapper control on the card
3615 * correctly depending on the 'endianness' of the system.
3616 * Return value:
3617 * SUCCESS on success and FAILURE on failure.
3620 static int s2io_set_swapper(struct s2io_nic * sp)
3622 struct net_device *dev = sp->dev;
3623 struct XENA_dev_config __iomem *bar0 = sp->bar0;
3624 u64 val64, valt, valr;
3627 * Set proper endian settings and verify the same by reading
3628 * the PIF Feed-back register.
3631 val64 = readq(&bar0->pif_rd_swapper_fb);
3632 if (val64 != 0x0123456789ABCDEFULL) {
3633 int i = 0;
3634 u64 value[] = { 0xC30000C3C30000C3ULL, /* FE=1, SE=1 */
3635 0x8100008181000081ULL, /* FE=1, SE=0 */
3636 0x4200004242000042ULL, /* FE=0, SE=1 */
3637 0}; /* FE=0, SE=0 */
3639 while(i<4) {
3640 writeq(value[i], &bar0->swapper_ctrl);
3641 val64 = readq(&bar0->pif_rd_swapper_fb);
3642 if (val64 == 0x0123456789ABCDEFULL)
3643 break;
3644 i++;
3646 if (i == 4) {
3647 DBG_PRINT(ERR_DBG, "%s: Endian settings are wrong, ",
3648 dev->name);
3649 DBG_PRINT(ERR_DBG, "feedback read %llx\n",
3650 (unsigned long long) val64);
3651 return FAILURE;
3653 valr = value[i];
3654 } else {
3655 valr = readq(&bar0->swapper_ctrl);
3658 valt = 0x0123456789ABCDEFULL;
3659 writeq(valt, &bar0->xmsi_address);
3660 val64 = readq(&bar0->xmsi_address);
3662 if(val64 != valt) {
3663 int i = 0;
3664 u64 value[] = { 0x00C3C30000C3C300ULL, /* FE=1, SE=1 */
3665 0x0081810000818100ULL, /* FE=1, SE=0 */
3666 0x0042420000424200ULL, /* FE=0, SE=1 */
3667 0}; /* FE=0, SE=0 */
3669 while(i<4) {
3670 writeq((value[i] | valr), &bar0->swapper_ctrl);
3671 writeq(valt, &bar0->xmsi_address);
3672 val64 = readq(&bar0->xmsi_address);
3673 if(val64 == valt)
3674 break;
3675 i++;
3677 if(i == 4) {
3678 unsigned long long x = val64;
3679 DBG_PRINT(ERR_DBG, "Write failed, Xmsi_addr ");
3680 DBG_PRINT(ERR_DBG, "reads:0x%llx\n", x);
3681 return FAILURE;
3684 val64 = readq(&bar0->swapper_ctrl);
3685 val64 &= 0xFFFF000000000000ULL;
3687 #ifdef __BIG_ENDIAN
3689 * The device by default set to a big endian format, so a
3690 * big endian driver need not set anything.
3692 val64 |= (SWAPPER_CTRL_TXP_FE |
3693 SWAPPER_CTRL_TXP_SE |
3694 SWAPPER_CTRL_TXD_R_FE |
3695 SWAPPER_CTRL_TXD_W_FE |
3696 SWAPPER_CTRL_TXF_R_FE |
3697 SWAPPER_CTRL_RXD_R_FE |
3698 SWAPPER_CTRL_RXD_W_FE |
3699 SWAPPER_CTRL_RXF_W_FE |
3700 SWAPPER_CTRL_XMSI_FE |
3701 SWAPPER_CTRL_STATS_FE | SWAPPER_CTRL_STATS_SE);
3702 if (sp->config.intr_type == INTA)
3703 val64 |= SWAPPER_CTRL_XMSI_SE;
3704 writeq(val64, &bar0->swapper_ctrl);
3705 #else
3707 * Initially we enable all bits to make it accessible by the
3708 * driver, then we selectively enable only those bits that
3709 * we want to set.
3711 val64 |= (SWAPPER_CTRL_TXP_FE |
3712 SWAPPER_CTRL_TXP_SE |
3713 SWAPPER_CTRL_TXD_R_FE |
3714 SWAPPER_CTRL_TXD_R_SE |
3715 SWAPPER_CTRL_TXD_W_FE |
3716 SWAPPER_CTRL_TXD_W_SE |
3717 SWAPPER_CTRL_TXF_R_FE |
3718 SWAPPER_CTRL_RXD_R_FE |
3719 SWAPPER_CTRL_RXD_R_SE |
3720 SWAPPER_CTRL_RXD_W_FE |
3721 SWAPPER_CTRL_RXD_W_SE |
3722 SWAPPER_CTRL_RXF_W_FE |
3723 SWAPPER_CTRL_XMSI_FE |
3724 SWAPPER_CTRL_STATS_FE | SWAPPER_CTRL_STATS_SE);
3725 if (sp->config.intr_type == INTA)
3726 val64 |= SWAPPER_CTRL_XMSI_SE;
3727 writeq(val64, &bar0->swapper_ctrl);
3728 #endif
3729 val64 = readq(&bar0->swapper_ctrl);
3732 * Verifying if endian settings are accurate by reading a
3733 * feedback register.
3735 val64 = readq(&bar0->pif_rd_swapper_fb);
3736 if (val64 != 0x0123456789ABCDEFULL) {
3737 /* Endian settings are incorrect, calls for another dekko. */
3738 DBG_PRINT(ERR_DBG, "%s: Endian settings are wrong, ",
3739 dev->name);
3740 DBG_PRINT(ERR_DBG, "feedback read %llx\n",
3741 (unsigned long long) val64);
3742 return FAILURE;
3745 return SUCCESS;
3748 static int wait_for_msix_trans(struct s2io_nic *nic, int i)
3750 struct XENA_dev_config __iomem *bar0 = nic->bar0;
3751 u64 val64;
3752 int ret = 0, cnt = 0;
3754 do {
3755 val64 = readq(&bar0->xmsi_access);
3756 if (!(val64 & s2BIT(15)))
3757 break;
3758 mdelay(1);
3759 cnt++;
3760 } while(cnt < 5);
3761 if (cnt == 5) {
3762 DBG_PRINT(ERR_DBG, "XMSI # %d Access failed\n", i);
3763 ret = 1;
3766 return ret;
3769 static void restore_xmsi_data(struct s2io_nic *nic)
3771 struct XENA_dev_config __iomem *bar0 = nic->bar0;
3772 u64 val64;
3773 int i;
3775 for (i=0; i < MAX_REQUESTED_MSI_X; i++) {
3776 writeq(nic->msix_info[i].addr, &bar0->xmsi_address);
3777 writeq(nic->msix_info[i].data, &bar0->xmsi_data);
3778 val64 = (s2BIT(7) | s2BIT(15) | vBIT(i, 26, 6));
3779 writeq(val64, &bar0->xmsi_access);
3780 if (wait_for_msix_trans(nic, i)) {
3781 DBG_PRINT(ERR_DBG, "failed in %s\n", __FUNCTION__);
3782 continue;
3787 static void store_xmsi_data(struct s2io_nic *nic)
3789 struct XENA_dev_config __iomem *bar0 = nic->bar0;
3790 u64 val64, addr, data;
3791 int i;
3793 /* Store and display */
3794 for (i=0; i < MAX_REQUESTED_MSI_X; i++) {
3795 val64 = (s2BIT(15) | vBIT(i, 26, 6));
3796 writeq(val64, &bar0->xmsi_access);
3797 if (wait_for_msix_trans(nic, i)) {
3798 DBG_PRINT(ERR_DBG, "failed in %s\n", __FUNCTION__);
3799 continue;
3801 addr = readq(&bar0->xmsi_address);
3802 data = readq(&bar0->xmsi_data);
3803 if (addr && data) {
3804 nic->msix_info[i].addr = addr;
3805 nic->msix_info[i].data = data;
3810 static int s2io_enable_msi_x(struct s2io_nic *nic)
3812 struct XENA_dev_config __iomem *bar0 = nic->bar0;
3813 u64 tx_mat, rx_mat;
3814 u16 msi_control; /* Temp variable */
3815 int ret, i, j, msix_indx = 1;
3817 nic->entries = kcalloc(MAX_REQUESTED_MSI_X, sizeof(struct msix_entry),
3818 GFP_KERNEL);
3819 if (!nic->entries) {
3820 DBG_PRINT(INFO_DBG, "%s: Memory allocation failed\n", \
3821 __FUNCTION__);
3822 nic->mac_control.stats_info->sw_stat.mem_alloc_fail_cnt++;
3823 return -ENOMEM;
3825 nic->mac_control.stats_info->sw_stat.mem_allocated
3826 += (MAX_REQUESTED_MSI_X * sizeof(struct msix_entry));
3828 nic->s2io_entries =
3829 kcalloc(MAX_REQUESTED_MSI_X, sizeof(struct s2io_msix_entry),
3830 GFP_KERNEL);
3831 if (!nic->s2io_entries) {
3832 DBG_PRINT(INFO_DBG, "%s: Memory allocation failed\n",
3833 __FUNCTION__);
3834 nic->mac_control.stats_info->sw_stat.mem_alloc_fail_cnt++;
3835 kfree(nic->entries);
3836 nic->mac_control.stats_info->sw_stat.mem_freed
3837 += (MAX_REQUESTED_MSI_X * sizeof(struct msix_entry));
3838 return -ENOMEM;
3840 nic->mac_control.stats_info->sw_stat.mem_allocated
3841 += (MAX_REQUESTED_MSI_X * sizeof(struct s2io_msix_entry));
3843 for (i=0; i< MAX_REQUESTED_MSI_X; i++) {
3844 nic->entries[i].entry = i;
3845 nic->s2io_entries[i].entry = i;
3846 nic->s2io_entries[i].arg = NULL;
3847 nic->s2io_entries[i].in_use = 0;
3850 tx_mat = readq(&bar0->tx_mat0_n[0]);
3851 for (i=0; i<nic->config.tx_fifo_num; i++, msix_indx++) {
3852 tx_mat |= TX_MAT_SET(i, msix_indx);
3853 nic->s2io_entries[msix_indx].arg = &nic->mac_control.fifos[i];
3854 nic->s2io_entries[msix_indx].type = MSIX_FIFO_TYPE;
3855 nic->s2io_entries[msix_indx].in_use = MSIX_FLG;
3857 writeq(tx_mat, &bar0->tx_mat0_n[0]);
3859 rx_mat = readq(&bar0->rx_mat);
3860 for (j = 0; j < nic->config.rx_ring_num; j++, msix_indx++) {
3861 rx_mat |= RX_MAT_SET(j, msix_indx);
3862 nic->s2io_entries[msix_indx].arg
3863 = &nic->mac_control.rings[j];
3864 nic->s2io_entries[msix_indx].type = MSIX_RING_TYPE;
3865 nic->s2io_entries[msix_indx].in_use = MSIX_FLG;
3867 writeq(rx_mat, &bar0->rx_mat);
3869 nic->avail_msix_vectors = 0;
3870 ret = pci_enable_msix(nic->pdev, nic->entries, MAX_REQUESTED_MSI_X);
3871 /* We fail init if error or we get less vectors than min required */
3872 if (ret >= (nic->config.tx_fifo_num + nic->config.rx_ring_num + 1)) {
3873 nic->avail_msix_vectors = ret;
3874 ret = pci_enable_msix(nic->pdev, nic->entries, ret);
3876 if (ret) {
3877 DBG_PRINT(ERR_DBG, "%s: Enabling MSIX failed\n", nic->dev->name);
3878 kfree(nic->entries);
3879 nic->mac_control.stats_info->sw_stat.mem_freed
3880 += (MAX_REQUESTED_MSI_X * sizeof(struct msix_entry));
3881 kfree(nic->s2io_entries);
3882 nic->mac_control.stats_info->sw_stat.mem_freed
3883 += (MAX_REQUESTED_MSI_X * sizeof(struct s2io_msix_entry));
3884 nic->entries = NULL;
3885 nic->s2io_entries = NULL;
3886 nic->avail_msix_vectors = 0;
3887 return -ENOMEM;
3889 if (!nic->avail_msix_vectors)
3890 nic->avail_msix_vectors = MAX_REQUESTED_MSI_X;
3893 * To enable MSI-X, MSI also needs to be enabled, due to a bug
3894 * in the herc NIC. (Temp change, needs to be removed later)
3896 pci_read_config_word(nic->pdev, 0x42, &msi_control);
3897 msi_control |= 0x1; /* Enable MSI */
3898 pci_write_config_word(nic->pdev, 0x42, msi_control);
3900 return 0;
3903 /* Handle software interrupt used during MSI(X) test */
3904 static irqreturn_t s2io_test_intr(int irq, void *dev_id)
3906 struct s2io_nic *sp = dev_id;
3908 sp->msi_detected = 1;
3909 wake_up(&sp->msi_wait);
3911 return IRQ_HANDLED;
3914 /* Test interrupt path by forcing a a software IRQ */
3915 static int s2io_test_msi(struct s2io_nic *sp)
3917 struct pci_dev *pdev = sp->pdev;
3918 struct XENA_dev_config __iomem *bar0 = sp->bar0;
3919 int err;
3920 u64 val64, saved64;
3922 err = request_irq(sp->entries[1].vector, s2io_test_intr, 0,
3923 sp->name, sp);
3924 if (err) {
3925 DBG_PRINT(ERR_DBG, "%s: PCI %s: cannot assign irq %d\n",
3926 sp->dev->name, pci_name(pdev), pdev->irq);
3927 return err;
3930 init_waitqueue_head (&sp->msi_wait);
3931 sp->msi_detected = 0;
3933 saved64 = val64 = readq(&bar0->scheduled_int_ctrl);
3934 val64 |= SCHED_INT_CTRL_ONE_SHOT;
3935 val64 |= SCHED_INT_CTRL_TIMER_EN;
3936 val64 |= SCHED_INT_CTRL_INT2MSI(1);
3937 writeq(val64, &bar0->scheduled_int_ctrl);
3939 wait_event_timeout(sp->msi_wait, sp->msi_detected, HZ/10);
3941 if (!sp->msi_detected) {
3942 /* MSI(X) test failed, go back to INTx mode */
3943 DBG_PRINT(ERR_DBG, "%s: PCI %s: No interrupt was generated "
3944 "using MSI(X) during test\n", sp->dev->name,
3945 pci_name(pdev));
3947 err = -EOPNOTSUPP;
3950 free_irq(sp->entries[1].vector, sp);
3952 writeq(saved64, &bar0->scheduled_int_ctrl);
3954 return err;
3957 static void remove_msix_isr(struct s2io_nic *sp)
3959 int i;
3960 u16 msi_control;
3962 for (i = 0; i < MAX_REQUESTED_MSI_X; i++) {
3963 if (sp->s2io_entries[i].in_use ==
3964 MSIX_REGISTERED_SUCCESS) {
3965 int vector = sp->entries[i].vector;
3966 void *arg = sp->s2io_entries[i].arg;
3967 free_irq(vector, arg);
3971 kfree(sp->entries);
3972 kfree(sp->s2io_entries);
3973 sp->entries = NULL;
3974 sp->s2io_entries = NULL;
3976 pci_read_config_word(sp->pdev, 0x42, &msi_control);
3977 msi_control &= 0xFFFE; /* Disable MSI */
3978 pci_write_config_word(sp->pdev, 0x42, msi_control);
3980 pci_disable_msix(sp->pdev);
3983 static void remove_inta_isr(struct s2io_nic *sp)
3985 struct net_device *dev = sp->dev;
3987 free_irq(sp->pdev->irq, dev);
3990 /* ********************************************************* *
3991 * Functions defined below concern the OS part of the driver *
3992 * ********************************************************* */
3995 * s2io_open - open entry point of the driver
3996 * @dev : pointer to the device structure.
3997 * Description:
3998 * This function is the open entry point of the driver. It mainly calls a
3999 * function to allocate Rx buffers and inserts them into the buffer
4000 * descriptors and then enables the Rx part of the NIC.
4001 * Return value:
4002 * 0 on success and an appropriate (-)ve integer as defined in errno.h
4003 * file on failure.
4006 static int s2io_open(struct net_device *dev)
4008 struct s2io_nic *sp = dev->priv;
4009 int err = 0;
4012 * Make sure you have link off by default every time
4013 * Nic is initialized
4015 netif_carrier_off(dev);
4016 sp->last_link_state = 0;
4018 if (sp->config.intr_type == MSI_X) {
4019 int ret = s2io_enable_msi_x(sp);
4021 if (!ret) {
4022 ret = s2io_test_msi(sp);
4023 /* rollback MSI-X, will re-enable during add_isr() */
4024 remove_msix_isr(sp);
4026 if (ret) {
4028 DBG_PRINT(ERR_DBG,
4029 "%s: MSI-X requested but failed to enable\n",
4030 dev->name);
4031 sp->config.intr_type = INTA;
4035 /* NAPI doesn't work well with MSI(X) */
4036 if (sp->config.intr_type != INTA) {
4037 if(sp->config.napi)
4038 sp->config.napi = 0;
4041 /* Initialize H/W and enable interrupts */
4042 err = s2io_card_up(sp);
4043 if (err) {
4044 DBG_PRINT(ERR_DBG, "%s: H/W initialization failed\n",
4045 dev->name);
4046 goto hw_init_failed;
4049 if (do_s2io_prog_unicast(dev, dev->dev_addr) == FAILURE) {
4050 DBG_PRINT(ERR_DBG, "Set Mac Address Failed\n");
4051 s2io_card_down(sp);
4052 err = -ENODEV;
4053 goto hw_init_failed;
4055 s2io_start_all_tx_queue(sp);
4056 return 0;
4058 hw_init_failed:
4059 if (sp->config.intr_type == MSI_X) {
4060 if (sp->entries) {
4061 kfree(sp->entries);
4062 sp->mac_control.stats_info->sw_stat.mem_freed
4063 += (MAX_REQUESTED_MSI_X * sizeof(struct msix_entry));
4065 if (sp->s2io_entries) {
4066 kfree(sp->s2io_entries);
4067 sp->mac_control.stats_info->sw_stat.mem_freed
4068 += (MAX_REQUESTED_MSI_X * sizeof(struct s2io_msix_entry));
4071 return err;
4075 * s2io_close -close entry point of the driver
4076 * @dev : device pointer.
4077 * Description:
4078 * This is the stop entry point of the driver. It needs to undo exactly
4079 * whatever was done by the open entry point,thus it's usually referred to
4080 * as the close function.Among other things this function mainly stops the
4081 * Rx side of the NIC and frees all the Rx buffers in the Rx rings.
4082 * Return value:
4083 * 0 on success and an appropriate (-)ve integer as defined in errno.h
4084 * file on failure.
4087 static int s2io_close(struct net_device *dev)
4089 struct s2io_nic *sp = dev->priv;
4090 struct config_param *config = &sp->config;
4091 u64 tmp64;
4092 int offset;
4094 /* Return if the device is already closed *
4095 * Can happen when s2io_card_up failed in change_mtu *
4097 if (!is_s2io_card_up(sp))
4098 return 0;
4100 s2io_stop_all_tx_queue(sp);
4101 /* delete all populated mac entries */
4102 for (offset = 1; offset < config->max_mc_addr; offset++) {
4103 tmp64 = do_s2io_read_unicast_mc(sp, offset);
4104 if (tmp64 != S2IO_DISABLE_MAC_ENTRY)
4105 do_s2io_delete_unicast_mc(sp, tmp64);
4108 /* Reset card, kill tasklet and free Tx and Rx buffers. */
4109 s2io_card_down(sp);
4111 return 0;
4115 * s2io_xmit - Tx entry point of te driver
4116 * @skb : the socket buffer containing the Tx data.
4117 * @dev : device pointer.
4118 * Description :
4119 * This function is the Tx entry point of the driver. S2IO NIC supports
4120 * certain protocol assist features on Tx side, namely CSO, S/G, LSO.
4121 * NOTE: when device cant queue the pkt,just the trans_start variable will
4122 * not be upadted.
4123 * Return value:
4124 * 0 on success & 1 on failure.
