2 * Copyright (C) 2003 Christophe Saout <christophe@saout.de>
3 * Copyright (C) 2004 Clemens Fruhwirth <clemens@endorphin.org>
5 * This file is released under the GPL.
8 #include <linux/module.h>
9 #include <linux/init.h>
10 #include <linux/kernel.h>
11 #include <linux/bio.h>
12 #include <linux/blkdev.h>
13 #include <linux/mempool.h>
14 #include <linux/slab.h>
15 #include <linux/crypto.h>
16 #include <linux/workqueue.h>
17 #include <asm/atomic.h>
18 #include <linux/scatterlist.h>
26 * per bio private data
29 struct dm_target
*target
;
31 struct bio
*first_clone
;
32 struct work_struct work
;
38 * context holding the current state of a multi-part conversion
40 struct convert_context
{
43 unsigned int offset_in
;
44 unsigned int offset_out
;
53 struct crypt_iv_operations
{
54 int (*ctr
)(struct crypt_config
*cc
, struct dm_target
*ti
,
56 void (*dtr
)(struct crypt_config
*cc
);
57 const char *(*status
)(struct crypt_config
*cc
);
58 int (*generator
)(struct crypt_config
*cc
, u8
*iv
, sector_t sector
);
62 * Crypt: maps a linear range of a block device
63 * and encrypts / decrypts at the same time.
70 * pool for per bio private data and
71 * for encryption buffer pages
79 struct crypt_iv_operations
*iv_gen_ops
;
85 struct crypto_tfm
*tfm
;
86 unsigned int key_size
;
91 #define MIN_POOL_PAGES 32
92 #define MIN_BIO_PAGES 8
94 static kmem_cache_t
*_crypt_io_pool
;
97 * Different IV generation algorithms:
99 * plain: the initial vector is the 32-bit low-endian version of the sector
100 * number, padded with zeros if neccessary.
102 * ess_iv: "encrypted sector|salt initial vector", the sector number is
103 * encrypted with the bulk cipher using a salt as key. The salt
104 * should be derived from the bulk cipher's key via hashing.
106 * plumb: unimplemented, see:
107 * http://article.gmane.org/gmane.linux.kernel.device-mapper.dm-crypt/454
110 static int crypt_iv_plain_gen(struct crypt_config
*cc
, u8
*iv
, sector_t sector
)
112 memset(iv
, 0, cc
->iv_size
);
113 *(u32
*)iv
= cpu_to_le32(sector
& 0xffffffff);
118 static int crypt_iv_essiv_ctr(struct crypt_config
*cc
, struct dm_target
*ti
,
121 struct crypto_tfm
*essiv_tfm
;
122 struct crypto_tfm
*hash_tfm
;
123 struct scatterlist sg
;
124 unsigned int saltsize
;
128 ti
->error
= PFX
"Digest algorithm missing for ESSIV mode";
132 /* Hash the cipher key with the given hash algorithm */
133 hash_tfm
= crypto_alloc_tfm(opts
, CRYPTO_TFM_REQ_MAY_SLEEP
);
134 if (hash_tfm
== NULL
) {
135 ti
->error
= PFX
"Error initializing ESSIV hash";
139 if (crypto_tfm_alg_type(hash_tfm
) != CRYPTO_ALG_TYPE_DIGEST
) {
140 ti
->error
= PFX
"Expected digest algorithm for ESSIV hash";
141 crypto_free_tfm(hash_tfm
);
145 saltsize
= crypto_tfm_alg_digestsize(hash_tfm
);
146 salt
= kmalloc(saltsize
, GFP_KERNEL
);
