2 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
4 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
6 * Interactivity improvements by Mike Galbraith
7 * (C) 2007 Mike Galbraith <efault@gmx.de>
9 * Various enhancements by Dmitry Adamushko.
10 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
12 * Group scheduling enhancements by Srivatsa Vaddagiri
13 * Copyright IBM Corporation, 2007
14 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
16 * Scaled math optimizations by Thomas Gleixner
17 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
19 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra
20 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
23 #include <linux/latencytop.h>
26 * Targeted preemption latency for CPU-bound tasks:
27 * (default: 20ms * (1 + ilog(ncpus)), units: nanoseconds)
29 * NOTE: this latency value is not the same as the concept of
30 * 'timeslice length' - timeslices in CFS are of variable length
31 * and have no persistent notion like in traditional, time-slice
32 * based scheduling concepts.
34 * (to see the precise effective timeslice length of your workload,
35 * run vmstat and monitor the context-switches (cs) field)
37 unsigned int sysctl_sched_latency
= 20000000ULL;
40 * Minimal preemption granularity for CPU-bound tasks:
41 * (default: 4 msec * (1 + ilog(ncpus)), units: nanoseconds)
43 unsigned int sysctl_sched_min_granularity
= 4000000ULL;
46 * is kept at sysctl_sched_latency / sysctl_sched_min_granularity
48 static unsigned int sched_nr_latency
= 5;
51 * After fork, child runs first. (default) If set to 0 then
52 * parent will (try to) run first.
54 const_debug
unsigned int sysctl_sched_child_runs_first
= 1;
57 * sys_sched_yield() compat mode
59 * This option switches the agressive yield implementation of the
60 * old scheduler back on.
62 unsigned int __read_mostly sysctl_sched_compat_yield
;
65 * SCHED_BATCH wake-up granularity.
66 * (default: 10 msec * (1 + ilog(ncpus)), units: nanoseconds)
68 * This option delays the preemption effects of decoupled workloads
69 * and reduces their over-scheduling. Synchronous workloads will still
70 * have immediate wakeup/sleep latencies.
72 unsigned int sysctl_sched_batch_wakeup_granularity
= 10000000UL;
75 * SCHED_OTHER wake-up granularity.
76 * (default: 5 msec * (1 + ilog(ncpus)), units: nanoseconds)
78 * This option delays the preemption effects of decoupled workloads
79 * and reduces their over-scheduling. Synchronous workloads will still
80 * have immediate wakeup/sleep latencies.
82 unsigned int sysctl_sched_wakeup_granularity
= 5000000UL;
84 const_debug
unsigned int sysctl_sched_migration_cost
= 500000UL;
86 /**************************************************************
87 * CFS operations on generic schedulable entities:
90 #ifdef CONFIG_FAIR_GROUP_SCHED
92 /* cpu runqueue to which this cfs_rq is attached */
93 static inline struct rq
*rq_of(struct cfs_rq
*cfs_rq
)
98 /* An entity is a task if it doesn't "own" a runqueue */
99 #define entity_is_task(se) (!se->my_q)
101 #else /* CONFIG_FAIR_GROUP_SCHED */
103 static inline struct rq
*rq_of(struct cfs_rq
*cfs_rq
)
105 return container_of(cfs_rq
, struct rq
, cfs
);
108 #define entity_is_task(se) 1
110 #endif /* CONFIG_FAIR_GROUP_SCHED */
112 static inline struct task_struct
*task_of(struct sched_entity
*se
)
114 return container_of(se
, struct task_struct
, se
);
118 /**************************************************************
119 * Scheduling class tree data structure manipulation methods:
122 static inline u64
max_vruntime(u64 min_vruntime
, u64 vruntime
)
124 s64 delta
= (s64
)(vruntime
- min_vruntime
);
126 min_vruntime
= vruntime
;
131 static inline u64
min_vruntime(u64 min_vruntime
, u64 vruntime
)
133 s64 delta
= (s64
)(vruntime
- min_vruntime
);
135 min_vruntime
= vruntime
;
140 static inline s64
entity_key(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
)
142 return se
->vruntime
- cfs_rq
->min_vruntime
;
146 * Enqueue an entity into the rb-tree:
148 static void __enqueue_entity(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
)
150 struct rb_node
**link
= &cfs_rq
->tasks_timeline
.rb_node
;
151 struct rb_node
*parent
= NULL
;
152 struct sched_entity
*entry
;
153 s64 key
= entity_key(cfs_rq
, se
);
157 * Find the right place in the rbtree:
161 entry
= rb_entry(parent
, struct sched_entity
, run_node
);
163 * We dont care about collisions. Nodes with
164 * the same key stay together.
166 if (key
< entity_key(cfs_rq
, entry
)) {
167 link
= &parent
->rb_left
;
169 link
= &parent
->rb_right
;
175 * Maintain a cache of leftmost tree entries (it is frequently
179 cfs_rq
->rb_leftmost
= &se
->run_node
;
181 * maintain cfs_rq->min_vruntime to be a monotonic increasing
182 * value tracking the leftmost vruntime in the tree.
