KVM guest: fix bogus wallclock physical address calculation
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / kernel / timer.c
bloba7f07d5a6241d882af4466ec3280a89f2681e8c9
1 /*
2 * linux/kernel/timer.c
4 * Kernel internal timers, basic process system calls
6 * Copyright (C) 1991, 1992 Linus Torvalds
8 * 1997-01-28 Modified by Finn Arne Gangstad to make timers scale better.
10 * 1997-09-10 Updated NTP code according to technical memorandum Jan '96
11 * "A Kernel Model for Precision Timekeeping" by Dave Mills
12 * 1998-12-24 Fixed a xtime SMP race (we need the xtime_lock rw spinlock to
13 * serialize accesses to xtime/lost_ticks).
14 * Copyright (C) 1998 Andrea Arcangeli
15 * 1999-03-10 Improved NTP compatibility by Ulrich Windl
16 * 2002-05-31 Move sys_sysinfo here and make its locking sane, Robert Love
17 * 2000-10-05 Implemented scalable SMP per-CPU timer handling.
18 * Copyright (C) 2000, 2001, 2002 Ingo Molnar
19 * Designed by David S. Miller, Alexey Kuznetsov and Ingo Molnar
22 #include <linux/kernel_stat.h>
23 #include <linux/module.h>
24 #include <linux/interrupt.h>
25 #include <linux/percpu.h>
26 #include <linux/init.h>
27 #include <linux/mm.h>
28 #include <linux/swap.h>
29 #include <linux/pid_namespace.h>
30 #include <linux/notifier.h>
31 #include <linux/thread_info.h>
32 #include <linux/time.h>
33 #include <linux/jiffies.h>
34 #include <linux/posix-timers.h>
35 #include <linux/cpu.h>
36 #include <linux/syscalls.h>
37 #include <linux/delay.h>
38 #include <linux/tick.h>
39 #include <linux/kallsyms.h>
40 #include <linux/perf_counter.h>
41 #include <linux/sched.h>
43 #include <asm/uaccess.h>
44 #include <asm/unistd.h>
45 #include <asm/div64.h>
46 #include <asm/timex.h>
47 #include <asm/io.h>
49 u64 jiffies_64 __cacheline_aligned_in_smp = INITIAL_JIFFIES;
51 EXPORT_SYMBOL(jiffies_64);
54 * per-CPU timer vector definitions:
56 #define TVN_BITS (CONFIG_BASE_SMALL ? 4 : 6)
57 #define TVR_BITS (CONFIG_BASE_SMALL ? 6 : 8)
58 #define TVN_SIZE (1 << TVN_BITS)
59 #define TVR_SIZE (1 << TVR_BITS)
60 #define TVN_MASK (TVN_SIZE - 1)
61 #define TVR_MASK (TVR_SIZE - 1)
63 struct tvec {
64 struct list_head vec[TVN_SIZE];
67 struct tvec_root {
68 struct list_head vec[TVR_SIZE];
71 struct tvec_base {
72 spinlock_t lock;
73 struct timer_list *running_timer;
74 unsigned long timer_jiffies;
75 struct tvec_root tv1;
76 struct tvec tv2;
77 struct tvec tv3;
78 struct tvec tv4;
79 struct tvec tv5;
80 } ____cacheline_aligned;
82 struct tvec_base boot_tvec_bases;
83 EXPORT_SYMBOL(boot_tvec_bases);
84 static DEFINE_PER_CPU(struct tvec_base *, tvec_bases) = &boot_tvec_bases;
87 * Note that all tvec_bases are 2 byte aligned and lower bit of
88 * base in timer_list is guaranteed to be zero. Use the LSB for
89 * the new flag to indicate whether the timer is deferrable
91 #define TBASE_DEFERRABLE_FLAG (0x1)
93 /* Functions below help us manage 'deferrable' flag */
94 static inline unsigned int tbase_get_deferrable(struct tvec_base *base)
96 return ((unsigned int)(unsigned long)base & TBASE_DEFERRABLE_FLAG);
99 static inline struct tvec_base *tbase_get_base(struct tvec_base *base)
101 return ((struct tvec_base *)((unsigned long)base & ~TBASE_DEFERRABLE_FLAG));
104 static inline void timer_set_deferrable(struct timer_list *timer)
106 timer->base = ((struct tvec_base *)((unsigned long)(timer->base) |
107 TBASE_DEFERRABLE_FLAG));
110 static inline void
111 timer_set_base(struct timer_list *timer, struct tvec_base *new_base)
113 timer->base = (struct tvec_base *)((unsigned long)(new_base) |
114 tbase_get_deferrable(timer->base));
117 static unsigned long round_jiffies_common(unsigned long j, int cpu,
118 bool force_up)
120 int rem;
121 unsigned long original = j;
124 * We don't want all cpus firing their timers at once hitting the
125 * same lock or cachelines, so we skew each extra cpu with an extra
126 * 3 jiffies. This 3 jiffies came originally from the mm/ code which
127 * already did this.
