2 * Copyright (C) 2007 Oracle. All rights reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
20 #include <linux/blkdev.h>
21 #include <linux/scatterlist.h>
22 #include <linux/swap.h>
23 #include <linux/radix-tree.h>
24 #include <linux/writeback.h>
25 #include <linux/buffer_head.h>
26 #include <linux/workqueue.h>
27 #include <linux/kthread.h>
28 #include <linux/freezer.h>
29 #include <linux/crc32c.h>
30 #include <linux/slab.h>
34 #include "transaction.h"
35 #include "btrfs_inode.h"
37 #include "print-tree.h"
38 #include "async-thread.h"
41 #include "free-space-cache.h"
43 static struct extent_io_ops btree_extent_io_ops
;
44 static void end_workqueue_fn(struct btrfs_work
*work
);
45 static void free_fs_root(struct btrfs_root
*root
);
48 * end_io_wq structs are used to do processing in task context when an IO is
49 * complete. This is used during reads to verify checksums, and it is used
50 * by writes to insert metadata for new file extents after IO is complete.
56 struct btrfs_fs_info
*info
;
59 struct list_head list
;
60 struct btrfs_work work
;
64 * async submit bios are used to offload expensive checksumming
65 * onto the worker threads. They checksum file and metadata bios
66 * just before they are sent down the IO stack.
68 struct async_submit_bio
{
71 struct list_head list
;
72 extent_submit_bio_hook_t
*submit_bio_start
;
73 extent_submit_bio_hook_t
*submit_bio_done
;
76 unsigned long bio_flags
;
77 struct btrfs_work work
;
80 /* These are used to set the lockdep class on the extent buffer locks.
81 * The class is set by the readpage_end_io_hook after the buffer has
82 * passed csum validation but before the pages are unlocked.
84 * The lockdep class is also set by btrfs_init_new_buffer on freshly
87 * The class is based on the level in the tree block, which allows lockdep
88 * to know that lower nodes nest inside the locks of higher nodes.
90 * We also add a check to make sure the highest level of the tree is
91 * the same as our lockdep setup here. If BTRFS_MAX_LEVEL changes, this
92 * code needs update as well.
94 #ifdef CONFIG_DEBUG_LOCK_ALLOC
95 # if BTRFS_MAX_LEVEL != 8
98 static struct lock_class_key btrfs_eb_class
[BTRFS_MAX_LEVEL
+ 1];
99 static const char *btrfs_eb_name
[BTRFS_MAX_LEVEL
+ 1] = {
109 /* highest possible level */
115 * extents on the btree inode are pretty simple, there's one extent
116 * that covers the entire device
118 static struct extent_map
*btree_get_extent(struct inode
*inode
,
119 struct page
*page
, size_t page_offset
, u64 start
, u64 len
,
122 struct extent_map_tree
*em_tree
= &BTRFS_I(inode
)->extent_tree
;
123 struct extent_map
*em
;
126 read_lock(&em_tree
->lock
);
127 em
= lookup_extent_mapping(em_tree
, start
, len
);
130 BTRFS_I(inode
)->root
->fs_info
->fs_devices
->latest_bdev
;
131 read_unlock(&em_tree
->lock
);
134 read_unlock(&em_tree
->lock
);
136 em
= alloc_extent_map(GFP_NOFS
);
138 em
= ERR_PTR(-ENOMEM
);
143 em
->block_len
= (u64
)-1;
145 em
->bdev
= BTRFS_I(inode
)->root
->fs_info
->fs_devices
->latest_bdev
;
147 write_lock(&em_tree
->lock
);
148 ret
= add_extent_mapping(em_tree
, em
);
149 if (ret
== -EEXIST
) {
150 u64 failed_start
= em
->start
;
151 u64 failed_len
= em
->len
;
154 em
= lookup_extent_mapping(em_tree
, start
, len
);
158 em
= lookup_extent_mapping(em_tree
, failed_start
,
166 write_unlock(&em_tree
->lock
);
174 u32
btrfs_csum_data(struct btrfs_root
*root
, char *data
, u32 seed
, size_t len
)
176 return crc32c(seed
, data
, len
);
179 void btrfs_csum_final(u32 crc
, char *result
)
181 *(__le32
*)result
= ~cpu_to_le32(crc
);
185 * compute the csum for a btree block, and either verify it or write it
186 * into the csum field of the block.
188 static int csum_tree_block(struct btrfs_root
*root
, struct extent_buffer
*buf
,
192 btrfs_super_csum_size(&root
->fs_info
->super_copy
);
195 unsigned long cur_len
;
196 unsigned long offset
= BTRFS_CSUM_SIZE
;
197 char *map_token
= NULL
;
199 unsigned long map_start
;
200 unsigned long map_len
;
203 unsigned long inline_result
;
205 len
= buf
->len
- offset
;
207 err
= map_private_extent_buffer(buf
, offset
, 32,
209 &map_start
, &map_len
, KM_USER0
);
212 cur_len
= min(len
, map_len
- (offset
- map_start
));
213 crc
= btrfs_csum_data(root
, kaddr
+ offset
- map_start
,
217 unmap_extent_buffer(buf
, map_token
, KM_USER0
);
219 if (csum_size
> sizeof(inline_result
)) {
220 result
= kzalloc(csum_size
* sizeof(char), GFP_NOFS
);
224 result
= (char *)&inline_result
;
227 btrfs_csum_final(crc
, result
);
230 if (memcmp_extent_buffer(buf
, result
, 0, csum_size
)) {
233 memcpy(&found
, result
, csum_size
);
235 read_extent_buffer(buf
, &val
, 0, csum_size
);
236 if (printk_ratelimit()) {
237 printk(KERN_INFO
"btrfs: %s checksum verify "
238 "failed on %llu wanted %X found %X "
240 root
->fs_info
->sb
->s_id
,
241 (unsigned long long)buf
->start
, val
, found
,
242 btrfs_header_level(buf
));
244 if (result
!= (char *)&inline_result
)
249 write_extent_buffer(buf
, result
, 0, csum_size
);
251 if (result
!= (char *)&inline_result
)
257 * we can't consider a given block up to date unless the transid of the
258 * block matches the transid in the parent node's pointer. This is how we
259 * detect blocks that either didn't get written at all or got written
260 * in the wrong place.
262 static int verify_parent_transid(struct extent_io_tree
*io_tree
,
263 struct extent_buffer
*eb
, u64 parent_transid
)
265 struct extent_state
*cached_state
= NULL
;
268 if (!parent_transid
|| btrfs_header_generation(eb
) == parent_transid
)
271 lock_extent_bits(io_tree
, eb
->start
, eb
->start
+ eb
->len
- 1,
272 0, &cached_state
, GFP_NOFS
);
273 if (extent_buffer_uptodate(io_tree
, eb
, cached_state
) &&
274 btrfs_header_generation(eb
) == parent_transid
) {
278 if (printk_ratelimit()) {
279 printk("parent transid verify failed on %llu wanted %llu "
281 (unsigned long long)eb
->start
,
282 (unsigned long long)parent_transid
,
283 (unsigned long long)btrfs_header_generation(eb
));
286 clear_extent_buffer_uptodate(io_tree
, eb
, &cached_state
);
288 unlock_extent_cached(io_tree
, eb
->start
, eb
->start
+ eb
->len
- 1,
289 &cached_state
, GFP_NOFS
);
294 * helper to read a given tree block, doing retries as required when
295 * the checksums don't match and we have alternate mirrors to try.
297 static int btree_read_extent_buffer_pages(struct btrfs_root
*root
,
298 struct extent_buffer
*eb
,
299 u64 start
, u64 parent_transid
)
301 struct extent_io_tree
*io_tree
;
306 io_tree
= &BTRFS_I(root
->fs_info
->btree_inode
)->io_tree
;
308 ret
= read_extent_buffer_pages(io_tree
, eb
, start
, 1,
309 btree_get_extent
, mirror_num
);
311 !verify_parent_transid(io_tree
, eb
, parent_transid
))
314 num_copies
= btrfs_num_copies(&root
->fs_info
->mapping_tree
,
320 if (mirror_num
> num_copies
)
327 * checksum a dirty tree block before IO. This has extra checks to make sure
328 * we only fill in the checksum field in the first page of a multi-page block
331 static int csum_dirty_buffer(struct btrfs_root
*root
, struct page
*page
)
333 struct extent_io_tree
*tree
;
334 u64 start
= (u64
)page
->index
<< PAGE_CACHE_SHIFT
;
338 struct extent_buffer
*eb
;
341 tree
= &BTRFS_I(page
->mapping
->host
)->io_tree
;
343 if (page
->private == EXTENT_PAGE_PRIVATE
)
347 len
= page
->private >> 2;
350 eb
= alloc_extent_buffer(tree
, start
, len
, page
, GFP_NOFS
);
351 ret
= btree_read_extent_buffer_pages(root
, eb
, start
+ PAGE_CACHE_SIZE
,
352 btrfs_header_generation(eb
));
354 found_start
= btrfs_header_bytenr(eb
);
355 if (found_start
!= start
) {
359 if (eb
->first_page
!= page
) {
363 if (!PageUptodate(page
)) {
367 found_level
= btrfs_header_level(eb
);
369 csum_tree_block(root
, eb
, 0);
371 free_extent_buffer(eb
);
376 static int check_tree_block_fsid(struct btrfs_root
*root
,
377 struct extent_buffer
*eb
)
379 struct btrfs_fs_devices
*fs_devices
= root
->fs_info
->fs_devices
;
380 u8 fsid
[BTRFS_UUID_SIZE
];
383 read_extent_buffer(eb
, fsid
, (unsigned long)btrfs_header_fsid(eb
),
386 if (!memcmp(fsid
, fs_devices
->fsid
, BTRFS_FSID_SIZE
)) {
390 fs_devices
= fs_devices
->seed
;
395 #ifdef CONFIG_DEBUG_LOCK_ALLOC
396 void btrfs_set_buffer_lockdep_class(struct extent_buffer
*eb
, int level
)
398 lockdep_set_class_and_name(&eb
->lock
,
