rcu: move TREE_RCU from softirq to kthread
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / kernel / rcutree.c
blob18e33313873ee48aaa951c1b127dea4d196b1278
1 /*
2 * Read-Copy Update mechanism for mutual exclusion
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
18 * Copyright IBM Corporation, 2008
20 * Authors: Dipankar Sarma <dipankar@in.ibm.com>
21 * Manfred Spraul <manfred@colorfullife.com>
22 * Paul E. McKenney <paulmck@linux.vnet.ibm.com> Hierarchical version
24 * Based on the original work by Paul McKenney <paulmck@us.ibm.com>
25 * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
27 * For detailed explanation of Read-Copy Update mechanism see -
28 * Documentation/RCU
30 #include <linux/types.h>
31 #include <linux/kernel.h>
32 #include <linux/init.h>
33 #include <linux/spinlock.h>
34 #include <linux/smp.h>
35 #include <linux/rcupdate.h>
36 #include <linux/interrupt.h>
37 #include <linux/sched.h>
38 #include <linux/nmi.h>
39 #include <asm/atomic.h>
40 #include <linux/bitops.h>
41 #include <linux/module.h>
42 #include <linux/completion.h>
43 #include <linux/moduleparam.h>
44 #include <linux/percpu.h>
45 #include <linux/notifier.h>
46 #include <linux/cpu.h>
47 #include <linux/mutex.h>
48 #include <linux/time.h>
49 #include <linux/kernel_stat.h>
50 #include <linux/wait.h>
51 #include <linux/kthread.h>
53 #include "rcutree.h"
55 /* Data structures. */
57 static struct lock_class_key rcu_node_class[NUM_RCU_LVLS];
59 #define RCU_STATE_INITIALIZER(structname) { \
60 .level = { &structname.node[0] }, \
61 .levelcnt = { \
62 NUM_RCU_LVL_0, /* root of hierarchy. */ \
63 NUM_RCU_LVL_1, \
64 NUM_RCU_LVL_2, \
65 NUM_RCU_LVL_3, \
66 NUM_RCU_LVL_4, /* == MAX_RCU_LVLS */ \
67 }, \
68 .signaled = RCU_GP_IDLE, \
69 .gpnum = -300, \
70 .completed = -300, \
71 .onofflock = __RAW_SPIN_LOCK_UNLOCKED(&structname.onofflock), \
72 .fqslock = __RAW_SPIN_LOCK_UNLOCKED(&structname.fqslock), \
73 .n_force_qs = 0, \
74 .n_force_qs_ngp = 0, \
75 .name = #structname, \
78 struct rcu_state rcu_sched_state = RCU_STATE_INITIALIZER(rcu_sched_state);
79 DEFINE_PER_CPU(struct rcu_data, rcu_sched_data);
81 struct rcu_state rcu_bh_state = RCU_STATE_INITIALIZER(rcu_bh_state);
82 DEFINE_PER_CPU(struct rcu_data, rcu_bh_data);
84 int rcu_scheduler_active __read_mostly;
85 EXPORT_SYMBOL_GPL(rcu_scheduler_active);
88 * Control variables for per-CPU and per-rcu_node kthreads. These
89 * handle all flavors of RCU.
91 static DEFINE_PER_CPU(struct task_struct *, rcu_cpu_kthread_task);
92 static DEFINE_PER_CPU(wait_queue_head_t, rcu_cpu_wq);
93 static DEFINE_PER_CPU(char, rcu_cpu_has_work);
94 static char rcu_kthreads_spawnable;
96 static void rcu_node_kthread_setaffinity(struct rcu_node *rnp);
97 static void invoke_rcu_kthread(void);
99 #define RCU_KTHREAD_PRIO 1 /* RT priority for per-CPU kthreads. */
102 * Return true if an RCU grace period is in progress. The ACCESS_ONCE()s
103 * permit this function to be invoked without holding the root rcu_node
104 * structure's ->lock, but of course results can be subject to change.
106 static int rcu_gp_in_progress(struct rcu_state *rsp)
108 return ACCESS_ONCE(rsp->completed) != ACCESS_ONCE(rsp->gpnum);
112 * Note a quiescent state. Because we do not need to know
113 * how many quiescent states passed, just if there was at least
114 * one since the start of the grace period, this just sets a flag.
116 void rcu_sched_qs(int cpu)
118 struct rcu_data *rdp = &per_cpu(rcu_sched_data, cpu);
120 rdp->passed_quiesc_completed = rdp->gpnum - 1;
121 barrier();
122 rdp->passed_quiesc = 1;
125 void rcu_bh_qs(int cpu)
127 struct rcu_data *rdp = &per_cpu(rcu_bh_data, cpu);
129 rdp->passed_quiesc_completed = rdp->gpnum - 1;
130 barrier();
131 rdp->passed_quiesc = 1;
135 * Note a context switch. This is a quiescent state for RCU-sched,
136 * and requires special handling for preemptible RCU.
138 void rcu_note_context_switch(int cpu)
140 rcu_sched_qs(cpu);
141 rcu_preempt_note_context_switch(cpu);
144 #ifdef CONFIG_NO_HZ
145 DEFINE_PER_CPU(struct rcu_dynticks, rcu_dynticks) = {
146 .dynticks_nesting = 1,
147 .dynticks = ATOMIC_INIT(1),
149 #endif /* #ifdef CONFIG_NO_HZ */
151 static int blimit = 10; /* Maximum callbacks per softirq. */
152 static int qhimark = 10000; /* If this many pending, ignore blimit. */
153 static int qlowmark = 100; /* Once only this many pending, use blimit. */
155 module_param(blimit, int, 0);
156 module_param(qhimark, int, 0);
157 module_param(qlowmark, int, 0);
159 int rcu_cpu_stall_suppress __read_mostly;
160 module_param(rcu_cpu_stall_suppress, int, 0644);
162 static void force_quiescent_state(struct rcu_state *rsp, int relaxed);
163 static int rcu_pending(int cpu);
166 * Return the number of RCU-sched batches processed thus far for debug & stats.
168 long rcu_batches_completed_sched(void)
170 return rcu_sched_state.completed;
172 EXPORT_SYMBOL_GPL(rcu_batches_completed_sched);
175 * Return the number of RCU BH batches processed thus far for debug & stats.
177 long rcu_batches_completed_bh(void)
179 return rcu_bh_state.completed;
181 EXPORT_SYMBOL_GPL(rcu_batches_completed_bh);
184 * Force a quiescent state for RCU BH.
186 void rcu_bh_force_quiescent_state(void)
188 force_quiescent_state(&rcu_bh_state, 0);
190 EXPORT_SYMBOL_GPL(rcu_bh_force_quiescent_state);
193 * Force a quiescent state for RCU-sched.
195 void rcu_sched_force_quiescent_state(void)
197 force_quiescent_state(&rcu_sched_state, 0);
199 EXPORT_SYMBOL_GPL(rcu_sched_force_quiescent_state);
202 * Does the CPU have callbacks ready to be invoked?
204 static int
205 cpu_has_callbacks_ready_to_invoke(struct rcu_data *rdp)
207 return &rdp->nxtlist != rdp->nxttail[RCU_DONE_TAIL];
211 * Does the current CPU require a yet-as-unscheduled grace period?
213 static int
214 cpu_needs_another_gp(struct rcu_state *rsp, struct rcu_data *rdp)
216 return *rdp->nxttail[RCU_DONE_TAIL] && !rcu_gp_in_progress(rsp);
220 * Return the root node of the specified rcu_state structure.
222 static struct rcu_node *rcu_get_root(struct rcu_state *rsp)
224 return &rsp->node[0];
227 #ifdef CONFIG_SMP
230 * If the specified CPU is offline, tell the caller that it is in
231 * a quiescent state. Otherwise, whack it with a reschedule IPI.
232 * Grace periods can end up waiting on an offline CPU when that
233 * CPU is in the process of coming online -- it will be added to the
234 * rcu_node bitmasks before it actually makes it online. The same thing
235 * can happen while a CPU is in the process of coming online. Because this
236 * race is quite rare, we check for it after detecting that the grace
237 * period has been delayed rather than checking each and every CPU
238 * each and every time we start a new grace period.
240 static int rcu_implicit_offline_qs(struct rcu_data *rdp)
243 * If the CPU is offline, it is in a quiescent state. We can
244 * trust its state not to change because interrupts are disabled.
246 if (cpu_is_offline(rdp->cpu)) {
247 rdp->offline_fqs++;
248 return 1;
251 /* If preemptable RCU, no point in sending reschedule IPI. */
252 if (rdp->preemptable)
253 return 0;
255 /* The CPU is online, so send it a reschedule IPI. */
256 if (rdp->cpu != smp_processor_id())
257 smp_send_reschedule(rdp->cpu);
258 else
259 set_need_resched();
260 rdp->resched_ipi++;
261 return 0;
264 #endif /* #ifdef CONFIG_SMP */
266 #ifdef CONFIG_NO_HZ
269 * rcu_enter_nohz - inform RCU that current CPU is entering nohz
271 * Enter nohz mode, in other words, -leave- the mode in which RCU
272 * read-side critical sections can occur. (Though RCU read-side
273 * critical sections can occur in irq handlers in nohz mode, a possibility
274 * handled by rcu_irq_enter() and rcu_irq_exit()).
276 void rcu_enter_nohz(void)
278 unsigned long flags;
279 struct rcu_dynticks *rdtp;
281 local_irq_save(flags);
282 rdtp = &__get_cpu_var(rcu_dynticks);
283 if (--rdtp->dynticks_nesting) {
284 local_irq_restore(flags);
285 return;
287 /* CPUs seeing atomic_inc() must see prior RCU read-side crit sects */
288 smp_mb__before_atomic_inc(); /* See above. */
289 atomic_inc(&rdtp->dynticks);
290 smp_mb__after_atomic_inc(); /* Force ordering with next sojourn. */
291 WARN_ON_ONCE(atomic_read(&rdtp->dynticks) & 0x1);
292 local_irq_restore(flags);
294 /* If the interrupt queued a callback, get out of dyntick mode. */
295 if (in_irq() &&
296 (__get_cpu_var(rcu_sched_data).nxtlist ||
297 __get_cpu_var(rcu_bh_data).nxtlist ||
298 rcu_preempt_needs_cpu(smp_processor_id())))
299 set_need_resched();
303 * rcu_exit_nohz - inform RCU that current CPU is leaving nohz
305 * Exit nohz mode, in other words, -enter- the mode in which RCU
306 * read-side critical sections normally occur.
