2 * Copyright (c) 2003-2006, Cluster File Systems, Inc, info@clusterfs.com
3 * Written by Alex Tomas <alex@clusterfs.com>
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License version 2 as
7 * published by the Free Software Foundation.
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public Licens
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-
21 * mballoc.c contains the multiblocks allocation routines
25 #include <linux/debugfs.h>
26 #include <linux/slab.h>
27 #include <trace/events/ext4.h>
31 * - test ext4_ext_search_left() and ext4_ext_search_right()
32 * - search for metadata in few groups
35 * - normalization should take into account whether file is still open
36 * - discard preallocations if no free space left (policy?)
37 * - don't normalize tails
39 * - reservation for superuser
42 * - bitmap read-ahead (proposed by Oleg Drokin aka green)
43 * - track min/max extents in each group for better group selection
44 * - mb_mark_used() may allocate chunk right after splitting buddy
45 * - tree of groups sorted by number of free blocks
50 * The allocation request involve request for multiple number of blocks
51 * near to the goal(block) value specified.
53 * During initialization phase of the allocator we decide to use the
54 * group preallocation or inode preallocation depending on the size of
55 * the file. The size of the file could be the resulting file size we
56 * would have after allocation, or the current file size, which ever
57 * is larger. If the size is less than sbi->s_mb_stream_request we
58 * select to use the group preallocation. The default value of
59 * s_mb_stream_request is 16 blocks. This can also be tuned via
60 * /sys/fs/ext4/<partition>/mb_stream_req. The value is represented in
61 * terms of number of blocks.
63 * The main motivation for having small file use group preallocation is to
64 * ensure that we have small files closer together on the disk.
66 * First stage the allocator looks at the inode prealloc list,
67 * ext4_inode_info->i_prealloc_list, which contains list of prealloc
68 * spaces for this particular inode. The inode prealloc space is
71 * pa_lstart -> the logical start block for this prealloc space
72 * pa_pstart -> the physical start block for this prealloc space
73 * pa_len -> length for this prealloc space
74 * pa_free -> free space available in this prealloc space
76 * The inode preallocation space is used looking at the _logical_ start
77 * block. If only the logical file block falls within the range of prealloc
78 * space we will consume the particular prealloc space. This make sure that
79 * that the we have contiguous physical blocks representing the file blocks
81 * The important thing to be noted in case of inode prealloc space is that
82 * we don't modify the values associated to inode prealloc space except
85 * If we are not able to find blocks in the inode prealloc space and if we
86 * have the group allocation flag set then we look at the locality group
87 * prealloc space. These are per CPU prealloc list repreasented as
89 * ext4_sb_info.s_locality_groups[smp_processor_id()]
91 * The reason for having a per cpu locality group is to reduce the contention
92 * between CPUs. It is possible to get scheduled at this point.
94 * The locality group prealloc space is used looking at whether we have
95 * enough free space (pa_free) withing the prealloc space.
97 * If we can't allocate blocks via inode prealloc or/and locality group
98 * prealloc then we look at the buddy cache. The buddy cache is represented
99 * by ext4_sb_info.s_buddy_cache (struct inode) whose file offset gets
100 * mapped to the buddy and bitmap information regarding different
101 * groups. The buddy information is attached to buddy cache inode so that
102 * we can access them through the page cache. The information regarding
103 * each group is loaded via ext4_mb_load_buddy. The information involve
104 * block bitmap and buddy information. The information are stored in the
108 * [ group 0 bitmap][ group 0 buddy] [group 1][ group 1]...
111 * one block each for bitmap and buddy information. So for each group we
112 * take up 2 blocks. A page can contain blocks_per_page (PAGE_CACHE_SIZE /
113 * blocksize) blocks. So it can have information regarding groups_per_page
114 * which is blocks_per_page/2
116 * The buddy cache inode is not stored on disk. The inode is thrown
117 * away when the filesystem is unmounted.
119 * We look for count number of blocks in the buddy cache. If we were able
120 * to locate that many free blocks we return with additional information
121 * regarding rest of the contiguous physical block available
123 * Before allocating blocks via buddy cache we normalize the request
124 * blocks. This ensure we ask for more blocks that we needed. The extra
125 * blocks that we get after allocation is added to the respective prealloc
126 * list. In case of inode preallocation we follow a list of heuristics
127 * based on file size. This can be found in ext4_mb_normalize_request. If
128 * we are doing a group prealloc we try to normalize the request to
129 * sbi->s_mb_group_prealloc. Default value of s_mb_group_prealloc is
130 * 512 blocks. This can be tuned via
131 * /sys/fs/ext4/<partition/mb_group_prealloc. The value is represented in
132 * terms of number of blocks. If we have mounted the file system with -O
133 * stripe=<value> option the group prealloc request is normalized to the
134 * stripe value (sbi->s_stripe)
136 * The regular allocator(using the buddy cache) supports few tunables.
138 * /sys/fs/ext4/<partition>/mb_min_to_scan
139 * /sys/fs/ext4/<partition>/mb_max_to_scan
140 * /sys/fs/ext4/<partition>/mb_order2_req
142 * The regular allocator uses buddy scan only if the request len is power of
143 * 2 blocks and the order of allocation is >= sbi->s_mb_order2_reqs. The
144 * value of s_mb_order2_reqs can be tuned via
145 * /sys/fs/ext4/<partition>/mb_order2_req. If the request len is equal to
146 * stripe size (sbi->s_stripe), we try to search for contiguous block in
147 * stripe size. This should result in better allocation on RAID setups. If
148 * not, we search in the specific group using bitmap for best extents. The
149 * tunable min_to_scan and max_to_scan control the behaviour here.
150 * min_to_scan indicate how long the mballoc __must__ look for a best
151 * extent and max_to_scan indicates how long the mballoc __can__ look for a
152 * best extent in the found extents. Searching for the blocks starts with
153 * the group specified as the goal value in allocation context via
154 * ac_g_ex. Each group is first checked based on the criteria whether it
155 * can used for allocation. ext4_mb_good_group explains how the groups are
158 * Both the prealloc space are getting populated as above. So for the first
159 * request we will hit the buddy cache which will result in this prealloc
160 * space getting filled. The prealloc space is then later used for the
161 * subsequent request.
165 * mballoc operates on the following data:
167 * - in-core buddy (actually includes buddy and bitmap)
168 * - preallocation descriptors (PAs)
170 * there are two types of preallocations:
172 * assiged to specific inode and can be used for this inode only.
173 * it describes part of inode's space preallocated to specific
174 * physical blocks. any block from that preallocated can be used
175 * independent. the descriptor just tracks number of blocks left
176 * unused. so, before taking some block from descriptor, one must
177 * make sure corresponded logical block isn't allocated yet. this
178 * also means that freeing any block within descriptor's range
179 * must discard all preallocated blocks.
181 * assigned to specific locality group which does not translate to
182 * permanent set of inodes: inode can join and leave group. space
183 * from this type of preallocation can be used for any inode. thus
184 * it's consumed from the beginning to the end.
186 * relation between them can be expressed as:
187 * in-core buddy = on-disk bitmap + preallocation descriptors
189 * this mean blocks mballoc considers used are:
190 * - allocated blocks (persistent)
191 * - preallocated blocks (non-persistent)
193 * consistency in mballoc world means that at any time a block is either
194 * free or used in ALL structures. notice: "any time" should not be read
195 * literally -- time is discrete and delimited by locks.
197 * to keep it simple, we don't use block numbers, instead we count number of
198 * blocks: how many blocks marked used/free in on-disk bitmap, buddy and PA.
200 * all operations can be expressed as:
201 * - init buddy: buddy = on-disk + PAs
202 * - new PA: buddy += N; PA = N
203 * - use inode PA: on-disk += N; PA -= N
204 * - discard inode PA buddy -= on-disk - PA; PA = 0
205 * - use locality group PA on-disk += N; PA -= N
206 * - discard locality group PA buddy -= PA; PA = 0
207 * note: 'buddy -= on-disk - PA' is used to show that on-disk bitmap
208 * is used in real operation because we can't know actual used
209 * bits from PA, only from on-disk bitmap
211 * if we follow this strict logic, then all operations above should be atomic.
212 * given some of them can block, we'd have to use something like semaphores
213 * killing performance on high-end SMP hardware. let's try to relax it using
214 * the following knowledge:
215 * 1) if buddy is referenced, it's already initialized
216 * 2) while block is used in buddy and the buddy is referenced,
217 * nobody can re-allocate that block
218 * 3) we work on bitmaps and '+' actually means 'set bits'. if on-disk has
219 * bit set and PA claims same block, it's OK. IOW, one can set bit in
220 * on-disk bitmap if buddy has same bit set or/and PA covers corresponded
223 * so, now we're building a concurrency table:
226 * blocks for PA are allocated in the buddy, buddy must be referenced
227 * until PA is linked to allocation group to avoid concurrent buddy init
229 * we need to make sure that either on-disk bitmap or PA has uptodate data
230 * given (3) we care that PA-=N operation doesn't interfere with init
232 * the simplest way would be to have buddy initialized by the discard
233 * - use locality group PA
234 * again PA-=N must be serialized with init
235 * - discard locality group PA
236 * the simplest way would be to have buddy initialized by the discard
239 * i_data_sem serializes them
241 * discard process must wait until PA isn't used by another process
242 * - use locality group PA
243 * some mutex should serialize them
244 * - discard locality group PA
245 * discard process must wait until PA isn't used by another process
248 * i_data_sem or another mutex should serializes them
250 * discard process must wait until PA isn't used by another process
251 * - use locality group PA
252 * nothing wrong here -- they're different PAs covering different blocks
253 * - discard locality group PA
254 * discard process must wait until PA isn't used by another process
256 * now we're ready to make few consequences:
257 * - PA is referenced and while it is no discard is possible
258 * - PA is referenced until block isn't marked in on-disk bitmap
259 * - PA changes only after on-disk bitmap
260 * - discard must not compete with init. either init is done before
261 * any discard or they're serialized somehow
262 * - buddy init as sum of on-disk bitmap and PAs is done atomically
264 * a special case when we've used PA to emptiness. no need to modify buddy
265 * in this case, but we should care about concurrent init
270 * Logic in few words:
275 * mark bits in on-disk bitmap
278 * - use preallocation:
279 * find proper PA (per-inode or group)
281 * mark bits in on-disk bitmap
287 * mark bits in on-disk bitmap
290 * - discard preallocations in group:
292 * move them onto local list
293 * load on-disk bitmap
295 * remove PA from object (inode or locality group)
296 * mark free blocks in-core
298 * - discard inode's preallocations:
305 * - bitlock on a group (group)
306 * - object (inode/locality) (object)
317 * - release consumed pa:
322 * - generate in-core bitmap:
326 * - discard all for given object (inode, locality group):
331 * - discard all for given group:
338 static struct kmem_cache
*ext4_pspace_cachep
;
339 static struct kmem_cache
*ext4_ac_cachep
;
340 static struct kmem_cache
*ext4_free_ext_cachep
;
341 static void ext4_mb_generate_from_pa(struct super_block
*sb
, void *bitmap
,
343 static void ext4_mb_generate_from_freelist(struct super_block
*sb
, void *bitmap
,
345 static void release_blocks_on_commit(journal_t
*journal
, transaction_t
*txn
);
347 static inline void *mb_correct_addr_and_bit(int *bit
, void *addr
)
349 #if BITS_PER_LONG == 64
350 *bit
+= ((unsigned long) addr
& 7UL) << 3;
351 addr
= (void *) ((unsigned long) addr
& ~7UL);
352 #elif BITS_PER_LONG == 32
353 *bit
+= ((unsigned long) addr
& 3UL) << 3;
354 addr
= (void *) ((unsigned long) addr
& ~3UL);
356 #error "how many bits you are?!"
361 static inline int mb_test_bit(int bit
, void *addr
)
364 * ext4_test_bit on architecture like powerpc
365 * needs unsigned long aligned address
367 addr
= mb_correct_addr_and_bit(&bit
, addr
);
368 return ext4_test_bit(bit
, addr
);
371 static inline void mb_set_bit(int bit
, void *addr
)
373 addr
= mb_correct_addr_and_bit(&bit
, addr
);
374 ext4_set_bit(bit
, addr
);
377 static inline void mb_clear_bit(int bit
, void *addr
)
379 addr
= mb_correct_addr_and_bit(&bit
, addr
);
380 ext4_clear_bit(bit
, addr
);
383 static inline int mb_find_next_zero_bit(void *addr
, int max
, int start
)
385 int fix
= 0, ret
, tmpmax
;
386 addr
= mb_correct_addr_and_bit(&fix
, addr
);
390 ret
= ext4_find_next_zero_bit(addr
, tmpmax
, start
) - fix
;
396 static inline int mb_find_next_bit(void *addr
, int max
, int start
)
398 int fix
= 0, ret
, tmpmax
;
399 addr
= mb_correct_addr_and_bit(&fix
, addr
);
403 ret
= ext4_find_next_bit(addr
, tmpmax
, start
) - fix
;
409 static void *mb_find_buddy(struct ext4_buddy
*e4b
, int order
, int *max
)
413 BUG_ON(EXT4_MB_BITMAP(e4b
) == EXT4_MB_BUDDY(e4b
));
416 if (order
> e4b
->bd_blkbits
+ 1) {
421 /* at order 0 we see each particular block */
422 *max
= 1 << (e4b
->bd_blkbits
+ 3);
424 return EXT4_MB_BITMAP(e4b
);
426 bb
= EXT4_MB_BUDDY(e4b
) + EXT4_SB(e4b
->bd_sb
)->s_mb_offsets
[order
];
427 *max
= EXT4_SB(e4b
->bd_sb
)->s_mb_maxs
[order
];
433 static void mb_free_blocks_double(struct inode
*inode
, struct ext4_buddy
*e4b
,
434 int first
, int count
)
437 struct super_block
*sb
= e4b
->bd_sb
;
439 if (unlikely(e4b
->bd_info
->bb_bitmap
== NULL
))
441 assert_spin_locked(ext4_group_lock_ptr(sb
, e4b
->bd_group
));
442 for (i
= 0; i
< count
; i
++) {
443 if (!mb_test_bit(first
+ i
, e4b
->bd_info
->bb_bitmap
)) {
444 ext4_fsblk_t blocknr
;
446 blocknr
= ext4_group_first_block_no(sb
, e4b
->bd_group
);
447 blocknr
+= first
+ i
;
448 ext4_grp_locked_error(sb
, e4b
->bd_group
,
449 __func__
, "double-free of inode"
450 " %lu's block %llu(bit %u in group %u)",
451 inode
? inode
->i_ino
: 0, blocknr
,
452 first
+ i
, e4b
->bd_group
);
454 mb_clear_bit(first
+ i
, e4b
->bd_info
->bb_bitmap
);
458 static void mb_mark_used_double(struct ext4_buddy
*e4b
, int first
, int count
)
462 if (unlikely(e4b
->bd_info
->bb_bitmap
== NULL
))
464 assert_spin_locked(ext4_group_lock_ptr(e4b
->bd_sb
, e4b
->bd_group
));
465 for (i
= 0; i
< count
; i
++) {
466 BUG_ON(mb_test_bit(first
+ i
, e4b
->bd_info
->bb_bitmap
));
467 mb_set_bit(first
+ i
, e4b
->bd_info
->bb_bitmap
);
471 static void mb_cmp_bitmaps(struct ext4_buddy
*e4b
, void *bitmap
)
473 if (memcmp(e4b
->bd_info
->bb_bitmap
, bitmap
, e4b
->bd_sb
->s_blocksize
)) {
474 unsigned char *b1
, *b2
;
476 b1
= (unsigned char *) e4b
->bd_info
->bb_bitmap
;
477 b2
= (unsigned char *) bitmap
;
478 for (i
= 0; i
< e4b
->bd_sb
->s_blocksize
; i
++) {
479 if (b1
[i
] != b2
[i
]) {
480 printk(KERN_ERR
"corruption in group %u "
481 "at byte %u(%u): %x in copy != %x "
482 "on disk/prealloc\n",
483 e4b
->bd_group
, i
, i
* 8, b1
[i
], b2
[i
]);
491 static inline void mb_free_blocks_double(struct inode
*inode
,
492 struct ext4_buddy
*e4b
, int first
, int count
)
496 static inline void mb_mark_used_double(struct ext4_buddy
*e4b
,
497 int first
, int count
)
501 static inline void mb_cmp_bitmaps(struct ext4_buddy
*e4b
, void *bitmap
)
507 #ifdef AGGRESSIVE_CHECK
509 #define MB_CHECK_ASSERT(assert) \
513 "Assertion failure in %s() at %s:%d: \"%s\"\n", \
514 function, file, line, # assert); \
519 static int __mb_check_buddy(struct ext4_buddy
*e4b
, char *file
,
520 const char *function
, int line
)
522 struct super_block
*sb
= e4b
->bd_sb
;
523 int order
= e4b
->bd_blkbits
+ 1;
530 struct ext4_group_info
*grp
;
533 struct list_head
*cur
;
538 static int mb_check_counter
;
539 if (mb_check_counter
++ % 100 != 0)
544 buddy
= mb_find_buddy(e4b
, order
, &max
);
545 MB_CHECK_ASSERT(buddy
);
546 buddy2
= mb_find_buddy(e4b
, order
- 1, &max2
);
547 MB_CHECK_ASSERT(buddy2
);
548 MB_CHECK_ASSERT(buddy
!= buddy2
);
549 MB_CHECK_ASSERT(max
* 2 == max2
);
552 for (i
= 0; i
< max
; i
++) {
554 if (mb_test_bit(i
, buddy
)) {
555 /* only single bit in buddy2 may be 1 */
556 if (!mb_test_bit(i
<< 1, buddy2
)) {
558 mb_test_bit((i
<<1)+1, buddy2
));
559 } else if (!mb_test_bit((i
<< 1) + 1, buddy2
)) {
561 mb_test_bit(i
<< 1, buddy2
));
566 /* both bits in buddy2 must be 0 */
567 MB_CHECK_ASSERT(mb_test_bit(i
<< 1, buddy2
));
568 MB_CHECK_ASSERT(mb_test_bit((i
<< 1) + 1, buddy2
));
570 for (j
= 0; j
< (1 << order
); j
++) {
571 k
= (i
* (1 << order
)) + j
;
573 !mb_test_bit(k
, EXT4_MB_BITMAP(e4b
)));
577 MB_CHECK_ASSERT(e4b
->bd_info
->bb_counters
[order
] == count
);
582 buddy
= mb_find_buddy(e4b
, 0, &max
);
583 for (i
= 0; i
< max
; i
++) {
584 if (!mb_test_bit(i
, buddy
)) {
585 MB_CHECK_ASSERT(i
>= e4b
->bd_info
->bb_first_free
);
593 /* check used bits only */
594 for (j
= 0; j
< e4b
->bd_blkbits
+ 1; j
++) {
595 buddy2
= mb_find_buddy(e4b
, j
, &max2
);
597 MB_CHECK_ASSERT(k
< max2
);
598 MB_CHECK_ASSERT(mb_test_bit(k
, buddy2
));
601 MB_CHECK_ASSERT(!EXT4_MB_GRP_NEED_INIT(e4b
->bd_info
));
602 MB_CHECK_ASSERT(e4b
->bd_info
->bb_fragments
== fragments
);
604 grp
= ext4_get_group_info(sb
, e4b
->bd_group
);
605 buddy
= mb_find_buddy(e4b
, 0, &max
);
606 list_for_each(cur
, &grp
->bb_prealloc_list
) {
607 ext4_group_t groupnr
;
608 struct ext4_prealloc_space
*pa
;
609 pa
= list_entry(cur
, struct ext4_prealloc_space
, pa_group_list
);
610 ext4_get_group_no_and_offset(sb
, pa
->pa_pstart
, &groupnr
, &k
);
611 MB_CHECK_ASSERT(groupnr
== e4b
->bd_group
);
612 for (i
= 0; i
< pa
->pa_len
; i
++)
613 MB_CHECK_ASSERT(mb_test_bit(k
+ i
, buddy
));
617 #undef MB_CHECK_ASSERT
618 #define mb_check_buddy(e4b) __mb_check_buddy(e4b, \
619 __FILE__, __func__, __LINE__)
621 #define mb_check_buddy(e4b)
624 /* FIXME!! need more doc */
625 static void ext4_mb_mark_free_simple(struct super_block
*sb
,
626 void *buddy
, ext4_grpblk_t first
, ext4_grpblk_t len
,
627 struct ext4_group_info
*grp
)
629 struct ext4_sb_info
*sbi
= EXT4_SB(sb
);
633 unsigned short border
;
635 BUG_ON(len
> EXT4_BLOCKS_PER_GROUP(sb
));
637 border
= 2 << sb
->s_blocksize_bits
;
640 /* find how many blocks can be covered since this position */
641 max
= ffs(first
| border
) - 1;
643 /* find how many blocks of power 2 we need to mark */
650 /* mark multiblock chunks only */
651 grp
->bb_counters
[min
]++;
653 mb_clear_bit(first
>> min
,
654 buddy
+ sbi
->s_mb_offsets
[min
]);
661 static noinline_for_stack
662 void ext4_mb_generate_buddy(struct super_block
*sb
,
663 void *buddy
, void *bitmap
, ext4_group_t group
)
665 struct ext4_group_info
*grp
= ext4_get_group_info(sb
, group
);
666 ext4_grpblk_t max
= EXT4_BLOCKS_PER_GROUP(sb
);
671 unsigned fragments
= 0;
672 unsigned long long period
= get_cycles();
674 /* initialize buddy from bitmap which is aggregation
675 * of on-disk bitmap and preallocations */
676 i
= mb_find_next_zero_bit(bitmap
, max
, 0);
677 grp
->bb_first_free
= i
;
681 i
= mb_find_next_bit(bitmap
, max
, i
);
685 ext4_mb_mark_free_simple(sb
, buddy
, first
, len
, grp
);
687 grp
->bb_counters
[0]++;
689 i
= mb_find_next_zero_bit(bitmap
, max
, i
);
691 grp
->bb_fragments
= fragments
;
693 if (free
!= grp
->bb_free
) {
694 ext4_grp_locked_error(sb
, group
, __func__
,
695 "EXT4-fs: group %u: %u blocks in bitmap, %u in gd",
696 group
, free
, grp
->bb_free
);
698 * If we intent to continue, we consider group descritor
699 * corrupt and update bb_free using bitmap value
704 clear_bit(EXT4_GROUP_INFO_NEED_INIT_BIT
, &(grp
->bb_state
));
706 period
= get_cycles() - period
;
707 spin_lock(&EXT4_SB(sb
)->s_bal_lock
);
708 EXT4_SB(sb
)->s_mb_buddies_generated
++;
709 EXT4_SB(sb
)->s_mb_generation_time
+= period
;
710 spin_unlock(&EXT4_SB(sb
)->s_bal_lock
);
713 /* The buddy information is attached the buddy cache inode
714 * for convenience. The information regarding each group
715 * is loaded via ext4_mb_load_buddy. The information involve
716 * block bitmap and buddy information. The information are
717 * stored in the inode as
720 * [ group 0 bitmap][ group 0 buddy] [group 1][ group 1]...
