2 * Copyright (C) 2007 Oracle. All rights reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
20 #include <linux/pagemap.h>
21 #include <linux/highmem.h>
22 #include <linux/time.h>
23 #include <linux/init.h>
24 #include <linux/string.h>
25 #include <linux/backing-dev.h>
26 #include <linux/mpage.h>
27 #include <linux/swap.h>
28 #include <linux/writeback.h>
29 #include <linux/statfs.h>
30 #include <linux/compat.h>
33 #include "transaction.h"
34 #include "btrfs_inode.h"
36 #include "print-tree.h"
42 /* simple helper to fault in pages and copy. This should go away
43 * and be replaced with calls into generic code.
45 static noinline
int btrfs_copy_from_user(loff_t pos
, int num_pages
,
47 struct page
**prepared_pages
,
48 const char __user
*buf
)
52 int offset
= pos
& (PAGE_CACHE_SIZE
- 1);
54 for (i
= 0; i
< num_pages
&& write_bytes
> 0; i
++, offset
= 0) {
55 size_t count
= min_t(size_t,
56 PAGE_CACHE_SIZE
- offset
, write_bytes
);
57 struct page
*page
= prepared_pages
[i
];
58 fault_in_pages_readable(buf
, count
);
60 /* Copy data from userspace to the current page */
62 page_fault
= __copy_from_user(page_address(page
) + offset
,
64 /* Flush processor's dcache for this page */
65 flush_dcache_page(page
);
73 return page_fault
? -EFAULT
: 0;
77 * unlocks pages after btrfs_file_write is done with them
79 static noinline
void btrfs_drop_pages(struct page
**pages
, size_t num_pages
)
82 for (i
= 0; i
< num_pages
; i
++) {
85 /* page checked is some magic around finding pages that
86 * have been modified without going through btrfs_set_page_dirty
89 ClearPageChecked(pages
[i
]);
90 unlock_page(pages
[i
]);
91 mark_page_accessed(pages
[i
]);
92 page_cache_release(pages
[i
]);
97 * after copy_from_user, pages need to be dirtied and we need to make
98 * sure holes are created between the current EOF and the start of
99 * any next extents (if required).
101 * this also makes the decision about creating an inline extent vs
102 * doing real data extents, marking pages dirty and delalloc as required.
104 static noinline
int dirty_and_release_pages(struct btrfs_trans_handle
*trans
,
105 struct btrfs_root
*root
,
114 struct inode
*inode
= fdentry(file
)->d_inode
;
117 u64 end_of_last_block
;
118 u64 end_pos
= pos
+ write_bytes
;
119 loff_t isize
= i_size_read(inode
);
121 start_pos
= pos
& ~((u64
)root
->sectorsize
- 1);
122 num_bytes
= (write_bytes
+ pos
- start_pos
+
123 root
->sectorsize
- 1) & ~((u64
)root
->sectorsize
- 1);
125 end_of_last_block
= start_pos
+ num_bytes
- 1;
126 err
= btrfs_set_extent_delalloc(inode
, start_pos
, end_of_last_block
);
130 for (i
= 0; i
< num_pages
; i
++) {
131 struct page
*p
= pages
[i
];
136 if (end_pos
> isize
) {
137 i_size_write(inode
, end_pos
);
138 /* we've only changed i_size in ram, and we haven't updated
139 * the disk i_size. There is no need to log the inode
147 * this drops all the extents in the cache that intersect the range
148 * [start, end]. Existing extents are split as required.
