drm/i915: Allocate the PCI resource for the MCHBAR
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / fs / exec.c
blob2d9455282744bce582e48e0ecec4f4a6d332a28c
1 /*
2 * linux/fs/exec.c
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
7 /*
8 * #!-checking implemented by tytso.
9 */
11 * Demand-loading implemented 01.12.91 - no need to read anything but
12 * the header into memory. The inode of the executable is put into
13 * "current->executable", and page faults do the actual loading. Clean.
15 * Once more I can proudly say that linux stood up to being changed: it
16 * was less than 2 hours work to get demand-loading completely implemented.
18 * Demand loading changed July 1993 by Eric Youngdale. Use mmap instead,
19 * current->executable is only used by the procfs. This allows a dispatch
20 * table to check for several different types of binary formats. We keep
21 * trying until we recognize the file or we run out of supported binary
22 * formats.
25 #include <linux/slab.h>
26 #include <linux/file.h>
27 #include <linux/fdtable.h>
28 #include <linux/mm.h>
29 #include <linux/stat.h>
30 #include <linux/fcntl.h>
31 #include <linux/swap.h>
32 #include <linux/string.h>
33 #include <linux/init.h>
34 #include <linux/pagemap.h>
35 #include <linux/perf_event.h>
36 #include <linux/highmem.h>
37 #include <linux/spinlock.h>
38 #include <linux/key.h>
39 #include <linux/personality.h>
40 #include <linux/binfmts.h>
41 #include <linux/utsname.h>
42 #include <linux/pid_namespace.h>
43 #include <linux/module.h>
44 #include <linux/namei.h>
45 #include <linux/proc_fs.h>
46 #include <linux/mount.h>
47 #include <linux/security.h>
48 #include <linux/syscalls.h>
49 #include <linux/tsacct_kern.h>
50 #include <linux/cn_proc.h>
51 #include <linux/audit.h>
52 #include <linux/tracehook.h>
53 #include <linux/kmod.h>
54 #include <linux/fsnotify.h>
55 #include <linux/fs_struct.h>
56 #include <linux/pipe_fs_i.h>
58 #include <asm/uaccess.h>
59 #include <asm/mmu_context.h>
60 #include <asm/tlb.h>
61 #include "internal.h"
63 int core_uses_pid;
64 char core_pattern[CORENAME_MAX_SIZE] = "core";
65 unsigned int core_pipe_limit;
66 int suid_dumpable = 0;
68 /* The maximal length of core_pattern is also specified in sysctl.c */
70 static LIST_HEAD(formats);
71 static DEFINE_RWLOCK(binfmt_lock);
73 int __register_binfmt(struct linux_binfmt * fmt, int insert)
75 if (!fmt)
76 return -EINVAL;
77 write_lock(&binfmt_lock);
78 insert ? list_add(&fmt->lh, &formats) :
79 list_add_tail(&fmt->lh, &formats);
80 write_unlock(&binfmt_lock);
81 return 0;
84 EXPORT_SYMBOL(__register_binfmt);
86 void unregister_binfmt(struct linux_binfmt * fmt)
88 write_lock(&binfmt_lock);
89 list_del(&fmt->lh);
90 write_unlock(&binfmt_lock);
93 EXPORT_SYMBOL(unregister_binfmt);
95 static inline void put_binfmt(struct linux_binfmt * fmt)
97 module_put(fmt->module);
101 * Note that a shared library must be both readable and executable due to
102 * security reasons.
104 * Also note that we take the address to load from from the file itself.
106 SYSCALL_DEFINE1(uselib, const char __user *, library)
108 struct file *file;
109 char *tmp = getname(library);
110 int error = PTR_ERR(tmp);
112 if (IS_ERR(tmp))
113 goto out;
115 file = do_filp_open(AT_FDCWD, tmp,
116 O_LARGEFILE | O_RDONLY | FMODE_EXEC, 0,
117 MAY_READ | MAY_EXEC | MAY_OPEN);
118 putname(tmp);
119 error = PTR_ERR(file);
120 if (IS_ERR(file))
121 goto out;
123 error = -EINVAL;
124 if (!S_ISREG(file->f_path.dentry->d_inode->i_mode))
125 goto exit;
127 error = -EACCES;
128 if (file->f_path.mnt->mnt_flags & MNT_NOEXEC)
129 goto exit;
131 fsnotify_open(file);
133 error = -ENOEXEC;
134 if(file->f_op) {
135 struct linux_binfmt * fmt;
137 read_lock(&binfmt_lock);
138 list_for_each_entry(fmt, &formats, lh) {
139 if (!fmt->load_shlib)
140 continue;
141 if (!try_module_get(fmt->module))
142 continue;
143 read_unlock(&binfmt_lock);
144 error = fmt->load_shlib(file);
145 read_lock(&binfmt_lock);
146 put_binfmt(fmt);
147 if (error != -ENOEXEC)
148 break;
150 read_unlock(&binfmt_lock);
152 exit:
153 fput(file);
154 out:
155 return error;
158 #ifdef CONFIG_MMU
160 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
161 int write)
163 struct page *page;
164 int ret;
166 #ifdef CONFIG_STACK_GROWSUP
167 if (write) {
168 ret = expand_stack_downwards(bprm->vma, pos);
169 if (ret < 0)
170 return NULL;
172 #endif
173 ret = get_user_pages(current, bprm->mm, pos,
174 1, write, 1, &page, NULL);
175 if (ret <= 0)
176 return NULL;
178 if (write) {
179 unsigned long size = bprm->vma->vm_end - bprm->vma->vm_start;
180 struct rlimit *rlim;
183 * We've historically supported up to 32 pages (ARG_MAX)
184 * of argument strings even with small stacks
186 if (size <= ARG_MAX)
187 return page;
190 * Limit to 1/4-th the stack size for the argv+env strings.
191 * This ensures that:
192 * - the remaining binfmt code will not run out of stack space,
193 * - the program will have a reasonable amount of stack left
194 * to work from.
196 rlim = current->signal->rlim;
197 if (size > ACCESS_ONCE(rlim[RLIMIT_STACK].rlim_cur) / 4) {
198 put_page(page);
199 return NULL;
203 return page;
206 static void put_arg_page(struct page *page)
208 put_page(page);
211 static void free_arg_page(struct linux_binprm *bprm, int i)
215 static void free_arg_pages(struct linux_binprm *bprm)
219 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
220 struct page *page)
222 flush_cache_page(bprm->vma, pos, page_to_pfn(page));
225 static int __bprm_mm_init(struct linux_binprm *bprm)
227 int err;
228 struct vm_area_struct *vma = NULL;
229 struct mm_struct *mm = bprm->mm;
231 bprm->vma = vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
232 if (!vma)
233 return -ENOMEM;
235 down_write(&mm->mmap_sem);
236 vma->vm_mm = mm;
239 * Place the stack at the largest stack address the architecture
240 * supports. Later, we'll move this to an appropriate place. We don't
241 * use STACK_TOP because that can depend on attributes which aren't
242 * configured yet.