184 cfs_rq
->min_vruntime
=
185 max_vruntime(cfs_rq
->min_vruntime
, se
->vruntime
);
188 rb_link_node(&se
->run_node
, parent
, link
);
189 rb_insert_color(&se
->run_node
, &cfs_rq
->tasks_timeline
);
192 static void __dequeue_entity(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
)
194 if (cfs_rq
->rb_leftmost
== &se
->run_node
) {
195 struct rb_node
*next_node
;
196 struct sched_entity
*next
;
198 next_node
= rb_next(&se
->run_node
);
199 cfs_rq
->rb_leftmost
= next_node
;
202 next
= rb_entry(next_node
,
203 struct sched_entity
, run_node
);
204 cfs_rq
->min_vruntime
=
205 max_vruntime(cfs_rq
->min_vruntime
,
210 if (cfs_rq
->next
== se
)
213 rb_erase(&se
->run_node
, &cfs_rq
->tasks_timeline
);
216 static inline struct rb_node
*first_fair(struct cfs_rq
*cfs_rq
)
218 return cfs_rq
->rb_leftmost
;
221 static struct sched_entity
*__pick_next_entity(struct cfs_rq
*cfs_rq
)
223 return rb_entry(first_fair(cfs_rq
), struct sched_entity
, run_node
);
226 static inline struct sched_entity
*__pick_last_entity(struct cfs_rq
*cfs_rq
)
228 struct rb_node
*last
= rb_last(&cfs_rq
->tasks_timeline
);
233 return rb_entry(last
, struct sched_entity
, run_node
);
236 /**************************************************************
237 * Scheduling class statistics methods:
240 #ifdef CONFIG_SCHED_DEBUG
241 int sched_nr_latency_handler(struct ctl_table
*table
, int write
,
242 struct file
*filp
, void __user
*buffer
, size_t *lenp
,
245 int ret
= proc_dointvec_minmax(table
, write
, filp
, buffer
, lenp
, ppos
);
250 sched_nr_latency
= DIV_ROUND_UP(sysctl_sched_latency
,
251 sysctl_sched_min_granularity
);
258 * The idea is to set a period in which each task runs once.
260 * When there are too many tasks (sysctl_sched_nr_latency) we have to stretch
261 * this period because otherwise the slices get too small.
263 * p = (nr <= nl) ? l : l*nr/nl
265 static u64
__sched_period(unsigned long nr_running
)
267 u64 period
= sysctl_sched_latency
;
268 unsigned long nr_latency
= sched_nr_latency
;
270 if (unlikely(nr_running
> nr_latency
)) {
271 period
= sysctl_sched_min_granularity
;
272 period
*= nr_running
;
279 * We calculate the wall-time slice from the period by taking a part
280 * proportional to the weight.
284 static u64
sched_slice(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
)
286 return calc_delta_mine(__sched_period(cfs_rq
->nr_running
),
287 se
->load
.weight
, &cfs_rq
->load
);
291 * We calculate the vruntime slice.
295 static u64
__sched_vslice(unsigned long rq_weight
, unsigned long nr_running
)
297 u64 vslice
= __sched_period(nr_running
);
299 vslice
*= NICE_0_LOAD
;
300 do_div(vslice
, rq_weight
);
305 static u64
sched_vslice_add(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
)
307 return __sched_vslice(cfs_rq
->load
.weight
+ se
->load
.weight
,
308 cfs_rq
->nr_running
+ 1);
312 * Update the current task's runtime statistics. Skip current tasks that
313 * are not in our scheduling class.
316 __update_curr(struct cfs_rq
*cfs_rq
, struct sched_entity
*curr
,
317 unsigned long delta_exec
)
319 unsigned long delta_exec_weighted
;
321 schedstat_set(curr
->exec_max
, max((u64
)delta_exec
, curr
->exec_max
));
323 curr
->sum_exec_runtime
+= delta_exec
;
324 schedstat_add(cfs_rq
, exec_clock
, delta_exec
);
325 delta_exec_weighted
= delta_exec
;
326 if (unlikely(curr
->load
.weight
!= NICE_0_LOAD
)) {
327 delta_exec_weighted
= calc_delta_fair(delta_exec_weighted
,
330 curr
->vruntime
+= delta_exec_weighted
;
333 static void update_curr(struct cfs_rq
*cfs_rq
)
335 struct sched_entity
*curr
= cfs_rq
->curr
;
336 u64 now
= rq_of(cfs_rq
)->clock
;
337 unsigned long delta_exec
;
343 * Get the amount of time the current task was running
344 * since the last time we changed load (this cannot
345 * overflow on 32 bits):
347 delta_exec
= (unsigned long)(now
- curr
->exec_start
);
349 __update_curr(cfs_rq
, curr
, delta_exec
);
350 curr
->exec_start
= now
;
352 if (entity_is_task(curr
)) {
353 struct task_struct
*curtask
= task_of(curr
);
355 cpuacct_charge(curtask
, delta_exec
);
360 update_stats_wait_start(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
)
362 schedstat_set(se
->wait_start
, rq_of(cfs_rq
)->clock
);
366 * Task is being enqueued - update stats:
368 static void update_stats_enqueue(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
