[ALSA] via82xx - Add a dxs entry for ECS K8T890-A
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / net / socket.c
blob23898f45f7137d2da995ebe8c89784e1deefaf13
1 /*
2 * NET An implementation of the SOCKET network access protocol.
4 * Version: @(#)socket.c 1.1.93 18/02/95
6 * Authors: Orest Zborowski, <obz@Kodak.COM>
7 * Ross Biro
8 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10 * Fixes:
11 * Anonymous : NOTSOCK/BADF cleanup. Error fix in
12 * shutdown()
13 * Alan Cox : verify_area() fixes
14 * Alan Cox : Removed DDI
15 * Jonathan Kamens : SOCK_DGRAM reconnect bug
16 * Alan Cox : Moved a load of checks to the very
17 * top level.
18 * Alan Cox : Move address structures to/from user
19 * mode above the protocol layers.
20 * Rob Janssen : Allow 0 length sends.
21 * Alan Cox : Asynchronous I/O support (cribbed from the
22 * tty drivers).
23 * Niibe Yutaka : Asynchronous I/O for writes (4.4BSD style)
24 * Jeff Uphoff : Made max number of sockets command-line
25 * configurable.
26 * Matti Aarnio : Made the number of sockets dynamic,
27 * to be allocated when needed, and mr.
28 * Uphoff's max is used as max to be
29 * allowed to allocate.
30 * Linus : Argh. removed all the socket allocation
31 * altogether: it's in the inode now.
32 * Alan Cox : Made sock_alloc()/sock_release() public
33 * for NetROM and future kernel nfsd type
34 * stuff.
35 * Alan Cox : sendmsg/recvmsg basics.
36 * Tom Dyas : Export net symbols.
37 * Marcin Dalecki : Fixed problems with CONFIG_NET="n".
38 * Alan Cox : Added thread locking to sys_* calls
39 * for sockets. May have errors at the
40 * moment.
41 * Kevin Buhr : Fixed the dumb errors in the above.
42 * Andi Kleen : Some small cleanups, optimizations,
43 * and fixed a copy_from_user() bug.
44 * Tigran Aivazian : sys_send(args) calls sys_sendto(args, NULL, 0)
45 * Tigran Aivazian : Made listen(2) backlog sanity checks
46 * protocol-independent
49 * This program is free software; you can redistribute it and/or
50 * modify it under the terms of the GNU General Public License
51 * as published by the Free Software Foundation; either version
52 * 2 of the License, or (at your option) any later version.
55 * This module is effectively the top level interface to the BSD socket
56 * paradigm.
58 * Based upon Swansea University Computer Society NET3.039
61 #include <linux/config.h>
62 #include <linux/mm.h>
63 #include <linux/smp_lock.h>
64 #include <linux/socket.h>
65 #include <linux/file.h>
66 #include <linux/net.h>
67 #include <linux/interrupt.h>
68 #include <linux/netdevice.h>
69 #include <linux/proc_fs.h>
70 #include <linux/seq_file.h>
71 #include <linux/mutex.h>
72 #include <linux/wanrouter.h>
73 #include <linux/if_bridge.h>
74 #include <linux/if_frad.h>
75 #include <linux/if_vlan.h>
76 #include <linux/init.h>
77 #include <linux/poll.h>
78 #include <linux/cache.h>
79 #include <linux/module.h>
80 #include <linux/highmem.h>
81 #include <linux/divert.h>
82 #include <linux/mount.h>
83 #include <linux/security.h>
84 #include <linux/syscalls.h>
85 #include <linux/compat.h>
86 #include <linux/kmod.h>
87 #include <linux/audit.h>
88 #include <linux/wireless.h>
90 #include <asm/uaccess.h>
91 #include <asm/unistd.h>
93 #include <net/compat.h>
95 #include <net/sock.h>
96 #include <linux/netfilter.h>
98 static int sock_no_open(struct inode *irrelevant, struct file *dontcare);
99 static ssize_t sock_aio_read(struct kiocb *iocb, char __user *buf,
100 size_t size, loff_t pos);
101 static ssize_t sock_aio_write(struct kiocb *iocb, const char __user *buf,
102 size_t size, loff_t pos);
103 static int sock_mmap(struct file *file, struct vm_area_struct * vma);
105 static int sock_close(struct inode *inode, struct file *file);
106 static unsigned int sock_poll(struct file *file,
107 struct poll_table_struct *wait);
108 static long sock_ioctl(struct file *file,
109 unsigned int cmd, unsigned long arg);
110 #ifdef CONFIG_COMPAT
111 static long compat_sock_ioctl(struct file *file,
112 unsigned int cmd, unsigned long arg);
113 #endif
114 static int sock_fasync(int fd, struct file *filp, int on);
115 static ssize_t sock_readv(struct file *file, const struct iovec *vector,
116 unsigned long count, loff_t *ppos);
117 static ssize_t sock_writev(struct file *file, const struct iovec *vector,
118 unsigned long count, loff_t *ppos);
119 static ssize_t sock_sendpage(struct file *file, struct page *page,
120 int offset, size_t size, loff_t *ppos, int more);
123 * Socket files have a set of 'special' operations as well as the generic file ones. These don't appear
124 * in the operation structures but are done directly via the socketcall() multiplexor.
127 static struct file_operations socket_file_ops = {
128 .owner = THIS_MODULE,
129 .llseek = no_llseek,
130 .aio_read = sock_aio_read,
131 .aio_write = sock_aio_write,
132 .poll = sock_poll,
133 .unlocked_ioctl = sock_ioctl,
134 #ifdef CONFIG_COMPAT
135 .compat_ioctl = compat_sock_ioctl,
136 #endif
137 .mmap = sock_mmap,
138 .open = sock_no_open, /* special open code to disallow open via /proc */
139 .release = sock_close,
140 .fasync = sock_fasync,
141 .readv = sock_readv,
142 .writev = sock_writev,
143 .sendpage = sock_sendpage,
144 .splice_write = generic_splice_sendpage,
148 * The protocol list. Each protocol is registered in here.
151 static struct net_proto_family *net_families[NPROTO];
153 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
154 static atomic_t net_family_lockct = ATOMIC_INIT(0);
155 static DEFINE_SPINLOCK(net_family_lock);
157 /* The strategy is: modifications net_family vector are short, do not
158 sleep and veeery rare, but read access should be free of any exclusive
159 locks.
162 static void net_family_write_lock(void)
164 spin_lock(&net_family_lock);
165 while (atomic_read(&net_family_lockct) != 0) {
166 spin_unlock(&net_family_lock);
168 yield();
170 spin_lock(&net_family_lock);
174 static __inline__ void net_family_write_unlock(void)
176 spin_unlock(&net_family_lock);
179 static __inline__ void net_family_read_lock(void)
181 atomic_inc(&net_family_lockct);
182 spin_unlock_wait(&net_family_lock);
185 static __inline__ void net_family_read_unlock(void)
187 atomic_dec(&net_family_lockct);
190 #else
191 #define net_family_write_lock() do { } while(0)
192 #define net_family_write_unlock() do { } while(0)
193 #define net_family_read_lock() do { } while(0)
194 #define net_family_read_unlock() do { } while(0)
195 #endif
199 * Statistics counters of the socket lists
202 static DEFINE_PER_CPU(int, sockets_in_use) = 0;
205 * Support routines. Move socket addresses back and forth across the kernel/user
206 * divide and look after the messy bits.
209 #define MAX_SOCK_ADDR 128 /* 108 for Unix domain -
210 16 for IP, 16 for IPX,
211 24 for IPv6,
212 about 80 for AX.25
213 must be at least one bigger than
214 the AF_UNIX size (see net/unix/af_unix.c
215 :unix_mkname()).
219 * move_addr_to_kernel - copy a socket address into kernel space
220 * @uaddr: Address in user space
221 * @kaddr: Address in kernel space
222 * @ulen: Length in user space
224 * The address is copied into kernel space. If the provided address is
225 * too long an error code of -EINVAL is returned. If the copy gives
226 * invalid addresses -EFAULT is returned. On a success 0 is returned.
229 int move_addr_to_kernel(void __user *uaddr, int ulen, void *kaddr)
231 if(ulen<0||ulen>MAX_SOCK_ADDR)
232 return -EINVAL;
233 if(ulen==0)
234 return 0;
235 if(copy_from_user(kaddr,uaddr,ulen))
236 return -EFAULT;
237 return audit_sockaddr(ulen, kaddr);
241 * move_addr_to_user - copy an address to user space
242 * @kaddr: kernel space address
243 * @klen: length of address in kernel
244 * @uaddr: user space address
245 * @ulen: pointer to user length field
247 * The value pointed to by ulen on entry is the buffer length available.
