[PATCH] fs/namei.c: make lookup_hash() static
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / drivers / mtd / mtdconcat.c
blob9af840364a74ff849c2aa283b25c0dc6038565a1
1 /*
2 * MTD device concatenation layer
4 * (C) 2002 Robert Kaiser <rkaiser@sysgo.de>
6 * NAND support by Christian Gan <cgan@iders.ca>
8 * This code is GPL
10 * $Id: mtdconcat.c,v 1.11 2005/11/07 11:14:20 gleixner Exp $
13 #include <linux/kernel.h>
14 #include <linux/module.h>
15 #include <linux/slab.h>
16 #include <linux/sched.h>
17 #include <linux/types.h>
19 #include <linux/mtd/mtd.h>
20 #include <linux/mtd/concat.h>
23 * Our storage structure:
24 * Subdev points to an array of pointers to struct mtd_info objects
25 * which is allocated along with this structure
28 struct mtd_concat {
29 struct mtd_info mtd;
30 int num_subdev;
31 struct mtd_info **subdev;
35 * how to calculate the size required for the above structure,
36 * including the pointer array subdev points to:
38 #define SIZEOF_STRUCT_MTD_CONCAT(num_subdev) \
39 ((sizeof(struct mtd_concat) + (num_subdev) * sizeof(struct mtd_info *)))
42 * Given a pointer to the MTD object in the mtd_concat structure,
43 * we can retrieve the pointer to that structure with this macro.
45 #define CONCAT(x) ((struct mtd_concat *)(x))
48 * MTD methods which look up the relevant subdevice, translate the
49 * effective address and pass through to the subdevice.
52 static int
53 concat_read(struct mtd_info *mtd, loff_t from, size_t len,
54 size_t * retlen, u_char * buf)
56 struct mtd_concat *concat = CONCAT(mtd);
57 int err = -EINVAL;
58 int i;
60 *retlen = 0;
62 for (i = 0; i < concat->num_subdev; i++) {
63 struct mtd_info *subdev = concat->subdev[i];
64 size_t size, retsize;
66 if (from >= subdev->size) {
67 /* Not destined for this subdev */
68 size = 0;
69 from -= subdev->size;
70 continue;
72 if (from + len > subdev->size)
73 /* First part goes into this subdev */
74 size = subdev->size - from;
75 else
76 /* Entire transaction goes into this subdev */
77 size = len;
79 err = subdev->read(subdev, from, size, &retsize, buf);
81 if (err)
82 break;
84 *retlen += retsize;
85 len -= size;
86 if (len == 0)
87 break;
89 err = -EINVAL;
90 buf += size;
91 from = 0;
93 return err;
96 static int
97 concat_write(struct mtd_info *mtd, loff_t to, size_t len,
98 size_t * retlen, const u_char * buf)
100 struct mtd_concat *concat = CONCAT(mtd);
101 int err = -EINVAL;
102 int i;
104 if (!(mtd->flags & MTD_WRITEABLE))
105 return -EROFS;
107 *retlen = 0;
109 for (i = 0; i < concat->num_subdev; i++) {
110 struct mtd_info *subdev = concat->subdev[i];
111 size_t size, retsize;
113 if (to >= subdev->size) {
114 size = 0;
115 to -= subdev->size;
116 continue;
118 if (to + len > subdev->size)
119 size = subdev->size - to;
120 else
121 size = len;
123 if (!(subdev->flags & MTD_WRITEABLE))
124 err = -EROFS;
125 else
126 err = subdev->write(subdev, to, size, &retsize, buf);
128 if (err)
129 break;
131 *retlen += retsize;
132 len -= size;
133 if (len == 0)
134 break;
136 err = -EINVAL;
137 buf += size;
138 to = 0;
140 return err;
143 static int
144 concat_read_ecc(struct mtd_info *mtd, loff_t from, size_t len,
145 size_t * retlen, u_char * buf, u_char * eccbuf,
146 struct nand_oobinfo *oobsel)
148 struct mtd_concat *concat = CONCAT(mtd);
149 int err = -EINVAL;
150 int i;
152 *retlen = 0;
154 for (i = 0; i < concat->num_subdev; i++) {
155 struct mtd_info *subdev = concat->subdev[i];
156 size_t size, retsize;
158 if (from >= subdev->size) {
159 /* Not destined for this subdev */
160 size = 0;
161 from -= subdev->size;
162 continue;
165 if (from + len > subdev->size)
166 /* First part goes into this subdev */
167 size = subdev->size - from;
168 else
169 /* Entire transaction goes into this subdev */
170 size = len;
172 if (subdev->read_ecc)
173 err = subdev->read_ecc(subdev, from, size,
