Revert "staging: tidspbridge - remove reserved memory clean up"
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / drivers / staging / tidspbridge / rmgr / drv.c
blob0c857b93416a786ec63f763167ee9d47967ad0b2
1 /*
2 * drv.c
4 * DSP-BIOS Bridge driver support functions for TI OMAP processors.
6 * DSP/BIOS Bridge resource allocation module.
8 * Copyright (C) 2005-2006 Texas Instruments, Inc.
10 * This package is free software; you can redistribute it and/or modify
11 * it under the terms of the GNU General Public License version 2 as
12 * published by the Free Software Foundation.
14 * THIS PACKAGE IS PROVIDED ``AS IS'' AND WITHOUT ANY EXPRESS OR
15 * IMPLIED WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED
16 * WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR A PARTICULAR PURPOSE.
18 #include <linux/types.h>
20 /* ----------------------------------- Host OS */
21 #include <dspbridge/host_os.h>
23 /* ----------------------------------- DSP/BIOS Bridge */
24 #include <dspbridge/dbdefs.h>
26 /* ----------------------------------- Trace & Debug */
27 #include <dspbridge/dbc.h>
29 /* ----------------------------------- OS Adaptation Layer */
30 #include <dspbridge/list.h>
32 /* ----------------------------------- This */
33 #include <dspbridge/drv.h>
34 #include <dspbridge/dev.h>
36 #include <dspbridge/node.h>
37 #include <dspbridge/proc.h>
38 #include <dspbridge/strm.h>
39 #include <dspbridge/nodepriv.h>
40 #include <dspbridge/dspchnl.h>
41 #include <dspbridge/resourcecleanup.h>
43 /* ----------------------------------- Defines, Data Structures, Typedefs */
44 struct drv_object {
45 struct lst_list *dev_list;
46 struct lst_list *dev_node_string;
50 * This is the Device Extension. Named with the Prefix
51 * DRV_ since it is living in this module
53 struct drv_ext {
54 struct list_head link;
55 char sz_string[MAXREGPATHLENGTH];
58 /* ----------------------------------- Globals */
59 static s32 refs;
60 static bool ext_phys_mem_pool_enabled;
61 struct ext_phys_mem_pool {
62 u32 phys_mem_base;
63 u32 phys_mem_size;
64 u32 virt_mem_base;
65 u32 next_phys_alloc_ptr;
67 static struct ext_phys_mem_pool ext_mem_pool;
69 /* ----------------------------------- Function Prototypes */
70 static int request_bridge_resources(struct cfg_hostres *res);
73 /* GPP PROCESS CLEANUP CODE */
75 static int drv_proc_free_node_res(int id, void *p, void *data);
77 /* Allocate and add a node resource element
78 * This function is called from .Node_Allocate. */
79 int drv_insert_node_res_element(void *hnode, void *node_resource,
80 void *process_ctxt)
82 struct node_res_object **node_res_obj =
83 (struct node_res_object **)node_resource;
84 struct process_context *ctxt = (struct process_context *)process_ctxt;
85 int status = 0;
86 int retval;
88 *node_res_obj = kzalloc(sizeof(struct node_res_object), GFP_KERNEL);
89 if (!*node_res_obj) {
90 status = -ENOMEM;
91 goto func_end;
94 (*node_res_obj)->hnode = hnode;
95 retval = idr_get_new(ctxt->node_id, *node_res_obj,
96 &(*node_res_obj)->id);
97 if (retval == -EAGAIN) {
98 if (!idr_pre_get(ctxt->node_id, GFP_KERNEL)) {
99 pr_err("%s: OUT OF MEMORY\n", __func__);
100 status = -ENOMEM;
101 goto func_end;
104 retval = idr_get_new(ctxt->node_id, *node_res_obj,
105 &(*node_res_obj)->id);
107 if (retval) {
108 pr_err("%s: FAILED, IDR is FULL\n", __func__);
109 status = -EFAULT;
111 func_end:
112 if (status)
113 kfree(*node_res_obj);
115 return status;
118 /* Release all Node resources and its context
119 * Actual Node De-Allocation */
120 static int drv_proc_free_node_res(int id, void *p, void *data)
122 struct process_context *ctxt = data;
123 int status;
124 struct node_res_object *node_res_obj = p;
125 u32 node_state;
127 if (node_res_obj->node_allocated) {
128 node_state = node_get_state(node_res_obj->hnode);
129 if (node_state <= NODE_DELETING) {
130 if ((node_state == NODE_RUNNING) ||
131 (node_state == NODE_PAUSED) ||
132 (node_state == NODE_TERMINATING))