244 BUG_ON(VM_STACK_FLAGS & VM_STACK_INCOMPLETE_SETUP);
245 vma->vm_end = STACK_TOP_MAX;
246 vma->vm_start = vma->vm_end - PAGE_SIZE;
247 vma->vm_flags = VM_STACK_FLAGS | VM_STACK_INCOMPLETE_SETUP;
248 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
249 INIT_LIST_HEAD(&vma->anon_vma_chain);
250 err = insert_vm_struct(mm, vma);
251 if (err)
252 goto err;
254 mm->stack_vm = mm->total_vm = 1;
255 up_write(&mm->mmap_sem);
256 bprm->p = vma->vm_end - sizeof(void *);
257 return 0;
258 err:
259 up_write(&mm->mmap_sem);
260 bprm->vma = NULL;
261 kmem_cache_free(vm_area_cachep, vma);
262 return err;
265 static bool valid_arg_len(struct linux_binprm *bprm, long len)
267 return len <= MAX_ARG_STRLEN;
270 #else
272 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
273 int write)
275 struct page *page;
277 page = bprm->page[pos / PAGE_SIZE];
278 if (!page && write) {
279 page = alloc_page(GFP_HIGHUSER|__GFP_ZERO);
280 if (!page)
281 return NULL;
282 bprm->page[pos / PAGE_SIZE] = page;
285 return page;
288 static void put_arg_page(struct page *page)
292 static void free_arg_page(struct linux_binprm *bprm, int i)
294 if (bprm->page[i]) {
295 __free_page(bprm->page[i]);
296 bprm->page[i] = NULL;
300 static void free_arg_pages(struct linux_binprm *bprm)
302 int i;
304 for (i = 0; i < MAX_ARG_PAGES; i++)
305 free_arg_page(bprm, i);
308 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
309 struct page *page)
313 static int __bprm_mm_init(struct linux_binprm *bprm)
315 bprm->p = PAGE_SIZE * MAX_ARG_PAGES - sizeof(void *);
316 return 0;
319 static bool valid_arg_len(struct linux_binprm *bprm, long len)
321 return len <= bprm->p;
324 #endif /* CONFIG_MMU */
327 * Create a new mm_struct and populate it with a temporary stack
328 * vm_area_struct. We don't have enough context at this point to set the stack
329 * flags, permissions, and offset, so we use temporary values. We'll update
330 * them later in setup_arg_pages().
332 int bprm_mm_init(struct linux_binprm *bprm)
334 int err;
335 struct mm_struct *mm = NULL;
337 bprm->mm = mm = mm_alloc();
338 err = -ENOMEM;
339 if (!mm)
340 goto err;
342 err = init_new_context(current, mm);
343 if (err)
344 goto err;
346 err = __bprm_mm_init(bprm);
347 if (err)
348 goto err;
350 return 0;
352 err:
353 if (mm) {
354 bprm->mm = NULL;
355 mmdrop(mm);
358 return err;
362 * count() counts the number of strings in array ARGV.
364 static int count(const char __user * const __user * argv, int max)
366 int i = 0;
368 if (argv != NULL) {
369 for (;;) {
370 const char __user * p;
372 if (get_user(p, argv))
373 return -EFAULT;
374 if (!p)
375 break;
376 argv++;
377 if (i++ >= max)
378 return -E2BIG;
379 cond_resched();
382 return i;
386 * 'copy_strings()' copies argument/environment strings from the old
387 * processes's memory to the new process's stack. The call to get_user_pages()
388 * ensures the destination page is created and not swapped out.
390 static int copy_strings(int argc, const char __user *const __user *argv,
391 struct linux_binprm *bprm)
393 struct page *kmapped_page = NULL;
394 char *kaddr = NULL;
395 unsigned long kpos = 0;
396 int ret;
398 while (argc-- > 0) {
399 const char __user *str;
400 int len;
401 unsigned long pos;
403 if (get_user(str, argv+argc) ||
404 !(len = strnlen_user(str, MAX_ARG_STRLEN))) {
405 ret = -EFAULT;
406 goto out;
409 if (!valid_arg_len(bprm, len)) {
410 ret = -E2BIG;
411 goto out;
414 /* We're going to work our way backwords. */
415 pos = bprm->p;
416 str += len;
417 bprm->p -= len;
419 while (len > 0) {
420 int offset, bytes_to_copy;
422 offset = pos % PAGE_SIZE;
423 if (offset == 0)
424 offset = PAGE_SIZE;
426 bytes_to_copy = offset;
427 if (bytes_to_copy > len)
428 bytes_to_copy = len;
430 offset -= bytes_to_copy;
431 pos -= bytes_to_copy;
432 str -= bytes_to_copy;
433 len -= bytes_to_copy;
435 if (!kmapped_page || kpos != (pos & PAGE_MASK)) {
436 struct page *page;
438 page = get_arg_page(bprm, pos, 1);
439 if (!page) {
440 ret = -E2BIG;
441 goto out;
444 if (kmapped_page) {
445 flush_kernel_dcache_page(kmapped_page);
446 kunmap(kmapped_page);
447 put_arg_page(kmapped_page);
449 kmapped_page = page;
450 kaddr = kmap(kmapped_page);
451 kpos = pos & PAGE_MASK;
452 flush_arg_page(bprm, kpos, kmapped_page);
454 if (copy_from_user(kaddr+offset, str, bytes_to_copy)) {
455 ret = -EFAULT;
456 goto out;
460 ret = 0;
461 out:
462 if (kmapped_page) {
463 flush_kernel_dcache_page(kmapped_page);
464 kunmap(kmapped_page);
465 put_arg_page(kmapped_page);
467 return ret;
471 * Like copy_strings, but get argv and its values from kernel memory.
473 int copy_strings_kernel(int argc, const char *const *argv,
474 struct linux_binprm *bprm)
476 int r;
477 mm_segment_t oldfs = get_fs();
478 set_fs(KERNEL_DS);
479 r = copy_strings(argc, (const char __user *const __user *)argv, bprm);
480 set_fs(oldfs);
481 return r;
483 EXPORT_SYMBOL(copy_strings_kernel);
485 #ifdef CONFIG_MMU
488 * During bprm_mm_init(), we create a temporary stack at STACK_TOP_MAX. Once
489 * the binfmt code determines where the new stack should reside, we shift it to
490 * its final location. The process proceeds as follows:
492 * 1) Use shift to calculate the new vma endpoints.
493 * 2) Extend vma to cover both the old and new ranges. This ensures the
494 * arguments passed to subsequent functions are consistent.
495 * 3) Move vma's page tables to the new range.
496 * 4) Free up any cleared pgd range.
497 * 5) Shrink the vma to cover only the new range.
499 static int shift_arg_pages(struct vm_area_struct *vma, unsigned long shift)
501 struct mm_struct *mm = vma->vm_mm;
502 unsigned long old_start = vma->vm_start;
503 unsigned long old_end = vma->vm_end;
504 unsigned long length = old_end - old_start;
505 unsigned long new_start = old_start - shift;
506 unsigned long new_end = old_end - shift;
507 struct mmu_gather *tlb;
509 BUG_ON(new_start > new_end);
512 * ensure there are no vmas between where we want to go
513 * and where we are
515 if (vma != find_vma(mm, new_start))
516 return -EFAULT;
519 * cover the whole range: [new_start, old_end)
521 if (vma_adjust(vma, new_start, old_end, vma->vm_pgoff, NULL))
522 return -ENOMEM;
525 * move the page tables downwards, on failure we rely on
526 * process cleanup to remove whatever mess we made.
528 if (length != move_page_tables(vma, old_start,
529 vma, new_start, length))
530 return -ENOMEM;
532 lru_add_drain();
533 tlb = tlb_gather_mmu(mm, 0);
534 if (new_end > old_start) {
536 * when the old and new regions overlap clear from new_end.
538 free_pgd_range(tlb, new_end, old_end, new_end,
539 vma->vm_next ? vma->vm_next->vm_start : 0);
540 } else {
542 * otherwise, clean from old_start; this is done to not touch
543 * the address space in [new_end, old_start) some architectures
544 * have constraints on va-space that make this illegal (IA64) -
545 * for the others its just a little faster.