174 &retsize, buf, eccbuf, oobsel);
175 else
176 err = -EINVAL;
178 if (err)
179 break;
181 *retlen += retsize;
182 len -= size;
183 if (len == 0)
184 break;
186 err = -EINVAL;
187 buf += size;
188 if (eccbuf) {
189 eccbuf += subdev->oobsize;
190 /* in nand.c at least, eccbufs are
191 tagged with 2 (int)eccstatus'; we
192 must account for these */
193 eccbuf += 2 * (sizeof (int));
195 from = 0;
197 return err;
200 static int
201 concat_write_ecc(struct mtd_info *mtd, loff_t to, size_t len,
202 size_t * retlen, const u_char * buf, u_char * eccbuf,
203 struct nand_oobinfo *oobsel)
205 struct mtd_concat *concat = CONCAT(mtd);
206 int err = -EINVAL;
207 int i;
209 if (!(mtd->flags & MTD_WRITEABLE))
210 return -EROFS;
212 *retlen = 0;
214 for (i = 0; i < concat->num_subdev; i++) {
215 struct mtd_info *subdev = concat->subdev[i];
216 size_t size, retsize;
218 if (to >= subdev->size) {
219 size = 0;
220 to -= subdev->size;
221 continue;
223 if (to + len > subdev->size)
224 size = subdev->size - to;
225 else
226 size = len;
228 if (!(subdev->flags & MTD_WRITEABLE))
229 err = -EROFS;
230 else if (subdev->write_ecc)
231 err = subdev->write_ecc(subdev, to, size,
232 &retsize, buf, eccbuf, oobsel);
233 else
234 err = -EINVAL;
236 if (err)
237 break;
239 *retlen += retsize;
240 len -= size;
241 if (len == 0)
242 break;
244 err = -EINVAL;
245 buf += size;
246 if (eccbuf)
247 eccbuf += subdev->oobsize;
248 to = 0;
250 return err;
253 static int
254 concat_read_oob(struct mtd_info *mtd, loff_t from, size_t len,
255 size_t * retlen, u_char * buf)
257 struct mtd_concat *concat = CONCAT(mtd);
258 int err = -EINVAL;
259 int i;
261 *retlen = 0;
263 for (i = 0; i < concat->num_subdev; i++) {
264 struct mtd_info *subdev = concat->subdev[i];
265 size_t size, retsize;
267 if (from >= subdev->size) {
268 /* Not destined for this subdev */
269 size = 0;
270 from -= subdev->size;
271 continue;
273 if (from + len > subdev->size)
274 /* First part goes into this subdev */
275 size = subdev->size - from;
276 else
277 /* Entire transaction goes into this subdev */
278 size = len;
280 if (subdev->read_oob)
281 err = subdev->read_oob(subdev, from, size,
282 &retsize, buf);
283 else
284 err = -EINVAL;
286 if (err)
287 break;
289 *retlen += retsize;
290 len -= size;
291 if (len == 0)
292 break;
294 err = -EINVAL;
295 buf += size;
296 from = 0;
298 return err;
301 static int
302 concat_write_oob(struct mtd_info *mtd, loff_t to, size_t len,
303 size_t * retlen, const u_char * buf)
305 struct mtd_concat *concat = CONCAT(mtd);
306 int err = -EINVAL;
307 int i;
309 if (!(mtd->flags & MTD_WRITEABLE))
310 return -EROFS;
312 *retlen = 0;
314 for (i = 0; i < concat->num_subdev; i++) {
315 struct mtd_info *subdev = concat->subdev[i];
316 size_t size, retsize;
318 if (to >= subdev->size) {
319 size = 0;
320 to -= subdev->size;
321 continue;
323 if (to + len > subdev->size)
324 size = subdev->size - to;
325 else
326 size = len;
328 if (!(subdev->flags & MTD_WRITEABLE))
329 err = -EROFS;
330 else if (subdev->write_oob)
331 err = subdev->write_oob(subdev, to, size, &retsize,
332 buf);
333 else
334 err = -EINVAL;
336 if (err)
337 break;
339 *retlen += retsize;
340 len -= size;
341 if (len == 0)
342 break;
344 err = -EINVAL;
345 buf += size;
346 to = 0;
348 return err;
351 static void concat_erase_callback(struct erase_info *instr)
353 wake_up((wait_queue_head_t *) instr->priv);
356 static int concat_dev_erase(struct mtd_info *mtd, struct erase_info *erase)
358 int err;
359 wait_queue_head_t waitq;
360 DECLARE_WAITQUEUE(wait, current);
363 * This code was stol^H^H^H^Hinspired by mtdchar.c
365 init_waitqueue_head(&waitq);
367 erase->mtd = mtd;
368 erase->callback = concat_erase_callback;
369 erase->priv = (unsigned long) &waitq;
372 * FIXME: Allow INTERRUPTIBLE. Which means
373 * not having the wait_queue head on the stack.