308 void rcu_exit_nohz(void)
310 unsigned long flags;
311 struct rcu_dynticks *rdtp;
313 local_irq_save(flags);
314 rdtp = &__get_cpu_var(rcu_dynticks);
315 if (rdtp->dynticks_nesting++) {
316 local_irq_restore(flags);
317 return;
319 smp_mb__before_atomic_inc(); /* Force ordering w/previous sojourn. */
320 atomic_inc(&rdtp->dynticks);
321 /* CPUs seeing atomic_inc() must see later RCU read-side crit sects */
322 smp_mb__after_atomic_inc(); /* See above. */
323 WARN_ON_ONCE(!(atomic_read(&rdtp->dynticks) & 0x1));
324 local_irq_restore(flags);
328 * rcu_nmi_enter - inform RCU of entry to NMI context
330 * If the CPU was idle with dynamic ticks active, and there is no
331 * irq handler running, this updates rdtp->dynticks_nmi to let the
332 * RCU grace-period handling know that the CPU is active.
334 void rcu_nmi_enter(void)
336 struct rcu_dynticks *rdtp = &__get_cpu_var(rcu_dynticks);
338 if (rdtp->dynticks_nmi_nesting == 0 &&
339 (atomic_read(&rdtp->dynticks) & 0x1))
340 return;
341 rdtp->dynticks_nmi_nesting++;
342 smp_mb__before_atomic_inc(); /* Force delay from prior write. */
343 atomic_inc(&rdtp->dynticks);
344 /* CPUs seeing atomic_inc() must see later RCU read-side crit sects */
345 smp_mb__after_atomic_inc(); /* See above. */
346 WARN_ON_ONCE(!(atomic_read(&rdtp->dynticks) & 0x1));
350 * rcu_nmi_exit - inform RCU of exit from NMI context
352 * If the CPU was idle with dynamic ticks active, and there is no
353 * irq handler running, this updates rdtp->dynticks_nmi to let the
354 * RCU grace-period handling know that the CPU is no longer active.
356 void rcu_nmi_exit(void)
358 struct rcu_dynticks *rdtp = &__get_cpu_var(rcu_dynticks);
360 if (rdtp->dynticks_nmi_nesting == 0 ||
361 --rdtp->dynticks_nmi_nesting != 0)
362 return;
363 /* CPUs seeing atomic_inc() must see prior RCU read-side crit sects */
364 smp_mb__before_atomic_inc(); /* See above. */
365 atomic_inc(&rdtp->dynticks);
366 smp_mb__after_atomic_inc(); /* Force delay to next write. */
367 WARN_ON_ONCE(atomic_read(&rdtp->dynticks) & 0x1);
371 * rcu_irq_enter - inform RCU of entry to hard irq context
373 * If the CPU was idle with dynamic ticks active, this updates the
374 * rdtp->dynticks to let the RCU handling know that the CPU is active.
376 void rcu_irq_enter(void)
378 rcu_exit_nohz();
382 * rcu_irq_exit - inform RCU of exit from hard irq context
384 * If the CPU was idle with dynamic ticks active, update the rdp->dynticks
385 * to put let the RCU handling be aware that the CPU is going back to idle
386 * with no ticks.
388 void rcu_irq_exit(void)
390 rcu_enter_nohz();
393 #ifdef CONFIG_SMP
396 * Snapshot the specified CPU's dynticks counter so that we can later
397 * credit them with an implicit quiescent state. Return 1 if this CPU
398 * is in dynticks idle mode, which is an extended quiescent state.
400 static int dyntick_save_progress_counter(struct rcu_data *rdp)
402 rdp->dynticks_snap = atomic_add_return(0, &rdp->dynticks->dynticks);
403 return 0;
407 * Return true if the specified CPU has passed through a quiescent
408 * state by virtue of being in or having passed through an dynticks
409 * idle state since the last call to dyntick_save_progress_counter()
410 * for this same CPU.
412 static int rcu_implicit_dynticks_qs(struct rcu_data *rdp)
414 unsigned long curr;
415 unsigned long snap;
417 curr = (unsigned long)atomic_add_return(0, &rdp->dynticks->dynticks);
418 snap = (unsigned long)rdp->dynticks_snap;
421 * If the CPU passed through or entered a dynticks idle phase with
422 * no active irq/NMI handlers, then we can safely pretend that the CPU
423 * already acknowledged the request to pass through a quiescent
424 * state. Either way, that CPU cannot possibly be in an RCU
425 * read-side critical section that started before the beginning
426 * of the current RCU grace period.
428 if ((curr & 0x1) == 0 || ULONG_CMP_GE(curr, snap + 2)) {
429 rdp->dynticks_fqs++;
430 return 1;
433 /* Go check for the CPU being offline. */
434 return rcu_implicit_offline_qs(rdp);
437 #endif /* #ifdef CONFIG_SMP */
439 #else /* #ifdef CONFIG_NO_HZ */
441 #ifdef CONFIG_SMP
443 static int dyntick_save_progress_counter(struct rcu_data *rdp)
445 return 0;
448 static int rcu_implicit_dynticks_qs(struct rcu_data *rdp)
450 return rcu_implicit_offline_qs(rdp);
453 #endif /* #ifdef CONFIG_SMP */
455 #endif /* #else #ifdef CONFIG_NO_HZ */
457 int rcu_cpu_stall_suppress __read_mostly;
459 static void record_gp_stall_check_time(struct rcu_state *rsp)
461 rsp->gp_start = jiffies;
462 rsp->jiffies_stall = jiffies + RCU_SECONDS_TILL_STALL_CHECK;
465 static void print_other_cpu_stall(struct rcu_state *rsp)
467 int cpu;
468 long delta;
469 unsigned long flags;
470 struct rcu_node *rnp = rcu_get_root(rsp);
472 /* Only let one CPU complain about others per time interval. */
474 raw_spin_lock_irqsave(&rnp->lock, flags);
475 delta = jiffies - rsp->jiffies_stall;
476 if (delta < RCU_STALL_RAT_DELAY || !rcu_gp_in_progress(rsp)) {
477 raw_spin_unlock_irqrestore(&rnp->lock, flags);
478 return;
480 rsp->jiffies_stall = jiffies + RCU_SECONDS_TILL_STALL_RECHECK;
483 * Now rat on any tasks that got kicked up to the root rcu_node
484 * due to CPU offlining.
486 rcu_print_task_stall(rnp);
487 raw_spin_unlock_irqrestore(&rnp->lock, flags);
490 * OK, time to rat on our buddy...
491 * See Documentation/RCU/stallwarn.txt for info on how to debug
492 * RCU CPU stall warnings.
494 printk(KERN_ERR "INFO: %s detected stalls on CPUs/tasks: {",
495 rsp->name);
496 rcu_for_each_leaf_node(rsp, rnp) {
497 raw_spin_lock_irqsave(&rnp->lock, flags);
498 rcu_print_task_stall(rnp);
499 raw_spin_unlock_irqrestore(&rnp->lock, flags);
500 if (rnp->qsmask == 0)
501 continue;
502 for (cpu = 0; cpu <= rnp->grphi - rnp->grplo; cpu++)
503 if (rnp->qsmask & (1UL << cpu))
504 printk(" %d", rnp->grplo + cpu);
506 printk("} (detected by %d, t=%ld jiffies)\n",
507 smp_processor_id(), (long)(jiffies - rsp->gp_start));
508 trigger_all_cpu_backtrace();
510 /* If so configured, complain about tasks blocking the grace period. */
512 rcu_print_detail_task_stall(rsp);
514 force_quiescent_state(rsp, 0); /* Kick them all. */
517 static void print_cpu_stall(struct rcu_state *rsp)
519 unsigned long flags;
520 struct rcu_node *rnp = rcu_get_root(rsp);
523 * OK, time to rat on ourselves...
524 * See Documentation/RCU/stallwarn.txt for info on how to debug
525 * RCU CPU stall warnings.
527 printk(KERN_ERR "INFO: %s detected stall on CPU %d (t=%lu jiffies)\n",
528 rsp->name, smp_processor_id(), jiffies - rsp->gp_start);
529 trigger_all_cpu_backtrace();
531 raw_spin_lock_irqsave(&rnp->lock, flags);
532 if (ULONG_CMP_GE(jiffies, rsp->jiffies_stall))
533 rsp->jiffies_stall =
534 jiffies + RCU_SECONDS_TILL_STALL_RECHECK;
535 raw_spin_unlock_irqrestore(&rnp->lock, flags);
537 set_need_resched(); /* kick ourselves to get things going. */
540 static void check_cpu_stall(struct rcu_state *rsp, struct rcu_data *rdp)
542 long delta;
543 struct rcu_node *rnp;
545 if (rcu_cpu_stall_suppress)
546 return;
547 delta = jiffies - ACCESS_ONCE(rsp->jiffies_stall);
548 rnp = rdp->mynode;
549 if ((ACCESS_ONCE(rnp->qsmask) & rdp->grpmask) && delta >= 0) {
551 /* We haven't checked in, so go dump stack. */
552 print_cpu_stall(rsp);
554 } else if (rcu_gp_in_progress(rsp) && delta >= RCU_STALL_RAT_DELAY) {
556 /* They had two time units to dump stack, so complain. */
557 print_other_cpu_stall(rsp);
561 static int rcu_panic(struct notifier_block *this, unsigned long ev, void *ptr)
563 rcu_cpu_stall_suppress = 1;
564 return NOTIFY_DONE;
568 * rcu_cpu_stall_reset - prevent further stall warnings in current grace period
570 * Set the stall-warning timeout way off into the future, thus preventing
571 * any RCU CPU stall-warning messages from appearing in the current set of
572 * RCU grace periods.
574 * The caller must disable hard irqs.
576 void rcu_cpu_stall_reset(void)
578 rcu_sched_state.jiffies_stall = jiffies + ULONG_MAX / 2;
579 rcu_bh_state.jiffies_stall = jiffies + ULONG_MAX / 2;
580 rcu_preempt_stall_reset();
583 static struct notifier_block rcu_panic_block = {
584 .notifier_call = rcu_panic,
587 static void __init check_cpu_stall_init(void)
589 atomic_notifier_chain_register(&panic_notifier_list, &rcu_panic_block);
593 * Update CPU-local rcu_data state to record the newly noticed grace period.
594 * This is used both when we started the grace period and when we notice
595 * that someone else started the grace period. The caller must hold the
596 * ->lock of the leaf rcu_node structure corresponding to the current CPU,
597 * and must have irqs disabled.
599 static void __note_new_gpnum(struct rcu_state *rsp, struct rcu_node *rnp, struct rcu_data *rdp)
601 if (rdp->gpnum != rnp->gpnum) {
603 * If the current grace period is waiting for this CPU,
604 * set up to detect a quiescent state, otherwise don't
605 * go looking for one.