150 int btrfs_drop_extent_cache(struct inode
*inode
, u64 start
, u64 end
,
153 struct extent_map
*em
;
154 struct extent_map
*split
= NULL
;
155 struct extent_map
*split2
= NULL
;
156 struct extent_map_tree
*em_tree
= &BTRFS_I(inode
)->extent_tree
;
157 u64 len
= end
- start
+ 1;
163 WARN_ON(end
< start
);
164 if (end
== (u64
)-1) {
170 split
= alloc_extent_map(GFP_NOFS
);
172 split2
= alloc_extent_map(GFP_NOFS
);
174 write_lock(&em_tree
->lock
);
175 em
= lookup_extent_mapping(em_tree
, start
, len
);
177 write_unlock(&em_tree
->lock
);
181 if (skip_pinned
&& test_bit(EXTENT_FLAG_PINNED
, &em
->flags
)) {
182 if (em
->start
<= start
&&
183 (!testend
|| em
->start
+ em
->len
>= start
+ len
)) {
185 write_unlock(&em_tree
->lock
);
188 if (start
< em
->start
) {
189 len
= em
->start
- start
;
191 len
= start
+ len
- (em
->start
+ em
->len
);
192 start
= em
->start
+ em
->len
;
195 write_unlock(&em_tree
->lock
);
198 compressed
= test_bit(EXTENT_FLAG_COMPRESSED
, &em
->flags
);
199 clear_bit(EXTENT_FLAG_PINNED
, &em
->flags
);
200 remove_extent_mapping(em_tree
, em
);
202 if (em
->block_start
< EXTENT_MAP_LAST_BYTE
&&
204 split
->start
= em
->start
;
205 split
->len
= start
- em
->start
;
206 split
->orig_start
= em
->orig_start
;
207 split
->block_start
= em
->block_start
;
210 split
->block_len
= em
->block_len
;
212 split
->block_len
= split
->len
;
214 split
->bdev
= em
->bdev
;
215 split
->flags
= flags
;
216 ret
= add_extent_mapping(em_tree
, split
);
218 free_extent_map(split
);
222 if (em
->block_start
< EXTENT_MAP_LAST_BYTE
&&
223 testend
&& em
->start
+ em
->len
> start
+ len
) {
224 u64 diff
= start
+ len
- em
->start
;
226 split
->start
= start
+ len
;
227 split
->len
= em
->start
+ em
->len
- (start
+ len
);
228 split
->bdev
= em
->bdev
;
229 split
->flags
= flags
;
232 split
->block_len
= em
->block_len
;
233 split
->block_start
= em
->block_start
;
234 split
->orig_start
= em
->orig_start
;
236 split
->block_len
= split
->len
;
237 split
->block_start
= em
->block_start
+ diff
;
238 split
->orig_start
= split
->start
;
241 ret
= add_extent_mapping(em_tree
, split
);
243 free_extent_map(split
);
246 write_unlock(&em_tree
->lock
);
250 /* once for the tree*/
254 free_extent_map(split
);
256 free_extent_map(split2
);
261 * this is very complex, but the basic idea is to drop all extents
262 * in the range start - end. hint_block is filled in with a block number
263 * that would be a good hint to the block allocator for this file.
265 * If an extent intersects the range but is not entirely inside the range
266 * it is either truncated or split. Anything entirely inside the range
267 * is deleted from the tree.
269 * inline_limit is used to tell this code which offsets in the file to keep
270 * if they contain inline extents.
272 noinline
int btrfs_drop_extents(struct btrfs_trans_handle
*trans
,
273 struct btrfs_root
*root
, struct inode
*inode
,
274 u64 start
, u64 end
, u64 locked_end
,
275 u64 inline_limit
, u64
*hint_byte
, int drop_cache
)
278 u64 search_start
= start
;
281 u64 orig_locked_end
= locked_end
;
284 u16 other_encoding
= 0;
285 struct extent_buffer
*leaf
;
286 struct btrfs_file_extent_item
*extent
;
287 struct btrfs_path
*path
;
288 struct btrfs_key key
;
289 struct btrfs_file_extent_item old
;
301 btrfs_drop_extent_cache(inode
, start
, end
- 1, 0);
303 path
= btrfs_alloc_path();
308 btrfs_release_path(root
, path
);
309 ret
= btrfs_lookup_file_extent(trans
, root
, path
, inode
->i_ino
,
314 if (path
->slots
[0] == 0) {
328 leaf
= path
->nodes
[0];
329 slot
= path
->slots
[0];
331 btrfs_item_key_to_cpu(leaf
, &key
, slot
);
332 if (btrfs_key_type(&key