375 err = mtd->erase(mtd, erase);
376 if (!err) {
377 set_current_state(TASK_UNINTERRUPTIBLE);
378 add_wait_queue(&waitq, &wait);
379 if (erase->state != MTD_ERASE_DONE
380 && erase->state != MTD_ERASE_FAILED)
381 schedule();
382 remove_wait_queue(&waitq, &wait);
383 set_current_state(TASK_RUNNING);
385 err = (erase->state == MTD_ERASE_FAILED) ? -EIO : 0;
387 return err;
390 static int concat_erase(struct mtd_info *mtd, struct erase_info *instr)
392 struct mtd_concat *concat = CONCAT(mtd);
393 struct mtd_info *subdev;
394 int i, err;
395 u_int32_t length, offset = 0;
396 struct erase_info *erase;
398 if (!(mtd->flags & MTD_WRITEABLE))
399 return -EROFS;
401 if (instr->addr > concat->mtd.size)
402 return -EINVAL;
404 if (instr->len + instr->addr > concat->mtd.size)
405 return -EINVAL;
408 * Check for proper erase block alignment of the to-be-erased area.
409 * It is easier to do this based on the super device's erase
410 * region info rather than looking at each particular sub-device
411 * in turn.
413 if (!concat->mtd.numeraseregions) {
414 /* the easy case: device has uniform erase block size */
415 if (instr->addr & (concat->mtd.erasesize - 1))
416 return -EINVAL;
417 if (instr->len & (concat->mtd.erasesize - 1))
418 return -EINVAL;
419 } else {
420 /* device has variable erase size */
421 struct mtd_erase_region_info *erase_regions =
422 concat->mtd.eraseregions;
425 * Find the erase region where the to-be-erased area begins:
427 for (i = 0; i < concat->mtd.numeraseregions &&
428 instr->addr >= erase_regions[i].offset; i++) ;
429 --i;
432 * Now erase_regions[i] is the region in which the
433 * to-be-erased area begins. Verify that the starting
434 * offset is aligned to this region's erase size:
436 if (instr->addr & (erase_regions[i].erasesize - 1))
437 return -EINVAL;
440 * now find the erase region where the to-be-erased area ends:
442 for (; i < concat->mtd.numeraseregions &&
443 (instr->addr + instr->len) >= erase_regions[i].offset;
444 ++i) ;
445 --i;
447 * check if the ending offset is aligned to this region's erase size
449 if ((instr->addr + instr->len) & (erase_regions[i].erasesize -
451 return -EINVAL;
454 instr->fail_addr = 0xffffffff;
456 /* make a local copy of instr to avoid modifying the caller's struct */
457 erase = kmalloc(sizeof (struct erase_info), GFP_KERNEL);
459 if (!erase)
460 return -ENOMEM;
462 *erase = *instr;
463 length = instr->len;
466 * find the subdevice where the to-be-erased area begins, adjust
467 * starting offset to be relative to the subdevice start
469 for (i = 0; i < concat->num_subdev; i++) {
470 subdev = concat->subdev[i];
471 if (subdev->size <= erase->addr) {
472 erase->addr -= subdev->size;
473 offset += subdev->size;
474 } else {
475 break;
479 /* must never happen since size limit has been verified above */
480 BUG_ON(i >= concat->num_subdev);
482 /* now do the erase: */
483 err = 0;
484 for (; length > 0; i++) {
485 /* loop for all subdevices affected by this request */
486 subdev = concat->subdev[i]; /* get current subdevice */
488 /* limit length to subdevice's size: */
489 if (erase->addr + length > subdev->size)
490 erase->len = subdev->size - erase->addr;
491 else
492 erase->len = length;
494 if (!(subdev->flags & MTD_WRITEABLE)) {
495 err = -EROFS;
496 break;
498 length -= erase->len;
499 if ((err = concat_dev_erase(subdev, erase))) {
500 /* sanity check: should never happen since
501 * block alignment has been checked above */
502 BUG_ON(err == -EINVAL);
503 if (erase->fail_addr != 0xffffffff)
504 instr->fail_addr = erase->fail_addr + offset;
505 break;
508 * erase->addr specifies the offset of the area to be
509 * erased *within the current subdevice*. It can be
510 * non-zero only the first time through this loop, i.e.