)
371 * Are we enqueueing a waiting task? (for current tasks
372 * a dequeue/enqueue event is a NOP)
374 if (se
!= cfs_rq
->curr
)
375 update_stats_wait_start(cfs_rq
, se
);
379 update_stats_wait_end(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
)
381 schedstat_set(se
->wait_max
, max(se
->wait_max
,
382 rq_of(cfs_rq
)->clock
- se
->wait_start
));
383 schedstat_set(se
->wait_count
, se
->wait_count
+ 1);
384 schedstat_set(se
->wait_sum
, se
->wait_sum
+
385 rq_of(cfs_rq
)->clock
- se
->wait_start
);
386 schedstat_set(se
->wait_start
, 0);
390 update_stats_dequeue(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
)
393 * Mark the end of the wait period if dequeueing a
396 if (se
!= cfs_rq
->curr
)
397 update_stats_wait_end(cfs_rq
, se
);
401 * We are picking a new current task - update its stats:
404 update_stats_curr_start(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
)
407 * We are starting a new run period:
409 se
->exec_start
= rq_of(cfs_rq
)->clock
;
412 /**************************************************
413 * Scheduling class queueing methods:
417 account_entity_enqueue(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
)
419 update_load_add(&cfs_rq
->load
, se
->load
.weight
);
420 cfs_rq
->nr_running
++;
425 account_entity_dequeue(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
)
427 update_load_sub(&cfs_rq
->load
, se
->load
.weight
);
428 cfs_rq
->nr_running
--;
432 static void enqueue_sleeper(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
)
434 #ifdef CONFIG_SCHEDSTATS
435 if (se
->sleep_start
) {
436 u64 delta
= rq_of(cfs_rq
)->clock
- se
->sleep_start
;
437 struct task_struct
*tsk
= task_of(se
);
442 if (unlikely(delta
> se
->sleep_max
))
443 se
->sleep_max
= delta
;
446 se
->sum_sleep_runtime
+= delta
;
448 account_scheduler_latency(tsk
, delta
>> 10, 1);
450 if (se
->block_start
) {
451 u64 delta
= rq_of(cfs_rq
)->clock
- se
->block_start
;
452 struct task_struct
*tsk
= task_of(se
);
457 if (unlikely(delta
> se
->block_max
))
458 se
->block_max
= delta
;
461 se
->sum_sleep_runtime
+= delta
;
464 * Blocking time is in units of nanosecs, so shift by 20 to
465 * get a milliseconds-range estimation of the amount of
466 * time that the task spent sleeping:
468 if (unlikely(prof_on
== SLEEP_PROFILING
)) {
470 profile_hits(SLEEP_PROFILING
, (void *)get_wchan(tsk
),
473 account_scheduler_latency(tsk
, delta
>> 10, 0);
478 static void check_spread(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
)
480 #ifdef CONFIG_SCHED_DEBUG
481 s64 d
= se
->vruntime
- cfs_rq
->min_vruntime
;
486 if (d
> 3*sysctl_sched_latency
)
487 schedstat_inc(cfs_rq
, nr_spread_over
);
492 place_entity(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
, int initial
)
496 if (first_fair(cfs_rq
)) {
497 vruntime
= min_vruntime(cfs_rq
->min_vruntime
,
498 __pick_next_entity(cfs_rq
)->vruntime
);
500 vruntime
= cfs_rq
->min_vruntime
;
503 * The 'current' period is already promised to the current tasks,
504 * however the extra weight of the new task will slow them down a
505 * little, place the new task so that it fits in the slot that
506 * stays open at the end.
508 if (initial
&& sched_feat(START_DEBIT
))
509 vruntime
+= sched_vslice_add(cfs_rq
, se
);
512 /* sleeps upto a single latency don't count. */
513 if (sched_feat(NEW_FAIR_SLEEPERS
)) {
514 vruntime
-= calc_delta_fair(sysctl_sched_latency
,
518 /* ensure we never gain time by being placed backwards. */
519 vruntime
= max_vruntime(se
->vruntime
, vruntime
);
522 se
->vruntime
= vruntime
;
526 enqueue_entity(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
, int wakeup
)
529 * Update run-time statistics of the 'current'.
534 place_entity(cfs_rq
, se
, 0);
535 enqueue_sleeper(cfs_rq
, se
);
538 update_stats_enqueue(cfs_rq
, se
);
539 check_spread(cfs_rq
, se
);
540 if (se
!= cfs_rq
->curr
)
541 __enqueue_entity(cfs_rq
, se
);
542 account_entity_enqueue(cfs_rq
, se
);
545 static void update_avg(u64
*avg
, u64 sample
)
547 s64 diff
= sample
- *avg
;
551 static void update_avg_stats(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
)
553 if (!se
->last_wakeup
)
556 update_avg(&se
->avg_overlap
, se
->sum_exec_runtime
- se
->last_wakeup
);
561 dequeue_entity(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
, int sleep
)
564 * Update run-time statistics of the 'current'.