399 &btrfs_eb_class
[level
],
400 btrfs_eb_name
[level
]);
404 static int btree_readpage_end_io_hook(struct page
*page
, u64 start
, u64 end
,
405 struct extent_state
*state
)
407 struct extent_io_tree
*tree
;
411 struct extent_buffer
*eb
;
412 struct btrfs_root
*root
= BTRFS_I(page
->mapping
->host
)->root
;
415 tree
= &BTRFS_I(page
->mapping
->host
)->io_tree
;
416 if (page
->private == EXTENT_PAGE_PRIVATE
)
421 len
= page
->private >> 2;
424 eb
= alloc_extent_buffer(tree
, start
, len
, page
, GFP_NOFS
);
426 found_start
= btrfs_header_bytenr(eb
);
427 if (found_start
!= start
) {
428 if (printk_ratelimit()) {
429 printk(KERN_INFO
"btrfs bad tree block start "
431 (unsigned long long)found_start
,
432 (unsigned long long)eb
->start
);
437 if (eb
->first_page
!= page
) {
438 printk(KERN_INFO
"btrfs bad first page %lu %lu\n",
439 eb
->first_page
->index
, page
->index
);
444 if (check_tree_block_fsid(root
, eb
)) {
445 if (printk_ratelimit()) {
446 printk(KERN_INFO
"btrfs bad fsid on block %llu\n",
447 (unsigned long long)eb
->start
);
452 found_level
= btrfs_header_level(eb
);
454 btrfs_set_buffer_lockdep_class(eb
, found_level
);
456 ret
= csum_tree_block(root
, eb
, 1);
460 end
= min_t(u64
, eb
->len
, PAGE_CACHE_SIZE
);
461 end
= eb
->start
+ end
- 1;
463 free_extent_buffer(eb
);
468 static void end_workqueue_bio(struct bio
*bio
, int err
)
470 struct end_io_wq
*end_io_wq
= bio
->bi_private
;
471 struct btrfs_fs_info
*fs_info
;
473 fs_info
= end_io_wq
->info
;
474 end_io_wq
->error
= err
;
475 end_io_wq
->work
.func
= end_workqueue_fn
;
476 end_io_wq
->work
.flags
= 0;
478 if (bio
->bi_rw
& (1 << BIO_RW
)) {
479 if (end_io_wq
->metadata
)
480 btrfs_queue_worker(&fs_info
->endio_meta_write_workers
,
483 btrfs_queue_worker(&fs_info
->endio_write_workers
,
486 if (end_io_wq
->metadata
)
487 btrfs_queue_worker(&fs_info
->endio_meta_workers
,
490 btrfs_queue_worker(&fs_info
->endio_workers
,
495 int btrfs_bio_wq_end_io(struct btrfs_fs_info
*info
, struct bio
*bio
,
498 struct end_io_wq
*end_io_wq
;
499 end_io_wq
= kmalloc(sizeof(*end_io_wq
), GFP_NOFS
);
503 end_io_wq
->private = bio
->bi_private
;
504 end_io_wq
->end_io
= bio
->bi_end_io
;
505 end_io_wq
->info
= info
;
506 end_io_wq
->error
= 0;
507 end_io_wq
->bio
= bio
;
508 end_io_wq
->metadata
= metadata
;
510 bio
->bi_private
= end_io_wq
;
511 bio
->bi_end_io
= end_workqueue_bio
;
515 unsigned long btrfs_async_submit_limit(struct btrfs_fs_info
*info
)
517 unsigned long limit
= min_t(unsigned long,
518 info
->workers
.max_workers
,
519 info
->fs_devices
->open_devices
);
523 int btrfs_congested_async(struct btrfs_fs_info
*info
, int iodone
)
525 return atomic_read(&info
->nr_async_bios
) >
526 btrfs_async_submit_limit(info
);
529 static void run_one_async_start(struct btrfs_work
*work
)
531 struct btrfs_fs_info
*fs_info
;
532 struct async_submit_bio
*async
;
534 async
= container_of(work
, struct async_submit_bio
, work
);
535 fs_info
= BTRFS_I(async
->inode
)->root
->fs_info
;
536 async
->submit_bio_start(async
->inode
, async
->rw
, async
->bio
,
537 async
->mirror_num
, async
->bio_flags
);
540 static void run_one_async_done(struct btrfs_work
*work
)
542 struct btrfs_fs_info
*fs_info
;
543 struct async_submit_bio
*async
;
546 async
= container_of(work
, struct async_submit_bio
, work
);
547 fs_info
= BTRFS_I(async
->inode
)->root
->fs_info
;
549 limit
= btrfs_async_submit_limit(fs_info
);
550 limit
= limit
* 2 / 3;
552 atomic_dec(&fs_info
->nr_async_submits
);
554 if (atomic_read(&fs_info
->nr_async_submits
) < limit
&&
555 waitqueue_active(&fs_info
->async_submit_wait
))
556 wake_up(&fs_info
->async_submit_wait
);
558 async
->submit_bio_done(async
->inode
, async
->rw
, async
->bio
,
559 async
->mirror_num
, async
->bio_flags
);
562 static void run_one_async_free(struct btrfs_work
*work
)
564 struct async_submit_bio
*async
;
566 async
= container_of(work
, struct async_submit_bio
, work
);
570 int btrfs_wq_submit_bio(struct btrfs_fs_info
*fs_info
, struct inode
*inode
,
571 int rw
, struct bio
*bio
, int mirror_num
,
572 unsigned long bio_flags
,
573 extent_submit_bio_hook_t
*submit_bio_start
,
574 extent_submit_bio_hook_t
*submit_bio_done
)
576 struct async_submit_bio
*async
;
578 async
= kmalloc(sizeof(*async
), GFP_NOFS
);
582 async
->inode
= inode
;
585 async
->mirror_num
= mirror_num
;
586 async
->submit_bio_start
= submit_bio_start
;
587 async
->submit_bio_done
= submit_bio_done
;
589 async
->work
.func
= run_one_async_start
;
590 async
->work
.ordered_func
= run_one_async_done
;
591 async
->work
.ordered_free
= run_one_async_free
;
593 async
->work
.flags
= 0;
594 async
->bio_flags
= bio_flags
;
596 atomic_inc(&fs_info
->nr_async_submits
);
598 if (rw
& (1 << BIO_RW_SYNCIO
))
599 btrfs_set_work_high_prio(&async
->work
);
601 btrfs_queue_worker(&fs_info
->workers
, &async
->work
);
603 while (atomic_read(&fs_info
->async_submit_draining
) &&
604 atomic_read(&fs_info
->nr_async_submits
)) {
605 wait_event(fs_info
->async_submit_wait
,
606 (atomic_read(&fs_info
->nr_async_submits
) == 0));
612 static int btree_csum_one_bio(struct bio
*bio
)
614 struct bio_vec
*bvec
= bio
->bi_io_vec
;
616 struct btrfs_root
*root
;
618 WARN_ON(bio
->bi_vcnt
<= 0);
619 while (bio_index
< bio
->bi_vcnt
) {
620 root
= BTRFS_I(bvec
->bv_page
->mapping
->host
)->root
;
621 csum_dirty_buffer(root
, bvec
->bv_page
);
628 static int __btree_submit_bio_start(struct inode
*inode
, int rw
,
629 struct bio
*bio
, int mirror_num
,
630 unsigned long bio_flags
)
633 * when we're called for a write, we're already in the async
634 * submission context. Just jump into btrfs_map_bio
636 btree_csum_one_bio(bio
);
640 static int __btree_submit_bio_done(struct inode
*inode
, int rw
, struct bio
*bio
,
641 int mirror_num
, unsigned long bio_flags
)
644 * when we're called for a write, we're already in the async
645 * submission context. Just jump into btrfs_map_bio
647 return btrfs_map_bio(BTRFS_I(inode
)->root
, rw
, bio
, mirror_num
, 1);
650 static int btree_submit_bio_hook(struct inode
*inode
, int rw
, struct bio
*bio
,
651 int mirror_num
, unsigned long bio_flags
)
655 ret
= btrfs_bio_wq_end_io(BTRFS_I(inode
)->root
->fs_info
,
659 if (!(rw
& (1 << BIO_RW
))) {
661 * called for a read, do the setup so that checksum validation
662 * can happen in the async kernel threads
664 return btrfs_map_bio(BTRFS_I(inode
)->root
, rw
, bio
,
669 * kthread helpers are used to submit writes so that checksumming
670 * can happen in parallel across all CPUs
672 return btrfs_wq_submit_bio(BTRFS_I(inode
)->root
->fs_info
,
673 inode
, rw
, bio
, mirror_num
, 0,
674 __btree_submit_bio_start
,
675 __btree_submit_bio_done
);
678 static int btree_writepage(struct page
*page
, struct writeback_control
*wbc
)
680 struct extent_io_tree
*tree
;
681 struct btrfs_root
*root
= BTRFS_I(page
->mapping
->host
)->root
;
682 struct extent_buffer
*eb
;
685 tree
= &BTRFS_I(page
->mapping
->host
)->io_tree
;
686 if (!(current
->flags
& PF_MEMALLOC
)) {
687 return extent_write_full_page(tree
, page
,
688 btree_get_extent
, wbc
);
691 redirty_page_for_writepage(wbc
, page
);
692 eb
= btrfs_find_tree_block(root
, page_offset(page
),
696 was_dirty
= test_and_set_bit(EXTENT_BUFFER_DIRTY
, &eb
->bflags
);
698 spin_lock(&root
->fs_info
->delalloc_lock
);
699 root
->fs_info
->dirty_metadata_bytes
+= PAGE_CACHE_SIZE
;
700 spin_unlock(&root
->fs_info
->delalloc_lock
);
702 free_extent_buffer(eb
);
708 static int btree_writepages(struct address_space
*mapping
,
709 struct writeback_control
*wbc
)
711 struct extent_io_tree
*tree
;
712 tree
= &BTRFS_I(mapping
->host
)->io_tree
;
713 if (wbc
->sync_mode
== WB_SYNC_NONE
) {
714 struct btrfs_root
*root
= BTRFS_I(mapping
->host
)->root
;
716 unsigned long thresh
= 32 * 1024 * 1024;
718 if (wbc
->for_kupdate
)
721 /* this is a bit racy, but that's ok */
722 num_dirty
= root
->fs_info
->dirty_metadata_bytes
;
723 if (num_dirty
< thresh
)
726 return extent_writepages(tree
, mapping
, btree_get_extent
, wbc
);
729 static int btree_readpage(struct file
*file
, struct page
*page
)
731 struct extent_io_tree
*tree
;
732 tree
= &BTRFS_I(page
->mapping
->host
)->io_tree
;
733 return extent_read_full_page(tree
, page
, btree_get_extent
);
736 static int btree_releasepage(struct page
*page
, gfp_t gfp_flags