723 * one block each for bitmap and buddy information.
724 * So for each group we take up 2 blocks. A page can
725 * contain blocks_per_page (PAGE_CACHE_SIZE / blocksize) blocks.
726 * So it can have information regarding groups_per_page which
727 * is blocks_per_page/2
730 static int ext4_mb_init_cache(struct page
*page
, char *incore
)
732 ext4_group_t ngroups
;
738 ext4_group_t first_group
;
740 struct super_block
*sb
;
741 struct buffer_head
*bhs
;
742 struct buffer_head
**bh
;
747 mb_debug(1, "init page %lu\n", page
->index
);
749 inode
= page
->mapping
->host
;
751 ngroups
= ext4_get_groups_count(sb
);
752 blocksize
= 1 << inode
->i_blkbits
;
753 blocks_per_page
= PAGE_CACHE_SIZE
/ blocksize
;
755 groups_per_page
= blocks_per_page
>> 1;
756 if (groups_per_page
== 0)
759 /* allocate buffer_heads to read bitmaps */
760 if (groups_per_page
> 1) {
762 i
= sizeof(struct buffer_head
*) * groups_per_page
;
763 bh
= kzalloc(i
, GFP_NOFS
);
769 first_group
= page
->index
* blocks_per_page
/ 2;
771 /* read all groups the page covers into the cache */
772 for (i
= 0; i
< groups_per_page
; i
++) {
773 struct ext4_group_desc
*desc
;
775 if (first_group
+ i
>= ngroups
)
779 desc
= ext4_get_group_desc(sb
, first_group
+ i
, NULL
);
784 bh
[i
] = sb_getblk(sb
, ext4_block_bitmap(sb
, desc
));
788 if (bitmap_uptodate(bh
[i
]))
792 if (bitmap_uptodate(bh
[i
])) {
793 unlock_buffer(bh
[i
]);
796 ext4_lock_group(sb
, first_group
+ i
);
797 if (desc
->bg_flags
& cpu_to_le16(EXT4_BG_BLOCK_UNINIT
)) {
798 ext4_init_block_bitmap(sb
, bh
[i
],
799 first_group
+ i
, desc
);
800 set_bitmap_uptodate(bh
[i
]);
801 set_buffer_uptodate(bh
[i
]);
802 ext4_unlock_group(sb
, first_group
+ i
);
803 unlock_buffer(bh
[i
]);
806 ext4_unlock_group(sb
, first_group
+ i
);
807 if (buffer_uptodate(bh
[i
])) {
809 * if not uninit if bh is uptodate,
810 * bitmap is also uptodate
812 set_bitmap_uptodate(bh
[i
]);
813 unlock_buffer(bh
[i
]);
818 * submit the buffer_head for read. We can
819 * safely mark the bitmap as uptodate now.
820 * We do it here so the bitmap uptodate bit
821 * get set with buffer lock held.
823 set_bitmap_uptodate(bh
[i
]);
824 bh
[i
]->b_end_io
= end_buffer_read_sync
;
825 submit_bh(READ
, bh
[i
]);
826 mb_debug(1, "read bitmap for group %u\n", first_group
+ i
);
829 /* wait for I/O completion */
830 for (i
= 0; i
< groups_per_page
&& bh
[i
]; i
++)
831 wait_on_buffer(bh
[i
]);
834 for (i
= 0; i
< groups_per_page
&& bh
[i
]; i
++)
835 if (!buffer_uptodate(bh
[i
]))
839 first_block
= page
->index
* blocks_per_page
;
841 memset(page_address(page
), 0xff, PAGE_CACHE_SIZE
);
842 for (i
= 0; i
< blocks_per_page
; i
++) {
844 struct ext4_group_info
*grinfo
;
846 group
= (first_block
+ i
) >> 1;
847 if (group
>= ngroups
)
851 * data carry information regarding this
852 * particular group in the format specified
856 data
= page_address(page
) + (i
* blocksize
);
857 bitmap
= bh
[group
- first_group
]->b_data
;
860 * We place the buddy block and bitmap block
863 if ((first_block
+ i
) & 1) {
864 /* this is block of buddy */
865 BUG_ON(incore
== NULL
);
866 mb_debug(1, "put buddy for group %u in page %lu/%x\n",
867 group
, page
->index
, i
* blocksize
);
868 grinfo
= ext4_get_group_info(sb
, group
);
869 grinfo
->bb_fragments
= 0;
870 memset(grinfo
->bb_counters
, 0,
871 sizeof(*grinfo
->bb_counters
) *
872 (sb
->s_blocksize_bits
+2));
874 * incore got set to the group block bitmap below
876 ext4_lock_group(sb
, group
);
877 ext4_mb_generate_buddy(sb
, data
, incore
, group
);
878 ext4_unlock_group(sb
, group
);
881 /* this is block of bitmap */
882 BUG_ON(incore
!= NULL
);
883 mb_debug(1, "put bitmap for group %u in page %lu/%x\n",
884 group
, page
->index
, i
* blocksize
);
886 /* see comments in ext4_mb_put_pa() */
887 ext4_lock_group(sb
, group
);
888 memcpy(data
, bitmap
, blocksize
);
890 /* mark all preallocated blks used in in-core bitmap */
891 ext4_mb_generate_from_pa(sb
, data
, group
);
892 ext4_mb_generate_from_freelist(sb
, data
, group
);
893 ext4_unlock_group(sb
, group
);
895 /* set incore so that the buddy information can be
896 * generated using this
901 SetPageUptodate(page
);
905 for (i
= 0; i
< groups_per_page
&& bh
[i
]; i
++)
913 static noinline_for_stack
914 int ext4_mb_init_group(struct super_block
*sb
, ext4_group_t group
)
920 int block
, pnum
, poff
;
921 int num_grp_locked
= 0;
922 struct ext4_group_info
*this_grp
;
923 struct ext4_sb_info
*sbi
= EXT4_SB(sb
);
924 struct inode
*inode
= sbi
->s_buddy_cache
;
925 struct page
*page
= NULL
, *bitmap_page
= NULL
;
927 mb_debug(1, "init group %u\n", group
);
928 blocks_per_page
= PAGE_CACHE_SIZE
/ sb
->s_blocksize
;
929 this_grp
= ext4_get_group_info(sb
, group
);
931 * This ensures that we don't reinit the buddy cache
932 * page which map to the group from which we are already
933 * allocating. If we are looking at the buddy cache we would
934 * have taken a reference using ext4_mb_load_buddy and that
935 * would have taken the alloc_sem lock.
937 num_grp_locked
= ext4_mb_get_buddy_cache_lock(sb
, group
);
938 if (!EXT4_MB_GRP_NEED_INIT(this_grp
)) {
940 * somebody initialized the group
941 * return without doing anything
947 * the buddy cache inode stores the block bitmap
948 * and buddy information in consecutive blocks.
949 * So for each group we need two blocks.
952 pnum
= block
/ blocks_per_page
;
953 poff
= block
% blocks_per_page
;
954 page
= find_or_create_page(inode
->i_mapping
, pnum
, GFP_NOFS
);
956 BUG_ON(page
->mapping
!= inode
->i_mapping
);
957 ret
= ext4_mb_init_cache(page
, NULL
);
964 if (page
== NULL
|| !PageUptodate(page
)) {
968 mark_page_accessed(page
);
970 bitmap
= page_address(page
) + (poff
* sb
->s_blocksize
);
972 /* init buddy cache */
974 pnum
= block
/ blocks_per_page
;
975 poff
= block
% blocks_per_page
;
976 page
= find_or_create_page(inode
->i_mapping
, pnum
, GFP_NOFS
);
977 if (page
== bitmap_page
) {
979 * If both the bitmap and buddy are in
980 * the same page we don't need to force
985 BUG_ON(page
->mapping
!= inode
->i_mapping
);
986 ret
= ext4_mb_init_cache(page
, bitmap
);
993 if (page
== NULL
|| !PageUptodate(page
)) {
997 mark_page_accessed(page
);
999 ext4_mb_put_buddy_cache_lock(sb
, group
, num_grp_locked
);
1001 page_cache_release(bitmap_page
);
1003 page_cache_release(page
);
1007 static noinline_for_stack
int
1008 ext4_mb_load_buddy(struct super_block
*sb
, ext4_group_t group
,
1009 struct ext4_buddy
*e4b
)
1011 int blocks_per_page
;
1017 struct ext4_group_info
*grp
;
1018 struct ext4_sb_info
*sbi
= EXT4_SB(sb
);
1019 struct inode
*inode
= sbi
->s_buddy_cache
;
1021 mb_debug(1, "load group %u\n", group
);
1023 blocks_per_page
= PAGE_CACHE_SIZE
/ sb
->s_blocksize
;
1024 grp
= ext4_get_group_info(sb
, group
);
1026 e4b
->bd_blkbits
= sb
->s_blocksize_bits
;
1027 e4b
->bd_info
= ext4_get_group_info(sb
, group
);
1029 e4b
->bd_group
= group
;
1030 e4b
->bd_buddy_page
= NULL
;
1031 e4b
->bd_bitmap_page
= NULL
;
1032 e4b
->alloc_semp
= &grp
->alloc_sem
;
1034 /* Take the read lock on the group alloc
1035 * sem. This would make sure a parallel
1036 * ext4_mb_init_group happening on other
1037 * groups mapped by the page is blocked
1038 * till we are done with allocation
1041 down_read(e4b
->alloc_semp
);
1043 if (unlikely(EXT4_MB_GRP_NEED_INIT(grp
))) {
1044 /* we need to check for group need init flag
1045 * with alloc_semp held so that we can be sure
1046 * that new blocks didn't get added to the group
1047 * when we are loading the buddy cache
1049 up_read(e4b
->alloc_semp
);
1051 * we need full data about the group
1052 * to make a good selection
1054 ret
= ext4_mb_init_group(sb
, group
);
1057 goto repeat_load_buddy
;
1061 * the buddy cache inode stores the block bitmap
1062 * and buddy information in consecutive blocks.
1063 * So for each group we need two blocks.
1066 pnum
= block
/ blocks_per_page
;
1067 poff
= block
% blocks_per_page
;
1069 /* we could use find_or_create_page(), but it locks page
1070 * what we'd like to avoid in fast path ... */
1071 page
= find_get_page(inode
->i_mapping
, pnum
);
1072 if (page
== NULL
|| !PageUptodate(page
)) {
1075 * drop the page reference and try
1076 * to get the page with lock. If we
1077 * are not uptodate that implies
1078 * somebody just created the page but
1079 * is yet to initialize the same. So
1080 * wait for it to initialize.
1082 page_cache_release(page
);
1083 page
= find_or_create_page(inode
->i_mapping
, pnum
, GFP_NOFS
);
1085 BUG_ON(page
->mapping
!= inode
->i_mapping
);
1086 if (!PageUptodate(page
)) {
1087 ret
= ext4_mb_init_cache(page
, NULL
);
1092 mb_cmp_bitmaps(e4b
, page_address(page
) +
1093 (poff
* sb
->s_blocksize
));
1098 if (page
== NULL
|| !PageUptodate(page
)) {
1102 e4b
->bd_bitmap_page
= page
;
1103 e4b
->bd_bitmap
= page_address(page
) + (poff
* sb
->s_blocksize
);
1104 mark_page_accessed(page
);
1107 pnum
= block
/ blocks_per_page
;
1108 poff
= block
% blocks_per_page
;
1110 page
= find_get_page(inode
->i_mapping
, pnum
);
1111 if (page
== NULL
|| !PageUptodate(page
)) {
1113 page_cache_release(page
);
1114 page
= find_or_create_page(inode
->i_mapping
, pnum
, GFP_NOFS
);
1116 BUG_ON(page
->mapping
!= inode
->i_mapping
);
1117 if (!PageUptodate(page
)) {
1118 ret
= ext4_mb_init_cache(page
, e4b
->bd_bitmap
);
1127 if (page
== NULL
|| !PageUptodate(page
)) {
1131 e4b
->bd_buddy_page
= page
;
1132 e4b
->bd_buddy
= page_address(page
) + (poff
* sb
->s_blocksize
);
1133 mark_page_accessed(page
);
1135 BUG_ON(e4b
->bd_bitmap_page
== NULL
);
1136 BUG_ON(e4b
->bd_buddy_page
== NULL
);
1141 if (e4b
->bd_bitmap_page
)
1142 page_cache_release(e4b
->bd_bitmap_page
);
1143 if (e4b
->bd_buddy_page
)
1144 page_cache_release(e4b
->bd_buddy_page
);
1145 e4b
->bd_buddy
= NULL
;
1146 e4b
->bd_bitmap
= NULL
;
1148 /* Done with the buddy cache */
1149 up_read(e4b
->alloc_semp
);
1153 static void ext4_mb_release_desc(struct ext4_buddy
*e4b
)
1155 if (e4b
->bd_bitmap_page
)
1156 page_cache_release(e4b
->bd_bitmap_page
);
1157 if (e4b
->bd_buddy_page
)
1158 page_cache_release(e4b
->bd_buddy_page
);
1159 /* Done with the buddy cache */
1160 if (e4b
->alloc_semp
)
1161 up_read(e4b
->alloc_semp
);
1165 static int mb_find_order_for_block(struct ext4_buddy
*e4b
, int block
)
1170 BUG_ON(EXT4_MB_BITMAP(e4b
) == EXT4_MB_BUDDY(e4b
));
1171 BUG_ON(block
>= (1 << (e4b
->bd_blkbits
+ 3)));
1173 bb
= EXT4_MB_BUDDY(e4b
);
1174 while (order
<= e4b
->bd_blkbits
+ 1) {
1176 if (!mb_test_bit(block
, bb
)) {
1177 /* this block is part of buddy of order 'order' */
1180 bb
+= 1 << (e4b
->bd_blkbits
- order
);
1186 static void mb_clear_bits(void *bm
, int cur
, int len
)
1192 if ((cur
& 31) == 0 && (len
- cur
) >= 32) {
1193 /* fast path: clear whole word at once */
1194 addr
= bm
+ (cur
>> 3);
1199 mb_clear_bit(cur
, bm
);
1204 static void mb_set_bits(void *bm
, int cur
, int len
)
1210 if ((cur
& 31) == 0 && (len
- cur
) >= 32) {
1211 /* fast path: set whole word at once */
1212 addr
= bm
+ (cur
>> 3);
1217 mb_set_bit(cur
, bm
);
1222 static void mb_free_blocks(struct inode
*inode
, struct ext4_buddy
*e4b
,
1223 int first
, int count
)
1230 struct super_block
*sb
= e4b
->bd_sb
;
1232 BUG_ON(first
+ count
> (sb
->s_blocksize
<< 3));
1233 assert_spin_locked(ext4_group_lock_ptr(sb
, e4b
->bd_group
));
1234 mb_check_buddy(e4b
);
1235 mb_free_blocks_double(inode
, e4b
, first
, count
);
1237 e4b
->bd_info
->bb_free
+= count
;
1238 if (first
< e4b
->bd_info
->bb_first_free
)
1239 e4b
->bd_info
->bb_first_free
= first
;
1241 /* let's maintain fragments counter */
1243 block
= !mb_test_bit(first
- 1, EXT4_MB_BITMAP(e4b
));
1244 if (first
+ count
< EXT4_SB(sb
)->s_mb_maxs
[0])
1245 max
= !mb_test_bit(first
+ count
, EXT4_MB_BITMAP(e4b
));
1247 e4b
->bd_info
->bb_fragments
--;
1248 else if (!block
&& !max
)
1249 e4b
->bd_info
->bb_fragments
++;
1251 /* let's maintain buddy itself */
1252 while (count
-- > 0) {
1256 if (!mb_test_bit(block
, EXT4_MB_BITMAP(e4b
))) {
1257 ext4_fsblk_t blocknr
;
1259 blocknr
= ext4_group_first_block_no(sb
, e4b
->bd_group
);
1261 ext4_grp_locked_error(sb
, e4b
->bd_group
,
1262 __func__
, "double-free of inode"
1263 " %lu's block %llu(bit %u in group %u)",
1264 inode
? inode
->i_ino
: 0, blocknr
, block
,
1267 mb_clear_bit(block
, EXT4_MB_BITMAP(e4b
));
1268 e4b
->bd_info
->bb_counters
[order
]++;
1270 /* start of the buddy */
1271 buddy
= mb_find_buddy(e4b
, order
, &max
);
1275 if (mb_test_bit(block
, buddy
) ||
1276 mb_test_bit(block
+ 1, buddy
))
1279 /* both the buddies are free, try to coalesce them */
1280 buddy2
= mb_find_buddy(e4b
, order
+ 1, &max
);
1286 /* for special purposes, we don't set
1287 * free bits in bitmap */
1288 mb_set_bit(block
, buddy
);
1289 mb_set_bit(block
+ 1, buddy
);
1291 e4b
->bd_info
->bb_counters
[order
]--;
1292 e4b
->bd_info
->bb_counters
[order
]--;
1296 e4b
->bd_info
->bb_counters
[order
]++;
1298 mb_clear_bit(block
, buddy2
);
1302 mb_check_buddy(e4b
);
1305 static int mb_find_extent(struct ext4_buddy
*e4b
, int order
, int block
,
1306 int needed
, struct ext4_free_extent
*ex
)
1313 assert_spin_locked(ext4_group_lock_ptr(e4b
->bd_sb
, e4b
->bd_group
));
1316 buddy
= mb_find_buddy(e4b
, order
, &max
);
1317 BUG_ON(buddy
== NULL
);
1318 BUG_ON(block
>= max
);
1319 if (mb_test_bit(block
, buddy
)) {
1326 /* FIXME dorp order completely ? */
1327 if (likely(order
== 0)) {
1328 /* find actual order */
1329 order
= mb_find_order_for_block(e4b
, block
);
1330 block
= block
>> order
;
1333 ex
->fe_len
= 1 << order
;
1334 ex
->fe_start
= block
<< order
;
1335 ex
->fe_group
= e4b
->bd_group
;
1337 /* calc difference from given start */
1338 next
= next
- ex
->fe_start
;
1340 ex
->fe_start
+= next
;
1342 while (needed
> ex
->fe_len
&&
1343 (buddy
= mb_find_buddy(e4b
, order
, &max
))) {
1345 if (block
+ 1 >= max
)
1348 next
= (block
+ 1) * (1 << order
);
1349 if (mb_test_bit(next
, EXT4_MB_BITMAP(e4b
)))
1352 ord
= mb_find_order_for_block(e4b
, next
);
1355 block
= next
>> order
;
1356 ex
->fe_len
+= 1 << order
;
1359 BUG_ON(ex
->fe_start
+ ex
->fe_len
> (1 << (e4b
->bd_blkbits
+ 3)));
1363 static int mb_mark_used(struct ext4_buddy
*e4b
, struct ext4_free_extent
*ex
)
1369 int start
= ex
->fe_start
;
1370 int len
= ex
->fe_len
;
1375 BUG_ON(start
+ len
> (e4b
->bd_sb
->s_blocksize
<< 3));
1376 BUG_ON(e4b
->bd_group
!= ex
->fe_group
);
1377 assert_spin_locked(ext4_group_lock_ptr(e4b
->bd_sb
, e4b
->bd_group
));
1378 mb_check_buddy(e4b
);
1379 mb_mark_used_double(e4b
, start
, len
);
1381 e4b
->bd_info
->bb_free
-= len
;
1382 if (e4b
->bd_info
->bb_first_free
== start
)
1383 e4b
->bd_info
->bb_first_free
+= len
;
1385 /* let's maintain fragments counter */
1387 mlen
= !mb_test_bit(start
- 1, EXT4_MB_BITMAP(e4b
));
1388 if (start
+ len
< EXT4_SB(e4b
->bd_sb
)->s_mb_maxs
[0])
1389 max
= !mb_test_bit(start
+ len
, EXT4_MB_BITMAP(e4b
));
1391 e4b
->bd_info
->bb_fragments
++;
1392 else if (!mlen
&& !max
)
1393 e4b
->bd_info
->bb_fragments
--;
1395 /* let's maintain buddy itself */
1397 ord
= mb_find_order_for_block(e4b
, start
);
1399 if (((start
>> ord
) << ord
) == start
&& len
>= (1 << ord
)) {
1400 /* the whole chunk may be allocated at once! */
1402 buddy
= mb_find_buddy(e4b
, ord
, &max
);
1403 BUG_ON((start
>> ord
) >= max
);
1404 mb_set_bit(start
>> ord
, buddy
);
1405 e4b
->bd_info
->bb_counters
[ord
]--;
1412 /* store for history */
1414 ret
= len
| (ord
<< 16);
1416 /* we have to split large buddy */
1418 buddy
= mb_find_buddy(e4b
, ord
, &max
);
1419 mb_set_bit(start
>> ord
, buddy
);
1420 e4b
->bd_info
->bb_counters
[ord
]--;
1423 cur
= (start
>> ord
) & ~1U;
1424 buddy
= mb_find_buddy(e4b
, ord
, &max
);
1425 mb_clear_bit(cur
, buddy
);
1426 mb_clear_bit(cur
+ 1, buddy
);
1427 e4b
->bd_info
->bb_counters
[ord
]++;
1428 e4b
->bd_info
->bb_counters
[ord
]++;
1431 mb_set_bits(EXT4_MB_BITMAP(e4b
), ex
->fe_start
, len0
);
1432 mb_check_buddy(e4b
);
1438 * Must be called under group lock!