568 update_stats_dequeue(cfs_rq
, se
);
570 update_avg_stats(cfs_rq
, se
);
571 #ifdef CONFIG_SCHEDSTATS
572 if (entity_is_task(se
)) {
573 struct task_struct
*tsk
= task_of(se
);
575 if (tsk
->state
& TASK_INTERRUPTIBLE
)
576 se
->sleep_start
= rq_of(cfs_rq
)->clock
;
577 if (tsk
->state
& TASK_UNINTERRUPTIBLE
)
578 se
->block_start
= rq_of(cfs_rq
)->clock
;
583 if (se
!= cfs_rq
->curr
)
584 __dequeue_entity(cfs_rq
, se
);
585 account_entity_dequeue(cfs_rq
, se
);
589 * Preempt the current task with a newly woken task if needed:
592 check_preempt_tick(struct cfs_rq
*cfs_rq
, struct sched_entity
*curr
)
594 unsigned long ideal_runtime
, delta_exec
;
596 ideal_runtime
= sched_slice(cfs_rq
, curr
);
597 delta_exec
= curr
->sum_exec_runtime
- curr
->prev_sum_exec_runtime
;
598 if (delta_exec
> ideal_runtime
)
599 resched_task(rq_of(cfs_rq
)->curr
);
603 set_next_entity(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
)
605 /* 'current' is not kept within the tree. */
608 * Any task has to be enqueued before it get to execute on
609 * a CPU. So account for the time it spent waiting on the
612 update_stats_wait_end(cfs_rq
, se
);
613 __dequeue_entity(cfs_rq
, se
);
616 update_stats_curr_start(cfs_rq
, se
);
618 #ifdef CONFIG_SCHEDSTATS
620 * Track our maximum slice length, if the CPU's load is at
621 * least twice that of our own weight (i.e. dont track it
622 * when there are only lesser-weight tasks around):
624 if (rq_of(cfs_rq
)->load
.weight
>= 2*se
->load
.weight
) {
625 se
->slice_max
= max(se
->slice_max
,
626 se
->sum_exec_runtime
- se
->prev_sum_exec_runtime
);
629 se
->prev_sum_exec_runtime
= se
->sum_exec_runtime
;
632 static struct sched_entity
*
633 pick_next(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
)
640 diff
= cfs_rq
->next
->vruntime
- se
->vruntime
;
644 gran
= calc_delta_fair(sysctl_sched_wakeup_granularity
, &cfs_rq
->load
);
651 static struct sched_entity
*pick_next_entity(struct cfs_rq
*cfs_rq
)
653 struct sched_entity
*se
= NULL
;
655 if (first_fair(cfs_rq
)) {
656 se
= __pick_next_entity(cfs_rq
);
657 se
= pick_next(cfs_rq
, se
);
658 set_next_entity(cfs_rq
, se
);
664 static void put_prev_entity(struct cfs_rq
*cfs_rq
, struct sched_entity
*prev
)
667 * If still on the runqueue then deactivate_task()
668 * was not called and update_curr() has to be done:
673 check_spread(cfs_rq
, prev
);
675 update_stats_wait_start(cfs_rq
, prev
);
676 /* Put 'current' back into the tree. */
677 __enqueue_entity(cfs_rq
, prev
);
683 entity_tick(struct cfs_rq
*cfs_rq
, struct sched_entity
*curr
, int queued
)
686 * Update run-time statistics of the 'current'.
690 #ifdef CONFIG_SCHED_HRTICK
692 * queued ticks are scheduled to match the slice, so don't bother
693 * validating it and just reschedule.
696 return resched_task(rq_of(cfs_rq
)->curr
);
698 * don't let the period tick interfere with the hrtick preemption
700 if (!sched_feat(DOUBLE_TICK
) &&
701 hrtimer_active(&rq_of(cfs_rq
)->hrtick_timer
))
705 if (cfs_rq
->nr_running
> 1 || !sched_feat(WAKEUP_PREEMPT
))
706 check_preempt_tick(cfs_rq
, curr
);
709 /**************************************************
710 * CFS operations on tasks:
713 #ifdef CONFIG_FAIR_GROUP_SCHED
715 /* Walk up scheduling entities hierarchy */
716 #define for_each_sched_entity(se) \
717 for (; se; se = se->parent)
719 static inline struct cfs_rq
*task_cfs_rq(struct task_struct
*p
)
724 /* runqueue on which this entity is (to be) queued */
725 static inline struct cfs_rq
*cfs_rq_of(struct sched_entity
*se
)
730 /* runqueue "owned" by this group */
731 static inline struct cfs_rq
*group_cfs_rq(struct sched_entity
*grp
)
736 /* Given a group's cfs_rq on one cpu, return its corresponding cfs_rq on
737 * another cpu ('this_cpu')
739 static inline struct cfs_rq
*cpu_cfs_rq(struct cfs_rq
*cfs_rq
, int this_cpu
)
741 return cfs_rq
->tg
->cfs_rq
[this_cpu
];
744 /* Iterate thr' all leaf cfs_rq's on a runqueue */
745 #define for_each_leaf_cfs_rq(rq, cfs_rq) \
746 list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)
748 /* Do the two (enqueued) entities belong to the same group ? */
750 is_same_group(struct sched_entity
*se
, struct sched_entity
*pse
)
752 if (se
->cfs_rq
== pse
->cfs_rq
)
758 static inline struct sched_entity
*parent_entity(struct sched_entity
*se
)
763 #else /* CONFIG_FAIR_GROUP_SCHED */
765 #define for_each_sched_entity(se) \