4127 static int s2io_xmit(struct sk_buff *skb, struct net_device *dev)
4129 struct s2io_nic *sp = dev->priv;
4130 u16 frg_cnt, frg_len, i, queue, queue_len, put_off, get_off;
4131 register u64 val64;
4132 struct TxD *txdp;
4133 struct TxFIFO_element __iomem *tx_fifo;
4134 unsigned long flags = 0;
4135 u16 vlan_tag = 0;
4136 struct fifo_info *fifo = NULL;
4137 struct mac_info *mac_control;
4138 struct config_param *config;
4139 int do_spin_lock = 1;
4140 int offload_type;
4141 int enable_per_list_interrupt = 0;
4142 struct swStat *stats = &sp->mac_control.stats_info->sw_stat;
4144 mac_control = &sp->mac_control;
4145 config = &sp->config;
4147 DBG_PRINT(TX_DBG, "%s: In Neterion Tx routine\n", dev->name);
4149 if (unlikely(skb->len <= 0)) {
4150 DBG_PRINT(TX_DBG, "%s:Buffer has no data..\n", dev->name);
4151 dev_kfree_skb_any(skb);
4152 return 0;
4155 if (!is_s2io_card_up(sp)) {
4156 DBG_PRINT(TX_DBG, "%s: Card going down for reset\n",
4157 dev->name);
4158 dev_kfree_skb(skb);
4159 return 0;
4162 queue = 0;
4163 if (sp->vlgrp && vlan_tx_tag_present(skb))
4164 vlan_tag = vlan_tx_tag_get(skb);
4165 if (sp->config.tx_steering_type == TX_DEFAULT_STEERING) {
4166 if (skb->protocol == htons(ETH_P_IP)) {
4167 struct iphdr *ip;
4168 struct tcphdr *th;
4169 ip = ip_hdr(skb);
4171 if ((ip->frag_off & htons(IP_OFFSET|IP_MF)) == 0) {
4172 th = (struct tcphdr *)(((unsigned char *)ip) +
4173 ip->ihl*4);
4175 if (ip->protocol == IPPROTO_TCP) {
4176 queue_len = sp->total_tcp_fifos;
4177 queue = (ntohs(th->source) +
4178 ntohs(th->dest)) &
4179 sp->fifo_selector[queue_len - 1];
4180 if (queue >= queue_len)
4181 queue = queue_len - 1;
4182 } else if (ip->protocol == IPPROTO_UDP) {
4183 queue_len = sp->total_udp_fifos;
4184 queue = (ntohs(th->source) +
4185 ntohs(th->dest)) &
4186 sp->fifo_selector[queue_len - 1];
4187 if (queue >= queue_len)
4188 queue = queue_len - 1;
4189 queue += sp->udp_fifo_idx;
4190 if (skb->len > 1024)
4191 enable_per_list_interrupt = 1;
4192 do_spin_lock = 0;
4196 } else if (sp->config.tx_steering_type == TX_PRIORITY_STEERING)
4197 /* get fifo number based on skb->priority value */
4198 queue = config->fifo_mapping
4199 [skb->priority & (MAX_TX_FIFOS - 1)];
4200 fifo = &mac_control->fifos[queue];
4202 if (do_spin_lock)
4203 spin_lock_irqsave(&fifo->tx_lock, flags);
4204 else {
4205 if (unlikely(!spin_trylock_irqsave(&fifo->tx_lock, flags)))
4206 return NETDEV_TX_LOCKED;
4209 #ifdef CONFIG_NETDEVICES_MULTIQUEUE
4210 if (sp->config.multiq) {
4211 if (__netif_subqueue_stopped(dev, fifo->fifo_no)) {
4212 spin_unlock_irqrestore(&fifo->tx_lock, flags);
4213 return NETDEV_TX_BUSY;
4215 } else
4216 #endif
4217 if (unlikely(fifo->queue_state == FIFO_QUEUE_STOP)) {
4218 if (netif_queue_stopped(dev)) {
4219 spin_unlock_irqrestore(&fifo->tx_lock, flags);
4220 return NETDEV_TX_BUSY;
4224 put_off = (u16) fifo->tx_curr_put_info.offset;
4225 get_off = (u16) fifo->tx_curr_get_info.offset;
4226 txdp = (struct TxD *) fifo->list_info[put_off].list_virt_addr;
4228 queue_len = fifo->tx_curr_put_info.fifo_len + 1;
4229 /* Avoid "put" pointer going beyond "get" pointer */
4230 if (txdp->Host_Control ||
4231 ((put_off+1) == queue_len ? 0 : (put_off+1)) == get_off) {
4232 DBG_PRINT(TX_DBG, "Error in xmit, No free TXDs.\n");
4233 s2io_stop_tx_queue(sp, fifo->fifo_no);
4234 dev_kfree_skb(skb);
4235 spin_unlock_irqrestore(&fifo->tx_lock, flags);
4236 return 0;
4239 offload_type = s2io_offload_type(skb);
4240 if (offload_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)) {
4241 txdp->Control_1 |= TXD_TCP_LSO_EN;
4242 txdp->Control_1 |= TXD_TCP_LSO_MSS(s2io_tcp_mss(skb));
4244 if (skb->ip_summed == CHECKSUM_PARTIAL) {
4245 txdp->Control_2 |=
4246 (TXD_TX_CKO_IPV4_EN | TXD_TX_CKO_TCP_EN |
4247 TXD_TX_CKO_UDP_EN);
4249 txdp->Control_1 |= TXD_GATHER_CODE_FIRST;
4250 txdp->Control_1 |= TXD_LIST_OWN_XENA;
4251 txdp->Control_2 |= TXD_INT_NUMBER(fifo->fifo_no);
4252 if (enable_per_list_interrupt)
4253 if (put_off & (queue_len >> 5))
4254 txdp->Control_2 |= TXD_INT_TYPE_PER_LIST;
4255 if (vlan_tag) {
4256 txdp->Control_2 |= TXD_VLAN_ENABLE;
4257 txdp->Control_2 |= TXD_VLAN_TAG(vlan_tag);
4260 frg_len = skb->len - skb->data_len;
4261 if (offload_type == SKB_GSO_UDP) {
4262 int ufo_size;
4264 ufo_size = s2io_udp_mss(skb);
4265 ufo_size &= ~7;
4266 txdp->Control_1 |= TXD_UFO_EN;
4267 txdp->Control_1 |= TXD_UFO_MSS(ufo_size);
4268 txdp->Control_1 |= TXD_BUFFER0_SIZE(8);
4269 #ifdef __BIG_ENDIAN
4270 /* both variants do cpu_to_be64(be32_to_cpu(...)) */
4271 fifo->ufo_in_band_v[put_off] =
4272 (__force u64)skb_shinfo(skb)->ip6_frag_id;
4273 #else
4274 fifo->ufo_in_band_v[put_off] =
4275 (__force u64)skb_shinfo(skb)->ip6_frag_id << 32;
4276 #endif
4277 txdp->Host_Control = (unsigned long)fifo->ufo_in_band_v;
4278 txdp->Buffer_Pointer = pci_map_single(sp->pdev,
4279 fifo->ufo_in_band_v,
4280 sizeof(u64), PCI_DMA_TODEVICE);
4281 if((txdp->Buffer_Pointer == 0) ||
4282 (txdp->Buffer_Pointer == DMA_ERROR_CODE))
4283 goto pci_map_failed;
4284 txdp++;
4287 txdp->Buffer_Pointer = pci_map_single
4288 (sp->pdev, skb->data, frg_len, PCI_DMA_TODEVICE);
4289 if((txdp->Buffer_Pointer == 0) ||
4290 (txdp->Buffer_Pointer == DMA_ERROR_CODE))
4291 goto pci_map_failed;
4293 txdp->Host_Control = (unsigned long) skb;
4294 txdp->Control_1 |= TXD_BUFFER0_SIZE(frg_len);
4295 if (offload_type == SKB_GSO_UDP)
4296 txdp->Control_1 |= TXD_UFO_EN;
4298 frg_cnt = skb_shinfo(skb)->nr_frags;
4299 /* For fragmented SKB. */
4300 for (i = 0; i < frg_cnt; i++) {
4301 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
4302 /* A '0' length fragment will be ignored */
4303 if (!frag->size)
4304 continue;
4305 txdp++;
4306 txdp->Buffer_Pointer = (u64) pci_map_page
4307 (sp->pdev, frag->page, frag->page_offset,
4308 frag->size, PCI_DMA_TODEVICE);
4309 txdp->Control_1 = TXD_BUFFER0_SIZE(frag->size);
4310 if (offload_type == SKB_GSO_UDP)
4311 txdp->Control_1 |= TXD_UFO_EN;
4313 txdp->Control_1 |= TXD_GATHER_CODE_LAST;
4315 if (offload_type == SKB_GSO_UDP)
4316 frg_cnt++; /* as Txd0 was used for inband header */
4318 tx_fifo = mac_control->tx_FIFO_start[queue];
4319 val64 = fifo->list_info[put_off].list_phy_addr;
4320 writeq(val64, &tx_fifo->TxDL_Pointer);
4322 val64 = (TX_FIFO_LAST_TXD_NUM(frg_cnt) | TX_FIFO_FIRST_LIST |
4323 TX_FIFO_LAST_LIST);
4324 if (offload_type)
4325 val64 |= TX_FIFO_SPECIAL_FUNC;
4327 writeq(val64, &tx_fifo->List_Control);
4329 mmiowb();
4331 put_off++;
4332 if (put_off == fifo->tx_curr_put_info.fifo_len + 1)
4333 put_off = 0;
4334 fifo->tx_curr_put_info.offset = put_off;
4336 /* Avoid "put" pointer going beyond "get" pointer */
4337 if (((put_off+1) == queue_len ? 0 : (put_off+1)) == get_off) {
4338 sp->mac_control.stats_info->sw_stat.fifo_full_cnt++;
4339 DBG_PRINT(TX_DBG,
4340 "No free TxDs for xmit, Put: 0x%x Get:0x%x\n",
4341 put_off, get_off);
4342 s2io_stop_tx_queue(sp, fifo->fifo_no);
4344 mac_control->stats_info->sw_stat.mem_allocated += skb->truesize;
4345 dev->trans_start = jiffies;
4346 spin_unlock_irqrestore(&fifo->tx_lock, flags);
4348 if (sp->config.intr_type == MSI_X)
4349 tx_intr_handler(fifo);
4351 return 0;
4352 pci_map_failed:
4353 stats->pci_map_fail_cnt++;
4354 s2io_stop_tx_queue(sp, fifo->fifo_no);
4355 stats->mem_freed += skb->truesize;
4356 dev_kfree_skb(skb);
4357 spin_unlock_irqrestore(&fifo->tx_lock, flags);
4358 return 0;
4361 static void
4362 s2io_alarm_handle(unsigned long data)
4364 struct s2io_nic *sp = (struct s2io_nic *)data;
4365 struct net_device *dev = sp->dev;
4367 s2io_handle_errors(dev);
4368 mod_timer(&sp->alarm_timer, jiffies + HZ / 2);
4371 static int s2io_chk_rx_buffers(struct s2io_nic *sp, int rng_n)
4373 int rxb_size, level;
4375 if (!sp->lro) {
4376 rxb_size = atomic_read(&sp->rx_bufs_left[rng_n]);
4377 level = rx_buffer_level(sp, rxb_size, rng_n);
4379 if ((level == PANIC) && (!TASKLET_IN_USE)) {
4380 int ret;
4381 DBG_PRINT(INTR_DBG, "%s: Rx BD hit ", __FUNCTION__);
4382 DBG_PRINT(INTR_DBG, "PANIC levels\n");
4383 if ((ret = fill_rx_buffers(sp, rng_n)) == -ENOMEM) {
4384 DBG_PRINT(INFO_DBG, "Out of memory in %s",
4385 __FUNCTION__);
4386 clear_bit(0, (&sp->tasklet_status));
4387 return -1;
4389 clear_bit(0, (&sp->tasklet_status));
4390 } else if (level == LOW)
4391 tasklet_schedule(&sp->task);
4393 } else if (fill_rx_buffers(sp, rng_n) == -ENOMEM) {
4394 DBG_PRINT(INFO_DBG, "%s:Out of memory", sp->dev->name);
4395 DBG_PRINT(INFO_DBG, " in Rx Intr!!\n");
4397 return 0;
4400 static irqreturn_t s2io_msix_ring_handle(int irq, void *dev_id)
4402 struct ring_info *ring = (struct ring_info *)dev_id;
4403 struct s2io_nic *sp = ring->nic;
4405 if (!is_s2io_card_up(sp))
4406 return IRQ_HANDLED;
4408 rx_intr_handler(ring);
4409 s2io_chk_rx_buffers(sp, ring->ring_no);
4411 return IRQ_HANDLED;
4414 static irqreturn_t s2io_msix_fifo_handle(int irq, void *dev_id)
4416 struct fifo_info *fifo = (struct fifo_info *)dev_id;
4417 struct s2io_nic *sp = fifo->nic;
4419 if (!is_s2io_card_up(sp))
4420 return IRQ_HANDLED;
4422 tx_intr_handler(fifo);
4423 return IRQ_HANDLED;
4425 static void s2io_txpic_intr_handle(struct s2io_nic *sp)
4427 struct XENA_dev_config __iomem *bar0 = sp->bar0;
4428 u64 val64;
4430 val64 = readq(&bar0->pic_int_status);
4431 if (val64 & PIC_INT_GPIO) {
4432 val64 = readq(&bar0->gpio_int_reg);
4433 if ((val64 & GPIO_INT_REG_LINK_DOWN) &&
4434 (val64 & GPIO_INT_REG_LINK_UP)) {
4436 * This is unstable state so clear both up/down
4437 * interrupt and adapter to re-evaluate the link state.
4439 val64 |= GPIO_INT_REG_LINK_DOWN;
4440 val64 |= GPIO_INT_REG_LINK_UP;
4441 writeq(val64, &bar0->gpio_int_reg);
4442 val64 = readq(&bar0->gpio_int_mask);
4443 val64 &= ~(GPIO_INT_MASK_LINK_UP |
4444 GPIO_INT_MASK_LINK_DOWN);
4445 writeq(val64, &bar0->gpio_int_mask);
4447 else if (val64 & GPIO_INT_REG_LINK_UP) {
4448 val64 = readq(&bar0->adapter_status);
4449 /* Enable Adapter */
4450 val64 = readq(&bar0->adapter_control);
4451 val64 |= ADAPTER_CNTL_EN;
4452 writeq(val64, &bar0->adapter_control);
4453 val64 |= ADAPTER_LED_ON;
4454 writeq(val64, &bar0->adapter_control);
4455 if (!sp->device_enabled_once)
4456 sp->device_enabled_once = 1;
4458 s2io_link(sp, LINK_UP);
4460 * unmask link down interrupt and mask link-up
4461 * intr
4463 val64 = readq(&bar0->gpio_int_mask);
4464 val64 &= ~GPIO_INT_MASK_LINK_DOWN;
4465 val64 |= GPIO_INT_MASK_LINK_UP;
4466 writeq(val64, &bar0->gpio_int_mask);
4468 }else if (val64 & GPIO_INT_REG_LINK_DOWN) {
4469 val64 = readq(&bar0->adapter_status);
4470 s2io_link(sp, LINK_DOWN);
4471 /* Link is down so unmaks link up interrupt */
4472 val64 = readq(&bar0->gpio_int_mask);
4473 val64 &= ~GPIO_INT_MASK_LINK_UP;
4474 val64 |= GPIO_INT_MASK_LINK_DOWN;
4475 writeq(val64, &bar0->gpio_int_mask);
4477 /* turn off LED */
4478 val64 = readq(&bar0->adapter_control);
4479 val64 = val64 &(~ADAPTER_LED_ON);
4480 writeq(val64, &bar0->adapter_control);
4483 val64 = readq(&bar0->gpio_int_mask);
4487 * do_s2io_chk_alarm_bit - Check for alarm and incrment the counter
4488 * @value: alarm bits
4489 * @addr: address value
4490 * @cnt: counter variable
4491 * Description: Check for alarm and increment the counter
4492 * Return Value:
4493 * 1 - if alarm bit set
4494 * 0 - if alarm bit is not set
4496 static int do_s2io_chk_alarm_bit(u64 value, void __iomem * addr,
4497 unsigned long long *cnt)
4499 u64 val64;
4500 val64 = readq(addr);
4501 if ( val64 & value ) {
4502 writeq(val64, addr);
4503 (*cnt)++;
4504 return 1;
4506 return 0;
4511 * s2io_handle_errors - Xframe error indication handler
4512 * @nic: device private variable
4513 * Description: Handle alarms such as loss of link, single or
4514 * double ECC errors, critical and serious errors.
4515 * Return Value:
4516 * NONE
4518 static void s2io_handle_errors(void * dev_id)
4520 struct net_device *dev = (struct net_device *) dev_id;
4521 struct s2io_nic *sp = dev->priv;
4522 struct XENA_dev_config __iomem *bar0 = sp->bar0;
4523 u64 temp64 = 0,val64=0;
4524 int i = 0;
4526 struct swStat *sw_stat = &sp->mac_control.stats_info->sw_stat;
4527 struct xpakStat *stats = &sp->mac_control.stats_info->xpak_stat;
4529 if (!is_s2io_card_up(sp))
4530 return;
4532 if (pci_channel_offline(sp->pdev))
4533 return;
4535 memset(&sw_stat->ring_full_cnt, 0,
4536 sizeof(sw_stat->ring_full_cnt));
4538 /* Handling the XPAK counters update */
4539 if(stats->xpak_timer_count < 72000) {
4540 /* waiting for an hour */
4541 stats->xpak_timer_count++;
4542 } else {
4543 s2io_updt_xpak_counter(dev);
4544 /* reset the count to zero */
4545 stats->xpak_timer_count = 0;
4548 /* Handling link status change error Intr */
4549 if (s2io_link_fault_indication(sp) == MAC_RMAC_ERR_TIMER) {
4550 val64 = readq(&bar0->mac_rmac_err_reg);
4551 writeq(val64, &bar0->mac_rmac_err_reg);
4552 if (val64 & RMAC_LINK_STATE_CHANGE_INT)
4553 schedule_work(&sp->set_link_task);
4556 /* In case of a serious error, the device will be Reset. */
4557 if (do_s2io_chk_alarm_bit(SERR_SOURCE_ANY, &bar0->serr_source,
4558 &sw_stat->serious_err_cnt))
4559 goto reset;
4561 /* Check for data parity error */
4562 if (do_s2io_chk_alarm_bit(GPIO_INT_REG_DP_ERR_INT, &bar0->gpio_int_reg,
4563 &sw_stat->parity_err_cnt))
4564 goto reset;
4566 /* Check for ring full counter */
4567 if (sp->device_type == XFRAME_II_DEVICE) {
4568 val64 = readq(&bar0->ring_bump_counter1);
4569 for (i=0; i<4; i++) {
4570 temp64 = ( val64 & vBIT(0xFFFF,(i*16),16));
4571 temp64 >>= 64 - ((i+1)*16);
4572 sw_stat->ring_full_cnt[i] += temp64;
4575 val64 = readq(&bar0->ring_bump_counter2);
4576 for (i=0; i<4; i++) {
4577 temp64 = ( val64 & vBIT(0xFFFF,(i*16),16));
4578 temp64 >>= 64 - ((i+1)*16);
4579 sw_stat->ring_full_cnt[i+4] += temp64;
4583 val64 = readq(&bar0->txdma_int_status);
4584 /*check for pfc_err*/
4585 if (val64 & TXDMA_PFC_INT) {
4586 if (do_s2io_chk_alarm_bit(PFC_ECC_DB_ERR | PFC_SM_ERR_ALARM|
4587 PFC_MISC_0_ERR | PFC_MISC_1_ERR|
4588 PFC_PCIX_ERR, &bar0->pfc_err_reg,
4589 &sw_stat->pfc_err_cnt))
4590 goto reset;
4591 do_s2io_chk_alarm_bit(PFC_ECC_SG_ERR, &bar0->pfc_err_reg,
4592 &sw_stat->pfc_err_cnt);
4595 /*check for tda_err*/
4596 if (val64 & TXDMA_TDA_INT) {
4597 if(do_s2io_chk_alarm_bit(TDA_Fn_ECC_DB_ERR | TDA_SM0_ERR_ALARM |
4598 TDA_SM1_ERR_ALARM, &bar0->tda_err_reg,
4599 &sw_stat->tda_err_cnt))
4600 goto reset;
4601 do_s2io_chk_alarm_bit(TDA_Fn_ECC_SG_ERR | TDA_PCIX_ERR,
4602 &bar0->tda_err_reg, &sw_stat->tda_err_cnt);
4604 /*check for pcc_err*/
4605 if (val64 & TXDMA_PCC_INT) {
4606 if (do_s2io_chk_alarm_bit(PCC_SM_ERR_ALARM | PCC_WR_ERR_ALARM
4607 | PCC_N_SERR | PCC_6_COF_OV_ERR
4608 | PCC_7_COF_OV_ERR | PCC_6_LSO_OV_ERR
4609 | PCC_7_LSO_OV_ERR | PCC_FB_ECC_DB_ERR
4610 | PCC_TXB_ECC_DB_ERR, &bar0->pcc_err_reg,
4611 &sw_stat->pcc_err_cnt))
4612 goto reset;
4613 do_s2io_chk_alarm_bit(PCC_FB_ECC_SG_ERR | PCC_TXB_ECC_SG_ERR,
4614 &bar0->pcc_err_reg, &sw_stat->pcc_err_cnt);
4617 /*check for tti_err*/
4618 if (val64 & TXDMA_TTI_INT) {
4619 if (do_s2io_chk_alarm_bit(TTI_SM_ERR_ALARM, &bar0->tti_err_reg,
4620 &sw_stat->tti_err_cnt))
4621 goto reset;
4622 do_s2io_chk_alarm_bit(TTI_ECC_SG_ERR | TTI_ECC_DB_ERR,
4623 &bar0->tti_err_reg, &sw_stat->tti_err_cnt);
4626 /*check for lso_err*/
4627 if (val64 & TXDMA_LSO_INT) {
4628 if (do_s2io_chk_alarm_bit(LSO6_ABORT | LSO7_ABORT
4629 | LSO6_SM_ERR_ALARM | LSO7_SM_ERR_ALARM,
4630 &bar0->lso_err_reg, &sw_stat->lso_err_cnt))
4631 goto reset;
4632 do_s2io_chk_alarm_bit(LSO6_SEND_OFLOW | LSO7_SEND_OFLOW,
4633 &bar0->lso_err_reg, &sw_stat->lso_err_cnt);
4636 /*check for tpa_err*/
4637 if (val64 & TXDMA_TPA_INT) {
4638 if (do_s2io_chk_alarm_bit(TPA_SM_ERR_ALARM, &bar0->tpa_err_reg,
4639 &sw_stat->tpa_err_cnt))
4640 goto reset;
4641 do_s2io_chk_alarm_bit(TPA_TX_FRM_DROP, &bar0->tpa_err_reg,
4642 &sw_stat->tpa_err_cnt);
4645 /*check for sm_err*/
4646 if (val64 & TXDMA_SM_INT) {
4647 if (do_s2io_chk_alarm_bit(SM_SM_ERR_ALARM, &bar0->sm_err_reg,
4648 &sw_stat->sm_err_cnt))
4649 goto reset;
4652 val64 = readq(&bar0->mac_int_status);
4653 if (val64 & MAC_INT_STATUS_TMAC_INT) {
4654 if (do_s2io_chk_alarm_bit(TMAC_TX_BUF_OVRN | TMAC_TX_SM_ERR,
4655 &bar0->mac_tmac_err_reg,
4656 &sw_stat->mac_tmac_err_cnt))
4657 goto reset;
4658 do_s2io_chk_alarm_bit(TMAC_ECC_SG_ERR | TMAC_ECC_DB_ERR
4659 | TMAC_DESC_ECC_SG_ERR | TMAC_DESC_ECC_DB_ERR,
4660 &bar0->mac_tmac_err_reg,
4661 &sw_stat->mac_tmac_err_cnt);
4664 val64 = readq(&bar0->xgxs_int_status);
4665 if (val64 & XGXS_INT_STATUS_TXGXS) {
4666 if (do_s2io_chk_alarm_bit(TXGXS_ESTORE_UFLOW | TXGXS_TX_SM_ERR,
4667 &bar0->xgxs_txgxs_err_reg,
4668 &sw_stat->xgxs_txgxs_err_cnt))
4669 goto reset;
4670 do_s2io_chk_alarm_bit(TXGXS_ECC_SG_ERR | TXGXS_ECC_DB_ERR,
4671 &bar0->xgxs_txgxs_err_reg,
4672 &sw_stat->xgxs_txgxs_err_cnt);
4675 val64 = readq(&bar0->rxdma_int_status);
4676 if (val64 & RXDMA_INT_RC_INT_M) {
4677 if (do_s2io_chk_alarm_bit(RC_PRCn_ECC_DB_ERR | RC_FTC_ECC_DB_ERR
4678 | RC_PRCn_SM_ERR_ALARM |RC_FTC_SM_ERR_ALARM,
4679 &bar0->rc_err_reg, &sw_stat->rc_err_cnt))
4680 goto reset;
4681 do_s2io_chk_alarm_bit(RC_PRCn_ECC_SG_ERR | RC_FTC_ECC_SG_ERR
4682 | RC_RDA_FAIL_WR_Rn, &bar0->rc_err_reg,
4683 &sw_stat->rc_err_cnt);
4684 if (do_s2io_chk_alarm_bit(PRC_PCI_AB_RD_Rn | PRC_PCI_AB_WR_Rn
4685 | PRC_PCI_AB_F_WR_Rn, &bar0->prc_pcix_err_reg,
4686 &sw_stat->prc_pcix_err_cnt))
4687 goto reset;
4688 do_s2io_chk_alarm_bit(PRC_PCI_DP_RD_Rn | PRC_PCI_DP_WR_Rn
4689 | PRC_PCI_DP_F_WR_Rn, &bar0->prc_pcix_err_reg,
4690 &sw_stat->prc_pcix_err_cnt);
4693 if (val64 & RXDMA_INT_RPA_INT_M) {
4694 if (do_s2io_chk_alarm_bit(RPA_SM_ERR_ALARM | RPA_CREDIT_ERR,
4695 &bar0->rpa_err_reg, &sw_stat->rpa_err_cnt))
4696 goto reset;
4697 do_s2io_chk_alarm_bit(RPA_ECC_SG_ERR | RPA_ECC_DB_ERR,
4698 &bar0->rpa_err_reg, &sw_stat->rpa_err_cnt);
4701 if (val64 & RXDMA_INT_RDA_INT_M) {
4702 if (do_s2io_chk_alarm_bit(RDA_RXDn_ECC_DB_ERR
4703 | RDA_FRM_ECC_DB_N_AERR | RDA_SM1_ERR_ALARM
4704 | RDA_SM0_ERR_ALARM | RDA_RXD_ECC_DB_SERR,
4705 &bar0->rda_err_reg, &sw_stat->rda_err_cnt))
4706 goto reset;
4707 do_s2io_chk_alarm_bit(RDA_RXDn_ECC_SG_ERR | RDA_FRM_ECC_SG_ERR
4708 | RDA_MISC_ERR | RDA_PCIX_ERR,
4709 &bar0->rda_err_reg, &sw_stat->rda_err_cnt);
4712 if (val64 & RXDMA_INT_RTI_INT_M) {
4713 if (do_s2io_chk_alarm_bit(RTI_SM_ERR_ALARM, &bar0->rti_err_reg,
4714 &sw_stat->rti_err_cnt))
4715 goto reset;
4716 do_s2io_chk_alarm_bit(RTI_ECC_SG_ERR | RTI_ECC_DB_ERR,
4717 &bar0->rti_err_reg, &sw_stat->rti_err_cnt);
4720 val64 = readq(&bar0->mac_int_status);
4721 if (val64 & MAC_INT_STATUS_RMAC_INT) {
4722 if (do_s2io_chk_alarm_bit(RMAC_RX_BUFF_OVRN | RMAC_RX_SM_ERR,
4723 &bar0->mac_rmac_err_reg,
4724 &sw_stat->mac_rmac_err_cnt))
4725 goto reset;
4726 do_s2io_chk_alarm_bit(RMAC_UNUSED_INT|RMAC_SINGLE_ECC_ERR|
4727 RMAC_DOUBLE_ECC_ERR, &bar0->mac_rmac_err_reg,
4728 &sw_stat->mac_rmac_err_cnt);
4731 val64 = readq(&bar0->xgxs_int_status);
4732 if (val64 & XGXS_INT_STATUS_RXGXS) {
4733 if (do_s2io_chk_alarm_bit(RXGXS_ESTORE_OFLOW | RXGXS_RX_SM_ERR,
4734 &bar0->xgxs_rxgxs_err_reg,
4735 &sw_stat->xgxs_rxgxs_err_cnt))
4736 goto reset;
4739 val64 = readq(&bar0->mc_int_status);
4740 if(val64 & MC_INT_STATUS_MC_INT) {
4741 if (do_s2io_chk_alarm_bit(MC_ERR_REG_SM_ERR, &bar0->mc_err_reg,
4742 &sw_stat->mc_err_cnt))
4743 goto reset;
4745 /* Handling Ecc errors */
4746 if (val64 & (MC_ERR_REG_ECC_ALL_SNG | MC_ERR_REG_ECC_ALL_DBL)) {
4747 writeq(val64, &bar0->mc_err_reg);
4748 if (val64 & MC_ERR_REG_ECC_ALL_DBL) {
4749 sw_stat->double_ecc_errs++;
4750 if (sp->device_type != XFRAME_II_DEVICE) {
4752 * Reset XframeI only if critical error
4754 if (val64 &
4755 (MC_ERR_REG_MIRI_ECC_DB_ERR_0 |
4756 MC_ERR_REG_MIRI_ECC_DB_ERR_1))
4757 goto reset;
4759 } else
4760 sw_stat->single_ecc_errs++;
4763 return;
4765 reset:
4766 s2io_stop_all_tx_queue(sp);
4767 schedule_work(&sp->rst_timer_task);
4768 sw_stat->soft_reset_cnt++;
4769 return;
4773 * s2io_isr - ISR handler of the device .
4774 * @irq: the irq of the device.
4775 * @dev_id: a void pointer to the dev structure of the NIC.
4776 * Description: This function is the ISR handler of the device. It
4777 * identifies the reason for the interrupt and calls the relevant
4778 * service routines. As a contongency measure, this ISR allocates the
4779 * recv buffers, if their numbers are below the panic value which is
4780 * presently set to 25% of the original number of rcv buffers allocated.
4781 * Return value:
4782 * IRQ_HANDLED: will be returned if IRQ was handled by this routine
4783 * IRQ_NONE: will be returned if interrupt is not from our device
4785 static irqreturn_t s2io_isr(int irq, void *dev_id)
4787 struct net_device *dev = (struct net_device *) dev_id;
4788 struct s2io_nic *sp = dev->priv;
4789 struct XENA_dev_config __iomem *bar0 = sp->bar0;
4790 int i;
4791 u64 reason = 0;
4792 struct mac_info *mac_control;
4793 struct config_param *config;
4795 /* Pretend we handled any irq's from a disconnected card */
4796 if (pci_channel_offline(sp->pdev))
4797 return IRQ_NONE;
4799 if (!is_s2io_card_up(sp))
4800 return IRQ_NONE;
4802 mac_control = &sp->mac_control;
4803 config = &sp->config;
4806 * Identify the cause for interrupt and call the appropriate
4807 * interrupt handler. Causes for the interrupt could be;
4808 * 1. Rx of packet.
4809 * 2. Tx complete.
4810 * 3. Link down.
4812 reason = readq(&bar0->general_int_status);
4814 if (unlikely(reason == S2IO_MINUS_ONE) ) {
4815 /* Nothing much can be done. Get out */
4816 return IRQ_HANDLED;
4819 if (reason & (GEN_INTR_RXTRAFFIC |
4820 GEN_INTR_TXTRAFFIC | GEN_INTR_TXPIC))
4822 writeq(S2IO_MINUS_ONE, &bar0->general_int_mask);
4824 if (config->napi) {
4825 if (reason & GEN_INTR_RXTRAFFIC) {
4826 if (likely(netif_rx_schedule_prep(dev,
4827 &sp->napi))) {
4828 __netif_rx_schedule(dev, &sp->napi);
4829 writeq(S2IO_MINUS_ONE,
4830 &bar0->rx_traffic_mask);
4831 } else
4832 writeq(S2IO_MINUS_ONE,
4833 &bar0->rx_traffic_int);
4835 } else {
4837 * rx_traffic_int reg is an R1 register, writing all 1's
4838 * will ensure that the actual interrupt causing bit
4839 * get's cleared and hence a read can be avoided.
