[ARM] 3679/1: ARM: Make ARM dyntick implementation work with genirq
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / kernel / irq / handle.c
blob961b87591731e575f0ec97faee9105e4c67aacb0
1 /*
2 * linux/kernel/irq/handle.c
4 * Copyright (C) 1992, 1998-2006 Linus Torvalds, Ingo Molnar
5 * Copyright (C) 2005-2006, Thomas Gleixner, Russell King
7 * This file contains the core interrupt handling code.
9 * Detailed information is available in Documentation/DocBook/genericirq
13 #include <linux/irq.h>
14 #include <linux/module.h>
15 #include <linux/random.h>
16 #include <linux/interrupt.h>
17 #include <linux/kernel_stat.h>
19 #if defined(CONFIG_NO_IDLE_HZ) && defined(CONFIG_ARM)
20 #include <asm/dyntick.h>
21 #endif
23 #include "internals.h"
25 /**
26 * handle_bad_irq - handle spurious and unhandled irqs
28 void fastcall
29 handle_bad_irq(unsigned int irq, struct irq_desc *desc, struct pt_regs *regs)
31 print_irq_desc(irq, desc);
32 kstat_this_cpu.irqs[irq]++;
33 ack_bad_irq(irq);
37 * Linux has a controller-independent interrupt architecture.
38 * Every controller has a 'controller-template', that is used
39 * by the main code to do the right thing. Each driver-visible
40 * interrupt source is transparently wired to the appropriate
41 * controller. Thus drivers need not be aware of the
42 * interrupt-controller.
44 * The code is designed to be easily extended with new/different
45 * interrupt controllers, without having to do assembly magic or
46 * having to touch the generic code.
48 * Controller mappings for all interrupt sources:
50 struct irq_desc irq_desc[NR_IRQS] __cacheline_aligned = {
51 [0 ... NR_IRQS-1] = {
52 .status = IRQ_DISABLED,
53 .chip = &no_irq_chip,
54 .handle_irq = handle_bad_irq,
55 .depth = 1,
56 .lock = SPIN_LOCK_UNLOCKED,
57 #ifdef CONFIG_SMP
58 .affinity = CPU_MASK_ALL
59 #endif
64 * What should we do if we get a hw irq event on an illegal vector?
65 * Each architecture has to answer this themself.
67 static void ack_bad(unsigned int irq)
69 print_irq_desc(irq, irq_desc + irq);
70 ack_bad_irq(irq);
74 * NOP functions
76 static void noop(unsigned int irq)
80 static unsigned int noop_ret(unsigned int irq)
82 return 0;
86 * Generic no controller implementation
88 struct irq_chip no_irq_chip = {
89 .name = "none",
90 .startup = noop_ret,
91 .shutdown = noop,
92 .enable = noop,
93 .disable = noop,
94 .ack = ack_bad,
95 .end = noop,
99 * Special, empty irq handler:
101 irqreturn_t no_action(int cpl, void *dev_id, struct pt_regs *regs)
103 return IRQ_NONE;
107 * handle_IRQ_event - irq action chain handler
108 * @irq: the interrupt number
109 * @regs: pointer to a register structure
110 * @action: the interrupt action chain for this irq
112 * Handles the action chain of an irq event
114 irqreturn_t handle_IRQ_event(unsigned int irq, struct pt_regs *regs,
115 struct irqaction *action)
117 irqreturn_t ret, retval = IRQ_NONE;
118 unsigned int status = 0;
120 #if defined(CONFIG_NO_IDLE_HZ) && defined(CONFIG_ARM)
121 if (!(action->flags & SA_TIMER) && system_timer->dyn_tick != NULL) {
122 write_seqlock(&xtime_lock);
123 if (system_timer->dyn_tick->state & DYN_TICK_ENABLED)
124 system_timer->dyn_tick->handler(irq, 0, regs);
125 write_sequnlock(&xtime_lock);
127 #endif
129 if (!(action->flags & SA_INTERRUPT))
130 local_irq_enable();
132 do {
133 ret = action->handler(irq, action->dev_id, regs);
134 if (ret == IRQ_HANDLED)
135 status |= action->flags;
136 retval |= ret;
137 action = action->next;
138 } while (action);
140 if (status & SA_SAMPLE_RANDOM)
141 add_interrupt_randomness(irq);
142 local_irq_disable();
144 return retval;
148 * __do_IRQ - original all in one highlevel IRQ handler
149 * @irq: the interrupt number
150 * @regs: pointer to a register structure
152 * __do_IRQ handles all normal device IRQ's (the special
153 * SMP cross-CPU interrupts have their own specific
154 * handlers).
156 * This is the original x86 implementation which is used for every
157 * interrupt type.
159 fastcall unsigned int __do_IRQ(unsigned int irq, struct pt_regs *regs)
161 struct irq_desc *desc = irq_desc + irq;
162 struct irqaction *action;
163 unsigned int status;
165 kstat_this_cpu.irqs[irq]++;
166 if (CHECK_IRQ_PER_CPU(desc->status)) {
167 irqreturn_t action_ret;
170 * No locking required for CPU-local interrupts:
172 if (desc->chip->ack)
173 desc->chip->ack(irq);
174 action_ret = handle_IRQ_event(irq, regs, desc->action);
175 desc->chip->end(irq);
176 return 1;
179 spin_lock(&desc->lock);
180 if (desc->chip->ack)
181 desc->chip->ack(irq);
183 * REPLAY is when Linux resends an IRQ that was dropped earlier
184 * WAITING is used by probe to mark irqs that are being tested
186 status = desc->status & ~(IRQ_REPLAY | IRQ_WAITING);
187 status |= IRQ_PENDING; /* we _want_ to handle it */
190 * If the IRQ is disabled for whatever reason, we cannot
191 * use the action we have.
193 action = NULL;
194 if (likely(!(status & (IRQ_DISABLED | IRQ_INPROGRESS)))) {
195 action = desc->action;
196 status &= ~IRQ_PENDING; /* we commit to handling */
197 status |= IRQ_INPROGRESS; /* we are handling it */
199 desc->status = status;
202 * If there is no IRQ handler or it was disabled, exit early.
203 * Since we set PENDING, if another processor is handling
204 * a different instance of this same irq, the other processor
205 * will take care of it.
207 if (unlikely(!action))
208 goto out;
211 * Edge triggered interrupts need to remember
212 * pending events.
213 * This applies to any hw interrupts that allow a second
214 * instance of the same irq to arrive while we are in do_IRQ
215 * or in the handler. But the code here only handles the _second_
216 * instance of the irq, not the third or fourth. So it is mostly
217 * useful for irq hardware that does not mask cleanly in an
218 * SMP environment.
220 for (;;) {
221 irqreturn_t action_ret;
223 spin_unlock(&desc->lock);
225 action_ret = handle_IRQ_event(irq, regs, action);
227 spin_lock(&desc->lock);
228 if (!noirqdebug)
229 note_interrupt(irq, desc, action_ret, regs);
230 if (likely(!(desc->status & IRQ_PENDING)))
231 break;
232 desc->status &= ~IRQ_PENDING;
234 desc->status &= ~IRQ_INPROGRESS;
236 out:
238 * The ->end() handler has to deal with interrupts which got
239 * disabled while the handler was running.
241 desc->chip->end(irq);
242 spin_unlock(&desc->lock);
244 return 1;