248 * This is overwritten with the buffer space used. -EINVAL is returned
249 * if an overlong buffer is specified or a negative buffer size. -EFAULT
250 * is returned if either the buffer or the length field are not
251 * accessible.
252 * After copying the data up to the limit the user specifies, the true
253 * length of the data is written over the length limit the user
254 * specified. Zero is returned for a success.
257 int move_addr_to_user(void *kaddr, int klen, void __user *uaddr, int __user *ulen)
259 int err;
260 int len;
262 if((err=get_user(len, ulen)))
263 return err;
264 if(len>klen)
265 len=klen;
266 if(len<0 || len> MAX_SOCK_ADDR)
267 return -EINVAL;
268 if(len)
270 if(copy_to_user(uaddr,kaddr,len))
271 return -EFAULT;
274 * "fromlen shall refer to the value before truncation.."
275 * 1003.1g
277 return __put_user(klen, ulen);
280 #define SOCKFS_MAGIC 0x534F434B
282 static kmem_cache_t * sock_inode_cachep __read_mostly;
284 static struct inode *sock_alloc_inode(struct super_block *sb)
286 struct socket_alloc *ei;
287 ei = (struct socket_alloc *)kmem_cache_alloc(sock_inode_cachep, SLAB_KERNEL);
288 if (!ei)
289 return NULL;
290 init_waitqueue_head(&ei->socket.wait);
292 ei->socket.fasync_list = NULL;
293 ei->socket.state = SS_UNCONNECTED;
294 ei->socket.flags = 0;
295 ei->socket.ops = NULL;
296 ei->socket.sk = NULL;
297 ei->socket.file = NULL;
298 ei->socket.flags = 0;
300 return &ei->vfs_inode;
303 static void sock_destroy_inode(struct inode *inode)
305 kmem_cache_free(sock_inode_cachep,
306 container_of(inode, struct socket_alloc, vfs_inode));
309 static void init_once(void * foo, kmem_cache_t * cachep, unsigned long flags)
311 struct socket_alloc *ei = (struct socket_alloc *) foo;
313 if ((flags & (SLAB_CTOR_VERIFY|SLAB_CTOR_CONSTRUCTOR)) ==
314 SLAB_CTOR_CONSTRUCTOR)
315 inode_init_once(&ei->vfs_inode);
318 static int init_inodecache(void)
320 sock_inode_cachep = kmem_cache_create("sock_inode_cache",
321 sizeof(struct socket_alloc),
322 0, (SLAB_HWCACHE_ALIGN|SLAB_RECLAIM_ACCOUNT|
323 SLAB_MEM_SPREAD),
324 init_once, NULL);
325 if (sock_inode_cachep == NULL)
326 return -ENOMEM;
327 return 0;
330 static struct super_operations sockfs_ops = {
331 .alloc_inode = sock_alloc_inode,
332 .destroy_inode =sock_destroy_inode,
333 .statfs = simple_statfs,
336 static struct super_block *sockfs_get_sb(struct file_system_type *fs_type,
337 int flags, const char *dev_name, void *data)
339 return get_sb_pseudo(fs_type, "socket:", &sockfs_ops, SOCKFS_MAGIC);
342 static struct vfsmount *sock_mnt __read_mostly;
344 static struct file_system_type sock_fs_type = {
345 .name = "sockfs",
346 .get_sb = sockfs_get_sb,
347 .kill_sb = kill_anon_super,
349 static int sockfs_delete_dentry(struct dentry *dentry)
351 return 1;
353 static struct dentry_operations sockfs_dentry_operations = {
354 .d_delete = sockfs_delete_dentry,
358 * Obtains the first available file descriptor and sets it up for use.
360 * These functions create file structures and maps them to fd space
361 * of the current process. On success it returns file descriptor
362 * and file struct implicitly stored in sock->file.
363 * Note that another thread may close file descriptor before we return
364 * from this function. We use the fact that now we do not refer
365 * to socket after mapping. If one day we will need it, this
366 * function will increment ref. count on file by 1.
368 * In any case returned fd MAY BE not valid!
369 * This race condition is unavoidable
370 * with shared fd spaces, we cannot solve it inside kernel,
371 * but we take care of internal coherence yet.
374 static int sock_alloc_fd(struct file **filep)
376 int fd;
378 fd = get_unused_fd();
379 if (likely(fd >= 0)) {
380 struct file *file = get_empty_filp();
382 *filep = file;
383 if (unlikely(!file)) {
384 put_unused_fd(fd);
385 return -ENFILE;
387 } else
388 *filep = NULL;
389 return fd;
392 static int sock_attach_fd(struct socket *sock, struct file *file)
394 struct qstr this;
395 char name[32];
397 this.len = sprintf(name, "[%lu]", SOCK_INODE(sock)->i_ino);
398 this.name = name;
399 this.hash = SOCK_INODE(sock)->i_ino;
401 file->f_dentry = d_alloc(sock_mnt->mnt_sb->s_root, &this);
402 if (unlikely(!file->f_dentry))
403 return -ENOMEM;
405 file->f_dentry->d_op = &sockfs_dentry_operations;
406 d_add(file->f_dentry, SOCK_INODE(sock));
407 file->f_vfsmnt = mntget(sock_mnt);
408 file->f_mapping = file->f_dentry->d_inode->i_mapping;
410 sock->file = file;
411 file->f_op = SOCK_INODE(sock)->i_fop = &socket_file_ops;
412 file->f_mode = FMODE_READ | FMODE_WRITE;
413 file->f_flags = O_RDWR;
414 file->f_pos = 0;
415 file->private_data = sock;
417 return 0;
420 int sock_map_fd(struct socket *sock)
422 struct file *newfile;
423 int fd = sock_alloc_fd(&newfile);
425 if (likely(fd >= 0)) {
426 int err = sock_attach_fd(sock, newfile);
428 if (unlikely(err < 0)) {
429 put_filp(newfile);
430 put_unused_fd(fd);
431 return err;
433 fd_install(fd, newfile);
435 return fd;
438 static struct socket *sock_from_file(struct file *file, int *err)
440 struct inode *inode;
441 struct socket *sock;
443 if (file->f_op == &socket_file_ops)
444 return file->private_data; /* set in sock_map_fd */
446 inode = file->f_dentry->d_inode;
447 if (!S_ISSOCK(inode->i_mode)) {
448 *err = -ENOTSOCK;
449 return NULL;
452 sock = SOCKET_I(inode);
453 if (sock->file != file) {
454 printk(KERN_ERR "socki_lookup: socket file changed!\n");
455 sock->file = file;
457 return sock;
461 * sockfd_lookup - Go from a file number to its socket slot
462 * @fd: file handle
463 * @err: pointer to an error code return
465 * The file handle passed in is locked and the socket it is bound
466 * too is returned. If an error occurs the err pointer is overwritten
467 * with a negative errno code and NULL is returned. The function checks
468 * for both invalid handles and passing a handle which is not a socket.
470 * On a success the socket object pointer is returned.
473 struct socket *sockfd_lookup(int fd, int *err)
475 struct file *file;
476 struct socket *sock;
478 if (!(file = fget(fd))) {
479 *err = -EBADF;
480 return NULL;
482 sock = sock_from_file(file, err);
483 if (!sock)
484 fput(file);
485 return sock;
488 static struct socket *sockfd_lookup_light(int fd, int *err, int *fput_needed)
490 struct file *file;
491 struct socket *sock;
493 file = fget_light(fd, fput_needed);
494 if (file) {
495 sock = sock_from_file(file, err);
496 if (sock)
497 return sock;
498 fput_light(file, *fput_needed);
500 return NULL;
504 * sock_alloc - allocate a socket
506 * Allocate a new inode and socket object. The two are bound together
507 * and initialised. The socket is then returned. If we are out of inodes
508 * NULL is returned.
511 static struct socket *sock_alloc(void)
513 struct inode * inode;
514 struct socket * sock;
516 inode = new_inode(sock_mnt->mnt_sb);
517 if (!inode)
518 return NULL;
520 sock = SOCKET_I(inode);
522 inode->i_mode = S_IFSOCK|S_IRWXUGO;
523 inode->i_uid = current->fsuid;
524 inode->i_gid = current->fsgid;
526 get_cpu_var(sockets_in_use)++;
527 put_cpu_var(sockets_in_use);
528 return sock;
532 * In theory you can't get an open on this inode, but /proc provides
533 * a back door. Remember to keep it shut otherwise you'll let the
534 * creepy crawlies in.