4841 if (reason & GEN_INTR_RXTRAFFIC)
4842 writeq(S2IO_MINUS_ONE, &bar0->rx_traffic_int);
4844 for (i = 0; i < config->rx_ring_num; i++)
4845 rx_intr_handler(&mac_control->rings[i]);
4849 * tx_traffic_int reg is an R1 register, writing all 1's
4850 * will ensure that the actual interrupt causing bit get's
4851 * cleared and hence a read can be avoided.
4853 if (reason & GEN_INTR_TXTRAFFIC)
4854 writeq(S2IO_MINUS_ONE, &bar0->tx_traffic_int);
4856 for (i = 0; i < config->tx_fifo_num; i++)
4857 tx_intr_handler(&mac_control->fifos[i]);
4859 if (reason & GEN_INTR_TXPIC)
4860 s2io_txpic_intr_handle(sp);
4863 * Reallocate the buffers from the interrupt handler itself.
4865 if (!config->napi) {
4866 for (i = 0; i < config->rx_ring_num; i++)
4867 s2io_chk_rx_buffers(sp, i);
4869 writeq(sp->general_int_mask, &bar0->general_int_mask);
4870 readl(&bar0->general_int_status);
4872 return IRQ_HANDLED;
4875 else if (!reason) {
4876 /* The interrupt was not raised by us */
4877 return IRQ_NONE;
4880 return IRQ_HANDLED;
4884 * s2io_updt_stats -
4886 static void s2io_updt_stats(struct s2io_nic *sp)
4888 struct XENA_dev_config __iomem *bar0 = sp->bar0;
4889 u64 val64;
4890 int cnt = 0;
4892 if (is_s2io_card_up(sp)) {
4893 /* Apprx 30us on a 133 MHz bus */
4894 val64 = SET_UPDT_CLICKS(10) |
4895 STAT_CFG_ONE_SHOT_EN | STAT_CFG_STAT_EN;
4896 writeq(val64, &bar0->stat_cfg);
4897 do {
4898 udelay(100);
4899 val64 = readq(&bar0->stat_cfg);
4900 if (!(val64 & s2BIT(0)))
4901 break;
4902 cnt++;
4903 if (cnt == 5)
4904 break; /* Updt failed */
4905 } while(1);
4910 * s2io_get_stats - Updates the device statistics structure.
4911 * @dev : pointer to the device structure.
4912 * Description:
4913 * This function updates the device statistics structure in the s2io_nic
4914 * structure and returns a pointer to the same.
4915 * Return value:
4916 * pointer to the updated net_device_stats structure.
4919 static struct net_device_stats *s2io_get_stats(struct net_device *dev)
4921 struct s2io_nic *sp = dev->priv;
4922 struct mac_info *mac_control;
4923 struct config_param *config;
4926 mac_control = &sp->mac_control;
4927 config = &sp->config;
4929 /* Configure Stats for immediate updt */
4930 s2io_updt_stats(sp);
4932 sp->stats.tx_packets =
4933 le32_to_cpu(mac_control->stats_info->tmac_frms);
4934 sp->stats.tx_errors =
4935 le32_to_cpu(mac_control->stats_info->tmac_any_err_frms);
4936 sp->stats.rx_errors =
4937 le64_to_cpu(mac_control->stats_info->rmac_drop_frms);
4938 sp->stats.multicast =
4939 le32_to_cpu(mac_control->stats_info->rmac_vld_mcst_frms);
4940 sp->stats.rx_length_errors =
4941 le64_to_cpu(mac_control->stats_info->rmac_long_frms);
4943 return (&sp->stats);
4947 * s2io_set_multicast - entry point for multicast address enable/disable.
4948 * @dev : pointer to the device structure
4949 * Description:
4950 * This function is a driver entry point which gets called by the kernel
4951 * whenever multicast addresses must be enabled/disabled. This also gets
4952 * called to set/reset promiscuous mode. Depending on the deivce flag, we
4953 * determine, if multicast address must be enabled or if promiscuous mode
4954 * is to be disabled etc.
4955 * Return value:
4956 * void.
4959 static void s2io_set_multicast(struct net_device *dev)
4961 int i, j, prev_cnt;
4962 struct dev_mc_list *mclist;
4963 struct s2io_nic *sp = dev->priv;
4964 struct XENA_dev_config __iomem *bar0 = sp->bar0;
4965 u64 val64 = 0, multi_mac = 0x010203040506ULL, mask =
4966 0xfeffffffffffULL;
4967 u64 dis_addr = S2IO_DISABLE_MAC_ENTRY, mac_addr = 0;
4968 void __iomem *add;
4969 struct config_param *config = &sp->config;
4971 if ((dev->flags & IFF_ALLMULTI) && (!sp->m_cast_flg)) {
4972 /* Enable all Multicast addresses */
4973 writeq(RMAC_ADDR_DATA0_MEM_ADDR(multi_mac),
4974 &bar0->rmac_addr_data0_mem);
4975 writeq(RMAC_ADDR_DATA1_MEM_MASK(mask),
4976 &bar0->rmac_addr_data1_mem);
4977 val64 = RMAC_ADDR_CMD_MEM_WE |
4978 RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
4979 RMAC_ADDR_CMD_MEM_OFFSET(config->max_mc_addr - 1);
4980 writeq(val64, &bar0->rmac_addr_cmd_mem);
4981 /* Wait till command completes */
4982 wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
4983 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
4984 S2IO_BIT_RESET);
4986 sp->m_cast_flg = 1;
4987 sp->all_multi_pos = config->max_mc_addr - 1;
4988 } else if ((dev->flags & IFF_ALLMULTI) && (sp->m_cast_flg)) {
4989 /* Disable all Multicast addresses */
4990 writeq(RMAC_ADDR_DATA0_MEM_ADDR(dis_addr),
4991 &bar0->rmac_addr_data0_mem);
4992 writeq(RMAC_ADDR_DATA1_MEM_MASK(0x0),
4993 &bar0->rmac_addr_data1_mem);
4994 val64 = RMAC_ADDR_CMD_MEM_WE |
4995 RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
4996 RMAC_ADDR_CMD_MEM_OFFSET(sp->all_multi_pos);
4997 writeq(val64, &bar0->rmac_addr_cmd_mem);
4998 /* Wait till command completes */
4999 wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
5000 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
5001 S2IO_BIT_RESET);
5003 sp->m_cast_flg = 0;
5004 sp->all_multi_pos = 0;
5007 if ((dev->flags & IFF_PROMISC) && (!sp->promisc_flg)) {
5008 /* Put the NIC into promiscuous mode */
5009 add = &bar0->mac_cfg;
5010 val64 = readq(&bar0->mac_cfg);
5011 val64 |= MAC_CFG_RMAC_PROM_ENABLE;
5013 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
5014 writel((u32) val64, add);
5015 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
5016 writel((u32) (val64 >> 32), (add + 4));
5018 if (vlan_tag_strip != 1) {
5019 val64 = readq(&bar0->rx_pa_cfg);
5020 val64 &= ~RX_PA_CFG_STRIP_VLAN_TAG;
5021 writeq(val64, &bar0->rx_pa_cfg);
5022 vlan_strip_flag = 0;
5025 val64 = readq(&bar0->mac_cfg);
5026 sp->promisc_flg = 1;
5027 DBG_PRINT(INFO_DBG, "%s: entered promiscuous mode\n",
5028 dev->name);
5029 } else if (!(dev->flags & IFF_PROMISC) && (sp->promisc_flg)) {
5030 /* Remove the NIC from promiscuous mode */
5031 add = &bar0->mac_cfg;
5032 val64 = readq(&bar0->mac_cfg);
5033 val64 &= ~MAC_CFG_RMAC_PROM_ENABLE;
5035 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
5036 writel((u32) val64, add);
5037 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
5038 writel((u32) (val64 >> 32), (add + 4));
5040 if (vlan_tag_strip != 0) {
5041 val64 = readq(&bar0->rx_pa_cfg);
5042 val64 |= RX_PA_CFG_STRIP_VLAN_TAG;
5043 writeq(val64, &bar0->rx_pa_cfg);
5044 vlan_strip_flag = 1;
5047 val64 = readq(&bar0->mac_cfg);
5048 sp->promisc_flg = 0;
5049 DBG_PRINT(INFO_DBG, "%s: left promiscuous mode\n",
5050 dev->name);
5053 /* Update individual M_CAST address list */
5054 if ((!sp->m_cast_flg) && dev->mc_count) {
5055 if (dev->mc_count >
5056 (config->max_mc_addr - config->max_mac_addr)) {
5057 DBG_PRINT(ERR_DBG, "%s: No more Rx filters ",
5058 dev->name);
5059 DBG_PRINT(ERR_DBG, "can be added, please enable ");
5060 DBG_PRINT(ERR_DBG, "ALL_MULTI instead\n");
5061 return;
5064 prev_cnt = sp->mc_addr_count;
5065 sp->mc_addr_count = dev->mc_count;
5067 /* Clear out the previous list of Mc in the H/W. */
5068 for (i = 0; i < prev_cnt; i++) {
5069 writeq(RMAC_ADDR_DATA0_MEM_ADDR(dis_addr),
5070 &bar0->rmac_addr_data0_mem);
5071 writeq(RMAC_ADDR_DATA1_MEM_MASK(0ULL),
5072 &bar0->rmac_addr_data1_mem);
5073 val64 = RMAC_ADDR_CMD_MEM_WE |
5074 RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
5075 RMAC_ADDR_CMD_MEM_OFFSET
5076 (config->mc_start_offset + i);
5077 writeq(val64, &bar0->rmac_addr_cmd_mem);
5079 /* Wait for command completes */
5080 if (wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
5081 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
5082 S2IO_BIT_RESET)) {
5083 DBG_PRINT(ERR_DBG, "%s: Adding ",
5084 dev->name);
5085 DBG_PRINT(ERR_DBG, "Multicasts failed\n");
5086 return;
5090 /* Create the new Rx filter list and update the same in H/W. */
5091 for (i = 0, mclist = dev->mc_list; i < dev->mc_count;
5092 i++, mclist = mclist->next) {
5093 memcpy(sp->usr_addrs[i].addr, mclist->dmi_addr,
5094 ETH_ALEN);
5095 mac_addr = 0;
5096 for (j = 0; j < ETH_ALEN; j++) {
5097 mac_addr |= mclist->dmi_addr[j];
5098 mac_addr <<= 8;
5100 mac_addr >>= 8;
5101 writeq(RMAC_ADDR_DATA0_MEM_ADDR(mac_addr),
5102 &bar0->rmac_addr_data0_mem);
5103 writeq(RMAC_ADDR_DATA1_MEM_MASK(0ULL),
5104 &bar0->rmac_addr_data1_mem);
5105 val64 = RMAC_ADDR_CMD_MEM_WE |
5106 RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
5107 RMAC_ADDR_CMD_MEM_OFFSET
5108 (i + config->mc_start_offset);
5109 writeq(val64, &bar0->rmac_addr_cmd_mem);
5111 /* Wait for command completes */
5112 if (wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
5113 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
5114 S2IO_BIT_RESET)) {
5115 DBG_PRINT(ERR_DBG, "%s: Adding ",
5116 dev->name);
5117 DBG_PRINT(ERR_DBG, "Multicasts failed\n");
5118 return;
5124 /* read from CAM unicast & multicast addresses and store it in
5125 * def_mac_addr structure
5127 void do_s2io_store_unicast_mc(struct s2io_nic *sp)
5129 int offset;
5130 u64 mac_addr = 0x0;
5131 struct config_param *config = &sp->config;
5133 /* store unicast & multicast mac addresses */
5134 for (offset = 0; offset < config->max_mc_addr; offset++) {
5135 mac_addr = do_s2io_read_unicast_mc(sp, offset);
5136 /* if read fails disable the entry */
5137 if (mac_addr == FAILURE)
5138 mac_addr = S2IO_DISABLE_MAC_ENTRY;
5139 do_s2io_copy_mac_addr(sp, offset, mac_addr);
5143 /* restore unicast & multicast MAC to CAM from def_mac_addr structure */
5144 static void do_s2io_restore_unicast_mc(struct s2io_nic *sp)
5146 int offset;
5147 struct config_param *config = &sp->config;
5148 /* restore unicast mac address */
5149 for (offset = 0; offset < config->max_mac_addr; offset++)
5150 do_s2io_prog_unicast(sp->dev,
5151 sp->def_mac_addr[offset].mac_addr);
5153 /* restore multicast mac address */
5154 for (offset = config->mc_start_offset;
5155 offset < config->max_mc_addr; offset++)
5156 do_s2io_add_mc(sp, sp->def_mac_addr[offset].mac_addr);
5159 /* add a multicast MAC address to CAM */
5160 static int do_s2io_add_mc(struct s2io_nic *sp, u8 *addr)
5162 int i;
5163 u64 mac_addr = 0;
5164 struct config_param *config = &sp->config;
5166 for (i = 0; i < ETH_ALEN; i++) {
5167 mac_addr <<= 8;
5168 mac_addr |= addr[i];
5170 if ((0ULL == mac_addr) || (mac_addr == S2IO_DISABLE_MAC_ENTRY))
5171 return SUCCESS;
5173 /* check if the multicast mac already preset in CAM */
5174 for (i = config->mc_start_offset; i < config->max_mc_addr; i++) {
5175 u64 tmp64;
5176 tmp64 = do_s2io_read_unicast_mc(sp, i);
5177 if (tmp64 == S2IO_DISABLE_MAC_ENTRY) /* CAM entry is empty */
5178 break;
5180 if (tmp64 == mac_addr)
5181 return SUCCESS;
5183 if (i == config->max_mc_addr) {
5184 DBG_PRINT(ERR_DBG,
5185 "CAM full no space left for multicast MAC\n");
5186 return FAILURE;
5188 /* Update the internal structure with this new mac address */
5189 do_s2io_copy_mac_addr(sp, i, mac_addr);
5191 return (do_s2io_add_mac(sp, mac_addr, i));
5194 /* add MAC address to CAM */
5195 static int do_s2io_add_mac(struct s2io_nic *sp, u64 addr, int off)
5197 u64 val64;
5198 struct XENA_dev_config __iomem *bar0 = sp->bar0;
5200 writeq(RMAC_ADDR_DATA0_MEM_ADDR(addr),
5201 &bar0->rmac_addr_data0_mem);
5203 val64 =
5204 RMAC_ADDR_CMD_MEM_WE | RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
5205 RMAC_ADDR_CMD_MEM_OFFSET(off);
5206 writeq(val64, &bar0->rmac_addr_cmd_mem);
5208 /* Wait till command completes */
5209 if (wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
5210 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
5211 S2IO_BIT_RESET)) {
5212 DBG_PRINT(INFO_DBG, "do_s2io_add_mac failed\n");
5213 return FAILURE;
5215 return SUCCESS;
5217 /* deletes a specified unicast/multicast mac entry from CAM */
5218 static int do_s2io_delete_unicast_mc(struct s2io_nic *sp, u64 addr)
5220 int offset;
5221 u64 dis_addr = S2IO_DISABLE_MAC_ENTRY, tmp64;
5222 struct config_param *config = &sp->config;
5224 for (offset = 1;
5225 offset < config->max_mc_addr; offset++) {
5226 tmp64 = do_s2io_read_unicast_mc(sp, offset);
5227 if (tmp64 == addr) {
5228 /* disable the entry by writing 0xffffffffffffULL */
5229 if (do_s2io_add_mac(sp, dis_addr, offset) == FAILURE)
5230 return FAILURE;
5231 /* store the new mac list from CAM */
5232 do_s2io_store_unicast_mc(sp);
5233 return SUCCESS;
5236 DBG_PRINT(ERR_DBG, "MAC address 0x%llx not found in CAM\n",
5237 (unsigned long long)addr);
5238 return FAILURE;
5241 /* read mac entries from CAM */
5242 static u64 do_s2io_read_unicast_mc(struct s2io_nic *sp, int offset)
5244 u64 tmp64 = 0xffffffffffff0000ULL, val64;
5245 struct XENA_dev_config __iomem *bar0 = sp->bar0;
5247 /* read mac addr */
5248 val64 =
5249 RMAC_ADDR_CMD_MEM_RD | RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
5250 RMAC_ADDR_CMD_MEM_OFFSET(offset);
5251 writeq(val64, &bar0->rmac_addr_cmd_mem);
5253 /* Wait till command completes */
5254 if (wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
5255 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
5256 S2IO_BIT_RESET)) {
5257 DBG_PRINT(INFO_DBG, "do_s2io_read_unicast_mc failed\n");
5258 return FAILURE;
5260 tmp64 = readq(&bar0->rmac_addr_data0_mem);
5261 return (tmp64 >> 16);
5265 * s2io_set_mac_addr driver entry point
5268 static int s2io_set_mac_addr(struct net_device *dev, void *p)
5270 struct sockaddr *addr = p;
5272 if (!is_valid_ether_addr(addr->sa_data))
5273 return -EINVAL;
5275 memcpy(dev->dev_addr, addr->sa_data, dev->addr_len);
5277 /* store the MAC address in CAM */
5278 return (do_s2io_prog_unicast(dev, dev->dev_addr));
5281 * do_s2io_prog_unicast - Programs the Xframe mac address
5282 * @dev : pointer to the device structure.
5283 * @addr: a uchar pointer to the new mac address which is to be set.
5284 * Description : This procedure will program the Xframe to receive
5285 * frames with new Mac Address
5286 * Return value: SUCCESS on success and an appropriate (-)ve integer
5287 * as defined in errno.h file on failure.
5290 static int do_s2io_prog_unicast(struct net_device *dev, u8 *addr)
5292 struct s2io_nic *sp = dev->priv;
5293 register u64 mac_addr = 0, perm_addr = 0;
5294 int i;
5295 u64 tmp64;
5296 struct config_param *config = &sp->config;
5299 * Set the new MAC address as the new unicast filter and reflect this
5300 * change on the device address registered with the OS. It will be
5301 * at offset 0.
5303 for (i = 0; i < ETH_ALEN; i++) {
5304 mac_addr <<= 8;
5305 mac_addr |= addr[i];
5306 perm_addr <<= 8;
5307 perm_addr |= sp->def_mac_addr[0].mac_addr[i];
5310 /* check if the dev_addr is different than perm_addr */
5311 if (mac_addr == perm_addr)
5312 return SUCCESS;
5314 /* check if the mac already preset in CAM */
5315 for (i = 1; i < config->max_mac_addr; i++) {
5316 tmp64 = do_s2io_read_unicast_mc(sp, i);
5317 if (tmp64 == S2IO_DISABLE_MAC_ENTRY) /* CAM entry is empty */
5318 break;
5320 if (tmp64 == mac_addr) {
5321 DBG_PRINT(INFO_DBG,
5322 "MAC addr:0x%llx already present in CAM\n",
5323 (unsigned long long)mac_addr);
5324 return SUCCESS;
5327 if (i == config->max_mac_addr) {
5328 DBG_PRINT(ERR_DBG, "CAM full no space left for Unicast MAC\n");
5329 return FAILURE;
5331 /* Update the internal structure with this new mac address */
5332 do_s2io_copy_mac_addr(sp, i, mac_addr);
5333 return (do_s2io_add_mac(sp, mac_addr, i));
5337 * s2io_ethtool_sset - Sets different link parameters.
5338 * @sp : private member of the device structure, which is a pointer to the * s2io_nic structure.
5339 * @info: pointer to the structure with parameters given by ethtool to set
5340 * link information.
5341 * Description:
5342 * The function sets different link parameters provided by the user onto
5343 * the NIC.
5344 * Return value:
5345 * 0 on success.
5348 static int s2io_ethtool_sset(struct net_device *dev,
5349 struct ethtool_cmd *info)
5351 struct s2io_nic *sp = dev->priv;
5352 if ((info->autoneg == AUTONEG_ENABLE) ||
5353 (info->speed != SPEED_10000) || (info->duplex != DUPLEX_FULL))
5354 return -EINVAL;
5355 else {
5356 s2io_close(sp->dev);
5357 s2io_open(sp->dev);
5360 return 0;
5364 * s2io_ethtol_gset - Return link specific information.
5365 * @sp : private member of the device structure, pointer to the
5366 * s2io_nic structure.
5367 * @info : pointer to the structure with parameters given by ethtool
5368 * to return link information.
5369 * Description:
5370 * Returns link specific information like speed, duplex etc.. to ethtool.
5371 * Return value :
5372 * return 0 on success.
5375 static int s2io_ethtool_gset(struct net_device *dev, struct ethtool_cmd *info)
5377 struct s2io_nic *sp = dev->priv;
5378 info->supported = (SUPPORTED_10000baseT_Full | SUPPORTED_FIBRE);
5379 info->advertising = (SUPPORTED_10000baseT_Full | SUPPORTED_FIBRE);
5380 info->port = PORT_FIBRE;
5382 /* info->transceiver */
5383 info->transceiver = XCVR_EXTERNAL;
5385 if (netif_carrier_ok(sp->dev)) {
5386 info->speed = 10000;
5387 info->duplex = DUPLEX_FULL;
5388 } else {
5389 info->speed = -1;
5390 info->duplex = -1;
5393 info->autoneg = AUTONEG_DISABLE;
5394 return 0;
5398 * s2io_ethtool_gdrvinfo - Returns driver specific information.
5399 * @sp : private member of the device structure, which is a pointer to the
5400 * s2io_nic structure.
5401 * @info : pointer to the structure with parameters given by ethtool to
5402 * return driver information.
5403 * Description:
5404 * Returns driver specefic information like name, version etc.. to ethtool.
5405 * Return value:
5406 * void
5409 static void s2io_ethtool_gdrvinfo(struct net_device *dev,
5410 struct ethtool_drvinfo *info)
5412 struct s2io_nic *sp = dev->priv;
5414 strncpy(info->driver, s2io_driver_name, sizeof(info->driver));
5415 strncpy(info->version, s2io_driver_version, sizeof(info->version));
5416 strncpy(info->fw_version, "", sizeof(info->fw_version));
5417 strncpy(info->bus_info, pci_name(sp->pdev), sizeof(info->bus_info));
5418 info->regdump_len = XENA_REG_SPACE;
5419 info->eedump_len = XENA_EEPROM_SPACE;
5423 * s2io_ethtool_gregs - dumps the entire space of Xfame into the buffer.
5424 * @sp: private member of the device structure, which is a pointer to the
5425 * s2io_nic structure.
5426 * @regs : pointer to the structure with parameters given by ethtool for
5427 * dumping the registers.
5428 * @reg_space: The input argumnet into which all the registers are dumped.
5429 * Description:
5430 * Dumps the entire register space of xFrame NIC into the user given
5431 * buffer area.
5432 * Return value :
5433 * void .
5436 static void s2io_ethtool_gregs(struct net_device *dev,
5437 struct ethtool_regs *regs, void *space)
5439 int i;
5440 u64 reg;
5441 u8 *reg_space = (u8 *) space;
5442 struct s2io_nic *sp = dev->priv;
5444 regs->len = XENA_REG_SPACE;
5445 regs->version = sp->pdev->subsystem_device;
5447 for (i = 0; i < regs->len; i += 8) {
5448 reg = readq(sp->bar0 + i);
5449 memcpy((reg_space + i), &reg, 8);
5454 * s2io_phy_id - timer function that alternates adapter LED.
5455 * @data : address of the private member of the device structure, which
5456 * is a pointer to the s2io_nic structure, provided as an u32.
5457 * Description: This is actually the timer function that alternates the
5458 * adapter LED bit of the adapter control bit to set/reset every time on
5459 * invocation. The timer is set for 1/2 a second, hence tha NIC blinks
5460 * once every second.
5462 static void s2io_phy_id(unsigned long data)
5464 struct s2io_nic *sp = (struct s2io_nic *) data;
5465 struct XENA_dev_config __iomem *bar0 = sp->bar0;
5466 u64 val64 = 0;
5467 u16 subid;
5469 subid = sp->pdev->subsystem_device;
5470 if ((sp->device_type == XFRAME_II_DEVICE) ||
5471 ((subid & 0xFF) >= 0x07)) {
5472 val64 = readq(&bar0->gpio_control);
5473 val64 ^= GPIO_CTRL_GPIO_0;
5474 writeq(val64, &bar0->gpio_control);
5475 } else {
5476 val64 = readq(&bar0->adapter_control);
5477 val64 ^= ADAPTER_LED_ON;
5478 writeq(val64, &bar0->adapter_control);
5481 mod_timer(&sp->id_timer, jiffies + HZ / 2);
5485 * s2io_ethtool_idnic - To physically identify the nic on the system.
5486 * @sp : private member of the device structure, which is a pointer to the
5487 * s2io_nic structure.
5488 * @id : pointer to the structure with identification parameters given by
5489 * ethtool.
5490 * Description: Used to physically identify the NIC on the system.
5491 * The Link LED will blink for a time specified by the user for
5492 * identification.
5493 * NOTE: The Link has to be Up to be able to blink the LED. Hence
5494 * identification is possible only if it's link is up.