1440 static void ext4_mb_use_best_found(struct ext4_allocation_context
*ac
,
1441 struct ext4_buddy
*e4b
)
1443 struct ext4_sb_info
*sbi
= EXT4_SB(ac
->ac_sb
);
1446 BUG_ON(ac
->ac_b_ex
.fe_group
!= e4b
->bd_group
);
1447 BUG_ON(ac
->ac_status
== AC_STATUS_FOUND
);
1449 ac
->ac_b_ex
.fe_len
= min(ac
->ac_b_ex
.fe_len
, ac
->ac_g_ex
.fe_len
);
1450 ac
->ac_b_ex
.fe_logical
= ac
->ac_g_ex
.fe_logical
;
1451 ret
= mb_mark_used(e4b
, &ac
->ac_b_ex
);
1453 /* preallocation can change ac_b_ex, thus we store actually
1454 * allocated blocks for history */
1455 ac
->ac_f_ex
= ac
->ac_b_ex
;
1457 ac
->ac_status
= AC_STATUS_FOUND
;
1458 ac
->ac_tail
= ret
& 0xffff;
1459 ac
->ac_buddy
= ret
>> 16;
1462 * take the page reference. We want the page to be pinned
1463 * so that we don't get a ext4_mb_init_cache_call for this
1464 * group until we update the bitmap. That would mean we
1465 * double allocate blocks. The reference is dropped
1466 * in ext4_mb_release_context
1468 ac
->ac_bitmap_page
= e4b
->bd_bitmap_page
;
1469 get_page(ac
->ac_bitmap_page
);
1470 ac
->ac_buddy_page
= e4b
->bd_buddy_page
;
1471 get_page(ac
->ac_buddy_page
);
1472 /* on allocation we use ac to track the held semaphore */
1473 ac
->alloc_semp
= e4b
->alloc_semp
;
1474 e4b
->alloc_semp
= NULL
;
1475 /* store last allocated for subsequent stream allocation */
1476 if (ac
->ac_flags
& EXT4_MB_STREAM_ALLOC
) {
1477 spin_lock(&sbi
->s_md_lock
);
1478 sbi
->s_mb_last_group
= ac
->ac_f_ex
.fe_group
;
1479 sbi
->s_mb_last_start
= ac
->ac_f_ex
.fe_start
;
1480 spin_unlock(&sbi
->s_md_lock
);
1485 * regular allocator, for general purposes allocation
1488 static void ext4_mb_check_limits(struct ext4_allocation_context
*ac
,
1489 struct ext4_buddy
*e4b
,
1492 struct ext4_sb_info
*sbi
= EXT4_SB(ac
->ac_sb
);
1493 struct ext4_free_extent
*bex
= &ac
->ac_b_ex
;
1494 struct ext4_free_extent
*gex
= &ac
->ac_g_ex
;
1495 struct ext4_free_extent ex
;
1498 if (ac
->ac_status
== AC_STATUS_FOUND
)
1501 * We don't want to scan for a whole year
1503 if (ac
->ac_found
> sbi
->s_mb_max_to_scan
&&
1504 !(ac
->ac_flags
& EXT4_MB_HINT_FIRST
)) {
1505 ac
->ac_status
= AC_STATUS_BREAK
;
1510 * Haven't found good chunk so far, let's continue
1512 if (bex
->fe_len
< gex
->fe_len
)
1515 if ((finish_group
|| ac
->ac_found
> sbi
->s_mb_min_to_scan
)
1516 && bex
->fe_group
== e4b
->bd_group
) {
1517 /* recheck chunk's availability - we don't know
1518 * when it was found (within this lock-unlock
1520 max
= mb_find_extent(e4b
, 0, bex
->fe_start
, gex
->fe_len
, &ex
);
1521 if (max
>= gex
->fe_len
) {
1522 ext4_mb_use_best_found(ac
, e4b
);
1529 * The routine checks whether found extent is good enough. If it is,
1530 * then the extent gets marked used and flag is set to the context
1531 * to stop scanning. Otherwise, the extent is compared with the
1532 * previous found extent and if new one is better, then it's stored
1533 * in the context. Later, the best found extent will be used, if
1534 * mballoc can't find good enough extent.
1536 * FIXME: real allocation policy is to be designed yet!
1538 static void ext4_mb_measure_extent(struct ext4_allocation_context
*ac
,
1539 struct ext4_free_extent
*ex
,
1540 struct ext4_buddy
*e4b
)
1542 struct ext4_free_extent
*bex
= &ac
->ac_b_ex
;
1543 struct ext4_free_extent
*gex
= &ac
->ac_g_ex
;
1545 BUG_ON(ex
->fe_len
<= 0);
1546 BUG_ON(ex
->fe_len
> EXT4_BLOCKS_PER_GROUP(ac
->ac_sb
));
1547 BUG_ON(ex
->fe_start
>= EXT4_BLOCKS_PER_GROUP(ac
->ac_sb
));
1548 BUG_ON(ac
->ac_status
!= AC_STATUS_CONTINUE
);
1553 * The special case - take what you catch first
1555 if (unlikely(ac
->ac_flags
& EXT4_MB_HINT_FIRST
)) {
1557 ext4_mb_use_best_found(ac
, e4b
);
1562 * Let's check whether the chuck is good enough
1564 if (ex
->fe_len
== gex
->fe_len
) {
1566 ext4_mb_use_best_found(ac
, e4b
);
1571 * If this is first found extent, just store it in the context
1573 if (bex
->fe_len
== 0) {
1579 * If new found extent is better, store it in the context
1581 if (bex
->fe_len
< gex
->fe_len
) {
1582 /* if the request isn't satisfied, any found extent
1583 * larger than previous best one is better */
1584 if (ex
->fe_len
> bex
->fe_len
)
1586 } else if (ex
->fe_len
> gex
->fe_len
) {
1587 /* if the request is satisfied, then we try to find
1588 * an extent that still satisfy the request, but is
1589 * smaller than previous one */
1590 if (ex
->fe_len
< bex
->fe_len
)
1594 ext4_mb_check_limits(ac
, e4b
, 0);
1597 static noinline_for_stack
1598 int ext4_mb_try_best_found(struct ext4_allocation_context
*ac
,
1599 struct ext4_buddy
*e4b
)
1601 struct ext4_free_extent ex
= ac
->ac_b_ex
;
1602 ext4_group_t group
= ex
.fe_group
;
1606 BUG_ON(ex
.fe_len
<= 0);
1607 err
= ext4_mb_load_buddy(ac
->ac_sb
, group
, e4b
);
1611 ext4_lock_group(ac
->ac_sb
, group
);
1612 max
= mb_find_extent(e4b
, 0, ex
.fe_start
, ex
.fe_len
, &ex
);
1616 ext4_mb_use_best_found(ac
, e4b
);
1619 ext4_unlock_group(ac
->ac_sb
, group
);
1620 ext4_mb_release_desc(e4b
);
1625 static noinline_for_stack
1626 int ext4_mb_find_by_goal(struct ext4_allocation_context
*ac
,
1627 struct ext4_buddy
*e4b
)
1629 ext4_group_t group
= ac
->ac_g_ex
.fe_group
;
1632 struct ext4_sb_info
*sbi
= EXT4_SB(ac
->ac_sb
);
1633 struct ext4_free_extent ex
;
1635 if (!(ac
->ac_flags
& EXT4_MB_HINT_TRY_GOAL
))
1638 err
= ext4_mb_load_buddy(ac
->ac_sb
, group
, e4b
);
1642 ext4_lock_group(ac
->ac_sb
, group
);
1643 max
= mb_find_extent(e4b
, 0, ac
->ac_g_ex
.fe_start
,
1644 ac
->ac_g_ex
.fe_len
, &ex
);
1646 if (max
>= ac
->ac_g_ex
.fe_len
&& ac
->ac_g_ex
.fe_len
== sbi
->s_stripe
) {
1649 start
= ext4_group_first_block_no(ac
->ac_sb
, e4b
->bd_group
) +
1651 /* use do_div to get remainder (would be 64-bit modulo) */
1652 if (do_div(start
, sbi
->s_stripe
) == 0) {
1655 ext4_mb_use_best_found(ac
, e4b
);
1657 } else if (max
>= ac
->ac_g_ex
.fe_len
) {
1658 BUG_ON(ex
.fe_len
<= 0);
1659 BUG_ON(ex
.fe_group
!= ac
->ac_g_ex
.fe_group
);
1660 BUG_ON(ex
.fe_start
!= ac
->ac_g_ex
.fe_start
);
1663 ext4_mb_use_best_found(ac
, e4b
);
1664 } else if (max
> 0 && (ac
->ac_flags
& EXT4_MB_HINT_MERGE
)) {
1665 /* Sometimes, caller may want to merge even small
1666 * number of blocks to an existing extent */
1667 BUG_ON(ex
.fe_len
<= 0);
1668 BUG_ON(ex
.fe_group
!= ac
->ac_g_ex
.fe_group
);
1669 BUG_ON(ex
.fe_start
!= ac
->ac_g_ex
.fe_start
);
1672 ext4_mb_use_best_found(ac
, e4b
);
1674 ext4_unlock_group(ac
->ac_sb
, group
);
1675 ext4_mb_release_desc(e4b
);
1681 * The routine scans buddy structures (not bitmap!) from given order
1682 * to max order and tries to find big enough chunk to satisfy the req
1684 static noinline_for_stack
1685 void ext4_mb_simple_scan_group(struct ext4_allocation_context
*ac
,
1686 struct ext4_buddy
*e4b
)
1688 struct super_block
*sb
= ac
->ac_sb
;
1689 struct ext4_group_info
*grp
= e4b
->bd_info
;
1695 BUG_ON(ac
->ac_2order
<= 0);
1696 for (i
= ac
->ac_2order
; i
<= sb
->s_blocksize_bits
+ 1; i
++) {
1697 if (grp
->bb_counters
[i
] == 0)
1700 buddy
= mb_find_buddy(e4b
, i
, &max
);
1701 BUG_ON(buddy
== NULL
);
1703 k
= mb_find_next_zero_bit(buddy
, max
, 0);
1708 ac
->ac_b_ex
.fe_len
= 1 << i
;
1709 ac
->ac_b_ex
.fe_start
= k
<< i
;
1710 ac
->ac_b_ex
.fe_group
= e4b
->bd_group
;
1712 ext4_mb_use_best_found(ac
, e4b
);
1714 BUG_ON(ac
->ac_b_ex
.fe_len
!= ac
->ac_g_ex
.fe_len
);
1716 if (EXT4_SB(sb
)->s_mb_stats
)
1717 atomic_inc(&EXT4_SB(sb
)->s_bal_2orders
);
1724 * The routine scans the group and measures all found extents.
1725 * In order to optimize scanning, caller must pass number of
1726 * free blocks in the group, so the routine can know upper limit.
1728 static noinline_for_stack
1729 void ext4_mb_complex_scan_group(struct ext4_allocation_context
*ac
,
1730 struct ext4_buddy
*e4b
)
1732 struct super_block
*sb
= ac
->ac_sb
;
1733 void *bitmap
= EXT4_MB_BITMAP(e4b
);
1734 struct ext4_free_extent ex
;
1738 free
= e4b
->bd_info
->bb_free
;
1741 i
= e4b
->bd_info
->bb_first_free
;
1743 while (free
&& ac
->ac_status
== AC_STATUS_CONTINUE
) {
1744 i
= mb_find_next_zero_bit(bitmap
,
1745 EXT4_BLOCKS_PER_GROUP(sb
), i
);
1746 if (i
>= EXT4_BLOCKS_PER_GROUP(sb
)) {
1748 * IF we have corrupt bitmap, we won't find any
1749 * free blocks even though group info says we
1750 * we have free blocks
1752 ext4_grp_locked_error(sb
, e4b
->bd_group
,
1753 __func__
, "%d free blocks as per "
1754 "group info. But bitmap says 0",
1759 mb_find_extent(e4b
, 0, i
, ac
->ac_g_ex
.fe_len
, &ex
);
1760 BUG_ON(ex
.fe_len
<= 0);
1761 if (free
< ex
.fe_len
) {
1762 ext4_grp_locked_error(sb
, e4b
->bd_group
,
1763 __func__
, "%d free blocks as per "
1764 "group info. But got %d blocks",
1767 * The number of free blocks differs. This mostly
1768 * indicate that the bitmap is corrupt. So exit
1769 * without claiming the space.
1774 ext4_mb_measure_extent(ac
, &ex
, e4b
);
1780 ext4_mb_check_limits(ac
, e4b
, 1);
1784 * This is a special case for storages like raid5
1785 * we try to find stripe-aligned chunks for stripe-size requests
1786 * XXX should do so at least for multiples of stripe size as well
1788 static noinline_for_stack
1789 void ext4_mb_scan_aligned(struct ext4_allocation_context
*ac
,
1790 struct ext4_buddy
*e4b
)
1792 struct super_block
*sb
= ac
->ac_sb
;
1793 struct ext4_sb_info
*sbi
= EXT4_SB(sb
);
1794 void *bitmap
= EXT4_MB_BITMAP(e4b
);
1795 struct ext4_free_extent ex
;
1796 ext4_fsblk_t first_group_block
;
1801 BUG_ON(sbi
->s_stripe
== 0);
1803 /* find first stripe-aligned block in group */
1804 first_group_block
= ext4_group_first_block_no(sb
, e4b
->bd_group
);
1806 a
= first_group_block
+ sbi
->s_stripe
- 1;
1807 do_div(a
, sbi
->s_stripe
);
1808 i
= (a
* sbi
->s_stripe
) - first_group_block
;
1810 while (i
< EXT4_BLOCKS_PER_GROUP(sb
)) {
1811 if (!mb_test_bit(i
, bitmap
)) {
1812 max
= mb_find_extent(e4b
, 0, i
, sbi
->s_stripe
, &ex
);
1813 if (max
>= sbi
->s_stripe
) {
1816 ext4_mb_use_best_found(ac
, e4b
);
1824 static int ext4_mb_good_group(struct ext4_allocation_context
*ac
,
1825 ext4_group_t group
, int cr
)
1827 unsigned free
, fragments
;
1829 int flex_size
= ext4_flex_bg_size(EXT4_SB(ac
->ac_sb
));
1830 struct ext4_group_info
*grp
= ext4_get_group_info(ac
->ac_sb
, group
);
1832 BUG_ON(cr
< 0 || cr
>= 4);
1833 BUG_ON(EXT4_MB_GRP_NEED_INIT(grp
));
1835 free
= grp
->bb_free
;
1836 fragments
= grp
->bb_fragments
;
1844 BUG_ON(ac
->ac_2order
== 0);
1846 /* Avoid using the first bg of a flexgroup for data files */
1847 if ((ac
->ac_flags
& EXT4_MB_HINT_DATA
) &&
1848 (flex_size
>= EXT4_FLEX_SIZE_DIR_ALLOC_SCHEME
) &&
1849 ((group
% flex_size
) == 0))
1852 bits
= ac
->ac_sb
->s_blocksize_bits
+ 1;
1853 for (i
= ac
->ac_2order
; i
<= bits
; i
++)
1854 if (grp
->bb_counters
[i
] > 0)
1858 if ((free
/ fragments
) >= ac
->ac_g_ex
.fe_len
)
1862 if (free
>= ac
->ac_g_ex
.fe_len
)
1875 * lock the group_info alloc_sem of all the groups
1876 * belonging to the same buddy cache page. This
1877 * make sure other parallel operation on the buddy
1878 * cache doesn't happen whild holding the buddy cache
1881 int ext4_mb_get_buddy_cache_lock(struct super_block
*sb
, ext4_group_t group
)
1885 int blocks_per_page
;
1886 int groups_per_page
;
1887 ext4_group_t ngroups
= ext4_get_groups_count(sb
);
1888 ext4_group_t first_group
;
1889 struct ext4_group_info
*grp
;
1891 blocks_per_page
= PAGE_CACHE_SIZE
/ sb
->s_blocksize
;
1893 * the buddy cache inode stores the block bitmap
1894 * and buddy information in consecutive blocks.
1895 * So for each group we need two blocks.
1898 pnum
= block
/ blocks_per_page
;
1899 first_group
= pnum
* blocks_per_page
/ 2;
1901 groups_per_page
= blocks_per_page
>> 1;
1902 if (groups_per_page
== 0)
1903 groups_per_page
= 1;
1904 /* read all groups the page covers into the cache */
1905 for (i
= 0; i
< groups_per_page
; i
++) {
1907 if ((first_group
+ i
) >= ngroups
)
1909 grp
= ext4_get_group_info(sb
, first_group
+ i
);
1910 /* take all groups write allocation
1911 * semaphore. This make sure there is
1912 * no block allocation going on in any
1915 down_write_nested(&grp
->alloc_sem
, i
);
1920 void ext4_mb_put_buddy_cache_lock(struct super_block
*sb
,
1921 ext4_group_t group
, int locked_group
)
1925 int blocks_per_page
;
1926 ext4_group_t first_group
;
1927 struct ext4_group_info
*grp
;
1929 blocks_per_page
= PAGE_CACHE_SIZE
/ sb
->s_blocksize
;
1931 * the buddy cache inode stores the block bitmap
1932 * and buddy information in consecutive blocks.