)
738 struct extent_io_tree
*tree
;
739 struct extent_map_tree
*map
;
742 if (PageWriteback(page
) || PageDirty(page
))
745 tree
= &BTRFS_I(page
->mapping
->host
)->io_tree
;
746 map
= &BTRFS_I(page
->mapping
->host
)->extent_tree
;
748 ret
= try_release_extent_state(map
, tree
, page
, gfp_flags
);
752 ret
= try_release_extent_buffer(tree
, page
);
754 ClearPagePrivate(page
);
755 set_page_private(page
, 0);
756 page_cache_release(page
);
762 static void btree_invalidatepage(struct page
*page
, unsigned long offset
)
764 struct extent_io_tree
*tree
;
765 tree
= &BTRFS_I(page
->mapping
->host
)->io_tree
;
766 extent_invalidatepage(tree
, page
, offset
);
767 btree_releasepage(page
, GFP_NOFS
);
768 if (PagePrivate(page
)) {
769 printk(KERN_WARNING
"btrfs warning page private not zero "
770 "on page %llu\n", (unsigned long long)page_offset(page
));
771 ClearPagePrivate(page
);
772 set_page_private(page
, 0);
773 page_cache_release(page
);
777 static const struct address_space_operations btree_aops
= {
778 .readpage
= btree_readpage
,
779 .writepage
= btree_writepage
,
780 .writepages
= btree_writepages
,
781 .releasepage
= btree_releasepage
,
782 .invalidatepage
= btree_invalidatepage
,
783 .sync_page
= block_sync_page
,
786 int readahead_tree_block(struct btrfs_root
*root
, u64 bytenr
, u32 blocksize
,
789 struct extent_buffer
*buf
= NULL
;
790 struct inode
*btree_inode
= root
->fs_info
->btree_inode
;
793 buf
= btrfs_find_create_tree_block(root
, bytenr
, blocksize
);
796 read_extent_buffer_pages(&BTRFS_I(btree_inode
)->io_tree
,
797 buf
, 0, 0, btree_get_extent
, 0);
798 free_extent_buffer(buf
);
802 struct extent_buffer
*btrfs_find_tree_block(struct btrfs_root
*root
,
803 u64 bytenr
, u32 blocksize
)
805 struct inode
*btree_inode
= root
->fs_info
->btree_inode
;
806 struct extent_buffer
*eb
;
807 eb
= find_extent_buffer(&BTRFS_I(btree_inode
)->io_tree
,
808 bytenr
, blocksize
, GFP_NOFS
);
812 struct extent_buffer
*btrfs_find_create_tree_block(struct btrfs_root
*root
,
813 u64 bytenr
, u32 blocksize
)
815 struct inode
*btree_inode
= root
->fs_info
->btree_inode
;
816 struct extent_buffer
*eb
;
818 eb
= alloc_extent_buffer(&BTRFS_I(btree_inode
)->io_tree
,
819 bytenr
, blocksize
, NULL
, GFP_NOFS
);
824 int btrfs_write_tree_block(struct extent_buffer
*buf
)
826 return filemap_fdatawrite_range(buf
->first_page
->mapping
, buf
->start
,
827 buf
->start
+ buf
->len
- 1);
830 int btrfs_wait_tree_block_writeback(struct extent_buffer
*buf
)
832 return filemap_fdatawait_range(buf
->first_page
->mapping
,
833 buf
->start
, buf
->start
+ buf
->len
- 1);
836 struct extent_buffer
*read_tree_block(struct btrfs_root
*root
, u64 bytenr
,
837 u32 blocksize
, u64 parent_transid
)
839 struct extent_buffer
*buf
= NULL
;
840 struct inode
*btree_inode
= root
->fs_info
->btree_inode
;
841 struct extent_io_tree
*io_tree
;
844 io_tree
= &BTRFS_I(btree_inode
)->io_tree
;
846 buf
= btrfs_find_create_tree_block(root
, bytenr
, blocksize
);
850 ret
= btree_read_extent_buffer_pages(root
, buf
, 0, parent_transid
);
853 set_bit(EXTENT_BUFFER_UPTODATE
, &buf
->bflags
);
858 int clean_tree_block(struct btrfs_trans_handle
*trans
, struct btrfs_root
*root
,
859 struct extent_buffer
*buf
)
861 struct inode
*btree_inode
= root
->fs_info
->btree_inode
;
862 if (btrfs_header_generation(buf
) ==
863 root
->fs_info
->running_transaction
->transid
) {
864 btrfs_assert_tree_locked(buf
);
866 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY
, &buf
->bflags
)) {
867 spin_lock(&root
->fs_info
->delalloc_lock
);
868 if (root
->fs_info
->dirty_metadata_bytes
>= buf
->len
)
869 root
->fs_info
->dirty_metadata_bytes
-= buf
->len
;
872 spin_unlock(&root
->fs_info
->delalloc_lock
);
875 /* ugh, clear_extent_buffer_dirty needs to lock the page */
876 btrfs_set_lock_blocking(buf
);
877 clear_extent_buffer_dirty(&BTRFS_I(btree_inode
)->io_tree
,
883 static int __setup_root(u32 nodesize
, u32 leafsize
, u32 sectorsize
,
884 u32 stripesize
, struct btrfs_root
*root
,
885 struct btrfs_fs_info
*fs_info
,
889 root
->commit_root
= NULL
;
890 root
->sectorsize
= sectorsize
;
891 root
->nodesize
= nodesize
;
892 root
->leafsize
= leafsize
;
893 root
->stripesize
= stripesize
;
895 root
->track_dirty
= 0;
897 root
->clean_orphans
= 0;
899 root
->fs_info
= fs_info
;
900 root
->objectid
= objectid
;
901 root
->last_trans
= 0;
902 root
->highest_objectid
= 0;
905 root
->inode_tree
= RB_ROOT
;
906 root
->block_rsv
= NULL
;
908 INIT_LIST_HEAD(&root
->dirty_list
);
909 INIT_LIST_HEAD(&root
->orphan_list
);
910 INIT_LIST_HEAD(&root
->root_list
);
911 spin_lock_init(&root
->node_lock
);
912 spin_lock_init(&root
->list_lock
);
913 spin_lock_init(&root
->inode_lock
);
914 spin_lock_init(&root
->accounting_lock
);
915 mutex_init(&root
->objectid_mutex
);
916 mutex_init(&root
->log_mutex
);
917 init_waitqueue_head(&root
->log_writer_wait
);
918 init_waitqueue_head(&root
->log_commit_wait
[0]);
919 init_waitqueue_head(&root
->log_commit_wait
[1]);
920 atomic_set(&root
->log_commit
[0], 0);
921 atomic_set(&root
->log_commit
[1], 0);
922 atomic_set(&root
->log_writers
, 0);
924 root
->log_transid
= 0;
925 root
->last_log_commit
= 0;
926 extent_io_tree_init(&root
->dirty_log_pages
,
927 fs_info
->btree_inode
->i_mapping
, GFP_NOFS
);
929 memset(&root
->root_key
, 0, sizeof(root
->root_key
));
930 memset(&root
->root_item
, 0, sizeof(root
->root_item
));
931 memset(&root
->defrag_progress
, 0, sizeof(root
->defrag_progress
));
932 memset(&root
->root_kobj
, 0, sizeof(root
->root_kobj
));
933 root
->defrag_trans_start
= fs_info
->generation
;
934 init_completion(&root
->kobj_unregister
);
935 root
->defrag_running
= 0;
936 root
->root_key
.objectid
= objectid
;
937 root
->anon_super
.s_root
= NULL
;
938 root
->anon_super
.s_dev
= 0;
939 INIT_LIST_HEAD(&root
->anon_super
.s_list
);
940 INIT_LIST_HEAD(&root
->anon_super
.s_instances
);
941 init_rwsem(&root
->anon_super
.s_umount
);
946 static int find_and_setup_root(struct btrfs_root
*tree_root
,
947 struct btrfs_fs_info
*fs_info
,
949 struct btrfs_root
*root
)
955 __setup_root(tree_root
->nodesize
, tree_root
->leafsize
,
956 tree_root
->sectorsize
, tree_root
->stripesize
,
957 root
, fs_info
, objectid
);
958 ret
= btrfs_find_last_root(tree_root
, objectid
,
959 &root
->root_item
, &root
->root_key
);
964 generation
= btrfs_root_generation(&root
->root_item
);
965 blocksize
= btrfs_level_size(root
, btrfs_root_level(&root
->root_item
));
966 root
->node
= read_tree_block(root
, btrfs_root_bytenr(&root
->root_item
),
967 blocksize
, generation
);
969 root
->commit_root
= btrfs_root_node(root
);
973 int btrfs_free_log_root_tree(struct btrfs_trans_handle
*trans
,
974 struct btrfs_fs_info
*fs_info
)
976 struct extent_buffer
*eb
;
977 struct btrfs_root
*log_root_tree
= fs_info
->log_root_tree
;
986 ret
= find_first_extent_bit(&log_root_tree
->dirty_log_pages
,
987 0, &start
, &end
, EXTENT_DIRTY
| EXTENT_NEW
);
991 clear_extent_bits(&log_root_tree
->dirty_log_pages
, start
, end
,
992 EXTENT_DIRTY
| EXTENT_NEW
, GFP_NOFS
);
994 eb
= fs_info
->log_root_tree
->node
;
996 WARN_ON(btrfs_header_level(eb
) != 0);
997 WARN_ON(btrfs_header_nritems(eb
) != 0);
999 ret
= btrfs_free_reserved_extent(fs_info
->tree_root
,
1000 eb
->start
, eb
->len
);
1003 free_extent_buffer(eb
);
1004 kfree(fs_info
->log_root_tree
);
1005 fs_info
->log_root_tree
= NULL
;
1009 static struct btrfs_root
*alloc_log_tree(struct btrfs_trans_handle
*trans
,
1010 struct btrfs_fs_info
*fs_info
)
1012 struct btrfs_root
*root
;
1013 struct btrfs_root
*tree_root
= fs_info
->tree_root
;
1014 struct extent_buffer
*leaf
;
1016 root
= kzalloc(sizeof(*root
), GFP_NOFS
);
1018 return ERR_PTR(-ENOMEM
);
1020 __setup_root(tree_root
->nodesize
, tree_root
->leafsize
,
1021 tree_root
->sectorsize
, tree_root
->stripesize
,
1022 root
, fs_info
, BTRFS_TREE_LOG_OBJECTID
);
1024 root
->root_key
.objectid
= BTRFS_TREE_LOG_OBJECTID
;
1025 root
->root_key
.type
= BTRFS_ROOT_ITEM_KEY
;
1026 root
->root_key
.offset
= BTRFS_TREE_LOG_OBJECTID
;
1028 * log trees do not get reference counted because they go away
1029 * before a real commit is actually done. They do store pointers
1030 * to file data extents, and those reference counts still get
1031 * updated (along with back refs to the log tree).