766 for (; se; se = NULL)
768 static inline struct cfs_rq
*task_cfs_rq(struct task_struct
*p
)
770 return &task_rq(p
)->cfs
;
773 static inline struct cfs_rq
*cfs_rq_of(struct sched_entity
*se
)
775 struct task_struct
*p
= task_of(se
);
776 struct rq
*rq
= task_rq(p
);
781 /* runqueue "owned" by this group */
782 static inline struct cfs_rq
*group_cfs_rq(struct sched_entity
*grp
)
787 static inline struct cfs_rq
*cpu_cfs_rq(struct cfs_rq
*cfs_rq
, int this_cpu
)
789 return &cpu_rq(this_cpu
)->cfs
;
792 #define for_each_leaf_cfs_rq(rq, cfs_rq) \
793 for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)
796 is_same_group(struct sched_entity
*se
, struct sched_entity
*pse
)
801 static inline struct sched_entity
*parent_entity(struct sched_entity
*se
)
806 #endif /* CONFIG_FAIR_GROUP_SCHED */
808 #ifdef CONFIG_SCHED_HRTICK
809 static void hrtick_start_fair(struct rq
*rq
, struct task_struct
*p
)
811 int requeue
= rq
->curr
== p
;
812 struct sched_entity
*se
= &p
->se
;
813 struct cfs_rq
*cfs_rq
= cfs_rq_of(se
);
815 WARN_ON(task_rq(p
) != rq
);
817 if (hrtick_enabled(rq
) && cfs_rq
->nr_running
> 1) {
818 u64 slice
= sched_slice(cfs_rq
, se
);
819 u64 ran
= se
->sum_exec_runtime
- se
->prev_sum_exec_runtime
;
820 s64 delta
= slice
- ran
;
829 * Don't schedule slices shorter than 10000ns, that just
830 * doesn't make sense. Rely on vruntime for fairness.
833 delta
= max(10000LL, delta
);
835 hrtick_start(rq
, delta
, requeue
);
840 hrtick_start_fair(struct rq
*rq
, struct task_struct
*p
)
846 * The enqueue_task method is called before nr_running is
847 * increased. Here we update the fair scheduling stats and
848 * then put the task into the rbtree:
850 static void enqueue_task_fair(struct rq
*rq
, struct task_struct
*p
, int wakeup
)
852 struct cfs_rq
*cfs_rq
;
853 struct sched_entity
*se
= &p
->se
;
855 for_each_sched_entity(se
) {
858 cfs_rq
= cfs_rq_of(se
);
859 enqueue_entity(cfs_rq
, se
, wakeup
);
863 hrtick_start_fair(rq
, rq
->curr
);
867 * The dequeue_task method is called before nr_running is
868 * decreased. We remove the task from the rbtree and
869 * update the fair scheduling stats:
871 static void dequeue_task_fair(struct rq
*rq
, struct task_struct
*p
, int sleep
)
873 struct cfs_rq
*cfs_rq
;
874 struct sched_entity
*se
= &p
->se
;
876 for_each_sched_entity(se
) {
877 cfs_rq
= cfs_rq_of(se
);
878 dequeue_entity(cfs_rq
, se
, sleep
);
879 /* Don't dequeue parent if it has other entities besides us */
880 if (cfs_rq
->load
.weight
)
885 hrtick_start_fair(rq
, rq
->curr
);
889 * sched_yield() support is very simple - we dequeue and enqueue.
891 * If compat_yield is turned on then we requeue to the end of the tree.
893 static void yield_task_fair(struct rq
*rq
)
895 struct task_struct
*curr
= rq
->curr
;
896 struct cfs_rq
*cfs_rq
= task_cfs_rq(curr
);
897 struct sched_entity
*rightmost
, *se
= &curr
->se
;
900 * Are we the only task in the tree?
902 if (unlikely(cfs_rq
->nr_running
== 1))
905 if (likely(!sysctl_sched_compat_yield
) && curr
->policy
!= SCHED_BATCH
) {
906 __update_rq_clock(rq
);
908 * Update run-time statistics of the 'current'.
915 * Find the rightmost entry in the rbtree:
917 rightmost
= __pick_last_entity(cfs_rq
);
919 * Already in the rightmost position?
921 if (unlikely(rightmost
->vruntime
< se
->vruntime
))
925 * Minimally necessary key value to be last in the tree:
926 * Upon rescheduling, sched_class::put_prev_task() will place
927 * 'current' within the tree based on its new key value.
929 se
->vruntime
= rightmost
->vruntime
+ 1;
933 * wake_idle() will wake a task on an idle cpu if task->cpu is
934 * not idle and an idle cpu is available. The span of cpus to
935 * search starts with cpus closest then further out as needed,
936 * so we always favor a closer, idle cpu.
938 * Returns the CPU we should wake onto.
940 #if defined(ARCH_HAS_SCHED_WAKE_IDLE)
941 static int wake_idle(int cpu
, struct task_struct
*p
)
944 struct sched_domain
*sd
;
948 * If it is idle, then it is the best cpu to run this task.
950 * This cpu is also the best, if it has more than one task already.
951 * Siblings must be also busy(in most cases) as they didn't already
952 * pickup the extra load from this cpu and hence we need not check
953 * sibling runqueue info. This will avoid the checks and cache miss
954 * penalities associated with that.