607 rdp->gpnum = rnp->gpnum;
608 if (rnp->qsmask & rdp->grpmask) {
609 rdp->qs_pending = 1;
610 rdp->passed_quiesc = 0;
611 } else
612 rdp->qs_pending = 0;
616 static void note_new_gpnum(struct rcu_state *rsp, struct rcu_data *rdp)
618 unsigned long flags;
619 struct rcu_node *rnp;
621 local_irq_save(flags);
622 rnp = rdp->mynode;
623 if (rdp->gpnum == ACCESS_ONCE(rnp->gpnum) || /* outside lock. */
624 !raw_spin_trylock(&rnp->lock)) { /* irqs already off, so later. */
625 local_irq_restore(flags);
626 return;
628 __note_new_gpnum(rsp, rnp, rdp);
629 raw_spin_unlock_irqrestore(&rnp->lock, flags);
633 * Did someone else start a new RCU grace period start since we last
634 * checked? Update local state appropriately if so. Must be called
635 * on the CPU corresponding to rdp.
637 static int
638 check_for_new_grace_period(struct rcu_state *rsp, struct rcu_data *rdp)
640 unsigned long flags;
641 int ret = 0;
643 local_irq_save(flags);
644 if (rdp->gpnum != rsp->gpnum) {
645 note_new_gpnum(rsp, rdp);
646 ret = 1;
648 local_irq_restore(flags);
649 return ret;
653 * Advance this CPU's callbacks, but only if the current grace period
654 * has ended. This may be called only from the CPU to whom the rdp
655 * belongs. In addition, the corresponding leaf rcu_node structure's
656 * ->lock must be held by the caller, with irqs disabled.
658 static void
659 __rcu_process_gp_end(struct rcu_state *rsp, struct rcu_node *rnp, struct rcu_data *rdp)
661 /* Did another grace period end? */
662 if (rdp->completed != rnp->completed) {
664 /* Advance callbacks. No harm if list empty. */
665 rdp->nxttail[RCU_DONE_TAIL] = rdp->nxttail[RCU_WAIT_TAIL];
666 rdp->nxttail[RCU_WAIT_TAIL] = rdp->nxttail[RCU_NEXT_READY_TAIL];
667 rdp->nxttail[RCU_NEXT_READY_TAIL] = rdp->nxttail[RCU_NEXT_TAIL];
669 /* Remember that we saw this grace-period completion. */
670 rdp->completed = rnp->completed;
673 * If we were in an extended quiescent state, we may have
674 * missed some grace periods that others CPUs handled on
675 * our behalf. Catch up with this state to avoid noting
676 * spurious new grace periods. If another grace period
677 * has started, then rnp->gpnum will have advanced, so
678 * we will detect this later on.
680 if (ULONG_CMP_LT(rdp->gpnum, rdp->completed))
681 rdp->gpnum = rdp->completed;
684 * If RCU does not need a quiescent state from this CPU,
685 * then make sure that this CPU doesn't go looking for one.
687 if ((rnp->qsmask & rdp->grpmask) == 0)
688 rdp->qs_pending = 0;
693 * Advance this CPU's callbacks, but only if the current grace period
694 * has ended. This may be called only from the CPU to whom the rdp
695 * belongs.
697 static void
698 rcu_process_gp_end(struct rcu_state *rsp, struct rcu_data *rdp)
700 unsigned long flags;
701 struct rcu_node *rnp;
703 local_irq_save(flags);
704 rnp = rdp->mynode;
705 if (rdp->completed == ACCESS_ONCE(rnp->completed) || /* outside lock. */
706 !raw_spin_trylock(&rnp->lock)) { /* irqs already off, so later. */
707 local_irq_restore(flags);
708 return;
710 __rcu_process_gp_end(rsp, rnp, rdp);
711 raw_spin_unlock_irqrestore(&rnp->lock, flags);
715 * Do per-CPU grace-period initialization for running CPU. The caller
716 * must hold the lock of the leaf rcu_node structure corresponding to
717 * this CPU.
719 static void
720 rcu_start_gp_per_cpu(struct rcu_state *rsp, struct rcu_node *rnp, struct rcu_data *rdp)
722 /* Prior grace period ended, so advance callbacks for current CPU. */
723 __rcu_process_gp_end(rsp, rnp, rdp);
726 * Because this CPU just now started the new grace period, we know
727 * that all of its callbacks will be covered by this upcoming grace
728 * period, even the ones that were registered arbitrarily recently.
729 * Therefore, advance all outstanding callbacks to RCU_WAIT_TAIL.
731 * Other CPUs cannot be sure exactly when the grace period started.
732 * Therefore, their recently registered callbacks must pass through
733 * an additional RCU_NEXT_READY stage, so that they will be handled
734 * by the next RCU grace period.
736 rdp->nxttail[RCU_NEXT_READY_TAIL] = rdp->nxttail[RCU_NEXT_TAIL];
737 rdp->nxttail[RCU_WAIT_TAIL] = rdp->nxttail[RCU_NEXT_TAIL];
739 /* Set state so that this CPU will detect the next quiescent state. */
740 __note_new_gpnum(rsp, rnp, rdp);
744 * Start a new RCU grace period if warranted, re-initializing the hierarchy
745 * in preparation for detecting the next grace period. The caller must hold
746 * the root node's ->lock, which is released before return. Hard irqs must
747 * be disabled.
749 static void
750 rcu_start_gp(struct rcu_state *rsp, unsigned long flags)
751 __releases(rcu_get_root(rsp)->lock)
753 struct rcu_data *rdp = this_cpu_ptr(rsp->rda);
754 struct rcu_node *rnp = rcu_get_root(rsp);
756 if (!cpu_needs_another_gp(rsp, rdp) || rsp->fqs_active) {
757 if (cpu_needs_another_gp(rsp, rdp))
758 rsp->fqs_need_gp = 1;
759 if (rnp->completed == rsp->completed) {
760 raw_spin_unlock_irqrestore(&rnp->lock, flags);
761 return;
763 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
766 * Propagate new ->completed value to rcu_node structures
767 * so that other CPUs don't have to wait until the start
768 * of the next grace period to process their callbacks.
770 rcu_for_each_node_breadth_first(rsp, rnp) {
771 raw_spin_lock(&rnp->lock); /* irqs already disabled. */
772 rnp->completed = rsp->completed;
773 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
775 local_irq_restore(flags);
776 return;
779 /* Advance to a new grace period and initialize state. */
780 rsp->gpnum++;
781 WARN_ON_ONCE(rsp->signaled == RCU_GP_INIT);
782 rsp->signaled = RCU_GP_INIT; /* Hold off force_quiescent_state. */
783 rsp->jiffies_force_qs = jiffies + RCU_JIFFIES_TILL_FORCE_QS;
784 record_gp_stall_check_time(rsp);
786 /* Special-case the common single-level case. */
787 if (NUM_RCU_NODES == 1) {
788 rcu_preempt_check_blocked_tasks(rnp);
789 rnp->qsmask = rnp->qsmaskinit;
790 rnp->gpnum = rsp->gpnum;
791 rnp->completed = rsp->completed;
792 rsp->signaled = RCU_SIGNAL_INIT; /* force_quiescent_state OK. */
793 rcu_start_gp_per_cpu(rsp, rnp, rdp);
794 raw_spin_unlock_irqrestore(&rnp->lock, flags);
795 return;
798 raw_spin_unlock(&rnp->lock); /* leave irqs disabled. */
801 /* Exclude any concurrent CPU-hotplug operations. */
802 raw_spin_lock(&rsp->onofflock); /* irqs already disabled. */
805 * Set the quiescent-state-needed bits in all the rcu_node
806 * structures for all currently online CPUs in breadth-first
807 * order, starting from the root rcu_node structure. This
808 * operation relies on the layout of the hierarchy within the
809 * rsp->node[] array. Note that other CPUs will access only
810 * the leaves of the hierarchy, which still indicate that no
811 * grace period is in progress, at least until the corresponding
812 * leaf node has been initialized. In addition, we have excluded
813 * CPU-hotplug operations.
815 * Note that the grace period cannot complete until we finish
816 * the initialization process, as there will be at least one
817 * qsmask bit set in the root node until that time, namely the
818 * one corresponding to this CPU, due to the fact that we have
819 * irqs disabled.
821 rcu_for_each_node_breadth_first(rsp, rnp) {
822 raw_spin_lock(&rnp->lock); /* irqs already disabled. */
823 rcu_preempt_check_blocked_tasks(rnp);
824 rnp->qsmask = rnp->qsmaskinit;
825 rnp->gpnum = rsp->gpnum;
826 rnp->completed = rsp->completed;
827 if (rnp == rdp->mynode)
828 rcu_start_gp_per_cpu(rsp, rnp, rdp);
829 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
832 rnp = rcu_get_root(rsp);
833 raw_spin_lock(&rnp->lock); /* irqs already disabled. */
834 rsp->signaled = RCU_SIGNAL_INIT; /* force_quiescent_state now OK. */
835 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
836 raw_spin_unlock_irqrestore(&rsp->onofflock, flags);
840 * Report a full set of quiescent states to the specified rcu_state
841 * data structure. This involves cleaning up after the prior grace
842 * period and letting rcu_start_gp() start up the next grace period
843 * if one is needed. Note that the caller must hold rnp->lock, as
844 * required by rcu_start_gp(), which will release it.
846 static void rcu_report_qs_rsp(struct rcu_state *rsp, unsigned long flags)
847 __releases(rcu_get_root(rsp)->lock)
849 WARN_ON_ONCE(!rcu_gp_in_progress(rsp));
852 * Ensure that all grace-period and pre-grace-period activity
853 * is seen before the assignment to rsp->completed.
855 smp_mb(); /* See above block comment. */
856 rsp->completed = rsp->gpnum;
857 rsp->signaled = RCU_GP_IDLE;
858 rcu_start_gp(rsp, flags); /* releases root node's rnp->lock. */
862 * Similar to rcu_report_qs_rdp(), for which it is a helper function.
863 * Allows quiescent states for a group of CPUs to be reported at one go
864 * to the specified rcu_node structure, though all the CPUs in the group
865 * must be represented by the same rcu_node structure (which need not be
866 * a leaf rcu_node structure, though it often will be). That structure's
867 * lock must be held upon entry, and it is released before return.