547 free_pgd_range(tlb, old_start, old_end, new_end,
548 vma->vm_next ? vma->vm_next->vm_start : 0);
550 tlb_finish_mmu(tlb, new_end, old_end);
553 * Shrink the vma to just the new range. Always succeeds.
555 vma_adjust(vma, new_start, new_end, vma->vm_pgoff, NULL);
557 return 0;
561 * Finalizes the stack vm_area_struct. The flags and permissions are updated,
562 * the stack is optionally relocated, and some extra space is added.
564 int setup_arg_pages(struct linux_binprm *bprm,
565 unsigned long stack_top,
566 int executable_stack)
568 unsigned long ret;
569 unsigned long stack_shift;
570 struct mm_struct *mm = current->mm;
571 struct vm_area_struct *vma = bprm->vma;
572 struct vm_area_struct *prev = NULL;
573 unsigned long vm_flags;
574 unsigned long stack_base;
575 unsigned long stack_size;
576 unsigned long stack_expand;
577 unsigned long rlim_stack;
579 #ifdef CONFIG_STACK_GROWSUP
580 /* Limit stack size to 1GB */
581 stack_base = rlimit_max(RLIMIT_STACK);
582 if (stack_base > (1 << 30))
583 stack_base = 1 << 30;
585 /* Make sure we didn't let the argument array grow too large. */
586 if (vma->vm_end - vma->vm_start > stack_base)
587 return -ENOMEM;
589 stack_base = PAGE_ALIGN(stack_top - stack_base);
591 stack_shift = vma->vm_start - stack_base;
592 mm->arg_start = bprm->p - stack_shift;
593 bprm->p = vma->vm_end - stack_shift;
594 #else
595 stack_top = arch_align_stack(stack_top);
596 stack_top = PAGE_ALIGN(stack_top);
597 stack_shift = vma->vm_end - stack_top;
599 bprm->p -= stack_shift;
600 mm->arg_start = bprm->p;
601 #endif
603 if (bprm->loader)
604 bprm->loader -= stack_shift;
605 bprm->exec -= stack_shift;
607 down_write(&mm->mmap_sem);
608 vm_flags = VM_STACK_FLAGS;
611 * Adjust stack execute permissions; explicitly enable for
612 * EXSTACK_ENABLE_X, disable for EXSTACK_DISABLE_X and leave alone
613 * (arch default) otherwise.
615 if (unlikely(executable_stack == EXSTACK_ENABLE_X))
616 vm_flags |= VM_EXEC;
617 else if (executable_stack == EXSTACK_DISABLE_X)
618 vm_flags &= ~VM_EXEC;
619 vm_flags |= mm->def_flags;
620 vm_flags |= VM_STACK_INCOMPLETE_SETUP;
622 ret = mprotect_fixup(vma, &prev, vma->vm_start, vma->vm_end,
623 vm_flags);
624 if (ret)
625 goto out_unlock;
626 BUG_ON(prev != vma);
628 /* Move stack pages down in memory. */
629 if (stack_shift) {
630 ret = shift_arg_pages(vma, stack_shift);
631 if (ret)
632 goto out_unlock;
635 /* mprotect_fixup is overkill to remove the temporary stack flags */
636 vma->vm_flags &= ~VM_STACK_INCOMPLETE_SETUP;
638 stack_expand = 131072UL; /* randomly 32*4k (or 2*64k) pages */
639 stack_size = vma->vm_end - vma->vm_start;
641 * Align this down to a page boundary as expand_stack
642 * will align it up.
644 rlim_stack = rlimit(RLIMIT_STACK) & PAGE_MASK;
645 #ifdef CONFIG_STACK_GROWSUP
646 if (stack_size + stack_expand > rlim_stack)
647 stack_base = vma->vm_start + rlim_stack;
648 else
649 stack_base = vma->vm_end + stack_expand;
650 #else
651 if (stack_size + stack_expand > rlim_stack)
652 stack_base = vma->vm_end - rlim_stack;
653 else
654 stack_base = vma->vm_start - stack_expand;
655 #endif
656 current->mm->start_stack = bprm->p;
657 ret = expand_stack(vma, stack_base);
658 if (ret)
659 ret = -EFAULT;
661 out_unlock:
662 up_write(&mm->mmap_sem);
663 return ret;
665 EXPORT_SYMBOL(setup_arg_pages);
667 #endif /* CONFIG_MMU */
669 struct file *open_exec(const char *name)
671 struct file *file;
672 int err;
674 file = do_filp_open(AT_FDCWD, name,
675 O_LARGEFILE | O_RDONLY | FMODE_EXEC, 0,
676 MAY_EXEC | MAY_OPEN);
677 if (IS_ERR(file))
678 goto out;
680 err = -EACCES;
681 if (!S_ISREG(file->f_path.dentry->d_inode->i_mode))
682 goto exit;
684 if (file->f_path.mnt->mnt_flags & MNT_NOEXEC)
685 goto exit;
687 fsnotify_open(file);
689 err = deny_write_access(file);
690 if (err)
691 goto exit;
693 out:
694 return file;
696 exit:
697 fput(file);
698 return ERR_PTR(err);
700 EXPORT_SYMBOL(open_exec);
702 int kernel_read(struct file *file, loff_t offset,
703 char *addr, unsigned long count)
705 mm_segment_t old_fs;
706 loff_t pos = offset;
707 int result;
709 old_fs = get_fs();
710 set_fs(get_ds());
711 /* The cast to a user pointer is valid due to the set_fs() */
712 result = vfs_read(file, (void __user *)addr, count, &pos);
713 set_fs(old_fs);
714 return result;
717 EXPORT_SYMBOL(kernel_read);
719 static int exec_mmap(struct mm_struct *mm)
721 struct task_struct *tsk;
722 struct mm_struct * old_mm, *active_mm;
724 /* Notify parent that we're no longer interested in the old VM */
725 tsk = current;
726 old_mm = current->mm;
727 sync_mm_rss(tsk, old_mm);
728 mm_release(tsk, old_mm);
730 if (old_mm) {
732 * Make sure that if there is a core dump in progress
733 * for the old mm, we get out and die instead of going
734 * through with the exec. We must hold mmap_sem around
735 * checking core_state and changing tsk->mm.
737 down_read(&old_mm->mmap_sem);
738 if (unlikely(old_mm->core_state)) {
739 up_read(&old_mm->mmap_sem);
740 return -EINTR;
743 task_lock(tsk);
744 active_mm = tsk->active_mm;
745 tsk->mm = mm;
746 tsk->active_mm = mm;
747 activate_mm(active_mm, mm);
748 task_unlock(tsk);
749 arch_pick_mmap_layout(mm);
750 if (old_mm) {
751 up_read(&old_mm->mmap_sem);
752 BUG_ON(active_mm != old_mm);
753 mm_update_next_owner(old_mm);
754 mmput(old_mm);
755 return 0;
757 mmdrop(active_mm);
758 return 0;
762 * This function makes sure the current process has its own signal table,
763 * so that flush_signal_handlers can later reset the handlers without
764 * disturbing other processes. (Other processes might share the signal
765 * table via the CLONE_SIGHAND option to clone().)
767 static int de_thread(struct task_struct *tsk)
769 struct signal_struct *sig = tsk->signal;
770 struct sighand_struct *oldsighand = tsk->sighand;
771 spinlock_t *lock = &oldsighand->siglock;
773 if (thread_group_empty(tsk))
774 goto no_thread_group;
777 * Kill all other threads in the thread group.
779 spin_lock_irq(lock);
780 if (signal_group_exit(sig)) {
782 * Another group action in progress, just
783 * return so that the signal is processed.