537 static int sock_no_open(struct inode *irrelevant, struct file *dontcare)
539 return -ENXIO;
542 const struct file_operations bad_sock_fops = {
543 .owner = THIS_MODULE,
544 .open = sock_no_open,
548 * sock_release - close a socket
549 * @sock: socket to close
551 * The socket is released from the protocol stack if it has a release
552 * callback, and the inode is then released if the socket is bound to
553 * an inode not a file.
556 void sock_release(struct socket *sock)
558 if (sock->ops) {
559 struct module *owner = sock->ops->owner;
561 sock->ops->release(sock);
562 sock->ops = NULL;
563 module_put(owner);
566 if (sock->fasync_list)
567 printk(KERN_ERR "sock_release: fasync list not empty!\n");
569 get_cpu_var(sockets_in_use)--;
570 put_cpu_var(sockets_in_use);
571 if (!sock->file) {
572 iput(SOCK_INODE(sock));
573 return;
575 sock->file=NULL;
578 static inline int __sock_sendmsg(struct kiocb *iocb, struct socket *sock,
579 struct msghdr *msg, size_t size)
581 struct sock_iocb *si = kiocb_to_siocb(iocb);
582 int err;
584 si->sock = sock;
585 si->scm = NULL;
586 si->msg = msg;
587 si->size = size;
589 err = security_socket_sendmsg(sock, msg, size);
590 if (err)
591 return err;
593 return sock->ops->sendmsg(iocb, sock, msg, size);
596 int sock_sendmsg(struct socket *sock, struct msghdr *msg, size_t size)
598 struct kiocb iocb;
599 struct sock_iocb siocb;
600 int ret;
602 init_sync_kiocb(&iocb, NULL);
603 iocb.private = &siocb;
604 ret = __sock_sendmsg(&iocb, sock, msg, size);
605 if (-EIOCBQUEUED == ret)
606 ret = wait_on_sync_kiocb(&iocb);
607 return ret;
610 int kernel_sendmsg(struct socket *sock, struct msghdr *msg,
611 struct kvec *vec, size_t num, size_t size)
613 mm_segment_t oldfs = get_fs();
614 int result;
616 set_fs(KERNEL_DS);
618 * the following is safe, since for compiler definitions of kvec and
619 * iovec are identical, yielding the same in-core layout and alignment
621 msg->msg_iov = (struct iovec *)vec,
622 msg->msg_iovlen = num;
623 result = sock_sendmsg(sock, msg, size);
624 set_fs(oldfs);
625 return result;
628 static inline int __sock_recvmsg(struct kiocb *iocb, struct socket *sock,
629 struct msghdr *msg, size_t size, int flags)
631 int err;
632 struct sock_iocb *si = kiocb_to_siocb(iocb);
634 si->sock = sock;
635 si->scm = NULL;
636 si->msg = msg;
637 si->size = size;
638 si->flags = flags;
640 err = security_socket_recvmsg(sock, msg, size, flags);
641 if (err)
642 return err;
644 return sock->ops->recvmsg(iocb, sock, msg, size, flags);
647 int sock_recvmsg(struct socket *sock, struct msghdr *msg,
648 size_t size, int flags)
650 struct kiocb iocb;
651 struct sock_iocb siocb;
652 int ret;
654 init_sync_kiocb(&iocb, NULL);
655 iocb.private = &siocb;
656 ret = __sock_recvmsg(&iocb, sock, msg, size, flags);
657 if (-EIOCBQUEUED == ret)
658 ret = wait_on_sync_kiocb(&iocb);
659 return ret;
662 int kernel_recvmsg(struct socket *sock, struct msghdr *msg,
663 struct kvec *vec, size_t num,
664 size_t size, int flags)
666 mm_segment_t oldfs = get_fs();
667 int result;
669 set_fs(KERNEL_DS);
671 * the following is safe, since for compiler definitions of kvec and
672 * iovec are identical, yielding the same in-core layout and alignment
674 msg->msg_iov = (struct iovec *)vec,
675 msg->msg_iovlen = num;
676 result = sock_recvmsg(sock, msg, size, flags);
677 set_fs(oldfs);
678 return result;
681 static void sock_aio_dtor(struct kiocb *iocb)
683 kfree(iocb->private);
686 static ssize_t sock_sendpage(struct file *file, struct page *page,
687 int offset, size_t size, loff_t *ppos, int more)
689 struct socket *sock;
690 int flags;
692 sock = file->private_data;
694 flags = !(file->f_flags & O_NONBLOCK) ? 0 : MSG_DONTWAIT;
695 if (more)
696 flags |= MSG_MORE;
698 return sock->ops->sendpage(sock, page, offset, size, flags);
701 static struct sock_iocb *alloc_sock_iocb(struct kiocb *iocb,
702 char __user *ubuf, size_t size, struct sock_iocb *siocb)
704 if (!is_sync_kiocb(iocb)) {
705 siocb = kmalloc(sizeof(*siocb), GFP_KERNEL);
706 if (!siocb)
707 return NULL;
708 iocb->ki_dtor = sock_aio_dtor;
711 siocb->kiocb = iocb;
712 siocb->async_iov.iov_base = ubuf;
713 siocb->async_iov.iov_len = size;
715 iocb->private = siocb;
716 return siocb;
719 static ssize_t do_sock_read(struct msghdr *msg, struct kiocb *iocb,
720 struct file *file, struct iovec *iov, unsigned long nr_segs)
722 struct socket *sock = file->private_data;
723 size_t size = 0;
724 int i;
726 for (i = 0 ; i < nr_segs ; i++)
727 size += iov[i].iov_len;
729 msg->msg_name = NULL;
730 msg->msg_namelen = 0;
731 msg->msg_control = NULL;
732 msg->msg_controllen = 0;
733 msg->msg_iov = (struct iovec *) iov;
734 msg->msg_iovlen = nr_segs;
735 msg->msg_flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0;
737 return __sock_recvmsg(iocb, sock, msg, size, msg->msg_flags);
740 static ssize_t sock_readv(struct file *file, const struct iovec *iov,
741 unsigned long nr_segs, loff_t *ppos)
743 struct kiocb iocb;
744 struct sock_iocb siocb;
745 struct msghdr msg;
746 int ret;
748 init_sync_kiocb(&iocb, NULL);
749 iocb.private = &siocb;
751 ret = do_sock_read(&msg, &iocb, file, (struct iovec *)iov, nr_segs);
752 if (-EIOCBQUEUED == ret)
753 ret = wait_on_sync_kiocb(&iocb);
754 return ret;
757 static ssize_t sock_aio_read(struct kiocb *iocb, char __user *ubuf,
758 size_t count, loff_t pos)
760 struct sock_iocb siocb, *x;
762 if (pos != 0)
763 return -ESPIPE;
764 if (count == 0) /* Match SYS5 behaviour */
765 return 0;
767 x = alloc_sock_iocb(iocb, ubuf, count, &siocb);
768 if (!x)
769 return -ENOMEM;
770 return do_sock_read(&x->async_msg, iocb, iocb->ki_filp,
771 &x->async_iov, 1);
774 static ssize_t do_sock_write(struct msghdr *msg, struct kiocb *iocb,
775 struct file *file, struct iovec *iov, unsigned long nr_segs)
777 struct socket *sock = file->private_data;
778 size_t size = 0;
779 int i;
781 for (i = 0 ; i < nr_segs ; i++)
782 size += iov[i].iov_len;
784 msg->msg_name = NULL;
785 msg->msg_namelen = 0;
786 msg->msg_control = NULL;
787 msg->msg_controllen = 0;
788 msg->msg_iov = (struct iovec *) iov;
789 msg->msg_iovlen = nr_segs;
790 msg->msg_flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0;
791 if (sock->type == SOCK_SEQPACKET)
792 msg->msg_flags |= MSG_EOR;
794 return __sock_sendmsg(iocb, sock, msg, size);
797 static ssize_t sock_writev(struct file *file, const struct iovec *iov,
798 unsigned long nr_segs, loff_t *ppos)
800 struct msghdr msg;
801 struct kiocb iocb;
802 struct sock_iocb siocb;
803 int ret;
805 init_sync_kiocb(&iocb, NULL);
806 iocb.private = &siocb;
808 ret = do_sock_write(&msg, &iocb, file, (struct iovec *)iov, nr_segs);
809 if (-EIOCBQUEUED == ret)
810 ret = wait_on_sync_kiocb(&iocb);
811 return ret;
814 static ssize_t sock_aio_write(struct kiocb *iocb, const char __user *ubuf,
815 size_t count, loff_t pos)
817 struct sock_iocb siocb, *x;
819 if (pos != 0)
820 return -ESPIPE;
821 if (count == 0) /* Match SYS5 behaviour */
822 return 0;
824 x = alloc_sock_iocb(iocb, (void __user *)ubuf, count, &siocb);
825 if (!x)
826 return -ENOMEM;
828 return do_sock_write(&x->async_msg, iocb, iocb->ki_filp,
829 &x->async_iov, 1);
834 * Atomic setting of ioctl hooks to avoid race
835 * with module unload.