) == BTRFS_EXTENT_DATA_KEY
&&
336 if (btrfs_key_type(&key
) > BTRFS_EXTENT_DATA_KEY
||
337 key
.objectid
!= inode
->i_ino
) {
341 search_start
= max(key
.offset
, start
);
344 if (btrfs_key_type(&key
) == BTRFS_EXTENT_DATA_KEY
) {
345 extent
= btrfs_item_ptr(leaf
, slot
,
346 struct btrfs_file_extent_item
);
347 found_type
= btrfs_file_extent_type(leaf
, extent
);
348 compression
= btrfs_file_extent_compression(leaf
,
350 encryption
= btrfs_file_extent_encryption(leaf
,
352 other_encoding
= btrfs_file_extent_other_encoding(leaf
,
354 if (found_type
== BTRFS_FILE_EXTENT_REG
||
355 found_type
== BTRFS_FILE_EXTENT_PREALLOC
) {
357 btrfs_file_extent_disk_bytenr(leaf
,
360 *hint_byte
= extent_end
;
362 extent_end
= key
.offset
+
363 btrfs_file_extent_num_bytes(leaf
, extent
);
364 ram_bytes
= btrfs_file_extent_ram_bytes(leaf
,
367 } else if (found_type
== BTRFS_FILE_EXTENT_INLINE
) {
369 extent_end
= key
.offset
+
370 btrfs_file_extent_inline_len(leaf
, extent
);
373 extent_end
= search_start
;
376 /* we found nothing we can drop */
377 if ((!found_extent
&& !found_inline
) ||
378 search_start
>= extent_end
) {
381 nritems
= btrfs_header_nritems(leaf
);
382 if (slot
>= nritems
- 1) {
383 nextret
= btrfs_next_leaf(root
, path
);
393 if (end
<= extent_end
&& start
>= key
.offset
&& found_inline
)
394 *hint_byte
= EXTENT_MAP_INLINE
;
397 read_extent_buffer(leaf
, &old
, (unsigned long)extent
,
401 if (end
< extent_end
&& end
>= key
.offset
) {
403 if (found_inline
&& start
<= key
.offset
)
407 if (bookend
&& found_extent
) {
408 if (locked_end
< extent_end
) {
409 ret
= try_lock_extent(&BTRFS_I(inode
)->io_tree
,
410 locked_end
, extent_end
- 1,
413 btrfs_release_path(root
, path
);
414 lock_extent(&BTRFS_I(inode
)->io_tree
,
415 locked_end
, extent_end
- 1,
417 locked_end
= extent_end
;
420 locked_end
= extent_end
;
422 disk_bytenr
= le64_to_cpu(old
.disk_bytenr
);
423 if (disk_bytenr
!= 0) {
424 ret
= btrfs_inc_extent_ref(trans
, root
,
426 le64_to_cpu(old
.disk_num_bytes
), 0,
427 root
->root_key
.objectid
,
428 key
.objectid
, key
.offset
-
429 le64_to_cpu(old
.offset
));
435 u64 mask
= root
->sectorsize
- 1;
436 search_start
= (extent_end
+ mask
) & ~mask
;
438 search_start
= extent_end
;
440 /* truncate existing extent */
441 if (start
> key
.offset
) {
445 WARN_ON(start
& (root
->sectorsize
- 1));
447 new_num
= start
- key
.offset
;
448 old_num
= btrfs_file_extent_num_bytes(leaf
,
451 btrfs_file_extent_disk_bytenr(leaf
,
453 if (btrfs_file_extent_disk_bytenr(leaf
,
455 inode_sub_bytes(inode
, old_num
-
458 btrfs_set_file_extent_num_bytes(leaf
,
460 btrfs_mark_buffer_dirty(leaf
);
461 } else if (key
.offset
< inline_limit
&&
462 (end
> extent_end
) &&
463 (inline_limit
< extent_end
)) {
465 new_size
= btrfs_file_extent_calc_inline_size(
466 inline_limit
- key
.offset
);
467 inode_sub_bytes(inode
, extent_end
-
469 btrfs_set_file_extent_ram_bytes(leaf
, extent
,
471 if (!compression
&& !encryption
) {
472 btrfs_truncate_item(trans
, root
, path
,
477 /* delete the entire extent */
480 inode_sub_bytes(inode
, extent_end
-
482 ret
= btrfs_del_item(trans
, root
, path
);
483 /* TODO update progress marker and return */
486 btrfs_release_path(root
, path
);
487 /* the extent will be freed later */
489 if (bookend
&& found_inline
&& start
<= key
.offset
) {
491 new_size
= btrfs_file_extent_calc_inline_size(
493 inode_sub_bytes(inode
, end
- key
.offset
);
494 btrfs_set_file_extent_ram_bytes(leaf
, extent
,
496 if (!compression
&& !encryption
)
497 ret
= btrfs_truncate_item(trans
, root
, path
,
501 /* create bookend, splitting the extent in two */
502 if (bookend
&& found_extent
) {