785 spin_unlock_irq(lock);
786 return -EAGAIN;
789 sig->group_exit_task = tsk;
790 sig->notify_count = zap_other_threads(tsk);
791 if (!thread_group_leader(tsk))
792 sig->notify_count--;
794 while (sig->notify_count) {
795 __set_current_state(TASK_UNINTERRUPTIBLE);
796 spin_unlock_irq(lock);
797 schedule();
798 spin_lock_irq(lock);
800 spin_unlock_irq(lock);
803 * At this point all other threads have exited, all we have to
804 * do is to wait for the thread group leader to become inactive,
805 * and to assume its PID:
807 if (!thread_group_leader(tsk)) {
808 struct task_struct *leader = tsk->group_leader;
810 sig->notify_count = -1; /* for exit_notify() */
811 for (;;) {
812 write_lock_irq(&tasklist_lock);
813 if (likely(leader->exit_state))
814 break;
815 __set_current_state(TASK_UNINTERRUPTIBLE);
816 write_unlock_irq(&tasklist_lock);
817 schedule();
821 * The only record we have of the real-time age of a
822 * process, regardless of execs it's done, is start_time.
823 * All the past CPU time is accumulated in signal_struct
824 * from sister threads now dead. But in this non-leader
825 * exec, nothing survives from the original leader thread,
826 * whose birth marks the true age of this process now.
827 * When we take on its identity by switching to its PID, we
828 * also take its birthdate (always earlier than our own).
830 tsk->start_time = leader->start_time;
832 BUG_ON(!same_thread_group(leader, tsk));
833 BUG_ON(has_group_leader_pid(tsk));
835 * An exec() starts a new thread group with the
836 * TGID of the previous thread group. Rehash the
837 * two threads with a switched PID, and release
838 * the former thread group leader:
841 /* Become a process group leader with the old leader's pid.
842 * The old leader becomes a thread of the this thread group.
843 * Note: The old leader also uses this pid until release_task
844 * is called. Odd but simple and correct.
846 detach_pid(tsk, PIDTYPE_PID);
847 tsk->pid = leader->pid;
848 attach_pid(tsk, PIDTYPE_PID, task_pid(leader));
849 transfer_pid(leader, tsk, PIDTYPE_PGID);
850 transfer_pid(leader, tsk, PIDTYPE_SID);
852 list_replace_rcu(&leader->tasks, &tsk->tasks);
853 list_replace_init(&leader->sibling, &tsk->sibling);
855 tsk->group_leader = tsk;
856 leader->group_leader = tsk;
858 tsk->exit_signal = SIGCHLD;
860 BUG_ON(leader->exit_state != EXIT_ZOMBIE);
861 leader->exit_state = EXIT_DEAD;
862 write_unlock_irq(&tasklist_lock);
864 release_task(leader);
867 sig->group_exit_task = NULL;
868 sig->notify_count = 0;
870 no_thread_group:
871 if (current->mm)
872 setmax_mm_hiwater_rss(&sig->maxrss, current->mm);
874 exit_itimers(sig);
875 flush_itimer_signals();
877 if (atomic_read(&oldsighand->count) != 1) {
878 struct sighand_struct *newsighand;
880 * This ->sighand is shared with the CLONE_SIGHAND
881 * but not CLONE_THREAD task, switch to the new one.
883 newsighand = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
884 if (!newsighand)
885 return -ENOMEM;
887 atomic_set(&newsighand->count, 1);
888 memcpy(newsighand->action, oldsighand->action,
889 sizeof(newsighand->action));
891 write_lock_irq(&tasklist_lock);
892 spin_lock(&oldsighand->siglock);
893 rcu_assign_pointer(tsk->sighand, newsighand);
894 spin_unlock(&oldsighand->siglock);
895 write_unlock_irq(&tasklist_lock);
897 __cleanup_sighand(oldsighand);
900 BUG_ON(!thread_group_leader(tsk));
901 return 0;
905 * These functions flushes out all traces of the currently running executable
906 * so that a new one can be started
908 static void flush_old_files(struct files_struct * files)
910 long j = -1;
911 struct fdtable *fdt;
913 spin_lock(&files->file_lock);
914 for (;;) {
915 unsigned long set, i;
917 j++;
918 i = j * __NFDBITS;
919 fdt = files_fdtable(files);
920 if (i >= fdt->max_fds)
921 break;
922 set = fdt->close_on_exec->fds_bits[j];
923 if (!set)
924 continue;
925 fdt->close_on_exec->fds_bits[j] = 0;
926 spin_unlock(&files->file_lock);
927 for ( ; set ; i++,set >>= 1) {
928 if (set & 1) {
929 sys_close(i);
932 spin_lock(&files->file_lock);
935 spin_unlock(&files->file_lock);
938 char *get_task_comm(char *buf, struct task_struct *tsk)
940 /* buf must be at least sizeof(tsk->comm) in size */
941 task_lock(tsk);
942 strncpy(buf, tsk->comm, sizeof(tsk->comm));
943 task_unlock(tsk);
944 return buf;
947 void set_task_comm(struct task_struct *tsk, char *buf)
949 task_lock(tsk);
952 * Threads may access current->comm without holding
953 * the task lock, so write the string carefully.
954 * Readers without a lock may see incomplete new
955 * names but are safe from non-terminating string reads.
957 memset(tsk->comm, 0, TASK_COMM_LEN);
958 wmb();
959 strlcpy(tsk->comm, buf, sizeof(tsk->comm));
960 task_unlock(tsk);
961 perf_event_comm(tsk);
964 int flush_old_exec(struct linux_binprm * bprm)
966 int retval;
969 * Make sure we have a private signal table and that
970 * we are unassociated from the previous thread group.
972 retval = de_thread(current);
973 if (retval)
974 goto out;
976 set_mm_exe_file(bprm->mm, bprm->file);
979 * Release all of the old mmap stuff
981 retval = exec_mmap(bprm->mm);
982 if (retval)
983 goto out;
985 bprm->mm = NULL; /* We're using it now */
987 current->flags &= ~PF_RANDOMIZE;
988 flush_thread();
989 current->personality &= ~bprm->per_clear;
991 return 0;
993 out:
994 return retval;
996 EXPORT_SYMBOL(flush_old_exec);
998 void setup_new_exec(struct linux_binprm * bprm)
1000 int i, ch;
1001 const char *name;
1002 char tcomm[sizeof(current->comm)];
1004 arch_pick_mmap_layout(current->mm);
1006 /* This is the point of no return */
1007 current->sas_ss_sp = current->sas_ss_size = 0;
1009 if (current_euid() == current_uid() && current_egid() == current_gid())
1010 set_dumpable(current->mm, 1);
1011 else
1012 set_dumpable(current->mm, suid_dumpable);
1014 name = bprm->filename;
1016 /* Copies the binary name from after last slash */
1017 for (i=0; (ch = *(name++)) != '\0';) {
1018 if (ch == '/')
1019 i = 0; /* overwrite what we wrote */
1020 else
1021 if (i < (sizeof(tcomm) - 1))
1022 tcomm[i++] = ch;
1024 tcomm[i] = '\0';
1025 set_task_comm(current, tcomm);
1027 /* Set the new mm task size. We have to do that late because it may
1028 * depend on TIF_32BIT which is only updated in flush_thread() on
1029 * some architectures like powerpc
1031 current->mm->task_size = TASK_SIZE;
1033 /* install the new credentials */
1034 if (bprm->cred->uid != current_euid() ||
1035 bprm->cred->gid != current_egid()) {
1036 current->pdeath_signal = 0;
1037 } else if (file_permission(bprm->file, MAY_READ) ||
1038 bprm->interp_flags & BINPRM_FLAGS_ENFORCE_NONDUMP) {
1039 set_dumpable(current->mm, suid_dumpable);
1043 * Flush performance counters when crossing a
1044 * security domain:
1046 if (!get_dumpable(current->mm))
1047 perf_event_exit_task(current);
1049 /* An exec changes our domain. We are no longer part of the thread
1050 group */
1052 current->self_exec_id++;
1054 flush_signal_handlers(current, 0);
1055 flush_old_files(current->files);
1057 EXPORT_SYMBOL(setup_new_exec);
1060 * Prepare credentials and lock ->cred_guard_mutex.