838 static DEFINE_MUTEX(br_ioctl_mutex);
839 static int (*br_ioctl_hook)(unsigned int cmd, void __user *arg) = NULL;
841 void brioctl_set(int (*hook)(unsigned int, void __user *))
843 mutex_lock(&br_ioctl_mutex);
844 br_ioctl_hook = hook;
845 mutex_unlock(&br_ioctl_mutex);
847 EXPORT_SYMBOL(brioctl_set);
849 static DEFINE_MUTEX(vlan_ioctl_mutex);
850 static int (*vlan_ioctl_hook)(void __user *arg);
852 void vlan_ioctl_set(int (*hook)(void __user *))
854 mutex_lock(&vlan_ioctl_mutex);
855 vlan_ioctl_hook = hook;
856 mutex_unlock(&vlan_ioctl_mutex);
858 EXPORT_SYMBOL(vlan_ioctl_set);
860 static DEFINE_MUTEX(dlci_ioctl_mutex);
861 static int (*dlci_ioctl_hook)(unsigned int, void __user *);
863 void dlci_ioctl_set(int (*hook)(unsigned int, void __user *))
865 mutex_lock(&dlci_ioctl_mutex);
866 dlci_ioctl_hook = hook;
867 mutex_unlock(&dlci_ioctl_mutex);
869 EXPORT_SYMBOL(dlci_ioctl_set);
872 * With an ioctl, arg may well be a user mode pointer, but we don't know
873 * what to do with it - that's up to the protocol still.
876 static long sock_ioctl(struct file *file, unsigned cmd, unsigned long arg)
878 struct socket *sock;
879 void __user *argp = (void __user *)arg;
880 int pid, err;
882 sock = file->private_data;
883 if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15)) {
884 err = dev_ioctl(cmd, argp);
885 } else
886 #ifdef CONFIG_WIRELESS_EXT
887 if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) {
888 err = dev_ioctl(cmd, argp);
889 } else
890 #endif /* CONFIG_WIRELESS_EXT */
891 switch (cmd) {
892 case FIOSETOWN:
893 case SIOCSPGRP:
894 err = -EFAULT;
895 if (get_user(pid, (int __user *)argp))
896 break;
897 err = f_setown(sock->file, pid, 1);
898 break;
899 case FIOGETOWN:
900 case SIOCGPGRP:
901 err = put_user(sock->file->f_owner.pid, (int __user *)argp);
902 break;
903 case SIOCGIFBR:
904 case SIOCSIFBR:
905 case SIOCBRADDBR:
906 case SIOCBRDELBR:
907 err = -ENOPKG;
908 if (!br_ioctl_hook)
909 request_module("bridge");
911 mutex_lock(&br_ioctl_mutex);
912 if (br_ioctl_hook)
913 err = br_ioctl_hook(cmd, argp);
914 mutex_unlock(&br_ioctl_mutex);
915 break;
916 case SIOCGIFVLAN:
917 case SIOCSIFVLAN:
918 err = -ENOPKG;
919 if (!vlan_ioctl_hook)
920 request_module("8021q");
922 mutex_lock(&vlan_ioctl_mutex);
923 if (vlan_ioctl_hook)
924 err = vlan_ioctl_hook(argp);
925 mutex_unlock(&vlan_ioctl_mutex);
926 break;
927 case SIOCGIFDIVERT:
928 case SIOCSIFDIVERT:
929 /* Convert this to call through a hook */
930 err = divert_ioctl(cmd, argp);
931 break;
932 case SIOCADDDLCI:
933 case SIOCDELDLCI:
934 err = -ENOPKG;
935 if (!dlci_ioctl_hook)
936 request_module("dlci");
938 if (dlci_ioctl_hook) {
939 mutex_lock(&dlci_ioctl_mutex);
940 err = dlci_ioctl_hook(cmd, argp);
941 mutex_unlock(&dlci_ioctl_mutex);
943 break;
944 default:
945 err = sock->ops->ioctl(sock, cmd, arg);
948 * If this ioctl is unknown try to hand it down
949 * to the NIC driver.
951 if (err == -ENOIOCTLCMD)
952 err = dev_ioctl(cmd, argp);
953 break;
955 return err;
958 int sock_create_lite(int family, int type, int protocol, struct socket **res)
960 int err;
961 struct socket *sock = NULL;
963 err = security_socket_create(family, type, protocol, 1);
964 if (err)
965 goto out;
967 sock = sock_alloc();
968 if (!sock) {
969 err = -ENOMEM;
970 goto out;
973 security_socket_post_create(sock, family, type, protocol, 1);
974 sock->type = type;
975 out:
976 *res = sock;
977 return err;
980 /* No kernel lock held - perfect */
981 static unsigned int sock_poll(struct file *file, poll_table * wait)
983 struct socket *sock;
986 * We can't return errors to poll, so it's either yes or no.
988 sock = file->private_data;
989 return sock->ops->poll(file, sock, wait);
992 static int sock_mmap(struct file * file, struct vm_area_struct * vma)
994 struct socket *sock = file->private_data;
996 return sock->ops->mmap(file, sock, vma);
999 static int sock_close(struct inode *inode, struct file *filp)
1002 * It was possible the inode is NULL we were
1003 * closing an unfinished socket.
1006 if (!inode)
1008 printk(KERN_DEBUG "sock_close: NULL inode\n");
1009 return 0;
1011 sock_fasync(-1, filp, 0);
1012 sock_release(SOCKET_I(inode));
1013 return 0;
1017 * Update the socket async list
1019 * Fasync_list locking strategy.
1021 * 1. fasync_list is modified only under process context socket lock
1022 * i.e. under semaphore.
1023 * 2. fasync_list is used under read_lock(&sk->sk_callback_lock)
1024 * or under socket lock.
1025 * 3. fasync_list can be used from softirq context, so that
1026 * modification under socket lock have to be enhanced with
1027 * write_lock_bh(&sk->sk_callback_lock).
1028 * --ANK (990710)
1031 static int sock_fasync(int fd, struct file *filp, int on)
1033 struct fasync_struct *fa, *fna=NULL, **prev;
1034 struct socket *sock;
1035 struct sock *sk;
1037 if (on)
1039 fna = kmalloc(sizeof(struct fasync_struct), GFP_KERNEL);
1040 if(fna==NULL)
1041 return -ENOMEM;
1044 sock = filp->private_data;
1046 if ((sk=sock->sk) == NULL) {
1047 kfree(fna);
1048 return -EINVAL;
1051 lock_sock(sk);
1053 prev=&(sock->fasync_list);
1055 for (fa=*prev; fa!=NULL; prev=&fa->fa_next,fa=*prev)
1056 if (fa->fa_file==filp)
1057 break;
1059 if(on)
1061 if(fa!=NULL)
1063 write_lock_bh(&sk->sk_callback_lock);
1064 fa->fa_fd=fd;
1065 write_unlock_bh(&sk->sk_callback_lock);
1067 kfree(fna);
1068 goto out;
1070 fna->fa_file=filp;
1071 fna->fa_fd=fd;
1072 fna->magic=FASYNC_MAGIC;
1073 fna->fa_next=sock->fasync_list;
1074 write_lock_bh(&sk->sk_callback_lock);
1075 sock->fasync_list=fna;
1076 write_unlock_bh(&sk->sk_callback_lock);
1078 else
1080 if (fa!=NULL)
1082 write_lock_bh(&sk->sk_callback_lock);
1083 *prev=fa->fa_next;
1084 write_unlock_bh(&sk->sk_callback_lock);
1085 kfree(fa);
1089 out:
1090 release_sock(sock->sk);
1091 return 0;
1094 /* This function may be called only under socket lock or callback_lock */
1096 int sock_wake_async(struct socket *sock, int how, int band)
1098 if (!sock || !sock->fasync_list)
1099 return -1;
1100 switch (how)
1102 case 1:
1104 if (test_bit(SOCK_ASYNC_WAITDATA, &sock->flags))
1105 break;
1106 goto call_kill;
1107 case 2:
1108 if (!test_and_clear_bit(SOCK_ASYNC_NOSPACE, &sock->flags))
1109 break;
1110 /* fall through */
1111 case 0:
1112 call_kill:
1113 __kill_fasync(sock->fasync_list, SIGIO, band);
1114 break;
1115 case 3:
1116 __kill_fasync(sock->fasync_list, SIGURG, band);
1118 return 0;
1121 static int __sock_create(int family, int type, int protocol, struct socket **res, int kern)
1123 int err;
1124 struct socket *sock;
1127 * Check protocol is in range
1129 if (family < 0 || family >= NPROTO)
1130 return -EAFNOSUPPORT;
1131 if (type < 0 || type >= SOCK_MAX)
1132 return -EINVAL;
1134 /* Compatibility.