869 static void
870 rcu_report_qs_rnp(unsigned long mask, struct rcu_state *rsp,
871 struct rcu_node *rnp, unsigned long flags)
872 __releases(rnp->lock)
874 struct rcu_node *rnp_c;
876 /* Walk up the rcu_node hierarchy. */
877 for (;;) {
878 if (!(rnp->qsmask & mask)) {
880 /* Our bit has already been cleared, so done. */
881 raw_spin_unlock_irqrestore(&rnp->lock, flags);
882 return;
884 rnp->qsmask &= ~mask;
885 if (rnp->qsmask != 0 || rcu_preempted_readers(rnp)) {
887 /* Other bits still set at this level, so done. */
888 raw_spin_unlock_irqrestore(&rnp->lock, flags);
889 return;
891 mask = rnp->grpmask;
892 if (rnp->parent == NULL) {
894 /* No more levels. Exit loop holding root lock. */
896 break;
898 raw_spin_unlock_irqrestore(&rnp->lock, flags);
899 rnp_c = rnp;
900 rnp = rnp->parent;
901 raw_spin_lock_irqsave(&rnp->lock, flags);
902 WARN_ON_ONCE(rnp_c->qsmask);
906 * Get here if we are the last CPU to pass through a quiescent
907 * state for this grace period. Invoke rcu_report_qs_rsp()
908 * to clean up and start the next grace period if one is needed.
910 rcu_report_qs_rsp(rsp, flags); /* releases rnp->lock. */
914 * Record a quiescent state for the specified CPU to that CPU's rcu_data
915 * structure. This must be either called from the specified CPU, or
916 * called when the specified CPU is known to be offline (and when it is
917 * also known that no other CPU is concurrently trying to help the offline
918 * CPU). The lastcomp argument is used to make sure we are still in the
919 * grace period of interest. We don't want to end the current grace period
920 * based on quiescent states detected in an earlier grace period!
922 static void
923 rcu_report_qs_rdp(int cpu, struct rcu_state *rsp, struct rcu_data *rdp, long lastcomp)
925 unsigned long flags;
926 unsigned long mask;
927 struct rcu_node *rnp;
929 rnp = rdp->mynode;
930 raw_spin_lock_irqsave(&rnp->lock, flags);
931 if (lastcomp != rnp->completed) {
934 * Someone beat us to it for this grace period, so leave.
935 * The race with GP start is resolved by the fact that we
936 * hold the leaf rcu_node lock, so that the per-CPU bits
937 * cannot yet be initialized -- so we would simply find our
938 * CPU's bit already cleared in rcu_report_qs_rnp() if this
939 * race occurred.
941 rdp->passed_quiesc = 0; /* try again later! */
942 raw_spin_unlock_irqrestore(&rnp->lock, flags);
943 return;
945 mask = rdp->grpmask;
946 if ((rnp->qsmask & mask) == 0) {
947 raw_spin_unlock_irqrestore(&rnp->lock, flags);
948 } else {
949 rdp->qs_pending = 0;
952 * This GP can't end until cpu checks in, so all of our
953 * callbacks can be processed during the next GP.
955 rdp->nxttail[RCU_NEXT_READY_TAIL] = rdp->nxttail[RCU_NEXT_TAIL];
957 rcu_report_qs_rnp(mask, rsp, rnp, flags); /* rlses rnp->lock */
962 * Check to see if there is a new grace period of which this CPU
963 * is not yet aware, and if so, set up local rcu_data state for it.
964 * Otherwise, see if this CPU has just passed through its first
965 * quiescent state for this grace period, and record that fact if so.
967 static void
968 rcu_check_quiescent_state(struct rcu_state *rsp, struct rcu_data *rdp)
970 /* If there is now a new grace period, record and return. */
971 if (check_for_new_grace_period(rsp, rdp))
972 return;
975 * Does this CPU still need to do its part for current grace period?
976 * If no, return and let the other CPUs do their part as well.
978 if (!rdp->qs_pending)
979 return;
982 * Was there a quiescent state since the beginning of the grace
983 * period? If no, then exit and wait for the next call.
985 if (!rdp->passed_quiesc)
986 return;
989 * Tell RCU we are done (but rcu_report_qs_rdp() will be the
990 * judge of that).
992 rcu_report_qs_rdp(rdp->cpu, rsp, rdp, rdp->passed_quiesc_completed);
995 #ifdef CONFIG_HOTPLUG_CPU
998 * Move a dying CPU's RCU callbacks to online CPU's callback list.
999 * Synchronization is not required because this function executes
1000 * in stop_machine() context.
1002 static void rcu_send_cbs_to_online(struct rcu_state *rsp)
1004 int i;
1005 /* current DYING CPU is cleared in the cpu_online_mask */
1006 int receive_cpu = cpumask_any(cpu_online_mask);
1007 struct rcu_data *rdp = this_cpu_ptr(rsp->rda);
1008 struct rcu_data *receive_rdp = per_cpu_ptr(rsp->rda, receive_cpu);
1010 if (rdp->nxtlist == NULL)
1011 return; /* irqs disabled, so comparison is stable. */
1013 *receive_rdp->nxttail[RCU_NEXT_TAIL] = rdp->nxtlist;
1014 receive_rdp->nxttail[RCU_NEXT_TAIL] = rdp->nxttail[RCU_NEXT_TAIL];
1015 receive_rdp->qlen += rdp->qlen;
1016 receive_rdp->n_cbs_adopted += rdp->qlen;
1017 rdp->n_cbs_orphaned += rdp->qlen;
1019 rdp->nxtlist = NULL;
1020 for (i = 0; i < RCU_NEXT_SIZE; i++)
1021 rdp->nxttail[i] = &rdp->nxtlist;
1022 rdp->qlen = 0;
1026 * Remove the outgoing CPU from the bitmasks in the rcu_node hierarchy
1027 * and move all callbacks from the outgoing CPU to the current one.
1028 * There can only be one CPU hotplug operation at a time, so no other
1029 * CPU can be attempting to update rcu_cpu_kthread_task.
1031 static void __rcu_offline_cpu(int cpu, struct rcu_state *rsp)
1033 unsigned long flags;
1034 unsigned long mask;
1035 int need_report = 0;
1036 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
1037 struct rcu_node *rnp;
1038 struct task_struct *t;
1040 /* Stop the CPU's kthread. */
1041 t = per_cpu(rcu_cpu_kthread_task, cpu);
1042 if (t != NULL) {
1043 per_cpu(rcu_cpu_kthread_task, cpu) = NULL;
1044 kthread_stop(t);
1047 /* Exclude any attempts to start a new grace period. */
1048 raw_spin_lock_irqsave(&rsp->onofflock, flags);
1050 /* Remove the outgoing CPU from the masks in the rcu_node hierarchy. */
1051 rnp = rdp->mynode; /* this is the outgoing CPU's rnp. */
1052 mask = rdp->grpmask; /* rnp->grplo is constant. */
1053 do {
1054 raw_spin_lock(&rnp->lock); /* irqs already disabled. */
1055 rnp->qsmaskinit &= ~mask;
1056 if (rnp->qsmaskinit != 0) {
1057 if (rnp != rdp->mynode)
1058 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
1059 break;
1061 if (rnp == rdp->mynode)
1062 need_report = rcu_preempt_offline_tasks(rsp, rnp, rdp);
1063 else
1064 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
1065 mask = rnp->grpmask;
1066 rnp = rnp->parent;
1067 } while (rnp != NULL);
1070 * We still hold the leaf rcu_node structure lock here, and
1071 * irqs are still disabled. The reason for this subterfuge is
1072 * because invoking rcu_report_unblock_qs_rnp() with ->onofflock
1073 * held leads to deadlock.
1075 raw_spin_unlock(&rsp->onofflock); /* irqs remain disabled. */
1076 rnp = rdp->mynode;
1077 if (need_report & RCU_OFL_TASKS_NORM_GP)
1078 rcu_report_unblock_qs_rnp(rnp, flags);
1079 else
1080 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1081 if (need_report & RCU_OFL_TASKS_EXP_GP)
1082 rcu_report_exp_rnp(rsp, rnp);
1085 * If there are no more online CPUs for this rcu_node structure,
1086 * kill the rcu_node structure's kthread. Otherwise, adjust its
1087 * affinity.
1089 t = rnp->node_kthread_task;
1090 if (t != NULL &&
1091 rnp->qsmaskinit == 0) {
1092 kthread_stop(t);
1093 rnp->node_kthread_task = NULL;
1094 } else
1095 rcu_node_kthread_setaffinity(rnp);
1099 * Remove the specified CPU from the RCU hierarchy and move any pending
1100 * callbacks that it might have to the current CPU. This code assumes
1101 * that at least one CPU in the system will remain running at all times.
1102 * Any attempt to offline -all- CPUs is likely to strand RCU callbacks.
1104 static void rcu_offline_cpu(int cpu)
1106 __rcu_offline_cpu(cpu, &rcu_sched_state);
1107 __rcu_offline_cpu(cpu, &rcu_bh_state);
1108 rcu_preempt_offline_cpu(cpu);
1111 #else /* #ifdef CONFIG_HOTPLUG_CPU */
1113 static void rcu_send_cbs_to_online(struct rcu_state *rsp)
1117 static void rcu_offline_cpu(int cpu)
1121 #endif /* #else #ifdef CONFIG_HOTPLUG_CPU */
1124 * Invoke any RCU callbacks that have made it to the end of their grace
1125 * period. Thottle as specified by rdp->blimit.
1127 static void rcu_do_batch(struct rcu_state *rsp, struct rcu_data *rdp)
1129 unsigned long flags;
1130 struct rcu_head *next, *list, **tail;
1131 int count;
1133 /* If no callbacks are ready, just return.*/
1134 if (!cpu_has_callbacks_ready_to_invoke(rdp))
1135 return;
1138 * Extract the list of ready callbacks, disabling to prevent
1139 * races with call_rcu() from interrupt handlers.