511 * for the first subdevice where blocks need to be erased.
512 * All the following erases must begin at the start of the
513 * current subdevice, i.e. at offset zero.
515 erase->addr = 0;
516 offset += subdev->size;
518 instr->state = erase->state;
519 kfree(erase);
520 if (err)
521 return err;
523 if (instr->callback)
524 instr->callback(instr);
525 return 0;
528 static int concat_lock(struct mtd_info *mtd, loff_t ofs, size_t len)
530 struct mtd_concat *concat = CONCAT(mtd);
531 int i, err = -EINVAL;
533 if ((len + ofs) > mtd->size)
534 return -EINVAL;
536 for (i = 0; i < concat->num_subdev; i++) {
537 struct mtd_info *subdev = concat->subdev[i];
538 size_t size;
540 if (ofs >= subdev->size) {
541 size = 0;
542 ofs -= subdev->size;
543 continue;
545 if (ofs + len > subdev->size)
546 size = subdev->size - ofs;
547 else
548 size = len;
550 err = subdev->lock(subdev, ofs, size);
552 if (err)
553 break;
555 len -= size;
556 if (len == 0)
557 break;
559 err = -EINVAL;
560 ofs = 0;
563 return err;
566 static int concat_unlock(struct mtd_info *mtd, loff_t ofs, size_t len)
568 struct mtd_concat *concat = CONCAT(mtd);
569 int i, err = 0;
571 if ((len + ofs) > mtd->size)
572 return -EINVAL;
574 for (i = 0; i < concat->num_subdev; i++) {
575 struct mtd_info *subdev = concat->subdev[i];
576 size_t size;
578 if (ofs >= subdev->size) {
579 size = 0;
580 ofs -= subdev->size;
581 continue;
583 if (ofs + len > subdev->size)
584 size = subdev->size - ofs;
585 else
586 size = len;
588 err = subdev->unlock(subdev, ofs, size);
590 if (err)
591 break;
593 len -= size;
594 if (len == 0)
595 break;
597 err = -EINVAL;
598 ofs = 0;
601 return err;
604 static void concat_sync(struct mtd_info *mtd)
606 struct mtd_concat *concat = CONCAT(mtd);
607 int i;
609 for (i = 0; i < concat->num_subdev; i++) {
610 struct mtd_info *subdev = concat->subdev[i];
611 subdev->sync(subdev);
615 static int concat_suspend(struct mtd_info *mtd)
617 struct mtd_concat *concat = CONCAT(mtd);
618 int i, rc = 0;
620 for (i = 0; i < concat->num_subdev; i++) {
621 struct mtd_info *subdev = concat->subdev[i];
622 if ((rc = subdev->suspend(subdev)) < 0)
623 return rc;
625 return rc;
628 static void concat_resume(struct mtd_info *mtd)
630 struct mtd_concat *concat = CONCAT(mtd);
631 int i;
633 for (i = 0; i < concat->num_subdev; i++) {
634 struct mtd_info *subdev = concat->subdev[i];
635 subdev->resume(subdev);
640 * This function constructs a virtual MTD device by concatenating
641 * num_devs MTD devices. A pointer to the new device object is
642 * stored to *new_dev upon success. This function does _not_
643 * register any devices: this is the caller's responsibility.