1035 leaf
= btrfs_alloc_free_block(trans
, root
, root
->leafsize
, 0,
1036 BTRFS_TREE_LOG_OBJECTID
, NULL
, 0, 0, 0);
1039 return ERR_CAST(leaf
);
1042 memset_extent_buffer(leaf
, 0, 0, sizeof(struct btrfs_header
));
1043 btrfs_set_header_bytenr(leaf
, leaf
->start
);
1044 btrfs_set_header_generation(leaf
, trans
->transid
);
1045 btrfs_set_header_backref_rev(leaf
, BTRFS_MIXED_BACKREF_REV
);
1046 btrfs_set_header_owner(leaf
, BTRFS_TREE_LOG_OBJECTID
);
1049 write_extent_buffer(root
->node
, root
->fs_info
->fsid
,
1050 (unsigned long)btrfs_header_fsid(root
->node
),
1052 btrfs_mark_buffer_dirty(root
->node
);
1053 btrfs_tree_unlock(root
->node
);
1057 int btrfs_init_log_root_tree(struct btrfs_trans_handle
*trans
,
1058 struct btrfs_fs_info
*fs_info
)
1060 struct btrfs_root
*log_root
;
1062 log_root
= alloc_log_tree(trans
, fs_info
);
1063 if (IS_ERR(log_root
))
1064 return PTR_ERR(log_root
);
1065 WARN_ON(fs_info
->log_root_tree
);
1066 fs_info
->log_root_tree
= log_root
;
1070 int btrfs_add_log_tree(struct btrfs_trans_handle
*trans
,
1071 struct btrfs_root
*root
)
1073 struct btrfs_root
*log_root
;
1074 struct btrfs_inode_item
*inode_item
;
1076 log_root
= alloc_log_tree(trans
, root
->fs_info
);
1077 if (IS_ERR(log_root
))
1078 return PTR_ERR(log_root
);
1080 log_root
->last_trans
= trans
->transid
;
1081 log_root
->root_key
.offset
= root
->root_key
.objectid
;
1083 inode_item
= &log_root
->root_item
.inode
;
1084 inode_item
->generation
= cpu_to_le64(1);
1085 inode_item
->size
= cpu_to_le64(3);
1086 inode_item
->nlink
= cpu_to_le32(1);
1087 inode_item
->nbytes
= cpu_to_le64(root
->leafsize
);
1088 inode_item
->mode
= cpu_to_le32(S_IFDIR
| 0755);
1090 btrfs_set_root_node(&log_root
->root_item
, log_root
->node
);
1092 WARN_ON(root
->log_root
);
1093 root
->log_root
= log_root
;
1094 root
->log_transid
= 0;
1095 root
->last_log_commit
= 0;
1099 struct btrfs_root
*btrfs_read_fs_root_no_radix(struct btrfs_root
*tree_root
,
1100 struct btrfs_key
*location
)
1102 struct btrfs_root
*root
;
1103 struct btrfs_fs_info
*fs_info
= tree_root
->fs_info
;
1104 struct btrfs_path
*path
;
1105 struct extent_buffer
*l
;
1110 root
= kzalloc(sizeof(*root
), GFP_NOFS
);
1112 return ERR_PTR(-ENOMEM
);
1113 if (location
->offset
== (u64
)-1) {
1114 ret
= find_and_setup_root(tree_root
, fs_info
,
1115 location
->objectid
, root
);
1118 return ERR_PTR(ret
);
1123 __setup_root(tree_root
->nodesize
, tree_root
->leafsize
,
1124 tree_root
->sectorsize
, tree_root
->stripesize
,
1125 root
, fs_info
, location
->objectid
);
1127 path
= btrfs_alloc_path();
1129 ret
= btrfs_search_slot(NULL
, tree_root
, location
, path
, 0, 0);
1132 read_extent_buffer(l
, &root
->root_item
,
1133 btrfs_item_ptr_offset(l
, path
->slots
[0]),
1134 sizeof(root
->root_item
));
1135 memcpy(&root
->root_key
, location
, sizeof(*location
));
1137 btrfs_free_path(path
);
1141 return ERR_PTR(ret
);
1144 generation
= btrfs_root_generation(&root
->root_item
);
1145 blocksize
= btrfs_level_size(root
, btrfs_root_level(&root
->root_item
));
1146 root
->node
= read_tree_block(root
, btrfs_root_bytenr(&root
->root_item
),
1147 blocksize
, generation
);
1148 root
->commit_root
= btrfs_root_node(root
);
1149 BUG_ON(!root
->node
);
1151 if (location
->objectid
!= BTRFS_TREE_LOG_OBJECTID
)
1157 struct btrfs_root
*btrfs_lookup_fs_root(struct btrfs_fs_info
*fs_info
,
1160 struct btrfs_root
*root
;
1162 if (root_objectid
== BTRFS_ROOT_TREE_OBJECTID
)
1163 return fs_info
->tree_root
;
1164 if (root_objectid
== BTRFS_EXTENT_TREE_OBJECTID
)
1165 return fs_info
->extent_root
;
1167 root
= radix_tree_lookup(&fs_info
->fs_roots_radix
,
1168 (unsigned long)root_objectid
);
1172 struct btrfs_root
*btrfs_read_fs_root_no_name(struct btrfs_fs_info
*fs_info
,
1173 struct btrfs_key
*location
)
1175 struct btrfs_root
*root
;
1178 if (location
->objectid
== BTRFS_ROOT_TREE_OBJECTID
)
1179 return fs_info
->tree_root
;
1180 if (location
->objectid
== BTRFS_EXTENT_TREE_OBJECTID
)
1181 return fs_info
->extent_root
;
1182 if (location
->objectid
== BTRFS_CHUNK_TREE_OBJECTID
)
1183 return fs_info
->chunk_root
;
1184 if (location
->objectid
== BTRFS_DEV_TREE_OBJECTID
)
1185 return fs_info
->dev_root
;
1186 if (location
->objectid
== BTRFS_CSUM_TREE_OBJECTID
)
1187 return fs_info
->csum_root
;
1189 spin_lock(&fs_info
->fs_roots_radix_lock
);
1190 root
= radix_tree_lookup(&fs_info
->fs_roots_radix
,
1191 (unsigned long)location
->objectid
);
1192 spin_unlock(&fs_info
->fs_roots_radix_lock
);
1196 ret
= btrfs_find_orphan_item(fs_info
->tree_root
, location
->objectid
);
1200 return ERR_PTR(ret
);
1202 root
= btrfs_read_fs_root_no_radix(fs_info
->tree_root
, location
);
1206 WARN_ON(btrfs_root_refs(&root
->root_item
) == 0);
1207 set_anon_super(&root
->anon_super
, NULL
);
1209 ret
= radix_tree_preload(GFP_NOFS
& ~__GFP_HIGHMEM
);
1213 spin_lock(&fs_info
->fs_roots_radix_lock
);
1214 ret
= radix_tree_insert(&fs_info
->fs_roots_radix
,
1215 (unsigned long)root
->root_key
.objectid
,
1219 root
->clean_orphans
= 1;
1221 spin_unlock(&fs_info
->fs_roots_radix_lock
);
1222 radix_tree_preload_end();
1224 if (ret
== -EEXIST
) {
1231 ret
= btrfs_find_dead_roots(fs_info
->tree_root
,
1232 root
->root_key
.objectid
);
1237 return ERR_PTR(ret
);
1240 struct btrfs_root
*btrfs_read_fs_root(struct btrfs_fs_info
*fs_info
,
1241 struct btrfs_key
*location
,
1242 const char *name
, int namelen
)
1244 return btrfs_read_fs_root_no_name(fs_info
, location
);
1246 struct btrfs_root
*root
;
1249 root
= btrfs_read_fs_root_no_name(fs_info
, location
);
1256 ret
= btrfs_set_root_name(root
, name
, namelen
);
1258 free_extent_buffer(root
->node
);
1260 return ERR_PTR(ret
);
1263 ret
= btrfs_sysfs_add_root(root
);
1265 free_extent_buffer(root
->node
);
1268 return ERR_PTR(ret
);
1275 static int btrfs_congested_fn(void *congested_data
, int bdi_bits
)
1277 struct btrfs_fs_info
*info
= (struct btrfs_fs_info
*)congested_data
;
1279 struct btrfs_device
*device
;
1280 struct backing_dev_info
*bdi
;
1282 list_for_each_entry(device
, &info
->fs_devices
->devices
, dev_list
) {
1285 bdi
= blk_get_backing_dev_info(device
->bdev
);
1286 if (bdi
&& bdi_congested(bdi
, bdi_bits
)) {
1295 * this unplugs every device on the box, and it is only used when page
1298 static void __unplug_io_fn(struct backing_dev_info
*bdi
, struct page
*page
)
1300 struct btrfs_device
*device
;
1301 struct btrfs_fs_info
*info
;
1303 info
= (struct btrfs_fs_info
*)bdi
->unplug_io_data
;
1304 list_for_each_entry(device
, &info
->fs_devices
->devices
, dev_list
) {
1308 bdi
= blk_get_backing_dev_info(device
->bdev
);
1309 if (bdi
->unplug_io_fn
)
1310 bdi
->unplug_io_fn(bdi
, page
);
1314 static void btrfs_unplug_io_fn(struct backing_dev_info
*bdi
, struct page
*page
)
1316 struct inode
*inode
;
1317 struct extent_map_tree
*em_tree
;
1318 struct extent_map
*em
;
1319 struct address_space
*mapping
;
1322 /* the generic O_DIRECT read code does this */
1324 __unplug_io_fn(bdi
, page
);
1329 * page->mapping may change at any time. Get a consistent copy
1330 * and use that for everything below
1333 mapping
= page
->mapping
;
1337 inode
= mapping
->host
;
1340 * don't do the expensive searching for a small number of
1343 if (BTRFS_I(inode
)->root
->fs_info
->fs_devices
->open_devices
<= 2) {
1344 __unplug_io_fn(bdi
, page
);
1348 offset
= page_offset(page
);
1350 em_tree
= &BTRFS_I(inode
)->extent_tree
;
1351 read_lock(&em_tree
->lock
);
1352 em
= lookup_extent_mapping(em_tree
, offset
, PAGE_CACHE_SIZE
);
1353 read_unlock(&em_tree
->lock
);
1355 __unplug_io_fn(bdi