133 node_terminate
134 (node_res_obj->hnode, &status);
136 node_delete(node_res_obj, ctxt);
140 return 0;
143 /* Release all Mapped and Reserved DMM resources */
144 int drv_remove_all_dmm_res_elements(void *process_ctxt)
146 struct process_context *ctxt = (struct process_context *)process_ctxt;
147 int status = 0;
148 struct dmm_map_object *temp_map, *map_obj;
149 struct dmm_rsv_object *temp_rsv, *rsv_obj;
151 /* Free DMM mapped memory resources */
152 list_for_each_entry_safe(map_obj, temp_map, &ctxt->dmm_map_list, link) {
153 status = proc_un_map(ctxt->hprocessor,
154 (void *)map_obj->dsp_addr, ctxt);
155 if (status)
156 pr_err("%s: proc_un_map failed!"
157 " status = 0x%xn", __func__, status);
160 /* Free DMM reserved memory resources */
161 list_for_each_entry_safe(rsv_obj, temp_rsv, &ctxt->dmm_rsv_list, link) {
162 status = proc_un_reserve_memory(ctxt->hprocessor, (void *)
163 rsv_obj->dsp_reserved_addr,
164 ctxt);
165 if (status)
166 pr_err("%s: proc_un_reserve_memory failed!"
167 " status = 0x%xn", __func__, status);
169 return status;
172 /* Update Node allocation status */
173 void drv_proc_node_update_status(void *node_resource, s32 status)
175 struct node_res_object *node_res_obj =
176 (struct node_res_object *)node_resource;
177 DBC_ASSERT(node_resource != NULL);
178 node_res_obj->node_allocated = status;
181 /* Update Node Heap status */
182 void drv_proc_node_update_heap_status(void *node_resource, s32 status)
184 struct node_res_object *node_res_obj =
185 (struct node_res_object *)node_resource;
186 DBC_ASSERT(node_resource != NULL);
187 node_res_obj->heap_allocated = status;
190 /* Release all Node resources and its context
191 * This is called from .bridge_release.
193 int drv_remove_all_node_res_elements(void *process_ctxt)
195 struct process_context *ctxt = process_ctxt;
197 idr_for_each(ctxt->node_id, drv_proc_free_node_res, ctxt);
198 idr_destroy(ctxt->node_id);
200 return 0;
203 /* Allocate the STRM resource element
204 * This is called after the actual resource is allocated
206 int drv_proc_insert_strm_res_element(void *stream_obj,
207 void *strm_res, void *process_ctxt)
209 struct strm_res_object **pstrm_res =
210 (struct strm_res_object **)strm_res;
211 struct process_context *ctxt = (struct process_context *)process_ctxt;
212 int status = 0;
213 int retval;
215 *pstrm_res = kzalloc(sizeof(struct strm_res_object), GFP_KERNEL);
216 if (*pstrm_res == NULL) {
217 status = -EFAULT;
218 goto func_end;
221 (*pstrm_res)->hstream = stream_obj;
222 retval = idr_get_new(ctxt->stream_id, *pstrm_res,
223 &(*pstrm_res)->id);
224 if (retval == -EAGAIN) {
225 if (!idr_pre_get(ctxt->stream_id, GFP_KERNEL)) {
226 pr_err("%s: OUT OF MEMORY\n", __func__);
227 status = -ENOMEM;
228 goto func_end;
231 retval = idr_get_new(ctxt->stream_id, *pstrm_res,
232 &(*pstrm_res)->id);
234 if (retval) {
235 pr_err("%s: FAILED, IDR is FULL\n", __func__);
236 status = -EPERM;
239 func_end:
240 return status;
243 static int drv_proc_free_strm_res(int id, void *p, void *process_ctxt)
245 struct process_context *ctxt = process_ctxt;
246 struct strm_res_object *strm_res = p;
247 struct stream_info strm_info;
248 struct dsp_streaminfo user;
249 u8 **ap_buffer = NULL;
250 u8 *buf_ptr;
251 u32 ul_bytes;
252 u32 dw_arg;
253 s32 ul_buf_size;
255 if (strm_res->num_bufs) {
256 ap_buffer = kmalloc((strm_res->num_bufs *
257 sizeof(u8 *)), GFP_KERNEL);
258 if (ap_buffer) {
259 strm_free_buffer(strm_res,
260 ap_buffer,
261 strm_res->num_bufs,
262 ctxt);
263 kfree(ap_buffer);
266 strm_info.user_strm = &user;
267 user.number_bufs_in_stream = 0;
268 strm_get_info(strm_res->hstream, &strm_info, sizeof(strm_info));
269 while (user.number_bufs_in_stream--)
270 strm_reclaim(strm_res->hstream, &buf_ptr, &ul_bytes,
271 (u32 *) &ul_buf_size, &dw_arg);
272 strm_close(strm_res, ctxt);
273 return 0;
276 /* Release all Stream resources and its context
277 * This is called from .bridge_release.