1136 This uglymoron is moved from INET layer to here to avoid
1137 deadlock in module load.
1139 if (family == PF_INET && type == SOCK_PACKET) {
1140 static int warned;
1141 if (!warned) {
1142 warned = 1;
1143 printk(KERN_INFO "%s uses obsolete (PF_INET,SOCK_PACKET)\n", current->comm);
1145 family = PF_PACKET;
1148 err = security_socket_create(family, type, protocol, kern);
1149 if (err)
1150 return err;
1152 #if defined(CONFIG_KMOD)
1153 /* Attempt to load a protocol module if the find failed.
1155 * 12/09/1996 Marcin: But! this makes REALLY only sense, if the user
1156 * requested real, full-featured networking support upon configuration.
1157 * Otherwise module support will break!
1159 if (net_families[family]==NULL)
1161 request_module("net-pf-%d",family);
1163 #endif
1165 net_family_read_lock();
1166 if (net_families[family] == NULL) {
1167 err = -EAFNOSUPPORT;
1168 goto out;
1172 * Allocate the socket and allow the family to set things up. if
1173 * the protocol is 0, the family is instructed to select an appropriate
1174 * default.
1177 if (!(sock = sock_alloc())) {
1178 printk(KERN_WARNING "socket: no more sockets\n");
1179 err = -ENFILE; /* Not exactly a match, but its the
1180 closest posix thing */
1181 goto out;
1184 sock->type = type;
1187 * We will call the ->create function, that possibly is in a loadable
1188 * module, so we have to bump that loadable module refcnt first.
1190 err = -EAFNOSUPPORT;
1191 if (!try_module_get(net_families[family]->owner))
1192 goto out_release;
1194 if ((err = net_families[family]->create(sock, protocol)) < 0) {
1195 sock->ops = NULL;
1196 goto out_module_put;
1200 * Now to bump the refcnt of the [loadable] module that owns this
1201 * socket at sock_release time we decrement its refcnt.
1203 if (!try_module_get(sock->ops->owner)) {
1204 sock->ops = NULL;
1205 goto out_module_put;
1208 * Now that we're done with the ->create function, the [loadable]
1209 * module can have its refcnt decremented
1211 module_put(net_families[family]->owner);
1212 *res = sock;
1213 security_socket_post_create(sock, family, type, protocol, kern);
1215 out:
1216 net_family_read_unlock();
1217 return err;
1218 out_module_put:
1219 module_put(net_families[family]->owner);
1220 out_release:
1221 sock_release(sock);
1222 goto out;
1225 int sock_create(int family, int type, int protocol, struct socket **res)
1227 return __sock_create(family, type, protocol, res, 0);
1230 int sock_create_kern(int family, int type, int protocol, struct socket **res)
1232 return __sock_create(family, type, protocol, res, 1);
1235 asmlinkage long sys_socket(int family, int type, int protocol)
1237 int retval;
1238 struct socket *sock;
1240 retval = sock_create(family, type, protocol, &sock);
1241 if (retval < 0)
1242 goto out;
1244 retval = sock_map_fd(sock);
1245 if (retval < 0)
1246 goto out_release;
1248 out:
1249 /* It may be already another descriptor 8) Not kernel problem. */
1250 return retval;
1252 out_release:
1253 sock_release(sock);
1254 return retval;
1258 * Create a pair of connected sockets.
1261 asmlinkage long sys_socketpair(int family, int type, int protocol, int __user *usockvec)
1263 struct socket *sock1, *sock2;
1264 int fd1, fd2, err;
1267 * Obtain the first socket and check if the underlying protocol
1268 * supports the socketpair call.
1271 err = sock_create(family, type, protocol, &sock1);
1272 if (err < 0)
1273 goto out;
1275 err = sock_create(family, type, protocol, &sock2);
1276 if (err < 0)
1277 goto out_release_1;
1279 err = sock1->ops->socketpair(sock1, sock2);
1280 if (err < 0)
1281 goto out_release_both;
1283 fd1 = fd2 = -1;
1285 err = sock_map_fd(sock1);
1286 if (err < 0)
1287 goto out_release_both;
1288 fd1 = err;
1290 err = sock_map_fd(sock2);
1291 if (err < 0)
1292 goto out_close_1;
1293 fd2 = err;
1295 /* fd1 and fd2 may be already another descriptors.
1296 * Not kernel problem.
1299 err = put_user(fd1, &usockvec[0]);
1300 if (!err)
1301 err = put_user(fd2, &usockvec[1]);
1302 if (!err)
1303 return 0;
1305 sys_close(fd2);
1306 sys_close(fd1);
1307 return err;
1309 out_close_1:
1310 sock_release(sock2);
1311 sys_close(fd1);
1312 return err;
1314 out_release_both:
1315 sock_release(sock2);
1316 out_release_1:
1317 sock_release(sock1);
1318 out:
1319 return err;
1324 * Bind a name to a socket. Nothing much to do here since it's
1325 * the protocol's responsibility to handle the local address.
1327 * We move the socket address to kernel space before we call
1328 * the protocol layer (having also checked the address is ok).
1331 asmlinkage long sys_bind(int fd, struct sockaddr __user *umyaddr, int addrlen)
1333 struct socket *sock;
1334 char address[MAX_SOCK_ADDR];
1335 int err, fput_needed;
1337 if((sock = sockfd_lookup_light(fd, &err, &fput_needed))!=NULL)
1339 if((err=move_addr_to_kernel(umyaddr,addrlen,address))>=0) {
1340 err = security_socket_bind(sock, (struct sockaddr *)address, addrlen);
1341 if (!err)
1342 err = sock->ops->bind(sock,
1343 (struct sockaddr *)address, addrlen);
1345 fput_light(sock->file, fput_needed);
1347 return err;
1352 * Perform a listen. Basically, we allow the protocol to do anything
1353 * necessary for a listen, and if that works, we mark the socket as
1354 * ready for listening.
1357 int sysctl_somaxconn = SOMAXCONN;
1359 asmlinkage long sys_listen(int fd, int backlog)
1361 struct socket *sock;
1362 int err, fput_needed;
1364 if ((sock = sockfd_lookup_light(fd, &err, &fput_needed)) != NULL) {
1365 if ((unsigned) backlog > sysctl_somaxconn)
1366 backlog = sysctl_somaxconn;
1368 err = security_socket_listen(sock, backlog);
1369 if (!err)
1370 err = sock->ops->listen(sock, backlog);
1372 fput_light(sock->file, fput_needed);
1374 return err;
1379 * For accept, we attempt to create a new socket, set up the link
1380 * with the client, wake up the client, then return the new
1381 * connected fd. We collect the address of the connector in kernel
1382 * space and move it to user at the very end. This is unclean because
1383 * we open the socket then return an error.
1385 * 1003.1g adds the ability to recvmsg() to query connection pending
1386 * status to recvmsg. We need to add that support in a way thats
1387 * clean when we restucture accept also.
1390 asmlinkage long sys_accept(int fd, struct sockaddr __user *upeer_sockaddr, int __user *upeer_addrlen)
1392 struct socket *sock, *newsock;
1393 struct file *newfile;
1394 int err, len, newfd, fput_needed;
1395 char address[MAX_SOCK_ADDR];
1397 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1398 if (!sock)
1399 goto out;
1401 err = -ENFILE;
1402 if (!(newsock = sock_alloc()))
1403 goto out_put;
1405 newsock->type = sock->type;
1406 newsock->ops = sock->ops;
1409 * We don't need try_module_get here, as the listening socket (sock)
1410 * has the protocol module (sock->ops->owner) held.