1141 local_irq_save(flags);
1142 list = rdp->nxtlist;
1143 rdp->nxtlist = *rdp->nxttail[RCU_DONE_TAIL];
1144 *rdp->nxttail[RCU_DONE_TAIL] = NULL;
1145 tail = rdp->nxttail[RCU_DONE_TAIL];
1146 for (count = RCU_NEXT_SIZE - 1; count >= 0; count--)
1147 if (rdp->nxttail[count] == rdp->nxttail[RCU_DONE_TAIL])
1148 rdp->nxttail[count] = &rdp->nxtlist;
1149 local_irq_restore(flags);
1151 /* Invoke callbacks. */
1152 count = 0;
1153 while (list) {
1154 next = list->next;
1155 prefetch(next);
1156 debug_rcu_head_unqueue(list);
1157 list->func(list);
1158 list = next;
1159 if (++count >= rdp->blimit)
1160 break;
1163 local_irq_save(flags);
1165 /* Update count, and requeue any remaining callbacks. */
1166 rdp->qlen -= count;
1167 rdp->n_cbs_invoked += count;
1168 if (list != NULL) {
1169 *tail = rdp->nxtlist;
1170 rdp->nxtlist = list;
1171 for (count = 0; count < RCU_NEXT_SIZE; count++)
1172 if (&rdp->nxtlist == rdp->nxttail[count])
1173 rdp->nxttail[count] = tail;
1174 else
1175 break;
1178 /* Reinstate batch limit if we have worked down the excess. */
1179 if (rdp->blimit == LONG_MAX && rdp->qlen <= qlowmark)
1180 rdp->blimit = blimit;
1182 /* Reset ->qlen_last_fqs_check trigger if enough CBs have drained. */
1183 if (rdp->qlen == 0 && rdp->qlen_last_fqs_check != 0) {
1184 rdp->qlen_last_fqs_check = 0;
1185 rdp->n_force_qs_snap = rsp->n_force_qs;
1186 } else if (rdp->qlen < rdp->qlen_last_fqs_check - qhimark)
1187 rdp->qlen_last_fqs_check = rdp->qlen;
1189 local_irq_restore(flags);
1191 /* Re-raise the RCU softirq if there are callbacks remaining. */
1192 if (cpu_has_callbacks_ready_to_invoke(rdp))
1193 invoke_rcu_kthread();
1197 * Check to see if this CPU is in a non-context-switch quiescent state
1198 * (user mode or idle loop for rcu, non-softirq execution for rcu_bh).
1199 * Also schedule the RCU softirq handler.
1201 * This function must be called with hardirqs disabled. It is normally
1202 * invoked from the scheduling-clock interrupt. If rcu_pending returns
1203 * false, there is no point in invoking rcu_check_callbacks().
1205 void rcu_check_callbacks(int cpu, int user)
1207 if (user ||
1208 (idle_cpu(cpu) && rcu_scheduler_active &&
1209 !in_softirq() && hardirq_count() <= (1 << HARDIRQ_SHIFT))) {
1212 * Get here if this CPU took its interrupt from user
1213 * mode or from the idle loop, and if this is not a
1214 * nested interrupt. In this case, the CPU is in
1215 * a quiescent state, so note it.
1217 * No memory barrier is required here because both
1218 * rcu_sched_qs() and rcu_bh_qs() reference only CPU-local
1219 * variables that other CPUs neither access nor modify,
1220 * at least not while the corresponding CPU is online.
1223 rcu_sched_qs(cpu);
1224 rcu_bh_qs(cpu);
1226 } else if (!in_softirq()) {
1229 * Get here if this CPU did not take its interrupt from
1230 * softirq, in other words, if it is not interrupting
1231 * a rcu_bh read-side critical section. This is an _bh
1232 * critical section, so note it.
1235 rcu_bh_qs(cpu);
1237 rcu_preempt_check_callbacks(cpu);
1238 if (rcu_pending(cpu))
1239 invoke_rcu_kthread();
1242 #ifdef CONFIG_SMP
1245 * Scan the leaf rcu_node structures, processing dyntick state for any that
1246 * have not yet encountered a quiescent state, using the function specified.
1247 * The caller must have suppressed start of new grace periods.
1249 static void force_qs_rnp(struct rcu_state *rsp, int (*f)(struct rcu_data *))
1251 unsigned long bit;
1252 int cpu;
1253 unsigned long flags;
1254 unsigned long mask;
1255 struct rcu_node *rnp;
1257 rcu_for_each_leaf_node(rsp, rnp) {
1258 mask = 0;
1259 raw_spin_lock_irqsave(&rnp->lock, flags);
1260 if (!rcu_gp_in_progress(rsp)) {
1261 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1262 return;
1264 if (rnp->qsmask == 0) {
1265 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1266 continue;
1268 cpu = rnp->grplo;
1269 bit = 1;
1270 for (; cpu <= rnp->grphi; cpu++, bit <<= 1) {
1271 if ((rnp->qsmask & bit) != 0 &&
1272 f(per_cpu_ptr(rsp->rda, cpu)))
1273 mask |= bit;
1275 if (mask != 0) {
1277 /* rcu_report_qs_rnp() releases rnp->lock. */
1278 rcu_report_qs_rnp(mask, rsp, rnp, flags);
1279 continue;
1281 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1286 * Force quiescent states on reluctant CPUs, and also detect which
1287 * CPUs are in dyntick-idle mode.
1289 static void force_quiescent_state(struct rcu_state *rsp, int relaxed)
1291 unsigned long flags;
1292 struct rcu_node *rnp = rcu_get_root(rsp);
1294 if (!rcu_gp_in_progress(rsp))
1295 return; /* No grace period in progress, nothing to force. */
1296 if (!raw_spin_trylock_irqsave(&rsp->fqslock, flags)) {
1297 rsp->n_force_qs_lh++; /* Inexact, can lose counts. Tough! */
1298 return; /* Someone else is already on the job. */
1300 if (relaxed && ULONG_CMP_GE(rsp->jiffies_force_qs, jiffies))
1301 goto unlock_fqs_ret; /* no emergency and done recently. */
1302 rsp->n_force_qs++;
1303 raw_spin_lock(&rnp->lock); /* irqs already disabled */
1304 rsp->jiffies_force_qs = jiffies + RCU_JIFFIES_TILL_FORCE_QS;
1305 if(!rcu_gp_in_progress(rsp)) {
1306 rsp->n_force_qs_ngp++;
1307 raw_spin_unlock(&rnp->lock); /* irqs remain disabled */
1308 goto unlock_fqs_ret; /* no GP in progress, time updated. */
1310 rsp->fqs_active = 1;
1311 switch (rsp->signaled) {
1312 case RCU_GP_IDLE:
1313 case RCU_GP_INIT:
1315 break; /* grace period idle or initializing, ignore. */
1317 case RCU_SAVE_DYNTICK:
1318 if (RCU_SIGNAL_INIT != RCU_SAVE_DYNTICK)
1319 break; /* So gcc recognizes the dead code. */
1321 raw_spin_unlock(&rnp->lock); /* irqs remain disabled */
1323 /* Record dyntick-idle state. */
1324 force_qs_rnp(rsp, dyntick_save_progress_counter);
1325 raw_spin_lock(&rnp->lock); /* irqs already disabled */
1326 if (rcu_gp_in_progress(rsp))
1327 rsp->signaled = RCU_FORCE_QS;
1328 break;
1330 case RCU_FORCE_QS:
1332 /* Check dyntick-idle state, send IPI to laggarts. */
1333 raw_spin_unlock(&rnp->lock); /* irqs remain disabled */
1334 force_qs_rnp(rsp, rcu_implicit_dynticks_qs);
1336 /* Leave state in case more forcing is required. */
1338 raw_spin_lock(&rnp->lock); /* irqs already disabled */
1339 break;
1341 rsp->fqs_active = 0;
1342 if (rsp->fqs_need_gp) {
1343 raw_spin_unlock(&rsp->fqslock); /* irqs remain disabled */
1344 rsp->fqs_need_gp = 0;
1345 rcu_start_gp(rsp, flags); /* releases rnp->lock */
1346 return;
1348 raw_spin_unlock(&rnp->lock); /* irqs remain disabled */
1349 unlock_fqs_ret:
1350 raw_spin_unlock_irqrestore(&rsp->fqslock, flags);
1353 #else /* #ifdef CONFIG_SMP */
1355 static void force_quiescent_state(struct rcu_state *rsp, int relaxed)
1357 set_need_resched();
1360 #endif /* #else #ifdef CONFIG_SMP */
1363 * This does the RCU processing work from softirq context for the
1364 * specified rcu_state and rcu_data structures. This may be called
1365 * only from the CPU to whom the rdp belongs.
1367 static void
1368 __rcu_process_callbacks(struct rcu_state *rsp, struct rcu_data *rdp)
1370 unsigned long flags;
1372 WARN_ON_ONCE(rdp->beenonline == 0);
1375 * If an RCU GP has gone long enough, go check for dyntick
1376 * idle CPUs and, if needed, send resched IPIs.
1378 if (ULONG_CMP_LT(ACCESS_ONCE(rsp->jiffies_force_qs), jiffies))
1379 force_quiescent_state(rsp, 1);
1382 * Advance callbacks in response to end of earlier grace
1383 * period that some other CPU ended.
1385 rcu_process_gp_end(rsp, rdp);
1387 /* Update RCU state based on any recent quiescent states. */
1388 rcu_check_quiescent_state(rsp, rdp);
1390 /* Does this CPU require a not-yet-started grace period? */
1391 if (cpu_needs_another_gp(rsp, rdp)) {
1392 raw_spin_lock_irqsave(&rcu_get_root(rsp)->lock, flags);
1393 rcu_start_gp(rsp, flags); /* releases above lock */
1396 /* If there are callbacks ready, invoke them. */
1397 rcu_do_batch(rsp, rdp);
1401 * Do softirq processing for the current CPU.
1403 static void rcu_process_callbacks(void)
1405 __rcu_process_callbacks(&rcu_sched_state,
1406 &__get_cpu_var(rcu_sched_data));
1407 __rcu_process_callbacks(&rcu_bh_state, &__get_cpu_var(rcu_bh_data));
1408 rcu_preempt_process_callbacks();
1410 /* If we are last CPU on way to dyntick-idle mode, accelerate it. */
1411 rcu_needs_cpu_flush();
1415 * Wake up the current CPU's kthread. This replaces raise_softirq()
1416 * in earlier versions of RCU. Note that because we are running on
1417 * the current CPU with interrupts disabled, the rcu_cpu_kthread_task
1418 * cannot disappear out from under us.
1420 static void invoke_rcu_kthread(void)
1422 unsigned long flags;
1423 wait_queue_head_t *q;
1424 int cpu;
1426 local_irq_save(flags);
1427 cpu = smp_processor_id();
1428 per_cpu(rcu_cpu_has_work, cpu) = 1;
1429 if (per_cpu(rcu_cpu_kthread_task, cpu) == NULL) {
1430 local_irq_restore(flags);
1431 return;
1433 q = &per_cpu(rcu_cpu_wq, cpu);
1434 wake_up(q);
1435 local_irq_restore(flags);
1439 * Timer handler to initiate the waking up of per-CPU kthreads that
1440 * have yielded the CPU due to excess numbers of RCU callbacks.
1442 static void rcu_cpu_kthread_timer(unsigned long arg)
1444 unsigned long flags;
1445 struct rcu_data *rdp = (struct rcu_data *)arg;
1446 struct rcu_node *rnp = rdp->mynode;
1447 struct task_struct *t;
1449 raw_spin_lock_irqsave(&rnp->lock, flags);
1450 rnp->wakemask |= rdp->grpmask;
1451 t = rnp->node_kthread_task;
1452 if (t == NULL) {
1453 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1454 return;
1456 wake_up_process(t);
1457 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1461 * Drop to non-real-time priority and yield, but only after posting a
1462 * timer that will cause us to regain our real-time priority if we
1463 * remain preempted. Either way, we restore our real-time priority
1464 * before returning.