128 * The skew is done by adding 3*cpunr, then round, then subtract this
129 * extra offset again.
131 j += cpu * 3;
133 rem = j % HZ;
136 * If the target jiffie is just after a whole second (which can happen
137 * due to delays of the timer irq, long irq off times etc etc) then
138 * we should round down to the whole second, not up. Use 1/4th second
139 * as cutoff for this rounding as an extreme upper bound for this.
140 * But never round down if @force_up is set.
142 if (rem < HZ/4 && !force_up) /* round down */
143 j = j - rem;
144 else /* round up */
145 j = j - rem + HZ;
147 /* now that we have rounded, subtract the extra skew again */
148 j -= cpu * 3;
150 if (j <= jiffies) /* rounding ate our timeout entirely; */
151 return original;
152 return j;
156 * __round_jiffies - function to round jiffies to a full second
157 * @j: the time in (absolute) jiffies that should be rounded
158 * @cpu: the processor number on which the timeout will happen
160 * __round_jiffies() rounds an absolute time in the future (in jiffies)
161 * up or down to (approximately) full seconds. This is useful for timers
162 * for which the exact time they fire does not matter too much, as long as
163 * they fire approximately every X seconds.
165 * By rounding these timers to whole seconds, all such timers will fire
166 * at the same time, rather than at various times spread out. The goal
167 * of this is to have the CPU wake up less, which saves power.
169 * The exact rounding is skewed for each processor to avoid all
170 * processors firing at the exact same time, which could lead
171 * to lock contention or spurious cache line bouncing.
173 * The return value is the rounded version of the @j parameter.
175 unsigned long __round_jiffies(unsigned long j, int cpu)
177 return round_jiffies_common(j, cpu, false);
179 EXPORT_SYMBOL_GPL(__round_jiffies);
182 * __round_jiffies_relative - function to round jiffies to a full second
183 * @j: the time in (relative) jiffies that should be rounded
184 * @cpu: the processor number on which the timeout will happen
186 * __round_jiffies_relative() rounds a time delta in the future (in jiffies)
187 * up or down to (approximately) full seconds. This is useful for timers
188 * for which the exact time they fire does not matter too much, as long as
189 * they fire approximately every X seconds.
191 * By rounding these timers to whole seconds, all such timers will fire
192 * at the same time, rather than at various times spread out. The goal
193 * of this is to have the CPU wake up less, which saves power.
195 * The exact rounding is skewed for each processor to avoid all
196 * processors firing at the exact same time, which could lead
197 * to lock contention or spurious cache line bouncing.
199 * The return value is the rounded version of the @j parameter.
201 unsigned long __round_jiffies_relative(unsigned long j, int cpu)
203 unsigned long j0 = jiffies;
205 /* Use j0 because jiffies might change while we run */
206 return round_jiffies_common(j + j0, cpu, false) - j0;
208 EXPORT_SYMBOL_GPL(__round_jiffies_relative);
211 * round_jiffies - function to round jiffies to a full second
212 * @j: the time in (absolute) jiffies that should be rounded
214 * round_jiffies() rounds an absolute time in the future (in jiffies)
215 * up or down to (approximately) full seconds. This is useful for timers
216 * for which the exact time they fire does not matter too much, as long as
217 * they fire approximately every X seconds.
219 * By rounding these timers to whole seconds, all such timers will fire
220 * at the same time, rather than at various times spread out. The goal
221 * of this is to have the CPU wake up less, which saves power.
223 * The return value is the rounded version of the @j parameter.
225 unsigned long round_jiffies(unsigned long j)
227 return round_jiffies_common(j, raw_smp_processor_id(), false);
229 EXPORT_SYMBOL_GPL(round_jiffies);
232 * round_jiffies_relative - function to round jiffies to a full second
233 * @j: the time in (relative) jiffies that should be rounded
235 * round_jiffies_relative() rounds a time delta in the future (in jiffies)
236 * up or down to (approximately) full seconds. This is useful for timers
237 * for which the exact time they fire does not matter too much, as long as
238 * they fire approximately every X seconds.