645 struct mtd_info *mtd_concat_create(struct mtd_info *subdev[], /* subdevices to concatenate */
646 int num_devs, /* number of subdevices */
647 char *name)
648 { /* name for the new device */
649 int i;
650 size_t size;
651 struct mtd_concat *concat;
652 u_int32_t max_erasesize, curr_erasesize;
653 int num_erase_region;
655 printk(KERN_NOTICE "Concatenating MTD devices:\n");
656 for (i = 0; i < num_devs; i++)
657 printk(KERN_NOTICE "(%d): \"%s\"\n", i, subdev[i]->name);
658 printk(KERN_NOTICE "into device \"%s\"\n", name);
660 /* allocate the device structure */
661 size = SIZEOF_STRUCT_MTD_CONCAT(num_devs);
662 concat = kmalloc(size, GFP_KERNEL);
663 if (!concat) {
664 printk
665 ("memory allocation error while creating concatenated device \"%s\"\n",
666 name);
667 return NULL;
669 memset(concat, 0, size);
670 concat->subdev = (struct mtd_info **) (concat + 1);
673 * Set up the new "super" device's MTD object structure, check for
674 * incompatibilites between the subdevices.
676 concat->mtd.type = subdev[0]->type;
677 concat->mtd.flags = subdev[0]->flags;
678 concat->mtd.size = subdev[0]->size;
679 concat->mtd.erasesize = subdev[0]->erasesize;
680 concat->mtd.oobblock = subdev[0]->oobblock;
681 concat->mtd.oobsize = subdev[0]->oobsize;
682 concat->mtd.ecctype = subdev[0]->ecctype;
683 concat->mtd.eccsize = subdev[0]->eccsize;
684 if (subdev[0]->read_ecc)
685 concat->mtd.read_ecc = concat_read_ecc;
686 if (subdev[0]->write_ecc)
687 concat->mtd.write_ecc = concat_write_ecc;
688 if (subdev[0]->read_oob)
689 concat->mtd.read_oob = concat_read_oob;
690 if (subdev[0]->write_oob)
691 concat->mtd.write_oob = concat_write_oob;
693 concat->subdev[0] = subdev[0];
695 for (i = 1; i < num_devs; i++) {
696 if (concat->mtd.type != subdev[i]->type) {
697 kfree(concat);
698 printk("Incompatible device type on \"%s\"\n",
699 subdev[i]->name);
700 return NULL;
702 if (concat->mtd.flags != subdev[i]->flags) {
704 * Expect all flags except MTD_WRITEABLE to be
705 * equal on all subdevices.
707 if ((concat->mtd.flags ^ subdev[i]->
708 flags) & ~MTD_WRITEABLE) {
709 kfree(concat);
710 printk("Incompatible device flags on \"%s\"\n",
711 subdev[i]->name);
712 return NULL;
713 } else
714 /* if writeable attribute differs,
715 make super device writeable */
716 concat->mtd.flags |=
717 subdev[i]->flags & MTD_WRITEABLE;
719 concat->mtd.size += subdev[i]->size;
720 if (concat->mtd.oobblock != subdev[i]->oobblock ||
721 concat->mtd.oobsize != subdev[i]->oobsize ||
722 concat->mtd.ecctype != subdev[i]->ecctype ||
723 concat->mtd.eccsize != subdev[i]->eccsize ||
724 !concat->mtd.read_ecc != !subdev[i]->read_ecc ||
725 !concat->mtd.write_ecc != !subdev[i]->write_ecc ||
726 !concat->mtd.read_oob != !subdev[i]->read_oob ||
727 !concat->mtd.write_oob != !subdev[i]->write_oob) {
728 kfree(concat);
729 printk("Incompatible OOB or ECC data on \"%s\"\n",
730 subdev[i]->name);
731 return NULL;
733 concat->subdev[i] = subdev[i];
737 concat->num_subdev = num_devs;
738 concat->mtd.name = name;
741 * NOTE: for now, we do not provide any readv()/writev() methods
742 * because they are messy to implement and they are not
743 * used to a great extent anyway.