5495 * Return value:
5496 * int , returns 0 on success
5499 static int s2io_ethtool_idnic(struct net_device *dev, u32 data)
5501 u64 val64 = 0, last_gpio_ctrl_val;
5502 struct s2io_nic *sp = dev->priv;
5503 struct XENA_dev_config __iomem *bar0 = sp->bar0;
5504 u16 subid;
5506 subid = sp->pdev->subsystem_device;
5507 last_gpio_ctrl_val = readq(&bar0->gpio_control);
5508 if ((sp->device_type == XFRAME_I_DEVICE) &&
5509 ((subid & 0xFF) < 0x07)) {
5510 val64 = readq(&bar0->adapter_control);
5511 if (!(val64 & ADAPTER_CNTL_EN)) {
5512 printk(KERN_ERR
5513 "Adapter Link down, cannot blink LED\n");
5514 return -EFAULT;
5517 if (sp->id_timer.function == NULL) {
5518 init_timer(&sp->id_timer);
5519 sp->id_timer.function = s2io_phy_id;
5520 sp->id_timer.data = (unsigned long) sp;
5522 mod_timer(&sp->id_timer, jiffies);
5523 if (data)
5524 msleep_interruptible(data * HZ);
5525 else
5526 msleep_interruptible(MAX_FLICKER_TIME);
5527 del_timer_sync(&sp->id_timer);
5529 if (CARDS_WITH_FAULTY_LINK_INDICATORS(sp->device_type, subid)) {
5530 writeq(last_gpio_ctrl_val, &bar0->gpio_control);
5531 last_gpio_ctrl_val = readq(&bar0->gpio_control);
5534 return 0;
5537 static void s2io_ethtool_gringparam(struct net_device *dev,
5538 struct ethtool_ringparam *ering)
5540 struct s2io_nic *sp = dev->priv;
5541 int i,tx_desc_count=0,rx_desc_count=0;
5543 if (sp->rxd_mode == RXD_MODE_1)
5544 ering->rx_max_pending = MAX_RX_DESC_1;
5545 else if (sp->rxd_mode == RXD_MODE_3B)
5546 ering->rx_max_pending = MAX_RX_DESC_2;
5548 ering->tx_max_pending = MAX_TX_DESC;
5549 for (i = 0 ; i < sp->config.tx_fifo_num ; i++)
5550 tx_desc_count += sp->config.tx_cfg[i].fifo_len;
5552 DBG_PRINT(INFO_DBG,"\nmax txds : %d\n",sp->config.max_txds);
5553 ering->tx_pending = tx_desc_count;
5554 rx_desc_count = 0;
5555 for (i = 0 ; i < sp->config.rx_ring_num ; i++)
5556 rx_desc_count += sp->config.rx_cfg[i].num_rxd;
5558 ering->rx_pending = rx_desc_count;
5560 ering->rx_mini_max_pending = 0;
5561 ering->rx_mini_pending = 0;
5562 if(sp->rxd_mode == RXD_MODE_1)
5563 ering->rx_jumbo_max_pending = MAX_RX_DESC_1;
5564 else if (sp->rxd_mode == RXD_MODE_3B)
5565 ering->rx_jumbo_max_pending = MAX_RX_DESC_2;
5566 ering->rx_jumbo_pending = rx_desc_count;
5570 * s2io_ethtool_getpause_data -Pause frame frame generation and reception.
5571 * @sp : private member of the device structure, which is a pointer to the
5572 * s2io_nic structure.
5573 * @ep : pointer to the structure with pause parameters given by ethtool.
5574 * Description:
5575 * Returns the Pause frame generation and reception capability of the NIC.
5576 * Return value:
5577 * void
5579 static void s2io_ethtool_getpause_data(struct net_device *dev,
5580 struct ethtool_pauseparam *ep)
5582 u64 val64;
5583 struct s2io_nic *sp = dev->priv;
5584 struct XENA_dev_config __iomem *bar0 = sp->bar0;
5586 val64 = readq(&bar0->rmac_pause_cfg);
5587 if (val64 & RMAC_PAUSE_GEN_ENABLE)
5588 ep->tx_pause = TRUE;
5589 if (val64 & RMAC_PAUSE_RX_ENABLE)
5590 ep->rx_pause = TRUE;
5591 ep->autoneg = FALSE;
5595 * s2io_ethtool_setpause_data - set/reset pause frame generation.
5596 * @sp : private member of the device structure, which is a pointer to the
5597 * s2io_nic structure.
5598 * @ep : pointer to the structure with pause parameters given by ethtool.
5599 * Description:
5600 * It can be used to set or reset Pause frame generation or reception
5601 * support of the NIC.
5602 * Return value:
5603 * int, returns 0 on Success
5606 static int s2io_ethtool_setpause_data(struct net_device *dev,
5607 struct ethtool_pauseparam *ep)
5609 u64 val64;
5610 struct s2io_nic *sp = dev->priv;
5611 struct XENA_dev_config __iomem *bar0 = sp->bar0;
5613 val64 = readq(&bar0->rmac_pause_cfg);
5614 if (ep->tx_pause)
5615 val64 |= RMAC_PAUSE_GEN_ENABLE;
5616 else
5617 val64 &= ~RMAC_PAUSE_GEN_ENABLE;
5618 if (ep->rx_pause)
5619 val64 |= RMAC_PAUSE_RX_ENABLE;
5620 else
5621 val64 &= ~RMAC_PAUSE_RX_ENABLE;
5622 writeq(val64, &bar0->rmac_pause_cfg);
5623 return 0;
5627 * read_eeprom - reads 4 bytes of data from user given offset.
5628 * @sp : private member of the device structure, which is a pointer to the
5629 * s2io_nic structure.
5630 * @off : offset at which the data must be written
5631 * @data : Its an output parameter where the data read at the given
5632 * offset is stored.
5633 * Description:
5634 * Will read 4 bytes of data from the user given offset and return the
5635 * read data.
5636 * NOTE: Will allow to read only part of the EEPROM visible through the
5637 * I2C bus.
5638 * Return value:
5639 * -1 on failure and 0 on success.
5642 #define S2IO_DEV_ID 5
5643 static int read_eeprom(struct s2io_nic * sp, int off, u64 * data)
5645 int ret = -1;
5646 u32 exit_cnt = 0;
5647 u64 val64;
5648 struct XENA_dev_config __iomem *bar0 = sp->bar0;
5650 if (sp->device_type == XFRAME_I_DEVICE) {
5651 val64 = I2C_CONTROL_DEV_ID(S2IO_DEV_ID) | I2C_CONTROL_ADDR(off) |
5652 I2C_CONTROL_BYTE_CNT(0x3) | I2C_CONTROL_READ |
5653 I2C_CONTROL_CNTL_START;
5654 SPECIAL_REG_WRITE(val64, &bar0->i2c_control, LF);
5656 while (exit_cnt < 5) {
5657 val64 = readq(&bar0->i2c_control);
5658 if (I2C_CONTROL_CNTL_END(val64)) {
5659 *data = I2C_CONTROL_GET_DATA(val64);
5660 ret = 0;
5661 break;
5663 msleep(50);
5664 exit_cnt++;
5668 if (sp->device_type == XFRAME_II_DEVICE) {
5669 val64 = SPI_CONTROL_KEY(0x9) | SPI_CONTROL_SEL1 |
5670 SPI_CONTROL_BYTECNT(0x3) |
5671 SPI_CONTROL_CMD(0x3) | SPI_CONTROL_ADDR(off);
5672 SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF);
5673 val64 |= SPI_CONTROL_REQ;
5674 SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF);
5675 while (exit_cnt < 5) {
5676 val64 = readq(&bar0->spi_control);
5677 if (val64 & SPI_CONTROL_NACK) {
5678 ret = 1;
5679 break;
5680 } else if (val64 & SPI_CONTROL_DONE) {
5681 *data = readq(&bar0->spi_data);
5682 *data &= 0xffffff;
5683 ret = 0;
5684 break;
5686 msleep(50);
5687 exit_cnt++;
5690 return ret;
5694 * write_eeprom - actually writes the relevant part of the data value.
5695 * @sp : private member of the device structure, which is a pointer to the
5696 * s2io_nic structure.
5697 * @off : offset at which the data must be written
5698 * @data : The data that is to be written
5699 * @cnt : Number of bytes of the data that are actually to be written into
5700 * the Eeprom. (max of 3)
5701 * Description:
5702 * Actually writes the relevant part of the data value into the Eeprom
5703 * through the I2C bus.
5704 * Return value:
5705 * 0 on success, -1 on failure.
5708 static int write_eeprom(struct s2io_nic * sp, int off, u64 data, int cnt)
5710 int exit_cnt = 0, ret = -1;
5711 u64 val64;
5712 struct XENA_dev_config __iomem *bar0 = sp->bar0;
5714 if (sp->device_type == XFRAME_I_DEVICE) {
5715 val64 = I2C_CONTROL_DEV_ID(S2IO_DEV_ID) | I2C_CONTROL_ADDR(off) |
5716 I2C_CONTROL_BYTE_CNT(cnt) | I2C_CONTROL_SET_DATA((u32)data) |
5717 I2C_CONTROL_CNTL_START;
5718 SPECIAL_REG_WRITE(val64, &bar0->i2c_control, LF);
5720 while (exit_cnt < 5) {
5721 val64 = readq(&bar0->i2c_control);
5722 if (I2C_CONTROL_CNTL_END(val64)) {
5723 if (!(val64 & I2C_CONTROL_NACK))
5724 ret = 0;
5725 break;
5727 msleep(50);
5728 exit_cnt++;
5732 if (sp->device_type == XFRAME_II_DEVICE) {
5733 int write_cnt = (cnt == 8) ? 0 : cnt;
5734 writeq(SPI_DATA_WRITE(data,(cnt<<3)), &bar0->spi_data);
5736 val64 = SPI_CONTROL_KEY(0x9) | SPI_CONTROL_SEL1 |
5737 SPI_CONTROL_BYTECNT(write_cnt) |
5738 SPI_CONTROL_CMD(0x2) | SPI_CONTROL_ADDR(off);
5739 SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF);
5740 val64 |= SPI_CONTROL_REQ;
5741 SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF);
5742 while (exit_cnt < 5) {
5743 val64 = readq(&bar0->spi_control);
5744 if (val64 & SPI_CONTROL_NACK) {
5745 ret = 1;
5746 break;
5747 } else if (val64 & SPI_CONTROL_DONE) {
5748 ret = 0;
5749 break;
5751 msleep(50);
5752 exit_cnt++;
5755 return ret;
5757 static void s2io_vpd_read(struct s2io_nic *nic)
5759 u8 *vpd_data;
5760 u8 data;
5761 int i=0, cnt, fail = 0;
5762 int vpd_addr = 0x80;
5764 if (nic->device_type == XFRAME_II_DEVICE) {
5765 strcpy(nic->product_name, "Xframe II 10GbE network adapter");
5766 vpd_addr = 0x80;
5768 else {
5769 strcpy(nic->product_name, "Xframe I 10GbE network adapter");
5770 vpd_addr = 0x50;
5772 strcpy(nic->serial_num, "NOT AVAILABLE");
5774 vpd_data = kmalloc(256, GFP_KERNEL);
5775 if (!vpd_data) {
5776 nic->mac_control.stats_info->sw_stat.mem_alloc_fail_cnt++;
5777 return;
5779 nic->mac_control.stats_info->sw_stat.mem_allocated += 256;
5781 for (i = 0; i < 256; i +=4 ) {
5782 pci_write_config_byte(nic->pdev, (vpd_addr + 2), i);
5783 pci_read_config_byte(nic->pdev, (vpd_addr + 2), &data);
5784 pci_write_config_byte(nic->pdev, (vpd_addr + 3), 0);
5785 for (cnt = 0; cnt <5; cnt++) {
5786 msleep(2);
5787 pci_read_config_byte(nic->pdev, (vpd_addr + 3), &data);
5788 if (data == 0x80)
5789 break;
5791 if (cnt >= 5) {
5792 DBG_PRINT(ERR_DBG, "Read of VPD data failed\n");
5793 fail = 1;
5794 break;
5796 pci_read_config_dword(nic->pdev, (vpd_addr + 4),
5797 (u32 *)&vpd_data[i]);
5800 if(!fail) {
5801 /* read serial number of adapter */
5802 for (cnt = 0; cnt < 256; cnt++) {
5803 if ((vpd_data[cnt] == 'S') &&
5804 (vpd_data[cnt+1] == 'N') &&
5805 (vpd_data[cnt+2] < VPD_STRING_LEN)) {
5806 memset(nic->serial_num, 0, VPD_STRING_LEN);
5807 memcpy(nic->serial_num, &vpd_data[cnt + 3],
5808 vpd_data[cnt+2]);
5809 break;
5814 if ((!fail) && (vpd_data[1] < VPD_STRING_LEN)) {
5815 memset(nic->product_name, 0, vpd_data[1]);
5816 memcpy(nic->product_name, &vpd_data[3], vpd_data[1]);
5818 kfree(vpd_data);
5819 nic->mac_control.stats_info->sw_stat.mem_freed += 256;
5823 * s2io_ethtool_geeprom - reads the value stored in the Eeprom.
5824 * @sp : private member of the device structure, which is a pointer to the * s2io_nic structure.
5825 * @eeprom : pointer to the user level structure provided by ethtool,
5826 * containing all relevant information.
5827 * @data_buf : user defined value to be written into Eeprom.
5828 * Description: Reads the values stored in the Eeprom at given offset
5829 * for a given length. Stores these values int the input argument data
5830 * buffer 'data_buf' and returns these to the caller (ethtool.)
5831 * Return value:
5832 * int 0 on success
5835 static int s2io_ethtool_geeprom(struct net_device *dev,
5836 struct ethtool_eeprom *eeprom, u8 * data_buf)
5838 u32 i, valid;
5839 u64 data;
5840 struct s2io_nic *sp = dev->priv;
5842 eeprom->magic = sp->pdev->vendor | (sp->pdev->device << 16);
5844 if ((eeprom->offset + eeprom->len) > (XENA_EEPROM_SPACE))
5845 eeprom->len = XENA_EEPROM_SPACE - eeprom->offset;
5847 for (i = 0; i < eeprom->len; i += 4) {
5848 if (read_eeprom(sp, (eeprom->offset + i), &data)) {
5849 DBG_PRINT(ERR_DBG, "Read of EEPROM failed\n");
5850 return -EFAULT;
5852 valid = INV(data);
5853 memcpy((data_buf + i), &valid, 4);
5855 return 0;
5859 * s2io_ethtool_seeprom - tries to write the user provided value in Eeprom
5860 * @sp : private member of the device structure, which is a pointer to the
5861 * s2io_nic structure.
5862 * @eeprom : pointer to the user level structure provided by ethtool,
5863 * containing all relevant information.
5864 * @data_buf ; user defined value to be written into Eeprom.
5865 * Description:
5866 * Tries to write the user provided value in the Eeprom, at the offset
5867 * given by the user.
5868 * Return value:
5869 * 0 on success, -EFAULT on failure.
5872 static int s2io_ethtool_seeprom(struct net_device *dev,
5873 struct ethtool_eeprom *eeprom,
5874 u8 * data_buf)
5876 int len = eeprom->len, cnt = 0;
5877 u64 valid = 0, data;
5878 struct s2io_nic *sp = dev->priv;
5880 if (eeprom->magic != (sp->pdev->vendor | (sp->pdev->device << 16))) {
5881 DBG_PRINT(ERR_DBG,
5882 "ETHTOOL_WRITE_EEPROM Err: Magic value ");
5883 DBG_PRINT(ERR_DBG, "is wrong, Its not 0x%x\n",
5884 eeprom->magic);
5885 return -EFAULT;
5888 while (len) {
5889 data = (u32) data_buf[cnt] & 0x000000FF;
5890 if (data) {
5891 valid = (u32) (data << 24);
5892 } else
5893 valid = data;
5895 if (write_eeprom(sp, (eeprom->offset + cnt), valid, 0)) {
5896 DBG_PRINT(ERR_DBG,
5897 "ETHTOOL_WRITE_EEPROM Err: Cannot ");
5898 DBG_PRINT(ERR_DBG,
5899 "write into the specified offset\n");
5900 return -EFAULT;
5902 cnt++;
5903 len--;
5906 return 0;
5910 * s2io_register_test - reads and writes into all clock domains.
5911 * @sp : private member of the device structure, which is a pointer to the
5912 * s2io_nic structure.
5913 * @data : variable that returns the result of each of the test conducted b
5914 * by the driver.
5915 * Description:
5916 * Read and write into all clock domains. The NIC has 3 clock domains,
5917 * see that registers in all the three regions are accessible.
5918 * Return value:
5919 * 0 on success.
5922 static int s2io_register_test(struct s2io_nic * sp, uint64_t * data)
5924 struct XENA_dev_config __iomem *bar0 = sp->bar0;
5925 u64 val64 = 0, exp_val;
5926 int fail = 0;
5928 val64 = readq(&bar0->pif_rd_swapper_fb);
5929 if (val64 != 0x123456789abcdefULL) {
5930 fail = 1;
5931 DBG_PRINT(INFO_DBG, "Read Test level 1 fails\n");
5934 val64 = readq(&bar0->rmac_pause_cfg);
5935 if (val64 != 0xc000ffff00000000ULL) {
5936 fail = 1;
5937 DBG_PRINT(INFO_DBG, "Read Test level 2 fails\n");
5940 val64 = readq(&bar0->rx_queue_cfg);
5941 if (sp->device_type == XFRAME_II_DEVICE)
5942 exp_val = 0x0404040404040404ULL;
5943 else
5944 exp_val = 0x0808080808080808ULL;
5945 if (val64 != exp_val) {
5946 fail = 1;
5947 DBG_PRINT(INFO_DBG, "Read Test level 3 fails\n");
5950 val64 = readq(&bar0->xgxs_efifo_cfg);
5951 if (val64 != 0x000000001923141EULL) {
5952 fail = 1;
5953 DBG_PRINT(INFO_DBG, "Read Test level 4 fails\n");
5956 val64 = 0x5A5A5A5A5A5A5A5AULL;
5957 writeq(val64, &bar0->xmsi_data);
5958 val64 = readq(&bar0->xmsi_data);
5959 if (val64 != 0x5A5A5A5A5A5A5A5AULL) {
5960 fail = 1;
5961 DBG_PRINT(ERR_DBG, "Write Test level 1 fails\n");
5964 val64 = 0xA5A5A5A5A5A5A5A5ULL;
5965 writeq(val64, &bar0->xmsi_data);
5966 val64 = readq(&bar0->xmsi_data);
5967 if (val64 != 0xA5A5A5A5A5A5A5A5ULL) {
5968 fail = 1;
5969 DBG_PRINT(ERR_DBG, "Write Test level 2 fails\n");
5972 *data = fail;
5973 return fail;
5977 * s2io_eeprom_test - to verify that EEprom in the xena can be programmed.
5978 * @sp : private member of the device structure, which is a pointer to the
5979 * s2io_nic structure.
5980 * @data:variable that returns the result of each of the test conducted by
5981 * the driver.
5982 * Description:
5983 * Verify that EEPROM in the xena can be programmed using I2C_CONTROL
5984 * register.
5985 * Return value:
5986 * 0 on success.
5989 static int s2io_eeprom_test(struct s2io_nic * sp, uint64_t * data)
5991 int fail = 0;
5992 u64 ret_data, org_4F0, org_7F0;
5993 u8 saved_4F0 = 0, saved_7F0 = 0;
5994 struct net_device *dev = sp->dev;
5996 /* Test Write Error at offset 0 */
5997 /* Note that SPI interface allows write access to all areas
5998 * of EEPROM. Hence doing all negative testing only for Xframe I.
6000 if (sp->device_type == XFRAME_I_DEVICE)
6001 if (!write_eeprom(sp, 0, 0, 3))
6002 fail = 1;
6004 /* Save current values at offsets 0x4F0 and 0x7F0 */
6005 if (!read_eeprom(sp, 0x4F0, &org_4F0))
6006 saved_4F0 = 1;
6007 if (!read_eeprom(sp, 0x7F0, &org_7F0))
6008 saved_7F0 = 1;
6010 /* Test Write at offset 4f0 */
6011 if (write_eeprom(sp, 0x4F0, 0x012345, 3))
6012 fail = 1;
6013 if (read_eeprom(sp, 0x4F0, &ret_data))
6014 fail = 1;
6016 if (ret_data != 0x012345) {
6017 DBG_PRINT(ERR_DBG, "%s: eeprom test error at offset 0x4F0. "
6018 "Data written %llx Data read %llx\n",
6019 dev->name, (unsigned long long)0x12345,
6020 (unsigned long long)ret_data);
6021 fail = 1;
6024 /* Reset the EEPROM data go FFFF */
6025 write_eeprom(sp, 0x4F0, 0xFFFFFF, 3);
6027 /* Test Write Request Error at offset 0x7c */
6028 if (sp->device_type == XFRAME_I_DEVICE)
6029 if (!write_eeprom(sp, 0x07C, 0, 3))
6030 fail = 1;
6032 /* Test Write Request at offset 0x7f0 */
6033 if (write_eeprom(sp, 0x7F0, 0x012345, 3))
6034 fail = 1;
6035 if (read_eeprom(sp, 0x7F0, &ret_data))
6036 fail = 1;
6038 if (ret_data != 0x012345) {
6039 DBG_PRINT(ERR_DBG, "%s: eeprom test error at offset 0x7F0. "
6040 "Data written %llx Data read %llx\n",
6041 dev->name, (unsigned long long)0x12345,
6042 (unsigned long long)ret_data);
6043 fail = 1;
6046 /* Reset the EEPROM data go FFFF */
6047 write_eeprom(sp, 0x7F0, 0xFFFFFF, 3);
6049 if (sp->device_type == XFRAME_I_DEVICE) {
6050 /* Test Write Error at offset 0x80 */
6051 if (!write_eeprom(sp, 0x080, 0, 3))
6052 fail = 1;
6054 /* Test Write Error at offset 0xfc */
6055 if (!write_eeprom(sp, 0x0FC, 0, 3))
6056 fail = 1;
6058 /* Test Write Error at offset 0x100 */
6059 if (!write_eeprom(sp, 0x100, 0, 3))
6060 fail = 1;
6062 /* Test Write Error at offset 4ec */
6063 if (!write_eeprom(sp, 0x4EC, 0, 3))
6064 fail = 1;
6067 /* Restore values at offsets 0x4F0 and 0x7F0 */
6068 if (saved_4F0)
6069 write_eeprom(sp, 0x4F0, org_4F0, 3);
6070 if (saved_7F0)
6071 write_eeprom(sp, 0x7F0, org_7F0, 3);
6073 *data = fail;
6074 return fail;
6078 * s2io_bist_test - invokes the MemBist test of the card .
6079 * @sp : private member of the device structure, which is a pointer to the
6080 * s2io_nic structure.
6081 * @data:variable that returns the result of each of the test conducted by
6082 * the driver.
6083 * Description:
6084 * This invokes the MemBist test of the card. We give around
6085 * 2 secs time for the Test to complete. If it's still not complete
6086 * within this peiod, we consider that the test failed.
6087 * Return value:
6088 * 0 on success and -1 on failure.
6091 static int s2io_bist_test(struct s2io_nic * sp, uint64_t * data)
6093 u8 bist = 0;
6094 int cnt = 0, ret = -1;
6096 pci_read_config_byte(sp->pdev, PCI_BIST, &bist);
6097 bist |= PCI_BIST_START;
6098 pci_write_config_word(sp->pdev, PCI_BIST, bist);
6100 while (cnt < 20) {
6101 pci_read_config_byte(sp->pdev, PCI_BIST, &bist);
6102 if (!(bist & PCI_BIST_START)) {
6103 *data = (bist & PCI_BIST_CODE_MASK);
6104 ret = 0;
6105 break;
6107 msleep(100);
6108 cnt++;
6111 return ret;
6115 * s2io-link_test - verifies the link state of the nic
6116 * @sp ; private member of the device structure, which is a pointer to the
6117 * s2io_nic structure.
6118 * @data: variable that returns the result of each of the test conducted by
6119 * the driver.
6120 * Description:
6121 * The function verifies the link state of the NIC and updates the input
6122 * argument 'data' appropriately.
6123 * Return value:
6124 * 0 on success.
6127 static int s2io_link_test(struct s2io_nic * sp, uint64_t * data)
6129 struct XENA_dev_config __iomem *bar0 = sp->bar0;
6130 u64 val64;
6132 val64 = readq(&bar0->adapter_status);
6133 if(!(LINK_IS_UP(val64)))
6134 *data = 1;
6135 else
6136 *data = 0;
6138 return *data;
6142 * s2io_rldram_test - offline test for access to the RldRam chip on the NIC
6143 * @sp - private member of the device structure, which is a pointer to the
6144 * s2io_nic structure.
6145 * @data - variable that returns the result of each of the test
6146 * conducted by the driver.
6147 * Description:
6148 * This is one of the offline test that tests the read and write
6149 * access to the RldRam chip on the NIC.
6150 * Return value:
6151 * 0 on success.
6154 static int s2io_rldram_test(struct s2io_nic * sp, uint64_t * data)
6156 struct XENA_dev_config __iomem *bar0 = sp->bar0;
6157 u64 val64;
6158 int cnt, iteration = 0, test_fail = 0;
6160 val64 = readq(&bar0->adapter_control);
6161 val64 &= ~ADAPTER_ECC_EN;
6162 writeq(val64, &bar0->adapter_control);
6164 val64 = readq(&bar0->mc_rldram_test_ctrl);
6165 val64 |= MC_RLDRAM_TEST_MODE;
6166 SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_test_ctrl, LF);
6168 val64 = readq(&bar0->mc_rldram_mrs);
6169 val64 |= MC_RLDRAM_QUEUE_SIZE_ENABLE;
6170 SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_mrs, UF);
6172 val64 |= MC_RLDRAM_MRS_ENABLE;
6173 SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_mrs, UF);
6175 while (iteration < 2) {
6176 val64 = 0x55555555aaaa0000ULL;
6177 if (iteration == 1) {
6178 val64 ^= 0xFFFFFFFFFFFF0000ULL;
6180 writeq(val64, &bar0->mc_rldram_test_d0);
6182 val64 = 0xaaaa5a5555550000ULL;
6183 if (iteration == 1) {
6184 val64 ^= 0xFFFFFFFFFFFF0000ULL;
6186 writeq(val64, &bar0->mc_rldram_test_d1);
6188 val64 = 0x55aaaaaaaa5a0000ULL;
6189 if (iteration == 1) {
6190 val64 ^= 0xFFFFFFFFFFFF0000ULL;
6192 writeq(val64, &bar0->mc_rldram_test_d2);
6194 val64 = (u64) (0x0000003ffffe0100ULL);
6195 writeq(val64, &bar0->mc_rldram_test_add);
6197 val64 = MC_RLDRAM_TEST_MODE | MC_RLDRAM_TEST_WRITE |
6198 MC_RLDRAM_TEST_GO;
6199 SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_test_ctrl, LF);
6201 for (cnt = 0; cnt < 5; cnt++) {
6202 val64 = readq(&bar0->mc_rldram_test_ctrl);
6203 if (val64 & MC_RLDRAM_TEST_DONE)
6204 break;
6205 msleep(200);
6208 if (cnt == 5)
6209 break;
6211 val64 = MC_RLDRAM_TEST_MODE | MC_RLDRAM_TEST_GO;
6212 SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_test_ctrl, LF);
6214 for (cnt = 0; cnt < 5; cnt++) {
6215 val64 = readq(&bar0->mc_rldram_test_ctrl);
6216 if (val64 & MC_RLDRAM_TEST_DONE)
6217 break;
6218 msleep(500);
6221 if (cnt == 5)
6222 break;
6224 val64 = readq(&bar0->mc_rldram_test_ctrl);
6225 if (!(val64 & MC_RLDRAM_TEST_PASS))
6226 test_fail = 1;
6228 iteration++;
6231 *data = test_fail;
6233 /* Bring the adapter out of test mode */
6234 SPECIAL_REG_WRITE(0, &bar0->mc_rldram_test_ctrl, LF);
6236 return test_fail;
6240 * s2io_ethtool_test - conducts 6 tsets to determine the health of card.