1466 static void rcu_yield(int cpu)
1468 struct rcu_data *rdp = per_cpu_ptr(rcu_sched_state.rda, cpu);
1469 struct sched_param sp;
1470 struct timer_list yield_timer;
1472 setup_timer_on_stack(&yield_timer, rcu_cpu_kthread_timer, (unsigned long)rdp);
1473 mod_timer(&yield_timer, jiffies + 2);
1474 sp.sched_priority = 0;
1475 sched_setscheduler_nocheck(current, SCHED_NORMAL, &sp);
1476 schedule();
1477 sp.sched_priority = RCU_KTHREAD_PRIO;
1478 sched_setscheduler_nocheck(current, SCHED_FIFO, &sp);
1479 del_timer(&yield_timer);
1483 * Handle cases where the rcu_cpu_kthread() ends up on the wrong CPU.
1484 * This can happen while the corresponding CPU is either coming online
1485 * or going offline. We cannot wait until the CPU is fully online
1486 * before starting the kthread, because the various notifier functions
1487 * can wait for RCU grace periods. So we park rcu_cpu_kthread() until
1488 * the corresponding CPU is online.
1490 * Return 1 if the kthread needs to stop, 0 otherwise.
1492 * Caller must disable bh. This function can momentarily enable it.
1494 static int rcu_cpu_kthread_should_stop(int cpu)
1496 while (cpu_is_offline(cpu) ||
1497 !cpumask_equal(&current->cpus_allowed, cpumask_of(cpu)) ||
1498 smp_processor_id() != cpu) {
1499 if (kthread_should_stop())
1500 return 1;
1501 local_bh_enable();
1502 schedule_timeout_uninterruptible(1);
1503 if (!cpumask_equal(&current->cpus_allowed, cpumask_of(cpu)))
1504 set_cpus_allowed_ptr(current, cpumask_of(cpu));
1505 local_bh_disable();
1507 return 0;
1511 * Per-CPU kernel thread that invokes RCU callbacks. This replaces the
1512 * earlier RCU softirq.
1514 static int rcu_cpu_kthread(void *arg)
1516 int cpu = (int)(long)arg;
1517 unsigned long flags;
1518 int spincnt = 0;
1519 wait_queue_head_t *wqp = &per_cpu(rcu_cpu_wq, cpu);
1520 char work;
1521 char *workp = &per_cpu(rcu_cpu_has_work, cpu);
1523 for (;;) {
1524 wait_event_interruptible(*wqp,
1525 *workp != 0 || kthread_should_stop());
1526 local_bh_disable();
1527 if (rcu_cpu_kthread_should_stop(cpu)) {
1528 local_bh_enable();
1529 break;
1531 local_irq_save(flags);
1532 work = *workp;
1533 *workp = 0;
1534 local_irq_restore(flags);
1535 if (work)
1536 rcu_process_callbacks();
1537 local_bh_enable();
1538 if (*workp != 0)
1539 spincnt++;
1540 else
1541 spincnt = 0;
1542 if (spincnt > 10) {
1543 rcu_yield(cpu);
1544 spincnt = 0;
1547 return 0;
1551 * Spawn a per-CPU kthread, setting up affinity and priority.
1552 * Because the CPU hotplug lock is held, no other CPU will be attempting
1553 * to manipulate rcu_cpu_kthread_task. There might be another CPU
1554 * attempting to access it during boot, but the locking in kthread_bind()
1555 * will enforce sufficient ordering.
1557 static int __cpuinit rcu_spawn_one_cpu_kthread(int cpu)
1559 struct sched_param sp;
1560 struct task_struct *t;
1562 if (!rcu_kthreads_spawnable ||
1563 per_cpu(rcu_cpu_kthread_task, cpu) != NULL)
1564 return 0;
1565 t = kthread_create(rcu_cpu_kthread, (void *)(long)cpu, "rcuc%d", cpu);
1566 if (IS_ERR(t))
1567 return PTR_ERR(t);
1568 kthread_bind(t, cpu);
1569 WARN_ON_ONCE(per_cpu(rcu_cpu_kthread_task, cpu) != NULL);
1570 per_cpu(rcu_cpu_kthread_task, cpu) = t;
1571 wake_up_process(t);
1572 sp.sched_priority = RCU_KTHREAD_PRIO;
1573 sched_setscheduler_nocheck(t, SCHED_FIFO, &sp);
1574 return 0;
1578 * Per-rcu_node kthread, which is in charge of waking up the per-CPU
1579 * kthreads when needed. We ignore requests to wake up kthreads
1580 * for offline CPUs, which is OK because force_quiescent_state()
1581 * takes care of this case.
1583 static int rcu_node_kthread(void *arg)
1585 int cpu;
1586 unsigned long flags;
1587 unsigned long mask;
1588 struct rcu_node *rnp = (struct rcu_node *)arg;
1589 struct sched_param sp;
1590 struct task_struct *t;
1592 for (;;) {
1593 wait_event_interruptible(rnp->node_wq, rnp->wakemask != 0 ||
1594 kthread_should_stop());
1595 if (kthread_should_stop())
1596 break;
1597 raw_spin_lock_irqsave(&rnp->lock, flags);
1598 mask = rnp->wakemask;
1599 rnp->wakemask = 0;
1600 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1601 for (cpu = rnp->grplo; cpu <= rnp->grphi; cpu++, mask >>= 1) {
1602 if ((mask & 0x1) == 0)
1603 continue;
1604 preempt_disable();
1605 t = per_cpu(rcu_cpu_kthread_task, cpu);
1606 if (!cpu_online(cpu) || t == NULL) {
1607 preempt_enable();
1608 continue;
1610 per_cpu(rcu_cpu_has_work, cpu) = 1;
1611 sp.sched_priority = RCU_KTHREAD_PRIO;
1612 sched_setscheduler_nocheck(t, SCHED_FIFO, &sp);
1613 preempt_enable();
1616 return 0;
1620 * Set the per-rcu_node kthread's affinity to cover all CPUs that are
1621 * served by the rcu_node in question.
1623 static void rcu_node_kthread_setaffinity(struct rcu_node *rnp)
1625 cpumask_var_t cm;
1626 int cpu;
1627 unsigned long mask = rnp->qsmaskinit;
1629 if (rnp->node_kthread_task == NULL ||
1630 rnp->qsmaskinit == 0)
1631 return;
1632 if (!alloc_cpumask_var(&cm, GFP_KERNEL))
1633 return;
1634 cpumask_clear(cm);
1635 for (cpu = rnp->grplo; cpu <= rnp->grphi; cpu++, mask >>= 1)
1636 if (mask & 0x1)
1637 cpumask_set_cpu(cpu, cm);
1638 set_cpus_allowed_ptr(rnp->node_kthread_task, cm);
1639 free_cpumask_var(cm);
1643 * Spawn a per-rcu_node kthread, setting priority and affinity.
1645 static int __cpuinit rcu_spawn_one_node_kthread(struct rcu_state *rsp,
1646 struct rcu_node *rnp)
1648 int rnp_index = rnp - &rsp->node[0];
1649 struct sched_param sp;
1650 struct task_struct *t;
1652 if (!rcu_kthreads_spawnable ||
1653 rnp->qsmaskinit == 0 ||
1654 rnp->node_kthread_task != NULL)
1655 return 0;
1656 t = kthread_create(rcu_node_kthread, (void *)rnp, "rcun%d", rnp_index);
1657 if (IS_ERR(t))
1658 return PTR_ERR(t);
1659 rnp->node_kthread_task = t;
1660 wake_up_process(t);
1661 sp.sched_priority = 99;
1662 sched_setscheduler_nocheck(t, SCHED_FIFO, &sp);
1663 return 0;
1667 * Spawn all kthreads -- called as soon as the scheduler is running.
1669 static int __init rcu_spawn_kthreads(void)
1671 int cpu;
1672 struct rcu_node *rnp;
1674 rcu_kthreads_spawnable = 1;
1675 for_each_possible_cpu(cpu) {
1676 init_waitqueue_head(&per_cpu(rcu_cpu_wq, cpu));
1677 per_cpu(rcu_cpu_has_work, cpu) = 0;
1678 if (cpu_online(cpu))
1679 (void)rcu_spawn_one_cpu_kthread(cpu);
1681 rcu_for_each_leaf_node(&rcu_sched_state, rnp) {
1682 init_waitqueue_head(&rnp->node_wq);
1683 (void)rcu_spawn_one_node_kthread(&rcu_sched_state, rnp);
1685 return 0;
1687 early_initcall(rcu_spawn_kthreads);
1689 static void
1690 __call_rcu(struct rcu_head *head, void (*func)(struct rcu_head *rcu),
1691 struct rcu_state *rsp)
1693 unsigned long flags;
1694 struct rcu_data *rdp;
1696 debug_rcu_head_queue(head);
1697 head->func = func;
1698 head->next = NULL;
1700 smp_mb(); /* Ensure RCU update seen before callback registry. */
1703 * Opportunistically note grace-period endings and beginnings.
1704 * Note that we might see a beginning right after we see an
1705 * end, but never vice versa, since this CPU has to pass through
1706 * a quiescent state betweentimes.
1708 local_irq_save(flags);
1709 rdp = this_cpu_ptr(rsp->rda);
1711 /* Add the callback to our list. */
1712 *rdp->nxttail[RCU_NEXT_TAIL] = head;
1713 rdp->nxttail[RCU_NEXT_TAIL] = &head->next;
1716 * Force the grace period if too many callbacks or too long waiting.
1717 * Enforce hysteresis, and don't invoke force_quiescent_state()
1718 * if some other CPU has recently done so. Also, don't bother
1719 * invoking force_quiescent_state() if the newly enqueued callback
1720 * is the only one waiting for a grace period to complete.