1412 __module_get(newsock->ops->owner);
1414 newfd = sock_alloc_fd(&newfile);
1415 if (unlikely(newfd < 0)) {
1416 err = newfd;
1417 sock_release(newsock);
1418 goto out_put;
1421 err = sock_attach_fd(newsock, newfile);
1422 if (err < 0)
1423 goto out_fd;
1425 err = security_socket_accept(sock, newsock);
1426 if (err)
1427 goto out_fd;
1429 err = sock->ops->accept(sock, newsock, sock->file->f_flags);
1430 if (err < 0)
1431 goto out_fd;
1433 if (upeer_sockaddr) {
1434 if(newsock->ops->getname(newsock, (struct sockaddr *)address, &len, 2)<0) {
1435 err = -ECONNABORTED;
1436 goto out_fd;
1438 err = move_addr_to_user(address, len, upeer_sockaddr, upeer_addrlen);
1439 if (err < 0)
1440 goto out_fd;
1443 /* File flags are not inherited via accept() unlike another OSes. */
1445 fd_install(newfd, newfile);
1446 err = newfd;
1448 security_socket_post_accept(sock, newsock);
1450 out_put:
1451 fput_light(sock->file, fput_needed);
1452 out:
1453 return err;
1454 out_fd:
1455 fput(newfile);
1456 put_unused_fd(newfd);
1457 goto out_put;
1462 * Attempt to connect to a socket with the server address. The address
1463 * is in user space so we verify it is OK and move it to kernel space.
1465 * For 1003.1g we need to add clean support for a bind to AF_UNSPEC to
1466 * break bindings
1468 * NOTE: 1003.1g draft 6.3 is broken with respect to AX.25/NetROM and
1469 * other SEQPACKET protocols that take time to connect() as it doesn't
1470 * include the -EINPROGRESS status for such sockets.
1473 asmlinkage long sys_connect(int fd, struct sockaddr __user *uservaddr, int addrlen)
1475 struct socket *sock;
1476 char address[MAX_SOCK_ADDR];
1477 int err, fput_needed;
1479 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1480 if (!sock)
1481 goto out;
1482 err = move_addr_to_kernel(uservaddr, addrlen, address);
1483 if (err < 0)
1484 goto out_put;
1486 err = security_socket_connect(sock, (struct sockaddr *)address, addrlen);
1487 if (err)
1488 goto out_put;
1490 err = sock->ops->connect(sock, (struct sockaddr *) address, addrlen,
1491 sock->file->f_flags);
1492 out_put:
1493 fput_light(sock->file, fput_needed);
1494 out:
1495 return err;
1499 * Get the local address ('name') of a socket object. Move the obtained
1500 * name to user space.
1503 asmlinkage long sys_getsockname(int fd, struct sockaddr __user *usockaddr, int __user *usockaddr_len)
1505 struct socket *sock;
1506 char address[MAX_SOCK_ADDR];
1507 int len, err, fput_needed;
1509 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1510 if (!sock)
1511 goto out;
1513 err = security_socket_getsockname(sock);
1514 if (err)
1515 goto out_put;
1517 err = sock->ops->getname(sock, (struct sockaddr *)address, &len, 0);
1518 if (err)
1519 goto out_put;
1520 err = move_addr_to_user(address, len, usockaddr, usockaddr_len);
1522 out_put:
1523 fput_light(sock->file, fput_needed);
1524 out:
1525 return err;
1529 * Get the remote address ('name') of a socket object. Move the obtained
1530 * name to user space.
1533 asmlinkage long sys_getpeername(int fd, struct sockaddr __user *usockaddr, int __user *usockaddr_len)
1535 struct socket *sock;
1536 char address[MAX_SOCK_ADDR];
1537 int len, err, fput_needed;
1539 if ((sock = sockfd_lookup_light(fd, &err, &fput_needed)) != NULL) {
1540 err = security_socket_getpeername(sock);
1541 if (err) {
1542 fput_light(sock->file, fput_needed);
1543 return err;
1546 err = sock->ops->getname(sock, (struct sockaddr *)address, &len, 1);
1547 if (!err)
1548 err=move_addr_to_user(address,len, usockaddr, usockaddr_len);
1549 fput_light(sock->file, fput_needed);
1551 return err;
1555 * Send a datagram to a given address. We move the address into kernel
1556 * space and check the user space data area is readable before invoking
1557 * the protocol.
1560 asmlinkage long sys_sendto(int fd, void __user * buff, size_t len, unsigned flags,
1561 struct sockaddr __user *addr, int addr_len)
1563 struct socket *sock;
1564 char address[MAX_SOCK_ADDR];
1565 int err;
1566 struct msghdr msg;
1567 struct iovec iov;
1568 int fput_needed;
1569 struct file *sock_file;
1571 sock_file = fget_light(fd, &fput_needed);
1572 if (!sock_file)
1573 return -EBADF;
1575 sock = sock_from_file(sock_file, &err);
1576 if (!sock)
1577 goto out_put;
1578 iov.iov_base=buff;
1579 iov.iov_len=len;
1580 msg.msg_name=NULL;
1581 msg.msg_iov=&iov;
1582 msg.msg_iovlen=1;
1583 msg.msg_control=NULL;
1584 msg.msg_controllen=0;
1585 msg.msg_namelen=0;
1586 if (addr) {
1587 err = move_addr_to_kernel(addr, addr_len, address);
1588 if (err < 0)
1589 goto out_put;
1590 msg.msg_name=address;
1591 msg.msg_namelen=addr_len;
1593 if (sock->file->f_flags & O_NONBLOCK)
1594 flags |= MSG_DONTWAIT;
1595 msg.msg_flags = flags;
1596 err = sock_sendmsg(sock, &msg, len);
1598 out_put:
1599 fput_light(sock_file, fput_needed);
1600 return err;
1604 * Send a datagram down a socket.
1607 asmlinkage long sys_send(int fd, void __user * buff, size_t len, unsigned flags)
1609 return sys_sendto(fd, buff, len, flags, NULL, 0);
1613 * Receive a frame from the socket and optionally record the address of the
1614 * sender. We verify the buffers are writable and if needed move the
1615 * sender address from kernel to user space.
1618 asmlinkage long sys_recvfrom(int fd, void __user * ubuf, size_t size, unsigned flags,
1619 struct sockaddr __user *addr, int __user *addr_len)
1621 struct socket *sock;
1622 struct iovec iov;
1623 struct msghdr msg;
1624 char address[MAX_SOCK_ADDR];
1625 int err,err2;
1626 struct file *sock_file;
1627 int fput_needed;
1629 sock_file = fget_light(fd, &fput_needed);
1630 if (!sock_file)
1631 return -EBADF;
1633 sock = sock_from_file(sock_file, &err);
1634 if (!sock)
1635 goto out;
1637 msg.msg_control=NULL;
1638 msg.msg_controllen=0;
1639 msg.msg_iovlen=1;
1640 msg.msg_iov=&iov;
1641 iov.iov_len=size;
1642 iov.iov_base=ubuf;
1643 msg.msg_name=address;
1644 msg.msg_namelen=MAX_SOCK_ADDR;
1645 if (sock->file->f_flags & O_NONBLOCK)
1646 flags |= MSG_DONTWAIT;
1647 err=sock_recvmsg(sock, &msg, size, flags);
1649 if(err >= 0 && addr != NULL)
1651 err2=move_addr_to_user(address, msg.msg_namelen, addr, addr_len);
1652 if(err2<0)
1653 err=err2;
1655 out:
1656 fput_light(sock_file, fput_needed);
1657 return err;
1661 * Receive a datagram from a socket.
1664 asmlinkage long sys_recv(int fd, void __user * ubuf, size_t size, unsigned flags)
1666 return sys_recvfrom(fd, ubuf, size, flags, NULL, NULL);
1670 * Set a socket option. Because we don't know the option lengths we have
1671 * to pass the user mode parameter for the protocols to sort out.
1674 asmlinkage long sys_setsockopt(int fd, int level, int optname, char __user *optval, int optlen)
1676 int err, fput_needed;
1677 struct socket *sock;
1679 if (optlen < 0)
1680 return -EINVAL;
1682 if ((sock = sockfd_lookup_light(fd, &err, &fput_needed)) != NULL)
1684 err = security_socket_setsockopt(sock,level,optname);
1685 if (err)
1686 goto out_put;
1688 if (level == SOL_SOCKET)
1689 err=sock_setsockopt(sock,level,optname,optval,optlen);
1690 else
1691 err=sock->ops->setsockopt(sock, level, optname, optval, optlen);
1692 out_put:
1693 fput_light(sock->file, fput_needed);
1695 return err;
1699 * Get a socket option. Because we don't know the option lengths we have
1700 * to pass a user mode parameter for the protocols to sort out.