, page
);
1359 if (em
->block_start
>= EXTENT_MAP_LAST_BYTE
) {
1360 free_extent_map(em
);
1361 __unplug_io_fn(bdi
, page
);
1364 offset
= offset
- em
->start
;
1365 btrfs_unplug_page(&BTRFS_I(inode
)->root
->fs_info
->mapping_tree
,
1366 em
->block_start
+ offset
, page
);
1367 free_extent_map(em
);
1371 * If this fails, caller must call bdi_destroy() to get rid of the
1374 static int setup_bdi(struct btrfs_fs_info
*info
, struct backing_dev_info
*bdi
)
1378 bdi
->capabilities
= BDI_CAP_MAP_COPY
;
1379 err
= bdi_setup_and_register(bdi
, "btrfs", BDI_CAP_MAP_COPY
);
1383 bdi
->ra_pages
= default_backing_dev_info
.ra_pages
;
1384 bdi
->unplug_io_fn
= btrfs_unplug_io_fn
;
1385 bdi
->unplug_io_data
= info
;
1386 bdi
->congested_fn
= btrfs_congested_fn
;
1387 bdi
->congested_data
= info
;
1391 static int bio_ready_for_csum(struct bio
*bio
)
1397 struct extent_io_tree
*io_tree
= NULL
;
1398 struct btrfs_fs_info
*info
= NULL
;
1399 struct bio_vec
*bvec
;
1403 bio_for_each_segment(bvec
, bio
, i
) {
1404 page
= bvec
->bv_page
;
1405 if (page
->private == EXTENT_PAGE_PRIVATE
) {
1406 length
+= bvec
->bv_len
;
1409 if (!page
->private) {
1410 length
+= bvec
->bv_len
;
1413 length
= bvec
->bv_len
;
1414 buf_len
= page
->private >> 2;
1415 start
= page_offset(page
) + bvec
->bv_offset
;
1416 io_tree
= &BTRFS_I(page
->mapping
->host
)->io_tree
;
1417 info
= BTRFS_I(page
->mapping
->host
)->root
->fs_info
;
1419 /* are we fully contained in this bio? */
1420 if (buf_len
<= length
)
1423 ret
= extent_range_uptodate(io_tree
, start
+ length
,
1424 start
+ buf_len
- 1);
1429 * called by the kthread helper functions to finally call the bio end_io
1430 * functions. This is where read checksum verification actually happens
1432 static void end_workqueue_fn(struct btrfs_work
*work
)
1435 struct end_io_wq
*end_io_wq
;
1436 struct btrfs_fs_info
*fs_info
;
1439 end_io_wq
= container_of(work
, struct end_io_wq
, work
);
1440 bio
= end_io_wq
->bio
;
1441 fs_info
= end_io_wq
->info
;
1443 /* metadata bio reads are special because the whole tree block must
1444 * be checksummed at once. This makes sure the entire block is in
1445 * ram and up to date before trying to verify things. For
1446 * blocksize <= pagesize, it is basically a noop
1448 if (!(bio
->bi_rw
& (1 << BIO_RW
)) && end_io_wq
->metadata
&&
1449 !bio_ready_for_csum(bio
)) {
1450 btrfs_queue_worker(&fs_info
->endio_meta_workers
,
1454 error
= end_io_wq
->error
;
1455 bio
->bi_private
= end_io_wq
->private;
1456 bio
->bi_end_io
= end_io_wq
->end_io
;
1458 bio_endio(bio
, error
);
1461 static int cleaner_kthread(void *arg
)
1463 struct btrfs_root
*root
= arg
;
1467 if (root
->fs_info
->closing
)
1470 vfs_check_frozen(root
->fs_info
->sb
, SB_FREEZE_WRITE
);
1472 if (!(root
->fs_info
->sb
->s_flags
& MS_RDONLY
) &&
1473 mutex_trylock(&root
->fs_info
->cleaner_mutex
)) {
1474 btrfs_run_delayed_iputs(root
);
1475 btrfs_clean_old_snapshots(root
);
1476 mutex_unlock(&root
->fs_info
->cleaner_mutex
);
1479 if (freezing(current
)) {
1483 if (root
->fs_info
->closing
)
1485 set_current_state(TASK_INTERRUPTIBLE
);
1487 __set_current_state(TASK_RUNNING
);
1489 } while (!kthread_should_stop());
1493 static int transaction_kthread(void *arg
)
1495 struct btrfs_root
*root
= arg
;
1496 struct btrfs_trans_handle
*trans
;
1497 struct btrfs_transaction
*cur
;
1499 unsigned long delay
;
1504 if (root
->fs_info
->closing
)
1508 vfs_check_frozen(root
->fs_info
->sb
, SB_FREEZE_WRITE
);
1509 mutex_lock(&root
->fs_info
->transaction_kthread_mutex
);
1511 mutex_lock(&root
->fs_info
->trans_mutex
);
1512 cur
= root
->fs_info
->running_transaction
;
1514 mutex_unlock(&root
->fs_info
->trans_mutex
);
1518 now
= get_seconds();
1519 if (now
< cur
->start_time
|| now
- cur
->start_time
< 30) {
1520 mutex_unlock(&root
->fs_info
->trans_mutex
);
1524 mutex_unlock(&root
->fs_info
->trans_mutex
);
1525 trans
= btrfs_join_transaction(root
, 1);
1526 ret
= btrfs_commit_transaction(trans
, root
);
1529 wake_up_process(root
->fs_info
->cleaner_kthread
);
1530 mutex_unlock(&root
->fs_info
->transaction_kthread_mutex
);
1532 if (freezing(current
)) {
1535 if (root
->fs_info
->closing
)
1537 set_current_state(TASK_INTERRUPTIBLE
);
1538 schedule_timeout(delay
);
1539 __set_current_state(TASK_RUNNING
);
1541 } while (!kthread_should_stop());
1545 struct btrfs_root
*open_ctree(struct super_block
*sb
,
1546 struct btrfs_fs_devices
*fs_devices
,
1556 struct btrfs_key location
;
1557 struct buffer_head
*bh
;
1558 struct btrfs_root
*extent_root
= kzalloc(sizeof(struct btrfs_root
),
1560 struct btrfs_root
*csum_root
= kzalloc(sizeof(struct btrfs_root
),
1562 struct btrfs_root
*tree_root
= kzalloc(sizeof(struct btrfs_root
),
1564 struct btrfs_fs_info
*fs_info
= kzalloc(sizeof(*fs_info
),
1566 struct btrfs_root
*chunk_root
= kzalloc(sizeof(struct btrfs_root
),
1568 struct btrfs_root
*dev_root
= kzalloc(sizeof(struct btrfs_root
),
1570 struct btrfs_root
*log_tree_root
;
1575 struct btrfs_super_block
*disk_super
;
1577 if (!extent_root
|| !tree_root
|| !fs_info
||
1578 !chunk_root
|| !dev_root
|| !csum_root
) {
1583 ret
= init_srcu_struct(&fs_info
->subvol_srcu
);
1589 ret
= setup_bdi(fs_info
, &fs_info
->bdi
);
1595 fs_info
->btree_inode
= new_inode(sb
);
1596 if (!fs_info
->btree_inode
) {
1601 INIT_RADIX_TREE(&fs_info
->fs_roots_radix
, GFP_ATOMIC
);
1602 INIT_LIST_HEAD(&fs_info
->trans_list
);
1603 INIT_LIST_HEAD(&fs_info
->dead_roots
);
1604 INIT_LIST_HEAD(&fs_info
->delayed_iputs
);
1605 INIT_LIST_HEAD(&fs_info
->hashers
);
1606 INIT_LIST_HEAD(&fs_info
->delalloc_inodes
);
1607 INIT_LIST_HEAD(&fs_info
->ordered_operations
);
1608 INIT_LIST_HEAD(&fs_info
->caching_block_groups
);
1609 spin_lock_init(&fs_info
->delalloc_lock
);
1610 spin_lock_init(&fs_info
->new_trans_lock
);
1611 spin_lock_init(&fs_info
->ref_cache_lock
);
1612 spin_lock_init(&fs_info
->fs_roots_radix_lock
);
1613 spin_lock_init(&fs_info
->delayed_iput_lock
);
1615 init_completion(&fs_info
->kobj_unregister
);
1616 fs_info
->tree_root
= tree_root
;
1617 fs_info
->extent_root
= extent_root
;
1618 fs_info
->csum_root
= csum_root
;
1619 fs_info
->chunk_root
= chunk_root
;
1620 fs_info
->dev_root
= dev_root
;
1621 fs_info
->fs_devices
= fs_devices
;
1622 INIT_LIST_HEAD(&fs_info
->dirty_cowonly_roots
);
1623 INIT_LIST_HEAD(&fs_info
->space_info
);
1624 btrfs_mapping_init(&fs_info
->mapping_tree
);
1625 btrfs_init_block_rsv(&fs_info
->global_block_rsv
);
1626 btrfs_init_block_rsv(&fs_info
->delalloc_block_rsv
);
1627 btrfs_init_block_rsv(&fs_info
->trans_block_rsv
);
1628 btrfs_init_block_rsv(&fs_info
->chunk_block_rsv
);
1629 btrfs_init_block_rsv(&fs_info
->empty_block_rsv
);
1630 INIT_LIST_HEAD(&fs_info
->durable_block_rsv_list
);
1631 mutex_init(&fs_info
->durable_block_rsv_mutex
);
1632 atomic_set(&fs_info
->nr_async_submits
, 0);
1633 atomic_set(&fs_info
->async_delalloc_pages
, 0);
1634 atomic_set(&fs_info
->async_submit_draining
, 0);
1635 atomic_set(&fs_info
->nr_async_bios
, 0);
1637 fs_info
->max_inline
= 8192 * 1024;
1638 fs_info
->metadata_ratio
= 0;
1640 fs_info
->thread_pool_size
= min_t(unsigned long,
1641 num_online_cpus() + 2, 8);
1643 INIT_LIST_HEAD(&fs_info
->ordered_extents
);
1644 spin_lock_init(&fs_info
->ordered_extent_lock
);
1646 sb
->s_blocksize
= 4096;
1647 sb
->s_blocksize_bits
= blksize_bits(4096);
1648 sb
->s_bdi
= &fs_info
->bdi
;
1650 fs_info
->btree_inode
->i_ino
= BTRFS_BTREE_INODE_OBJECTID
;
1651 fs_info
->btree_inode
->i_nlink
= 1;
1653 * we set the i_size on the btree inode to the max possible int.