148 ti
->error
= PFX
"Error kmallocing salt storage in ESSIV";
149 crypto_free_tfm(hash_tfm
);
153 sg_set_buf(&sg
, cc
->key
, cc
->key_size
);
154 crypto_digest_digest(hash_tfm
, &sg
, 1, salt
);
155 crypto_free_tfm(hash_tfm
);
157 /* Setup the essiv_tfm with the given salt */
158 essiv_tfm
= crypto_alloc_tfm(crypto_tfm_alg_name(cc
->tfm
),
159 CRYPTO_TFM_MODE_ECB
|
160 CRYPTO_TFM_REQ_MAY_SLEEP
);
161 if (essiv_tfm
== NULL
) {
162 ti
->error
= PFX
"Error allocating crypto tfm for ESSIV";
166 if (crypto_tfm_alg_blocksize(essiv_tfm
)
167 != crypto_tfm_alg_ivsize(cc
->tfm
)) {
168 ti
->error
= PFX
"Block size of ESSIV cipher does "
169 "not match IV size of block cipher";
170 crypto_free_tfm(essiv_tfm
);
174 if (crypto_cipher_setkey(essiv_tfm
, salt
, saltsize
) < 0) {
175 ti
->error
= PFX
"Failed to set key for ESSIV cipher";
176 crypto_free_tfm(essiv_tfm
);
182 cc
->iv_gen_private
= (void *)essiv_tfm
;
186 static void crypt_iv_essiv_dtr(struct crypt_config
*cc
)
188 crypto_free_tfm((struct crypto_tfm
*)cc
->iv_gen_private
);
189 cc
->iv_gen_private
= NULL
;
192 static int crypt_iv_essiv_gen(struct crypt_config
*cc
, u8
*iv
, sector_t sector
)
194 struct scatterlist sg
;
196 memset(iv
, 0, cc
->iv_size
);
197 *(u64
*)iv
= cpu_to_le64(sector
);
199 sg_set_buf(&sg
, iv
, cc
->iv_size
);
200 crypto_cipher_encrypt((struct crypto_tfm
*)cc
->iv_gen_private
,
201 &sg
, &sg
, cc
->iv_size
);
206 static struct crypt_iv_operations crypt_iv_plain_ops
= {
207 .generator
= crypt_iv_plain_gen
210 static struct crypt_iv_operations crypt_iv_essiv_ops
= {
211 .ctr
= crypt_iv_essiv_ctr
,
212 .dtr
= crypt_iv_essiv_dtr
,
213 .generator
= crypt_iv_essiv_gen
218 crypt_convert_scatterlist(struct crypt_config
*cc
, struct scatterlist
*out
,
219 struct scatterlist
*in
, unsigned int length
,
220 int write
, sector_t sector
)
225 if (cc
->iv_gen_ops
) {
226 r
= cc
->iv_gen_ops
->generator(cc
, iv
, sector
);
231 r
= crypto_cipher_encrypt_iv(cc
->tfm
, out
, in
, length
, iv
);
233 r
= crypto_cipher_decrypt_iv(cc
->tfm
, out
, in
, length
, iv
);
236 r
= crypto_cipher_encrypt(cc
->tfm
, out
, in
, length
);
238 r
= crypto_cipher_decrypt(cc
->tfm
, out
, in
, length
);
245 crypt_convert_init(struct crypt_config
*cc
, struct convert_context
*ctx
,
246 struct bio
*bio_out
, struct bio
*bio_in
,
247 sector_t sector
, int write
)
249 ctx
->bio_in
= bio_in
;
250 ctx
->bio_out
= bio_out
;
253 ctx
->idx_in
= bio_in
? bio_in
->bi_idx
: 0;
254 ctx
->idx_out
= bio_out
? bio_out
->bi_idx
: 0;
255 ctx
->sector
= sector
+ cc
->iv_offset
;
260 * Encrypt / decrypt data from one bio to another one (can be the same one)
262 static int crypt_convert(struct crypt_config
*cc
,
263 struct convert_context
*ctx
)
267 while(ctx
->idx_in
< ctx
->bio_in
->bi_vcnt
&&
268 ctx
->idx_out
< ctx