1933 * So for each group we need two blocks.
1936 pnum
= block
/ blocks_per_page
;
1937 first_group
= pnum
* blocks_per_page
/ 2;
1938 /* release locks on all the groups */
1939 for (i
= 0; i
< locked_group
; i
++) {
1941 grp
= ext4_get_group_info(sb
, first_group
+ i
);
1942 /* take all groups write allocation
1943 * semaphore. This make sure there is
1944 * no block allocation going on in any
1947 up_write(&grp
->alloc_sem
);
1952 static noinline_for_stack
int
1953 ext4_mb_regular_allocator(struct ext4_allocation_context
*ac
)
1955 ext4_group_t ngroups
, group
, i
;
1959 struct ext4_sb_info
*sbi
;
1960 struct super_block
*sb
;
1961 struct ext4_buddy e4b
;
1965 ngroups
= ext4_get_groups_count(sb
);
1966 /* non-extent files are limited to low blocks/groups */
1967 if (!(EXT4_I(ac
->ac_inode
)->i_flags
& EXT4_EXTENTS_FL
))
1968 ngroups
= sbi
->s_blockfile_groups
;
1970 BUG_ON(ac
->ac_status
== AC_STATUS_FOUND
);
1972 /* first, try the goal */
1973 err
= ext4_mb_find_by_goal(ac
, &e4b
);
1974 if (err
|| ac
->ac_status
== AC_STATUS_FOUND
)
1977 if (unlikely(ac
->ac_flags
& EXT4_MB_HINT_GOAL_ONLY
))
1981 * ac->ac2_order is set only if the fe_len is a power of 2
1982 * if ac2_order is set we also set criteria to 0 so that we
1983 * try exact allocation using buddy.
1985 i
= fls(ac
->ac_g_ex
.fe_len
);
1988 * We search using buddy data only if the order of the request
1989 * is greater than equal to the sbi_s_mb_order2_reqs
1990 * You can tune it via /sys/fs/ext4/<partition>/mb_order2_req
1992 if (i
>= sbi
->s_mb_order2_reqs
) {
1994 * This should tell if fe_len is exactly power of 2
1996 if ((ac
->ac_g_ex
.fe_len
& (~(1 << (i
- 1)))) == 0)
1997 ac
->ac_2order
= i
- 1;
2000 bsbits
= ac
->ac_sb
->s_blocksize_bits
;
2002 /* if stream allocation is enabled, use global goal */
2003 if (ac
->ac_flags
& EXT4_MB_STREAM_ALLOC
) {
2004 /* TBD: may be hot point */
2005 spin_lock(&sbi
->s_md_lock
);
2006 ac
->ac_g_ex
.fe_group
= sbi
->s_mb_last_group
;
2007 ac
->ac_g_ex
.fe_start
= sbi
->s_mb_last_start
;
2008 spin_unlock(&sbi
->s_md_lock
);
2011 /* Let's just scan groups to find more-less suitable blocks */
2012 cr
= ac
->ac_2order
? 0 : 1;
2014 * cr == 0 try to get exact allocation,
2015 * cr == 3 try to get anything
2018 for (; cr
< 4 && ac
->ac_status
== AC_STATUS_CONTINUE
; cr
++) {
2019 ac
->ac_criteria
= cr
;
2021 * searching for the right group start
2022 * from the goal value specified
2024 group
= ac
->ac_g_ex
.fe_group
;
2026 for (i
= 0; i
< ngroups
; group
++, i
++) {
2027 struct ext4_group_info
*grp
;
2028 struct ext4_group_desc
*desc
;
2030 if (group
== ngroups
)
2033 /* quick check to skip empty groups */
2034 grp
= ext4_get_group_info(sb
, group
);
2035 if (grp
->bb_free
== 0)
2038 err
= ext4_mb_load_buddy(sb
, group
, &e4b
);
2042 ext4_lock_group(sb
, group
);
2043 if (!ext4_mb_good_group(ac
, group
, cr
)) {
2044 /* someone did allocation from this group */
2045 ext4_unlock_group(sb
, group
);
2046 ext4_mb_release_desc(&e4b
);
2050 ac
->ac_groups_scanned
++;
2051 desc
= ext4_get_group_desc(sb
, group
, NULL
);
2053 ext4_mb_simple_scan_group(ac
, &e4b
);
2055 ac
->ac_g_ex
.fe_len
== sbi
->s_stripe
)
2056 ext4_mb_scan_aligned(ac
, &e4b
);
2058 ext4_mb_complex_scan_group(ac
, &e4b
);
2060 ext4_unlock_group(sb
, group
);
2061 ext4_mb_release_desc(&e4b
);
2063 if (ac
->ac_status
!= AC_STATUS_CONTINUE
)
2068 if (ac
->ac_b_ex
.fe_len
> 0 && ac
->ac_status
!= AC_STATUS_FOUND
&&
2069 !(ac
->ac_flags
& EXT4_MB_HINT_FIRST
)) {
2071 * We've been searching too long. Let's try to allocate
2072 * the best chunk we've found so far
2075 ext4_mb_try_best_found(ac
, &e4b
);
2076 if (ac
->ac_status
!= AC_STATUS_FOUND
) {
2078 * Someone more lucky has already allocated it.
2079 * The only thing we can do is just take first
2081 printk(KERN_DEBUG "EXT4-fs: someone won our chunk\n");
2083 ac
->ac_b_ex
.fe_group
= 0;
2084 ac
->ac_b_ex
.fe_start
= 0;
2085 ac
->ac_b_ex
.fe_len
= 0;
2086 ac
->ac_status
= AC_STATUS_CONTINUE
;
2087 ac
->ac_flags
|= EXT4_MB_HINT_FIRST
;
2089 atomic_inc(&sbi
->s_mb_lost_chunks
);
2097 static void *ext4_mb_seq_groups_start(struct seq_file
*seq
, loff_t
*pos
)
2099 struct super_block
*sb
= seq
->private;
2102 if (*pos
< 0 || *pos
>= ext4_get_groups_count(sb
))
2105 return (void *) ((unsigned long) group
);
2108 static void *ext4_mb_seq_groups_next(struct seq_file
*seq
, void *v
, loff_t
*pos
)
2110 struct super_block
*sb
= seq
->private;
2114 if (*pos
< 0 || *pos
>= ext4_get_groups_count(sb
))
2117 return (void *) ((unsigned long) group
);
2120 static int ext4_mb_seq_groups_show(struct seq_file
*seq
, void *v
)
2122 struct super_block
*sb
= seq
->private;
2123 ext4_group_t group
= (ext4_group_t
) ((unsigned long) v
);
2126 struct ext4_buddy e4b
;
2128 struct ext4_group_info info
;
2129 ext4_grpblk_t counters
[16];
2134 seq_printf(seq
, "#%-5s: %-5s %-5s %-5s "
2135 "[ %-5s %-5s %-5s %-5s %-5s %-5s %-5s "
2136 "%-5s %-5s %-5s %-5s %-5s %-5s %-5s ]\n",
2137 "group", "free", "frags", "first",
2138 "2^0", "2^1", "2^2", "2^3", "2^4", "2^5", "2^6",
2139 "2^7", "2^8", "2^9", "2^10", "2^11", "2^12", "2^13");
2141 i
= (sb
->s_blocksize_bits
+ 2) * sizeof(sg
.info
.bb_counters
[0]) +
2142 sizeof(struct ext4_group_info
);
2143 err
= ext4_mb_load_buddy(sb
, group
, &e4b
);
2145 seq_printf(seq
, "#%-5u: I/O error\n", group
);
2148 ext4_lock_group(sb
, group
);
2149 memcpy(&sg
, ext4_get_group_info(sb
, group
), i
);
2150 ext4_unlock_group(sb
, group
);
2151 ext4_mb_release_desc(&e4b
);
2153 seq_printf(seq
, "#%-5u: %-5u %-5u %-5u [", group
, sg
.info
.bb_free
,
2154 sg
.info
.bb_fragments
, sg
.info
.bb_first_free
);
2155 for (i
= 0; i
<= 13; i
++)
2156 seq_printf(seq
, " %-5u", i
<= sb
->s_blocksize_bits
+ 1 ?
2157 sg
.info
.bb_counters
[i
] : 0);
2158 seq_printf(seq
, " ]\n");
2163 static void ext4_mb_seq_groups_stop(struct seq_file
*seq
, void *v
)
2167 static const struct seq_operations ext4_mb_seq_groups_ops
= {
2168 .start
= ext4_mb_seq_groups_start
,
2169 .next
= ext4_mb_seq_groups_next
,
2170 .stop
= ext4_mb_seq_groups_stop
,
2171 .show
= ext4_mb_seq_groups_show
,
2174 static int ext4_mb_seq_groups_open(struct inode
*inode
, struct file
*file
)
2176 struct super_block
*sb
= PDE(inode
)->data
;
2179 rc
= seq_open(file
, &ext4_mb_seq_groups_ops
);
2181 struct seq_file
*m
= (struct seq_file
*)file
->private_data
;
2188 static const struct file_operations ext4_mb_seq_groups_fops
= {
2189 .owner
= THIS_MODULE
,
2190 .open
= ext4_mb_seq_groups_open
,
2192 .llseek
= seq_lseek
,
2193 .release
= seq_release
,
2197 /* Create and initialize ext4_group_info data for the given group. */
2198 int ext4_mb_add_groupinfo(struct super_block
*sb
, ext4_group_t group
,
2199 struct ext4_group_desc
*desc
)
2203 struct ext4_sb_info
*sbi
= EXT4_SB(sb
);
2204 struct ext4_group_info
**meta_group_info
;
2207 * First check if this group is the first of a reserved block.
2208 * If it's true, we have to allocate a new table of pointers
2209 * to ext4_group_info structures
2211 if (group
% EXT4_DESC_PER_BLOCK(sb
) == 0) {
2212 metalen
= sizeof(*meta_group_info
) <<
2213 EXT4_DESC_PER_BLOCK_BITS(sb
);
2214 meta_group_info
= kmalloc(metalen
, GFP_KERNEL
);
2215 if (meta_group_info
== NULL
) {
2216 printk(KERN_ERR
"EXT4-fs: can't allocate mem for a "
2218 goto exit_meta_group_info
;
2220 sbi
->s_group_info
[group
>> EXT4_DESC_PER_BLOCK_BITS(sb
)] =
2225 * calculate needed size. if change bb_counters size,
2226 * don't forget about ext4_mb_generate_buddy()
2228 len
= offsetof(typeof(**meta_group_info
),
2229 bb_counters
[sb
->s_blocksize_bits
+ 2]);
2232 sbi
->s_group_info
[group
>> EXT4_DESC_PER_BLOCK_BITS(sb
)];
2233 i
= group
& (EXT4_DESC_PER_BLOCK(sb
) - 1);
2235 meta_group_info
[i
] = kzalloc(len
, GFP_KERNEL
);
2236 if (meta_group_info
[i
] == NULL
) {
2237 printk(KERN_ERR
"EXT4-fs: can't allocate buddy mem\n");
2238 goto exit_group_info
;
2240 set_bit(EXT4_GROUP_INFO_NEED_INIT_BIT
,
2241 &(meta_group_info
[i
]->bb_state
));
2244 * initialize bb_free to be able to skip
2245 * empty groups without initialization
2247 if (desc
->bg_flags
& cpu_to_le16(EXT4_BG_BLOCK_UNINIT
)) {
2248 meta_group_info
[i
]->bb_free
=
2249 ext4_free_blocks_after_init(sb
, group
, desc
);
2251 meta_group_info
[i
]->bb_free
=
2252 ext4_free_blks_count(sb
, desc
);
2255 INIT_LIST_HEAD(&meta_group_info
[i
]->bb_prealloc_list
);
2256 init_rwsem(&meta_group_info
[i
]->alloc_sem
);
2257 meta_group_info
[i
]->bb_free_root
= RB_ROOT
;
2261 struct buffer_head
*bh
;
2262 meta_group_info
[i
]->bb_bitmap
=
2263 kmalloc(sb
->s_blocksize
, GFP_KERNEL
);
2264 BUG_ON(meta_group_info
[i
]->bb_bitmap
== NULL
);
2265 bh
= ext4_read_block_bitmap(sb
, group
);
2267 memcpy(meta_group_info
[i
]->bb_bitmap
, bh
->b_data
,
2276 /* If a meta_group_info table has been allocated, release it now */
2277 if (group
% EXT4_DESC_PER_BLOCK(sb
) == 0)
2278 kfree(sbi
->s_group_info
[group
>> EXT4_DESC_PER_BLOCK_BITS(sb
)]);
2279 exit_meta_group_info
:
2281 } /* ext4_mb_add_groupinfo */
2283 static int ext4_mb_init_backend(struct super_block
*sb
)
2285 ext4_group_t ngroups
= ext4_get_groups_count(sb
);
2287 struct ext4_sb_info
*sbi
= EXT4_SB(sb
);
2288 struct ext4_super_block
*es
= sbi
->s_es
;
2289 int num_meta_group_infos
;
2290 int num_meta_group_infos_max
;
2292 struct ext4_group_desc
*desc
;
2294 /* This is the number of blocks used by GDT */
2295 num_meta_group_infos
= (ngroups
+ EXT4_DESC_PER_BLOCK(sb
) -
2296 1) >> EXT4_DESC_PER_BLOCK_BITS(sb
);
2299 * This is the total number of blocks used by GDT including
2300 * the number of reserved blocks for GDT.
2301 * The s_group_info array is allocated with this value
2302 * to allow a clean online resize without a complex
2303 * manipulation of pointer.
2304 * The drawback is the unused memory when no resize
2305 * occurs but it's very low in terms of pages
2306 * (see comments below)
2307 * Need to handle this properly when META_BG resizing is allowed
2309 num_meta_group_infos_max
= num_meta_group_infos
+
2310 le16_to_cpu(es
->s_reserved_gdt_blocks
);
2313 * array_size is the size of s_group_info array. We round it
2314 * to the next power of two because this approximation is done
2315 * internally by kmalloc so we can have some more memory
2316 * for free here (e.g. may be used for META_BG resize).
2319 while (array_size
< sizeof(*sbi
->s_group_info
) *
2320 num_meta_group_infos_max
)
2321 array_size
= array_size
<< 1;
2322 /* An 8TB filesystem with 64-bit pointers requires a 4096 byte
2323 * kmalloc. A 128kb malloc should suffice for a 256TB filesystem.
2324 * So a two level scheme suffices for now. */
2325 sbi
->s_group_info
= kmalloc(array_size
, GFP_KERNEL
);
2326 if (sbi
->s_group_info
== NULL
) {
2327 printk(KERN_ERR
"EXT4-fs: can't allocate buddy meta group\n");
2330 sbi
->s_buddy_cache
= new_inode(sb
);
2331 if (sbi
->s_buddy_cache
== NULL
) {
2332 printk(KERN_ERR
"EXT4-fs: can't get new inode\n");
2335 EXT4_I(sbi
->s_buddy_cache
)->i_disksize
= 0;
2336 for (i
= 0; i
< ngroups
; i
++) {
2337 desc
= ext4_get_group_desc(sb
, i
, NULL
);
2340 "EXT4-fs: can't read descriptor %u\n", i
);
2343 if (ext4_mb_add_groupinfo(sb
, i
, desc
) != 0)
2351 kfree(ext4_get_group_info(sb
, i
));
2352 i
= num_meta_group_infos
;
2354 kfree(sbi
->s_group_info
[i
]);
2355 iput(sbi
->s_buddy_cache
);
2357 kfree(sbi
->s_group_info
);
2361 int ext4_mb_init(struct super_block
*sb
, int needs_recovery
)
2363 struct ext4_sb_info
*sbi
= EXT4_SB(sb
);
2369 i
= (sb
->s_blocksize_bits
+ 2) * sizeof(*sbi
->s_mb_offsets
);
2371 sbi
->s_mb_offsets
= kmalloc(i
, GFP_KERNEL
);
2372 if (sbi
->s_mb_offsets
== NULL
) {
2376 i
= (sb
->s_blocksize_bits
+ 2) * sizeof(*sbi
->s_mb_maxs
);
2377 sbi
->s_mb_maxs
= kmalloc(i
, GFP_KERNEL
);
2378 if (sbi
->s_mb_maxs
== NULL
) {
2379 kfree(sbi
->s_mb_offsets
);
2383 /* order 0 is regular bitmap */
2384 sbi
->s_mb_maxs
[0] = sb
->s_blocksize
<< 3;
2385 sbi
->s_mb_offsets
[0] = 0;
2389 max
= sb
->s_blocksize
<< 2;
2391 sbi
->s_mb_offsets
[i
] = offset
;
2392 sbi
->s_mb_maxs
[i
] = max
;
2393 offset
+= 1 << (sb
->s_blocksize_bits
- i
);
2396 } while (i
<= sb
->s_blocksize_bits
+ 1);
2398 /* init file for buddy data */
2399 ret
= ext4_mb_init_backend(sb
);
2401 kfree(sbi
->s_mb_offsets
);
2402 kfree(sbi
->s_mb_maxs
);
2406 spin_lock_init(&sbi
->s_md_lock
);
2407 spin_lock_init(&sbi
->s_bal_lock
);
2409 sbi
->s_mb_max_to_scan
= MB_DEFAULT_MAX_TO_SCAN
;
2410 sbi
->s_mb_min_to_scan
= MB_DEFAULT_MIN_TO_SCAN
;
2411 sbi
->s_mb_stats
= MB_DEFAULT_STATS
;
2412 sbi
->s_mb_stream_request
= MB_DEFAULT_STREAM_THRESHOLD
;
2413 sbi
->s_mb_order2_reqs
= MB_DEFAULT_ORDER2_REQS
;
2414 sbi
->s_mb_group_prealloc
= MB_DEFAULT_GROUP_PREALLOC
;
2416 sbi
->s_locality_groups
= alloc_percpu(struct ext4_locality_group
);
2417 if (sbi
->s_locality_groups
== NULL
) {
2418 kfree(sbi
->s_mb_offsets
);
2419 kfree(sbi
->s_mb_maxs
);
2422 for_each_possible_cpu(i
) {
2423 struct ext4_locality_group
*lg
;
2424 lg
= per_cpu_ptr(sbi
->s_locality_groups
, i
);
2425 mutex_init(&lg
->lg_mutex
);
2426 for (j
= 0; j
< PREALLOC_TB_SIZE
; j
++)
2427 INIT_LIST_HEAD(&lg
->lg_prealloc_list
[j
]);
2428 spin_lock_init(&lg
->lg_prealloc_lock
);
2432 proc_create_data("mb_groups", S_IRUGO
, sbi
->s_proc
,
2433 &ext4_mb_seq_groups_fops
, sb
);
2436 sbi
->s_journal
->j_commit_callback
= release_blocks_on_commit
;
2440 /* need to called with the ext4 group lock held */
2441 static void ext4_mb_cleanup_pa(struct ext4_group_info
*grp
)
2443 struct ext4_prealloc_space
*pa
;
2444 struct list_head
*cur
, *tmp
;
2447 list_for_each_safe(cur
, tmp
, &grp
->bb_prealloc_list
) {
2448 pa
= list_entry(cur
, struct ext4_prealloc_space
, pa_group_list
);
2449 list_del(&pa
->pa_group_list
);
2451 kmem_cache_free(ext4_pspace_cachep
, pa
);
2454 mb_debug(1, "mballoc: %u PAs left\n", count
);
2458 int ext4_mb_release(struct super_block
*sb
)
2460 ext4_group_t ngroups
= ext4_get_groups_count(sb
);
2462 int num_meta_group_infos
;
2463 struct ext4_group_info
*grinfo
;
2464 struct ext4_sb_info
*sbi
= EXT4_SB(sb
);
2466 if (sbi
->s_group_info
) {
2467 for (i
= 0; i
< ngroups
; i
++) {
2468 grinfo
= ext4_get_group_info(sb
, i
);
2470 kfree(grinfo
->bb_bitmap
);
2472 ext4_lock_group(sb
, i
);
2473 ext4_mb_cleanup_pa(grinfo
);
2474 ext4_unlock_group(sb
, i
);
2477 num_meta_group_infos
= (ngroups
+
2478 EXT4_DESC_PER_BLOCK(sb
) - 1) >>
2479 EXT4_DESC_PER_BLOCK_BITS(sb
);
2480 for (i
= 0; i
< num_meta_group_infos
; i
++)
2481 kfree(sbi
->s_group_info
[i
]);
2482 kfree(sbi
->s_group_info
);
2484 kfree(sbi
->s_mb_offsets
);
2485 kfree(sbi
->s_mb_maxs
);
2486 if (sbi
->s_buddy_cache
)
2487 iput(sbi
->s_buddy_cache
);
2488 if (sbi
->s_mb_stats
) {
2490 "EXT4-fs: mballoc: %u blocks %u reqs (%u success)\n",
2491 atomic_read(&sbi
->s_bal_allocated
),
2492 atomic_read(&sbi
->s_bal_reqs
),
2493 atomic_read(&sbi
->s_bal_success
));
2495 "EXT4-fs: mballoc: %u extents scanned, %u goal hits, "
2496 "%u 2^N hits, %u breaks, %u lost\n",
2497 atomic_read(&sbi
->s_bal_ex_scanned
),
2498 atomic_read(&sbi
->s_bal_goals
),
2499 atomic_read(&sbi
->s_bal_2orders
),
2500 atomic_read(&sbi
->s_bal_breaks
),
2501 atomic_read(&sbi
->s_mb_lost_chunks
));
2503 "EXT4-fs: mballoc: %lu generated and it took %Lu\n",
2504 sbi
->s_mb_buddies_generated
++,
2505 sbi
->s_mb_generation_time
);
2507 "EXT4-fs: mballoc: %u preallocated, %u discarded\n",
2508 atomic_read(&sbi
->s_mb_preallocated
),
2509 atomic_read(&sbi
->s_mb_discarded
));
2512 free_percpu(sbi
->s_locality_groups
);
2514 remove_proc_entry("mb_groups", sbi
->s_proc
);
2520 * This function is called by the jbd2 layer once the commit has finished,
2521 * so we know we can free the blocks that were released with that commit.