1722 if (unlikely(++rdp->qlen > rdp->qlen_last_fqs_check + qhimark)) {
1724 /* Are we ignoring a completed grace period? */
1725 rcu_process_gp_end(rsp, rdp);
1726 check_for_new_grace_period(rsp, rdp);
1728 /* Start a new grace period if one not already started. */
1729 if (!rcu_gp_in_progress(rsp)) {
1730 unsigned long nestflag;
1731 struct rcu_node *rnp_root = rcu_get_root(rsp);
1733 raw_spin_lock_irqsave(&rnp_root->lock, nestflag);
1734 rcu_start_gp(rsp, nestflag); /* rlses rnp_root->lock */
1735 } else {
1736 /* Give the grace period a kick. */
1737 rdp->blimit = LONG_MAX;
1738 if (rsp->n_force_qs == rdp->n_force_qs_snap &&
1739 *rdp->nxttail[RCU_DONE_TAIL] != head)
1740 force_quiescent_state(rsp, 0);
1741 rdp->n_force_qs_snap = rsp->n_force_qs;
1742 rdp->qlen_last_fqs_check = rdp->qlen;
1744 } else if (ULONG_CMP_LT(ACCESS_ONCE(rsp->jiffies_force_qs), jiffies))
1745 force_quiescent_state(rsp, 1);
1746 local_irq_restore(flags);
1750 * Queue an RCU-sched callback for invocation after a grace period.
1752 void call_rcu_sched(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
1754 __call_rcu(head, func, &rcu_sched_state);
1756 EXPORT_SYMBOL_GPL(call_rcu_sched);
1759 * Queue an RCU for invocation after a quicker grace period.
1761 void call_rcu_bh(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
1763 __call_rcu(head, func, &rcu_bh_state);
1765 EXPORT_SYMBOL_GPL(call_rcu_bh);
1768 * synchronize_sched - wait until an rcu-sched grace period has elapsed.
1770 * Control will return to the caller some time after a full rcu-sched
1771 * grace period has elapsed, in other words after all currently executing
1772 * rcu-sched read-side critical sections have completed. These read-side
1773 * critical sections are delimited by rcu_read_lock_sched() and
1774 * rcu_read_unlock_sched(), and may be nested. Note that preempt_disable(),
1775 * local_irq_disable(), and so on may be used in place of
1776 * rcu_read_lock_sched().
1778 * This means that all preempt_disable code sequences, including NMI and
1779 * hardware-interrupt handlers, in progress on entry will have completed
1780 * before this primitive returns. However, this does not guarantee that
1781 * softirq handlers will have completed, since in some kernels, these
1782 * handlers can run in process context, and can block.
1784 * This primitive provides the guarantees made by the (now removed)
1785 * synchronize_kernel() API. In contrast, synchronize_rcu() only
1786 * guarantees that rcu_read_lock() sections will have completed.
1787 * In "classic RCU", these two guarantees happen to be one and
1788 * the same, but can differ in realtime RCU implementations.
1790 void synchronize_sched(void)
1792 struct rcu_synchronize rcu;
1794 if (rcu_blocking_is_gp())
1795 return;
1797 init_rcu_head_on_stack(&rcu.head);
1798 init_completion(&rcu.completion);
1799 /* Will wake me after RCU finished. */
1800 call_rcu_sched(&rcu.head, wakeme_after_rcu);
1801 /* Wait for it. */
1802 wait_for_completion(&rcu.completion);
1803 destroy_rcu_head_on_stack(&rcu.head);
1805 EXPORT_SYMBOL_GPL(synchronize_sched);
1808 * synchronize_rcu_bh - wait until an rcu_bh grace period has elapsed.
1810 * Control will return to the caller some time after a full rcu_bh grace
1811 * period has elapsed, in other words after all currently executing rcu_bh
1812 * read-side critical sections have completed. RCU read-side critical
1813 * sections are delimited by rcu_read_lock_bh() and rcu_read_unlock_bh(),
1814 * and may be nested.
1816 void synchronize_rcu_bh(void)
1818 struct rcu_synchronize rcu;
1820 if (rcu_blocking_is_gp())
1821 return;
1823 init_rcu_head_on_stack(&rcu.head);
1824 init_completion(&rcu.completion);
1825 /* Will wake me after RCU finished. */
1826 call_rcu_bh(&rcu.head, wakeme_after_rcu);
1827 /* Wait for it. */
1828 wait_for_completion(&rcu.completion);
1829 destroy_rcu_head_on_stack(&rcu.head);
1831 EXPORT_SYMBOL_GPL(synchronize_rcu_bh);
1834 * Check to see if there is any immediate RCU-related work to be done
1835 * by the current CPU, for the specified type of RCU, returning 1 if so.
1836 * The checks are in order of increasing expense: checks that can be
1837 * carried out against CPU-local state are performed first. However,
1838 * we must check for CPU stalls first, else we might not get a chance.
1840 static int __rcu_pending(struct rcu_state *rsp, struct rcu_data *rdp)
1842 struct rcu_node *rnp = rdp->mynode;
1844 rdp->n_rcu_pending++;
1846 /* Check for CPU stalls, if enabled. */
1847 check_cpu_stall(rsp, rdp);
1849 /* Is the RCU core waiting for a quiescent state from this CPU? */
1850 if (rdp->qs_pending && !rdp->passed_quiesc) {
1853 * If force_quiescent_state() coming soon and this CPU
1854 * needs a quiescent state, and this is either RCU-sched
1855 * or RCU-bh, force a local reschedule.
1857 rdp->n_rp_qs_pending++;
1858 if (!rdp->preemptable &&
1859 ULONG_CMP_LT(ACCESS_ONCE(rsp->jiffies_force_qs) - 1,
1860 jiffies))
1861 set_need_resched();
1862 } else if (rdp->qs_pending && rdp->passed_quiesc) {
1863 rdp->n_rp_report_qs++;
1864 return 1;
1867 /* Does this CPU have callbacks ready to invoke? */
1868 if (cpu_has_callbacks_ready_to_invoke(rdp)) {
1869 rdp->n_rp_cb_ready++;
1870 return 1;
1873 /* Has RCU gone idle with this CPU needing another grace period? */
1874 if (cpu_needs_another_gp(rsp, rdp)) {
1875 rdp->n_rp_cpu_needs_gp++;
1876 return 1;
1879 /* Has another RCU grace period completed? */
1880 if (ACCESS_ONCE(rnp->completed) != rdp->completed) { /* outside lock */
1881 rdp->n_rp_gp_completed++;
1882 return 1;
1885 /* Has a new RCU grace period started? */
1886 if (ACCESS_ONCE(rnp->gpnum) != rdp->gpnum) { /* outside lock */
1887 rdp->n_rp_gp_started++;
1888 return 1;
1891 /* Has an RCU GP gone long enough to send resched IPIs &c? */
1892 if (rcu_gp_in_progress(rsp) &&
1893 ULONG_CMP_LT(ACCESS_ONCE(rsp->jiffies_force_qs), jiffies)) {
1894 rdp->n_rp_need_fqs++;
1895 return 1;
1898 /* nothing to do */
1899 rdp->n_rp_need_nothing++;
1900 return 0;
1904 * Check to see if there is any immediate RCU-related work to be done
1905 * by the current CPU, returning 1 if so. This function is part of the
1906 * RCU implementation; it is -not- an exported member of the RCU API.
1908 static int rcu_pending(int cpu)
1910 return __rcu_pending(&rcu_sched_state, &per_cpu(rcu_sched_data, cpu)) ||
1911 __rcu_pending(&rcu_bh_state, &per_cpu(rcu_bh_data, cpu)) ||
1912 rcu_preempt_pending(cpu);
1916 * Check to see if any future RCU-related work will need to be done
1917 * by the current CPU, even if none need be done immediately, returning
1918 * 1 if so.
1920 static int rcu_needs_cpu_quick_check(int cpu)
1922 /* RCU callbacks either ready or pending? */
1923 return per_cpu(rcu_sched_data, cpu).nxtlist ||
1924 per_cpu(rcu_bh_data, cpu).nxtlist ||
1925 rcu_preempt_needs_cpu(cpu);
1928 static DEFINE_PER_CPU(struct rcu_head, rcu_barrier_head) = {NULL};
1929 static atomic_t rcu_barrier_cpu_count;
1930 static DEFINE_MUTEX(rcu_barrier_mutex);
1931 static struct completion rcu_barrier_completion;
1933 static void rcu_barrier_callback(struct rcu_head *notused)
1935 if (atomic_dec_and_test(&rcu_barrier_cpu_count))
1936 complete(&rcu_barrier_completion);
1940 * Called with preemption disabled, and from cross-cpu IRQ context.
1942 static void rcu_barrier_func(void *type)
1944 int cpu = smp_processor_id();
1945 struct rcu_head *head = &per_cpu(rcu_barrier_head, cpu);
1946 void (*call_rcu_func)(struct rcu_head *head,
1947 void (*func)(struct rcu_head *head));
1949 atomic_inc(&rcu_barrier_cpu_count);
1950 call_rcu_func = type;
1951 call_rcu_func(head, rcu_barrier_callback);
1955 * Orchestrate the specified type of RCU barrier, waiting for all
1956 * RCU callbacks of the specified type to complete.
1958 static void _rcu_barrier(struct rcu_state *rsp,
1959 void (*call_rcu_func)(struct rcu_head *head,
1960 void (*func)(struct rcu_head *head)))
1962 BUG_ON(in_interrupt());
1963 /* Take mutex to serialize concurrent rcu_barrier() requests. */
1964 mutex_lock(&rcu_barrier_mutex);
1965 init_completion(&rcu_barrier_completion);
1967 * Initialize rcu_barrier_cpu_count to 1, then invoke
1968 * rcu_barrier_func() on each CPU, so that each CPU also has
1969 * incremented rcu_barrier_cpu_count. Only then is it safe to
1970 * decrement rcu_barrier_cpu_count -- otherwise the first CPU
1971 * might complete its grace period before all of the other CPUs
1972 * did their increment, causing this function to return too
1973 * early. Note that on_each_cpu() disables irqs, which prevents
1974 * any CPUs from coming online or going offline until each online
1975 * CPU has queued its RCU-barrier callback.
1977 atomic_set(&rcu_barrier_cpu_count, 1);
1978 on_each_cpu(rcu_barrier_func, (void *)call_rcu_func, 1);
1979 if (atomic_dec_and_test(&rcu_barrier_cpu_count))
1980 complete(&rcu_barrier_completion);
1981 wait_for_completion(&rcu_barrier_completion);
1982 mutex_unlock(&rcu_barrier_mutex);
1986 * rcu_barrier_bh - Wait until all in-flight call_rcu_bh() callbacks complete.
1988 void rcu_barrier_bh(void)
1990 _rcu_barrier(&rcu_bh_state, call_rcu_bh);
1992 EXPORT_SYMBOL_GPL(rcu_barrier_bh);
1995 * rcu_barrier_sched - Wait for in-flight call_rcu_sched() callbacks.
1997 void rcu_barrier_sched(void)
1999 _rcu_barrier(&rcu_sched_state, call_rcu_sched);
2001 EXPORT_SYMBOL_GPL(rcu_barrier_sched);
2004 * Do boot-time initialization of a CPU's per-CPU RCU data.