6241 * @sp : private member of the device structure, which is a pointer to the
6242 * s2io_nic structure.
6243 * @ethtest : pointer to a ethtool command specific structure that will be
6244 * returned to the user.
6245 * @data : variable that returns the result of each of the test
6246 * conducted by the driver.
6247 * Description:
6248 * This function conducts 6 tests ( 4 offline and 2 online) to determine
6249 * the health of the card.
6250 * Return value:
6251 * void
6254 static void s2io_ethtool_test(struct net_device *dev,
6255 struct ethtool_test *ethtest,
6256 uint64_t * data)
6258 struct s2io_nic *sp = dev->priv;
6259 int orig_state = netif_running(sp->dev);
6261 if (ethtest->flags == ETH_TEST_FL_OFFLINE) {
6262 /* Offline Tests. */
6263 if (orig_state)
6264 s2io_close(sp->dev);
6266 if (s2io_register_test(sp, &data[0]))
6267 ethtest->flags |= ETH_TEST_FL_FAILED;
6269 s2io_reset(sp);
6271 if (s2io_rldram_test(sp, &data[3]))
6272 ethtest->flags |= ETH_TEST_FL_FAILED;
6274 s2io_reset(sp);
6276 if (s2io_eeprom_test(sp, &data[1]))
6277 ethtest->flags |= ETH_TEST_FL_FAILED;
6279 if (s2io_bist_test(sp, &data[4]))
6280 ethtest->flags |= ETH_TEST_FL_FAILED;
6282 if (orig_state)
6283 s2io_open(sp->dev);
6285 data[2] = 0;
6286 } else {
6287 /* Online Tests. */
6288 if (!orig_state) {
6289 DBG_PRINT(ERR_DBG,
6290 "%s: is not up, cannot run test\n",
6291 dev->name);
6292 data[0] = -1;
6293 data[1] = -1;
6294 data[2] = -1;
6295 data[3] = -1;
6296 data[4] = -1;
6299 if (s2io_link_test(sp, &data[2]))
6300 ethtest->flags |= ETH_TEST_FL_FAILED;
6302 data[0] = 0;
6303 data[1] = 0;
6304 data[3] = 0;
6305 data[4] = 0;
6309 static void s2io_get_ethtool_stats(struct net_device *dev,
6310 struct ethtool_stats *estats,
6311 u64 * tmp_stats)
6313 int i = 0, k;
6314 struct s2io_nic *sp = dev->priv;
6315 struct stat_block *stat_info = sp->mac_control.stats_info;
6317 s2io_updt_stats(sp);
6318 tmp_stats[i++] =
6319 (u64)le32_to_cpu(stat_info->tmac_frms_oflow) << 32 |
6320 le32_to_cpu(stat_info->tmac_frms);
6321 tmp_stats[i++] =
6322 (u64)le32_to_cpu(stat_info->tmac_data_octets_oflow) << 32 |
6323 le32_to_cpu(stat_info->tmac_data_octets);
6324 tmp_stats[i++] = le64_to_cpu(stat_info->tmac_drop_frms);
6325 tmp_stats[i++] =
6326 (u64)le32_to_cpu(stat_info->tmac_mcst_frms_oflow) << 32 |
6327 le32_to_cpu(stat_info->tmac_mcst_frms);
6328 tmp_stats[i++] =
6329 (u64)le32_to_cpu(stat_info->tmac_bcst_frms_oflow) << 32 |
6330 le32_to_cpu(stat_info->tmac_bcst_frms);
6331 tmp_stats[i++] = le64_to_cpu(stat_info->tmac_pause_ctrl_frms);
6332 tmp_stats[i++] =
6333 (u64)le32_to_cpu(stat_info->tmac_ttl_octets_oflow) << 32 |
6334 le32_to_cpu(stat_info->tmac_ttl_octets);
6335 tmp_stats[i++] =
6336 (u64)le32_to_cpu(stat_info->tmac_ucst_frms_oflow) << 32 |
6337 le32_to_cpu(stat_info->tmac_ucst_frms);
6338 tmp_stats[i++] =
6339 (u64)le32_to_cpu(stat_info->tmac_nucst_frms_oflow) << 32 |
6340 le32_to_cpu(stat_info->tmac_nucst_frms);
6341 tmp_stats[i++] =
6342 (u64)le32_to_cpu(stat_info->tmac_any_err_frms_oflow) << 32 |
6343 le32_to_cpu(stat_info->tmac_any_err_frms);
6344 tmp_stats[i++] = le64_to_cpu(stat_info->tmac_ttl_less_fb_octets);
6345 tmp_stats[i++] = le64_to_cpu(stat_info->tmac_vld_ip_octets);
6346 tmp_stats[i++] =
6347 (u64)le32_to_cpu(stat_info->tmac_vld_ip_oflow) << 32 |
6348 le32_to_cpu(stat_info->tmac_vld_ip);
6349 tmp_stats[i++] =
6350 (u64)le32_to_cpu(stat_info->tmac_drop_ip_oflow) << 32 |
6351 le32_to_cpu(stat_info->tmac_drop_ip);
6352 tmp_stats[i++] =
6353 (u64)le32_to_cpu(stat_info->tmac_icmp_oflow) << 32 |
6354 le32_to_cpu(stat_info->tmac_icmp);
6355 tmp_stats[i++] =
6356 (u64)le32_to_cpu(stat_info->tmac_rst_tcp_oflow) << 32 |
6357 le32_to_cpu(stat_info->tmac_rst_tcp);
6358 tmp_stats[i++] = le64_to_cpu(stat_info->tmac_tcp);
6359 tmp_stats[i++] = (u64)le32_to_cpu(stat_info->tmac_udp_oflow) << 32 |
6360 le32_to_cpu(stat_info->tmac_udp);
6361 tmp_stats[i++] =
6362 (u64)le32_to_cpu(stat_info->rmac_vld_frms_oflow) << 32 |
6363 le32_to_cpu(stat_info->rmac_vld_frms);
6364 tmp_stats[i++] =
6365 (u64)le32_to_cpu(stat_info->rmac_data_octets_oflow) << 32 |
6366 le32_to_cpu(stat_info->rmac_data_octets);
6367 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_fcs_err_frms);
6368 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_drop_frms);
6369 tmp_stats[i++] =
6370 (u64)le32_to_cpu(stat_info->rmac_vld_mcst_frms_oflow) << 32 |
6371 le32_to_cpu(stat_info->rmac_vld_mcst_frms);
6372 tmp_stats[i++] =
6373 (u64)le32_to_cpu(stat_info->rmac_vld_bcst_frms_oflow) << 32 |
6374 le32_to_cpu(stat_info->rmac_vld_bcst_frms);
6375 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_in_rng_len_err_frms);
6376 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_out_rng_len_err_frms);
6377 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_long_frms);
6378 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_pause_ctrl_frms);
6379 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_unsup_ctrl_frms);
6380 tmp_stats[i++] =
6381 (u64)le32_to_cpu(stat_info->rmac_ttl_octets_oflow) << 32 |
6382 le32_to_cpu(stat_info->rmac_ttl_octets);
6383 tmp_stats[i++] =
6384 (u64)le32_to_cpu(stat_info->rmac_accepted_ucst_frms_oflow)
6385 << 32 | le32_to_cpu(stat_info->rmac_accepted_ucst_frms);
6386 tmp_stats[i++] =
6387 (u64)le32_to_cpu(stat_info->rmac_accepted_nucst_frms_oflow)
6388 << 32 | le32_to_cpu(stat_info->rmac_accepted_nucst_frms);
6389 tmp_stats[i++] =
6390 (u64)le32_to_cpu(stat_info->rmac_discarded_frms_oflow) << 32 |
6391 le32_to_cpu(stat_info->rmac_discarded_frms);
6392 tmp_stats[i++] =
6393 (u64)le32_to_cpu(stat_info->rmac_drop_events_oflow)
6394 << 32 | le32_to_cpu(stat_info->rmac_drop_events);
6395 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_less_fb_octets);
6396 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_frms);
6397 tmp_stats[i++] =
6398 (u64)le32_to_cpu(stat_info->rmac_usized_frms_oflow) << 32 |
6399 le32_to_cpu(stat_info->rmac_usized_frms);
6400 tmp_stats[i++] =
6401 (u64)le32_to_cpu(stat_info->rmac_osized_frms_oflow) << 32 |
6402 le32_to_cpu(stat_info->rmac_osized_frms);
6403 tmp_stats[i++] =
6404 (u64)le32_to_cpu(stat_info->rmac_frag_frms_oflow) << 32 |
6405 le32_to_cpu(stat_info->rmac_frag_frms);
6406 tmp_stats[i++] =
6407 (u64)le32_to_cpu(stat_info->rmac_jabber_frms_oflow) << 32 |
6408 le32_to_cpu(stat_info->rmac_jabber_frms);
6409 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_64_frms);
6410 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_65_127_frms);
6411 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_128_255_frms);
6412 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_256_511_frms);
6413 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_512_1023_frms);
6414 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_1024_1518_frms);
6415 tmp_stats[i++] =
6416 (u64)le32_to_cpu(stat_info->rmac_ip_oflow) << 32 |
6417 le32_to_cpu(stat_info->rmac_ip);
6418 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ip_octets);
6419 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_hdr_err_ip);
6420 tmp_stats[i++] =
6421 (u64)le32_to_cpu(stat_info->rmac_drop_ip_oflow) << 32 |
6422 le32_to_cpu(stat_info->rmac_drop_ip);
6423 tmp_stats[i++] =
6424 (u64)le32_to_cpu(stat_info->rmac_icmp_oflow) << 32 |
6425 le32_to_cpu(stat_info->rmac_icmp);
6426 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_tcp);
6427 tmp_stats[i++] =
6428 (u64)le32_to_cpu(stat_info->rmac_udp_oflow) << 32 |
6429 le32_to_cpu(stat_info->rmac_udp);
6430 tmp_stats[i++] =
6431 (u64)le32_to_cpu(stat_info->rmac_err_drp_udp_oflow) << 32 |
6432 le32_to_cpu(stat_info->rmac_err_drp_udp);
6433 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_xgmii_err_sym);
6434 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q0);
6435 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q1);
6436 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q2);
6437 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q3);
6438 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q4);
6439 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q5);
6440 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q6);
6441 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q7);
6442 tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q0);
6443 tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q1);
6444 tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q2);
6445 tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q3);
6446 tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q4);
6447 tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q5);
6448 tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q6);
6449 tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q7);
6450 tmp_stats[i++] =
6451 (u64)le32_to_cpu(stat_info->rmac_pause_cnt_oflow) << 32 |
6452 le32_to_cpu(stat_info->rmac_pause_cnt);
6453 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_xgmii_data_err_cnt);
6454 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_xgmii_ctrl_err_cnt);
6455 tmp_stats[i++] =
6456 (u64)le32_to_cpu(stat_info->rmac_accepted_ip_oflow) << 32 |
6457 le32_to_cpu(stat_info->rmac_accepted_ip);
6458 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_err_tcp);
6459 tmp_stats[i++] = le32_to_cpu(stat_info->rd_req_cnt);
6460 tmp_stats[i++] = le32_to_cpu(stat_info->new_rd_req_cnt);
6461 tmp_stats[i++] = le32_to_cpu(stat_info->new_rd_req_rtry_cnt);
6462 tmp_stats[i++] = le32_to_cpu(stat_info->rd_rtry_cnt);
6463 tmp_stats[i++] = le32_to_cpu(stat_info->wr_rtry_rd_ack_cnt);
6464 tmp_stats[i++] = le32_to_cpu(stat_info->wr_req_cnt);
6465 tmp_stats[i++] = le32_to_cpu(stat_info->new_wr_req_cnt);
6466 tmp_stats[i++] = le32_to_cpu(stat_info->new_wr_req_rtry_cnt);
6467 tmp_stats[i++] = le32_to_cpu(stat_info->wr_rtry_cnt);
6468 tmp_stats[i++] = le32_to_cpu(stat_info->wr_disc_cnt);
6469 tmp_stats[i++] = le32_to_cpu(stat_info->rd_rtry_wr_ack_cnt);
6470 tmp_stats[i++] = le32_to_cpu(stat_info->txp_wr_cnt);
6471 tmp_stats[i++] = le32_to_cpu(stat_info->txd_rd_cnt);
6472 tmp_stats[i++] = le32_to_cpu(stat_info->txd_wr_cnt);
6473 tmp_stats[i++] = le32_to_cpu(stat_info->rxd_rd_cnt);
6474 tmp_stats[i++] = le32_to_cpu(stat_info->rxd_wr_cnt);
6475 tmp_stats[i++] = le32_to_cpu(stat_info->txf_rd_cnt);
6476 tmp_stats[i++] = le32_to_cpu(stat_info->rxf_wr_cnt);
6478 /* Enhanced statistics exist only for Hercules */
6479 if(sp->device_type == XFRAME_II_DEVICE) {
6480 tmp_stats[i++] =
6481 le64_to_cpu(stat_info->rmac_ttl_1519_4095_frms);
6482 tmp_stats[i++] =
6483 le64_to_cpu(stat_info->rmac_ttl_4096_8191_frms);
6484 tmp_stats[i++] =
6485 le64_to_cpu(stat_info->rmac_ttl_8192_max_frms);
6486 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_gt_max_frms);
6487 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_osized_alt_frms);
6488 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_jabber_alt_frms);
6489 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_gt_max_alt_frms);
6490 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_vlan_frms);
6491 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_len_discard);
6492 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_fcs_discard);
6493 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_pf_discard);
6494 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_da_discard);
6495 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_red_discard);
6496 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_rts_discard);
6497 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_ingm_full_discard);
6498 tmp_stats[i++] = le32_to_cpu(stat_info->link_fault_cnt);
6501 tmp_stats[i++] = 0;
6502 tmp_stats[i++] = stat_info->sw_stat.single_ecc_errs;
6503 tmp_stats[i++] = stat_info->sw_stat.double_ecc_errs;
6504 tmp_stats[i++] = stat_info->sw_stat.parity_err_cnt;
6505 tmp_stats[i++] = stat_info->sw_stat.serious_err_cnt;
6506 tmp_stats[i++] = stat_info->sw_stat.soft_reset_cnt;
6507 tmp_stats[i++] = stat_info->sw_stat.fifo_full_cnt;
6508 for (k = 0; k < MAX_RX_RINGS; k++)
6509 tmp_stats[i++] = stat_info->sw_stat.ring_full_cnt[k];
6510 tmp_stats[i++] = stat_info->xpak_stat.alarm_transceiver_temp_high;
6511 tmp_stats[i++] = stat_info->xpak_stat.alarm_transceiver_temp_low;
6512 tmp_stats[i++] = stat_info->xpak_stat.alarm_laser_bias_current_high;
6513 tmp_stats[i++] = stat_info->xpak_stat.alarm_laser_bias_current_low;
6514 tmp_stats[i++] = stat_info->xpak_stat.alarm_laser_output_power_high;
6515 tmp_stats[i++] = stat_info->xpak_stat.alarm_laser_output_power_low;
6516 tmp_stats[i++] = stat_info->xpak_stat.warn_transceiver_temp_high;
6517 tmp_stats[i++] = stat_info->xpak_stat.warn_transceiver_temp_low;
6518 tmp_stats[i++] = stat_info->xpak_stat.warn_laser_bias_current_high;
6519 tmp_stats[i++] = stat_info->xpak_stat.warn_laser_bias_current_low;
6520 tmp_stats[i++] = stat_info->xpak_stat.warn_laser_output_power_high;
6521 tmp_stats[i++] = stat_info->xpak_stat.warn_laser_output_power_low;
6522 tmp_stats[i++] = stat_info->sw_stat.clubbed_frms_cnt;
6523 tmp_stats[i++] = stat_info->sw_stat.sending_both;
6524 tmp_stats[i++] = stat_info->sw_stat.outof_sequence_pkts;
6525 tmp_stats[i++] = stat_info->sw_stat.flush_max_pkts;
6526 if (stat_info->sw_stat.num_aggregations) {
6527 u64 tmp = stat_info->sw_stat.sum_avg_pkts_aggregated;
6528 int count = 0;
6530 * Since 64-bit divide does not work on all platforms,
6531 * do repeated subtraction.
6533 while (tmp >= stat_info->sw_stat.num_aggregations) {
6534 tmp -= stat_info->sw_stat.num_aggregations;
6535 count++;
6537 tmp_stats[i++] = count;
6539 else
6540 tmp_stats[i++] = 0;
6541 tmp_stats[i++] = stat_info->sw_stat.mem_alloc_fail_cnt;
6542 tmp_stats[i++] = stat_info->sw_stat.pci_map_fail_cnt;
6543 tmp_stats[i++] = stat_info->sw_stat.watchdog_timer_cnt;
6544 tmp_stats[i++] = stat_info->sw_stat.mem_allocated;
6545 tmp_stats[i++] = stat_info->sw_stat.mem_freed;
6546 tmp_stats[i++] = stat_info->sw_stat.link_up_cnt;
6547 tmp_stats[i++] = stat_info->sw_stat.link_down_cnt;
6548 tmp_stats[i++] = stat_info->sw_stat.link_up_time;
6549 tmp_stats[i++] = stat_info->sw_stat.link_down_time;
6551 tmp_stats[i++] = stat_info->sw_stat.tx_buf_abort_cnt;
6552 tmp_stats[i++] = stat_info->sw_stat.tx_desc_abort_cnt;
6553 tmp_stats[i++] = stat_info->sw_stat.tx_parity_err_cnt;
6554 tmp_stats[i++] = stat_info->sw_stat.tx_link_loss_cnt;
6555 tmp_stats[i++] = stat_info->sw_stat.tx_list_proc_err_cnt;
6557 tmp_stats[i++] = stat_info->sw_stat.rx_parity_err_cnt;
6558 tmp_stats[i++] = stat_info->sw_stat.rx_abort_cnt;
6559 tmp_stats[i++] = stat_info->sw_stat.rx_parity_abort_cnt;
6560 tmp_stats[i++] = stat_info->sw_stat.rx_rda_fail_cnt;
6561 tmp_stats[i++] = stat_info->sw_stat.rx_unkn_prot_cnt;
6562 tmp_stats[i++] = stat_info->sw_stat.rx_fcs_err_cnt;
6563 tmp_stats[i++] = stat_info->sw_stat.rx_buf_size_err_cnt;
6564 tmp_stats[i++] = stat_info->sw_stat.rx_rxd_corrupt_cnt;
6565 tmp_stats[i++] = stat_info->sw_stat.rx_unkn_err_cnt;
6566 tmp_stats[i++] = stat_info->sw_stat.tda_err_cnt;
6567 tmp_stats[i++] = stat_info->sw_stat.pfc_err_cnt;
6568 tmp_stats[i++] = stat_info->sw_stat.pcc_err_cnt;
6569 tmp_stats[i++] = stat_info->sw_stat.tti_err_cnt;
6570 tmp_stats[i++] = stat_info->sw_stat.tpa_err_cnt;
6571 tmp_stats[i++] = stat_info->sw_stat.sm_err_cnt;
6572 tmp_stats[i++] = stat_info->sw_stat.lso_err_cnt;
6573 tmp_stats[i++] = stat_info->sw_stat.mac_tmac_err_cnt;
6574 tmp_stats[i++] = stat_info->sw_stat.mac_rmac_err_cnt;
6575 tmp_stats[i++] = stat_info->sw_stat.xgxs_txgxs_err_cnt;
6576 tmp_stats[i++] = stat_info->sw_stat.xgxs_rxgxs_err_cnt;
6577 tmp_stats[i++] = stat_info->sw_stat.rc_err_cnt;
6578 tmp_stats[i++] = stat_info->sw_stat.prc_pcix_err_cnt;
6579 tmp_stats[i++] = stat_info->sw_stat.rpa_err_cnt;
6580 tmp_stats[i++] = stat_info->sw_stat.rda_err_cnt;
6581 tmp_stats[i++] = stat_info->sw_stat.rti_err_cnt;
6582 tmp_stats[i++] = stat_info->sw_stat.mc_err_cnt;
6585 static int s2io_ethtool_get_regs_len(struct net_device *dev)
6587 return (XENA_REG_SPACE);
6591 static u32 s2io_ethtool_get_rx_csum(struct net_device * dev)
6593 struct s2io_nic *sp = dev->priv;
6595 return (sp->rx_csum);
6598 static int s2io_ethtool_set_rx_csum(struct net_device *dev, u32 data)
6600 struct s2io_nic *sp = dev->priv;
6602 if (data)
6603 sp->rx_csum = 1;
6604 else
6605 sp->rx_csum = 0;
6607 return 0;
6610 static int s2io_get_eeprom_len(struct net_device *dev)
6612 return (XENA_EEPROM_SPACE);
6615 static int s2io_get_sset_count(struct net_device *dev, int sset)
6617 struct s2io_nic *sp = dev->priv;
6619 switch (sset) {
6620 case ETH_SS_TEST:
6621 return S2IO_TEST_LEN;
6622 case ETH_SS_STATS:
6623 switch(sp->device_type) {
6624 case XFRAME_I_DEVICE:
6625 return XFRAME_I_STAT_LEN;
6626 case XFRAME_II_DEVICE:
6627 return XFRAME_II_STAT_LEN;
6628 default:
6629 return 0;
6631 default:
6632 return -EOPNOTSUPP;
6636 static void s2io_ethtool_get_strings(struct net_device *dev,
6637 u32 stringset, u8 * data)
6639 int stat_size = 0;
6640 struct s2io_nic *sp = dev->priv;
6642 switch (stringset) {
6643 case ETH_SS_TEST:
6644 memcpy(data, s2io_gstrings, S2IO_STRINGS_LEN);
6645 break;
6646 case ETH_SS_STATS:
6647 stat_size = sizeof(ethtool_xena_stats_keys);
6648 memcpy(data, &ethtool_xena_stats_keys,stat_size);
6649 if(sp->device_type == XFRAME_II_DEVICE) {
6650 memcpy(data + stat_size,
6651 &ethtool_enhanced_stats_keys,
6652 sizeof(ethtool_enhanced_stats_keys));
6653 stat_size += sizeof(ethtool_enhanced_stats_keys);
6656 memcpy(data + stat_size, &ethtool_driver_stats_keys,
6657 sizeof(ethtool_driver_stats_keys));
6661 static int s2io_ethtool_op_set_tx_csum(struct net_device *dev, u32 data)
6663 if (data)
6664 dev->features |= NETIF_F_IP_CSUM;
6665 else
6666 dev->features &= ~NETIF_F_IP_CSUM;
6668 return 0;
6671 static u32 s2io_ethtool_op_get_tso(struct net_device *dev)
6673 return (dev->features & NETIF_F_TSO) != 0;
6675 static int s2io_ethtool_op_set_tso(struct net_device *dev, u32 data)
6677 if (data)
6678 dev->features |= (NETIF_F_TSO | NETIF_F_TSO6);
6679 else
6680 dev->features &= ~(NETIF_F_TSO | NETIF_F_TSO6);
6682 return 0;
6685 static const struct ethtool_ops netdev_ethtool_ops = {
6686 .get_settings = s2io_ethtool_gset,
6687 .set_settings = s2io_ethtool_sset,
6688 .get_drvinfo = s2io_ethtool_gdrvinfo,
6689 .get_regs_len = s2io_ethtool_get_regs_len,
6690 .get_regs = s2io_ethtool_gregs,
6691 .get_link = ethtool_op_get_link,
6692 .get_eeprom_len = s2io_get_eeprom_len,
6693 .get_eeprom = s2io_ethtool_geeprom,
6694 .set_eeprom = s2io_ethtool_seeprom,
6695 .get_ringparam = s2io_ethtool_gringparam,
6696 .get_pauseparam = s2io_ethtool_getpause_data,
6697 .set_pauseparam = s2io_ethtool_setpause_data,
6698 .get_rx_csum = s2io_ethtool_get_rx_csum,
6699 .set_rx_csum = s2io_ethtool_set_rx_csum,
6700 .set_tx_csum = s2io_ethtool_op_set_tx_csum,
6701 .set_sg = ethtool_op_set_sg,
6702 .get_tso = s2io_ethtool_op_get_tso,
6703 .set_tso = s2io_ethtool_op_set_tso,
6704 .set_ufo = ethtool_op_set_ufo,
6705 .self_test = s2io_ethtool_test,
6706 .get_strings = s2io_ethtool_get_strings,
6707 .phys_id = s2io_ethtool_idnic,
6708 .get_ethtool_stats = s2io_get_ethtool_stats,
6709 .get_sset_count = s2io_get_sset_count,
6713 * s2io_ioctl - Entry point for the Ioctl
6714 * @dev : Device pointer.
6715 * @ifr : An IOCTL specefic structure, that can contain a pointer to
6716 * a proprietary structure used to pass information to the driver.
6717 * @cmd : This is used to distinguish between the different commands that
6718 * can be passed to the IOCTL functions.