1061 * install_exec_creds() commits the new creds and drops the lock.
1062 * Or, if exec fails before, free_bprm() should release ->cred and
1063 * and unlock.
1065 int prepare_bprm_creds(struct linux_binprm *bprm)
1067 if (mutex_lock_interruptible(&current->cred_guard_mutex))
1068 return -ERESTARTNOINTR;
1070 bprm->cred = prepare_exec_creds();
1071 if (likely(bprm->cred))
1072 return 0;
1074 mutex_unlock(&current->cred_guard_mutex);
1075 return -ENOMEM;
1078 void free_bprm(struct linux_binprm *bprm)
1080 free_arg_pages(bprm);
1081 if (bprm->cred) {
1082 mutex_unlock(&current->cred_guard_mutex);
1083 abort_creds(bprm->cred);
1085 kfree(bprm);
1089 * install the new credentials for this executable
1091 void install_exec_creds(struct linux_binprm *bprm)
1093 security_bprm_committing_creds(bprm);
1095 commit_creds(bprm->cred);
1096 bprm->cred = NULL;
1098 * cred_guard_mutex must be held at least to this point to prevent
1099 * ptrace_attach() from altering our determination of the task's
1100 * credentials; any time after this it may be unlocked.
1102 security_bprm_committed_creds(bprm);
1103 mutex_unlock(&current->cred_guard_mutex);
1105 EXPORT_SYMBOL(install_exec_creds);
1108 * determine how safe it is to execute the proposed program
1109 * - the caller must hold current->cred_guard_mutex to protect against
1110 * PTRACE_ATTACH
1112 int check_unsafe_exec(struct linux_binprm *bprm)
1114 struct task_struct *p = current, *t;
1115 unsigned n_fs;
1116 int res = 0;
1118 bprm->unsafe = tracehook_unsafe_exec(p);
1120 n_fs = 1;
1121 spin_lock(&p->fs->lock);
1122 rcu_read_lock();
1123 for (t = next_thread(p); t != p; t = next_thread(t)) {
1124 if (t->fs == p->fs)
1125 n_fs++;
1127 rcu_read_unlock();
1129 if (p->fs->users > n_fs) {
1130 bprm->unsafe |= LSM_UNSAFE_SHARE;
1131 } else {
1132 res = -EAGAIN;
1133 if (!p->fs->in_exec) {
1134 p->fs->in_exec = 1;
1135 res = 1;
1138 spin_unlock(&p->fs->lock);
1140 return res;
1144 * Fill the binprm structure from the inode.
1145 * Check permissions, then read the first 128 (BINPRM_BUF_SIZE) bytes
1147 * This may be called multiple times for binary chains (scripts for example).
1149 int prepare_binprm(struct linux_binprm *bprm)
1151 umode_t mode;
1152 struct inode * inode = bprm->file->f_path.dentry->d_inode;
1153 int retval;
1155 mode = inode->i_mode;
1156 if (bprm->file->f_op == NULL)
1157 return -EACCES;
1159 /* clear any previous set[ug]id data from a previous binary */
1160 bprm->cred->euid = current_euid();
1161 bprm->cred->egid = current_egid();
1163 if (!(bprm->file->f_path.mnt->mnt_flags & MNT_NOSUID)) {
1164 /* Set-uid? */
1165 if (mode & S_ISUID) {
1166 bprm->per_clear |= PER_CLEAR_ON_SETID;
1167 bprm->cred->euid = inode->i_uid;
1170 /* Set-gid? */
1172 * If setgid is set but no group execute bit then this
1173 * is a candidate for mandatory locking, not a setgid
1174 * executable.
1176 if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP)) {
1177 bprm->per_clear |= PER_CLEAR_ON_SETID;
1178 bprm->cred->egid = inode->i_gid;
1182 /* fill in binprm security blob */
1183 retval = security_bprm_set_creds(bprm);
1184 if (retval)
1185 return retval;
1186 bprm->cred_prepared = 1;
1188 memset(bprm->buf, 0, BINPRM_BUF_SIZE);
1189 return kernel_read(bprm->file, 0, bprm->buf, BINPRM_BUF_SIZE);
1192 EXPORT_SYMBOL(prepare_binprm);
1195 * Arguments are '\0' separated strings found at the location bprm->p
1196 * points to; chop off the first by relocating brpm->p to right after
1197 * the first '\0' encountered.
1199 int remove_arg_zero(struct linux_binprm *bprm)
1201 int ret = 0;
1202 unsigned long offset;
1203 char *kaddr;
1204 struct page *page;
1206 if (!bprm->argc)
1207 return 0;
1209 do {
1210 offset = bprm->p & ~PAGE_MASK;
1211 page = get_arg_page(bprm, bprm->p, 0);
1212 if (!page) {
1213 ret = -EFAULT;
1214 goto out;
1216 kaddr = kmap_atomic(page, KM_USER0);
1218 for (; offset < PAGE_SIZE && kaddr[offset];
1219 offset++, bprm->p++)
1222 kunmap_atomic(kaddr, KM_USER0);
1223 put_arg_page(page);
1225 if (offset == PAGE_SIZE)
1226 free_arg_page(bprm, (bprm->p >> PAGE_SHIFT) - 1);
1227 } while (offset == PAGE_SIZE);
1229 bprm->p++;
1230 bprm->argc--;
1231 ret = 0;
1233 out:
1234 return ret;
1236 EXPORT_SYMBOL(remove_arg_zero);
1239 * cycle the list of binary formats handler, until one recognizes the image
1241 int search_binary_handler(struct linux_binprm *bprm,struct pt_regs *regs)
1243 unsigned int depth = bprm->recursion_depth;
1244 int try,retval;
1245 struct linux_binfmt *fmt;
1247 retval = security_bprm_check(bprm);
1248 if (retval)
1249 return retval;
1251 /* kernel module loader fixup */
1252 /* so we don't try to load run modprobe in kernel space. */
1253 set_fs(USER_DS);
1255 retval = audit_bprm(bprm);
1256 if (retval)
1257 return retval;
1259 retval = -ENOENT;
1260 for (try=0; try<2; try++) {
1261 read_lock(&binfmt_lock);
1262 list_for_each_entry(fmt, &formats, lh) {
1263 int (*fn)(struct linux_binprm *, struct pt_regs *) = fmt->load_binary;
1264 if (!fn)
1265 continue;
1266 if (!try_module_get(fmt->module))
1267 continue;
1268 read_unlock(&binfmt_lock);
1269 retval = fn(bprm, regs);
1271 * Restore the depth counter to its starting value
1272 * in this call, so we don't have to rely on every
1273 * load_binary function to restore it on return.