240 * By rounding these timers to whole seconds, all such timers will fire
241 * at the same time, rather than at various times spread out. The goal
242 * of this is to have the CPU wake up less, which saves power.
244 * The return value is the rounded version of the @j parameter.
246 unsigned long round_jiffies_relative(unsigned long j)
248 return __round_jiffies_relative(j, raw_smp_processor_id());
250 EXPORT_SYMBOL_GPL(round_jiffies_relative);
253 * __round_jiffies_up - function to round jiffies up to a full second
254 * @j: the time in (absolute) jiffies that should be rounded
255 * @cpu: the processor number on which the timeout will happen
257 * This is the same as __round_jiffies() except that it will never
258 * round down. This is useful for timeouts for which the exact time
259 * of firing does not matter too much, as long as they don't fire too
260 * early.
262 unsigned long __round_jiffies_up(unsigned long j, int cpu)
264 return round_jiffies_common(j, cpu, true);
266 EXPORT_SYMBOL_GPL(__round_jiffies_up);
269 * __round_jiffies_up_relative - function to round jiffies up to a full second
270 * @j: the time in (relative) jiffies that should be rounded
271 * @cpu: the processor number on which the timeout will happen
273 * This is the same as __round_jiffies_relative() except that it will never
274 * round down. This is useful for timeouts for which the exact time
275 * of firing does not matter too much, as long as they don't fire too
276 * early.
278 unsigned long __round_jiffies_up_relative(unsigned long j, int cpu)
280 unsigned long j0 = jiffies;
282 /* Use j0 because jiffies might change while we run */
283 return round_jiffies_common(j + j0, cpu, true) - j0;
285 EXPORT_SYMBOL_GPL(__round_jiffies_up_relative);
288 * round_jiffies_up - function to round jiffies up to a full second
289 * @j: the time in (absolute) jiffies that should be rounded
291 * This is the same as round_jiffies() except that it will never
292 * round down. This is useful for timeouts for which the exact time
293 * of firing does not matter too much, as long as they don't fire too
294 * early.
296 unsigned long round_jiffies_up(unsigned long j)
298 return round_jiffies_common(j, raw_smp_processor_id(), true);
300 EXPORT_SYMBOL_GPL(round_jiffies_up);
303 * round_jiffies_up_relative - function to round jiffies up to a full second
304 * @j: the time in (relative) jiffies that should be rounded
306 * This is the same as round_jiffies_relative() except that it will never
307 * round down. This is useful for timeouts for which the exact time
308 * of firing does not matter too much, as long as they don't fire too
309 * early.
311 unsigned long round_jiffies_up_relative(unsigned long j)
313 return __round_jiffies_up_relative(j, raw_smp_processor_id());
315 EXPORT_SYMBOL_GPL(round_jiffies_up_relative);
318 static inline void set_running_timer(struct tvec_base *base,
319 struct timer_list *timer)
321 #ifdef CONFIG_SMP
322 base->running_timer = timer;
323 #endif
326 static void internal_add_timer(struct tvec_base *base, struct timer_list *timer)
328 unsigned long expires = timer->expires;
329 unsigned long idx = expires - base->timer_jiffies;
330 struct list_head *vec;
332 if (idx < TVR_SIZE) {
333 int i = expires & TVR_MASK;
334 vec = base->tv1.vec + i;
335 } else if (idx < 1 << (TVR_BITS + TVN_BITS)) {
336 int i = (expires >> TVR_BITS) & TVN_MASK;
337 vec = base->tv2.vec + i;
338 } else if (idx < 1 << (TVR_BITS + 2 * TVN_BITS)) {
339 int i = (expires >> (TVR_BITS + TVN_BITS)) & TVN_MASK;
340 vec = base->tv3.vec + i;
341 } else if (idx < 1 << (TVR_BITS + 3 * TVN_BITS)) {
342 int i = (expires >> (TVR_BITS + 2 * TVN_BITS)) & TVN_MASK;
343 vec = base->tv4.vec + i;
344 } else if ((signed long) idx < 0) {
346 * Can happen if you add a timer with expires == jiffies,
347 * or you set a timer to go off in the past
349 vec = base->tv1.vec + (base->timer_jiffies & TVR_MASK);
350 } else {
351 int i;
352 /* If the timeout is larger than 0xffffffff on 64-bit
353 * architectures then we use the maximum timeout:
355 if (idx > 0xffffffffUL) {
356 idx = 0xffffffffUL;
357 expires = idx + base->timer_jiffies;
359 i = (expires >> (TVR_BITS + 3 * TVN_BITS)) & TVN_MASK;
360 vec = base->tv5.vec + i;
363 * Timers are FIFO:
365 list_add_tail(&timer->entry, vec);
368 #ifdef CONFIG_TIMER_STATS
369 void __timer_stats_timer_set_start_info(struct timer_list *timer, void *addr)