503 struct btrfs_key ins
;
504 ins
.objectid
= inode
->i_ino
;
506 btrfs_set_key_type(&ins
, BTRFS_EXTENT_DATA_KEY
);
508 btrfs_release_path(root
, path
);
509 path
->leave_spinning
= 1;
510 ret
= btrfs_insert_empty_item(trans
, root
, path
, &ins
,
514 leaf
= path
->nodes
[0];
515 extent
= btrfs_item_ptr(leaf
, path
->slots
[0],
516 struct btrfs_file_extent_item
);
517 write_extent_buffer(leaf
, &old
,
518 (unsigned long)extent
, sizeof(old
));
520 btrfs_set_file_extent_compression(leaf
, extent
,
522 btrfs_set_file_extent_encryption(leaf
, extent
,
524 btrfs_set_file_extent_other_encoding(leaf
, extent
,
526 btrfs_set_file_extent_offset(leaf
, extent
,
527 le64_to_cpu(old
.offset
) + end
- key
.offset
);
528 WARN_ON(le64_to_cpu(old
.num_bytes
) <
530 btrfs_set_file_extent_num_bytes(leaf
, extent
,
534 * set the ram bytes to the size of the full extent
535 * before splitting. This is a worst case flag,
536 * but its the best we can do because we don't know
537 * how splitting affects compression
539 btrfs_set_file_extent_ram_bytes(leaf
, extent
,
541 btrfs_set_file_extent_type(leaf
, extent
, found_type
);
543 btrfs_unlock_up_safe(path
, 1);
544 btrfs_mark_buffer_dirty(path
->nodes
[0]);
545 btrfs_set_lock_blocking(path
->nodes
[0]);
547 path
->leave_spinning
= 0;
548 btrfs_release_path(root
, path
);
549 if (disk_bytenr
!= 0)
550 inode_add_bytes(inode
, extent_end
- end
);
553 if (found_extent
&& !keep
) {
554 u64 old_disk_bytenr
= le64_to_cpu(old
.disk_bytenr
);
556 if (old_disk_bytenr
!= 0) {
557 inode_sub_bytes(inode
,
558 le64_to_cpu(old
.num_bytes
));
559 ret
= btrfs_free_extent(trans
, root
,
561 le64_to_cpu(old
.disk_num_bytes
),
562 0, root
->root_key
.objectid
,
563 key
.objectid
, key
.offset
-
564 le64_to_cpu(old
.offset
));
566 *hint_byte
= old_disk_bytenr
;
570 if (search_start
>= end
) {
576 btrfs_free_path(path
);
577 if (locked_end
> orig_locked_end
) {
578 unlock_extent(&BTRFS_I(inode
)->io_tree
, orig_locked_end
,
579 locked_end
- 1, GFP_NOFS
);
584 static int extent_mergeable(struct extent_buffer
*leaf
, int slot
,
585 u64 objectid
, u64 bytenr
, u64
*start
, u64
*end
)
587 struct btrfs_file_extent_item
*fi
;
588 struct btrfs_key key
;
591 if (slot
< 0 || slot
>= btrfs_header_nritems(leaf
))
594 btrfs_item_key_to_cpu(leaf
, &key
, slot
);
595 if (key
.objectid
!= objectid
|| key
.type
!= BTRFS_EXTENT_DATA_KEY
)
598 fi
= btrfs_item_ptr(leaf
, slot
, struct btrfs_file_extent_item
);
599 if (btrfs_file_extent_type(leaf
, fi
) != BTRFS_FILE_EXTENT_REG
||
600 btrfs_file_extent_disk_bytenr(leaf
, fi
) != bytenr
||
601 btrfs_file_extent_compression(leaf
, fi
) ||
602 btrfs_file_extent_encryption(leaf
, fi
) ||
603 btrfs_file_extent_other_encoding(leaf
, fi
))
606 extent_end
= key
.offset
+ btrfs_file_extent_num_bytes(leaf
, fi
);
607 if ((*start
&& *start
!= key
.offset
) || (*end
&& *end
!= extent_end
))
616 * Mark extent in the range start - end as written.
618 * This changes extent type from 'pre-allocated' to 'regular'. If only
619 * part of extent is marked as written, the extent will be split into
622 int btrfs_mark_extent_written(struct btrfs_trans_handle
*trans
,
623 struct btrfs_root
*root
,
624 struct inode
*inode
, u64 start
, u64 end
)
626 struct extent_buffer
*leaf
;
627 struct btrfs_path
*path
;
628 struct btrfs_file_extent_item
*fi
;
629 struct btrfs_key key
;
637 u64 locked_end
= end
;
642 btrfs_drop_extent_cache(inode
, start
, end
- 1, 0);
644 path
= btrfs_alloc_path();
647 key
.objectid
= inode
->i_ino
;
648 key
.type
= BTRFS_EXTENT_DATA_KEY
;
652 key
.offset
= split
- 1;
654 ret
= btrfs_search_slot(trans
, root
, &key
, path
, -1, 1);
655 if (ret