279 int drv_remove_all_strm_res_elements(void *process_ctxt)
281 struct process_context *ctxt = process_ctxt;
283 idr_for_each(ctxt->stream_id, drv_proc_free_strm_res, ctxt);
284 idr_destroy(ctxt->stream_id);
286 return 0;
289 /* Updating the stream resource element */
290 int drv_proc_update_strm_res(u32 num_bufs, void *strm_resources)
292 int status = 0;
293 struct strm_res_object **strm_res =
294 (struct strm_res_object **)strm_resources;
296 (*strm_res)->num_bufs = num_bufs;
297 return status;
300 /* GPP PROCESS CLEANUP CODE END */
303 * ======== = drv_create ======== =
304 * Purpose:
305 * DRV Object gets created only once during Driver Loading.
307 int drv_create(struct drv_object **drv_obj)
309 int status = 0;
310 struct drv_object *pdrv_object = NULL;
311 struct drv_data *drv_datap = dev_get_drvdata(bridge);
313 DBC_REQUIRE(drv_obj != NULL);
314 DBC_REQUIRE(refs > 0);
316 pdrv_object = kzalloc(sizeof(struct drv_object), GFP_KERNEL);
317 if (pdrv_object) {
318 /* Create and Initialize List of device objects */
319 pdrv_object->dev_list = kzalloc(sizeof(struct lst_list),
320 GFP_KERNEL);
321 if (pdrv_object->dev_list) {
322 /* Create and Initialize List of device Extension */
323 pdrv_object->dev_node_string =
324 kzalloc(sizeof(struct lst_list), GFP_KERNEL);
325 if (!(pdrv_object->dev_node_string)) {
326 status = -EPERM;
327 } else {
328 INIT_LIST_HEAD(&pdrv_object->
329 dev_node_string->head);
330 INIT_LIST_HEAD(&pdrv_object->dev_list->head);
332 } else {
333 status = -ENOMEM;
335 } else {
336 status = -ENOMEM;
338 /* Store the DRV Object in the driver data */
339 if (!status) {
340 if (drv_datap) {
341 drv_datap->drv_object = (void *)pdrv_object;
342 } else {
343 status = -EPERM;
344 pr_err("%s: Failed to store DRV object\n", __func__);
348 if (!status) {
349 *drv_obj = pdrv_object;
350 } else {
351 kfree(pdrv_object->dev_list);
352 kfree(pdrv_object->dev_node_string);
353 /* Free the DRV Object */
354 kfree(pdrv_object);
357 DBC_ENSURE(status || pdrv_object);
358 return status;
362 * ======== drv_exit ========
363 * Purpose:
364 * Discontinue usage of the DRV module.