371 if (timer->start_site)
372 return;
374 timer->start_site = addr;
375 memcpy(timer->start_comm, current->comm, TASK_COMM_LEN);
376 timer->start_pid = current->pid;
379 static void timer_stats_account_timer(struct timer_list *timer)
381 unsigned int flag = 0;
383 if (likely(!timer->start_site))
384 return;
385 if (unlikely(tbase_get_deferrable(timer->base)))
386 flag |= TIMER_STATS_FLAG_DEFERRABLE;
388 timer_stats_update_stats(timer, timer->start_pid, timer->start_site,
389 timer->function, timer->start_comm, flag);
392 #else
393 static void timer_stats_account_timer(struct timer_list *timer) {}
394 #endif
396 #ifdef CONFIG_DEBUG_OBJECTS_TIMERS
398 static struct debug_obj_descr timer_debug_descr;
401 * fixup_init is called when:
402 * - an active object is initialized
404 static int timer_fixup_init(void *addr, enum debug_obj_state state)
406 struct timer_list *timer = addr;
408 switch (state) {
409 case ODEBUG_STATE_ACTIVE:
410 del_timer_sync(timer);
411 debug_object_init(timer, &timer_debug_descr);
412 return 1;
413 default:
414 return 0;
419 * fixup_activate is called when:
420 * - an active object is activated
421 * - an unknown object is activated (might be a statically initialized object)
423 static int timer_fixup_activate(void *addr, enum debug_obj_state state)
425 struct timer_list *timer = addr;
427 switch (state) {
429 case ODEBUG_STATE_NOTAVAILABLE:
431 * This is not really a fixup. The timer was
432 * statically initialized. We just make sure that it
433 * is tracked in the object tracker.
435 if (timer->entry.next == NULL &&
436 timer->entry.prev == TIMER_ENTRY_STATIC) {
437 debug_object_init(timer, &timer_debug_descr);
438 debug_object_activate(timer, &timer_debug_descr);
439 return 0;
440 } else {
441 WARN_ON_ONCE(1);
443 return 0;
445 case ODEBUG_STATE_ACTIVE:
446 WARN_ON(1);
448 default:
449 return 0;
454 * fixup_free is called when:
455 * - an active object is freed
457 static int timer_fixup_free(void *addr, enum debug_obj_state state)
459 struct timer_list *timer = addr;
461 switch (state) {
462 case ODEBUG_STATE_ACTIVE:
463 del_timer_sync(timer);
464 debug_object_free(timer, &timer_debug_descr);
465 return 1;
466 default:
467 return 0;
471 static struct debug_obj_descr timer_debug_descr = {
472 .name = "timer_list",
473 .fixup_init = timer_fixup_init,
474 .fixup_activate = timer_fixup_activate,
475 .fixup_free = timer_fixup_free,
478 static inline void debug_timer_init(struct timer_list *timer)
480 debug_object_init(timer, &timer_debug_descr);
483 static inline void debug_timer_activate(struct timer_list *timer)
485 debug_object_activate(timer, &timer_debug_descr);
488 static inline void debug_timer_deactivate(struct timer_list *timer)
490 debug_object_deactivate(timer, &timer_debug_descr);
493 static inline void debug_timer_free(struct timer_list *timer)
495 debug_object_free(timer, &timer_debug_descr);
498 static void __init_timer(struct timer_list *timer,
499 const char *name,
500 struct lock_class_key *key);
502 void init_timer_on_stack_key(struct timer_list *timer,
503 const char *name,
504 struct lock_class_key *key)
506 debug_object_init_on_stack(timer, &timer_debug_descr);
507 __init_timer(timer, name, key);
509 EXPORT_SYMBOL_GPL(init_timer_on_stack_key);
511 void destroy_timer_on_stack(struct timer_list *timer)
513 debug_object_free(timer, &timer_debug_descr);
515 EXPORT_SYMBOL_GPL(destroy_timer_on_stack);
517 #else
518 static inline void debug_timer_init(struct timer_list *timer) { }
519 static inline void debug_timer_activate(struct timer_list *timer) { }
520 static inline void debug_timer_deactivate(struct timer_list *timer) { }
521 #endif
523 static void __init_timer(struct timer_list *timer,
524 const char *name,
525 struct lock_class_key *key)
527 timer->entry.next = NULL;
528 timer->base = __raw_get_cpu_var(tvec_bases);
529 #ifdef CONFIG_TIMER_STATS
530 timer->start_site = NULL;
531 timer->start_pid = -1;
532 memset(timer->start_comm, 0, TASK_COMM_LEN);
533 #endif
534 lockdep_init_map(&timer->lockdep_map, name, key, 0);
538 * init_timer_key - initialize a timer
539 * @timer: the timer to be initialized
540 * @name: name of the timer
541 * @key: lockdep class key of the fake lock used for tracking timer
542 * sync lock dependencies
544 * init_timer_key() must be done to a timer prior calling *any* of the
545 * other timer functions.