6719 * Description:
6720 * Currently there are no special functionality supported in IOCTL, hence
6721 * function always return EOPNOTSUPPORTED
6724 static int s2io_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
6726 return -EOPNOTSUPP;
6730 * s2io_change_mtu - entry point to change MTU size for the device.
6731 * @dev : device pointer.
6732 * @new_mtu : the new MTU size for the device.
6733 * Description: A driver entry point to change MTU size for the device.
6734 * Before changing the MTU the device must be stopped.
6735 * Return value:
6736 * 0 on success and an appropriate (-)ve integer as defined in errno.h
6737 * file on failure.
6740 static int s2io_change_mtu(struct net_device *dev, int new_mtu)
6742 struct s2io_nic *sp = dev->priv;
6743 int ret = 0;
6745 if ((new_mtu < MIN_MTU) || (new_mtu > S2IO_JUMBO_SIZE)) {
6746 DBG_PRINT(ERR_DBG, "%s: MTU size is invalid.\n",
6747 dev->name);
6748 return -EPERM;
6751 dev->mtu = new_mtu;
6752 if (netif_running(dev)) {
6753 s2io_stop_all_tx_queue(sp);
6754 s2io_card_down(sp);
6755 ret = s2io_card_up(sp);
6756 if (ret) {
6757 DBG_PRINT(ERR_DBG, "%s: Device bring up failed\n",
6758 __FUNCTION__);
6759 return ret;
6761 s2io_wake_all_tx_queue(sp);
6762 } else { /* Device is down */
6763 struct XENA_dev_config __iomem *bar0 = sp->bar0;
6764 u64 val64 = new_mtu;
6766 writeq(vBIT(val64, 2, 14), &bar0->rmac_max_pyld_len);
6769 return ret;
6773 * s2io_tasklet - Bottom half of the ISR.
6774 * @dev_adr : address of the device structure in dma_addr_t format.
6775 * Description:
6776 * This is the tasklet or the bottom half of the ISR. This is
6777 * an extension of the ISR which is scheduled by the scheduler to be run
6778 * when the load on the CPU is low. All low priority tasks of the ISR can
6779 * be pushed into the tasklet. For now the tasklet is used only to
6780 * replenish the Rx buffers in the Rx buffer descriptors.
6781 * Return value:
6782 * void.
6785 static void s2io_tasklet(unsigned long dev_addr)
6787 struct net_device *dev = (struct net_device *) dev_addr;
6788 struct s2io_nic *sp = dev->priv;
6789 int i, ret;
6790 struct mac_info *mac_control;
6791 struct config_param *config;
6793 mac_control = &sp->mac_control;
6794 config = &sp->config;
6796 if (!TASKLET_IN_USE) {
6797 for (i = 0; i < config->rx_ring_num; i++) {
6798 ret = fill_rx_buffers(sp, i);
6799 if (ret == -ENOMEM) {
6800 DBG_PRINT(INFO_DBG, "%s: Out of ",
6801 dev->name);
6802 DBG_PRINT(INFO_DBG, "memory in tasklet\n");
6803 break;
6804 } else if (ret == -EFILL) {
6805 DBG_PRINT(INFO_DBG,
6806 "%s: Rx Ring %d is full\n",
6807 dev->name, i);
6808 break;
6811 clear_bit(0, (&sp->tasklet_status));
6816 * s2io_set_link - Set the LInk status
6817 * @data: long pointer to device private structue
6818 * Description: Sets the link status for the adapter
6821 static void s2io_set_link(struct work_struct *work)
6823 struct s2io_nic *nic = container_of(work, struct s2io_nic, set_link_task);
6824 struct net_device *dev = nic->dev;
6825 struct XENA_dev_config __iomem *bar0 = nic->bar0;
6826 register u64 val64;
6827 u16 subid;
6829 rtnl_lock();
6831 if (!netif_running(dev))
6832 goto out_unlock;
6834 if (test_and_set_bit(__S2IO_STATE_LINK_TASK, &(nic->state))) {
6835 /* The card is being reset, no point doing anything */
6836 goto out_unlock;
6839 subid = nic->pdev->subsystem_device;
6840 if (s2io_link_fault_indication(nic) == MAC_RMAC_ERR_TIMER) {
6842 * Allow a small delay for the NICs self initiated
6843 * cleanup to complete.
6845 msleep(100);
6848 val64 = readq(&bar0->adapter_status);
6849 if (LINK_IS_UP(val64)) {
6850 if (!(readq(&bar0->adapter_control) & ADAPTER_CNTL_EN)) {
6851 if (verify_xena_quiescence(nic)) {
6852 val64 = readq(&bar0->adapter_control);
6853 val64 |= ADAPTER_CNTL_EN;
6854 writeq(val64, &bar0->adapter_control);
6855 if (CARDS_WITH_FAULTY_LINK_INDICATORS(
6856 nic->device_type, subid)) {
6857 val64 = readq(&bar0->gpio_control);
6858 val64 |= GPIO_CTRL_GPIO_0;
6859 writeq(val64, &bar0->gpio_control);
6860 val64 = readq(&bar0->gpio_control);
6861 } else {
6862 val64 |= ADAPTER_LED_ON;
6863 writeq(val64, &bar0->adapter_control);
6865 nic->device_enabled_once = TRUE;
6866 } else {
6867 DBG_PRINT(ERR_DBG, "%s: Error: ", dev->name);
6868 DBG_PRINT(ERR_DBG, "device is not Quiescent\n");
6869 s2io_stop_all_tx_queue(nic);
6872 val64 = readq(&bar0->adapter_control);
6873 val64 |= ADAPTER_LED_ON;
6874 writeq(val64, &bar0->adapter_control);
6875 s2io_link(nic, LINK_UP);
6876 } else {
6877 if (CARDS_WITH_FAULTY_LINK_INDICATORS(nic->device_type,
6878 subid)) {
6879 val64 = readq(&bar0->gpio_control);
6880 val64 &= ~GPIO_CTRL_GPIO_0;
6881 writeq(val64, &bar0->gpio_control);
6882 val64 = readq(&bar0->gpio_control);
6884 /* turn off LED */
6885 val64 = readq(&bar0->adapter_control);
6886 val64 = val64 &(~ADAPTER_LED_ON);
6887 writeq(val64, &bar0->adapter_control);
6888 s2io_link(nic, LINK_DOWN);
6890 clear_bit(__S2IO_STATE_LINK_TASK, &(nic->state));
6892 out_unlock:
6893 rtnl_unlock();
6896 static int set_rxd_buffer_pointer(struct s2io_nic *sp, struct RxD_t *rxdp,
6897 struct buffAdd *ba,
6898 struct sk_buff **skb, u64 *temp0, u64 *temp1,
6899 u64 *temp2, int size)
6901 struct net_device *dev = sp->dev;
6902 struct swStat *stats = &sp->mac_control.stats_info->sw_stat;
6904 if ((sp->rxd_mode == RXD_MODE_1) && (rxdp->Host_Control == 0)) {
6905 struct RxD1 *rxdp1 = (struct RxD1 *)rxdp;
6906 /* allocate skb */
6907 if (*skb) {
6908 DBG_PRINT(INFO_DBG, "SKB is not NULL\n");
6910 * As Rx frame are not going to be processed,
6911 * using same mapped address for the Rxd
6912 * buffer pointer
6914 rxdp1->Buffer0_ptr = *temp0;
6915 } else {
6916 *skb = dev_alloc_skb(size);
6917 if (!(*skb)) {
6918 DBG_PRINT(INFO_DBG, "%s: Out of ", dev->name);
6919 DBG_PRINT(INFO_DBG, "memory to allocate ");
6920 DBG_PRINT(INFO_DBG, "1 buf mode SKBs\n");
6921 sp->mac_control.stats_info->sw_stat. \
6922 mem_alloc_fail_cnt++;
6923 return -ENOMEM ;
6925 sp->mac_control.stats_info->sw_stat.mem_allocated
6926 += (*skb)->truesize;
6927 /* storing the mapped addr in a temp variable
6928 * such it will be used for next rxd whose
6929 * Host Control is NULL
6931 rxdp1->Buffer0_ptr = *temp0 =
6932 pci_map_single( sp->pdev, (*skb)->data,
6933 size - NET_IP_ALIGN,
6934 PCI_DMA_FROMDEVICE);
6935 if( (rxdp1->Buffer0_ptr == 0) ||
6936 (rxdp1->Buffer0_ptr == DMA_ERROR_CODE)) {
6937 goto memalloc_failed;
6939 rxdp->Host_Control = (unsigned long) (*skb);
6941 } else if ((sp->rxd_mode == RXD_MODE_3B) && (rxdp->Host_Control == 0)) {
6942 struct RxD3 *rxdp3 = (struct RxD3 *)rxdp;
6943 /* Two buffer Mode */
6944 if (*skb) {
6945 rxdp3->Buffer2_ptr = *temp2;
6946 rxdp3->Buffer0_ptr = *temp0;
6947 rxdp3->Buffer1_ptr = *temp1;
6948 } else {
6949 *skb = dev_alloc_skb(size);
6950 if (!(*skb)) {
6951 DBG_PRINT(INFO_DBG, "%s: Out of ", dev->name);
6952 DBG_PRINT(INFO_DBG, "memory to allocate ");
6953 DBG_PRINT(INFO_DBG, "2 buf mode SKBs\n");
6954 sp->mac_control.stats_info->sw_stat. \
6955 mem_alloc_fail_cnt++;
6956 return -ENOMEM;
6958 sp->mac_control.stats_info->sw_stat.mem_allocated
6959 += (*skb)->truesize;
6960 rxdp3->Buffer2_ptr = *temp2 =
6961 pci_map_single(sp->pdev, (*skb)->data,
6962 dev->mtu + 4,
6963 PCI_DMA_FROMDEVICE);
6964 if( (rxdp3->Buffer2_ptr == 0) ||
6965 (rxdp3->Buffer2_ptr == DMA_ERROR_CODE)) {
6966 goto memalloc_failed;
6968 rxdp3->Buffer0_ptr = *temp0 =
6969 pci_map_single( sp->pdev, ba->ba_0, BUF0_LEN,
6970 PCI_DMA_FROMDEVICE);
6971 if( (rxdp3->Buffer0_ptr == 0) ||
6972 (rxdp3->Buffer0_ptr == DMA_ERROR_CODE)) {
6973 pci_unmap_single (sp->pdev,
6974 (dma_addr_t)rxdp3->Buffer2_ptr,
6975 dev->mtu + 4, PCI_DMA_FROMDEVICE);
6976 goto memalloc_failed;
6978 rxdp->Host_Control = (unsigned long) (*skb);
6980 /* Buffer-1 will be dummy buffer not used */
6981 rxdp3->Buffer1_ptr = *temp1 =
6982 pci_map_single(sp->pdev, ba->ba_1, BUF1_LEN,
6983 PCI_DMA_FROMDEVICE);
6984 if( (rxdp3->Buffer1_ptr == 0) ||
6985 (rxdp3->Buffer1_ptr == DMA_ERROR_CODE)) {
6986 pci_unmap_single (sp->pdev,
6987 (dma_addr_t)rxdp3->Buffer0_ptr,
6988 BUF0_LEN, PCI_DMA_FROMDEVICE);
6989 pci_unmap_single (sp->pdev,
6990 (dma_addr_t)rxdp3->Buffer2_ptr,
6991 dev->mtu + 4, PCI_DMA_FROMDEVICE);
6992 goto memalloc_failed;
6996 return 0;
6997 memalloc_failed:
6998 stats->pci_map_fail_cnt++;
6999 stats->mem_freed += (*skb)->truesize;
7000 dev_kfree_skb(*skb);
7001 return -ENOMEM;
7004 static void set_rxd_buffer_size(struct s2io_nic *sp, struct RxD_t *rxdp,
7005 int size)
7007 struct net_device *dev = sp->dev;
7008 if (sp->rxd_mode == RXD_MODE_1) {
7009 rxdp->Control_2 = SET_BUFFER0_SIZE_1( size - NET_IP_ALIGN);
7010 } else if (sp->rxd_mode == RXD_MODE_3B) {
7011 rxdp->Control_2 = SET_BUFFER0_SIZE_3(BUF0_LEN);
7012 rxdp->Control_2 |= SET_BUFFER1_SIZE_3(1);
7013 rxdp->Control_2 |= SET_BUFFER2_SIZE_3( dev->mtu + 4);
7017 static int rxd_owner_bit_reset(struct s2io_nic *sp)
7019 int i, j, k, blk_cnt = 0, size;
7020 struct mac_info * mac_control = &sp->mac_control;
7021 struct config_param *config = &sp->config;
7022 struct net_device *dev = sp->dev;
7023 struct RxD_t *rxdp = NULL;
7024 struct sk_buff *skb = NULL;
7025 struct buffAdd *ba = NULL;
7026 u64 temp0_64 = 0, temp1_64 = 0, temp2_64 = 0;
7028 /* Calculate the size based on ring mode */
7029 size = dev->mtu + HEADER_ETHERNET_II_802_3_SIZE +
7030 HEADER_802_2_SIZE + HEADER_SNAP_SIZE;
7031 if (sp->rxd_mode == RXD_MODE_1)
7032 size += NET_IP_ALIGN;
7033 else if (sp->rxd_mode == RXD_MODE_3B)
7034 size = dev->mtu + ALIGN_SIZE + BUF0_LEN + 4;
7036 for (i = 0; i < config->rx_ring_num; i++) {
7037 blk_cnt = config->rx_cfg[i].num_rxd /
7038 (rxd_count[sp->rxd_mode] +1);
7040 for (j = 0; j < blk_cnt; j++) {
7041 for (k = 0; k < rxd_count[sp->rxd_mode]; k++) {
7042 rxdp = mac_control->rings[i].
7043 rx_blocks[j].rxds[k].virt_addr;
7044 if(sp->rxd_mode == RXD_MODE_3B)
7045 ba = &mac_control->rings[i].ba[j][k];
7046 if (set_rxd_buffer_pointer(sp, rxdp, ba,
7047 &skb,(u64 *)&temp0_64,
7048 (u64 *)&temp1_64,
7049 (u64 *)&temp2_64,
7050 size) == ENOMEM) {
7051 return 0;
7054 set_rxd_buffer_size(sp, rxdp, size);
7055 wmb();
7056 /* flip the Ownership bit to Hardware */
7057 rxdp->Control_1 |= RXD_OWN_XENA;
7061 return 0;
7065 static int s2io_add_isr(struct s2io_nic * sp)
7067 int ret = 0;
7068 struct net_device *dev = sp->dev;
7069 int err = 0;
7071 if (sp->config.intr_type == MSI_X)
7072 ret = s2io_enable_msi_x(sp);
7073 if (ret) {
7074 DBG_PRINT(ERR_DBG, "%s: Defaulting to INTA\n", dev->name);
7075 sp->config.intr_type = INTA;
7078 /* Store the values of the MSIX table in the struct s2io_nic structure */
7079 store_xmsi_data(sp);
7081 /* After proper initialization of H/W, register ISR */
7082 if (sp->config.intr_type == MSI_X) {
7083 int i, msix_tx_cnt=0,msix_rx_cnt=0;
7085 for (i=1; (sp->s2io_entries[i].in_use == MSIX_FLG); i++) {
7086 if (sp->s2io_entries[i].type == MSIX_FIFO_TYPE) {
7087 sprintf(sp->desc[i], "%s:MSI-X-%d-TX",
7088 dev->name, i);
7089 err = request_irq(sp->entries[i].vector,
7090 s2io_msix_fifo_handle, 0, sp->desc[i],
7091 sp->s2io_entries[i].arg);
7092 /* If either data or addr is zero print it */
7093 if(!(sp->msix_info[i].addr &&
7094 sp->msix_info[i].data)) {
7095 DBG_PRINT(ERR_DBG, "%s @ Addr:0x%llx "
7096 "Data:0x%llx\n",sp->desc[i],
7097 (unsigned long long)
7098 sp->msix_info[i].addr,
7099 (unsigned long long)
7100 sp->msix_info[i].data);
7101 } else {
7102 msix_tx_cnt++;
7104 } else {
7105 sprintf(sp->desc[i], "%s:MSI-X-%d-RX",
7106 dev->name, i);
7107 err = request_irq(sp->entries[i].vector,
7108 s2io_msix_ring_handle, 0, sp->desc[i],
7109 sp->s2io_entries[i].arg);
7110 /* If either data or addr is zero print it */
7111 if(!(sp->msix_info[i].addr &&
7112 sp->msix_info[i].data)) {
7113 DBG_PRINT(ERR_DBG, "%s @ Addr:0x%llx "
7114 "Data:0x%llx\n",sp->desc[i],
7115 (unsigned long long)
7116 sp->msix_info[i].addr,
7117 (unsigned long long)
7118 sp->msix_info[i].data);
7119 } else {
7120 msix_rx_cnt++;
7123 if (err) {
7124 remove_msix_isr(sp);
7125 DBG_PRINT(ERR_DBG,"%s:MSI-X-%d registration "
7126 "failed\n", dev->name, i);
7127 DBG_PRINT(ERR_DBG, "%s: defaulting to INTA\n",
7128 dev->name);
7129 sp->config.intr_type = INTA;
7130 break;
7132 sp->s2io_entries[i].in_use = MSIX_REGISTERED_SUCCESS;
7134 if (!err) {
7135 printk(KERN_INFO "MSI-X-TX %d entries enabled\n",
7136 msix_tx_cnt);
7137 printk(KERN_INFO "MSI-X-RX %d entries enabled\n",
7138 msix_rx_cnt);
7141 if (sp->config.intr_type == INTA) {
7142 err = request_irq((int) sp->pdev->irq, s2io_isr, IRQF_SHARED,
7143 sp->name, dev);
7144 if (err) {
7145 DBG_PRINT(ERR_DBG, "%s: ISR registration failed\n",
7146 dev->name);
7147 return -1;
7150 return 0;
7152 static void s2io_rem_isr(struct s2io_nic * sp)
7154 if (sp->config.intr_type == MSI_X)
7155 remove_msix_isr(sp);
7156 else
7157 remove_inta_isr(sp);
7160 static void do_s2io_card_down(struct s2io_nic * sp, int do_io)
7162 int cnt = 0;
7163 struct XENA_dev_config __iomem *bar0 = sp->bar0;
7164 unsigned long flags;
7165 register u64 val64 = 0;
7166 struct config_param *config;
7167 config = &sp->config;
7169 if (!is_s2io_card_up(sp))
7170 return;
7172 del_timer_sync(&sp->alarm_timer);
7173 /* If s2io_set_link task is executing, wait till it completes. */
7174 while (test_and_set_bit(__S2IO_STATE_LINK_TASK, &(sp->state))) {
7175 msleep(50);
7177 clear_bit(__S2IO_STATE_CARD_UP, &sp->state);
7179 /* Disable napi */
7180 if (config->napi)
7181 napi_disable(&sp->napi);
7183 /* disable Tx and Rx traffic on the NIC */
7184 if (do_io)
7185 stop_nic(sp);
7187 s2io_rem_isr(sp);
7189 /* Kill tasklet. */
7190 tasklet_kill(&sp->task);
7192 /* Check if the device is Quiescent and then Reset the NIC */
7193 while(do_io) {
7194 /* As per the HW requirement we need to replenish the
7195 * receive buffer to avoid the ring bump. Since there is
7196 * no intention of processing the Rx frame at this pointwe are
7197 * just settting the ownership bit of rxd in Each Rx
7198 * ring to HW and set the appropriate buffer size
7199 * based on the ring mode
7201 rxd_owner_bit_reset(sp);
7203 val64 = readq(&bar0->adapter_status);
7204 if (verify_xena_quiescence(sp)) {
7205 if(verify_pcc_quiescent(sp, sp->device_enabled_once))
7206 break;
7209 msleep(50);
7210 cnt++;
7211 if (cnt == 10) {
7212 DBG_PRINT(ERR_DBG,
7213 "s2io_close:Device not Quiescent ");
7214 DBG_PRINT(ERR_DBG, "adaper status reads 0x%llx\n",
7215 (unsigned long long) val64);
7216 break;
7219 if (do_io)
7220 s2io_reset(sp);
7222 /* Free all Tx buffers */
7223 free_tx_buffers(sp);
7225 /* Free all Rx buffers */
7226 spin_lock_irqsave(&sp->rx_lock, flags);
7227 free_rx_buffers(sp);
7228 spin_unlock_irqrestore(&sp->rx_lock, flags);
7230 clear_bit(__S2IO_STATE_LINK_TASK, &(sp->state));
7233 static void s2io_card_down(struct s2io_nic * sp)
7235 do_s2io_card_down(sp, 1);
7238 static int s2io_card_up(struct s2io_nic * sp)
7240 int i, ret = 0;
7241 struct mac_info *mac_control;
7242 struct config_param *config;
7243 struct net_device *dev = (struct net_device *) sp->dev;
7244 u16 interruptible;
7246 /* Initialize the H/W I/O registers */
7247 ret = init_nic(sp);
7248 if (ret != 0) {
7249 DBG_PRINT(ERR_DBG, "%s: H/W initialization failed\n",
7250 dev->name);
7251 if (ret != -EIO)
7252 s2io_reset(sp);
7253 return ret;
7257 * Initializing the Rx buffers. For now we are considering only 1
7258 * Rx ring and initializing buffers into 30 Rx blocks
7260 mac_control = &sp->mac_control;
7261 config = &sp->config;
7263 for (i = 0; i < config->rx_ring_num; i++) {
7264 if ((ret = fill_rx_buffers(sp, i))) {
7265 DBG_PRINT(ERR_DBG, "%s: Out of memory in Open\n",
7266 dev->name);
7267 s2io_reset(sp);
7268 free_rx_buffers(sp);
7269 return -ENOMEM;
7271 DBG_PRINT(INFO_DBG, "Buf in ring:%d is %d:\n", i,
7272 atomic_read(&sp->rx_bufs_left[i]));
7275 /* Initialise napi */
7276 if (config->napi)
7277 napi_enable(&sp->napi);
7279 /* Maintain the state prior to the open */
7280 if (sp->promisc_flg)
7281 sp->promisc_flg = 0;
7282 if (sp->m_cast_flg) {
7283 sp->m_cast_flg = 0;
7284 sp->all_multi_pos= 0;
7287 /* Setting its receive mode */
7288 s2io_set_multicast(dev);
7290 if (sp->lro) {
7291 /* Initialize max aggregatable pkts per session based on MTU */
7292 sp->lro_max_aggr_per_sess = ((1<<16) - 1) / dev->mtu;
7293 /* Check if we can use(if specified) user provided value */
7294 if (lro_max_pkts < sp->lro_max_aggr_per_sess)
7295 sp->lro_max_aggr_per_sess = lro_max_pkts;
7298 /* Enable Rx Traffic and interrupts on the NIC */
7299 if (start_nic(sp)) {
7300 DBG_PRINT(ERR_DBG, "%s: Starting NIC failed\n", dev->name);
7301 s2io_reset(sp);
7302 free_rx_buffers(sp);
7303 return -ENODEV;
7306 /* Add interrupt service routine */
7307 if (s2io_add_isr(sp) != 0) {
7308 if (sp->config.intr_type == MSI_X)
7309 s2io_rem_isr(sp);
7310 s2io_reset(sp);
7311 free_rx_buffers(sp);
7312 return -ENODEV;
7315 S2IO_TIMER_CONF(sp->alarm_timer, s2io_alarm_handle, sp, (HZ/2));
7317 /* Enable tasklet for the device */
7318 tasklet_init(&sp->task, s2io_tasklet, (unsigned long) dev);
7320 /* Enable select interrupts */
7321 en_dis_err_alarms(sp, ENA_ALL_INTRS, ENABLE_INTRS);
7322 if (sp->config.intr_type != INTA)
7323 en_dis_able_nic_intrs(sp, ENA_ALL_INTRS, DISABLE_INTRS);
7324 else {
7325 interruptible = TX_TRAFFIC_INTR | RX_TRAFFIC_INTR;
7326 interruptible |= TX_PIC_INTR;
7327 en_dis_able_nic_intrs(sp, interruptible, ENABLE_INTRS);
7330 set_bit(__S2IO_STATE_CARD_UP, &sp->state);
7331 return 0;
7335 * s2io_restart_nic - Resets the NIC.
7336 * @data : long pointer to the device private structure
7337 * Description:
7338 * This function is scheduled to be run by the s2io_tx_watchdog
7339 * function after 0.5 secs to reset the NIC. The idea is to reduce
7340 * the run time of the watch dog routine which is run holding a
7341 * spin lock.
7344 static void s2io_restart_nic(struct work_struct *work)
7346 struct s2io_nic *sp = container_of(work, struct s2io_nic, rst_timer_task);
7347 struct net_device *dev = sp->dev;
7349 rtnl_lock();
7351 if (!netif_running(dev))
7352 goto out_unlock;
7354 s2io_card_down(sp);
7355 if (s2io_card_up(sp)) {
7356 DBG_PRINT(ERR_DBG, "%s: Device bring up failed\n",
7357 dev->name);
7359 s2io_wake_all_tx_queue(sp);
7360 DBG_PRINT(ERR_DBG, "%s: was reset by Tx watchdog timer\n",
7361 dev->name);
7362 out_unlock:
7363 rtnl_unlock();
7367 * s2io_tx_watchdog - Watchdog for transmit side.
7368 * @dev : Pointer to net device structure
7369 * Description:
7370 * This function is triggered if the Tx Queue is stopped
7371 * for a pre-defined amount of time when the Interface is still up.
7372 * If the Interface is jammed in such a situation, the hardware is
7373 * reset (by s2io_close) and restarted again (by s2io_open) to
7374 * overcome any problem that might have been caused in the hardware.
7375 * Return value:
7376 * void
7379 static void s2io_tx_watchdog(struct net_device *dev)
7381 struct s2io_nic *sp = dev->priv;
7383 if (netif_carrier_ok(dev)) {
7384 sp->mac_control.stats_info->sw_stat.watchdog_timer_cnt++;
7385 schedule_work(&sp->rst_timer_task);
7386 sp->mac_control.stats_info->sw_stat.soft_reset_cnt++;
7391 * rx_osm_handler - To perform some OS related operations on SKB.
7392 * @sp: private member of the device structure,pointer to s2io_nic structure.