366 void drv_exit(void)
368 DBC_REQUIRE(refs > 0);
370 refs--;
372 DBC_ENSURE(refs >= 0);
376 * ======== = drv_destroy ======== =
377 * purpose:
378 * Invoked during bridge de-initialization
380 int drv_destroy(struct drv_object *driver_obj)
382 int status = 0;
383 struct drv_object *pdrv_object = (struct drv_object *)driver_obj;
384 struct drv_data *drv_datap = dev_get_drvdata(bridge);
386 DBC_REQUIRE(refs > 0);
387 DBC_REQUIRE(pdrv_object);
390 * Delete the List if it exists.Should not come here
391 * as the drv_remove_dev_object and the Last drv_request_resources
392 * removes the list if the lists are empty.
394 kfree(pdrv_object->dev_list);
395 kfree(pdrv_object->dev_node_string);
396 kfree(pdrv_object);
397 /* Update the DRV Object in the driver data */
398 if (drv_datap) {
399 drv_datap->drv_object = NULL;
400 } else {
401 status = -EPERM;
402 pr_err("%s: Failed to store DRV object\n", __func__);
405 return status;
409 * ======== drv_get_dev_object ========
410 * Purpose:
411 * Given a index, returns a handle to DevObject from the list.
413 int drv_get_dev_object(u32 index, struct drv_object *hdrv_obj,
414 struct dev_object **device_obj)
416 int status = 0;
417 #ifdef CONFIG_TIDSPBRIDGE_DEBUG
418 /* used only for Assertions and debug messages */
419 struct drv_object *pdrv_obj = (struct drv_object *)hdrv_obj;
420 #endif
421 struct dev_object *dev_obj;
422 u32 i;
423 DBC_REQUIRE(pdrv_obj);
424 DBC_REQUIRE(device_obj != NULL);
425 DBC_REQUIRE(index >= 0);
426 DBC_REQUIRE(refs > 0);
427 DBC_ASSERT(!(LST_IS_EMPTY(pdrv_obj->dev_list)));
429 dev_obj = (struct dev_object *)drv_get_first_dev_object();
430 for (i = 0; i < index; i++) {
431 dev_obj =
432 (struct dev_object *)drv_get_next_dev_object((u32) dev_obj);
434 if (dev_obj) {
435 *device_obj = (struct dev_object *)dev_obj;
436 } else {
437 *device_obj = NULL;
438 status = -EPERM;
441 return status;
445 * ======== drv_get_first_dev_object ========
446 * Purpose:
447 * Retrieve the first Device Object handle from an internal linked list of
448 * of DEV_OBJECTs maintained by DRV.
450 u32 drv_get_first_dev_object(void)
452 u32 dw_dev_object = 0;
453 struct drv_object *pdrv_obj;
454 struct drv_data *drv_datap = dev_get_drvdata(bridge);
456 if (drv_datap && drv_datap->drv_object) {
457 pdrv_obj = drv_datap->drv_object;
458 if ((pdrv_obj->dev_list != NULL) &&
459 !LST_IS_EMPTY(pdrv_obj->dev_list))
460 dw_dev_object = (u32) lst_first(pdrv_obj->dev_list);
461 } else {
462 pr_err("%s: Failed to retrieve the object handle\n", __func__);
465 return dw_dev_object;
469 * ======== DRV_GetFirstDevNodeString ========
470 * Purpose:
471 * Retrieve the first Device Extension from an internal linked list of
472 * of Pointer to dev_node Strings maintained by DRV.
474 u32 drv_get_first_dev_extension(void)
476 u32 dw_dev_extension = 0;
477 struct drv_object *pdrv_obj;
478 struct drv_data *drv_datap = dev_get_drvdata(bridge);
480 if (drv_datap && drv_datap->drv_object) {
481 pdrv_obj = drv_datap->drv_object;
482 if ((pdrv_obj->dev_node_string != NULL) &&
483 !LST_IS_EMPTY(pdrv_obj->dev_node_string)) {
484 dw_dev_extension =
485 (u32) lst_first(pdrv_obj->dev_node_string);
487 } else {
488 pr_err("%s: Failed to retrieve the object handle\n", __func__);
491 return dw_dev_extension;
495 * ======== drv_get_next_dev_object ========
496 * Purpose:
497 * Retrieve the next Device Object handle from an internal linked list of
498 * of DEV_OBJECTs maintained by DRV, after having previously called
499 * drv_get_first_dev_object() and zero or more DRV_GetNext.