->bio_out
->bi_vcnt
) {
269 struct bio_vec
*bv_in
= bio_iovec_idx(ctx
->bio_in
, ctx
->idx_in
);
270 struct bio_vec
*bv_out
= bio_iovec_idx(ctx
->bio_out
, ctx
->idx_out
);
271 struct scatterlist sg_in
= {
272 .page
= bv_in
->bv_page
,
273 .offset
= bv_in
->bv_offset
+ ctx
->offset_in
,
274 .length
= 1 << SECTOR_SHIFT
276 struct scatterlist sg_out
= {
277 .page
= bv_out
->bv_page
,
278 .offset
= bv_out
->bv_offset
+ ctx
->offset_out
,
279 .length
= 1 << SECTOR_SHIFT
282 ctx
->offset_in
+= sg_in
.length
;
283 if (ctx
->offset_in
>= bv_in
->bv_len
) {
288 ctx
->offset_out
+= sg_out
.length
;
289 if (ctx
->offset_out
>= bv_out
->bv_len
) {
294 r
= crypt_convert_scatterlist(cc
, &sg_out
, &sg_in
, sg_in
.length
,
295 ctx
->write
, ctx
->sector
);
306 * Generate a new unfragmented bio with the given size
307 * This should never violate the device limitations
308 * May return a smaller bio when running out of pages
311 crypt_alloc_buffer(struct crypt_config
*cc
, unsigned int size
,
312 struct bio
*base_bio
, unsigned int *bio_vec_idx
)
315 unsigned int nr_iovecs
= (size
+ PAGE_SIZE
- 1) >> PAGE_SHIFT
;
316 gfp_t gfp_mask
= GFP_NOIO
| __GFP_HIGHMEM
;
320 * Use __GFP_NOMEMALLOC to tell the VM to act less aggressively and
321 * to fail earlier. This is not necessary but increases throughput.
322 * FIXME: Is this really intelligent?
325 bio
= bio_clone(base_bio
, GFP_NOIO
|__GFP_NOMEMALLOC
);
327 bio
= bio_alloc(GFP_NOIO
|__GFP_NOMEMALLOC
, nr_iovecs
);
331 /* if the last bio was not complete, continue where that one ended */
332 bio
->bi_idx
= *bio_vec_idx
;
333 bio
->bi_vcnt
= *bio_vec_idx
;
335 bio
->bi_flags
&= ~(1 << BIO_SEG_VALID
);
337 /* bio->bi_idx pages have already been allocated */
338 size
-= bio
->bi_idx
* PAGE_SIZE
;
340 for(i
= bio
->bi_idx
; i
< nr_iovecs
; i
++) {
341 struct bio_vec
*bv
= bio_iovec_idx(bio
, i
);
343 bv
->bv_page
= mempool_alloc(cc
->page_pool
, gfp_mask
);
348 * if additional pages cannot be allocated without waiting,
349 * return a partially allocated bio, the caller will then try
350 * to allocate additional bios while submitting this partial bio
352 if ((i
- bio
->bi_idx
) == (MIN_BIO_PAGES
- 1))
353 gfp_mask
= (gfp_mask
| __GFP_NOWARN
) & ~__GFP_WAIT
;
356 if (size
> PAGE_SIZE
)
357 bv
->bv_len
= PAGE_SIZE
;
361 bio
->bi_size
+= bv
->bv_len
;
372 * Remember the last bio_vec allocated to be able
373 * to correctly continue after the splitting.
375 *bio_vec_idx
= bio
->bi_vcnt
;
380 static void crypt_free_buffer_pages(struct crypt_config
*cc
,
381 struct bio
*bio
, unsigned int bytes
)
383 unsigned int i
, start
, end
;
387 * This is ugly, but Jens Axboe thinks that using bi_idx in the
388 * endio function is too dangerous at the moment, so I calculate the
389 * correct position using bi_vcnt and bi_size.