1703 asmlinkage long sys_getsockopt(int fd, int level, int optname, char __user *optval, int __user *optlen)
1705 int err, fput_needed;
1706 struct socket *sock;
1708 if ((sock = sockfd_lookup_light(fd, &err, &fput_needed)) != NULL) {
1709 err = security_socket_getsockopt(sock, level, optname);
1710 if (err)
1711 goto out_put;
1713 if (level == SOL_SOCKET)
1714 err=sock_getsockopt(sock,level,optname,optval,optlen);
1715 else
1716 err=sock->ops->getsockopt(sock, level, optname, optval, optlen);
1717 out_put:
1718 fput_light(sock->file, fput_needed);
1720 return err;
1725 * Shutdown a socket.
1728 asmlinkage long sys_shutdown(int fd, int how)
1730 int err, fput_needed;
1731 struct socket *sock;
1733 if ((sock = sockfd_lookup_light(fd, &err, &fput_needed))!=NULL)
1735 err = security_socket_shutdown(sock, how);
1736 if (!err)
1737 err = sock->ops->shutdown(sock, how);
1738 fput_light(sock->file, fput_needed);
1740 return err;
1743 /* A couple of helpful macros for getting the address of the 32/64 bit
1744 * fields which are the same type (int / unsigned) on our platforms.
1746 #define COMPAT_MSG(msg, member) ((MSG_CMSG_COMPAT & flags) ? &msg##_compat->member : &msg->member)
1747 #define COMPAT_NAMELEN(msg) COMPAT_MSG(msg, msg_namelen)
1748 #define COMPAT_FLAGS(msg) COMPAT_MSG(msg, msg_flags)
1752 * BSD sendmsg interface
1755 asmlinkage long sys_sendmsg(int fd, struct msghdr __user *msg, unsigned flags)
1757 struct compat_msghdr __user *msg_compat = (struct compat_msghdr __user *)msg;
1758 struct socket *sock;
1759 char address[MAX_SOCK_ADDR];
1760 struct iovec iovstack[UIO_FASTIOV], *iov = iovstack;
1761 unsigned char ctl[sizeof(struct cmsghdr) + 20]
1762 __attribute__ ((aligned (sizeof(__kernel_size_t))));
1763 /* 20 is size of ipv6_pktinfo */
1764 unsigned char *ctl_buf = ctl;
1765 struct msghdr msg_sys;
1766 int err, ctl_len, iov_size, total_len;
1767 int fput_needed;
1769 err = -EFAULT;
1770 if (MSG_CMSG_COMPAT & flags) {
1771 if (get_compat_msghdr(&msg_sys, msg_compat))
1772 return -EFAULT;
1773 } else if (copy_from_user(&msg_sys, msg, sizeof(struct msghdr)))
1774 return -EFAULT;
1776 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1777 if (!sock)
1778 goto out;
1780 /* do not move before msg_sys is valid */
1781 err = -EMSGSIZE;
1782 if (msg_sys.msg_iovlen > UIO_MAXIOV)
1783 goto out_put;
1785 /* Check whether to allocate the iovec area*/
1786 err = -ENOMEM;
1787 iov_size = msg_sys.msg_iovlen * sizeof(struct iovec);
1788 if (msg_sys.msg_iovlen > UIO_FASTIOV) {
1789 iov = sock_kmalloc(sock->sk, iov_size, GFP_KERNEL);
1790 if (!iov)
1791 goto out_put;
1794 /* This will also move the address data into kernel space */
1795 if (MSG_CMSG_COMPAT & flags) {
1796 err = verify_compat_iovec(&msg_sys, iov, address, VERIFY_READ);
1797 } else
1798 err = verify_iovec(&msg_sys, iov, address, VERIFY_READ);
1799 if (err < 0)
1800 goto out_freeiov;
1801 total_len = err;
1803 err = -ENOBUFS;
1805 if (msg_sys.msg_controllen > INT_MAX)
1806 goto out_freeiov;
1807 ctl_len = msg_sys.msg_controllen;
1808 if ((MSG_CMSG_COMPAT & flags) && ctl_len) {
1809 err = cmsghdr_from_user_compat_to_kern(&msg_sys, sock->sk, ctl, sizeof(ctl));
1810 if (err)
1811 goto out_freeiov;
1812 ctl_buf = msg_sys.msg_control;
1813 ctl_len = msg_sys.msg_controllen;
1814 } else if (ctl_len) {
1815 if (ctl_len > sizeof(ctl))
1817 ctl_buf = sock_kmalloc(sock->sk, ctl_len, GFP_KERNEL);
1818 if (ctl_buf == NULL)
1819 goto out_freeiov;
1821 err = -EFAULT;
1823 * Careful! Before this, msg_sys.msg_control contains a user pointer.
1824 * Afterwards, it will be a kernel pointer. Thus the compiler-assisted
1825 * checking falls down on this.
1827 if (copy_from_user(ctl_buf, (void __user *) msg_sys.msg_control, ctl_len))
1828 goto out_freectl;
1829 msg_sys.msg_control = ctl_buf;
1831 msg_sys.msg_flags = flags;
1833 if (sock->file->f_flags & O_NONBLOCK)
1834 msg_sys.msg_flags |= MSG_DONTWAIT;
1835 err = sock_sendmsg(sock, &msg_sys, total_len);
1837 out_freectl:
1838 if (ctl_buf != ctl)
1839 sock_kfree_s(sock->sk, ctl_buf, ctl_len);
1840 out_freeiov:
1841 if (iov != iovstack)
1842 sock_kfree_s(sock->sk, iov, iov_size);
1843 out_put:
1844 fput_light(sock->file, fput_needed);
1845 out:
1846 return err;
1850 * BSD recvmsg interface
1853 asmlinkage long sys_recvmsg(int fd, struct msghdr __user *msg, unsigned int flags)
1855 struct compat_msghdr __user *msg_compat = (struct compat_msghdr __user *)msg;
1856 struct socket *sock;
1857 struct iovec iovstack[UIO_FASTIOV];
1858 struct iovec *iov=iovstack;
1859 struct msghdr msg_sys;
1860 unsigned long cmsg_ptr;
1861 int err, iov_size, total_len, len;
1862 int fput_needed;
1864 /* kernel mode address */
1865 char addr[MAX_SOCK_ADDR];
1867 /* user mode address pointers */
1868 struct sockaddr __user *uaddr;
1869 int __user *uaddr_len;
1871 if (MSG_CMSG_COMPAT & flags) {
1872 if (get_compat_msghdr(&msg_sys, msg_compat))
1873 return -EFAULT;
1874 } else
1875 if (copy_from_user(&msg_sys,msg,sizeof(struct msghdr)))
1876 return -EFAULT;
1878 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1879 if (!sock)
1880 goto out;
1882 err = -EMSGSIZE;
1883 if (msg_sys.msg_iovlen > UIO_MAXIOV)
1884 goto out_put;
1886 /* Check whether to allocate the iovec area*/
1887 err = -ENOMEM;
1888 iov_size = msg_sys.msg_iovlen * sizeof(struct iovec);
1889 if (msg_sys.msg_iovlen > UIO_FASTIOV) {
1890 iov = sock_kmalloc(sock->sk, iov_size, GFP_KERNEL);
1891 if (!iov)
1892 goto out_put;
1896 * Save the user-mode address (verify_iovec will change the
1897 * kernel msghdr to use the kernel address space)
1900 uaddr = (void __user *) msg_sys.msg_name;
1901 uaddr_len = COMPAT_NAMELEN(msg);
1902 if (MSG_CMSG_COMPAT & flags) {
1903 err = verify_compat_iovec(&msg_sys, iov, addr, VERIFY_WRITE);
1904 } else
1905 err = verify_iovec(&msg_sys, iov, addr, VERIFY_WRITE);
1906 if (err < 0)
1907 goto out_freeiov;
1908 total_len=err;
1910 cmsg_ptr = (unsigned long)msg_sys.msg_control;
1911 msg_sys.msg_flags = 0;
1912 if (MSG_CMSG_COMPAT & flags)
1913 msg_sys.msg_flags = MSG_CMSG_COMPAT;
1915 if (sock->file->f_flags & O_NONBLOCK)
1916 flags |= MSG_DONTWAIT;
1917 err = sock_recvmsg(sock, &msg_sys, total_len, flags);
1918 if (err < 0)
1919 goto out_freeiov;
1920 len = err;
1922 if (uaddr != NULL) {
1923 err = move_addr_to_user(addr, msg_sys.msg_namelen, uaddr, uaddr_len);
1924 if (err < 0)
1925 goto out_freeiov;
1927 err = __put_user((msg_sys.msg_flags & ~MSG_CMSG_COMPAT),
1928 COMPAT_FLAGS(msg));
1929 if (err)
1930 goto out_freeiov;
1931 if (MSG_CMSG_COMPAT & flags)
1932 err = __put_user((unsigned long)msg_sys.msg_control-cmsg_ptr,
1933 &msg_compat->msg_controllen);
1934 else
1935 err = __put_user((unsigned long)msg_sys.msg_control-cmsg_ptr,
1936 &msg->msg_controllen);
1937 if (err)
1938 goto out_freeiov;
1939 err = len;
1941 out_freeiov:
1942 if (iov != iovstack)
1943 sock_kfree_s(sock->sk, iov, iov_size);
1944 out_put:
1945 fput_light(sock->file, fput_needed);
1946 out:
1947 return err;
1950 #ifdef __ARCH_WANT_SYS_SOCKETCALL
1952 /* Argument list sizes for sys_socketcall */
1953 #define AL(x) ((x) * sizeof(unsigned long))
1954 static unsigned char nargs[18]={AL(0),AL(3),AL(3),AL(3),AL(2),AL(3),
1955 AL(3),AL(3),AL(4),AL(4),AL(4),AL(6),
1956 AL(6),AL(2),AL(5),AL(5),AL(3),AL(3)};
1957 #undef AL
1960 * System call vectors.