501 u32 drv_get_next_dev_object(u32 hdev_obj)
503 u32 dw_next_dev_object = 0;
504 struct drv_object *pdrv_obj;
505 struct drv_data *drv_datap = dev_get_drvdata(bridge);
507 DBC_REQUIRE(hdev_obj != 0);
509 if (drv_datap && drv_datap->drv_object) {
510 pdrv_obj = drv_datap->drv_object;
511 if ((pdrv_obj->dev_list != NULL) &&
512 !LST_IS_EMPTY(pdrv_obj->dev_list)) {
513 dw_next_dev_object = (u32) lst_next(pdrv_obj->dev_list,
514 (struct list_head *)
515 hdev_obj);
517 } else {
518 pr_err("%s: Failed to retrieve the object handle\n", __func__);
521 return dw_next_dev_object;
525 * ======== drv_get_next_dev_extension ========
526 * Purpose:
527 * Retrieve the next Device Extension from an internal linked list of
528 * of pointer to DevNodeString maintained by DRV, after having previously
529 * called drv_get_first_dev_extension() and zero or more
530 * drv_get_next_dev_extension().
532 u32 drv_get_next_dev_extension(u32 dev_extension)
534 u32 dw_dev_extension = 0;
535 struct drv_object *pdrv_obj;
536 struct drv_data *drv_datap = dev_get_drvdata(bridge);
538 DBC_REQUIRE(dev_extension != 0);
540 if (drv_datap && drv_datap->drv_object) {
541 pdrv_obj = drv_datap->drv_object;
542 if ((pdrv_obj->dev_node_string != NULL) &&
543 !LST_IS_EMPTY(pdrv_obj->dev_node_string)) {
544 dw_dev_extension =
545 (u32) lst_next(pdrv_obj->dev_node_string,
546 (struct list_head *)dev_extension);
548 } else {
549 pr_err("%s: Failed to retrieve the object handle\n", __func__);
552 return dw_dev_extension;
556 * ======== drv_init ========
557 * Purpose:
558 * Initialize DRV module private state.
560 int drv_init(void)
562 s32 ret = 1; /* function return value */
564 DBC_REQUIRE(refs >= 0);
566 if (ret)
567 refs++;
569 DBC_ENSURE((ret && (refs > 0)) || (!ret && (refs >= 0)));
571 return ret;
575 * ======== drv_insert_dev_object ========
576 * Purpose:
577 * Insert a DevObject into the list of Manager object.
579 int drv_insert_dev_object(struct drv_object *driver_obj,
580 struct dev_object *hdev_obj)
582 struct drv_object *pdrv_object = (struct drv_object *)driver_obj;
584 DBC_REQUIRE(refs > 0);
585 DBC_REQUIRE(hdev_obj != NULL);
586 DBC_REQUIRE(pdrv_object);
587 DBC_ASSERT(pdrv_object->dev_list);
589 lst_put_tail(pdrv_object->dev_list, (struct list_head *)hdev_obj);
591 DBC_ENSURE(!LST_IS_EMPTY(pdrv_object->dev_list));
593 return 0;
597 * ======== drv_remove_dev_object ========
598 * Purpose:
599 * Search for and remove a DeviceObject from the given list of DRV
600 * objects.
602 int drv_remove_dev_object(struct drv_object *driver_obj,
603 struct dev_object *hdev_obj)
605 int status = -EPERM;
606 struct drv_object *pdrv_object = (struct drv_object *)driver_obj;
607 struct list_head *cur_elem;
609 DBC_REQUIRE(refs > 0);
610 DBC_REQUIRE(pdrv_object);
611 DBC_REQUIRE(hdev_obj != NULL);
613 DBC_REQUIRE(pdrv_object->dev_list != NULL);
614 DBC_REQUIRE(!LST_IS_EMPTY(pdrv_object->dev_list));
616 /* Search list for p_proc_object: */
617 for (cur_elem = lst_first(pdrv_object->dev_list); cur_elem != NULL;
618 cur_elem = lst_next(pdrv_object->dev_list, cur_elem)) {
619 /* If found, remove it. */
620 if ((struct dev_object *)cur_elem == hdev_obj) {
621 lst_remove_elem(pdrv_object->dev_list, cur_elem);
622 status = 0;
623 break;
626 /* Remove list if empty. */
627 if (LST_IS_EMPTY(pdrv_object->dev_list)) {
628 kfree(pdrv_object->dev_list);
629 pdrv_object->dev_list = NULL;
631 DBC_ENSURE((pdrv_object->dev_list == NULL) ||
632 !LST_IS_EMPTY(pdrv_object->dev_list));
634 return status;
638 * ======== drv_request_resources ========
639 * Purpose:
640 * Requests resources from the OS.