390 * The bv_offset and bv_len fields might already be modified but we
391 * know that we always allocated whole pages.
392 * A fix to the bi_idx issue in the kernel is in the works, so
393 * we will hopefully be able to revert to the cleaner solution soon.
395 i
= bio
->bi_vcnt
- 1;
396 bv
= bio_iovec_idx(bio
, i
);
397 end
= (i
<< PAGE_SHIFT
) + (bv
->bv_offset
+ bv
->bv_len
) - bio
->bi_size
;
400 start
>>= PAGE_SHIFT
;
406 for(i
= start
; i
< end
; i
++) {
407 bv
= bio_iovec_idx(bio
, i
);
408 BUG_ON(!bv
->bv_page
);
409 mempool_free(bv
->bv_page
, cc
->page_pool
);
415 * One of the bios was finished. Check for completion of
416 * the whole request and correctly clean up the buffer.
418 static void dec_pending(struct crypt_io
*io
, int error
)
420 struct crypt_config
*cc
= (struct crypt_config
*) io
->target
->private;
425 if (!atomic_dec_and_test(&io
->pending
))
429 bio_put(io
->first_clone
);
431 bio_endio(io
->bio
, io
->bio
->bi_size
, io
->error
);
433 mempool_free(io
, cc
->io_pool
);
439 * Needed because it would be very unwise to do decryption in an
440 * interrupt context, so bios returning from read requests get
443 static struct workqueue_struct
*_kcryptd_workqueue
;
445 static void kcryptd_do_work(void *data
)
447 struct crypt_io
*io
= (struct crypt_io
*) data
;
448 struct crypt_config
*cc
= (struct crypt_config
*) io
->target
->private;
449 struct convert_context ctx
;
452 crypt_convert_init(cc
, &ctx
, io
->bio
, io
->bio
,
453 io
->bio
->bi_sector
- io
->target
->begin
, 0);
454 r
= crypt_convert(cc
, &ctx
);
459 static void kcryptd_queue_io(struct crypt_io
*io
)
461 INIT_WORK(&io
->work
, kcryptd_do_work
, io
);
462 queue_work(_kcryptd_workqueue
, &io
->work
);
466 * Decode key from its hex representation
468 static int crypt_decode_key(u8
*key
, char *hex
, unsigned int size
)
476 for(i
= 0; i
< size
; i
++) {
480 key
[i
] = (u8
)simple_strtoul(buffer
, &endp
, 16);
482 if (endp
!= &buffer
[2])
493 * Encode key into its hex representation
495 static void crypt_encode_key(char *hex
, u8
*key
, unsigned int size
)
499 for(i
= 0; i
< size
; i
++) {
500 sprintf(hex
, "%02x", *key
);
507 * Construct an encryption mapping:
508 * <cipher> <key> <iv_offset> <dev_path> <start>
510 static int crypt_ctr(struct dm_target
*ti
, unsigned int argc
, char **argv
)
512 struct crypt_config
*cc
;
513 struct crypto_tfm
*tfm
;
519 unsigned int crypto_flags
;
520 unsigned int key_size
;
521 unsigned long long tmpll
;
524 ti
->error
= PFX
"Not enough arguments";
529 cipher
= strsep(&tmp
, "-");
530 chainmode
= strsep(&tmp
, "-");
531 ivopts
= strsep(&tmp
, "-");
532 ivmode
= strsep(&ivopts
, ":");
535 DMWARN(PFX
"Unexpected additional cipher options");
537 key_size
= strlen(argv
[1]) >> 1;
539 cc
= kmalloc(sizeof(*cc
) + key_size
* sizeof(u8
), GFP_KERNEL
);
542 PFX
"Cannot allocate transparent encryption context";
546 cc
->key_size
= key_size
;
547 if ((!key_size