2523 static void release_blocks_on_commit(journal_t
*journal
, transaction_t
*txn
)
2525 struct super_block
*sb
= journal
->j_private
;
2526 struct ext4_buddy e4b
;
2527 struct ext4_group_info
*db
;
2528 int err
, count
= 0, count2
= 0;
2529 struct ext4_free_data
*entry
;
2530 struct list_head
*l
, *ltmp
;
2532 list_for_each_safe(l
, ltmp
, &txn
->t_private_list
) {
2533 entry
= list_entry(l
, struct ext4_free_data
, list
);
2535 mb_debug(1, "gonna free %u blocks in group %u (0x%p):",
2536 entry
->count
, entry
->group
, entry
);
2538 err
= ext4_mb_load_buddy(sb
, entry
->group
, &e4b
);
2539 /* we expect to find existing buddy because it's pinned */
2543 /* there are blocks to put in buddy to make them really free */
2544 count
+= entry
->count
;
2546 ext4_lock_group(sb
, entry
->group
);
2547 /* Take it out of per group rb tree */
2548 rb_erase(&entry
->node
, &(db
->bb_free_root
));
2549 mb_free_blocks(NULL
, &e4b
, entry
->start_blk
, entry
->count
);
2551 if (!db
->bb_free_root
.rb_node
) {
2552 /* No more items in the per group rb tree
2553 * balance refcounts from ext4_mb_free_metadata()
2555 page_cache_release(e4b
.bd_buddy_page
);
2556 page_cache_release(e4b
.bd_bitmap_page
);
2558 ext4_unlock_group(sb
, entry
->group
);
2559 if (test_opt(sb
, DISCARD
)) {
2560 ext4_fsblk_t discard_block
;
2562 discard_block
= entry
->start_blk
+
2563 ext4_group_first_block_no(sb
, entry
->group
);
2564 trace_ext4_discard_blocks(sb
,
2565 (unsigned long long)discard_block
,
2567 sb_issue_discard(sb
, discard_block
, entry
->count
);
2569 kmem_cache_free(ext4_free_ext_cachep
, entry
);
2570 ext4_mb_release_desc(&e4b
);
2573 mb_debug(1, "freed %u blocks in %u structures\n", count
, count2
);
2576 #ifdef CONFIG_EXT4_DEBUG
2577 u8 mb_enable_debug __read_mostly
;
2579 static struct dentry
*debugfs_dir
;
2580 static struct dentry
*debugfs_debug
;
2582 static void __init
ext4_create_debugfs_entry(void)
2584 debugfs_dir
= debugfs_create_dir("ext4", NULL
);
2586 debugfs_debug
= debugfs_create_u8("mballoc-debug",
2592 static void ext4_remove_debugfs_entry(void)
2594 debugfs_remove(debugfs_debug
);
2595 debugfs_remove(debugfs_dir
);
2600 static void __init
ext4_create_debugfs_entry(void)
2604 static void ext4_remove_debugfs_entry(void)
2610 int __init
init_ext4_mballoc(void)
2612 ext4_pspace_cachep
=
2613 kmem_cache_create("ext4_prealloc_space",
2614 sizeof(struct ext4_prealloc_space
),
2615 0, SLAB_RECLAIM_ACCOUNT
, NULL
);
2616 if (ext4_pspace_cachep
== NULL
)
2620 kmem_cache_create("ext4_alloc_context",
2621 sizeof(struct ext4_allocation_context
),
2622 0, SLAB_RECLAIM_ACCOUNT
, NULL
);
2623 if (ext4_ac_cachep
== NULL
) {
2624 kmem_cache_destroy(ext4_pspace_cachep
);
2628 ext4_free_ext_cachep
=
2629 kmem_cache_create("ext4_free_block_extents",
2630 sizeof(struct ext4_free_data
),
2631 0, SLAB_RECLAIM_ACCOUNT
, NULL
);
2632 if (ext4_free_ext_cachep
== NULL
) {
2633 kmem_cache_destroy(ext4_pspace_cachep
);
2634 kmem_cache_destroy(ext4_ac_cachep
);
2637 ext4_create_debugfs_entry();
2641 void exit_ext4_mballoc(void)
2644 * Wait for completion of call_rcu()'s on ext4_pspace_cachep
2645 * before destroying the slab cache.
2648 kmem_cache_destroy(ext4_pspace_cachep
);
2649 kmem_cache_destroy(ext4_ac_cachep
);
2650 kmem_cache_destroy(ext4_free_ext_cachep
);
2651 ext4_remove_debugfs_entry();
2656 * Check quota and mark choosed space (ac->ac_b_ex) non-free in bitmaps
2657 * Returns 0 if success or error code
2659 static noinline_for_stack
int
2660 ext4_mb_mark_diskspace_used(struct ext4_allocation_context
*ac
,
2661 handle_t
*handle
, unsigned int reserv_blks
)
2663 struct buffer_head
*bitmap_bh
= NULL
;
2664 struct ext4_super_block
*es
;
2665 struct ext4_group_desc
*gdp
;
2666 struct buffer_head
*gdp_bh
;
2667 struct ext4_sb_info
*sbi
;
2668 struct super_block
*sb
;
2672 BUG_ON(ac
->ac_status
!= AC_STATUS_FOUND
);
2673 BUG_ON(ac
->ac_b_ex
.fe_len
<= 0);
2681 bitmap_bh
= ext4_read_block_bitmap(sb
, ac
->ac_b_ex
.fe_group
);
2685 err
= ext4_journal_get_write_access(handle
, bitmap_bh
);
2690 gdp
= ext4_get_group_desc(sb
, ac
->ac_b_ex
.fe_group
, &gdp_bh
);
2694 ext4_debug("using block group %u(%d)\n", ac
->ac_b_ex
.fe_group
,
2695 ext4_free_blks_count(sb
, gdp
));
2697 err
= ext4_journal_get_write_access(handle
, gdp_bh
);
2701 block
= ext4_grp_offs_to_block(sb
, &ac
->ac_b_ex
);
2703 len
= ac
->ac_b_ex
.fe_len
;
2704 if (!ext4_data_block_valid(sbi
, block
, len
)) {
2705 ext4_error(sb
, "Allocating blocks %llu-%llu which overlap "
2706 "fs metadata\n", block
, block
+len
);
2707 /* File system mounted not to panic on error
2708 * Fix the bitmap and repeat the block allocation
2709 * We leak some of the blocks here.
2711 ext4_lock_group(sb
, ac
->ac_b_ex
.fe_group
);
2712 mb_set_bits(bitmap_bh
->b_data
, ac
->ac_b_ex
.fe_start
,
2713 ac
->ac_b_ex
.fe_len
);
2714 ext4_unlock_group(sb
, ac
->ac_b_ex
.fe_group
);
2715 err
= ext4_handle_dirty_metadata(handle
, NULL
, bitmap_bh
);
2721 ext4_lock_group(sb
, ac
->ac_b_ex
.fe_group
);
2722 #ifdef AGGRESSIVE_CHECK
2725 for (i
= 0; i
< ac
->ac_b_ex
.fe_len
; i
++) {
2726 BUG_ON(mb_test_bit(ac
->ac_b_ex
.fe_start
+ i
,
2727 bitmap_bh
->b_data
));
2731 mb_set_bits(bitmap_bh
->b_data
, ac
->ac_b_ex
.fe_start
,ac
->ac_b_ex
.fe_len
);
2732 if (gdp
->bg_flags
& cpu_to_le16(EXT4_BG_BLOCK_UNINIT
)) {
2733 gdp
->bg_flags
&= cpu_to_le16(~EXT4_BG_BLOCK_UNINIT
);
2734 ext4_free_blks_set(sb
, gdp
,
2735 ext4_free_blocks_after_init(sb
,
2736 ac
->ac_b_ex
.fe_group
, gdp
));
2738 len
= ext4_free_blks_count(sb
, gdp
) - ac
->ac_b_ex
.fe_len
;
2739 ext4_free_blks_set(sb
, gdp
, len
);
2740 gdp
->bg_checksum
= ext4_group_desc_csum(sbi
, ac
->ac_b_ex
.fe_group
, gdp
);
2742 ext4_unlock_group(sb
, ac
->ac_b_ex
.fe_group
);
2743 percpu_counter_sub(&sbi
->s_freeblocks_counter
, ac
->ac_b_ex
.fe_len
);
2745 * Now reduce the dirty block count also. Should not go negative
2747 if (!(ac
->ac_flags
& EXT4_MB_DELALLOC_RESERVED
))
2748 /* release all the reserved blocks if non delalloc */
2749 percpu_counter_sub(&sbi
->s_dirtyblocks_counter
, reserv_blks
);
2751 if (sbi
->s_log_groups_per_flex
) {
2752 ext4_group_t flex_group
= ext4_flex_group(sbi
,
2753 ac
->ac_b_ex
.fe_group
);
2754 atomic_sub(ac
->ac_b_ex
.fe_len
,
2755 &sbi
->s_flex_groups
[flex_group
].free_blocks
);
2758 err
= ext4_handle_dirty_metadata(handle
, NULL
, bitmap_bh
);
2761 err
= ext4_handle_dirty_metadata(handle
, NULL
, gdp_bh
);
2770 * here we normalize request for locality group
2771 * Group request are normalized to s_strip size if we set the same via mount
2772 * option. If not we set it to s_mb_group_prealloc which can be configured via
2773 * /sys/fs/ext4/<partition>/mb_group_prealloc
2775 * XXX: should we try to preallocate more than the group has now?
2777 static void ext4_mb_normalize_group_request(struct ext4_allocation_context
*ac
)
2779 struct super_block
*sb
= ac
->ac_sb
;
2780 struct ext4_locality_group
*lg
= ac
->ac_lg
;
2783 if (EXT4_SB(sb
)->s_stripe
)
2784 ac
->ac_g_ex
.fe_len
= EXT4_SB(sb
)->s_stripe
;
2786 ac
->ac_g_ex
.fe_len
= EXT4_SB(sb
)->s_mb_group_prealloc
;
2787 mb_debug(1, "#%u: goal %u blocks for locality group\n",
2788 current
->pid
, ac
->ac_g_ex
.fe_len
);
2792 * Normalization means making request better in terms of
2793 * size and alignment
2795 static noinline_for_stack
void
2796 ext4_mb_normalize_request(struct ext4_allocation_context
*ac
,
2797 struct ext4_allocation_request
*ar
)
2801 loff_t size
, orig_size
, start_off
;
2802 ext4_lblk_t start
, orig_start
;
2803 struct ext4_inode_info
*ei
= EXT4_I(ac
->ac_inode
);
2804 struct ext4_prealloc_space
*pa
;
2806 /* do normalize only data requests, metadata requests
2807 do not need preallocation */
2808 if (!(ac
->ac_flags
& EXT4_MB_HINT_DATA
))
2811 /* sometime caller may want exact blocks */
2812 if (unlikely(ac
->ac_flags
& EXT4_MB_HINT_GOAL_ONLY
))
2815 /* caller may indicate that preallocation isn't
2816 * required (it's a tail, for example) */
2817 if (ac
->ac_flags
& EXT4_MB_HINT_NOPREALLOC
)
2820 if (ac
->ac_flags
& EXT4_MB_HINT_GROUP_ALLOC
) {
2821 ext4_mb_normalize_group_request(ac
);
2825 bsbits
= ac
->ac_sb
->s_blocksize_bits
;
2827 /* first, let's learn actual file size
2828 * given current request is allocated */
2829 size
= ac
->ac_o_ex
.fe_logical
+ ac
->ac_o_ex
.fe_len
;
2830 size
= size
<< bsbits
;
2831 if (size
< i_size_read(ac
->ac_inode
))
2832 size
= i_size_read(ac
->ac_inode
);
2834 /* max size of free chunks */
2837 #define NRL_CHECK_SIZE(req, size, max, chunk_size) \
2838 (req <= (size) || max <= (chunk_size))
2840 /* first, try to predict filesize */
2841 /* XXX: should this table be tunable? */
2843 if (size
<= 16 * 1024) {
2845 } else if (size
<= 32 * 1024) {
2847 } else if (size
<= 64 * 1024) {
2849 } else if (size
<= 128 * 1024) {
2851 } else if (size
<= 256 * 1024) {
2853 } else if (size
<= 512 * 1024) {
2855 } else if (size
<= 1024 * 1024) {
2857 } else if (NRL_CHECK_SIZE(size
, 4 * 1024 * 1024, max
, 2 * 1024)) {
2858 start_off
= ((loff_t
)ac
->ac_o_ex
.fe_logical
>>
2859 (21 - bsbits
)) << 21;
2860 size
= 2 * 1024 * 1024;
2861 } else if (NRL_CHECK_SIZE(size
, 8 * 1024 * 1024, max
, 4 * 1024)) {
2862 start_off
= ((loff_t
)ac
->ac_o_ex
.fe_logical
>>
2863 (22 - bsbits
)) << 22;
2864 size
= 4 * 1024 * 1024;
2865 } else if (NRL_CHECK_SIZE(ac
->ac_o_ex
.fe_len
,
2866 (8<<20)>>bsbits
, max
, 8 * 1024)) {
2867 start_off
= ((loff_t
)ac
->ac_o_ex
.fe_logical
>>
2868 (23 - bsbits
)) << 23;
2869 size
= 8 * 1024 * 1024;
2871 start_off
= (loff_t
)ac
->ac_o_ex
.fe_logical
<< bsbits
;
2872 size
= ac
->ac_o_ex
.fe_len
<< bsbits
;
2874 orig_size
= size
= size
>> bsbits
;
2875 orig_start
= start
= start_off
>> bsbits
;
2877 /* don't cover already allocated blocks in selected range */
2878 if (ar
->pleft
&& start
<= ar
->lleft
) {
2879 size
-= ar
->lleft
+ 1 - start
;
2880 start
= ar
->lleft
+ 1;
2882 if (ar
->pright
&& start
+ size
- 1 >= ar
->lright
)
2883 size
-= start
+ size
- ar
->lright
;
2887 /* check we don't cross already preallocated blocks */
2889 list_for_each_entry_rcu(pa
, &ei
->i_prealloc_list
, pa_inode_list
) {
2894 spin_lock(&pa
->pa_lock
);
2895 if (pa
->pa_deleted
) {
2896 spin_unlock(&pa
->pa_lock
);
2900 pa_end
= pa
->pa_lstart
+ pa
->pa_len
;
2902 /* PA must not overlap original request */
2903 BUG_ON(!(ac
->ac_o_ex
.fe_logical
>= pa_end
||
2904 ac
->ac_o_ex
.fe_logical
< pa
->pa_lstart
));
2906 /* skip PAs this normalized request doesn't overlap with */
2907 if (pa
->pa_lstart
>= end
|| pa_end
<= start
) {
2908 spin_unlock(&pa
->pa_lock
);
2911 BUG_ON(pa
->pa_lstart
<= start
&& pa_end
>= end
);
2913 /* adjust start or end to be adjacent to this pa */
2914 if (pa_end
<= ac
->ac_o_ex
.fe_logical
) {
2915 BUG_ON(pa_end
< start
);
2917 } else if (pa
->pa_lstart
> ac
->ac_o_ex
.fe_logical
) {
2918 BUG_ON(pa
->pa_lstart
> end
);
2919 end
= pa
->pa_lstart
;
2921 spin_unlock(&pa
->pa_lock
);
2926 /* XXX: extra loop to check we really don't overlap preallocations */
2928 list_for_each_entry_rcu(pa
, &ei
->i_prealloc_list
, pa_inode_list
) {
2930 spin_lock(&pa
->pa_lock
);
2931 if (pa
->pa_deleted
== 0) {
2932 pa_end
= pa
->pa_lstart
+ pa
->pa_len
;
2933 BUG_ON(!(start
>= pa_end
|| end
<= pa
->pa_lstart
));
2935 spin_unlock(&pa
->pa_lock
);
2939 if (start
+ size
<= ac
->ac_o_ex
.fe_logical
&&
2940 start
> ac
->ac_o_ex
.fe_logical
) {
2941 printk(KERN_ERR
"start %lu, size %lu, fe_logical %lu\n",
2942 (unsigned long) start
, (unsigned long) size
,
2943 (unsigned long) ac
->ac_o_ex
.fe_logical
);
2945 BUG_ON(start
+ size
<= ac
->ac_o_ex
.fe_logical
&&
2946 start
> ac
->ac_o_ex
.fe_logical
);
2947 BUG_ON(size
<= 0 || size
> EXT4_BLOCKS_PER_GROUP(ac
->ac_sb
));
2949 /* now prepare goal request */
2951 /* XXX: is it better to align blocks WRT to logical
2952 * placement or satisfy big request as is */
2953 ac
->ac_g_ex
.fe_logical
= start
;
2954 ac
->ac_g_ex
.fe_len
= size
;
2956 /* define goal start in order to merge */
2957 if (ar
->pright
&& (ar
->lright
== (start
+ size
))) {
2958 /* merge to the right */
2959 ext4_get_group_no_and_offset(ac
->ac_sb
, ar
->pright
- size
,
2960 &ac
->ac_f_ex
.fe_group
,
2961 &ac
->ac_f_ex
.fe_start
);
2962 ac
->ac_flags
|= EXT4_MB_HINT_TRY_GOAL
;
2964 if (ar
->pleft
&& (ar
->lleft
+ 1 == start
)) {
2965 /* merge to the left */
2966 ext4_get_group_no_and_offset(ac
->ac_sb
, ar
->pleft
+ 1,
2967 &ac
->ac_f_ex
.fe_group
,
2968 &ac
->ac_f_ex
.fe_start
);
2969 ac
->ac_flags
|= EXT4_MB_HINT_TRY_GOAL
;
2972 mb_debug(1, "goal: %u(was %u) blocks at %u\n", (unsigned) size
,
2973 (unsigned) orig_size
, (unsigned) start
);
2976 static void ext4_mb_collect_stats(struct ext4_allocation_context
*ac
)
2978 struct ext4_sb_info
*sbi
= EXT4_SB(ac
->ac_sb
);
2980 if (sbi
->s_mb_stats
&& ac
->ac_g_ex
.fe_len
> 1) {
2981 atomic_inc(&sbi
->s_bal_reqs
);
2982 atomic_add(ac
->ac_b_ex
.fe_len
, &sbi
->s_bal_allocated
);
2983 if (ac
->ac_o_ex
.fe_len
>= ac
->ac_g_ex
.fe_len
)
2984 atomic_inc(&sbi
->s_bal_success
);
2985 atomic_add(ac
->ac_found
, &sbi
->s_bal_ex_scanned
);
2986 if (ac
->ac_g_ex
.fe_start
== ac
->ac_b_ex
.fe_start
&&
2987 ac
->ac_g_ex
.fe_group
== ac
->ac_b_ex
.fe_group
)
2988 atomic_inc(&sbi
->s_bal_goals
);
2989 if (ac
->ac_found
> sbi
->s_mb_max_to_scan
)
2990 atomic_inc(&sbi
->s_bal_breaks
);
2993 if (ac
->ac_op
== EXT4_MB_HISTORY_ALLOC
)
2994 trace_ext4_mballoc_alloc(ac
);
2996 trace_ext4_mballoc_prealloc(ac
);
3000 * Called on failure; free up any blocks from the inode PA for this
3001 * context. We don't need this for MB_GROUP_PA because we only change
3002 * pa_free in ext4_mb_release_context(), but on failure, we've already
3003 * zeroed out ac->ac_b_ex.fe_len, so group_pa->pa_free is not changed.