1275 bprm->recursion_depth = depth;
1276 if (retval >= 0) {
1277 if (depth == 0)
1278 tracehook_report_exec(fmt, bprm, regs);
1279 put_binfmt(fmt);
1280 allow_write_access(bprm->file);
1281 if (bprm->file)
1282 fput(bprm->file);
1283 bprm->file = NULL;
1284 current->did_exec = 1;
1285 proc_exec_connector(current);
1286 return retval;
1288 read_lock(&binfmt_lock);
1289 put_binfmt(fmt);
1290 if (retval != -ENOEXEC || bprm->mm == NULL)
1291 break;
1292 if (!bprm->file) {
1293 read_unlock(&binfmt_lock);
1294 return retval;
1297 read_unlock(&binfmt_lock);
1298 if (retval != -ENOEXEC || bprm->mm == NULL) {
1299 break;
1300 #ifdef CONFIG_MODULES
1301 } else {
1302 #define printable(c) (((c)=='\t') || ((c)=='\n') || (0x20<=(c) && (c)<=0x7e))
1303 if (printable(bprm->buf[0]) &&
1304 printable(bprm->buf[1]) &&
1305 printable(bprm->buf[2]) &&
1306 printable(bprm->buf[3]))
1307 break; /* -ENOEXEC */
1308 request_module("binfmt-%04x", *(unsigned short *)(&bprm->buf[2]));
1309 #endif
1312 return retval;
1315 EXPORT_SYMBOL(search_binary_handler);
1318 * sys_execve() executes a new program.
1320 int do_execve(const char * filename,
1321 const char __user *const __user *argv,
1322 const char __user *const __user *envp,
1323 struct pt_regs * regs)
1325 struct linux_binprm *bprm;
1326 struct file *file;
1327 struct files_struct *displaced;
1328 bool clear_in_exec;
1329 int retval;
1331 retval = unshare_files(&displaced);
1332 if (retval)
1333 goto out_ret;
1335 retval = -ENOMEM;
1336 bprm = kzalloc(sizeof(*bprm), GFP_KERNEL);
1337 if (!bprm)
1338 goto out_files;
1340 retval = prepare_bprm_creds(bprm);
1341 if (retval)
1342 goto out_free;
1344 retval = check_unsafe_exec(bprm);
1345 if (retval < 0)
1346 goto out_free;
1347 clear_in_exec = retval;
1348 current->in_execve = 1;
1350 file = open_exec(filename);
1351 retval = PTR_ERR(file);
1352 if (IS_ERR(file))
1353 goto out_unmark;
1355 sched_exec();
1357 bprm->file = file;
1358 bprm->filename = filename;
1359 bprm->interp = filename;
1361 retval = bprm_mm_init(bprm);
1362 if (retval)
1363 goto out_file;
1365 bprm->argc = count(argv, MAX_ARG_STRINGS);
1366 if ((retval = bprm->argc) < 0)
1367 goto out;
1369 bprm->envc = count(envp, MAX_ARG_STRINGS);
1370 if ((retval = bprm->envc) < 0)
1371 goto out;
1373 retval = prepare_binprm(bprm);
1374 if (retval < 0)
1375 goto out;
1377 retval = copy_strings_kernel(1, &bprm->filename, bprm);
1378 if (retval < 0)
1379 goto out;
1381 bprm->exec = bprm->p;
1382 retval = copy_strings(bprm->envc, envp, bprm);
1383 if (retval < 0)
1384 goto out;
1386 retval = copy_strings(bprm->argc, argv, bprm);
1387 if (retval < 0)
1388 goto out;
1390 current->flags &= ~PF_KTHREAD;
1391 retval = search_binary_handler(bprm,regs);
1392 if (retval < 0)
1393 goto out;
1395 /* execve succeeded */
1396 current->fs->in_exec = 0;
1397 current->in_execve = 0;
1398 acct_update_integrals(current);
1399 free_bprm(bprm);
1400 if (displaced)
1401 put_files_struct(displaced);
1402 return retval;
1404 out:
1405 if (bprm->mm)
1406 mmput (bprm->mm);
1408 out_file:
1409 if (bprm->file) {
1410 allow_write_access(bprm->file);
1411 fput(bprm->file);
1414 out_unmark:
1415 if (clear_in_exec)
1416 current->fs->in_exec = 0;
1417 current->in_execve = 0;
1419 out_free:
1420 free_bprm(bprm);
1422 out_files:
1423 if (displaced)
1424 reset_files_struct(displaced);
1425 out_ret:
1426 return retval;
1429 void set_binfmt(struct linux_binfmt *new)
1431 struct mm_struct *mm = current->mm;
1433 if (mm->binfmt)
1434 module_put(mm->binfmt->module);
1436 mm->binfmt = new;
1437 if (new)
1438 __module_get(new->module);
1441 EXPORT_SYMBOL(set_binfmt);
1443 /* format_corename will inspect the pattern parameter, and output a
1444 * name into corename, which must have space for at least
1445 * CORENAME_MAX_SIZE bytes plus one byte for the zero terminator.
1447 static int format_corename(char *corename, long signr)
1449 const struct cred *cred = current_cred();
1450 const char *pat_ptr = core_pattern;
1451 int ispipe = (*pat_ptr == '|');
1452 char *out_ptr = corename;
1453 char *const out_end = corename + CORENAME_MAX_SIZE;
1454 int rc;
1455 int pid_in_pattern = 0;
1457 /* Repeat as long as we have more pattern to process and more output
1458 space */
1459 while (*pat_ptr) {
1460 if (*pat_ptr != '%') {
1461 if (out_ptr == out_end)
1462 goto out;
1463 *out_ptr++ = *pat_ptr++;
1464 } else {
1465 switch (*++pat_ptr) {
1466 case 0:
1467 goto out;
1468 /* Double percent, output one percent */
1469 case '%':
1470 if (out_ptr == out_end)
1471 goto out;
1472 *out_ptr++ = '%';
1473 break;
1474 /* pid */
1475 case 'p':
1476 pid_in_pattern = 1;
1477 rc = snprintf(out_ptr, out_end - out_ptr,
1478 "%d", task_tgid_vnr(current));
1479 if (rc > out_end - out_ptr)
1480 goto out;
1481 out_ptr += rc;
1482 break;
1483 /* uid */
1484 case 'u':
1485 rc = snprintf(out_ptr, out_end - out_ptr,
1486 "%d", cred->uid);
1487 if (rc > out_end - out_ptr)
1488 goto out;
1489 out_ptr += rc;
1490 break;
1491 /* gid */
1492 case 'g':
1493 rc = snprintf(out_ptr, out_end - out_ptr,
1494 "%d", cred->gid);
1495 if (rc > out_end - out_ptr)
1496 goto out;
1497 out_ptr += rc;
1498 break;
1499 /* signal that caused the coredump */
1500 case 's':
1501 rc = snprintf(out_ptr, out_end - out_ptr,
1502 "%ld", signr);
1503 if (rc > out_end - out_ptr)
1504 goto out;
1505 out_ptr += rc;
1506 break;
1507 /* UNIX time of coredump */
1508 case 't': {
1509 struct timeval tv;
1510 do_gettimeofday(&tv);
1511 rc = snprintf(out_ptr, out_end - out_ptr,
1512 "%lu", tv.tv_sec);
1513 if (rc > out_end - out_ptr)
1514 goto out;
1515 out_ptr += rc;
1516 break;
1518 /* hostname */
1519 case 'h':
1520 down_read(&uts_sem);
1521 rc = snprintf(out_ptr, out_end - out_ptr,
1522 "%s", utsname()->nodename);
1523 up_read(&uts_sem);
1524 if (rc > out_end - out_ptr)
1525 goto out;
1526 out_ptr += rc;
1527 break;
1528 /* executable */
1529 case 'e':
1530 rc = snprintf(out_ptr, out_end - out_ptr,
1531 "%s", current->comm);
1532 if (rc > out_end - out_ptr)
1533 goto out;
1534 out_ptr += rc;
1535 break;
1536 /* core limit size */
1537 case 'c':
1538 rc = snprintf(out_ptr, out_end - out_ptr,
1539 "%lu", rlimit(RLIMIT_CORE));
1540 if (rc > out_end - out_ptr)
1541 goto out;
1542 out_ptr += rc;
1543 break;
1544 default:
1545 break;
1547 ++pat_ptr;
1550 /* Backward compatibility with core_uses_pid:
1552 * If core_pattern does not include a %p (as is the default)
1553 * and core_uses_pid is set, then .%pid will be appended to