1654 * the real end of the address space is determined by all of
1655 * the devices in the system
1657 fs_info
->btree_inode
->i_size
= OFFSET_MAX
;
1658 fs_info
->btree_inode
->i_mapping
->a_ops
= &btree_aops
;
1659 fs_info
->btree_inode
->i_mapping
->backing_dev_info
= &fs_info
->bdi
;
1661 RB_CLEAR_NODE(&BTRFS_I(fs_info
->btree_inode
)->rb_node
);
1662 extent_io_tree_init(&BTRFS_I(fs_info
->btree_inode
)->io_tree
,
1663 fs_info
->btree_inode
->i_mapping
,
1665 extent_map_tree_init(&BTRFS_I(fs_info
->btree_inode
)->extent_tree
,
1668 BTRFS_I(fs_info
->btree_inode
)->io_tree
.ops
= &btree_extent_io_ops
;
1670 BTRFS_I(fs_info
->btree_inode
)->root
= tree_root
;
1671 memset(&BTRFS_I(fs_info
->btree_inode
)->location
, 0,
1672 sizeof(struct btrfs_key
));
1673 BTRFS_I(fs_info
->btree_inode
)->dummy_inode
= 1;
1674 insert_inode_hash(fs_info
->btree_inode
);
1676 spin_lock_init(&fs_info
->block_group_cache_lock
);
1677 fs_info
->block_group_cache_tree
= RB_ROOT
;
1679 extent_io_tree_init(&fs_info
->freed_extents
[0],
1680 fs_info
->btree_inode
->i_mapping
, GFP_NOFS
);
1681 extent_io_tree_init(&fs_info
->freed_extents
[1],
1682 fs_info
->btree_inode
->i_mapping
, GFP_NOFS
);
1683 fs_info
->pinned_extents
= &fs_info
->freed_extents
[0];
1684 fs_info
->do_barriers
= 1;
1687 mutex_init(&fs_info
->trans_mutex
);
1688 mutex_init(&fs_info
->ordered_operations_mutex
);
1689 mutex_init(&fs_info
->tree_log_mutex
);
1690 mutex_init(&fs_info
->chunk_mutex
);
1691 mutex_init(&fs_info
->transaction_kthread_mutex
);
1692 mutex_init(&fs_info
->cleaner_mutex
);
1693 mutex_init(&fs_info
->volume_mutex
);
1694 init_rwsem(&fs_info
->extent_commit_sem
);
1695 init_rwsem(&fs_info
->cleanup_work_sem
);
1696 init_rwsem(&fs_info
->subvol_sem
);
1698 btrfs_init_free_cluster(&fs_info
->meta_alloc_cluster
);
1699 btrfs_init_free_cluster(&fs_info
->data_alloc_cluster
);
1701 init_waitqueue_head(&fs_info
->transaction_throttle
);
1702 init_waitqueue_head(&fs_info
->transaction_wait
);
1703 init_waitqueue_head(&fs_info
->async_submit_wait
);
1705 __setup_root(4096, 4096, 4096, 4096, tree_root
,
1706 fs_info
, BTRFS_ROOT_TREE_OBJECTID
);
1709 bh
= btrfs_read_dev_super(fs_devices
->latest_bdev
);
1713 memcpy(&fs_info
->super_copy
, bh
->b_data
, sizeof(fs_info
->super_copy
));
1714 memcpy(&fs_info
->super_for_commit
, &fs_info
->super_copy
,
1715 sizeof(fs_info
->super_for_commit
));
1718 memcpy(fs_info
->fsid
, fs_info
->super_copy
.fsid
, BTRFS_FSID_SIZE
);
1720 disk_super
= &fs_info
->super_copy
;
1721 if (!btrfs_super_root(disk_super
))
1724 ret
= btrfs_parse_options(tree_root
, options
);
1730 features
= btrfs_super_incompat_flags(disk_super
) &
1731 ~BTRFS_FEATURE_INCOMPAT_SUPP
;
1733 printk(KERN_ERR
"BTRFS: couldn't mount because of "
1734 "unsupported optional features (%Lx).\n",
1735 (unsigned long long)features
);
1740 features
= btrfs_super_incompat_flags(disk_super
);
1741 if (!(features
& BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF
)) {
1742 features
|= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF
;
1743 btrfs_set_super_incompat_flags(disk_super
, features
);
1746 features
= btrfs_super_compat_ro_flags(disk_super
) &
1747 ~BTRFS_FEATURE_COMPAT_RO_SUPP
;
1748 if (!(sb
->s_flags
& MS_RDONLY
) && features
) {
1749 printk(KERN_ERR
"BTRFS: couldn't mount RDWR because of "
1750 "unsupported option features (%Lx).\n",
1751 (unsigned long long)features
);
1756 btrfs_init_workers(&fs_info
->generic_worker
,
1757 "genwork", 1, NULL
);
1759 btrfs_init_workers(&fs_info
->workers
, "worker",
1760 fs_info
->thread_pool_size
,
1761 &fs_info
->generic_worker
);
1763 btrfs_init_workers(&fs_info
->delalloc_workers
, "delalloc",
1764 fs_info
->thread_pool_size
,
1765 &fs_info
->generic_worker
);
1767 btrfs_init_workers(&fs_info
->submit_workers
, "submit",
1768 min_t(u64
, fs_devices
->num_devices
,
1769 fs_info
->thread_pool_size
),
1770 &fs_info
->generic_worker
);
1772 /* a higher idle thresh on the submit workers makes it much more
1773 * likely that bios will be send down in a sane order to the
1776 fs_info
->submit_workers
.idle_thresh
= 64;
1778 fs_info
->workers
.idle_thresh
= 16;
1779 fs_info
->workers
.ordered
= 1;
1781 fs_info
->delalloc_workers
.idle_thresh
= 2;
1782 fs_info
->delalloc_workers
.ordered
= 1;
1784 btrfs_init_workers(&fs_info
->fixup_workers
, "fixup", 1,
1785 &fs_info
->generic_worker
);
1786 btrfs_init_workers(&fs_info
->endio_workers
, "endio",
1787 fs_info
->thread_pool_size
,
1788 &fs_info
->generic_worker
);
1789 btrfs_init_workers(&fs_info
->endio_meta_workers
, "endio-meta",
1790 fs_info
->thread_pool_size
,
1791 &fs_info
->generic_worker
);
1792 btrfs_init_workers(&fs_info
->endio_meta_write_workers
,
1793 "endio-meta-write", fs_info
->thread_pool_size
,
1794 &fs_info
->generic_worker
);
1795 btrfs_init_workers(&fs_info
->endio_write_workers
, "endio-write",
1796 fs_info
->thread_pool_size
,
1797 &fs_info
->generic_worker
);
1800 * endios are largely parallel and should have a very
1803 fs_info
->endio_workers
.idle_thresh
= 4;
1804 fs_info
->endio_meta_workers
.idle_thresh
= 4;
1806 fs_info
->endio_write_workers
.idle_thresh
= 2;
1807 fs_info
->endio_meta_write_workers
.idle_thresh
= 2;
1809 btrfs_start_workers(&fs_info
->workers
, 1);
1810 btrfs_start_workers(&fs_info
->generic_worker
, 1);
1811 btrfs_start_workers(&fs_info
->submit_workers
, 1);
1812 btrfs_start_workers(&fs_info
->delalloc_workers
, 1);
1813 btrfs_start_workers(&fs_info
->fixup_workers
, 1);
1814 btrfs_start_workers(&fs_info
->endio_workers
, 1);
1815 btrfs_start_workers(&fs_info
->endio_meta_workers
, 1);
1816 btrfs_start_workers(&fs_info
->endio_meta_write_workers
, 1);
1817 btrfs_start_workers(&fs_info
->endio_write_workers
, 1);
1819 fs_info
->bdi
.ra_pages
*= btrfs_super_num_devices(disk_super
);
1820 fs_info
->bdi
.ra_pages
= max(fs_info
->bdi
.ra_pages
,
1821 4 * 1024 * 1024 / PAGE_CACHE_SIZE
);
1823 nodesize
= btrfs_super_nodesize(disk_super
);
1824 leafsize
= btrfs_super_leafsize(disk_super
);
1825 sectorsize
= btrfs_super_sectorsize(disk_super
);
1826 stripesize
= btrfs_super_stripesize(disk_super
);
1827 tree_root
->nodesize
= nodesize
;
1828 tree_root
->leafsize
= leafsize
;
1829 tree_root
->sectorsize
= sectorsize
;
1830 tree_root
->stripesize
= stripesize
;
1832 sb
->s_blocksize
= sectorsize
;
1833 sb
->s_blocksize_bits
= blksize_bits(sectorsize
);
1835 if (strncmp((char *)(&disk_super
->magic
), BTRFS_MAGIC
,
1836 sizeof(disk_super
->magic
))) {
1837 printk(KERN_INFO
"btrfs: valid FS not found on %s\n", sb
->s_id
);
1838 goto fail_sb_buffer
;
1841 mutex_lock(&fs_info
->chunk_mutex
);
1842 ret
= btrfs_read_sys_array(tree_root
);
1843 mutex_unlock(&fs_info
->chunk_mutex
);
1845 printk(KERN_WARNING
"btrfs: failed to read the system "
1846 "array on %s\n", sb
->s_id
);
1847 goto fail_sb_buffer
;
1850 blocksize
= btrfs_level_size(tree_root
,
1851 btrfs_super_chunk_root_level(disk_super
));
1852 generation
= btrfs_super_chunk_root_generation(disk_super
);
1854 __setup_root(nodesize
, leafsize
, sectorsize
, stripesize
,
1855 chunk_root
, fs_info
, BTRFS_CHUNK_TREE_OBJECTID
);
1857 chunk_root
->node
= read_tree_block(chunk_root
,
1858 btrfs_super_chunk_root(disk_super
),
1859 blocksize
, generation
);
1860 BUG_ON(!chunk_root
->node
);
1861 if (!test_bit(EXTENT_BUFFER_UPTODATE
, &chunk_root
->node
->bflags
)) {
1862 printk(KERN_WARNING
"btrfs: failed to read chunk root on %s\n",
1864 goto fail_chunk_root
;
1866 btrfs_set_root_node(&chunk_root
->root_item
, chunk_root
->node
);
1867 chunk_root
->commit_root
= btrfs_root_node(chunk_root
);
1869 read_extent_buffer(chunk_root
->node
, fs_info
->chunk_tree_uuid
,
1870 (unsigned long)btrfs_header_chunk_tree_uuid(chunk_root
->node
),
1873 mutex_lock(&fs_info
->chunk_mutex
);
1874 ret
= btrfs_read_chunk_tree(chunk_root
);
1875 mutex_unlock(&fs_info
->chunk_mutex
);
1877 printk(KERN_WARNING
"btrfs: failed to read chunk tree on %s\n",
1879 goto fail_chunk_root
;
1882 btrfs_close_extra_devices(fs_devices
);
1884 blocksize
= btrfs_level_size(tree_root
,
1885 btrfs_super_root_level(disk_super
));
1886 generation
= btrfs_super_generation(disk_super
);
1888 tree_root
->node
= read_tree_block(tree_root
,
1889 btrfs_super_root(disk_super
),
1890 blocksize
, generation
);
1891 if (!tree_root
->node
)
1892 goto fail_chunk_root
;
1893 if (!test_bit(EXTENT_BUFFER_UPTODATE
, &tree_root
->node
->bflags
)) {
1894 printk(KERN_WARNING
"btrfs: failed to read tree root on %s\n",
1896 goto fail_tree_root
;
1898 btrfs_set_root_node(&tree_root
->root_item
, tree_root
->node
);
1899 tree_root
->commit_root
= btrfs_root_node(tree_root
);
1901 ret
= find_and_setup_root(tree_root
, fs_info
,
1902 BTRFS_EXTENT_TREE_OBJECTID
, extent_root
);
1904 goto fail_tree_root
;
1905 extent_root
->track_dirty
= 1;
1907 ret
= find_and_setup_root(tree_root
, fs_info
,
1908 BTRFS_DEV_TREE_OBJECTID
, dev_root
);
1910 goto fail_extent_root
;
1911 dev_root