2006 static void __init
2007 rcu_boot_init_percpu_data(int cpu, struct rcu_state *rsp)
2009 unsigned long flags;
2010 int i;
2011 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
2012 struct rcu_node *rnp = rcu_get_root(rsp);
2014 /* Set up local state, ensuring consistent view of global state. */
2015 raw_spin_lock_irqsave(&rnp->lock, flags);
2016 rdp->grpmask = 1UL << (cpu - rdp->mynode->grplo);
2017 rdp->nxtlist = NULL;
2018 for (i = 0; i < RCU_NEXT_SIZE; i++)
2019 rdp->nxttail[i] = &rdp->nxtlist;
2020 rdp->qlen = 0;
2021 #ifdef CONFIG_NO_HZ
2022 rdp->dynticks = &per_cpu(rcu_dynticks, cpu);
2023 #endif /* #ifdef CONFIG_NO_HZ */
2024 rdp->cpu = cpu;
2025 raw_spin_unlock_irqrestore(&rnp->lock, flags);
2029 * Initialize a CPU's per-CPU RCU data. Note that only one online or
2030 * offline event can be happening at a given time. Note also that we
2031 * can accept some slop in the rsp->completed access due to the fact
2032 * that this CPU cannot possibly have any RCU callbacks in flight yet.
2034 static void __cpuinit
2035 rcu_init_percpu_data(int cpu, struct rcu_state *rsp, int preemptable)
2037 unsigned long flags;
2038 unsigned long mask;
2039 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
2040 struct rcu_node *rnp = rcu_get_root(rsp);
2042 /* Set up local state, ensuring consistent view of global state. */
2043 raw_spin_lock_irqsave(&rnp->lock, flags);
2044 rdp->passed_quiesc = 0; /* We could be racing with new GP, */
2045 rdp->qs_pending = 1; /* so set up to respond to current GP. */
2046 rdp->beenonline = 1; /* We have now been online. */
2047 rdp->preemptable = preemptable;
2048 rdp->qlen_last_fqs_check = 0;
2049 rdp->n_force_qs_snap = rsp->n_force_qs;
2050 rdp->blimit = blimit;
2051 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
2054 * A new grace period might start here. If so, we won't be part
2055 * of it, but that is OK, as we are currently in a quiescent state.
2058 /* Exclude any attempts to start a new GP on large systems. */
2059 raw_spin_lock(&rsp->onofflock); /* irqs already disabled. */
2061 /* Add CPU to rcu_node bitmasks. */
2062 rnp = rdp->mynode;
2063 mask = rdp->grpmask;
2064 do {
2065 /* Exclude any attempts to start a new GP on small systems. */
2066 raw_spin_lock(&rnp->lock); /* irqs already disabled. */
2067 rnp->qsmaskinit |= mask;
2068 mask = rnp->grpmask;
2069 if (rnp == rdp->mynode) {
2070 rdp->gpnum = rnp->completed; /* if GP in progress... */
2071 rdp->completed = rnp->completed;
2072 rdp->passed_quiesc_completed = rnp->completed - 1;
2074 raw_spin_unlock(&rnp->lock); /* irqs already disabled. */
2075 rnp = rnp->parent;
2076 } while (rnp != NULL && !(rnp->qsmaskinit & mask));
2078 raw_spin_unlock_irqrestore(&rsp->onofflock, flags);
2081 static void __cpuinit rcu_online_cpu(int cpu)
2083 rcu_init_percpu_data(cpu, &rcu_sched_state, 0);
2084 rcu_init_percpu_data(cpu, &rcu_bh_state, 0);
2085 rcu_preempt_init_percpu_data(cpu);
2088 static void __cpuinit rcu_online_kthreads(int cpu)
2090 struct rcu_data *rdp = per_cpu_ptr(rcu_sched_state.rda, cpu);
2091 struct rcu_node *rnp = rdp->mynode;
2093 /* Fire up the incoming CPU's kthread and leaf rcu_node kthread. */
2094 if (rcu_kthreads_spawnable) {
2095 (void)rcu_spawn_one_cpu_kthread(cpu);
2096 if (rnp->node_kthread_task == NULL)
2097 (void)rcu_spawn_one_node_kthread(&rcu_sched_state, rnp);
2102 * Handle CPU online/offline notification events.
2104 static int __cpuinit rcu_cpu_notify(struct notifier_block *self,
2105 unsigned long action, void *hcpu)
2107 long cpu = (long)hcpu;
2108 struct rcu_data *rdp = per_cpu_ptr(rcu_sched_state.rda, cpu);
2109 struct rcu_node *rnp = rdp->mynode;
2111 switch (action) {
2112 case CPU_UP_PREPARE:
2113 case CPU_UP_PREPARE_FROZEN:
2114 rcu_online_cpu(cpu);
2115 rcu_online_kthreads(cpu);
2116 break;
2117 case CPU_ONLINE:
2118 rcu_node_kthread_setaffinity(rnp);
2119 break;
2120 case CPU_DYING:
2121 case CPU_DYING_FROZEN:
2123 * The whole machine is "stopped" except this CPU, so we can
2124 * touch any data without introducing corruption. We send the
2125 * dying CPU's callbacks to an arbitrarily chosen online CPU.
2127 rcu_send_cbs_to_online(&rcu_bh_state);
2128 rcu_send_cbs_to_online(&rcu_sched_state);
2129 rcu_preempt_send_cbs_to_online();
2130 break;
2131 case CPU_DEAD:
2132 case CPU_DEAD_FROZEN:
2133 case CPU_UP_CANCELED:
2134 case CPU_UP_CANCELED_FROZEN:
2135 rcu_offline_cpu(cpu);
2136 break;
2137 default:
2138 break;
2140 return NOTIFY_OK;
2144 * This function is invoked towards the end of the scheduler's initialization
2145 * process. Before this is called, the idle task might contain
2146 * RCU read-side critical sections (during which time, this idle
2147 * task is booting the system). After this function is called, the
2148 * idle tasks are prohibited from containing RCU read-side critical
2149 * sections. This function also enables RCU lockdep checking.
2151 void rcu_scheduler_starting(void)
2153 WARN_ON(num_online_cpus() != 1);
2154 WARN_ON(nr_context_switches() > 0);
2155 rcu_scheduler_active = 1;
2159 * Compute the per-level fanout, either using the exact fanout specified
2160 * or balancing the tree, depending on CONFIG_RCU_FANOUT_EXACT.
2162 #ifdef CONFIG_RCU_FANOUT_EXACT
2163 static void __init rcu_init_levelspread(struct rcu_state *rsp)
2165 int i;
2167 for (i = NUM_RCU_LVLS - 1; i > 0; i--)
2168 rsp->levelspread[i] = CONFIG_RCU_FANOUT;
2169 rsp->levelspread[0] = RCU_FANOUT_LEAF;
2171 #else /* #ifdef CONFIG_RCU_FANOUT_EXACT */
2172 static void __init rcu_init_levelspread(struct rcu_state *rsp)
2174 int ccur;
2175 int cprv;
2176 int i;
2178 cprv = NR_CPUS;
2179 for (i = NUM_RCU_LVLS - 1; i >= 0; i--) {
2180 ccur = rsp->levelcnt[i];
2181 rsp->levelspread[i] = (cprv + ccur - 1) / ccur;
2182 cprv = ccur;
2185 #endif /* #else #ifdef CONFIG_RCU_FANOUT_EXACT */
2188 * Helper function for rcu_init() that initializes one rcu_state structure.
2190 static void __init rcu_init_one(struct rcu_state *rsp,
2191 struct rcu_data __percpu *rda)
2193 static char *buf[] = { "rcu_node_level_0",
2194 "rcu_node_level_1",
2195 "rcu_node_level_2",
2196 "rcu_node_level_3" }; /* Match MAX_RCU_LVLS */
2197 int cpustride = 1;
2198 int i;
2199 int j;
2200 struct rcu_node *rnp;
2202 BUILD_BUG_ON(MAX_RCU_LVLS > ARRAY_SIZE(buf)); /* Fix buf[] init! */
2204 /* Initialize the level-tracking arrays. */
2206 for (i = 1; i < NUM_RCU_LVLS; i++)
2207 rsp->level[i] = rsp->level[i - 1] + rsp->levelcnt[i - 1];
2208 rcu_init_levelspread(rsp);
2210 /* Initialize the elements themselves, starting from the leaves. */
2212 for (i = NUM_RCU_LVLS - 1; i >= 0; i--) {
2213 cpustride *= rsp->levelspread[i];
2214 rnp = rsp->level[i];
2215 for (j = 0; j < rsp->levelcnt[i]; j++, rnp++) {
2216 raw_spin_lock_init(&rnp->lock);
2217 lockdep_set_class_and_name(&rnp->lock,
2218 &rcu_node_class[i], buf[i]);
2219 rnp->gpnum = 0;
2220 rnp->qsmask = 0;
2221 rnp->qsmaskinit = 0;
2222 rnp->grplo = j * cpustride;
2223 rnp->grphi = (j + 1) * cpustride - 1;
2224 if (rnp->grphi >= NR_CPUS)
2225 rnp->grphi = NR_CPUS - 1;
2226 if (i == 0) {
2227 rnp->grpnum = 0;
2228 rnp->grpmask = 0;
2229 rnp->parent = NULL;
2230 } else {
2231 rnp->grpnum = j % rsp->levelspread[i - 1];
2232 rnp->grpmask = 1UL << rnp->grpnum;
2233 rnp->parent = rsp->level[i - 1] +
2234 j / rsp->levelspread[i - 1];
2236 rnp->level = i;
2237 INIT_LIST_HEAD(&rnp->blkd_tasks);
2241 rsp->rda = rda;
2242 rnp = rsp->level[NUM_RCU_LVLS - 1];
2243 for_each_possible_cpu(i) {
2244 while (i > rnp->grphi)
2245 rnp++;
2246 per_cpu_ptr(rsp->rda, i)->mynode = rnp;
2247 rcu_boot_init_percpu_data(i, rsp);
2251 void __init rcu_init(void)
2253 int cpu;
2255 rcu_bootup_announce();
2256 rcu_init_one(&rcu_sched_state, &rcu_sched_data);
2257 rcu_init_one(&rcu_bh_state, &rcu_bh_data);
2258 __rcu_init_preempt();
2261 * We don't need protection against CPU-hotplug here because
2262 * this is called early in boot, before either interrupts
2263 * or the scheduler are operational.
2265 cpu_notifier(rcu_cpu_notify, 0);
2266 for_each_online_cpu(cpu)
2267 rcu_cpu_notify(NULL, CPU_UP_PREPARE, (void *)(long)cpu);
2268 check_cpu_stall_init();
2271 #include "rcutree_plugin.h"