1554 * the filename. Do not do this for piped commands. */
1555 if (!ispipe && !pid_in_pattern && core_uses_pid) {
1556 rc = snprintf(out_ptr, out_end - out_ptr,
1557 ".%d", task_tgid_vnr(current));
1558 if (rc > out_end - out_ptr)
1559 goto out;
1560 out_ptr += rc;
1562 out:
1563 *out_ptr = 0;
1564 return ispipe;
1567 static int zap_process(struct task_struct *start, int exit_code)
1569 struct task_struct *t;
1570 int nr = 0;
1572 start->signal->flags = SIGNAL_GROUP_EXIT;
1573 start->signal->group_exit_code = exit_code;
1574 start->signal->group_stop_count = 0;
1576 t = start;
1577 do {
1578 if (t != current && t->mm) {
1579 sigaddset(&t->pending.signal, SIGKILL);
1580 signal_wake_up(t, 1);
1581 nr++;
1583 } while_each_thread(start, t);
1585 return nr;
1588 static inline int zap_threads(struct task_struct *tsk, struct mm_struct *mm,
1589 struct core_state *core_state, int exit_code)
1591 struct task_struct *g, *p;
1592 unsigned long flags;
1593 int nr = -EAGAIN;
1595 spin_lock_irq(&tsk->sighand->siglock);
1596 if (!signal_group_exit(tsk->signal)) {
1597 mm->core_state = core_state;
1598 nr = zap_process(tsk, exit_code);
1600 spin_unlock_irq(&tsk->sighand->siglock);
1601 if (unlikely(nr < 0))
1602 return nr;
1604 if (atomic_read(&mm->mm_users) == nr + 1)
1605 goto done;
1607 * We should find and kill all tasks which use this mm, and we should
1608 * count them correctly into ->nr_threads. We don't take tasklist
1609 * lock, but this is safe wrt:
1611 * fork:
1612 * None of sub-threads can fork after zap_process(leader). All
1613 * processes which were created before this point should be
1614 * visible to zap_threads() because copy_process() adds the new
1615 * process to the tail of init_task.tasks list, and lock/unlock
1616 * of ->siglock provides a memory barrier.
1618 * do_exit:
1619 * The caller holds mm->mmap_sem. This means that the task which
1620 * uses this mm can't pass exit_mm(), so it can't exit or clear
1621 * its ->mm.
1623 * de_thread:
1624 * It does list_replace_rcu(&leader->tasks, &current->tasks),
1625 * we must see either old or new leader, this does not matter.
1626 * However, it can change p->sighand, so lock_task_sighand(p)
1627 * must be used. Since p->mm != NULL and we hold ->mmap_sem
1628 * it can't fail.
1630 * Note also that "g" can be the old leader with ->mm == NULL
1631 * and already unhashed and thus removed from ->thread_group.
1632 * This is OK, __unhash_process()->list_del_rcu() does not
1633 * clear the ->next pointer, we will find the new leader via
1634 * next_thread().
1636 rcu_read_lock();
1637 for_each_process(g) {
1638 if (g == tsk->group_leader)
1639 continue;
1640 if (g->flags & PF_KTHREAD)
1641 continue;
1642 p = g;
1643 do {
1644 if (p->mm) {
1645 if (unlikely(p->mm == mm)) {
1646 lock_task_sighand(p, &flags);
1647 nr += zap_process(p, exit_code);
1648 unlock_task_sighand(p, &flags);
1650 break;
1652 } while_each_thread(g, p);
1654 rcu_read_unlock();
1655 done:
1656 atomic_set(&core_state->nr_threads, nr);
1657 return nr;
1660 static int coredump_wait(int exit_code, struct core_state *core_state)
1662 struct task_struct *tsk = current;
1663 struct mm_struct *mm = tsk->mm;
1664 struct completion *vfork_done;
1665 int core_waiters = -EBUSY;
1667 init_completion(&core_state->startup);
1668 core_state->dumper.task = tsk;
1669 core_state->dumper.next = NULL;
1671 down_write(&mm->mmap_sem);
1672 if (!mm->core_state)
1673 core_waiters = zap_threads(tsk, mm, core_state, exit_code);
1674 up_write(&mm->mmap_sem);
1676 if (unlikely(core_waiters < 0))
1677 goto fail;
1680 * Make sure nobody is waiting for us to release the VM,
1681 * otherwise we can deadlock when we wait on each other
1683 vfork_done = tsk->vfork_done;
1684 if (vfork_done) {
1685 tsk->vfork_done = NULL;
1686 complete(vfork_done);
1689 if (core_waiters)
1690 wait_for_completion(&core_state->startup);
1691 fail:
1692 return core_waiters;
1695 static void coredump_finish(struct mm_struct *mm)
1697 struct core_thread *curr, *next;
1698 struct task_struct *task;
1700 next = mm->core_state->dumper.next;
1701 while ((curr = next) != NULL) {
1702 next = curr->next;
1703 task = curr->task;
1705 * see exit_mm(), curr->task must not see
1706 * ->task == NULL before we read ->next.
1708 smp_mb();
1709 curr->task = NULL;
1710 wake_up_process(task);
1713 mm->core_state = NULL;
1717 * set_dumpable converts traditional three-value dumpable to two flags and
1718 * stores them into mm->flags. It modifies lower two bits of mm->flags, but
1719 * these bits are not changed atomically. So get_dumpable can observe the
1720 * intermediate state. To avoid doing unexpected behavior, get get_dumpable
1721 * return either old dumpable or new one by paying attention to the order of
1722 * modifying the bits.
1724 * dumpable | mm->flags (binary)
1725 * old new | initial interim final
1726 * ---------+-----------------------
1727 * 0 1 | 00 01 01
1728 * 0 2 | 00 10(*) 11
1729 * 1 0 | 01 00 00
1730 * 1 2 | 01 11 11
1731 * 2 0 | 11 10(*) 00
1732 * 2 1 | 11 11 01
1734 * (*) get_dumpable regards interim value of 10 as 11.
1736 void set_dumpable(struct mm_struct *mm, int value)
1738 switch (value) {
1739 case 0:
1740 clear_bit(MMF_DUMPABLE, &mm->flags);
1741 smp_wmb();
1742 clear_bit(MMF_DUMP_SECURELY, &mm->flags);
1743 break;
1744 case 1:
1745 set_bit(MMF_DUMPABLE, &mm->flags);
1746 smp_wmb();
1747 clear_bit(MMF_DUMP_SECURELY, &mm->flags);
1748 break;
1749 case 2:
1750 set_bit(MMF_DUMP_SECURELY, &mm->flags);
1751 smp_wmb();
1752 set_bit(MMF_DUMPABLE, &mm->flags);
1753 break;
1757 static int __get_dumpable(unsigned long mm_flags)
1759 int ret;
1761 ret = mm_flags & MMF_DUMPABLE_MASK;
1762 return (ret >= 2) ? 2 : ret;
1765 int get_dumpable(struct mm_struct *mm)
1767 return __get_dumpable(mm->flags);
1770 static void wait_for_dump_helpers(struct file *file)
1772 struct pipe_inode_info *pipe;
1774 pipe = file->f_path.dentry->d_inode->i_pipe;
1776 pipe_lock(pipe);
1777 pipe->readers++;
1778 pipe->writers--;
1780 while ((pipe->readers > 1) && (!signal_pending(current))) {
1781 wake_up_interruptible_sync(&pipe->wait);
1782 kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
1783 pipe_wait(pipe);
1786 pipe->readers--;
1787 pipe->writers++;
1788 pipe_unlock(pipe);
1794 * uhm_pipe_setup
1795 * helper function to customize the process used
1796 * to collect the core in userspace. Specifically
1797 * it sets up a pipe and installs it as fd 0 (stdin)
1798 * for the process. Returns 0 on success, or
1799 * PTR_ERR on failure.