7393 * @skb : the socket buffer pointer.
7394 * @len : length of the packet
7395 * @cksum : FCS checksum of the frame.
7396 * @ring_no : the ring from which this RxD was extracted.
7397 * Description:
7398 * This function is called by the Rx interrupt serivce routine to perform
7399 * some OS related operations on the SKB before passing it to the upper
7400 * layers. It mainly checks if the checksum is OK, if so adds it to the
7401 * SKBs cksum variable, increments the Rx packet count and passes the SKB
7402 * to the upper layer. If the checksum is wrong, it increments the Rx
7403 * packet error count, frees the SKB and returns error.
7404 * Return value:
7405 * SUCCESS on success and -1 on failure.
7407 static int rx_osm_handler(struct ring_info *ring_data, struct RxD_t * rxdp)
7409 struct s2io_nic *sp = ring_data->nic;
7410 struct net_device *dev = (struct net_device *) sp->dev;
7411 struct sk_buff *skb = (struct sk_buff *)
7412 ((unsigned long) rxdp->Host_Control);
7413 int ring_no = ring_data->ring_no;
7414 u16 l3_csum, l4_csum;
7415 unsigned long long err = rxdp->Control_1 & RXD_T_CODE;
7416 struct lro *lro;
7417 u8 err_mask;
7419 skb->dev = dev;
7421 if (err) {
7422 /* Check for parity error */
7423 if (err & 0x1) {
7424 sp->mac_control.stats_info->sw_stat.parity_err_cnt++;
7426 err_mask = err >> 48;
7427 switch(err_mask) {
7428 case 1:
7429 sp->mac_control.stats_info->sw_stat.
7430 rx_parity_err_cnt++;
7431 break;
7433 case 2:
7434 sp->mac_control.stats_info->sw_stat.
7435 rx_abort_cnt++;
7436 break;
7438 case 3:
7439 sp->mac_control.stats_info->sw_stat.
7440 rx_parity_abort_cnt++;
7441 break;
7443 case 4:
7444 sp->mac_control.stats_info->sw_stat.
7445 rx_rda_fail_cnt++;
7446 break;
7448 case 5:
7449 sp->mac_control.stats_info->sw_stat.
7450 rx_unkn_prot_cnt++;
7451 break;
7453 case 6:
7454 sp->mac_control.stats_info->sw_stat.
7455 rx_fcs_err_cnt++;
7456 break;
7458 case 7:
7459 sp->mac_control.stats_info->sw_stat.
7460 rx_buf_size_err_cnt++;
7461 break;
7463 case 8:
7464 sp->mac_control.stats_info->sw_stat.
7465 rx_rxd_corrupt_cnt++;
7466 break;
7468 case 15:
7469 sp->mac_control.stats_info->sw_stat.
7470 rx_unkn_err_cnt++;
7471 break;
7474 * Drop the packet if bad transfer code. Exception being
7475 * 0x5, which could be due to unsupported IPv6 extension header.
7476 * In this case, we let stack handle the packet.
7477 * Note that in this case, since checksum will be incorrect,
7478 * stack will validate the same.
7480 if (err_mask != 0x5) {
7481 DBG_PRINT(ERR_DBG, "%s: Rx error Value: 0x%x\n",
7482 dev->name, err_mask);
7483 sp->stats.rx_crc_errors++;
7484 sp->mac_control.stats_info->sw_stat.mem_freed
7485 += skb->truesize;
7486 dev_kfree_skb(skb);
7487 atomic_dec(&sp->rx_bufs_left[ring_no]);
7488 rxdp->Host_Control = 0;
7489 return 0;
7493 /* Updating statistics */
7494 sp->stats.rx_packets++;
7495 rxdp->Host_Control = 0;
7496 if (sp->rxd_mode == RXD_MODE_1) {
7497 int len = RXD_GET_BUFFER0_SIZE_1(rxdp->Control_2);
7499 sp->stats.rx_bytes += len;
7500 skb_put(skb, len);
7502 } else if (sp->rxd_mode == RXD_MODE_3B) {
7503 int get_block = ring_data->rx_curr_get_info.block_index;
7504 int get_off = ring_data->rx_curr_get_info.offset;
7505 int buf0_len = RXD_GET_BUFFER0_SIZE_3(rxdp->Control_2);
7506 int buf2_len = RXD_GET_BUFFER2_SIZE_3(rxdp->Control_2);
7507 unsigned char *buff = skb_push(skb, buf0_len);
7509 struct buffAdd *ba = &ring_data->ba[get_block][get_off];
7510 sp->stats.rx_bytes += buf0_len + buf2_len;
7511 memcpy(buff, ba->ba_0, buf0_len);
7512 skb_put(skb, buf2_len);
7515 if ((rxdp->Control_1 & TCP_OR_UDP_FRAME) && ((!sp->lro) ||
7516 (sp->lro && (!(rxdp->Control_1 & RXD_FRAME_IP_FRAG)))) &&
7517 (sp->rx_csum)) {
7518 l3_csum = RXD_GET_L3_CKSUM(rxdp->Control_1);
7519 l4_csum = RXD_GET_L4_CKSUM(rxdp->Control_1);
7520 if ((l3_csum == L3_CKSUM_OK) && (l4_csum == L4_CKSUM_OK)) {
7522 * NIC verifies if the Checksum of the received
7523 * frame is Ok or not and accordingly returns
7524 * a flag in the RxD.
7526 skb->ip_summed = CHECKSUM_UNNECESSARY;
7527 if (sp->lro) {
7528 u32 tcp_len;
7529 u8 *tcp;
7530 int ret = 0;
7532 ret = s2io_club_tcp_session(skb->data, &tcp,
7533 &tcp_len, &lro,
7534 rxdp, sp);
7535 switch (ret) {
7536 case 3: /* Begin anew */
7537 lro->parent = skb;
7538 goto aggregate;
7539 case 1: /* Aggregate */
7541 lro_append_pkt(sp, lro,
7542 skb, tcp_len);
7543 goto aggregate;
7545 case 4: /* Flush session */
7547 lro_append_pkt(sp, lro,
7548 skb, tcp_len);
7549 queue_rx_frame(lro->parent,
7550 lro->vlan_tag);
7551 clear_lro_session(lro);
7552 sp->mac_control.stats_info->
7553 sw_stat.flush_max_pkts++;
7554 goto aggregate;
7556 case 2: /* Flush both */
7557 lro->parent->data_len =
7558 lro->frags_len;
7559 sp->mac_control.stats_info->
7560 sw_stat.sending_both++;
7561 queue_rx_frame(lro->parent,
7562 lro->vlan_tag);
7563 clear_lro_session(lro);
7564 goto send_up;
7565 case 0: /* sessions exceeded */
7566 case -1: /* non-TCP or not
7567 * L2 aggregatable
7569 case 5: /*
7570 * First pkt in session not
7571 * L3/L4 aggregatable
7573 break;
7574 default:
7575 DBG_PRINT(ERR_DBG,
7576 "%s: Samadhana!!\n",
7577 __FUNCTION__);
7578 BUG();
7581 } else {
7583 * Packet with erroneous checksum, let the
7584 * upper layers deal with it.
7586 skb->ip_summed = CHECKSUM_NONE;
7588 } else
7589 skb->ip_summed = CHECKSUM_NONE;
7591 sp->mac_control.stats_info->sw_stat.mem_freed += skb->truesize;
7592 send_up:
7593 queue_rx_frame(skb, RXD_GET_VLAN_TAG(rxdp->Control_2));
7594 dev->last_rx = jiffies;
7595 aggregate:
7596 atomic_dec(&sp->rx_bufs_left[ring_no]);
7597 return SUCCESS;
7601 * s2io_link - stops/starts the Tx queue.
7602 * @sp : private member of the device structure, which is a pointer to the
7603 * s2io_nic structure.
7604 * @link : inidicates whether link is UP/DOWN.
7605 * Description:
7606 * This function stops/starts the Tx queue depending on whether the link
7607 * status of the NIC is is down or up. This is called by the Alarm
7608 * interrupt handler whenever a link change interrupt comes up.
7609 * Return value:
7610 * void.
7613 static void s2io_link(struct s2io_nic * sp, int link)
7615 struct net_device *dev = (struct net_device *) sp->dev;
7617 if (link != sp->last_link_state) {
7618 init_tti(sp, link);
7619 if (link == LINK_DOWN) {
7620 DBG_PRINT(ERR_DBG, "%s: Link down\n", dev->name);
7621 s2io_stop_all_tx_queue(sp);
7622 netif_carrier_off(dev);
7623 if(sp->mac_control.stats_info->sw_stat.link_up_cnt)
7624 sp->mac_control.stats_info->sw_stat.link_up_time =
7625 jiffies - sp->start_time;
7626 sp->mac_control.stats_info->sw_stat.link_down_cnt++;
7627 } else {
7628 DBG_PRINT(ERR_DBG, "%s: Link Up\n", dev->name);
7629 if (sp->mac_control.stats_info->sw_stat.link_down_cnt)
7630 sp->mac_control.stats_info->sw_stat.link_down_time =
7631 jiffies - sp->start_time;
7632 sp->mac_control.stats_info->sw_stat.link_up_cnt++;
7633 netif_carrier_on(dev);
7634 s2io_wake_all_tx_queue(sp);
7637 sp->last_link_state = link;
7638 sp->start_time = jiffies;
7642 * s2io_init_pci -Initialization of PCI and PCI-X configuration registers .
7643 * @sp : private member of the device structure, which is a pointer to the
7644 * s2io_nic structure.
7645 * Description:
7646 * This function initializes a few of the PCI and PCI-X configuration registers
7647 * with recommended values.
7648 * Return value:
7649 * void
7652 static void s2io_init_pci(struct s2io_nic * sp)
7654 u16 pci_cmd = 0, pcix_cmd = 0;
7656 /* Enable Data Parity Error Recovery in PCI-X command register. */
7657 pci_read_config_word(sp->pdev, PCIX_COMMAND_REGISTER,
7658 &(pcix_cmd));
7659 pci_write_config_word(sp->pdev, PCIX_COMMAND_REGISTER,
7660 (pcix_cmd | 1));
7661 pci_read_config_word(sp->pdev, PCIX_COMMAND_REGISTER,
7662 &(pcix_cmd));
7664 /* Set the PErr Response bit in PCI command register. */
7665 pci_read_config_word(sp->pdev, PCI_COMMAND, &pci_cmd);
7666 pci_write_config_word(sp->pdev, PCI_COMMAND,
7667 (pci_cmd | PCI_COMMAND_PARITY));
7668 pci_read_config_word(sp->pdev, PCI_COMMAND, &pci_cmd);
7671 static int s2io_verify_parm(struct pci_dev *pdev, u8 *dev_intr_type,
7672 u8 *dev_multiq)
7674 if ((tx_fifo_num > MAX_TX_FIFOS) ||
7675 (tx_fifo_num < 1)) {
7676 DBG_PRINT(ERR_DBG, "s2io: Requested number of tx fifos "
7677 "(%d) not supported\n", tx_fifo_num);
7679 if (tx_fifo_num < 1)
7680 tx_fifo_num = 1;
7681 else
7682 tx_fifo_num = MAX_TX_FIFOS;
7684 DBG_PRINT(ERR_DBG, "s2io: Default to %d ", tx_fifo_num);
7685 DBG_PRINT(ERR_DBG, "tx fifos\n");
7688 #ifndef CONFIG_NETDEVICES_MULTIQUEUE
7689 if (multiq) {
7690 DBG_PRINT(ERR_DBG, "s2io: Multiqueue support not enabled\n");
7691 multiq = 0;
7693 #endif
7694 if (multiq)
7695 *dev_multiq = multiq;
7697 if (tx_steering_type && (1 == tx_fifo_num)) {
7698 if (tx_steering_type != TX_DEFAULT_STEERING)
7699 DBG_PRINT(ERR_DBG,
7700 "s2io: Tx steering is not supported with "
7701 "one fifo. Disabling Tx steering.\n");
7702 tx_steering_type = NO_STEERING;
7705 if ((tx_steering_type < NO_STEERING) ||
7706 (tx_steering_type > TX_DEFAULT_STEERING)) {
7707 DBG_PRINT(ERR_DBG, "s2io: Requested transmit steering not "
7708 "supported\n");
7709 DBG_PRINT(ERR_DBG, "s2io: Disabling transmit steering\n");
7710 tx_steering_type = NO_STEERING;
7713 if ( rx_ring_num > 8) {
7714 DBG_PRINT(ERR_DBG, "s2io: Requested number of Rx rings not "
7715 "supported\n");
7716 DBG_PRINT(ERR_DBG, "s2io: Default to 8 Rx rings\n");
7717 rx_ring_num = 8;
7719 if (*dev_intr_type != INTA)
7720 napi = 0;
7722 if ((*dev_intr_type != INTA) && (*dev_intr_type != MSI_X)) {
7723 DBG_PRINT(ERR_DBG, "s2io: Wrong intr_type requested. "
7724 "Defaulting to INTA\n");
7725 *dev_intr_type = INTA;
7728 if ((*dev_intr_type == MSI_X) &&
7729 ((pdev->device != PCI_DEVICE_ID_HERC_WIN) &&
7730 (pdev->device != PCI_DEVICE_ID_HERC_UNI))) {
7731 DBG_PRINT(ERR_DBG, "s2io: Xframe I does not support MSI_X. "
7732 "Defaulting to INTA\n");
7733 *dev_intr_type = INTA;
7736 if ((rx_ring_mode != 1) && (rx_ring_mode != 2)) {
7737 DBG_PRINT(ERR_DBG, "s2io: Requested ring mode not supported\n");
7738 DBG_PRINT(ERR_DBG, "s2io: Defaulting to 1-buffer mode\n");
7739 rx_ring_mode = 1;
7741 return SUCCESS;
7745 * rts_ds_steer - Receive traffic steering based on IPv4 or IPv6 TOS
7746 * or Traffic class respectively.
7747 * @nic: device private variable
7748 * Description: The function configures the receive steering to
7749 * desired receive ring.
7750 * Return Value: SUCCESS on success and
7751 * '-1' on failure (endian settings incorrect).
7753 static int rts_ds_steer(struct s2io_nic *nic, u8 ds_codepoint, u8 ring)
7755 struct XENA_dev_config __iomem *bar0 = nic->bar0;
7756 register u64 val64 = 0;
7758 if (ds_codepoint > 63)
7759 return FAILURE;
7761 val64 = RTS_DS_MEM_DATA(ring);
7762 writeq(val64, &bar0->rts_ds_mem_data);
7764 val64 = RTS_DS_MEM_CTRL_WE |
7765 RTS_DS_MEM_CTRL_STROBE_NEW_CMD |
7766 RTS_DS_MEM_CTRL_OFFSET(ds_codepoint);
7768 writeq(val64, &bar0->rts_ds_mem_ctrl);
7770 return wait_for_cmd_complete(&bar0->rts_ds_mem_ctrl,
7771 RTS_DS_MEM_CTRL_STROBE_CMD_BEING_EXECUTED,
7772 S2IO_BIT_RESET);
7776 * s2io_init_nic - Initialization of the adapter .
7777 * @pdev : structure containing the PCI related information of the device.
7778 * @pre: List of PCI devices supported by the driver listed in s2io_tbl.
7779 * Description:
7780 * The function initializes an adapter identified by the pci_dec structure.
7781 * All OS related initialization including memory and device structure and
7782 * initlaization of the device private variable is done. Also the swapper
7783 * control register is initialized to enable read and write into the I/O
7784 * registers of the device.
7785 * Return value:
7786 * returns 0 on success and negative on failure.
7789 static int __devinit
7790 s2io_init_nic(struct pci_dev *pdev, const struct pci_device_id *pre)
7792 struct s2io_nic *sp;
7793 struct net_device *dev;
7794 int i, j, ret;
7795 int dma_flag = FALSE;
7796 u32 mac_up, mac_down;
7797 u64 val64 = 0, tmp64 = 0;
7798 struct XENA_dev_config __iomem *bar0 = NULL;
7799 u16 subid;
7800 struct mac_info *mac_control;
7801 struct config_param *config;
7802 int mode;
7803 u8 dev_intr_type = intr_type;
7804 u8 dev_multiq = 0;
7805 DECLARE_MAC_BUF(mac);
7807 ret = s2io_verify_parm(pdev, &dev_intr_type, &dev_multiq);
7808 if (ret)
7809 return ret;
7811 if ((ret = pci_enable_device(pdev))) {
7812 DBG_PRINT(ERR_DBG,
7813 "s2io_init_nic: pci_enable_device failed\n");
7814 return ret;
7817 if (!pci_set_dma_mask(pdev, DMA_64BIT_MASK)) {
7818 DBG_PRINT(INIT_DBG, "s2io_init_nic: Using 64bit DMA\n");
7819 dma_flag = TRUE;
7820 if (pci_set_consistent_dma_mask
7821 (pdev, DMA_64BIT_MASK)) {
7822 DBG_PRINT(ERR_DBG,
7823 "Unable to obtain 64bit DMA for \
7824 consistent allocations\n");
7825 pci_disable_device(pdev);
7826 return -ENOMEM;
7828 } else if (!pci_set_dma_mask(pdev, DMA_32BIT_MASK)) {
7829 DBG_PRINT(INIT_DBG, "s2io_init_nic: Using 32bit DMA\n");
7830 } else {
7831 pci_disable_device(pdev);
7832 return -ENOMEM;
7834 if ((ret = pci_request_regions(pdev, s2io_driver_name))) {
7835 DBG_PRINT(ERR_DBG, "%s: Request Regions failed - %x \n", __FUNCTION__, ret);
7836 pci_disable_device(pdev);
7837 return -ENODEV;
7839 #ifdef CONFIG_NETDEVICES_MULTIQUEUE
7840 if (dev_multiq)
7841 dev = alloc_etherdev_mq(sizeof(struct s2io_nic), tx_fifo_num);
7842 else
7843 #endif
7844 dev = alloc_etherdev(sizeof(struct s2io_nic));
7845 if (dev == NULL) {
7846 DBG_PRINT(ERR_DBG, "Device allocation failed\n");
7847 pci_disable_device(pdev);
7848 pci_release_regions(pdev);
7849 return -ENODEV;
7852 pci_set_master(pdev);
7853 pci_set_drvdata(pdev, dev);
7854 SET_NETDEV_DEV(dev, &pdev->dev);
7856 /* Private member variable initialized to s2io NIC structure */
7857 sp = dev->priv;
7858 memset(sp, 0, sizeof(struct s2io_nic));
7859 sp->dev = dev;
7860 sp->pdev = pdev;
7861 sp->high_dma_flag = dma_flag;
7862 sp->device_enabled_once = FALSE;
7863 if (rx_ring_mode == 1)
7864 sp->rxd_mode = RXD_MODE_1;
7865 if (rx_ring_mode == 2)
7866 sp->rxd_mode = RXD_MODE_3B;
7868 sp->config.intr_type = dev_intr_type;
7870 if ((pdev->device == PCI_DEVICE_ID_HERC_WIN) ||
7871 (pdev->device == PCI_DEVICE_ID_HERC_UNI))
7872 sp->device_type = XFRAME_II_DEVICE;
7873 else
7874 sp->device_type = XFRAME_I_DEVICE;
7876 sp->lro = lro_enable;
7878 /* Initialize some PCI/PCI-X fields of the NIC. */
7879 s2io_init_pci(sp);
7882 * Setting the device configuration parameters.
7883 * Most of these parameters can be specified by the user during
7884 * module insertion as they are module loadable parameters. If
7885 * these parameters are not not specified during load time, they
7886 * are initialized with default values.
7888 mac_control = &sp->mac_control;
7889 config = &sp->config;
7891 config->napi = napi;
7892 config->tx_steering_type = tx_steering_type;
7894 /* Tx side parameters. */
7895 if (config->tx_steering_type == TX_PRIORITY_STEERING)
7896 config->tx_fifo_num = MAX_TX_FIFOS;
7897 else
7898 config->tx_fifo_num = tx_fifo_num;
7900 /* Initialize the fifos used for tx steering */
7901 if (config->tx_fifo_num < 5) {
7902 if (config->tx_fifo_num == 1)
7903 sp->total_tcp_fifos = 1;
7904 else
7905 sp->total_tcp_fifos = config->tx_fifo_num - 1;
7906 sp->udp_fifo_idx = config->tx_fifo_num - 1;
7907 sp->total_udp_fifos = 1;
7908 sp->other_fifo_idx = sp->total_tcp_fifos - 1;
7909 } else {
7910 sp->total_tcp_fifos = (tx_fifo_num - FIFO_UDP_MAX_NUM -
7911 FIFO_OTHER_MAX_NUM);
7912 sp->udp_fifo_idx = sp->total_tcp_fifos;
7913 sp->total_udp_fifos = FIFO_UDP_MAX_NUM;
7914 sp->other_fifo_idx = sp->udp_fifo_idx + FIFO_UDP_MAX_NUM;
7917 config->multiq = dev_multiq;
7918 for (i = 0; i < config->tx_fifo_num; i++) {
7919 config->tx_cfg[i].fifo_len = tx_fifo_len[i];
7920 config->tx_cfg[i].fifo_priority = i;
7923 /* mapping the QoS priority to the configured fifos */
7924 for (i = 0; i < MAX_TX_FIFOS; i++)
7925 config->fifo_mapping[i] = fifo_map[config->tx_fifo_num - 1][i];
7927 /* map the hashing selector table to the configured fifos */
7928 for (i = 0; i < config->tx_fifo_num; i++)
7929 sp->fifo_selector[i] = fifo_selector[i];
7932 config->tx_intr_type = TXD_INT_TYPE_UTILZ;
7933 for (i = 0; i < config->tx_fifo_num; i++) {
7934 config->tx_cfg[i].f_no_snoop =
7935 (NO_SNOOP_TXD | NO_SNOOP_TXD_BUFFER);
7936 if (config->tx_cfg[i].fifo_len < 65) {
7937 config->tx_intr_type = TXD_INT_TYPE_PER_LIST;
7938 break;
7941 /* + 2 because one Txd for skb->data and one Txd for UFO */
7942 config->max_txds = MAX_SKB_FRAGS + 2;
7944 /* Rx side parameters. */
7945 config->rx_ring_num = rx_ring_num;
7946 for (i = 0; i < MAX_RX_RINGS; i++) {
7947 config->rx_cfg[i].num_rxd = rx_ring_sz[i] *
7948 (rxd_count[sp->rxd_mode] + 1);
7949 config->rx_cfg[i].ring_priority = i;
7952 for (i = 0; i < rx_ring_num; i++) {
7953 config->rx_cfg[i].ring_org = RING_ORG_BUFF1;
7954 config->rx_cfg[i].f_no_snoop =
7955 (NO_SNOOP_RXD | NO_SNOOP_RXD_BUFFER);
7958 /* Setting Mac Control parameters */
7959 mac_control->rmac_pause_time = rmac_pause_time;
7960 mac_control->mc_pause_threshold_q0q3 = mc_pause_threshold_q0q3;
7961 mac_control->mc_pause_threshold_q4q7 = mc_pause_threshold_q4q7;
7964 /* Initialize Ring buffer parameters. */
7965 for (i = 0; i < config->rx_ring_num; i++)
7966 atomic_set(&sp->rx_bufs_left[i], 0);
7968 /* initialize the shared memory used by the NIC and the host */
7969 if (init_shared_mem(sp)) {
7970 DBG_PRINT(ERR_DBG, "%s: Memory allocation failed\n",
7971 dev->name);
7972 ret = -ENOMEM;
7973 goto mem_alloc_failed;
7976 sp->bar0 = ioremap(pci_resource_start(pdev, 0),
7977 pci_resource_len(pdev, 0));
7978 if (!sp->bar0) {
7979 DBG_PRINT(ERR_DBG, "%s: Neterion: cannot remap io mem1\n",
7980 dev->name);
7981 ret = -ENOMEM;
7982 goto bar0_remap_failed;
7985 sp->bar1 = ioremap(pci_resource_start(pdev, 2),
7986 pci_resource_len(pdev, 2));
7987 if (!sp->bar1) {
7988 DBG_PRINT(ERR_DBG, "%s: Neterion: cannot remap io mem2\n",
7989 dev->name);
7990 ret = -ENOMEM;
7991 goto bar1_remap_failed;
7994 dev->irq = pdev->irq;
7995 dev->base_addr = (unsigned long) sp->bar0;
7997 /* Initializing the BAR1 address as the start of the FIFO pointer. */
7998 for (j = 0; j < MAX_TX_FIFOS; j++) {
7999 mac_control->tx_FIFO_start[j] = (struct TxFIFO_element __iomem *)
8000 (sp->bar1 + (j * 0x00020000));
8003 /* Driver entry points */
8004 dev->open = &s2io_open;
8005 dev->stop = &s2io_close;
8006 dev->hard_start_xmit = &s2io_xmit;
8007 dev->get_stats = &s2io_get_stats;
8008 dev->set_multicast_list = &s2io_set_multicast;
8009 dev->do_ioctl = &s2io_ioctl;
8010 dev->set_mac_address = &s2io_set_mac_addr;
8011 dev->change_mtu = &s2io_change_mtu;
8012 SET_ETHTOOL_OPS(dev, &netdev_ethtool_ops);
8013 dev->features |= NETIF_F_HW_VLAN_TX | NETIF_F_HW_VLAN_RX;
8014 dev->vlan_rx_register = s2io_vlan_rx_register;
8015 dev->vlan_rx_kill_vid = (void *)s2io_vlan_rx_kill_vid;
8018 * will use eth_mac_addr() for dev->set_mac_address
8019 * mac address will be set every time dev->open() is called
8021 netif_napi_add(dev, &sp->napi, s2io_poll, 32);
8023 #ifdef CONFIG_NET_POLL_CONTROLLER
8024 dev->poll_controller = s2io_netpoll;
8025 #endif
8027 dev->features |= NETIF_F_SG | NETIF_F_IP_CSUM;
8028 if (sp->high_dma_flag == TRUE)
8029 dev->features |= NETIF_F_HIGHDMA;
8030 dev->features |= NETIF_F_TSO;
8031 dev->features |= NETIF_F_TSO6;
8032 if ((sp->device_type & XFRAME_II_DEVICE) && (ufo)) {
8033 dev->features |= NETIF_F_UFO;
8034 dev->features |= NETIF_F_HW_CSUM;
8036 #ifdef CONFIG_NETDEVICES_MULTIQUEUE
8037 if (config->multiq)
8038 dev->features |= NETIF_F_MULTI_QUEUE;
8039 #endif
8040 dev->tx_timeout = &s2io_tx_watchdog;
8041 dev->watchdog_timeo = WATCH_DOG_TIMEOUT;
8042 INIT_WORK(&sp->rst_timer_task, s2io_restart_nic);
8043 INIT_WORK(&sp->set_link_task, s2io_set_link);
8045 pci_save_state(sp->pdev);
8047 /* Setting swapper control on the NIC, for proper reset operation */
8048 if (s2io_set_swapper(sp)) {
8049 DBG_PRINT(ERR_DBG, "%s:swapper settings are wrong\n",
8050 dev->name);
8051 ret = -EAGAIN;
8052 goto set_swap_failed;
8055 /* Verify if the Herc works on the slot its placed into */
8056 if (sp->device_type & XFRAME_II_DEVICE) {
8057 mode = s2io_verify_pci_mode(sp);
8058 if (mode < 0) {
8059 DBG_PRINT(ERR_DBG, "%s: ", __FUNCTION__);
8060 DBG_PRINT(ERR_DBG, " Unsupported PCI bus mode\n");
8061 ret = -EBADSLT;
8062 goto set_swap_failed;
8066 /* Not needed for Herc */
8067 if (sp->device_type & XFRAME_I_DEVICE) {
8069 * Fix for all "FFs" MAC address problems observed on
8070 * Alpha platforms
8072 fix_mac_address(sp);
8073 s2io_reset(sp);
8077 * MAC address initialization.