956 if (idle_cpu(cpu
) || cpu_rq(cpu
)->nr_running
> 1)
959 for_each_domain(cpu
, sd
) {
960 if (sd
->flags
& SD_WAKE_IDLE
) {
961 cpus_and(tmp
, sd
->span
, p
->cpus_allowed
);
962 for_each_cpu_mask(i
, tmp
) {
964 if (i
!= task_cpu(p
)) {
978 static inline int wake_idle(int cpu
, struct task_struct
*p
)
986 static const struct sched_class fair_sched_class
;
989 wake_affine(struct rq
*rq
, struct sched_domain
*this_sd
, struct rq
*this_rq
,
990 struct task_struct
*p
, int prev_cpu
, int this_cpu
, int sync
,
991 int idx
, unsigned long load
, unsigned long this_load
,
992 unsigned int imbalance
)
994 struct task_struct
*curr
= this_rq
->curr
;
995 unsigned long tl
= this_load
;
996 unsigned long tl_per_task
;
998 if (!(this_sd
->flags
& SD_WAKE_AFFINE
))
1002 * If the currently running task will sleep within
1003 * a reasonable amount of time then attract this newly
1006 if (sync
&& curr
->sched_class
== &fair_sched_class
) {
1007 if (curr
->se
.avg_overlap
< sysctl_sched_migration_cost
&&
1008 p
->se
.avg_overlap
< sysctl_sched_migration_cost
)
1012 schedstat_inc(p
, se
.nr_wakeups_affine_attempts
);
1013 tl_per_task
= cpu_avg_load_per_task(this_cpu
);
1016 * If sync wakeup then subtract the (maximum possible)
1017 * effect of the currently running task from the load
1018 * of the current CPU:
1021 tl
-= current
->se
.load
.weight
;
1023 if ((tl
<= load
&& tl
+ target_load(prev_cpu
, idx
) <= tl_per_task
) ||
1024 100*(tl
+ p
->se
.load
.weight
) <= imbalance
*load
) {
1026 * This domain has SD_WAKE_AFFINE and
1027 * p is cache cold in this domain, and
1028 * there is no bad imbalance.
1030 schedstat_inc(this_sd
, ttwu_move_affine
);
1031 schedstat_inc(p
, se
.nr_wakeups_affine
);
1038 static int select_task_rq_fair(struct task_struct
*p
, int sync
)
1040 struct sched_domain
*sd
, *this_sd
= NULL
;
1041 int prev_cpu
, this_cpu
, new_cpu
;
1042 unsigned long load
, this_load
;
1043 struct rq
*rq
, *this_rq
;
1044 unsigned int imbalance
;
1047 prev_cpu
= task_cpu(p
);
1049 this_cpu
= smp_processor_id();
1050 this_rq
= cpu_rq(this_cpu
);
1054 * 'this_sd' is the first domain that both
1055 * this_cpu and prev_cpu are present in:
1057 for_each_domain(this_cpu
, sd
) {
1058 if (cpu_isset(prev_cpu
, sd
->span
)) {
1064 if (unlikely(!cpu_isset(this_cpu
, p
->cpus_allowed
)))
1068 * Check for affine wakeup and passive balancing possibilities.
1073 idx
= this_sd
->wake_idx
;
1075 imbalance
= 100 + (this_sd
->imbalance_pct
- 100) / 2;
1077 load
= source_load(prev_cpu
, idx
);
1078 this_load
= target_load(this_cpu
, idx
);
1080 if (wake_affine(rq
, this_sd
, this_rq
, p
, prev_cpu
, this_cpu
, sync
, idx
,
1081 load
, this_load
, imbalance
))
1084 if (prev_cpu
== this_cpu
)
1088 * Start passive balancing when half the imbalance_pct
1091 if (this_sd
->flags
& SD_WAKE_BALANCE
) {
1092 if (imbalance
*this_load
<= 100*load
) {
1093 schedstat_inc(this_sd
, ttwu_move_balance
);
1094 schedstat_inc(p
, se
.nr_wakeups_passive
);
1100 return wake_idle(new_cpu
, p
);
1102 #endif /* CONFIG_SMP */
1106 * Preempt the current task with a newly woken task if needed:
1108 static void check_preempt_wakeup(struct rq
*rq
, struct task_struct
*p
)
1110 struct task_struct
*curr
= rq
->curr
;
1111 struct cfs_rq
*cfs_rq
= task_cfs_rq(curr
);
1112 struct sched_entity
*se
= &curr
->se
, *pse
= &p
->se
;
1115 if (unlikely(rt_prio(p
->prio
))) {
1116 update_rq_clock(rq
);
1117 update_curr(cfs_rq
);
1122 se
->last_wakeup
= se
->sum_exec_runtime
;
1123 if (unlikely(se
== pse
))
1126 cfs_rq_of(pse
)->next
= pse
;
1129 * Batch tasks do not preempt (their preemption is driven by
1132 if (unlikely(p
->policy
== SCHED_BATCH
))
1135 if (!sched_feat(WAKEUP_PREEMPT
))
1138 while (!is_same_group(se
, pse
)) {
1139 se
= parent_entity(se
);
1140 pse
= parent_entity(pse
);
1143 gran
= sysctl_sched_wakeup_granularity
;
1145 * More easily preempt - nice tasks, while not making
1146 * it harder for + nice tasks.