> 0 && path
->slots
[0] > 0)
658 leaf
= path
->nodes
[0];
659 btrfs_item_key_to_cpu(leaf
, &key
, path
->slots
[0]);
660 BUG_ON(key
.objectid
!= inode
->i_ino
||
661 key
.type
!= BTRFS_EXTENT_DATA_KEY
);
662 fi
= btrfs_item_ptr(leaf
, path
->slots
[0],
663 struct btrfs_file_extent_item
);
664 extent_type
= btrfs_file_extent_type(leaf
, fi
);
665 BUG_ON(extent_type
!= BTRFS_FILE_EXTENT_PREALLOC
);
666 extent_end
= key
.offset
+ btrfs_file_extent_num_bytes(leaf
, fi
);
667 BUG_ON(key
.offset
> start
|| extent_end
< end
);
669 bytenr
= btrfs_file_extent_disk_bytenr(leaf
, fi
);
670 num_bytes
= btrfs_file_extent_disk_num_bytes(leaf
, fi
);
671 orig_offset
= key
.offset
- btrfs_file_extent_offset(leaf
, fi
);
673 if (key
.offset
== start
)
676 if (key
.offset
== start
&& extent_end
== end
) {
681 if (extent_mergeable(leaf
, path
->slots
[0] + 1, inode
->i_ino
,
682 bytenr
, &other_start
, &other_end
)) {
683 extent_end
= other_end
;
684 del_slot
= path
->slots
[0] + 1;
686 ret
= btrfs_free_extent(trans
, root
, bytenr
, num_bytes
,
687 0, root
->root_key
.objectid
,
688 inode
->i_ino
, orig_offset
);
693 if (extent_mergeable(leaf
, path
->slots
[0] - 1, inode
->i_ino
,
694 bytenr
, &other_start
, &other_end
)) {
695 key
.offset
= other_start
;
696 del_slot
= path
->slots
[0];
698 ret
= btrfs_free_extent(trans
, root
, bytenr
, num_bytes
,
699 0, root
->root_key
.objectid
,
700 inode
->i_ino
, orig_offset
);
705 btrfs_set_file_extent_type(leaf
, fi
,
706 BTRFS_FILE_EXTENT_REG
);
710 fi
= btrfs_item_ptr(leaf
, del_slot
- 1,
711 struct btrfs_file_extent_item
);
712 btrfs_set_file_extent_type(leaf
, fi
, BTRFS_FILE_EXTENT_REG
);
713 btrfs_set_file_extent_num_bytes(leaf
, fi
,
714 extent_end
- key
.offset
);
715 btrfs_mark_buffer_dirty(leaf
);
717 ret
= btrfs_del_items(trans
, root
, path
, del_slot
, del_nr
);
720 } else if (split
== start
) {
721 if (locked_end
< extent_end
) {
722 ret
= try_lock_extent(&BTRFS_I(inode
)->io_tree
,
723 locked_end
, extent_end
- 1, GFP_NOFS
);
725 btrfs_release_path(root
, path
);
726 lock_extent(&BTRFS_I(inode
)->io_tree
,
727 locked_end
, extent_end
- 1, GFP_NOFS
);
728 locked_end
= extent_end
;
731 locked_end
= extent_end
;
733 btrfs_set_file_extent_num_bytes(leaf
, fi
, split
- key
.offset
);
735 BUG_ON(key
.offset
!= start
);
737 btrfs_set_file_extent_offset(leaf
, fi
, key
.offset
-
739 btrfs_set_file_extent_num_bytes(leaf
, fi
, extent_end
- split
);
740 btrfs_set_item_key_safe(trans
, root
, path
, &key
);
744 if (extent_end
== end
) {
746 extent_type
= BTRFS_FILE_EXTENT_REG
;
748 if (extent_end
== end
&& split
== start
) {
751 if (extent_mergeable(leaf
, path
->slots
[0] + 1, inode
->i_ino
,
752 bytenr
, &other_start
, &other_end
)) {
754 fi
= btrfs_item_ptr(leaf
, path
->slots
[0],
755 struct btrfs_file_extent_item
);
757 btrfs_set_item_key_safe(trans
, root
, path
, &key
);
758 btrfs_set_file_extent_offset(leaf
, fi
, key
.offset
-
760 btrfs_set_file_extent_num_bytes(leaf
, fi
,
765 if (extent_end
== end
&& split
== end
) {
768 if (extent_mergeable(leaf
, path
->slots
[0] - 1 , inode
->i_ino
,
769 bytenr
, &other_start
, &other_end
)) {
771 fi
= btrfs_item_ptr(leaf
, path
->slots
[0],
772 struct btrfs_file_extent_item
);
773 btrfs_set_file_extent_num_bytes(leaf
, fi
, extent_end
-
779 btrfs_mark_buffer_dirty(leaf
);
781 ret
= btrfs_inc_extent_ref(trans
, root
, bytenr
, num_bytes
, 0,
782 root
->root_key
.objectid
,
783 inode
->i_ino
, orig_offset
);
785 btrfs_release_path(root
, path
);
788 ret
= btrfs_insert_empty_item(trans
, root
, path
, &key
, sizeof(*fi
));
791 leaf
= path
->nodes
[0];
792 fi
= btrfs_item_ptr(leaf
, path
->slots
[0],