3005 static void ext4_discard_allocated_blocks(struct ext4_allocation_context
*ac
)
3007 struct ext4_prealloc_space
*pa
= ac
->ac_pa
;
3010 if (pa
&& pa
->pa_type
== MB_INODE_PA
) {
3011 len
= ac
->ac_b_ex
.fe_len
;
3018 * use blocks preallocated to inode
3020 static void ext4_mb_use_inode_pa(struct ext4_allocation_context
*ac
,
3021 struct ext4_prealloc_space
*pa
)
3027 /* found preallocated blocks, use them */
3028 start
= pa
->pa_pstart
+ (ac
->ac_o_ex
.fe_logical
- pa
->pa_lstart
);
3029 end
= min(pa
->pa_pstart
+ pa
->pa_len
, start
+ ac
->ac_o_ex
.fe_len
);
3031 ext4_get_group_no_and_offset(ac
->ac_sb
, start
, &ac
->ac_b_ex
.fe_group
,
3032 &ac
->ac_b_ex
.fe_start
);
3033 ac
->ac_b_ex
.fe_len
= len
;
3034 ac
->ac_status
= AC_STATUS_FOUND
;
3037 BUG_ON(start
< pa
->pa_pstart
);
3038 BUG_ON(start
+ len
> pa
->pa_pstart
+ pa
->pa_len
);
3039 BUG_ON(pa
->pa_free
< len
);
3042 mb_debug(1, "use %llu/%u from inode pa %p\n", start
, len
, pa
);
3046 * use blocks preallocated to locality group
3048 static void ext4_mb_use_group_pa(struct ext4_allocation_context
*ac
,
3049 struct ext4_prealloc_space
*pa
)
3051 unsigned int len
= ac
->ac_o_ex
.fe_len
;
3053 ext4_get_group_no_and_offset(ac
->ac_sb
, pa
->pa_pstart
,
3054 &ac
->ac_b_ex
.fe_group
,
3055 &ac
->ac_b_ex
.fe_start
);
3056 ac
->ac_b_ex
.fe_len
= len
;
3057 ac
->ac_status
= AC_STATUS_FOUND
;
3060 /* we don't correct pa_pstart or pa_plen here to avoid
3061 * possible race when the group is being loaded concurrently
3062 * instead we correct pa later, after blocks are marked
3063 * in on-disk bitmap -- see ext4_mb_release_context()
3064 * Other CPUs are prevented from allocating from this pa by lg_mutex
3066 mb_debug(1, "use %u/%u from group pa %p\n", pa
->pa_lstart
-len
, len
, pa
);
3070 * Return the prealloc space that have minimal distance
3071 * from the goal block. @cpa is the prealloc
3072 * space that is having currently known minimal distance
3073 * from the goal block.
3075 static struct ext4_prealloc_space
*
3076 ext4_mb_check_group_pa(ext4_fsblk_t goal_block
,
3077 struct ext4_prealloc_space
*pa
,
3078 struct ext4_prealloc_space
*cpa
)
3080 ext4_fsblk_t cur_distance
, new_distance
;
3083 atomic_inc(&pa
->pa_count
);
3086 cur_distance
= abs(goal_block
- cpa
->pa_pstart
);
3087 new_distance
= abs(goal_block
- pa
->pa_pstart
);
3089 if (cur_distance
< new_distance
)
3092 /* drop the previous reference */
3093 atomic_dec(&cpa
->pa_count
);
3094 atomic_inc(&pa
->pa_count
);
3099 * search goal blocks in preallocated space
3101 static noinline_for_stack
int
3102 ext4_mb_use_preallocated(struct ext4_allocation_context
*ac
)
3105 struct ext4_inode_info
*ei
= EXT4_I(ac
->ac_inode
);
3106 struct ext4_locality_group
*lg
;
3107 struct ext4_prealloc_space
*pa
, *cpa
= NULL
;
3108 ext4_fsblk_t goal_block
;
3110 /* only data can be preallocated */
3111 if (!(ac
->ac_flags
& EXT4_MB_HINT_DATA
))
3114 /* first, try per-file preallocation */
3116 list_for_each_entry_rcu(pa
, &ei
->i_prealloc_list
, pa_inode_list
) {
3118 /* all fields in this condition don't change,
3119 * so we can skip locking for them */
3120 if (ac
->ac_o_ex
.fe_logical
< pa
->pa_lstart
||
3121 ac
->ac_o_ex
.fe_logical
>= pa
->pa_lstart
+ pa
->pa_len
)
3124 /* non-extent files can't have physical blocks past 2^32 */
3125 if (!(EXT4_I(ac
->ac_inode
)->i_flags
& EXT4_EXTENTS_FL
) &&
3126 pa
->pa_pstart
+ pa
->pa_len
> EXT4_MAX_BLOCK_FILE_PHYS
)
3129 /* found preallocated blocks, use them */
3130 spin_lock(&pa
->pa_lock
);
3131 if (pa
->pa_deleted
== 0 && pa
->pa_free
) {
3132 atomic_inc(&pa
->pa_count
);
3133 ext4_mb_use_inode_pa(ac
, pa
);
3134 spin_unlock(&pa
->pa_lock
);
3135 ac
->ac_criteria
= 10;
3139 spin_unlock(&pa
->pa_lock
);
3143 /* can we use group allocation? */
3144 if (!(ac
->ac_flags
& EXT4_MB_HINT_GROUP_ALLOC
))
3147 /* inode may have no locality group for some reason */
3151 order
= fls(ac
->ac_o_ex
.fe_len
) - 1;
3152 if (order
> PREALLOC_TB_SIZE
- 1)
3153 /* The max size of hash table is PREALLOC_TB_SIZE */
3154 order
= PREALLOC_TB_SIZE
- 1;
3156 goal_block
= ext4_grp_offs_to_block(ac
->ac_sb
, &ac
->ac_g_ex
);
3158 * search for the prealloc space that is having
3159 * minimal distance from the goal block.
3161 for (i
= order
; i
< PREALLOC_TB_SIZE
; i
++) {
3163 list_for_each_entry_rcu(pa
, &lg
->lg_prealloc_list
[i
],
3165 spin_lock(&pa
->pa_lock
);
3166 if (pa
->pa_deleted
== 0 &&
3167 pa
->pa_free
>= ac
->ac_o_ex
.fe_len
) {
3169 cpa
= ext4_mb_check_group_pa(goal_block
,
3172 spin_unlock(&pa
->pa_lock
);
3177 ext4_mb_use_group_pa(ac
, cpa
);
3178 ac
->ac_criteria
= 20;
3185 * the function goes through all block freed in the group
3186 * but not yet committed and marks them used in in-core bitmap.
3187 * buddy must be generated from this bitmap
3188 * Need to be called with the ext4 group lock held
3190 static void ext4_mb_generate_from_freelist(struct super_block
*sb
, void *bitmap
,
3194 struct ext4_group_info
*grp
;
3195 struct ext4_free_data
*entry
;
3197 grp
= ext4_get_group_info(sb
, group
);
3198 n
= rb_first(&(grp
->bb_free_root
));
3201 entry
= rb_entry(n
, struct ext4_free_data
, node
);
3202 mb_set_bits(bitmap
, entry
->start_blk
, entry
->count
);
3209 * the function goes through all preallocation in this group and marks them
3210 * used in in-core bitmap. buddy must be generated from this bitmap
3211 * Need to be called with ext4 group lock held
3213 static noinline_for_stack
3214 void ext4_mb_generate_from_pa(struct super_block
*sb
, void *bitmap
,
3217 struct ext4_group_info
*grp
= ext4_get_group_info(sb
, group
);
3218 struct ext4_prealloc_space
*pa
;
3219 struct list_head
*cur
;
3220 ext4_group_t groupnr
;
3221 ext4_grpblk_t start
;
3222 int preallocated
= 0;
3226 /* all form of preallocation discards first load group,
3227 * so the only competing code is preallocation use.
3228 * we don't need any locking here
3229 * notice we do NOT ignore preallocations with pa_deleted
3230 * otherwise we could leave used blocks available for
3231 * allocation in buddy when concurrent ext4_mb_put_pa()
3232 * is dropping preallocation
3234 list_for_each(cur
, &grp
->bb_prealloc_list
) {
3235 pa
= list_entry(cur
, struct ext4_prealloc_space
, pa_group_list
);
3236 spin_lock(&pa
->pa_lock
);
3237 ext4_get_group_no_and_offset(sb
, pa
->pa_pstart
,
3240 spin_unlock(&pa
->pa_lock
);
3241 if (unlikely(len
== 0))
3243 BUG_ON(groupnr
!= group
);
3244 mb_set_bits(bitmap
, start
, len
);
3245 preallocated
+= len
;
3248 mb_debug(1, "prellocated %u for group %u\n", preallocated
, group
);
3251 static void ext4_mb_pa_callback(struct rcu_head
*head
)
3253 struct ext4_prealloc_space
*pa
;
3254 pa
= container_of(head
, struct ext4_prealloc_space
, u
.pa_rcu
);
3255 kmem_cache_free(ext4_pspace_cachep
, pa
);
3259 * drops a reference to preallocated space descriptor
3260 * if this was the last reference and the space is consumed
3262 static void ext4_mb_put_pa(struct ext4_allocation_context
*ac
,
3263 struct super_block
*sb
, struct ext4_prealloc_space
*pa
)
3266 ext4_fsblk_t grp_blk
;
3268 if (!atomic_dec_and_test(&pa
->pa_count
) || pa
->pa_free
!= 0)
3271 /* in this short window concurrent discard can set pa_deleted */
3272 spin_lock(&pa
->pa_lock
);
3273 if (pa
->pa_deleted
== 1) {
3274 spin_unlock(&pa
->pa_lock
);
3279 spin_unlock(&pa
->pa_lock
);
3281 grp_blk
= pa
->pa_pstart
;
3283 * If doing group-based preallocation, pa_pstart may be in the
3284 * next group when pa is used up
3286 if (pa
->pa_type
== MB_GROUP_PA
)
3289 ext4_get_group_no_and_offset(sb
, grp_blk
, &grp
, NULL
);
3294 * P1 (buddy init) P2 (regular allocation)
3295 * find block B in PA
3296 * copy on-disk bitmap to buddy
3297 * mark B in on-disk bitmap
3298 * drop PA from group
3299 * mark all PAs in buddy
3301 * thus, P1 initializes buddy with B available. to prevent this
3302 * we make "copy" and "mark all PAs" atomic and serialize "drop PA"
3305 ext4_lock_group(sb
, grp
);
3306 list_del(&pa
->pa_group_list
);
3307 ext4_unlock_group(sb
, grp
);
3309 spin_lock(pa
->pa_obj_lock
);
3310 list_del_rcu(&pa
->pa_inode_list
);
3311 spin_unlock(pa
->pa_obj_lock
);
3313 call_rcu(&(pa
)->u
.pa_rcu
, ext4_mb_pa_callback
);
3317 * creates new preallocated space for given inode
3319 static noinline_for_stack
int
3320 ext4_mb_new_inode_pa(struct ext4_allocation_context
*ac
)
3322 struct super_block
*sb
= ac
->ac_sb
;
3323 struct ext4_prealloc_space
*pa
;
3324 struct ext4_group_info
*grp
;
3325 struct ext4_inode_info
*ei
;
3327 /* preallocate only when found space is larger then requested */
3328 BUG_ON(ac
->ac_o_ex
.fe_len
>= ac
->ac_b_ex
.fe_len
);
3329 BUG_ON(ac
->ac_status
!= AC_STATUS_FOUND
);
3330 BUG_ON(!S_ISREG(ac
->ac_inode
->i_mode
));
3332 pa
= kmem_cache_alloc(ext4_pspace_cachep
, GFP_NOFS
);
3336 if (ac
->ac_b_ex
.fe_len
< ac
->ac_g_ex
.fe_len
) {
3342 /* we can't allocate as much as normalizer wants.
3343 * so, found space must get proper lstart
3344 * to cover original request */
3345 BUG_ON(ac
->ac_g_ex
.fe_logical
> ac
->ac_o_ex
.fe_logical
);
3346 BUG_ON(ac
->ac_g_ex
.fe_len
< ac
->ac_o_ex
.fe_len
);
3348 /* we're limited by original request in that
3349 * logical block must be covered any way
3350 * winl is window we can move our chunk within */
3351 winl
= ac
->ac_o_ex
.fe_logical
- ac
->ac_g_ex
.fe_logical
;
3353 /* also, we should cover whole original request */
3354 wins
= ac
->ac_b_ex
.fe_len
- ac
->ac_o_ex
.fe_len
;
3356 /* the smallest one defines real window */
3357 win
= min(winl
, wins
);
3359 offs
= ac
->ac_o_ex
.fe_logical
% ac
->ac_b_ex
.fe_len
;
3360 if (offs
&& offs
< win
)
3363 ac
->ac_b_ex
.fe_logical
= ac
->ac_o_ex
.fe_logical
- win
;
3364 BUG_ON(ac
->ac_o_ex
.fe_logical
< ac
->ac_b_ex
.fe_logical
);
3365 BUG_ON(ac
->ac_o_ex
.fe_len
> ac
->ac_b_ex
.fe_len
);
3368 /* preallocation can change ac_b_ex, thus we store actually
3369 * allocated blocks for history */
3370 ac
->ac_f_ex
= ac
->ac_b_ex
;
3372 pa
->pa_lstart
= ac
->ac_b_ex
.fe_logical
;
3373 pa
->pa_pstart
= ext4_grp_offs_to_block(sb
, &ac
->ac_b_ex
);
3374 pa
->pa_len
= ac
->ac_b_ex
.fe_len
;
3375 pa
->pa_free
= pa
->pa_len
;
3376 atomic_set(&pa
->pa_count
, 1);
3377 spin_lock_init(&pa
->pa_lock
);
3378 INIT_LIST_HEAD(&pa
->pa_inode_list
);
3379 INIT_LIST_HEAD(&pa
->pa_group_list
);
3381 pa
->pa_type
= MB_INODE_PA
;
3383 mb_debug(1, "new inode pa %p: %llu/%u for %u\n", pa
,
3384 pa
->pa_pstart
, pa
->pa_len
, pa
->pa_lstart
);
3385 trace_ext4_mb_new_inode_pa(ac
, pa
);
3387 ext4_mb_use_inode_pa(ac
, pa
);
3388 atomic_add(pa
->pa_free
, &EXT4_SB(sb
)->s_mb_preallocated
);
3390 ei
= EXT4_I(ac
->ac_inode
);
3391 grp
= ext4_get_group_info(sb
, ac
->ac_b_ex
.fe_group
);
3393 pa
->pa_obj_lock
= &ei
->i_prealloc_lock
;
3394 pa
->pa_inode
= ac
->ac_inode
;
3396 ext4_lock_group(sb
, ac
->ac_b_ex
.fe_group
);
3397 list_add(&pa
->pa_group_list
, &grp
->bb_prealloc_list
);
3398 ext4_unlock_group(sb
, ac
->ac_b_ex
.fe_group
);
3400 spin_lock(pa
->pa_obj_lock
);
3401 list_add_rcu(&pa
->pa_inode_list
, &ei
->i_prealloc_list
);
3402 spin_unlock(pa
->pa_obj_lock
);
3408 * creates new preallocated space for locality group inodes belongs to
3410 static noinline_for_stack
int
3411 ext4_mb_new_group_pa(struct ext4_allocation_context
*ac
)
3413 struct super_block
*sb
= ac
->ac_sb
;
3414 struct ext4_locality_group
*lg
;
3415 struct ext4_prealloc_space
*pa
;
3416 struct ext4_group_info
*grp
;
3418 /* preallocate only when found space is larger then requested */
3419 BUG_ON(ac
->ac_o_ex
.fe_len
>= ac
->ac_b_ex
.fe_len
);
3420 BUG_ON(ac
->ac_status
!= AC_STATUS_FOUND
);
3421 BUG_ON(!S_ISREG(ac
->ac_inode
->i_mode
));
3423 BUG_ON(ext4_pspace_cachep
== NULL
);
3424 pa
= kmem_cache_alloc(ext4_pspace_cachep
, GFP_NOFS
);
3428 /* preallocation can change ac_b_ex, thus we store actually
3429 * allocated blocks for history */
3430 ac
->ac_f_ex
= ac
->ac_b_ex
;
3432 pa
->pa_pstart
= ext4_grp_offs_to_block(sb
, &ac
->ac_b_ex
);
3433 pa
->pa_lstart
= pa
->pa_pstart
;
3434 pa
->pa_len
= ac
->ac_b_ex
.fe_len
;
3435 pa
->pa_free
= pa
->pa_len
;
3436 atomic_set(&pa
->pa_count
, 1);
3437 spin_lock_init(&pa
->pa_lock
);
3438 INIT_LIST_HEAD(&pa
->pa_inode_list
);
3439 INIT_LIST_HEAD(&pa
->pa_group_list
);
3441 pa
->pa_type
= MB_GROUP_PA
;
3443 mb_debug(1, "new group pa %p: %llu/%u for %u\n", pa
,
3444 pa
->pa_pstart
, pa
->pa_len
, pa
->pa_lstart
);
3445 trace_ext4_mb_new_group_pa(ac
, pa
);
3447 ext4_mb_use_group_pa(ac
, pa
);
3448 atomic_add(pa
->pa_free
, &EXT4_SB(sb
)->s_mb_preallocated
);
3450 grp
= ext4_get_group_info(sb
, ac
->ac_b_ex
.fe_group
);
3454 pa
->pa_obj_lock
= &lg
->lg_prealloc_lock
;
3455 pa
->pa_inode
= NULL
;
3457 ext4_lock_group(sb
, ac
->ac_b_ex
.fe_group
);
3458 list_add(&pa
->pa_group_list
, &grp
->bb_prealloc_list
);
3459 ext4_unlock_group(sb
, ac
->ac_b_ex
.fe_group
);
3462 * We will later add the new pa to the right bucket
3463 * after updating the pa_free in ext4_mb_release_context
3468 static int ext4_mb_new_preallocation(struct ext4_allocation_context
*ac
)
3472 if (ac
->ac_flags
& EXT4_MB_HINT_GROUP_ALLOC
)
3473 err
= ext4_mb_new_group_pa(ac
);
3475 err
= ext4_mb_new_inode_pa(ac
);
3480 * finds all unused blocks in on-disk bitmap, frees them in
3481 * in-core bitmap and buddy.
3482 * @pa must be unlinked from inode and group lists, so that
3483 * nobody else can find/use it.
3484 * the caller MUST hold group/inode locks.
3485 * TODO: optimize the case when there are no in-core structures yet
3487 static noinline_for_stack
int
3488 ext4_mb_release_inode_pa(struct ext4_buddy
*e4b
, struct buffer_head
*bitmap_bh
,
3489 struct ext4_prealloc_space
*pa
,
3490 struct ext4_allocation_context
*ac
)
3492 struct super_block
*sb
= e4b
->bd_sb
;
3493 struct ext4_sb_info
*sbi
= EXT4_SB(sb
);
3498 unsigned long long grp_blk_start
;
3503 BUG_ON(pa
->pa_deleted
== 0);
3504 ext4_get_group_no_and_offset(sb
, pa
->pa_pstart
, &group
, &bit
);
3505 grp_blk_start
= pa
->pa_pstart
- bit
;
3506 BUG_ON(group
!= e4b
->bd_group
&& pa
->pa_len
!= 0);
3507 end
= bit
+ pa
->pa_len
;
3511 ac
->ac_inode
= pa
->pa_inode
;
3515 bit
= mb_find_next_zero_bit(bitmap_bh
->b_data
, end
, bit
);
3518 next
= mb_find_next_bit(bitmap_bh
->b_data
, end
, bit
);
3519 start
= ext4_group_first_block_no(sb
, group
) + bit
;
3520 mb_debug(1, " free preallocated %u/%u in group %u\n",
3521 (unsigned) start
, (unsigned) next
- bit
,
3526 ac
->ac_b_ex
.fe_group
= group
;
3527 ac
->ac_b_ex
.fe_start
= bit
;
3528 ac
->ac_b_ex
.fe_len
= next
- bit
;
3529 ac
->ac_b_ex
.fe_logical
= 0;
3530 trace_ext4_mballoc_discard(ac
);
3533 trace_ext4_mb_release_inode_pa(ac
, pa
, grp_blk_start
+ bit
,
3535 mb_free_blocks(pa
->pa_inode
, e4b
, bit
, next
- bit
);
3538 if (free
!= pa
->pa_free
) {
3539 printk(KERN_CRIT
"pa %p: logic %lu, phys. %lu, len %lu\n",
3540 pa
, (unsigned long) pa
->pa_lstart
,
3541 (unsigned long) pa
->pa_pstart
,
3542 (unsigned long) pa
->pa_len
);
3543 ext4_grp_locked_error(sb
, group
,
3544 __func__
, "free %u, pa_free %u",
3547 * pa is already deleted so we use the value obtained
3548 * from the bitmap and continue.