1148 if (unlikely(se
->load
.weight
> NICE_0_LOAD
))
1149 gran
= calc_delta_fair(gran
, &se
->load
);
1151 if (pse
->vruntime
+ gran
< se
->vruntime
)
1155 static struct task_struct
*pick_next_task_fair(struct rq
*rq
)
1157 struct task_struct
*p
;
1158 struct cfs_rq
*cfs_rq
= &rq
->cfs
;
1159 struct sched_entity
*se
;
1161 if (unlikely(!cfs_rq
->nr_running
))
1165 se
= pick_next_entity(cfs_rq
);
1166 cfs_rq
= group_cfs_rq(se
);
1170 hrtick_start_fair(rq
, p
);
1176 * Account for a descheduled task:
1178 static void put_prev_task_fair(struct rq
*rq
, struct task_struct
*prev
)
1180 struct sched_entity
*se
= &prev
->se
;
1181 struct cfs_rq
*cfs_rq
;
1183 for_each_sched_entity(se
) {
1184 cfs_rq
= cfs_rq_of(se
);
1185 put_prev_entity(cfs_rq
, se
);
1190 /**************************************************
1191 * Fair scheduling class load-balancing methods:
1195 * Load-balancing iterator. Note: while the runqueue stays locked
1196 * during the whole iteration, the current task might be
1197 * dequeued so the iterator has to be dequeue-safe. Here we
1198 * achieve that by always pre-iterating before returning
1201 static struct task_struct
*
1202 __load_balance_iterator(struct cfs_rq
*cfs_rq
, struct rb_node
*curr
)
1204 struct task_struct
*p
;
1209 p
= rb_entry(curr
, struct task_struct
, se
.run_node
);
1210 cfs_rq
->rb_load_balance_curr
= rb_next(curr
);
1215 static struct task_struct
*load_balance_start_fair(void *arg
)
1217 struct cfs_rq
*cfs_rq
= arg
;
1219 return __load_balance_iterator(cfs_rq
, first_fair(cfs_rq
));
1222 static struct task_struct
*load_balance_next_fair(void *arg
)
1224 struct cfs_rq
*cfs_rq
= arg
;
1226 return __load_balance_iterator(cfs_rq
, cfs_rq
->rb_load_balance_curr
);
1229 #ifdef CONFIG_FAIR_GROUP_SCHED
1230 static int cfs_rq_best_prio(struct cfs_rq
*cfs_rq
)
1232 struct sched_entity
*curr
;
1233 struct task_struct
*p
;
1235 if (!cfs_rq
->nr_running
|| !first_fair(cfs_rq
))
1238 curr
= cfs_rq
->curr
;
1240 curr
= __pick_next_entity(cfs_rq
);
1248 static unsigned long
1249 load_balance_fair(struct rq
*this_rq
, int this_cpu
, struct rq
*busiest
,
1250 unsigned long max_load_move
,
1251 struct sched_domain
*sd
, enum cpu_idle_type idle
,
1252 int *all_pinned
, int *this_best_prio
)
1254 struct cfs_rq
*busy_cfs_rq
;
1255 long rem_load_move
= max_load_move
;
1256 struct rq_iterator cfs_rq_iterator
;
1258 cfs_rq_iterator
.start
= load_balance_start_fair
;
1259 cfs_rq_iterator
.next
= load_balance_next_fair
;
1261 for_each_leaf_cfs_rq(busiest
, busy_cfs_rq
) {
1262 #ifdef CONFIG_FAIR_GROUP_SCHED
1263 struct cfs_rq
*this_cfs_rq
;
1265 unsigned long maxload
;
1267 this_cfs_rq
= cpu_cfs_rq(busy_cfs_rq
, this_cpu
);
1269 imbalance
= busy_cfs_rq
->load
.weight
- this_cfs_rq
->load
.weight
;
1270 /* Don't pull if this_cfs_rq has more load than busy_cfs_rq */
1274 /* Don't pull more than imbalance/2 */
1276 maxload
= min(rem_load_move
, imbalance
);
1278 *this_best_prio
= cfs_rq_best_prio(this_cfs_rq
);
1280 # define maxload rem_load_move
1283 * pass busy_cfs_rq argument into
1284 * load_balance_[start|next]_fair iterators
1286 cfs_rq_iterator
.arg
= busy_cfs_rq
;
1287 rem_load_move
-= balance_tasks(this_rq
, this_cpu
, busiest
,
1288 maxload
, sd
, idle
, all_pinned
,
1292 if (rem_load_move
<= 0)
1296 return max_load_move
- rem_load_move
;
1300 move_one_task_fair(struct rq
*this_rq
, int this_cpu
, struct rq
*busiest
,
1301 struct sched_domain
*sd
, enum cpu_idle_type idle
)
1303 struct cfs_rq
*busy_cfs_rq
;
1304 struct rq_iterator cfs_rq_iterator
;
1306 cfs_rq_iterator
.start
= load_balance_start_fair
;
1307 cfs_rq_iterator
.next
= load_balance_next_fair
;
1309 for_each_leaf_cfs_rq(busiest
, busy_cfs_rq
) {
1311 * pass busy_cfs_rq argument into
1312 * load_balance_[start|next]_fair iterators
1314 cfs_rq_iterator
.arg
= busy_cfs_rq
;
1315 if (iter_move_one_task(this_rq
, this_cpu
, busiest
, sd
, idle
,
1325 * scheduler tick hitting a task of our scheduling class:
1327 static void task_tick_fair(struct rq
*rq
, struct task_struct
*curr
, int queued
)
1329 struct cfs_rq
*cfs_rq
;
1330 struct sched_entity
*se
= &curr
->se
;
1332 for_each_sched_entity(se
) {
1333 cfs_rq
= cfs_rq_of(se
);
1334 entity_tick(cfs_rq
, se
, queued
);
1338 #define swap(a, b) do { typeof(a) tmp = (a); (a) = (b); (b) = tmp; } while (0)
1341 * Share the fairness runtime between parent and child, thus the
1342 * total amount of pressure for CPU stays equal - new tasks
1343 * get a chance to run but frequent forkers are not allowed to
1344 * monopolize the CPU. Note: the parent runqueue is locked,
1345 * the child is not running yet.