->track_dirty
= 1;
1913 ret
= find_and_setup_root(tree_root
, fs_info
,
1914 BTRFS_CSUM_TREE_OBJECTID
, csum_root
);
1918 csum_root
->track_dirty
= 1;
1920 ret
= btrfs_read_block_groups(extent_root
);
1922 printk(KERN_ERR
"Failed to read block groups: %d\n", ret
);
1923 goto fail_block_groups
;
1926 fs_info
->generation
= generation
;
1927 fs_info
->last_trans_committed
= generation
;
1928 fs_info
->data_alloc_profile
= (u64
)-1;
1929 fs_info
->metadata_alloc_profile
= (u64
)-1;
1930 fs_info
->system_alloc_profile
= fs_info
->metadata_alloc_profile
;
1931 fs_info
->cleaner_kthread
= kthread_run(cleaner_kthread
, tree_root
,
1933 if (IS_ERR(fs_info
->cleaner_kthread
))
1934 goto fail_block_groups
;
1936 fs_info
->transaction_kthread
= kthread_run(transaction_kthread
,
1938 "btrfs-transaction");
1939 if (IS_ERR(fs_info
->transaction_kthread
))
1942 if (!btrfs_test_opt(tree_root
, SSD
) &&
1943 !btrfs_test_opt(tree_root
, NOSSD
) &&
1944 !fs_info
->fs_devices
->rotating
) {
1945 printk(KERN_INFO
"Btrfs detected SSD devices, enabling SSD "
1947 btrfs_set_opt(fs_info
->mount_opt
, SSD
);
1950 if (btrfs_super_log_root(disk_super
) != 0) {
1951 u64 bytenr
= btrfs_super_log_root(disk_super
);
1953 if (fs_devices
->rw_devices
== 0) {
1954 printk(KERN_WARNING
"Btrfs log replay required "
1957 goto fail_trans_kthread
;
1960 btrfs_level_size(tree_root
,
1961 btrfs_super_log_root_level(disk_super
));
1963 log_tree_root
= kzalloc(sizeof(struct btrfs_root
),
1966 __setup_root(nodesize
, leafsize
, sectorsize
, stripesize
,
1967 log_tree_root
, fs_info
, BTRFS_TREE_LOG_OBJECTID
);
1969 log_tree_root
->node
= read_tree_block(tree_root
, bytenr
,
1972 ret
= btrfs_recover_log_trees(log_tree_root
);
1975 if (sb
->s_flags
& MS_RDONLY
) {
1976 ret
= btrfs_commit_super(tree_root
);
1981 ret
= btrfs_find_orphan_roots(tree_root
);
1984 if (!(sb
->s_flags
& MS_RDONLY
)) {
1985 ret
= btrfs_recover_relocation(tree_root
);
1988 "btrfs: failed to recover relocation\n");
1990 goto fail_trans_kthread
;
1994 location
.objectid
= BTRFS_FS_TREE_OBJECTID
;
1995 location
.type
= BTRFS_ROOT_ITEM_KEY
;
1996 location
.offset
= (u64
)-1;
1998 fs_info
->fs_root
= btrfs_read_fs_root_no_name(fs_info
, &location
);
1999 if (!fs_info
->fs_root
)
2000 goto fail_trans_kthread
;
2002 if (!(sb
->s_flags
& MS_RDONLY
)) {
2003 down_read(&fs_info
->cleanup_work_sem
);
2004 btrfs_orphan_cleanup(fs_info
->fs_root
);
2005 up_read(&fs_info
->cleanup_work_sem
);
2011 kthread_stop(fs_info
->transaction_kthread
);
2013 kthread_stop(fs_info
->cleaner_kthread
);
2016 * make sure we're done with the btree inode before we stop our
2019 filemap_write_and_wait(fs_info
->btree_inode
->i_mapping
);
2020 invalidate_inode_pages2(fs_info
->btree_inode
->i_mapping
);
2023 btrfs_free_block_groups(fs_info
);
2024 free_extent_buffer(csum_root
->node
);
2025 free_extent_buffer(csum_root
->commit_root
);
2027 free_extent_buffer(dev_root
->node
);
2028 free_extent_buffer(dev_root
->commit_root
);
2030 free_extent_buffer(extent_root
->node
);
2031 free_extent_buffer(extent_root
->commit_root
);
2033 free_extent_buffer(tree_root
->node
);
2034 free_extent_buffer(tree_root
->commit_root
);
2036 free_extent_buffer(chunk_root
->node
);
2037 free_extent_buffer(chunk_root
->commit_root
);
2039 btrfs_stop_workers(&fs_info
->generic_worker
);
2040 btrfs_stop_workers(&fs_info
->fixup_workers
);
2041 btrfs_stop_workers(&fs_info
->delalloc_workers
);
2042 btrfs_stop_workers(&fs_info
->workers
);
2043 btrfs_stop_workers(&fs_info
->endio_workers
);
2044 btrfs_stop_workers(&fs_info
->endio_meta_workers
);
2045 btrfs_stop_workers(&fs_info
->endio_meta_write_workers
);
2046 btrfs_stop_workers(&fs_info
->endio_write_workers
);
2047 btrfs_stop_workers(&fs_info
->submit_workers
);
2049 invalidate_inode_pages2(fs_info
->btree_inode
->i_mapping
);
2050 iput(fs_info
->btree_inode
);
2052 btrfs_close_devices(fs_info
->fs_devices
);
2053 btrfs_mapping_tree_free(&fs_info
->mapping_tree
);
2055 bdi_destroy(&fs_info
->bdi
);
2057 cleanup_srcu_struct(&fs_info
->subvol_srcu
);
2065 return ERR_PTR(err
);
2068 static void btrfs_end_buffer_write_sync(struct buffer_head
*bh
, int uptodate
)
2070 char b
[BDEVNAME_SIZE
];
2073 set_buffer_uptodate(bh
);
2075 if (!buffer_eopnotsupp(bh
) && printk_ratelimit()) {
2076 printk(KERN_WARNING
"lost page write due to "
2077 "I/O error on %s\n",
2078 bdevname(bh
->b_bdev
, b
));
2080 /* note, we dont' set_buffer_write_io_error because we have
2081 * our own ways of dealing with the IO errors
2083 clear_buffer_uptodate(bh
);
2089 struct buffer_head
*btrfs_read_dev_super(struct block_device
*bdev
)
2091 struct buffer_head
*bh
;
2092 struct buffer_head
*latest
= NULL
;
2093 struct btrfs_super_block
*super
;
2098 /* we would like to check all the supers, but that would make
2099 * a btrfs mount succeed after a mkfs from a different FS.
2100 * So, we need to add a special mount option to scan for
2101 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
2103 for (i
= 0; i
< 1; i
++) {
2104 bytenr
= btrfs_sb_offset(i
);
2105 if (bytenr
+ 4096 >= i_size_read(bdev
->bd_inode
))
2107 bh
= __bread(bdev
, bytenr
/ 4096, 4096);
2111 super
= (struct btrfs_super_block
*)bh
->b_data
;
2112 if (btrfs_super_bytenr(super
) != bytenr
||
2113 strncmp((char *)(&super
->magic
), BTRFS_MAGIC
,
2114 sizeof(super
->magic
))) {
2119 if (!latest
|| btrfs_super_generation(super
) > transid
) {
2122 transid
= btrfs_super_generation(super
);
2131 * this should be called twice, once with wait == 0 and
2132 * once with wait == 1. When wait == 0 is done, all the buffer heads
2133 * we write are pinned.
2135 * They are released when wait == 1 is done.
2136 * max_mirrors must be the same for both runs, and it indicates how
2137 * many supers on this one device should be written.
2139 * max_mirrors == 0 means to write them all.
2141 static int write_dev_supers(struct btrfs_device
*device
,
2142 struct btrfs_super_block
*sb
,
2143 int do_barriers
, int wait
, int max_mirrors
)
2145 struct buffer_head
*bh
;
2151 int last_barrier
= 0;
2153 if (max_mirrors
== 0)
2154 max_mirrors
= BTRFS_SUPER_MIRROR_MAX
;
2156 /* make sure only the last submit_bh does a barrier */
2158 for (i
= 0; i
< max_mirrors
; i
++) {
2159 bytenr
= btrfs_sb_offset(i
);
2160 if (bytenr
+ BTRFS_SUPER_INFO_SIZE
>=
2161 device
->total_bytes
)
2167 for (i
= 0; i
< max_mirrors
; i
++) {
2168 bytenr
= btrfs_sb_offset(i
);
2169 if (bytenr
+ BTRFS_SUPER_INFO_SIZE
>= device
->total_bytes
)
2173 bh
= __find_get_block(device
->bdev
, bytenr
/ 4096,
2174 BTRFS_SUPER_INFO_SIZE
);
2177 if (!buffer_uptodate(bh
))
2180 /* drop our reference */
2183 /* drop the reference from the wait == 0 run */
2187 btrfs_set_super_bytenr(sb
, bytenr
);
2190 crc
= btrfs_csum_data(NULL
, (char *)sb
+
2191 BTRFS_CSUM_SIZE
, crc
,
2192 BTRFS_SUPER_INFO_SIZE
-
2194 btrfs_csum_final(crc
, sb
->csum
);
2197 * one reference for us, and we leave it for the
2200 bh
= __getblk(device
->bdev
, bytenr
/ 4096,
2201 BTRFS_SUPER_INFO_SIZE
);
2202 memcpy(bh
->b_data
, sb
, BTRFS_SUPER_INFO_SIZE
);
2204 /* one reference for submit_bh */
2207 set_buffer_uptodate(bh
);
2209 bh
->b_end_io
= btrfs_end_buffer_write_sync
;
2212 if (i
== last_barrier
&& do_barriers
&& device
->barriers
) {
2213 ret
= submit_bh(WRITE_BARRIER
, bh
);
2214 if (ret
== -EOPNOTSUPP
) {
2215 printk("btrfs: disabling barriers on dev %s\n",
2217 set_buffer_uptodate(bh
);
2218 device
->barriers
= 0;
2219 /* one reference for submit_bh */
2222 ret
= submit_bh(WRITE_SYNC
, bh
);
2225 ret
= submit_bh(WRITE_SYNC
, bh
);
2231 return errors
< i
? 0 : -1;
2234 int write_all_supers(struct btrfs_root
*root
, int max_mirrors
)
2236 struct list_head
*head
;
2237 struct btrfs_device
*dev
;
2238 struct btrfs_super_block
*sb
;
2239 struct btrfs_dev_item
*dev_item
;
2243 int total_errors
= 0;
2246 max_errors
= btrfs_super_num_devices(&root
->fs_info
->super_copy
) - 1;
2247 do_barriers
= !btrfs_test_opt(root
, NOBARRIER
);
2249 sb
= &root
->fs_info
->super_for_commit
;
2250 dev_item
= &sb
->dev_item
;
2252 mutex_lock(&root
->fs_info
->fs_devices
->device_list_mutex
);
2253 head
= &root
->fs_info
->fs_devices
->devices
;
2254 list_for_each_entry(dev
, head
, dev_list
) {
2259 if (!dev
->in_fs_metadata
|| !dev
->writeable
)
2262 btrfs_set_stack_device_generation(dev_item
, 0);
2263 btrfs_set_stack_device_type(dev_item
, dev
->type
);
2264 btrfs_set_stack_device_id(dev_item
, dev
->devid
);
2265 btrfs_set_stack_device_total_bytes(dev_item
, dev
->total_bytes
);
2266 btrfs_set_stack_device_bytes_used(dev_item
, dev
->bytes_used
);
2267 btrfs_set_stack_device_io_align(dev_item
, dev
->io_align
);
2268 btrfs_set_stack_device_io_width(dev_item
, dev
->io_width
);
2269 btrfs_set_stack_device_sector_size(dev_item
, dev
->sector_size
);
2270 memcpy(dev_item
->uuid
, dev
->uuid
, BTRFS_UUID_SIZE
);
2271 memcpy(dev_item
->fsid
, dev
->fs_devices
->fsid
, BTRFS_UUID_SIZE
);
2273 flags