&& strcmp(argv
[1], "-") != 0) ||
548 (key_size
&& crypt_decode_key(cc
->key
, argv
[1], key_size
) < 0)) {
549 ti
->error
= PFX
"Error decoding key";
553 /* Compatiblity mode for old dm-crypt cipher strings */
554 if (!chainmode
|| (strcmp(chainmode
, "plain") == 0 && !ivmode
)) {
559 /* Choose crypto_flags according to chainmode */
560 if (strcmp(chainmode
, "cbc") == 0)
561 crypto_flags
= CRYPTO_TFM_MODE_CBC
;
562 else if (strcmp(chainmode
, "ecb") == 0)
563 crypto_flags
= CRYPTO_TFM_MODE_ECB
;
565 ti
->error
= PFX
"Unknown chaining mode";
569 if (crypto_flags
!= CRYPTO_TFM_MODE_ECB
&& !ivmode
) {
570 ti
->error
= PFX
"This chaining mode requires an IV mechanism";
574 tfm
= crypto_alloc_tfm(cipher
, crypto_flags
| CRYPTO_TFM_REQ_MAY_SLEEP
);
576 ti
->error
= PFX
"Error allocating crypto tfm";
579 if (crypto_tfm_alg_type(tfm
) != CRYPTO_ALG_TYPE_CIPHER
) {
580 ti
->error
= PFX
"Expected cipher algorithm";
587 * Choose ivmode. Valid modes: "plain", "essiv:<esshash>".
588 * See comments at iv code
592 cc
->iv_gen_ops
= NULL
;
593 else if (strcmp(ivmode
, "plain") == 0)
594 cc
->iv_gen_ops
= &crypt_iv_plain_ops
;
595 else if (strcmp(ivmode
, "essiv") == 0)
596 cc
->iv_gen_ops
= &crypt_iv_essiv_ops
;
598 ti
->error
= PFX
"Invalid IV mode";
602 if (cc
->iv_gen_ops
&& cc
->iv_gen_ops
->ctr
&&
603 cc
->iv_gen_ops
->ctr(cc
, ti
, ivopts
) < 0)
606 if (tfm
->crt_cipher
.cit_decrypt_iv
&& tfm
->crt_cipher
.cit_encrypt_iv
)
607 /* at least a 64 bit sector number should fit in our buffer */
608 cc
->iv_size
= max(crypto_tfm_alg_ivsize(tfm
),
609 (unsigned int)(sizeof(u64
) / sizeof(u8
)));
612 if (cc
->iv_gen_ops
) {
613 DMWARN(PFX
"Selected cipher does not support IVs");
614 if (cc
->iv_gen_ops
->dtr
)
615 cc
->iv_gen_ops
->dtr(cc
);
616 cc
->iv_gen_ops
= NULL
;
620 cc
->io_pool
= mempool_create_slab_pool(MIN_IOS
, _crypt_io_pool
);
622 ti
->error
= PFX
"Cannot allocate crypt io mempool";
626 cc
->page_pool
= mempool_create_page_pool(MIN_POOL_PAGES
, 0);
627 if (!cc
->page_pool
) {
628 ti
->error
= PFX
"Cannot allocate page mempool";
632 if (tfm
->crt_cipher
.cit_setkey(tfm
, cc
->key
, key_size
) < 0) {
633 ti
->error
= PFX
"Error setting key";
637 if (sscanf(argv
[2], "%llu", &tmpll
) != 1) {
638 ti
->error
= PFX
"Invalid iv_offset sector";
641 cc
->iv_offset
= tmpll
;
643 if (sscanf(argv
[4], "%llu", &tmpll
) != 1) {
644 ti
->error
= PFX
"Invalid device sector";
649 if (dm_get_device(ti
, argv
[3], cc
->start
, ti
->len
,
650 dm_table_get_mode(ti
->table
), &cc
->dev
)) {
651 ti
->error
= PFX
"Device lookup failed";
655 if (ivmode
&& cc
->iv_gen_ops
) {
658 cc
->iv_mode
= kmalloc(strlen(ivmode
) + 1, GFP_KERNEL
);
660 ti
->error
= PFX
"Error kmallocing iv_mode string";
663 strcpy(cc
->iv_mode
, ivmode
);
671 mempool_destroy(cc
->page_pool
);
673 mempool_destroy(cc
->io_pool
);
675 if (cc
->iv_gen_ops
&& cc
->iv_gen_ops
->dtr
)
676 cc
->iv_gen_ops
->dtr(cc
);