745 concat->mtd.erase = concat_erase;
746 concat->mtd.read = concat_read;
747 concat->mtd.write = concat_write;
748 concat->mtd.sync = concat_sync;
749 concat->mtd.lock = concat_lock;
750 concat->mtd.unlock = concat_unlock;
751 concat->mtd.suspend = concat_suspend;
752 concat->mtd.resume = concat_resume;
755 * Combine the erase block size info of the subdevices:
757 * first, walk the map of the new device and see how
758 * many changes in erase size we have
760 max_erasesize = curr_erasesize = subdev[0]->erasesize;
761 num_erase_region = 1;
762 for (i = 0; i < num_devs; i++) {
763 if (subdev[i]->numeraseregions == 0) {
764 /* current subdevice has uniform erase size */
765 if (subdev[i]->erasesize != curr_erasesize) {
766 /* if it differs from the last subdevice's erase size, count it */
767 ++num_erase_region;
768 curr_erasesize = subdev[i]->erasesize;
769 if (curr_erasesize > max_erasesize)
770 max_erasesize = curr_erasesize;
772 } else {
773 /* current subdevice has variable erase size */
774 int j;
775 for (j = 0; j < subdev[i]->numeraseregions; j++) {
777 /* walk the list of erase regions, count any changes */
778 if (subdev[i]->eraseregions[j].erasesize !=
779 curr_erasesize) {
780 ++num_erase_region;
781 curr_erasesize =
782 subdev[i]->eraseregions[j].
783 erasesize;
784 if (curr_erasesize > max_erasesize)
785 max_erasesize = curr_erasesize;
791 if (num_erase_region == 1) {
793 * All subdevices have the same uniform erase size.
794 * This is easy:
796 concat->mtd.erasesize = curr_erasesize;
797 concat->mtd.numeraseregions = 0;
798 } else {
800 * erase block size varies across the subdevices: allocate
801 * space to store the data describing the variable erase regions
803 struct mtd_erase_region_info *erase_region_p;
804 u_int32_t begin, position;
806 concat->mtd.erasesize = max_erasesize;
807 concat->mtd.numeraseregions = num_erase_region;
808 concat->mtd.eraseregions = erase_region_p =
809 kmalloc(num_erase_region *
810 sizeof (struct mtd_erase_region_info), GFP_KERNEL);
811 if (!erase_region_p) {
812 kfree(concat);
813 printk
814 ("memory allocation error while creating erase region list"
815 " for device \"%s\"\n", name);
816 return NULL;
820 * walk the map of the new device once more and fill in
821 * in erase region info:
823 curr_erasesize = subdev[0]->erasesize;
824 begin = position = 0;
825 for (i = 0; i < num_devs; i++) {
826 if (subdev[i]->numeraseregions == 0) {
827 /* current subdevice has uniform erase size */
828 if (subdev[i]->erasesize != curr_erasesize) {
830 * fill in an mtd_erase_region_info structure for the area
831 * we have walked so far:
833 erase_region_p->offset = begin;
834 erase_region_p->erasesize =
835 curr_erasesize;
836 erase_region_p->numblocks =
837 (position - begin) / curr_erasesize;
838 begin = position;
840 curr_erasesize = subdev[i]->erasesize;
841 ++erase_region_p;
843 position += subdev[i]->size;
844 } else {
845 /* current subdevice has variable erase size */
846 int j;
847 for (j = 0; j < subdev[i]->numeraseregions; j++) {
848 /* walk the list of erase regions, count any changes */
849 if (subdev[i]->eraseregions[j].
850 erasesize != curr_erasesize) {
851 erase_region_p->offset = begin;
852 erase_region_p->erasesize =
853 curr_erasesize;
854 erase_region_p->numblocks =
855 (position -
856 begin) / curr_erasesize;
857 begin = position;
859 curr_erasesize =
860 subdev[i]->eraseregions[j].
861 erasesize;
862 ++erase_region_p;
864 position +=
865 subdev[i]->eraseregions[j].
866 numblocks * curr_erasesize;
870 /* Now write the final entry */
871 erase_region_p->offset = begin;
872 erase_region_p->erasesize = curr_erasesize;
873 erase_region_p->numblocks = (position - begin) / curr_erasesize;
876 return &concat->mtd;
880 * This function destroys an MTD object obtained from concat_mtd_devs()
883 void mtd_concat_destroy(struct mtd_info *mtd)
885 struct mtd_concat *concat = CONCAT(mtd);
886 if (concat->mtd.numeraseregions)
887 kfree(concat->mtd.eraseregions);
888 kfree(concat);
891 EXPORT_SYMBOL(mtd_concat_create);
892 EXPORT_SYMBOL(mtd_concat_destroy);
894 MODULE_LICENSE("GPL");
895 MODULE_AUTHOR("Robert Kaiser <rkaiser@sysgo.de>");
896 MODULE_DESCRIPTION("Generic support for concatenating of MTD devices");