793 struct btrfs_file_extent_item
);
794 btrfs_set_file_extent_generation(leaf
, fi
, trans
->transid
);
795 btrfs_set_file_extent_type(leaf
, fi
, extent_type
);
796 btrfs_set_file_extent_disk_bytenr(leaf
, fi
, bytenr
);
797 btrfs_set_file_extent_disk_num_bytes(leaf
, fi
, num_bytes
);
798 btrfs_set_file_extent_offset(leaf
, fi
, key
.offset
- orig_offset
);
799 btrfs_set_file_extent_num_bytes(leaf
, fi
, extent_end
- key
.offset
);
800 btrfs_set_file_extent_ram_bytes(leaf
, fi
, num_bytes
);
801 btrfs_set_file_extent_compression(leaf
, fi
, 0);
802 btrfs_set_file_extent_encryption(leaf
, fi
, 0);
803 btrfs_set_file_extent_other_encoding(leaf
, fi
, 0);
805 btrfs_mark_buffer_dirty(leaf
);
808 btrfs_release_path(root
, path
);
809 if (split_end
&& split
== start
) {
813 if (locked_end
> end
) {
814 unlock_extent(&BTRFS_I(inode
)->io_tree
, end
, locked_end
- 1,
817 btrfs_free_path(path
);
822 * this gets pages into the page cache and locks them down, it also properly
823 * waits for data=ordered extents to finish before allowing the pages to be
826 static noinline
int prepare_pages(struct btrfs_root
*root
, struct file
*file
,
827 struct page
**pages
, size_t num_pages
,
828 loff_t pos
, unsigned long first_index
,
829 unsigned long last_index
, size_t write_bytes
)
832 unsigned long index
= pos
>> PAGE_CACHE_SHIFT
;
833 struct inode
*inode
= fdentry(file
)->d_inode
;
838 start_pos
= pos
& ~((u64
)root
->sectorsize
- 1);
839 last_pos
= ((u64
)index
+ num_pages
) << PAGE_CACHE_SHIFT
;
841 if (start_pos
> inode
->i_size
) {
842 err
= btrfs_cont_expand(inode
, start_pos
);
847 memset(pages
, 0, num_pages
* sizeof(struct page
*));
849 for (i
= 0; i
< num_pages
; i
++) {
850 pages
[i
] = grab_cache_page(inode
->i_mapping
, index
+ i
);
855 wait_on_page_writeback(pages
[i
]);
857 if (start_pos
< inode
->i_size
) {
858 struct btrfs_ordered_extent
*ordered
;
859 lock_extent(&BTRFS_I(inode
)->io_tree
,
860 start_pos
, last_pos
- 1, GFP_NOFS
);
861 ordered
= btrfs_lookup_first_ordered_extent(inode
,
864 ordered
->file_offset
+ ordered
->len
> start_pos
&&
865 ordered
->file_offset
< last_pos
) {
866 btrfs_put_ordered_extent(ordered
);
867 unlock_extent(&BTRFS_I(inode
)->io_tree
,
868 start_pos
, last_pos
- 1, GFP_NOFS
);
869 for (i
= 0; i
< num_pages
; i
++) {
870 unlock_page(pages
[i
]);
871 page_cache_release(pages
[i
]);
873 btrfs_wait_ordered_range(inode
, start_pos
,
874 last_pos
- start_pos
);
878 btrfs_put_ordered_extent(ordered
);
880 clear_extent_bits(&BTRFS_I(inode
)->io_tree
, start_pos
,
881 last_pos
- 1, EXTENT_DIRTY
| EXTENT_DELALLOC
|
882 EXTENT_DO_ACCOUNTING
,
884 unlock_extent(&BTRFS_I(inode
)->io_tree
,
885 start_pos
, last_pos
- 1, GFP_NOFS
);
887 for (i
= 0; i
< num_pages
; i
++) {
888 clear_page_dirty_for_io(pages
[i
]);
889 set_page_extent_mapped(pages
[i
]);
890 WARN_ON(!PageLocked(pages
[i
]));
895 static ssize_t
btrfs_file_write(struct file
*file
, const char __user
*buf
,
896 size_t count
, loff_t
*ppos
)
900 ssize_t num_written
= 0;
903 struct inode
*inode
= fdentry(file
)->d_inode
;
904 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
905 struct page
**pages
= NULL
;
907 struct page
*pinned
[2];
908 unsigned long first_index
;
909 unsigned long last_index
;
912 will_write
= ((file
->f_flags
& O_DSYNC
) || IS_SYNC(inode
) ||
913 (file
->f_flags
& O_DIRECT
));
915 nrptrs
= min((count
+ PAGE_CACHE_SIZE
- 1) / PAGE_CACHE_SIZE
,
916 PAGE_CACHE_SIZE
/ (sizeof(struct page
*)));
923 vfs_check_frozen(inode
->i_sb
, SB_FREEZE_WRITE
);
925 /* do the reserve before the mutex lock in case we have to do some
926 * flushing. We wouldn't deadlock, but this is more polite.