3551 atomic_add(free
, &sbi
->s_mb_discarded
);
3556 static noinline_for_stack
int
3557 ext4_mb_release_group_pa(struct ext4_buddy
*e4b
,
3558 struct ext4_prealloc_space
*pa
,
3559 struct ext4_allocation_context
*ac
)
3561 struct super_block
*sb
= e4b
->bd_sb
;
3565 trace_ext4_mb_release_group_pa(ac
, pa
);
3566 BUG_ON(pa
->pa_deleted
== 0);
3567 ext4_get_group_no_and_offset(sb
, pa
->pa_pstart
, &group
, &bit
);
3568 BUG_ON(group
!= e4b
->bd_group
&& pa
->pa_len
!= 0);
3569 mb_free_blocks(pa
->pa_inode
, e4b
, bit
, pa
->pa_len
);
3570 atomic_add(pa
->pa_len
, &EXT4_SB(sb
)->s_mb_discarded
);
3574 ac
->ac_inode
= NULL
;
3575 ac
->ac_b_ex
.fe_group
= group
;
3576 ac
->ac_b_ex
.fe_start
= bit
;
3577 ac
->ac_b_ex
.fe_len
= pa
->pa_len
;
3578 ac
->ac_b_ex
.fe_logical
= 0;
3579 trace_ext4_mballoc_discard(ac
);
3586 * releases all preallocations in given group
3588 * first, we need to decide discard policy:
3589 * - when do we discard
3591 * - how many do we discard
3592 * 1) how many requested
3594 static noinline_for_stack
int
3595 ext4_mb_discard_group_preallocations(struct super_block
*sb
,
3596 ext4_group_t group
, int needed
)
3598 struct ext4_group_info
*grp
= ext4_get_group_info(sb
, group
);
3599 struct buffer_head
*bitmap_bh
= NULL
;
3600 struct ext4_prealloc_space
*pa
, *tmp
;
3601 struct ext4_allocation_context
*ac
;
3602 struct list_head list
;
3603 struct ext4_buddy e4b
;
3608 mb_debug(1, "discard preallocation for group %u\n", group
);
3610 if (list_empty(&grp
->bb_prealloc_list
))
3613 bitmap_bh
= ext4_read_block_bitmap(sb
, group
);
3614 if (bitmap_bh
== NULL
) {
3615 ext4_error(sb
, "Error reading block bitmap for %u", group
);
3619 err
= ext4_mb_load_buddy(sb
, group
, &e4b
);
3621 ext4_error(sb
, "Error loading buddy information for %u", group
);
3627 needed
= EXT4_BLOCKS_PER_GROUP(sb
) + 1;
3629 INIT_LIST_HEAD(&list
);
3630 ac
= kmem_cache_alloc(ext4_ac_cachep
, GFP_NOFS
);
3634 ext4_lock_group(sb
, group
);
3635 list_for_each_entry_safe(pa
, tmp
,
3636 &grp
->bb_prealloc_list
, pa_group_list
) {
3637 spin_lock(&pa
->pa_lock
);
3638 if (atomic_read(&pa
->pa_count
)) {
3639 spin_unlock(&pa
->pa_lock
);
3643 if (pa
->pa_deleted
) {
3644 spin_unlock(&pa
->pa_lock
);
3648 /* seems this one can be freed ... */
3651 /* we can trust pa_free ... */
3652 free
+= pa
->pa_free
;
3654 spin_unlock(&pa
->pa_lock
);
3656 list_del(&pa
->pa_group_list
);
3657 list_add(&pa
->u
.pa_tmp_list
, &list
);
3660 /* if we still need more blocks and some PAs were used, try again */
3661 if (free
< needed
&& busy
) {
3663 ext4_unlock_group(sb
, group
);
3665 * Yield the CPU here so that we don't get soft lockup
3666 * in non preempt case.
3672 /* found anything to free? */
3673 if (list_empty(&list
)) {
3678 /* now free all selected PAs */
3679 list_for_each_entry_safe(pa
, tmp
, &list
, u
.pa_tmp_list
) {
3681 /* remove from object (inode or locality group) */
3682 spin_lock(pa
->pa_obj_lock
);
3683 list_del_rcu(&pa
->pa_inode_list
);
3684 spin_unlock(pa
->pa_obj_lock
);
3686 if (pa
->pa_type
== MB_GROUP_PA
)
3687 ext4_mb_release_group_pa(&e4b
, pa
, ac
);
3689 ext4_mb_release_inode_pa(&e4b
, bitmap_bh
, pa
, ac
);
3691 list_del(&pa
->u
.pa_tmp_list
);
3692 call_rcu(&(pa
)->u
.pa_rcu
, ext4_mb_pa_callback
);
3696 ext4_unlock_group(sb
, group
);
3698 kmem_cache_free(ext4_ac_cachep
, ac
);
3699 ext4_mb_release_desc(&e4b
);
3705 * releases all non-used preallocated blocks for given inode
3707 * It's important to discard preallocations under i_data_sem
3708 * We don't want another block to be served from the prealloc
3709 * space when we are discarding the inode prealloc space.
3711 * FIXME!! Make sure it is valid at all the call sites
3713 void ext4_discard_preallocations(struct inode
*inode
)
3715 struct ext4_inode_info
*ei
= EXT4_I(inode
);
3716 struct super_block
*sb
= inode
->i_sb
;
3717 struct buffer_head
*bitmap_bh
= NULL
;
3718 struct ext4_prealloc_space
*pa
, *tmp
;
3719 struct ext4_allocation_context
*ac
;
3720 ext4_group_t group
= 0;
3721 struct list_head list
;
3722 struct ext4_buddy e4b
;
3725 if (!S_ISREG(inode
->i_mode
)) {
3726 /*BUG_ON(!list_empty(&ei->i_prealloc_list));*/
3730 mb_debug(1, "discard preallocation for inode %lu\n", inode
->i_ino
);
3731 trace_ext4_discard_preallocations(inode
);
3733 INIT_LIST_HEAD(&list
);
3735 ac
= kmem_cache_alloc(ext4_ac_cachep
, GFP_NOFS
);
3738 ac
->ac_inode
= inode
;
3741 /* first, collect all pa's in the inode */
3742 spin_lock(&ei
->i_prealloc_lock
);
3743 while (!list_empty(&ei
->i_prealloc_list
)) {
3744 pa
= list_entry(ei
->i_prealloc_list
.next
,
3745 struct ext4_prealloc_space
, pa_inode_list
);
3746 BUG_ON(pa
->pa_obj_lock
!= &ei
->i_prealloc_lock
);
3747 spin_lock(&pa
->pa_lock
);
3748 if (atomic_read(&pa
->pa_count
)) {
3749 /* this shouldn't happen often - nobody should
3750 * use preallocation while we're discarding it */
3751 spin_unlock(&pa
->pa_lock
);
3752 spin_unlock(&ei
->i_prealloc_lock
);
3753 printk(KERN_ERR
"uh-oh! used pa while discarding\n");
3755 schedule_timeout_uninterruptible(HZ
);
3759 if (pa
->pa_deleted
== 0) {
3761 spin_unlock(&pa
->pa_lock
);
3762 list_del_rcu(&pa
->pa_inode_list
);
3763 list_add(&pa
->u
.pa_tmp_list
, &list
);
3767 /* someone is deleting pa right now */
3768 spin_unlock(&pa
->pa_lock
);
3769 spin_unlock(&ei
->i_prealloc_lock
);
3771 /* we have to wait here because pa_deleted
3772 * doesn't mean pa is already unlinked from
3773 * the list. as we might be called from
3774 * ->clear_inode() the inode will get freed
3775 * and concurrent thread which is unlinking
3776 * pa from inode's list may access already
3777 * freed memory, bad-bad-bad */
3779 /* XXX: if this happens too often, we can
3780 * add a flag to force wait only in case
3781 * of ->clear_inode(), but not in case of
3782 * regular truncate */
3783 schedule_timeout_uninterruptible(HZ
);
3786 spin_unlock(&ei
->i_prealloc_lock
);
3788 list_for_each_entry_safe(pa
, tmp
, &list
, u
.pa_tmp_list
) {
3789 BUG_ON(pa
->pa_type
!= MB_INODE_PA
);
3790 ext4_get_group_no_and_offset(sb
, pa
->pa_pstart
, &group
, NULL
);
3792 err
= ext4_mb_load_buddy(sb
, group
, &e4b
);
3794 ext4_error(sb
, "Error loading buddy information for %u",
3799 bitmap_bh
= ext4_read_block_bitmap(sb
, group
);
3800 if (bitmap_bh
== NULL
) {
3801 ext4_error(sb
, "Error reading block bitmap for %u",
3803 ext4_mb_release_desc(&e4b
);
3807 ext4_lock_group(sb
, group
);
3808 list_del(&pa
->pa_group_list
);
3809 ext4_mb_release_inode_pa(&e4b
, bitmap_bh
, pa
, ac
);
3810 ext4_unlock_group(sb
, group
);
3812 ext4_mb_release_desc(&e4b
);
3815 list_del(&pa
->u
.pa_tmp_list
);
3816 call_rcu(&(pa
)->u
.pa_rcu
, ext4_mb_pa_callback
);
3819 kmem_cache_free(ext4_ac_cachep
, ac
);
3823 * finds all preallocated spaces and return blocks being freed to them
3824 * if preallocated space becomes full (no block is used from the space)
3825 * then the function frees space in buddy
3826 * XXX: at the moment, truncate (which is the only way to free blocks)
3827 * discards all preallocations
3829 static void ext4_mb_return_to_preallocation(struct inode
*inode
,
3830 struct ext4_buddy
*e4b
,
3831 sector_t block
, int count
)
3833 BUG_ON(!list_empty(&EXT4_I(inode
)->i_prealloc_list
));
3835 #ifdef CONFIG_EXT4_DEBUG
3836 static void ext4_mb_show_ac(struct ext4_allocation_context
*ac
)
3838 struct super_block
*sb
= ac
->ac_sb
;
3839 ext4_group_t ngroups
, i
;
3841 printk(KERN_ERR
"EXT4-fs: Can't allocate:"
3842 " Allocation context details:\n");
3843 printk(KERN_ERR
"EXT4-fs: status %d flags %d\n",
3844 ac
->ac_status
, ac
->ac_flags
);
3845 printk(KERN_ERR
"EXT4-fs: orig %lu/%lu/%lu@%lu, goal %lu/%lu/%lu@%lu, "
3846 "best %lu/%lu/%lu@%lu cr %d\n",
3847 (unsigned long)ac
->ac_o_ex
.fe_group
,
3848 (unsigned long)ac
->ac_o_ex
.fe_start
,
3849 (unsigned long)ac
->ac_o_ex
.fe_len
,
3850 (unsigned long)ac
->ac_o_ex
.fe_logical
,
3851 (unsigned long)ac
->ac_g_ex
.fe_group
,
3852 (unsigned long)ac
->ac_g_ex
.fe_start
,
3853 (unsigned long)ac
->ac_g_ex
.fe_len
,
3854 (unsigned long)ac
->ac_g_ex
.fe_logical
,
3855 (unsigned long)ac
->ac_b_ex
.fe_group
,
3856 (unsigned long)ac
->ac_b_ex
.fe_start
,
3857 (unsigned long)ac
->ac_b_ex
.fe_len
,
3858 (unsigned long)ac
->ac_b_ex
.fe_logical
,
3859 (int)ac
->ac_criteria
);
3860 printk(KERN_ERR
"EXT4-fs: %lu scanned, %d found\n", ac
->ac_ex_scanned
,
3862 printk(KERN_ERR
"EXT4-fs: groups: \n");
3863 ngroups
= ext4_get_groups_count(sb
);
3864 for (i
= 0; i
< ngroups
; i
++) {
3865 struct ext4_group_info
*grp
= ext4_get_group_info(sb
, i
);
3866 struct ext4_prealloc_space
*pa
;
3867 ext4_grpblk_t start
;
3868 struct list_head
*cur
;
3869 ext4_lock_group(sb
, i
);
3870 list_for_each(cur
, &grp
->bb_prealloc_list
) {
3871 pa
= list_entry(cur
, struct ext4_prealloc_space
,
3873 spin_lock(&pa
->pa_lock
);
3874 ext4_get_group_no_and_offset(sb
, pa
->pa_pstart
,
3876 spin_unlock(&pa
->pa_lock
);
3877 printk(KERN_ERR
"PA:%u:%d:%u \n", i
,
3880 ext4_unlock_group(sb
, i
);
3882 if (grp
->bb_free
== 0)
3884 printk(KERN_ERR
"%u: %d/%d \n",
3885 i
, grp
->bb_free
, grp
->bb_fragments
);
3887 printk(KERN_ERR
"\n");
3890 static inline void ext4_mb_show_ac(struct ext4_allocation_context
*ac
)
3897 * We use locality group preallocation for small size file. The size of the
3898 * file is determined by the current size or the resulting size after
3899 * allocation which ever is larger
3901 * One can tune this size via /sys/fs/ext4/<partition>/mb_stream_req
3903 static void ext4_mb_group_or_file(struct ext4_allocation_context
*ac
)
3905 struct ext4_sb_info
*sbi
= EXT4_SB(ac
->ac_sb
);
3906 int bsbits
= ac
->ac_sb
->s_blocksize_bits
;
3909 if (!(ac
->ac_flags
& EXT4_MB_HINT_DATA
))
3912 if (unlikely(ac
->ac_flags
& EXT4_MB_HINT_GOAL_ONLY
))
3915 size
= ac
->ac_o_ex
.fe_logical
+ ac
->ac_o_ex
.fe_len
;
3916 isize
= (i_size_read(ac
->ac_inode
) + ac
->ac_sb
->s_blocksize
- 1)
3919 if ((size
== isize
) &&
3920 !ext4_fs_is_busy(sbi
) &&
3921 (atomic_read(&ac
->ac_inode
->i_writecount
) == 0)) {
3922 ac
->ac_flags
|= EXT4_MB_HINT_NOPREALLOC
;
3926 /* don't use group allocation for large files */
3927 size
= max(size
, isize
);
3928 if (size
> sbi
->s_mb_stream_request
) {
3929 ac
->ac_flags
|= EXT4_MB_STREAM_ALLOC
;
3933 BUG_ON(ac
->ac_lg
!= NULL
);
3935 * locality group prealloc space are per cpu. The reason for having
3936 * per cpu locality group is to reduce the contention between block
3937 * request from multiple CPUs.
3939 ac
->ac_lg
= __this_cpu_ptr(sbi
->s_locality_groups
);
3941 /* we're going to use group allocation */
3942 ac
->ac_flags
|= EXT4_MB_HINT_GROUP_ALLOC
;
3944 /* serialize all allocations in the group */
3945 mutex_lock(&ac
->ac_lg
->lg_mutex
);
3948 static noinline_for_stack
int
3949 ext4_mb_initialize_context(struct ext4_allocation_context
*ac
,
3950 struct ext4_allocation_request
*ar
)
3952 struct super_block
*sb
= ar
->inode
->i_sb
;
3953 struct ext4_sb_info
*sbi
= EXT4_SB(sb
);
3954 struct ext4_super_block
*es
= sbi
->s_es
;
3958 ext4_grpblk_t block
;
3960 /* we can't allocate > group size */
3963 /* just a dirty hack to filter too big requests */
3964 if (len
>= EXT4_BLOCKS_PER_GROUP(sb
) - 10)
3965 len
= EXT4_BLOCKS_PER_GROUP(sb
) - 10;
3967 /* start searching from the goal */
3969 if (goal
< le32_to_cpu(es
->s_first_data_block
) ||
3970 goal
>= ext4_blocks_count(es
))
3971 goal
= le32_to_cpu(es
->s_first_data_block
);
3972 ext4_get_group_no_and_offset(sb
, goal
, &group
, &block
);
3974 /* set up allocation goals */
3975 memset(ac
, 0, sizeof(struct ext4_allocation_context
));
3976 ac
->ac_b_ex
.fe_logical
= ar
->logical
;
3977 ac
->ac_status
= AC_STATUS_CONTINUE
;
3979 ac
->ac_inode
= ar
->inode
;
3980 ac
->ac_o_ex
.fe_logical
= ar
->logical
;
3981 ac
->ac_o_ex
.fe_group
= group
;
3982 ac
->ac_o_ex
.fe_start
= block
;
3983 ac
->ac_o_ex
.fe_len
= len
;
3984 ac
->ac_g_ex
.fe_logical
= ar
->logical
;
3985 ac
->ac_g_ex
.fe_group
= group
;
3986 ac
->ac_g_ex
.fe_start
= block
;
3987 ac
->ac_g_ex
.fe_len
= len
;
3988 ac
->ac_flags
= ar
->flags
;
3990 /* we have to define context: we'll we work with a file or
3991 * locality group. this is a policy, actually */
3992 ext4_mb_group_or_file(ac
);
3994 mb_debug(1, "init ac: %u blocks @ %u, goal %u, flags %x, 2^%d, "
3995 "left: %u/%u, right %u/%u to %swritable\n",
3996 (unsigned) ar
->len
, (unsigned) ar
->logical
,
3997 (unsigned) ar
->goal
, ac
->ac_flags
, ac
->ac_2order
,
3998 (unsigned) ar
->lleft
, (unsigned) ar
->pleft
,
3999 (unsigned) ar
->lright
, (unsigned) ar
->pright
,
4000 atomic_read(&ar
->inode
->i_writecount
) ? "" : "non-");
4005 static noinline_for_stack
void
4006 ext4_mb_discard_lg_preallocations(struct super_block
*sb
,
4007 struct ext4_locality_group
*lg
,
4008 int order
, int total_entries
)
4010 ext4_group_t group
= 0;
4011 struct ext4_buddy e4b
;
4012 struct list_head discard_list
;
4013 struct ext4_prealloc_space
*pa
, *tmp
;
4014 struct ext4_allocation_context
*ac
;
4016 mb_debug(1, "discard locality group preallocation\n");
4018 INIT_LIST_HEAD(&discard_list
);
4019 ac
= kmem_cache_alloc(ext4_ac_cachep
, GFP_NOFS
);
4023 spin_lock(&lg
->lg_prealloc_lock
);
4024 list_for_each_entry_rcu(pa
, &lg
->lg_prealloc_list
[order
],
4026 spin_lock(&pa
->pa_lock
);
4027 if (atomic_read(&pa
->pa_count
)) {
4029 * This is the pa that we just used
4030 * for block allocation. So don't
4033 spin_unlock(&pa
->pa_lock
);
4036 if (pa
->pa_deleted
) {
4037 spin_unlock(&pa
->pa_lock
);
4040 /* only lg prealloc space */
4041 BUG_ON(pa
->pa_type
!= MB_GROUP_PA
);
4043 /* seems this one can be freed ... */
4045 spin_unlock(&pa
->pa_lock
);
4047 list_del_rcu(&pa
->pa_inode_list
);
4048 list_add(&pa
->u
.pa_tmp_list
, &discard_list
);
4051 if (total_entries
<= 5) {
4053 * we want to keep only 5 entries
4054 * allowing it to grow to 8. This
4055 * mak sure we don't call discard
4056 * soon for this list.