678 crypto_free_tfm(tfm
);
680 /* Must zero key material before freeing */
681 memset(cc
, 0, sizeof(*cc
) + cc
->key_size
* sizeof(u8
));
686 static void crypt_dtr(struct dm_target
*ti
)
688 struct crypt_config
*cc
= (struct crypt_config
*) ti
->private;
690 mempool_destroy(cc
->page_pool
);
691 mempool_destroy(cc
->io_pool
);
694 if (cc
->iv_gen_ops
&& cc
->iv_gen_ops
->dtr
)
695 cc
->iv_gen_ops
->dtr(cc
);
696 crypto_free_tfm(cc
->tfm
);
697 dm_put_device(ti
, cc
->dev
);
699 /* Must zero key material before freeing */
700 memset(cc
, 0, sizeof(*cc
) + cc
->key_size
* sizeof(u8
));
704 static int crypt_endio(struct bio
*bio
, unsigned int done
, int error
)
706 struct crypt_io
*io
= (struct crypt_io
*) bio
->bi_private
;
707 struct crypt_config
*cc
= (struct crypt_config
*) io
->target
->private;
709 if (bio_data_dir(bio
) == WRITE
) {
711 * free the processed pages, even if
712 * it's only a partially completed write
714 crypt_free_buffer_pages(cc
, bio
, done
);
723 * successful reads are decrypted by the worker thread
725 if ((bio_data_dir(bio
) == READ
)
726 && bio_flagged(bio
, BIO_UPTODATE
)) {
727 kcryptd_queue_io(io
);
731 dec_pending(io
, error
);
735 static inline struct bio
*
736 crypt_clone(struct crypt_config
*cc
, struct crypt_io
*io
, struct bio
*bio
,
737 sector_t sector
, unsigned int *bvec_idx
,
738 struct convert_context
*ctx
)
742 if (bio_data_dir(bio
) == WRITE
) {
743 clone
= crypt_alloc_buffer(cc
, bio
->bi_size
,
744 io
->first_clone
, bvec_idx
);
746 ctx
->bio_out
= clone
;
747 if (crypt_convert(cc
, ctx
) < 0) {
748 crypt_free_buffer_pages(cc
, clone
,
756 * The block layer might modify the bvec array, so always
757 * copy the required bvecs because we need the original
758 * one in order to decrypt the whole bio data *afterwards*.
760 clone
= bio_alloc(GFP_NOIO
, bio_segments(bio
));
763 clone
->bi_vcnt
= bio_segments(bio
);
764 clone
->bi_size
= bio
->bi_size
;
765 memcpy(clone
->bi_io_vec
, bio_iovec(bio
),
766 sizeof(struct bio_vec
) * clone
->bi_vcnt
);
773 clone
->bi_private
= io
;
774 clone
->bi_end_io
= crypt_endio
;
775 clone
->bi_bdev
= cc
->dev
->bdev
;
776 clone
->bi_sector
= cc
->start
+ sector
;
777 clone
->bi_rw
= bio
->bi_rw
;
782 static int crypt_map(struct dm_target
*ti
, struct bio
*bio
,
783 union map_info
*map_context
)
785 struct crypt_config
*cc
= (struct crypt_config
*) ti
->private;
786 struct crypt_io
*io
= mempool_alloc(cc
->io_pool
, GFP_NOIO
);
787 struct convert_context ctx
;
789 unsigned int remaining
= bio
->bi_size
;
790 sector_t sector
= bio
->bi_sector
- ti
->begin
;
791 unsigned int bvec_idx
= 0;
795 io
->first_clone
= NULL
;
797 atomic_set(&io
->pending
, 1); /* hold a reference */
799 if (bio_data_dir(bio
) == WRITE
)
800 crypt_convert_init(cc
, &ctx
, NULL
, bio
, sector
, 1);
803 * The allocated buffers can be smaller than the whole bio,
804 * so repeat the whole process until all the data can be handled.