8078 * For now only one mac address will be read and used.
8080 bar0 = sp->bar0;
8081 val64 = RMAC_ADDR_CMD_MEM_RD | RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
8082 RMAC_ADDR_CMD_MEM_OFFSET(0 + S2IO_MAC_ADDR_START_OFFSET);
8083 writeq(val64, &bar0->rmac_addr_cmd_mem);
8084 wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
8085 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING, S2IO_BIT_RESET);
8086 tmp64 = readq(&bar0->rmac_addr_data0_mem);
8087 mac_down = (u32) tmp64;
8088 mac_up = (u32) (tmp64 >> 32);
8090 sp->def_mac_addr[0].mac_addr[3] = (u8) (mac_up);
8091 sp->def_mac_addr[0].mac_addr[2] = (u8) (mac_up >> 8);
8092 sp->def_mac_addr[0].mac_addr[1] = (u8) (mac_up >> 16);
8093 sp->def_mac_addr[0].mac_addr[0] = (u8) (mac_up >> 24);
8094 sp->def_mac_addr[0].mac_addr[5] = (u8) (mac_down >> 16);
8095 sp->def_mac_addr[0].mac_addr[4] = (u8) (mac_down >> 24);
8097 /* Set the factory defined MAC address initially */
8098 dev->addr_len = ETH_ALEN;
8099 memcpy(dev->dev_addr, sp->def_mac_addr, ETH_ALEN);
8100 memcpy(dev->perm_addr, dev->dev_addr, ETH_ALEN);
8102 /* initialize number of multicast & unicast MAC entries variables */
8103 if (sp->device_type == XFRAME_I_DEVICE) {
8104 config->max_mc_addr = S2IO_XENA_MAX_MC_ADDRESSES;
8105 config->max_mac_addr = S2IO_XENA_MAX_MAC_ADDRESSES;
8106 config->mc_start_offset = S2IO_XENA_MC_ADDR_START_OFFSET;
8107 } else if (sp->device_type == XFRAME_II_DEVICE) {
8108 config->max_mc_addr = S2IO_HERC_MAX_MC_ADDRESSES;
8109 config->max_mac_addr = S2IO_HERC_MAX_MAC_ADDRESSES;
8110 config->mc_start_offset = S2IO_HERC_MC_ADDR_START_OFFSET;
8113 /* store mac addresses from CAM to s2io_nic structure */
8114 do_s2io_store_unicast_mc(sp);
8116 /* Store the values of the MSIX table in the s2io_nic structure */
8117 store_xmsi_data(sp);
8118 /* reset Nic and bring it to known state */
8119 s2io_reset(sp);
8122 * Initialize the tasklet status and link state flags
8123 * and the card state parameter
8125 sp->tasklet_status = 0;
8126 sp->state = 0;
8128 /* Initialize spinlocks */
8129 for (i = 0; i < sp->config.tx_fifo_num; i++)
8130 spin_lock_init(&mac_control->fifos[i].tx_lock);
8132 if (!napi)
8133 spin_lock_init(&sp->put_lock);
8134 spin_lock_init(&sp->rx_lock);
8137 * SXE-002: Configure link and activity LED to init state
8138 * on driver load.
8140 subid = sp->pdev->subsystem_device;
8141 if ((subid & 0xFF) >= 0x07) {
8142 val64 = readq(&bar0->gpio_control);
8143 val64 |= 0x0000800000000000ULL;
8144 writeq(val64, &bar0->gpio_control);
8145 val64 = 0x0411040400000000ULL;
8146 writeq(val64, (void __iomem *) bar0 + 0x2700);
8147 val64 = readq(&bar0->gpio_control);
8150 sp->rx_csum = 1; /* Rx chksum verify enabled by default */
8152 if (register_netdev(dev)) {
8153 DBG_PRINT(ERR_DBG, "Device registration failed\n");
8154 ret = -ENODEV;
8155 goto register_failed;
8157 s2io_vpd_read(sp);
8158 DBG_PRINT(ERR_DBG, "Copyright(c) 2002-2007 Neterion Inc.\n");
8159 DBG_PRINT(ERR_DBG, "%s: Neterion %s (rev %d)\n",dev->name,
8160 sp->product_name, pdev->revision);
8161 DBG_PRINT(ERR_DBG, "%s: Driver version %s\n", dev->name,
8162 s2io_driver_version);
8163 DBG_PRINT(ERR_DBG, "%s: MAC ADDR: %s\n",
8164 dev->name, print_mac(mac, dev->dev_addr));
8165 DBG_PRINT(ERR_DBG, "SERIAL NUMBER: %s\n", sp->serial_num);
8166 if (sp->device_type & XFRAME_II_DEVICE) {
8167 mode = s2io_print_pci_mode(sp);
8168 if (mode < 0) {
8169 DBG_PRINT(ERR_DBG, " Unsupported PCI bus mode\n");
8170 ret = -EBADSLT;
8171 unregister_netdev(dev);
8172 goto set_swap_failed;
8175 switch(sp->rxd_mode) {
8176 case RXD_MODE_1:
8177 DBG_PRINT(ERR_DBG, "%s: 1-Buffer receive mode enabled\n",
8178 dev->name);
8179 break;
8180 case RXD_MODE_3B:
8181 DBG_PRINT(ERR_DBG, "%s: 2-Buffer receive mode enabled\n",
8182 dev->name);
8183 break;
8186 if (napi)
8187 DBG_PRINT(ERR_DBG, "%s: NAPI enabled\n", dev->name);
8189 DBG_PRINT(ERR_DBG, "%s: Using %d Tx fifo(s)\n", dev->name,
8190 sp->config.tx_fifo_num);
8192 switch(sp->config.intr_type) {
8193 case INTA:
8194 DBG_PRINT(ERR_DBG, "%s: Interrupt type INTA\n", dev->name);
8195 break;
8196 case MSI_X:
8197 DBG_PRINT(ERR_DBG, "%s: Interrupt type MSI-X\n", dev->name);
8198 break;
8200 if (sp->config.multiq) {
8201 for (i = 0; i < sp->config.tx_fifo_num; i++)
8202 mac_control->fifos[i].multiq = config->multiq;
8203 DBG_PRINT(ERR_DBG, "%s: Multiqueue support enabled\n",
8204 dev->name);
8205 } else
8206 DBG_PRINT(ERR_DBG, "%s: Multiqueue support disabled\n",
8207 dev->name);
8209 switch (sp->config.tx_steering_type) {
8210 case NO_STEERING:
8211 DBG_PRINT(ERR_DBG, "%s: No steering enabled for"
8212 " transmit\n", dev->name);
8213 break;
8214 case TX_PRIORITY_STEERING:
8215 DBG_PRINT(ERR_DBG, "%s: Priority steering enabled for"
8216 " transmit\n", dev->name);
8217 break;
8218 case TX_DEFAULT_STEERING:
8219 DBG_PRINT(ERR_DBG, "%s: Default steering enabled for"
8220 " transmit\n", dev->name);
8223 if (sp->lro)
8224 DBG_PRINT(ERR_DBG, "%s: Large receive offload enabled\n",
8225 dev->name);
8226 if (ufo)
8227 DBG_PRINT(ERR_DBG, "%s: UDP Fragmentation Offload(UFO)"
8228 " enabled\n", dev->name);
8229 /* Initialize device name */
8230 sprintf(sp->name, "%s Neterion %s", dev->name, sp->product_name);
8233 * Make Link state as off at this point, when the Link change
8234 * interrupt comes the state will be automatically changed to
8235 * the right state.
8237 netif_carrier_off(dev);
8239 return 0;
8241 register_failed:
8242 set_swap_failed:
8243 iounmap(sp->bar1);
8244 bar1_remap_failed:
8245 iounmap(sp->bar0);
8246 bar0_remap_failed:
8247 mem_alloc_failed:
8248 free_shared_mem(sp);
8249 pci_disable_device(pdev);
8250 pci_release_regions(pdev);
8251 pci_set_drvdata(pdev, NULL);
8252 free_netdev(dev);
8254 return ret;
8258 * s2io_rem_nic - Free the PCI device
8259 * @pdev: structure containing the PCI related information of the device.
8260 * Description: This function is called by the Pci subsystem to release a
8261 * PCI device and free up all resource held up by the device. This could
8262 * be in response to a Hot plug event or when the driver is to be removed
8263 * from memory.
8266 static void __devexit s2io_rem_nic(struct pci_dev *pdev)
8268 struct net_device *dev =
8269 (struct net_device *) pci_get_drvdata(pdev);
8270 struct s2io_nic *sp;
8272 if (dev == NULL) {
8273 DBG_PRINT(ERR_DBG, "Driver Data is NULL!!\n");
8274 return;
8277 flush_scheduled_work();
8279 sp = dev->priv;
8280 unregister_netdev(dev);
8282 free_shared_mem(sp);
8283 iounmap(sp->bar0);
8284 iounmap(sp->bar1);
8285 pci_release_regions(pdev);
8286 pci_set_drvdata(pdev, NULL);
8287 free_netdev(dev);
8288 pci_disable_device(pdev);
8292 * s2io_starter - Entry point for the driver
8293 * Description: This function is the entry point for the driver. It verifies
8294 * the module loadable parameters and initializes PCI configuration space.
8297 static int __init s2io_starter(void)
8299 return pci_register_driver(&s2io_driver);
8303 * s2io_closer - Cleanup routine for the driver
8304 * Description: This function is the cleanup routine for the driver. It unregist * ers the driver.
8307 static __exit void s2io_closer(void)
8309 pci_unregister_driver(&s2io_driver);
8310 DBG_PRINT(INIT_DBG, "cleanup done\n");
8313 module_init(s2io_starter);
8314 module_exit(s2io_closer);
8316 static int check_L2_lro_capable(u8 *buffer, struct iphdr **ip,
8317 struct tcphdr **tcp, struct RxD_t *rxdp,
8318 struct s2io_nic *sp)
8320 int ip_off;
8321 u8 l2_type = (u8)((rxdp->Control_1 >> 37) & 0x7), ip_len;
8323 if (!(rxdp->Control_1 & RXD_FRAME_PROTO_TCP)) {
8324 DBG_PRINT(INIT_DBG,"%s: Non-TCP frames not supported for LRO\n",
8325 __FUNCTION__);
8326 return -1;
8329 /* Checking for DIX type or DIX type with VLAN */
8330 if ((l2_type == 0)
8331 || (l2_type == 4)) {
8332 ip_off = HEADER_ETHERNET_II_802_3_SIZE;
8334 * If vlan stripping is disabled and the frame is VLAN tagged,
8335 * shift the offset by the VLAN header size bytes.
8337 if ((!vlan_strip_flag) &&
8338 (rxdp->Control_1 & RXD_FRAME_VLAN_TAG))
8339 ip_off += HEADER_VLAN_SIZE;
8340 } else {
8341 /* LLC, SNAP etc are considered non-mergeable */
8342 return -1;
8345 *ip = (struct iphdr *)((u8 *)buffer + ip_off);
8346 ip_len = (u8)((*ip)->ihl);
8347 ip_len <<= 2;
8348 *tcp = (struct tcphdr *)((unsigned long)*ip + ip_len);
8350 return 0;
8353 static int check_for_socket_match(struct lro *lro, struct iphdr *ip,
8354 struct tcphdr *tcp)
8356 DBG_PRINT(INFO_DBG,"%s: Been here...\n", __FUNCTION__);
8357 if ((lro->iph->saddr != ip->saddr) || (lro->iph->daddr != ip->daddr) ||
8358 (lro->tcph->source != tcp->source) || (lro->tcph->dest != tcp->dest))
8359 return -1;
8360 return 0;
8363 static inline int get_l4_pyld_length(struct iphdr *ip, struct tcphdr *tcp)
8365 return(ntohs(ip->tot_len) - (ip->ihl << 2) - (tcp->doff << 2));
8368 static void initiate_new_session(struct lro *lro, u8 *l2h,
8369 struct iphdr *ip, struct tcphdr *tcp, u32 tcp_pyld_len, u16 vlan_tag)
8371 DBG_PRINT(INFO_DBG,"%s: Been here...\n", __FUNCTION__);
8372 lro->l2h = l2h;
8373 lro->iph = ip;
8374 lro->tcph = tcp;
8375 lro->tcp_next_seq = tcp_pyld_len + ntohl(tcp->seq);
8376 lro->tcp_ack = tcp->ack_seq;
8377 lro->sg_num = 1;
8378 lro->total_len = ntohs(ip->tot_len);
8379 lro->frags_len = 0;
8380 lro->vlan_tag = vlan_tag;
8382 * check if we saw TCP timestamp. Other consistency checks have
8383 * already been done.
8385 if (tcp->doff == 8) {
8386 __be32 *ptr;
8387 ptr = (__be32 *)(tcp+1);
8388 lro->saw_ts = 1;
8389 lro->cur_tsval = ntohl(*(ptr+1));
8390 lro->cur_tsecr = *(ptr+2);
8392 lro->in_use = 1;
8395 static void update_L3L4_header(struct s2io_nic *sp, struct lro *lro)
8397 struct iphdr *ip = lro->iph;
8398 struct tcphdr *tcp = lro->tcph;
8399 __sum16 nchk;
8400 struct stat_block *statinfo = sp->mac_control.stats_info;
8401 DBG_PRINT(INFO_DBG,"%s: Been here...\n", __FUNCTION__);
8403 /* Update L3 header */
8404 ip->tot_len = htons(lro->total_len);
8405 ip->check = 0;
8406 nchk = ip_fast_csum((u8 *)lro->iph, ip->ihl);
8407 ip->check = nchk;
8409 /* Update L4 header */
8410 tcp->ack_seq = lro->tcp_ack;
8411 tcp->window = lro->window;
8413 /* Update tsecr field if this session has timestamps enabled */
8414 if (lro->saw_ts) {
8415 __be32 *ptr = (__be32 *)(tcp + 1);
8416 *(ptr+2) = lro->cur_tsecr;
8419 /* Update counters required for calculation of
8420 * average no. of packets aggregated.
8422 statinfo->sw_stat.sum_avg_pkts_aggregated += lro->sg_num;
8423 statinfo->sw_stat.num_aggregations++;
8426 static void aggregate_new_rx(struct lro *lro, struct iphdr *ip,
8427 struct tcphdr *tcp, u32 l4_pyld)
8429 DBG_PRINT(INFO_DBG,"%s: Been here...\n", __FUNCTION__);
8430 lro->total_len += l4_pyld;
8431 lro->frags_len += l4_pyld;
8432 lro->tcp_next_seq += l4_pyld;
8433 lro->sg_num++;
8435 /* Update ack seq no. and window ad(from this pkt) in LRO object */
8436 lro->tcp_ack = tcp->ack_seq;
8437 lro->window = tcp->window;
8439 if (lro->saw_ts) {
8440 __be32 *ptr;
8441 /* Update tsecr and tsval from this packet */
8442 ptr = (__be32 *)(tcp+1);
8443 lro->cur_tsval = ntohl(*(ptr+1));
8444 lro->cur_tsecr = *(ptr + 2);
8448 static int verify_l3_l4_lro_capable(struct lro *l_lro, struct iphdr *ip,
8449 struct tcphdr *tcp, u32 tcp_pyld_len)
8451 u8 *ptr;
8453 DBG_PRINT(INFO_DBG,"%s: Been here...\n", __FUNCTION__);
8455 if (!tcp_pyld_len) {
8456 /* Runt frame or a pure ack */
8457 return -1;
8460 if (ip->ihl != 5) /* IP has options */
8461 return -1;
8463 /* If we see CE codepoint in IP header, packet is not mergeable */
8464 if (INET_ECN_is_ce(ipv4_get_dsfield(ip)))
8465 return -1;
8467 /* If we see ECE or CWR flags in TCP header, packet is not mergeable */
8468 if (tcp->urg || tcp->psh || tcp->rst || tcp->syn || tcp->fin ||
8469 tcp->ece || tcp->cwr || !tcp->ack) {
8471 * Currently recognize only the ack control word and
8472 * any other control field being set would result in
8473 * flushing the LRO session
8475 return -1;
8479 * Allow only one TCP timestamp option. Don't aggregate if
8480 * any other options are detected.
8482 if (tcp->doff != 5 && tcp->doff != 8)
8483 return -1;
8485 if (tcp->doff == 8) {
8486 ptr = (u8 *)(tcp + 1);
8487 while (*ptr == TCPOPT_NOP)
8488 ptr++;
8489 if (*ptr != TCPOPT_TIMESTAMP || *(ptr+1) != TCPOLEN_TIMESTAMP)
8490 return -1;
8492 /* Ensure timestamp value increases monotonically */
8493 if (l_lro)
8494 if (l_lro->cur_tsval > ntohl(*((__be32 *)(ptr+2))))
8495 return -1;
8497 /* timestamp echo reply should be non-zero */
8498 if (*((__be32 *)(ptr+6)) == 0)
8499 return -1;
8502 return 0;
8505 static int
8506 s2io_club_tcp_session(u8 *buffer, u8 **tcp, u32 *tcp_len, struct lro **lro,
8507 struct RxD_t *rxdp, struct s2io_nic *sp)
8509 struct iphdr *ip;
8510 struct tcphdr *tcph;
8511 int ret = 0, i;
8512 u16 vlan_tag = 0;
8514 if (!(ret = check_L2_lro_capable(buffer, &ip, (struct tcphdr **)tcp,
8515 rxdp, sp))) {
8516 DBG_PRINT(INFO_DBG,"IP Saddr: %x Daddr: %x\n",
8517 ip->saddr, ip->daddr);
8518 } else
8519 return ret;
8521 vlan_tag = RXD_GET_VLAN_TAG(rxdp->Control_2);
8522 tcph = (struct tcphdr *)*tcp;
8523 *tcp_len = get_l4_pyld_length(ip, tcph);
8524 for (i=0; i<MAX_LRO_SESSIONS; i++) {
8525 struct lro *l_lro = &sp->lro0_n[i];
8526 if (l_lro->in_use) {
8527 if (check_for_socket_match(l_lro, ip, tcph))
8528 continue;
8529 /* Sock pair matched */
8530 *lro = l_lro;
8532 if ((*lro)->tcp_next_seq != ntohl(tcph->seq)) {
8533 DBG_PRINT(INFO_DBG, "%s:Out of order. expected "
8534 "0x%x, actual 0x%x\n", __FUNCTION__,
8535 (*lro)->tcp_next_seq,
8536 ntohl(tcph->seq));
8538 sp->mac_control.stats_info->
8539 sw_stat.outof_sequence_pkts++;
8540 ret = 2;
8541 break;
8544 if (!verify_l3_l4_lro_capable(l_lro, ip, tcph,*tcp_len))
8545 ret = 1; /* Aggregate */
8546 else
8547 ret = 2; /* Flush both */
8548 break;
8552 if (ret == 0) {
8553 /* Before searching for available LRO objects,
8554 * check if the pkt is L3/L4 aggregatable. If not
8555 * don't create new LRO session. Just send this
8556 * packet up.
8558 if (verify_l3_l4_lro_capable(NULL, ip, tcph, *tcp_len)) {
8559 return 5;
8562 for (i=0; i<MAX_LRO_SESSIONS; i++) {
8563 struct lro *l_lro = &sp->lro0_n[i];
8564 if (!(l_lro->in_use)) {
8565 *lro = l_lro;
8566 ret = 3; /* Begin anew */
8567 break;
8572 if (ret == 0) { /* sessions exceeded */
8573 DBG_PRINT(INFO_DBG,"%s:All LRO sessions already in use\n",
8574 __FUNCTION__);
8575 *lro = NULL;
8576 return ret;
8579 switch (ret) {
8580 case 3:
8581 initiate_new_session(*lro, buffer, ip, tcph, *tcp_len,
8582 vlan_tag);
8583 break;
8584 case 2:
8585 update_L3L4_header(sp, *lro);
8586 break;
8587 case 1:
8588 aggregate_new_rx(*lro, ip, tcph, *tcp_len);
8589 if ((*lro)->sg_num == sp->lro_max_aggr_per_sess) {
8590 update_L3L4_header(sp, *lro);
8591 ret = 4; /* Flush the LRO */
8593 break;
8594 default:
8595 DBG_PRINT(ERR_DBG,"%s:Dont know, can't say!!\n",
8596 __FUNCTION__);
8597 break;
8600 return ret;
8603 static void clear_lro_session(struct lro *lro)
8605 static u16 lro_struct_size = sizeof(struct lro);
8607 memset(lro, 0, lro_struct_size);
8610 static void queue_rx_frame(struct sk_buff *skb, u16 vlan_tag)
8612 struct net_device *dev = skb->dev;
8613 struct s2io_nic *sp = dev->priv;
8615 skb->protocol = eth_type_trans(skb, dev);
8616 if (sp->vlgrp && vlan_tag
8617 && (vlan_strip_flag)) {
8618 /* Queueing the vlan frame to the upper layer */
8619 if (sp->config.napi)
8620 vlan_hwaccel_receive_skb(skb, sp->vlgrp, vlan_tag);
8621 else
8622 vlan_hwaccel_rx(skb, sp->vlgrp, vlan_tag);
8623 } else {
8624 if (sp->config.napi)
8625 netif_receive_skb(skb);
8626 else
8627 netif_rx(skb);
8631 static void lro_append_pkt(struct s2io_nic *sp, struct lro *lro,
8632 struct sk_buff *skb,
8633 u32 tcp_len)
8635 struct sk_buff *first = lro->parent;
8637 first->len += tcp_len;
8638 first->data_len = lro->frags_len;
8639 skb_pull(skb, (skb->len - tcp_len));
8640 if (skb_shinfo(first)->frag_list)
8641 lro->last_frag->next = skb;
8642 else
8643 skb_shinfo(first)->frag_list = skb;
8644 first->truesize += skb->truesize;
8645 lro->last_frag = skb;
8646 sp->mac_control.stats_info->sw_stat.clubbed_frms_cnt++;
8647 return;
8651 * s2io_io_error_detected - called when PCI error is detected
8652 * @pdev: Pointer to PCI device
8653 * @state: The current pci connection state
8655 * This function is called after a PCI bus error affecting
8656 * this device has been detected.
8658 static pci_ers_result_t s2io_io_error_detected(struct pci_dev *pdev,
8659 pci_channel_state_t state)
8661 struct net_device *netdev = pci_get_drvdata(pdev);
8662 struct s2io_nic *sp = netdev->priv;
8664 netif_device_detach(netdev);
8666 if (netif_running(netdev)) {
8667 /* Bring down the card, while avoiding PCI I/O */
8668 do_s2io_card_down(sp, 0);
8670 pci_disable_device(pdev);
8672 return PCI_ERS_RESULT_NEED_RESET;
8676 * s2io_io_slot_reset - called after the pci bus has been reset.
8677 * @pdev: Pointer to PCI device
8679 * Restart the card from scratch, as if from a cold-boot.
8680 * At this point, the card has exprienced a hard reset,
8681 * followed by fixups by BIOS, and has its config space
8682 * set up identically to what it was at cold boot.
8684 static pci_ers_result_t s2io_io_slot_reset(struct pci_dev *pdev)
8686 struct net_device *netdev = pci_get_drvdata(pdev);
8687 struct s2io_nic *sp = netdev->priv;
8689 if (pci_enable_device(pdev)) {
8690 printk(KERN_ERR "s2io: "
8691 "Cannot re-enable PCI device after reset.\n");
8692 return PCI_ERS_RESULT_DISCONNECT;
8695 pci_set_master(pdev);
8696 s2io_reset(sp);
8698 return PCI_ERS_RESULT_RECOVERED;
8702 * s2io_io_resume - called when traffic can start flowing again.
8703 * @pdev: Pointer to PCI device
8705 * This callback is called when the error recovery driver tells
8706 * us that its OK to resume normal operation.
8708 static void s2io_io_resume(struct pci_dev *pdev)
8710 struct net_device *netdev = pci_get_drvdata(pdev);
8711 struct s2io_nic *sp = netdev->priv;
8713 if (netif_running(netdev)) {
8714 if (s2io_card_up(sp)) {
8715 printk(KERN_ERR "s2io: "
8716 "Can't bring device back up after reset.\n");
8717 return;
8720 if (s2io_set_mac_addr(netdev, netdev->dev_addr) == FAILURE) {
8721 s2io_card_down(sp);
8722 printk(KERN_ERR "s2io: "
8723 "Can't resetore mac addr after reset.\n");
8724 return;
8728 netif_device_attach(netdev);
8729 netif_wake_queue(netdev);