4061 spin_unlock(&lg
->lg_prealloc_lock
);
4063 list_for_each_entry_safe(pa
, tmp
, &discard_list
, u
.pa_tmp_list
) {
4065 ext4_get_group_no_and_offset(sb
, pa
->pa_pstart
, &group
, NULL
);
4066 if (ext4_mb_load_buddy(sb
, group
, &e4b
)) {
4067 ext4_error(sb
, "Error loading buddy information for %u",
4071 ext4_lock_group(sb
, group
);
4072 list_del(&pa
->pa_group_list
);
4073 ext4_mb_release_group_pa(&e4b
, pa
, ac
);
4074 ext4_unlock_group(sb
, group
);
4076 ext4_mb_release_desc(&e4b
);
4077 list_del(&pa
->u
.pa_tmp_list
);
4078 call_rcu(&(pa
)->u
.pa_rcu
, ext4_mb_pa_callback
);
4081 kmem_cache_free(ext4_ac_cachep
, ac
);
4085 * We have incremented pa_count. So it cannot be freed at this
4086 * point. Also we hold lg_mutex. So no parallel allocation is
4087 * possible from this lg. That means pa_free cannot be updated.
4089 * A parallel ext4_mb_discard_group_preallocations is possible.
4090 * which can cause the lg_prealloc_list to be updated.
4093 static void ext4_mb_add_n_trim(struct ext4_allocation_context
*ac
)
4095 int order
, added
= 0, lg_prealloc_count
= 1;
4096 struct super_block
*sb
= ac
->ac_sb
;
4097 struct ext4_locality_group
*lg
= ac
->ac_lg
;
4098 struct ext4_prealloc_space
*tmp_pa
, *pa
= ac
->ac_pa
;
4100 order
= fls(pa
->pa_free
) - 1;
4101 if (order
> PREALLOC_TB_SIZE
- 1)
4102 /* The max size of hash table is PREALLOC_TB_SIZE */
4103 order
= PREALLOC_TB_SIZE
- 1;
4104 /* Add the prealloc space to lg */
4106 list_for_each_entry_rcu(tmp_pa
, &lg
->lg_prealloc_list
[order
],
4108 spin_lock(&tmp_pa
->pa_lock
);
4109 if (tmp_pa
->pa_deleted
) {
4110 spin_unlock(&tmp_pa
->pa_lock
);
4113 if (!added
&& pa
->pa_free
< tmp_pa
->pa_free
) {
4114 /* Add to the tail of the previous entry */
4115 list_add_tail_rcu(&pa
->pa_inode_list
,
4116 &tmp_pa
->pa_inode_list
);
4119 * we want to count the total
4120 * number of entries in the list
4123 spin_unlock(&tmp_pa
->pa_lock
);
4124 lg_prealloc_count
++;
4127 list_add_tail_rcu(&pa
->pa_inode_list
,
4128 &lg
->lg_prealloc_list
[order
]);
4131 /* Now trim the list to be not more than 8 elements */
4132 if (lg_prealloc_count
> 8) {
4133 ext4_mb_discard_lg_preallocations(sb
, lg
,
4134 order
, lg_prealloc_count
);
4141 * release all resource we used in allocation
4143 static int ext4_mb_release_context(struct ext4_allocation_context
*ac
)
4145 struct ext4_prealloc_space
*pa
= ac
->ac_pa
;
4147 if (pa
->pa_type
== MB_GROUP_PA
) {
4148 /* see comment in ext4_mb_use_group_pa() */
4149 spin_lock(&pa
->pa_lock
);
4150 pa
->pa_pstart
+= ac
->ac_b_ex
.fe_len
;
4151 pa
->pa_lstart
+= ac
->ac_b_ex
.fe_len
;
4152 pa
->pa_free
-= ac
->ac_b_ex
.fe_len
;
4153 pa
->pa_len
-= ac
->ac_b_ex
.fe_len
;
4154 spin_unlock(&pa
->pa_lock
);
4158 up_read(ac
->alloc_semp
);
4161 * We want to add the pa to the right bucket.
4162 * Remove it from the list and while adding
4163 * make sure the list to which we are adding
4164 * doesn't grow big. We need to release
4165 * alloc_semp before calling ext4_mb_add_n_trim()
4167 if ((pa
->pa_type
== MB_GROUP_PA
) && likely(pa
->pa_free
)) {
4168 spin_lock(pa
->pa_obj_lock
);
4169 list_del_rcu(&pa
->pa_inode_list
);
4170 spin_unlock(pa
->pa_obj_lock
);
4171 ext4_mb_add_n_trim(ac
);
4173 ext4_mb_put_pa(ac
, ac
->ac_sb
, pa
);
4175 if (ac
->ac_bitmap_page
)
4176 page_cache_release(ac
->ac_bitmap_page
);
4177 if (ac
->ac_buddy_page
)
4178 page_cache_release(ac
->ac_buddy_page
);
4179 if (ac
->ac_flags
& EXT4_MB_HINT_GROUP_ALLOC
)
4180 mutex_unlock(&ac
->ac_lg
->lg_mutex
);
4181 ext4_mb_collect_stats(ac
);
4185 static int ext4_mb_discard_preallocations(struct super_block
*sb
, int needed
)
4187 ext4_group_t i
, ngroups
= ext4_get_groups_count(sb
);
4191 trace_ext4_mb_discard_preallocations(sb
, needed
);
4192 for (i
= 0; i
< ngroups
&& needed
> 0; i
++) {
4193 ret
= ext4_mb_discard_group_preallocations(sb
, i
, needed
);
4202 * Main entry point into mballoc to allocate blocks
4203 * it tries to use preallocation first, then falls back
4204 * to usual allocation
4206 ext4_fsblk_t
ext4_mb_new_blocks(handle_t
*handle
,
4207 struct ext4_allocation_request
*ar
, int *errp
)
4210 struct ext4_allocation_context
*ac
= NULL
;
4211 struct ext4_sb_info
*sbi
;
4212 struct super_block
*sb
;
4213 ext4_fsblk_t block
= 0;
4214 unsigned int inquota
= 0;
4215 unsigned int reserv_blks
= 0;
4217 sb
= ar
->inode
->i_sb
;
4220 trace_ext4_request_blocks(ar
);
4223 * For delayed allocation, we could skip the ENOSPC and
4224 * EDQUOT check, as blocks and quotas have been already
4225 * reserved when data being copied into pagecache.
4227 if (EXT4_I(ar
->inode
)->i_delalloc_reserved_flag
)
4228 ar
->flags
|= EXT4_MB_DELALLOC_RESERVED
;
4230 /* Without delayed allocation we need to verify
4231 * there is enough free blocks to do block allocation
4232 * and verify allocation doesn't exceed the quota limits.
4234 while (ar
->len
&& ext4_claim_free_blocks(sbi
, ar
->len
)) {
4235 /* let others to free the space */
4237 ar
->len
= ar
->len
>> 1;
4243 reserv_blks
= ar
->len
;
4244 while (ar
->len
&& dquot_alloc_block(ar
->inode
, ar
->len
)) {
4245 ar
->flags
|= EXT4_MB_HINT_NOPREALLOC
;
4255 ac
= kmem_cache_alloc(ext4_ac_cachep
, GFP_NOFS
);
4262 *errp
= ext4_mb_initialize_context(ac
, ar
);
4268 ac
->ac_op
= EXT4_MB_HISTORY_PREALLOC
;
4269 if (!ext4_mb_use_preallocated(ac
)) {
4270 ac
->ac_op
= EXT4_MB_HISTORY_ALLOC
;
4271 ext4_mb_normalize_request(ac
, ar
);
4273 /* allocate space in core */
4274 ext4_mb_regular_allocator(ac
);
4276 /* as we've just preallocated more space than
4277 * user requested orinally, we store allocated
4278 * space in a special descriptor */
4279 if (ac
->ac_status
== AC_STATUS_FOUND
&&
4280 ac
->ac_o_ex
.fe_len
< ac
->ac_b_ex
.fe_len
)
4281 ext4_mb_new_preallocation(ac
);
4283 if (likely(ac
->ac_status
== AC_STATUS_FOUND
)) {
4284 *errp
= ext4_mb_mark_diskspace_used(ac
, handle
, reserv_blks
);
4285 if (*errp
== -EAGAIN
) {
4287 * drop the reference that we took
4288 * in ext4_mb_use_best_found
4290 ext4_mb_release_context(ac
);
4291 ac
->ac_b_ex
.fe_group
= 0;
4292 ac
->ac_b_ex
.fe_start
= 0;
4293 ac
->ac_b_ex
.fe_len
= 0;
4294 ac
->ac_status
= AC_STATUS_CONTINUE
;
4297 ext4_discard_allocated_blocks(ac
);
4298 ac
->ac_b_ex
.fe_len
= 0;
4300 ext4_mb_show_ac(ac
);
4302 block
= ext4_grp_offs_to_block(sb
, &ac
->ac_b_ex
);
4303 ar
->len
= ac
->ac_b_ex
.fe_len
;
4306 freed
= ext4_mb_discard_preallocations(sb
, ac
->ac_o_ex
.fe_len
);
4310 ac
->ac_b_ex
.fe_len
= 0;
4312 ext4_mb_show_ac(ac
);
4315 ext4_mb_release_context(ac
);
4318 kmem_cache_free(ext4_ac_cachep
, ac
);
4320 if (inquota
&& ar
->len
< inquota
)
4321 dquot_free_block(ar
->inode
, inquota
- ar
->len
);
4324 if (!EXT4_I(ar
->inode
)->i_delalloc_reserved_flag
)
4325 /* release all the reserved blocks if non delalloc */
4326 percpu_counter_sub(&sbi
->s_dirtyblocks_counter
,
4330 trace_ext4_allocate_blocks(ar
, (unsigned long long)block
);
4336 * We can merge two free data extents only if the physical blocks
4337 * are contiguous, AND the extents were freed by the same transaction,
4338 * AND the blocks are associated with the same group.
4340 static int can_merge(struct ext4_free_data
*entry1
,
4341 struct ext4_free_data
*entry2
)
4343 if ((entry1
->t_tid
== entry2
->t_tid
) &&
4344 (entry1
->group
== entry2
->group
) &&
4345 ((entry1
->start_blk
+ entry1
->count
) == entry2
->start_blk
))
4350 static noinline_for_stack
int
4351 ext4_mb_free_metadata(handle_t
*handle
, struct ext4_buddy
*e4b
,
4352 struct ext4_free_data
*new_entry
)
4354 ext4_grpblk_t block
;
4355 struct ext4_free_data
*entry
;
4356 struct ext4_group_info
*db
= e4b
->bd_info
;
4357 struct super_block
*sb
= e4b
->bd_sb
;
4358 struct ext4_sb_info
*sbi
= EXT4_SB(sb
);
4359 struct rb_node
**n
= &db
->bb_free_root
.rb_node
, *node
;
4360 struct rb_node
*parent
= NULL
, *new_node
;
4362 BUG_ON(!ext4_handle_valid(handle
));
4363 BUG_ON(e4b
->bd_bitmap_page
== NULL
);
4364 BUG_ON(e4b
->bd_buddy_page
== NULL
);
4366 new_node
= &new_entry
->node
;
4367 block
= new_entry
->start_blk
;
4370 /* first free block exent. We need to
4371 protect buddy cache from being freed,
4372 * otherwise we'll refresh it from
4373 * on-disk bitmap and lose not-yet-available
4375 page_cache_get(e4b
->bd_buddy_page
);
4376 page_cache_get(e4b
->bd_bitmap_page
);
4380 entry
= rb_entry(parent
, struct ext4_free_data
, node
);
4381 if (block
< entry
->start_blk
)
4383 else if (block
>= (entry
->start_blk
+ entry
->count
))
4384 n
= &(*n
)->rb_right
;
4386 ext4_grp_locked_error(sb
, e4b
->bd_group
, __func__
,
4387 "Double free of blocks %d (%d %d)",
4388 block
, entry
->start_blk
, entry
->count
);
4393 rb_link_node(new_node
, parent
, n
);
4394 rb_insert_color(new_node
, &db
->bb_free_root
);
4396 /* Now try to see the extent can be merged to left and right */
4397 node
= rb_prev(new_node
);
4399 entry
= rb_entry(node
, struct ext4_free_data
, node
);
4400 if (can_merge(entry
, new_entry
)) {
4401 new_entry
->start_blk
= entry
->start_blk
;
4402 new_entry
->count
+= entry
->count
;
4403 rb_erase(node
, &(db
->bb_free_root
));
4404 spin_lock(&sbi
->s_md_lock
);
4405 list_del(&entry
->list
);
4406 spin_unlock(&sbi
->s_md_lock
);
4407 kmem_cache_free(ext4_free_ext_cachep
, entry
);
4411 node
= rb_next(new_node
);
4413 entry
= rb_entry(node
, struct ext4_free_data
, node
);
4414 if (can_merge(new_entry
, entry
)) {
4415 new_entry
->count
+= entry
->count
;
4416 rb_erase(node
, &(db
->bb_free_root
));
4417 spin_lock(&sbi
->s_md_lock
);
4418 list_del(&entry
->list
);
4419 spin_unlock(&sbi
->s_md_lock
);
4420 kmem_cache_free(ext4_free_ext_cachep
, entry
);
4423 /* Add the extent to transaction's private list */
4424 spin_lock(&sbi
->s_md_lock
);
4425 list_add(&new_entry
->list
, &handle
->h_transaction
->t_private_list
);
4426 spin_unlock(&sbi
->s_md_lock
);
4431 * ext4_free_blocks() -- Free given blocks and update quota
4432 * @handle: handle for this transaction
4434 * @block: start physical block to free
4435 * @count: number of blocks to count
4436 * @metadata: Are these metadata blocks
4438 void ext4_free_blocks(handle_t
*handle
, struct inode
*inode
,
4439 struct buffer_head
*bh
, ext4_fsblk_t block
,
4440 unsigned long count
, int flags
)
4442 struct buffer_head
*bitmap_bh
= NULL
;
4443 struct super_block
*sb
= inode
->i_sb
;
4444 struct ext4_allocation_context
*ac
= NULL
;
4445 struct ext4_group_desc
*gdp
;
4446 struct ext4_super_block
*es
;
4447 unsigned long freed
= 0;
4448 unsigned int overflow
;
4450 struct buffer_head
*gd_bh
;
4451 ext4_group_t block_group
;
4452 struct ext4_sb_info
*sbi
;
4453 struct ext4_buddy e4b
;
4459 BUG_ON(block
!= bh
->b_blocknr
);
4461 block
= bh
->b_blocknr
;
4465 es
= EXT4_SB(sb
)->s_es
;
4466 if (!(flags
& EXT4_FREE_BLOCKS_VALIDATED
) &&
4467 !ext4_data_block_valid(sbi
, block
, count
)) {
4468 ext4_error(sb
, "Freeing blocks not in datazone - "
4469 "block = %llu, count = %lu", block
, count
);
4473 ext4_debug("freeing block %llu\n", block
);
4474 trace_ext4_free_blocks(inode
, block
, count
, flags
);
4476 if (flags
& EXT4_FREE_BLOCKS_FORGET
) {
4477 struct buffer_head
*tbh
= bh
;
4480 BUG_ON(bh
&& (count
> 1));
4482 for (i
= 0; i
< count
; i
++) {
4484 tbh
= sb_find_get_block(inode
->i_sb
,
4486 ext4_forget(handle
, flags
& EXT4_FREE_BLOCKS_METADATA
,
4487 inode
, tbh
, block
+ i
);
4492 * We need to make sure we don't reuse the freed block until
4493 * after the transaction is committed, which we can do by
4494 * treating the block as metadata, below. We make an
4495 * exception if the inode is to be written in writeback mode
4496 * since writeback mode has weak data consistency guarantees.
4498 if (!ext4_should_writeback_data(inode
))
4499 flags
|= EXT4_FREE_BLOCKS_METADATA
;
4501 ac
= kmem_cache_alloc(ext4_ac_cachep
, GFP_NOFS
);
4503 ac
->ac_inode
= inode
;
4509 ext4_get_group_no_and_offset(sb
, block
, &block_group
, &bit
);
4512 * Check to see if we are freeing blocks across a group
4515 if (bit
+ count
> EXT4_BLOCKS_PER_GROUP(sb
)) {
4516 overflow
= bit
+ count
- EXT4_BLOCKS_PER_GROUP(sb
);
4519 bitmap_bh
= ext4_read_block_bitmap(sb
, block_group
);
4524 gdp
= ext4_get_group_desc(sb
, block_group
, &gd_bh
);
4530 if (in_range(ext4_block_bitmap(sb
, gdp
), block
, count
) ||
4531 in_range(ext4_inode_bitmap(sb
, gdp
), block
, count
) ||
4532 in_range(block
, ext4_inode_table(sb
, gdp
),
4533 EXT4_SB(sb
)->s_itb_per_group
) ||
4534 in_range(block
+ count
- 1, ext4_inode_table(sb
, gdp
),
4535 EXT4_SB(sb
)->s_itb_per_group
)) {
4537 ext4_error(sb
, "Freeing blocks in system zone - "
4538 "Block = %llu, count = %lu", block
, count
);
4539 /* err = 0. ext4_std_error should be a no op */
4543 BUFFER_TRACE(bitmap_bh
, "getting write access");
4544 err
= ext4_journal_get_write_access(handle
, bitmap_bh
);
4549 * We are about to modify some metadata. Call the journal APIs
4550 * to unshare ->b_data if a currently-committing transaction is
4553 BUFFER_TRACE(gd_bh
, "get_write_access");
4554 err
= ext4_journal_get_write_access(handle
, gd_bh
);
4557 #ifdef AGGRESSIVE_CHECK
4560 for (i
= 0; i
< count
; i
++)
4561 BUG_ON(!mb_test_bit(bit
+ i
, bitmap_bh
->b_data
));
4565 ac
->ac_b_ex
.fe_group
= block_group
;
4566 ac
->ac_b_ex
.fe_start
= bit
;
4567 ac
->ac_b_ex
.fe_len
= count
;
4568 trace_ext4_mballoc_free(ac
);
4571 err
= ext4_mb_load_buddy(sb
, block_group
, &e4b
);
4575 if ((flags
& EXT4_FREE_BLOCKS_METADATA
) && ext4_handle_valid(handle
)) {
4576 struct ext4_free_data
*new_entry
;
4578 * blocks being freed are metadata. these blocks shouldn't
4579 * be used until this transaction is committed
4581 new_entry
= kmem_cache_alloc(ext4_free_ext_cachep
, GFP_NOFS
);
4582 new_entry
->start_blk
= bit
;
4583 new_entry
->group
= block_group
;
4584 new_entry
->count
= count
;
4585 new_entry
->t_tid
= handle
->h_transaction
->t_tid
;
4587 ext4_lock_group(sb
, block_group
);
4588 mb_clear_bits(bitmap_bh
->b_data
, bit
, count
);
4589 ext4_mb_free_metadata(handle
, &e4b
, new_entry
);
4591 /* need to update group_info->bb_free and bitmap
4592 * with group lock held. generate_buddy look at
4593 * them with group lock_held
4595 ext4_lock_group(sb
, block_group
);
4596 mb_clear_bits(bitmap_bh
->b_data
, bit
, count
);
4597 mb_free_blocks(inode
, &e4b
, bit
, count
);
4598 ext4_mb_return_to_preallocation(inode
, &e4b
, block
, count
);
4601 ret
= ext4_free_blks_count(sb
, gdp
) + count
;
4602 ext4_free_blks_set(sb
, gdp
, ret
);
4603 gdp
->bg_checksum
= ext4_group_desc_csum(sbi
, block_group
, gdp
);
4604 ext4_unlock_group(sb
, block_group
);
4605 percpu_counter_add(&sbi
->s_freeblocks_counter
, count
);
4607 if (sbi
->s_log_groups_per_flex
) {
4608 ext4_group_t flex_group
= ext4_flex_group(sbi
, block_group
);
4609 atomic_add(count
, &sbi
->s_flex_groups
[flex_group
].free_blocks
);
4612 ext4_mb_release_desc(&e4b
);
4616 /* We dirtied the bitmap block */
4617 BUFFER_TRACE(bitmap_bh
, "dirtied bitmap block");
4618 err
= ext4_handle_dirty_metadata(handle
, NULL
, bitmap_bh
);
4620 /* And the group descriptor block */
4621 BUFFER_TRACE(gd_bh
, "dirtied group descriptor block");
4622 ret
= ext4_handle_dirty_metadata(handle
, NULL
, gd_bh
);
4626 if (overflow
&& !err
) {
4635 dquot_free_block(inode
, freed
);
4637 ext4_std_error(sb
, err
);
4639 kmem_cache_free(ext4_ac_cachep
, ac
);