642 int drv_request_resources(u32 dw_context, u32 *dev_node_strg)
644 int status = 0;
645 struct drv_object *pdrv_object;
646 struct drv_ext *pszdev_node;
647 struct drv_data *drv_datap = dev_get_drvdata(bridge);
649 DBC_REQUIRE(dw_context != 0);
650 DBC_REQUIRE(dev_node_strg != NULL);
653 * Allocate memory to hold the string. This will live untill
654 * it is freed in the Release resources. Update the driver object
655 * list.
658 if (!drv_datap || !drv_datap->drv_object)
659 status = -ENODATA;
660 else
661 pdrv_object = drv_datap->drv_object;
663 if (!status) {
664 pszdev_node = kzalloc(sizeof(struct drv_ext), GFP_KERNEL);
665 if (pszdev_node) {
666 lst_init_elem(&pszdev_node->link);
667 strncpy(pszdev_node->sz_string,
668 (char *)dw_context, MAXREGPATHLENGTH - 1);
669 pszdev_node->sz_string[MAXREGPATHLENGTH - 1] = '\0';
670 /* Update the Driver Object List */
671 *dev_node_strg = (u32) pszdev_node->sz_string;
672 lst_put_tail(pdrv_object->dev_node_string,
673 (struct list_head *)pszdev_node);
674 } else {
675 status = -ENOMEM;
676 *dev_node_strg = 0;
678 } else {
679 dev_dbg(bridge, "%s: Failed to get Driver Object from Registry",
680 __func__);
681 *dev_node_strg = 0;
684 DBC_ENSURE((!status && dev_node_strg != NULL &&
685 !LST_IS_EMPTY(pdrv_object->dev_node_string)) ||
686 (status && *dev_node_strg == 0));
688 return status;
692 * ======== drv_release_resources ========
693 * Purpose:
694 * Releases resources from the OS.
696 int drv_release_resources(u32 dw_context, struct drv_object *hdrv_obj)
698 int status = 0;
699 struct drv_object *pdrv_object = (struct drv_object *)hdrv_obj;
700 struct drv_ext *pszdev_node;
703 * Irrespective of the status go ahead and clean it
704 * The following will over write the status.
706 for (pszdev_node = (struct drv_ext *)drv_get_first_dev_extension();
707 pszdev_node != NULL; pszdev_node = (struct drv_ext *)
708 drv_get_next_dev_extension((u32) pszdev_node)) {
709 if (!pdrv_object->dev_node_string) {
710 /* When this could happen? */
711 continue;
713 if ((u32) pszdev_node == dw_context) {
714 /* Found it */
715 /* Delete from the Driver object list */
716 lst_remove_elem(pdrv_object->dev_node_string,
717 (struct list_head *)pszdev_node);
718 kfree((void *)pszdev_node);
719 break;
721 /* Delete the List if it is empty */
722 if (LST_IS_EMPTY(pdrv_object->dev_node_string)) {
723 kfree(pdrv_object->dev_node_string);
724 pdrv_object->dev_node_string = NULL;
727 return status;
731 * ======== request_bridge_resources ========
732 * Purpose:
733 * Reserves shared memory for bridge.