807 clone
= crypt_clone(cc
, io
, bio
, sector
, &bvec_idx
, &ctx
);
811 if (!io
->first_clone
) {
813 * hold a reference to the first clone, because it
814 * holds the bio_vec array and that can't be freed
815 * before all other clones are released
818 io
->first_clone
= clone
;
820 atomic_inc(&io
->pending
);
822 remaining
-= clone
->bi_size
;
823 sector
+= bio_sectors(clone
);
825 generic_make_request(clone
);
827 /* out of memory -> run queues */
829 blk_congestion_wait(bio_data_dir(clone
), HZ
/100);
832 /* drop reference, clones could have returned before we reach this */
837 if (io
->first_clone
) {
838 dec_pending(io
, -ENOMEM
);
842 /* if no bio has been dispatched yet, we can directly return the error */
843 mempool_free(io
, cc
->io_pool
);
847 static int crypt_status(struct dm_target
*ti
, status_type_t type
,
848 char *result
, unsigned int maxlen
)
850 struct crypt_config
*cc
= (struct crypt_config
*) ti
->private;
852 const char *chainmode
= NULL
;
856 case STATUSTYPE_INFO
:
860 case STATUSTYPE_TABLE
:
861 cipher
= crypto_tfm_alg_name(cc
->tfm
);
863 switch(cc
->tfm
->crt_cipher
.cit_mode
) {
864 case CRYPTO_TFM_MODE_CBC
:
867 case CRYPTO_TFM_MODE_ECB
:
875 DMEMIT("%s-%s-%s ", cipher
, chainmode
, cc
->iv_mode
);
877 DMEMIT("%s-%s ", cipher
, chainmode
);
879 if (cc
->key_size
> 0) {
880 if ((maxlen
- sz
) < ((cc
->key_size
<< 1) + 1))
883 crypt_encode_key(result
+ sz
, cc
->key
, cc
->key_size
);
884 sz
+= cc
->key_size
<< 1;
891 DMEMIT(" %llu %s %llu", (unsigned long long)cc
->iv_offset
,
892 cc
->dev
->name
, (unsigned long long)cc
->start
);
898 static struct target_type crypt_target
= {
901 .module
= THIS_MODULE
,
905 .status
= crypt_status
,
908 static int __init
dm_crypt_init(void)
912 _crypt_io_pool
= kmem_cache_create("dm-crypt_io",
913 sizeof(struct crypt_io
),
918 _kcryptd_workqueue
= create_workqueue("kcryptd");
919 if (!_kcryptd_workqueue
) {
921 DMERR(PFX
"couldn't create kcryptd");
925 r
= dm_register_target(&crypt_target
);
927 DMERR(PFX
"register failed %d", r
);
934 destroy_workqueue(_kcryptd_workqueue
);
936 kmem_cache_destroy(_crypt_io_pool
);
940 static void __exit
dm_crypt_exit(void)
942 int r
= dm_unregister_target(&crypt_target
);
945 DMERR(PFX
"unregister failed %d", r
);
947 destroy_workqueue(_kcryptd_workqueue
);
948 kmem_cache_destroy(_crypt_io_pool
);
951 module_init(dm_crypt_init
);
952 module_exit(dm_crypt_exit
);
954 MODULE_AUTHOR("Christophe Saout <christophe@saout.de>");
955 MODULE_DESCRIPTION(DM_NAME
" target for transparent encryption / decryption");
956 MODULE_LICENSE("GPL");