1347 static void task_new_fair(struct rq
*rq
, struct task_struct
*p
)
1349 struct cfs_rq
*cfs_rq
= task_cfs_rq(p
);
1350 struct sched_entity
*se
= &p
->se
, *curr
= cfs_rq
->curr
;
1351 int this_cpu
= smp_processor_id();
1353 sched_info_queued(p
);
1355 update_curr(cfs_rq
);
1356 place_entity(cfs_rq
, se
, 1);
1358 /* 'curr' will be NULL if the child belongs to a different group */
1359 if (sysctl_sched_child_runs_first
&& this_cpu
== task_cpu(p
) &&
1360 curr
&& curr
->vruntime
< se
->vruntime
) {
1362 * Upon rescheduling, sched_class::put_prev_task() will place
1363 * 'current' within the tree based on its new key value.
1365 swap(curr
->vruntime
, se
->vruntime
);
1368 enqueue_task_fair(rq
, p
, 0);
1369 resched_task(rq
->curr
);
1373 * Priority of the task has changed. Check to see if we preempt
1376 static void prio_changed_fair(struct rq
*rq
, struct task_struct
*p
,
1377 int oldprio
, int running
)
1380 * Reschedule if we are currently running on this runqueue and
1381 * our priority decreased, or if we are not currently running on
1382 * this runqueue and our priority is higher than the current's
1385 if (p
->prio
> oldprio
)
1386 resched_task(rq
->curr
);
1388 check_preempt_curr(rq
, p
);
1392 * We switched to the sched_fair class.
1394 static void switched_to_fair(struct rq
*rq
, struct task_struct
*p
,
1398 * We were most likely switched from sched_rt, so
1399 * kick off the schedule if running, otherwise just see
1400 * if we can still preempt the current task.
1403 resched_task(rq
->curr
);
1405 check_preempt_curr(rq
, p
);
1408 /* Account for a task changing its policy or group.
1410 * This routine is mostly called to set cfs_rq->curr field when a task
1411 * migrates between groups/classes.
1413 static void set_curr_task_fair(struct rq
*rq
)
1415 struct sched_entity
*se
= &rq
->curr
->se
;
1417 for_each_sched_entity(se
)
1418 set_next_entity(cfs_rq_of(se
), se
);
1421 #ifdef CONFIG_FAIR_GROUP_SCHED
1422 static void moved_group_fair(struct task_struct
*p
)
1424 struct cfs_rq
*cfs_rq
= task_cfs_rq(p
);
1426 update_curr(cfs_rq
);
1427 place_entity(cfs_rq
, &p
->se
, 1);
1432 * All the scheduling class methods:
1434 static const struct sched_class fair_sched_class
= {
1435 .next
= &idle_sched_class
,
1436 .enqueue_task
= enqueue_task_fair
,
1437 .dequeue_task
= dequeue_task_fair
,
1438 .yield_task
= yield_task_fair
,
1440 .select_task_rq
= select_task_rq_fair
,
1441 #endif /* CONFIG_SMP */
1443 .check_preempt_curr
= check_preempt_wakeup
,
1445 .pick_next_task
= pick_next_task_fair
,
1446 .put_prev_task
= put_prev_task_fair
,
1449 .load_balance
= load_balance_fair
,
1450 .move_one_task
= move_one_task_fair
,
1453 .set_curr_task
= set_curr_task_fair
,
1454 .task_tick
= task_tick_fair
,
1455 .task_new
= task_new_fair
,
1457 .prio_changed
= prio_changed_fair
,
1458 .switched_to
= switched_to_fair
,
1460 #ifdef CONFIG_FAIR_GROUP_SCHED
1461 .moved_group
= moved_group_fair
,
1465 #ifdef CONFIG_SCHED_DEBUG
1466 static void print_cfs_stats(struct seq_file
*m
, int cpu
)
1468 struct cfs_rq
*cfs_rq
;
1470 #ifdef CONFIG_FAIR_GROUP_SCHED
1471 print_cfs_rq(m
, cpu
, &cpu_rq(cpu
)->cfs
);
1474 for_each_leaf_cfs_rq(cpu_rq(cpu
), cfs_rq
)
1475 print_cfs_rq(m
, cpu
, cfs_rq
);