= btrfs_super_flags(sb
);
2274 btrfs_set_super_flags(sb
, flags
| BTRFS_HEADER_FLAG_WRITTEN
);
2276 ret
= write_dev_supers(dev
, sb
, do_barriers
, 0, max_mirrors
);
2280 if (total_errors
> max_errors
) {
2281 printk(KERN_ERR
"btrfs: %d errors while writing supers\n",
2287 list_for_each_entry(dev
, head
, dev_list
) {
2290 if (!dev
->in_fs_metadata
|| !dev
->writeable
)
2293 ret
= write_dev_supers(dev
, sb
, do_barriers
, 1, max_mirrors
);
2297 mutex_unlock(&root
->fs_info
->fs_devices
->device_list_mutex
);
2298 if (total_errors
> max_errors
) {
2299 printk(KERN_ERR
"btrfs: %d errors while writing supers\n",
2306 int write_ctree_super(struct btrfs_trans_handle
*trans
,
2307 struct btrfs_root
*root
, int max_mirrors
)
2311 ret
= write_all_supers(root
, max_mirrors
);
2315 int btrfs_free_fs_root(struct btrfs_fs_info
*fs_info
, struct btrfs_root
*root
)
2317 spin_lock(&fs_info
->fs_roots_radix_lock
);
2318 radix_tree_delete(&fs_info
->fs_roots_radix
,
2319 (unsigned long)root
->root_key
.objectid
);
2320 spin_unlock(&fs_info
->fs_roots_radix_lock
);
2322 if (btrfs_root_refs(&root
->root_item
) == 0)
2323 synchronize_srcu(&fs_info
->subvol_srcu
);
2329 static void free_fs_root(struct btrfs_root
*root
)
2331 WARN_ON(!RB_EMPTY_ROOT(&root
->inode_tree
));
2332 if (root
->anon_super
.s_dev
) {
2333 down_write(&root
->anon_super
.s_umount
);
2334 kill_anon_super(&root
->anon_super
);
2336 free_extent_buffer(root
->node
);
2337 free_extent_buffer(root
->commit_root
);
2342 static int del_fs_roots(struct btrfs_fs_info
*fs_info
)
2345 struct btrfs_root
*gang
[8];
2348 while (!list_empty(&fs_info
->dead_roots
)) {
2349 gang
[0] = list_entry(fs_info
->dead_roots
.next
,
2350 struct btrfs_root
, root_list
);
2351 list_del(&gang
[0]->root_list
);
2353 if (gang
[0]->in_radix
) {
2354 btrfs_free_fs_root(fs_info
, gang
[0]);
2356 free_extent_buffer(gang
[0]->node
);
2357 free_extent_buffer(gang
[0]->commit_root
);
2363 ret
= radix_tree_gang_lookup(&fs_info
->fs_roots_radix
,
2368 for (i
= 0; i
< ret
; i
++)
2369 btrfs_free_fs_root(fs_info
, gang
[i
]);
2374 int btrfs_cleanup_fs_roots(struct btrfs_fs_info
*fs_info
)
2376 u64 root_objectid
= 0;
2377 struct btrfs_root
*gang
[8];
2382 ret
= radix_tree_gang_lookup(&fs_info
->fs_roots_radix
,
2383 (void **)gang
, root_objectid
,
2388 root_objectid
= gang
[ret
- 1]->root_key
.objectid
+ 1;
2389 for (i
= 0; i
< ret
; i
++) {
2390 root_objectid
= gang
[i
]->root_key
.objectid
;
2391 btrfs_orphan_cleanup(gang
[i
]);
2398 int btrfs_commit_super(struct btrfs_root
*root
)
2400 struct btrfs_trans_handle
*trans
;
2403 mutex_lock(&root
->fs_info
->cleaner_mutex
);
2404 btrfs_run_delayed_iputs(root
);
2405 btrfs_clean_old_snapshots(root
);
2406 mutex_unlock(&root
->fs_info
->cleaner_mutex
);
2408 /* wait until ongoing cleanup work done */
2409 down_write(&root
->fs_info
->cleanup_work_sem
);
2410 up_write(&root
->fs_info
->cleanup_work_sem
);
2412 trans
= btrfs_join_transaction(root
, 1);
2413 ret
= btrfs_commit_transaction(trans
, root
);
2415 /* run commit again to drop the original snapshot */
2416 trans
= btrfs_join_transaction(root
, 1);
2417 btrfs_commit_transaction(trans
, root
);
2418 ret
= btrfs_write_and_wait_transaction(NULL
, root
);
2421 ret
= write_ctree_super(NULL
, root
, 0);
2425 int close_ctree(struct btrfs_root
*root
)
2427 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
2430 fs_info
->closing
= 1;
2433 kthread_stop(root
->fs_info
->transaction_kthread
);
2434 kthread_stop(root
->fs_info
->cleaner_kthread
);
2436 if (!(fs_info
->sb
->s_flags
& MS_RDONLY
)) {
2437 ret
= btrfs_commit_super(root
);
2439 printk(KERN_ERR
"btrfs: commit super ret %d\n", ret
);
2442 fs_info
->closing
= 2;
2445 if (fs_info
->delalloc_bytes
) {
2446 printk(KERN_INFO
"btrfs: at unmount delalloc count %llu\n",
2447 (unsigned long long)fs_info
->delalloc_bytes
);
2449 if (fs_info
->total_ref_cache_size
) {
2450 printk(KERN_INFO
"btrfs: at umount reference cache size %llu\n",
2451 (unsigned long long)fs_info
->total_ref_cache_size
);
2454 free_extent_buffer(fs_info
->extent_root
->node
);
2455 free_extent_buffer(fs_info
->extent_root
->commit_root
);
2456 free_extent_buffer(fs_info
->tree_root
->node
);
2457 free_extent_buffer(fs_info
->tree_root
->commit_root
);
2458 free_extent_buffer(root
->fs_info
->chunk_root
->node
);
2459 free_extent_buffer(root
->fs_info
->chunk_root
->commit_root
);
2460 free_extent_buffer(root
->fs_info
->dev_root
->node
);
2461 free_extent_buffer(root
->fs_info
->dev_root
->commit_root
);
2462 free_extent_buffer(root
->fs_info
->csum_root
->node
);
2463 free_extent_buffer(root
->fs_info
->csum_root
->commit_root
);
2465 btrfs_free_block_groups(root
->fs_info
);
2467 del_fs_roots(fs_info
);
2469 iput(fs_info
->btree_inode
);
2471 btrfs_stop_workers(&fs_info
->generic_worker
);
2472 btrfs_stop_workers(&fs_info
->fixup_workers
);
2473 btrfs_stop_workers(&fs_info
->delalloc_workers
);
2474 btrfs_stop_workers(&fs_info
->workers
);
2475 btrfs_stop_workers(&fs_info
->endio_workers
);
2476 btrfs_stop_workers(&fs_info
->endio_meta_workers
);
2477 btrfs_stop_workers(&fs_info
->endio_meta_write_workers
);
2478 btrfs_stop_workers(&fs_info
->endio_write_workers
);
2479 btrfs_stop_workers(&fs_info
->submit_workers
);
2481 btrfs_close_devices(fs_info
->fs_devices
);
2482 btrfs_mapping_tree_free(&fs_info
->mapping_tree
);
2484 bdi_destroy(&fs_info
->bdi
);
2485 cleanup_srcu_struct(&fs_info
->subvol_srcu
);
2487 kfree(fs_info
->extent_root
);
2488 kfree(fs_info
->tree_root
);
2489 kfree(fs_info
->chunk_root
);
2490 kfree(fs_info
->dev_root
);
2491 kfree(fs_info
->csum_root
);
2495 int btrfs_buffer_uptodate(struct extent_buffer
*buf
, u64 parent_transid
)
2498 struct inode
*btree_inode
= buf
->first_page
->mapping
->host
;
2500 ret
= extent_buffer_uptodate(&BTRFS_I(btree_inode
)->io_tree
, buf
,
2505 ret
= verify_parent_transid(&BTRFS_I(btree_inode
)->io_tree
, buf
,
2510 int btrfs_set_buffer_uptodate(struct extent_buffer
*buf
)
2512 struct inode
*btree_inode
= buf
->first_page
->mapping
->host
;
2513 return set_extent_buffer_uptodate(&BTRFS_I(btree_inode
)->io_tree
,
2517 void btrfs_mark_buffer_dirty(struct extent_buffer
*buf
)
2519 struct btrfs_root
*root
= BTRFS_I(buf
->first_page
->mapping
->host
)->root
;
2520 u64 transid
= btrfs_header_generation(buf
);
2521 struct inode
*btree_inode
= root
->fs_info
->btree_inode
;
2524 btrfs_assert_tree_locked(buf
);
2525 if (transid
!= root
->fs_info
->generation
) {
2526 printk(KERN_CRIT
"btrfs transid mismatch buffer %llu, "
2527 "found %llu running %llu\n",
2528 (unsigned long long)buf
->start
,
2529 (unsigned long long)transid
,
2530 (unsigned long long)root
->fs_info
->generation
);
2533 was_dirty
= set_extent_buffer_dirty(&BTRFS_I(btree_inode
)->io_tree
,
2536 spin_lock(&root
->fs_info
->delalloc_lock
);
2537 root
->fs_info
->dirty_metadata_bytes
+= buf
->len
;
2538 spin_unlock(&root
->fs_info
->delalloc_lock
);
2542 void btrfs_btree_balance_dirty(struct btrfs_root
*root
, unsigned long nr
)
2545 * looks as though older kernels can get into trouble with
2546 * this code, they end up stuck in balance_dirty_pages forever
2549 unsigned long thresh
= 32 * 1024 * 1024;
2551 if (current
->flags
& PF_MEMALLOC
)
2554 num_dirty
= root
->fs_info
->dirty_metadata_bytes
;
2556 if (num_dirty
> thresh
) {
2557 balance_dirty_pages_ratelimited_nr(
2558 root
->fs_info
->btree_inode
->i_mapping
, 1);
2563 int btrfs_read_buffer(struct extent_buffer
*buf
, u64 parent_transid
)
2565 struct btrfs_root
*root
= BTRFS_I(buf
->first_page
->mapping
->host
)->root
;
2567 ret
= btree_read_extent_buffer_pages(root
, buf
, 0, parent_transid
);
2569 set_bit(EXTENT_BUFFER_UPTODATE
, &buf
->bflags
);
2573 int btree_lock_page_hook(struct page
*page
)
2575 struct inode
*inode
= page
->mapping
->host
;
2576 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
2577 struct extent_io_tree
*io_tree
= &BTRFS_I(inode
)->io_tree
;
2578 struct extent_buffer
*eb
;
2580 u64 bytenr
= page_offset(page
);
2582 if (page
->private == EXTENT_PAGE_PRIVATE
)
2585 len
= page
->private >> 2;
2586 eb
= find_extent_buffer(io_tree
, bytenr
, len
, GFP_NOFS
);
2590 btrfs_tree_lock(eb
);
2591 btrfs_set_header_flag(eb
, BTRFS_HEADER_FLAG_WRITTEN
);
2593 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY
, &eb
->bflags
)) {
2594 spin_lock(&root
->fs_info
->delalloc_lock
);
2595 if (root
->fs_info
->dirty_metadata_bytes
>= eb
->len
)
2596 root
->fs_info
->dirty_metadata_bytes
-= eb
->len
;
2599 spin_unlock(&root
->fs_info
->delalloc_lock
);
2602 btrfs_tree_unlock(eb
);
2603 free_extent_buffer(eb
);
2609 static struct extent_io_ops btree_extent_io_ops
= {
2610 .write_cache_pages_lock_hook
= btree_lock_page_hook
,
2611 .readpage_end_io_hook
= btree_readpage_end_io_hook
,
2612 .submit_bio_hook
= btree_submit_bio_hook
,
2613 /* note we're sharing with inode.c for the merge bio hook */
2614 .merge_bio_hook
= btrfs_merge_bio_hook
,