1962 * Argument checking cleaned up. Saved 20% in size.
1963 * This function doesn't need to set the kernel lock because
1964 * it is set by the callees.
1967 asmlinkage long sys_socketcall(int call, unsigned long __user *args)
1969 unsigned long a[6];
1970 unsigned long a0,a1;
1971 int err;
1973 if(call<1||call>SYS_RECVMSG)
1974 return -EINVAL;
1976 /* copy_from_user should be SMP safe. */
1977 if (copy_from_user(a, args, nargs[call]))
1978 return -EFAULT;
1980 err = audit_socketcall(nargs[call]/sizeof(unsigned long), a);
1981 if (err)
1982 return err;
1984 a0=a[0];
1985 a1=a[1];
1987 switch(call)
1989 case SYS_SOCKET:
1990 err = sys_socket(a0,a1,a[2]);
1991 break;
1992 case SYS_BIND:
1993 err = sys_bind(a0,(struct sockaddr __user *)a1, a[2]);
1994 break;
1995 case SYS_CONNECT:
1996 err = sys_connect(a0, (struct sockaddr __user *)a1, a[2]);
1997 break;
1998 case SYS_LISTEN:
1999 err = sys_listen(a0,a1);
2000 break;
2001 case SYS_ACCEPT:
2002 err = sys_accept(a0,(struct sockaddr __user *)a1, (int __user *)a[2]);
2003 break;
2004 case SYS_GETSOCKNAME:
2005 err = sys_getsockname(a0,(struct sockaddr __user *)a1, (int __user *)a[2]);
2006 break;
2007 case SYS_GETPEERNAME:
2008 err = sys_getpeername(a0, (struct sockaddr __user *)a1, (int __user *)a[2]);
2009 break;
2010 case SYS_SOCKETPAIR:
2011 err = sys_socketpair(a0,a1, a[2], (int __user *)a[3]);
2012 break;
2013 case SYS_SEND:
2014 err = sys_send(a0, (void __user *)a1, a[2], a[3]);
2015 break;
2016 case SYS_SENDTO:
2017 err = sys_sendto(a0,(void __user *)a1, a[2], a[3],
2018 (struct sockaddr __user *)a[4], a[5]);
2019 break;
2020 case SYS_RECV:
2021 err = sys_recv(a0, (void __user *)a1, a[2], a[3]);
2022 break;
2023 case SYS_RECVFROM:
2024 err = sys_recvfrom(a0, (void __user *)a1, a[2], a[3],
2025 (struct sockaddr __user *)a[4], (int __user *)a[5]);
2026 break;
2027 case SYS_SHUTDOWN:
2028 err = sys_shutdown(a0,a1);
2029 break;
2030 case SYS_SETSOCKOPT:
2031 err = sys_setsockopt(a0, a1, a[2], (char __user *)a[3], a[4]);
2032 break;
2033 case SYS_GETSOCKOPT:
2034 err = sys_getsockopt(a0, a1, a[2], (char __user *)a[3], (int __user *)a[4]);
2035 break;
2036 case SYS_SENDMSG:
2037 err = sys_sendmsg(a0, (struct msghdr __user *) a1, a[2]);
2038 break;
2039 case SYS_RECVMSG:
2040 err = sys_recvmsg(a0, (struct msghdr __user *) a1, a[2]);
2041 break;
2042 default:
2043 err = -EINVAL;
2044 break;
2046 return err;
2049 #endif /* __ARCH_WANT_SYS_SOCKETCALL */
2052 * This function is called by a protocol handler that wants to
2053 * advertise its address family, and have it linked into the
2054 * SOCKET module.
2057 int sock_register(struct net_proto_family *ops)
2059 int err;
2061 if (ops->family >= NPROTO) {
2062 printk(KERN_CRIT "protocol %d >= NPROTO(%d)\n", ops->family, NPROTO);
2063 return -ENOBUFS;
2065 net_family_write_lock();
2066 err = -EEXIST;
2067 if (net_families[ops->family] == NULL) {
2068 net_families[ops->family]=ops;
2069 err = 0;
2071 net_family_write_unlock();
2072 printk(KERN_INFO "NET: Registered protocol family %d\n",
2073 ops->family);
2074 return err;
2078 * This function is called by a protocol handler that wants to
2079 * remove its address family, and have it unlinked from the
2080 * SOCKET module.
2083 int sock_unregister(int family)
2085 if (family < 0 || family >= NPROTO)
2086 return -1;
2088 net_family_write_lock();
2089 net_families[family]=NULL;
2090 net_family_write_unlock();
2091 printk(KERN_INFO "NET: Unregistered protocol family %d\n",
2092 family);
2093 return 0;
2096 static int __init sock_init(void)
2099 * Initialize sock SLAB cache.
2102 sk_init();
2105 * Initialize skbuff SLAB cache
2107 skb_init();
2110 * Initialize the protocols module.
2113 init_inodecache();
2114 register_filesystem(&sock_fs_type);
2115 sock_mnt = kern_mount(&sock_fs_type);
2117 /* The real protocol initialization is performed in later initcalls.
2120 #ifdef CONFIG_NETFILTER
2121 netfilter_init();
2122 #endif
2124 return 0;
2127 core_initcall(sock_init); /* early initcall */
2129 #ifdef CONFIG_PROC_FS
2130 void socket_seq_show(struct seq_file *seq)
2132 int cpu;
2133 int counter = 0;
2135 for_each_possible_cpu(cpu)
2136 counter += per_cpu(sockets_in_use, cpu);
2138 /* It can be negative, by the way. 8) */
2139 if (counter < 0)
2140 counter = 0;
2142 seq_printf(seq, "sockets: used %d\n", counter);
2144 #endif /* CONFIG_PROC_FS */
2146 #ifdef CONFIG_COMPAT
2147 static long compat_sock_ioctl(struct file *file, unsigned cmd,
2148 unsigned long arg)
2150 struct socket *sock = file->private_data;
2151 int ret = -ENOIOCTLCMD;
2153 if (sock->ops->compat_ioctl)
2154 ret = sock->ops->compat_ioctl(sock, cmd, arg);
2156 return ret;
2158 #endif
2160 /* ABI emulation layers need these two */
2161 EXPORT_SYMBOL(move_addr_to_kernel);
2162 EXPORT_SYMBOL(move_addr_to_user);
2163 EXPORT_SYMBOL(sock_create);
2164 EXPORT_SYMBOL(sock_create_kern);
2165 EXPORT_SYMBOL(sock_create_lite);
2166 EXPORT_SYMBOL(sock_map_fd);
2167 EXPORT_SYMBOL(sock_recvmsg);
2168 EXPORT_SYMBOL(sock_register);
2169 EXPORT_SYMBOL(sock_release);
2170 EXPORT_SYMBOL(sock_sendmsg);
2171 EXPORT_SYMBOL(sock_unregister);
2172 EXPORT_SYMBOL(sock_wake_async);
2173 EXPORT_SYMBOL(sockfd_lookup);
2174 EXPORT_SYMBOL(kernel_sendmsg);
2175 EXPORT_SYMBOL(kernel_recvmsg);