735 static int request_bridge_resources(struct cfg_hostres *res)
737 struct cfg_hostres *host_res = res;
739 /* num_mem_windows must not be more than CFG_MAXMEMREGISTERS */
740 host_res->num_mem_windows = 2;
742 /* First window is for DSP internal memory */
743 host_res->dw_sys_ctrl_base = ioremap(OMAP_SYSC_BASE, OMAP_SYSC_SIZE);
744 dev_dbg(bridge, "dw_mem_base[0] 0x%x\n", host_res->dw_mem_base[0]);
745 dev_dbg(bridge, "dw_mem_base[3] 0x%x\n", host_res->dw_mem_base[3]);
747 /* for 24xx base port is not mapping the mamory for DSP
748 * internal memory TODO Do a ioremap here */
749 /* Second window is for DSP external memory shared with MPU */
751 /* These are hard-coded values */
752 host_res->birq_registers = 0;
753 host_res->birq_attrib = 0;
754 host_res->dw_offset_for_monitor = 0;
755 host_res->dw_chnl_offset = 0;
756 /* CHNL_MAXCHANNELS */
757 host_res->dw_num_chnls = CHNL_MAXCHANNELS;
758 host_res->dw_chnl_buf_size = 0x400;
760 return 0;
764 * ======== drv_request_bridge_res_dsp ========
765 * Purpose:
766 * Reserves shared memory for bridge.
768 int drv_request_bridge_res_dsp(void **phost_resources)
770 int status = 0;
771 struct cfg_hostres *host_res;
772 u32 dw_buff_size;
773 u32 dma_addr;
774 u32 shm_size;
775 struct drv_data *drv_datap = dev_get_drvdata(bridge);
777 dw_buff_size = sizeof(struct cfg_hostres);
779 host_res = kzalloc(dw_buff_size, GFP_KERNEL);
781 if (host_res != NULL) {
782 request_bridge_resources(host_res);
783 /* num_mem_windows must not be more than CFG_MAXMEMREGISTERS */
784 host_res->num_mem_windows = 4;
786 host_res->dw_mem_base[0] = 0;
787 host_res->dw_mem_base[2] = (u32) ioremap(OMAP_DSP_MEM1_BASE,
788 OMAP_DSP_MEM1_SIZE);
789 host_res->dw_mem_base[3] = (u32) ioremap(OMAP_DSP_MEM2_BASE,
790 OMAP_DSP_MEM2_SIZE);
791 host_res->dw_mem_base[4] = (u32) ioremap(OMAP_DSP_MEM3_BASE,
792 OMAP_DSP_MEM3_SIZE);
793 host_res->dw_per_base = ioremap(OMAP_PER_CM_BASE,
794 OMAP_PER_CM_SIZE);
795 host_res->dw_per_pm_base = (u32) ioremap(OMAP_PER_PRM_BASE,
796 OMAP_PER_PRM_SIZE);
797 host_res->dw_core_pm_base = (u32) ioremap(OMAP_CORE_PRM_BASE,
798 OMAP_CORE_PRM_SIZE);
800 dev_dbg(bridge, "dw_mem_base[0] 0x%x\n",
801 host_res->dw_mem_base[0]);
802 dev_dbg(bridge, "dw_mem_base[1] 0x%x\n",
803 host_res->dw_mem_base[1]);
804 dev_dbg(bridge, "dw_mem_base[2] 0x%x\n",
805 host_res->dw_mem_base[2]);
806 dev_dbg(bridge, "dw_mem_base[3] 0x%x\n",
807 host_res->dw_mem_base[3]);
808 dev_dbg(bridge, "dw_mem_base[4] 0x%x\n",
809 host_res->dw_mem_base[4]);
811 shm_size = drv_datap->shm_size;
812 if (shm_size >= 0x10000) {
813 /* Allocate Physically contiguous,
814 * non-cacheable memory */
815 host_res->dw_mem_base[1] =
816 (u32) mem_alloc_phys_mem(shm_size, 0x100000,
817 &dma_addr);
818 if (host_res->dw_mem_base[1] == 0) {
819 status = -ENOMEM;
820 pr_err("shm reservation Failed\n");
821 } else {
822 host_res->dw_mem_length[1] = shm_size;
823 host_res->dw_mem_phys[1] = dma_addr;
825 dev_dbg(bridge, "%s: Bridge shm address 0x%x "
826 "dma_addr %x size %x\n", __func__,
827 host_res->dw_mem_base[1],
828 dma_addr, shm_size);
831 if (!status) {
832 /* These are hard-coded values */
833 host_res->birq_registers = 0;
834 host_res->birq_attrib = 0;