1800 * Note that it also sets the core limit to 1. This
1801 * is a special value that we use to trap recursive
1802 * core dumps
1804 static int umh_pipe_setup(struct subprocess_info *info)
1806 struct file *rp, *wp;
1807 struct fdtable *fdt;
1808 struct coredump_params *cp = (struct coredump_params *)info->data;
1809 struct files_struct *cf = current->files;
1811 wp = create_write_pipe(0);
1812 if (IS_ERR(wp))
1813 return PTR_ERR(wp);
1815 rp = create_read_pipe(wp, 0);
1816 if (IS_ERR(rp)) {
1817 free_write_pipe(wp);
1818 return PTR_ERR(rp);
1821 cp->file = wp;
1823 sys_close(0);
1824 fd_install(0, rp);
1825 spin_lock(&cf->file_lock);
1826 fdt = files_fdtable(cf);
1827 FD_SET(0, fdt->open_fds);
1828 FD_CLR(0, fdt->close_on_exec);
1829 spin_unlock(&cf->file_lock);
1831 /* and disallow core files too */
1832 current->signal->rlim[RLIMIT_CORE] = (struct rlimit){1, 1};
1834 return 0;
1837 void do_coredump(long signr, int exit_code, struct pt_regs *regs)
1839 struct core_state core_state;
1840 char corename[CORENAME_MAX_SIZE + 1];
1841 struct mm_struct *mm = current->mm;
1842 struct linux_binfmt * binfmt;
1843 const struct cred *old_cred;
1844 struct cred *cred;
1845 int retval = 0;
1846 int flag = 0;
1847 int ispipe;
1848 static atomic_t core_dump_count = ATOMIC_INIT(0);
1849 struct coredump_params cprm = {
1850 .signr = signr,
1851 .regs = regs,
1852 .limit = rlimit(RLIMIT_CORE),
1854 * We must use the same mm->flags while dumping core to avoid
1855 * inconsistency of bit flags, since this flag is not protected
1856 * by any locks.
1858 .mm_flags = mm->flags,
1861 audit_core_dumps(signr);
1863 binfmt = mm->binfmt;
1864 if (!binfmt || !binfmt->core_dump)
1865 goto fail;
1866 if (!__get_dumpable(cprm.mm_flags))
1867 goto fail;
1869 cred = prepare_creds();
1870 if (!cred)
1871 goto fail;
1873 * We cannot trust fsuid as being the "true" uid of the
1874 * process nor do we know its entire history. We only know it
1875 * was tainted so we dump it as root in mode 2.
1877 if (__get_dumpable(cprm.mm_flags) == 2) {
1878 /* Setuid core dump mode */
1879 flag = O_EXCL; /* Stop rewrite attacks */
1880 cred->fsuid = 0; /* Dump root private */
1883 retval = coredump_wait(exit_code, &core_state);
1884 if (retval < 0)
1885 goto fail_creds;
1887 old_cred = override_creds(cred);
1890 * Clear any false indication of pending signals that might
1891 * be seen by the filesystem code called to write the core file.
1893 clear_thread_flag(TIF_SIGPENDING);
1895 ispipe = format_corename(corename, signr);
1897 if (ispipe) {
1898 int dump_count;
1899 char **helper_argv;
1901 if (cprm.limit == 1) {
1903 * Normally core limits are irrelevant to pipes, since
1904 * we're not writing to the file system, but we use
1905 * cprm.limit of 1 here as a speacial value. Any
1906 * non-1 limit gets set to RLIM_INFINITY below, but
1907 * a limit of 0 skips the dump. This is a consistent
1908 * way to catch recursive crashes. We can still crash
1909 * if the core_pattern binary sets RLIM_CORE = !1
1910 * but it runs as root, and can do lots of stupid things
1911 * Note that we use task_tgid_vnr here to grab the pid
1912 * of the process group leader. That way we get the
1913 * right pid if a thread in a multi-threaded
1914 * core_pattern process dies.
1916 printk(KERN_WARNING
1917 "Process %d(%s) has RLIMIT_CORE set to 1\n",
1918 task_tgid_vnr(current), current->comm);
1919 printk(KERN_WARNING "Aborting core\n");
1920 goto fail_unlock;
1922 cprm.limit = RLIM_INFINITY;
1924 dump_count = atomic_inc_return(&core_dump_count);
1925 if (core_pipe_limit && (core_pipe_limit < dump_count)) {
1926 printk(KERN_WARNING "Pid %d(%s) over core_pipe_limit\n",
1927 task_tgid_vnr(current), current->comm);
1928 printk(KERN_WARNING "Skipping core dump\n");
1929 goto fail_dropcount;
1932 helper_argv = argv_split(GFP_KERNEL, corename+1, NULL);
1933 if (!helper_argv) {
1934 printk(KERN_WARNING "%s failed to allocate memory\n",
1935 __func__);
1936 goto fail_dropcount;
1939 retval = call_usermodehelper_fns(helper_argv[0], helper_argv,
1940 NULL, UMH_WAIT_EXEC, umh_pipe_setup,
1941 NULL, &cprm);
1942 argv_free(helper_argv);
1943 if (retval) {
1944 printk(KERN_INFO "Core dump to %s pipe failed\n",
1945 corename);
1946 goto close_fail;
1948 } else {
1949 struct inode *inode;
1951 if (cprm.limit < binfmt->min_coredump)
1952 goto fail_unlock;
1954 cprm.file = filp_open(corename,
1955 O_CREAT | 2 | O_NOFOLLOW | O_LARGEFILE | flag,
1956 0600);
1957 if (IS_ERR(cprm.file))
1958 goto fail_unlock;
1960 inode = cprm.file->f_path.dentry->d_inode;
1961 if (inode->i_nlink > 1)
1962 goto close_fail;
1963 if (d_unhashed(cprm.file->f_path.dentry))
1964 goto close_fail;
1966 * AK: actually i see no reason to not allow this for named
1967 * pipes etc, but keep the previous behaviour for now.
1969 if (!S_ISREG(inode->i_mode))
1970 goto close_fail;
1972 * Dont allow local users get cute and trick others to coredump
1973 * into their pre-created files.
1975 if (inode->i_uid != current_fsuid())
1976 goto close_fail;
1977 if (!cprm.file->f_op || !cprm.file->f_op->write)
1978 goto close_fail;
1979 if (do_truncate(cprm.file->f_path.dentry, 0, 0, cprm.file))
1980 goto close_fail;
1983 retval = binfmt->core_dump(&cprm);
1984 if (retval)
1985 current->signal->group_exit_code |= 0x80;
1987 if (ispipe && core_pipe_limit)
1988 wait_for_dump_helpers(cprm.file);
1989 close_fail:
1990 if (cprm.file)
1991 filp_close(cprm.file, NULL);
1992 fail_dropcount:
1993 if (ispipe)
1994 atomic_dec(&core_dump_count);
1995 fail_unlock:
1996 coredump_finish(mm);
1997 revert_creds(old_cred);
1998 fail_creds:
1999 put_cred(cred);
2000 fail:
2001 return;