928 err
= btrfs_reserve_metadata_for_delalloc(root
, inode
, 1);
932 mutex_lock(&inode
->i_mutex
);
934 current
->backing_dev_info
= inode
->i_mapping
->backing_dev_info
;
935 err
= generic_write_checks(file
, &pos
, &count
, S_ISBLK(inode
->i_mode
));
942 err
= file_remove_suid(file
);
946 file_update_time(file
);
948 pages
= kmalloc(nrptrs
* sizeof(struct page
*), GFP_KERNEL
);
950 /* generic_write_checks can change our pos */
953 BTRFS_I(inode
)->sequence
++;
954 first_index
= pos
>> PAGE_CACHE_SHIFT
;
955 last_index
= (pos
+ count
) >> PAGE_CACHE_SHIFT
;
958 * there are lots of better ways to do this, but this code
959 * makes sure the first and last page in the file range are
960 * up to date and ready for cow
962 if ((pos
& (PAGE_CACHE_SIZE
- 1))) {
963 pinned
[0] = grab_cache_page(inode
->i_mapping
, first_index
);
964 if (!PageUptodate(pinned
[0])) {
965 ret
= btrfs_readpage(NULL
, pinned
[0]);
967 wait_on_page_locked(pinned
[0]);
969 unlock_page(pinned
[0]);
972 if ((pos
+ count
) & (PAGE_CACHE_SIZE
- 1)) {
973 pinned
[1] = grab_cache_page(inode
->i_mapping
, last_index
);
974 if (!PageUptodate(pinned
[1])) {
975 ret
= btrfs_readpage(NULL
, pinned
[1]);
977 wait_on_page_locked(pinned
[1]);
979 unlock_page(pinned
[1]);
984 size_t offset
= pos
& (PAGE_CACHE_SIZE
- 1);
985 size_t write_bytes
= min(count
, nrptrs
*
986 (size_t)PAGE_CACHE_SIZE
-
988 size_t num_pages
= (write_bytes
+ PAGE_CACHE_SIZE
- 1) >>
991 WARN_ON(num_pages
> nrptrs
);
992 memset(pages
, 0, sizeof(struct page
*) * nrptrs
);
994 ret
= btrfs_check_data_free_space(root
, inode
, write_bytes
);
998 ret
= prepare_pages(root
, file
, pages
, num_pages
,
999 pos
, first_index
, last_index
,
1002 btrfs_free_reserved_data_space(root
, inode
,
1007 ret
= btrfs_copy_from_user(pos
, num_pages
,
1008 write_bytes
, pages
, buf
);
1010 btrfs_free_reserved_data_space(root
, inode
,
1012 btrfs_drop_pages(pages
, num_pages
);
1016 ret
= dirty_and_release_pages(NULL
, root
, file
, pages
,
1017 num_pages
, pos
, write_bytes
);
1018 btrfs_drop_pages(pages
, num_pages
);
1020 btrfs_free_reserved_data_space(root
, inode
,
1026 filemap_fdatawrite_range(inode
->i_mapping
, pos
,
1027 pos
+ write_bytes
- 1);
1029 balance_dirty_pages_ratelimited_nr(inode
->i_mapping
,
1032 (root
->leafsize
>> PAGE_CACHE_SHIFT
) + 1)
1033 btrfs_btree_balance_dirty(root
, 1);
1034 btrfs_throttle(root
);
1038 count
-= write_bytes
;
1040 num_written
+= write_bytes
;
1045 mutex_unlock(&inode
->i_mutex
);
1048 btrfs_unreserve_metadata_for_delalloc(root
, inode
, 1);
1053 page_cache_release(pinned
[0]);
1055 page_cache_release(pinned
[1]);
1059 * we want to make sure fsync finds this change
1060 * but we haven't joined a transaction running right now.
1062 * Later on, someone is sure to update the inode and get the
1063 * real transid recorded.
1065 * We set last_trans now to the fs_info generation + 1,
1066 * this will either be one more than the running transaction
1067 * or the generation used for the next transaction if there isn't
1068 * one running right now.
1070 BTRFS_I(inode
)->last_trans
= root
->fs_info
->generation
+ 1;
1072 if (num_written
> 0 && will_write
) {
1073 struct btrfs_trans_handle
*trans
;
1075 err
= btrfs_wait_ordered_range(inode
, start_pos
, num_written
);
1079 if ((file
->f_flags
& O_DSYNC
) || IS_SYNC(inode
)) {
1080 trans
= btrfs_start_transaction(root
, 1);
1081 ret
= btrfs_log_dentry_safe(trans
, root
,
1084 ret
= btrfs_sync_log(trans
, root
);
1086 btrfs_end_transaction(trans
, root
);
1088 btrfs_commit_transaction(trans
, root
);
1089 } else if (ret
!= BTRFS_NO_LOG_SYNC
) {
1090 btrfs_commit_transaction(trans
, root
);
1092 btrfs_end_transaction(trans
, root
);
1095 if (file
->f_flags
& O_DIRECT
) {
1096 invalidate_mapping_pages(inode
->i_mapping
,
1097 start_pos
>> PAGE_CACHE_SHIFT
,
1098 (start_pos
+ num_written
- 1) >> PAGE_CACHE_SHIFT
);
1101 current
->backing_dev_info
= NULL
;
1102 return num_written
? num_written
: err
;
1105 int btrfs_release_file(struct inode
*inode
, struct file
*filp
)
1108 * ordered_data_close is set by settattr when we are about to truncate
1109 * a file from a non-zero size to a zero size. This tries to
1110 * flush down new bytes that may have been written if the
1111 * application were using truncate to replace a file in place.