835 host_res->dw_offset_for_monitor = 0;
836 host_res->dw_chnl_offset = 0;
837 /* CHNL_MAXCHANNELS */
838 host_res->dw_num_chnls = CHNL_MAXCHANNELS;
839 host_res->dw_chnl_buf_size = 0x400;
840 dw_buff_size = sizeof(struct cfg_hostres);
842 *phost_resources = host_res;
844 /* End Mem alloc */
845 return status;
848 void mem_ext_phys_pool_init(u32 pool_phys_base, u32 pool_size)
850 u32 pool_virt_base;
852 /* get the virtual address for the physical memory pool passed */
853 pool_virt_base = (u32) ioremap(pool_phys_base, pool_size);
855 if ((void **)pool_virt_base == NULL) {
856 pr_err("%s: external physical memory map failed\n", __func__);
857 ext_phys_mem_pool_enabled = false;
858 } else {
859 ext_mem_pool.phys_mem_base = pool_phys_base;
860 ext_mem_pool.phys_mem_size = pool_size;
861 ext_mem_pool.virt_mem_base = pool_virt_base;
862 ext_mem_pool.next_phys_alloc_ptr = pool_phys_base;
863 ext_phys_mem_pool_enabled = true;
867 void mem_ext_phys_pool_release(void)
869 if (ext_phys_mem_pool_enabled) {
870 iounmap((void *)(ext_mem_pool.virt_mem_base));
871 ext_phys_mem_pool_enabled = false;
876 * ======== mem_ext_phys_mem_alloc ========
877 * Purpose:
878 * Allocate physically contiguous, uncached memory from external memory pool
881 static void *mem_ext_phys_mem_alloc(u32 bytes, u32 align, u32 * phys_addr)
883 u32 new_alloc_ptr;
884 u32 offset;
885 u32 virt_addr;
887 if (align == 0)
888 align = 1;
890 if (bytes > ((ext_mem_pool.phys_mem_base + ext_mem_pool.phys_mem_size)
891 - ext_mem_pool.next_phys_alloc_ptr)) {
892 phys_addr = NULL;
893 return NULL;
894 } else {
895 offset = (ext_mem_pool.next_phys_alloc_ptr & (align - 1));
896 if (offset == 0)
897 new_alloc_ptr = ext_mem_pool.next_phys_alloc_ptr;
898 else
899 new_alloc_ptr = (ext_mem_pool.next_phys_alloc_ptr) +
900 (align - offset);
901 if ((new_alloc_ptr + bytes) <=
902 (ext_mem_pool.phys_mem_base + ext_mem_pool.phys_mem_size)) {
903 /* we can allocate */
904 *phys_addr = new_alloc_ptr;
905 ext_mem_pool.next_phys_alloc_ptr =
906 new_alloc_ptr + bytes;
907 virt_addr =
908 ext_mem_pool.virt_mem_base + (new_alloc_ptr -
909 ext_mem_pool.
910 phys_mem_base);
911 return (void *)virt_addr;
912 } else {
913 *phys_addr = 0;
914 return NULL;
920 * ======== mem_alloc_phys_mem ========
921 * Purpose:
922 * Allocate physically contiguous, uncached memory
924 void *mem_alloc_phys_mem(u32 byte_size, u32 align_mask,
925 u32 *physical_address)
927 void *va_mem = NULL;
928 dma_addr_t pa_mem;
930 if (byte_size > 0) {
931 if (ext_phys_mem_pool_enabled) {
932 va_mem = mem_ext_phys_mem_alloc(byte_size, align_mask,
933 (u32 *) &pa_mem);
934 } else
935 va_mem = dma_alloc_coherent(NULL, byte_size, &pa_mem,
936 GFP_KERNEL);
937 if (va_mem == NULL)
938 *physical_address = 0;
939 else
940 *physical_address = pa_mem;
942 return va_mem;
946 * ======== mem_free_phys_mem ========
947 * Purpose:
948 * Free the given block of physically contiguous memory.
950 void mem_free_phys_mem(void *virtual_address, u32 physical_address,
951 u32 byte_size)
953 DBC_REQUIRE(virtual_address != NULL);
955 if (!ext_phys_mem_pool_enabled)
956 dma_free_coherent(NULL, byte_size, virtual_address,
957 physical_address);