1113 if (BTRFS_I(inode
)->ordered_data_close
) {
1114 BTRFS_I(inode
)->ordered_data_close
= 0;
1115 btrfs_add_ordered_operation(NULL
, BTRFS_I(inode
)->root
, inode
);
1116 if (inode
->i_size
> BTRFS_ORDERED_OPERATIONS_FLUSH_LIMIT
)
1117 filemap_flush(inode
->i_mapping
);
1119 if (filp
->private_data
)
1120 btrfs_ioctl_trans_end(filp
);
1125 * fsync call for both files and directories. This logs the inode into
1126 * the tree log instead of forcing full commits whenever possible.
1128 * It needs to call filemap_fdatawait so that all ordered extent updates are
1129 * in the metadata btree are up to date for copying to the log.
1131 * It drops the inode mutex before doing the tree log commit. This is an
1132 * important optimization for directories because holding the mutex prevents
1133 * new operations on the dir while we write to disk.
1135 int btrfs_sync_file(struct file
*file
, struct dentry
*dentry
, int datasync
)
1137 struct inode
*inode
= dentry
->d_inode
;
1138 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
1140 struct btrfs_trans_handle
*trans
;
1143 /* we wait first, since the writeback may change the inode */
1145 /* the VFS called filemap_fdatawrite for us */
1146 btrfs_wait_ordered_range(inode
, 0, (u64
)-1);
1150 * check the transaction that last modified this inode
1151 * and see if its already been committed
1153 if (!BTRFS_I(inode
)->last_trans
)
1157 * if the last transaction that changed this file was before
1158 * the current transaction, we can bail out now without any
1161 mutex_lock(&root
->fs_info
->trans_mutex
);
1162 if (BTRFS_I(inode
)->last_trans
<=
1163 root
->fs_info
->last_trans_committed
) {
1164 BTRFS_I(inode
)->last_trans
= 0;
1165 mutex_unlock(&root
->fs_info
->trans_mutex
);
1168 mutex_unlock(&root
->fs_info
->trans_mutex
);
1171 * ok we haven't committed the transaction yet, lets do a commit
1173 if (file
&& file
->private_data
)
1174 btrfs_ioctl_trans_end(file
);
1176 trans
= btrfs_start_transaction(root
, 1);
1182 ret
= btrfs_log_dentry_safe(trans
, root
, dentry
);
1186 /* we've logged all the items and now have a consistent
1187 * version of the file in the log. It is possible that
1188 * someone will come in and modify the file, but that's
1189 * fine because the log is consistent on disk, and we
1190 * have references to all of the file's extents
1192 * It is possible that someone will come in and log the
1193 * file again, but that will end up using the synchronization
1194 * inside btrfs_sync_log to keep things safe.
1196 mutex_unlock(&dentry
->d_inode
->i_mutex
);
1198 if (ret
!= BTRFS_NO_LOG_SYNC
) {
1200 ret
= btrfs_commit_transaction(trans
, root
);
1202 ret
= btrfs_sync_log(trans
, root
);
1204 ret
= btrfs_end_transaction(trans
, root
);
1206 ret
= btrfs_commit_transaction(trans
, root
);
1209 ret
= btrfs_end_transaction(trans
, root
);
1211 mutex_lock(&dentry
->d_inode
->i_mutex
);
1213 return ret
> 0 ? EIO
: ret
;
1216 static const struct vm_operations_struct btrfs_file_vm_ops
= {
1217 .fault
= filemap_fault
,
1218 .page_mkwrite
= btrfs_page_mkwrite
,
1221 static int btrfs_file_mmap(struct file
*filp
, struct vm_area_struct
*vma
)
1223 vma
->vm_ops
= &btrfs_file_vm_ops
;
1224 file_accessed(filp
);
1228 const struct file_operations btrfs_file_operations
= {
1229 .llseek
= generic_file_llseek
,
1230 .read
= do_sync_read
,
1231 .aio_read
= generic_file_aio_read
,
1232 .splice_read
= generic_file_splice_read
,
1233 .write
= btrfs_file_write
,
1234 .mmap
= btrfs_file_mmap
,
1235 .open
= generic_file_open
,
1236 .release
= btrfs_release_file
,
1237 .fsync
= btrfs_sync_file
,
1238 .unlocked_ioctl
= btrfs_ioctl
,
1239 #ifdef CONFIG_COMPAT
1240 .compat_ioctl
= btrfs_ioctl
,