547 void init_timer_key(struct timer_list *timer,
548 const char *name,
549 struct lock_class_key *key)
551 debug_timer_init(timer);
552 __init_timer(timer, name, key);
554 EXPORT_SYMBOL(init_timer_key);
556 void init_timer_deferrable_key(struct timer_list *timer,
557 const char *name,
558 struct lock_class_key *key)
560 init_timer_key(timer, name, key);
561 timer_set_deferrable(timer);
563 EXPORT_SYMBOL(init_timer_deferrable_key);
565 static inline void detach_timer(struct timer_list *timer,
566 int clear_pending)
568 struct list_head *entry = &timer->entry;
570 debug_timer_deactivate(timer);
572 __list_del(entry->prev, entry->next);
573 if (clear_pending)
574 entry->next = NULL;
575 entry->prev = LIST_POISON2;
579 * We are using hashed locking: holding per_cpu(tvec_bases).lock
580 * means that all timers which are tied to this base via timer->base are
581 * locked, and the base itself is locked too.
583 * So __run_timers/migrate_timers can safely modify all timers which could
584 * be found on ->tvX lists.
586 * When the timer's base is locked, and the timer removed from list, it is
587 * possible to set timer->base = NULL and drop the lock: the timer remains
588 * locked.
590 static struct tvec_base *lock_timer_base(struct timer_list *timer,
591 unsigned long *flags)
592 __acquires(timer->base->lock)
594 struct tvec_base *base;
596 for (;;) {
597 struct tvec_base *prelock_base = timer->base;
598 base = tbase_get_base(prelock_base);
599 if (likely(base != NULL)) {
600 spin_lock_irqsave(&base->lock, *flags);
601 if (likely(prelock_base == timer->base))
602 return base;
603 /* The timer has migrated to another CPU */
604 spin_unlock_irqrestore(&base->lock, *flags);
606 cpu_relax();
610 static inline int
611 __mod_timer(struct timer_list *timer, unsigned long expires,
612 bool pending_only, int pinned)
614 struct tvec_base *base, *new_base;
615 unsigned long flags;
616 int ret = 0 , cpu;
618 timer_stats_timer_set_start_info(timer);
619 BUG_ON(!timer->function);
621 base = lock_timer_base(timer, &flags);
623 if (timer_pending(timer)) {
624 detach_timer(timer, 0);
625 ret = 1;
626 } else {
627 if (pending_only)
628 goto out_unlock;
631 debug_timer_activate(timer);
633 new_base = __get_cpu_var(tvec_bases);
635 cpu = smp_processor_id();
637 #if defined(CONFIG_NO_HZ) && defined(CONFIG_SMP)
638 if (!pinned && get_sysctl_timer_migration() && idle_cpu(cpu)) {
639 int preferred_cpu = get_nohz_load_balancer();
641 if (preferred_cpu >= 0)
642 cpu = preferred_cpu;
644 #endif
645 new_base = per_cpu(tvec_bases, cpu);
647 if (base != new_base) {
649 * We are trying to schedule the timer on the local CPU.
650 * However we can't change timer's base while it is running,
651 * otherwise del_timer_sync() can't detect that the timer's
652 * handler yet has not finished. This also guarantees that
653 * the timer is serialized wrt itself.
655 if (likely(base->running_timer != timer)) {
656 /* See the comment in lock_timer_base() */
657 timer_set_base(timer, NULL);
658 spin_unlock(&base->lock);
659 base = new_base;
660 spin_lock(&base->lock);
661 timer_set_base(timer, base);
665 timer->expires = expires;
666 internal_add_timer(base, timer);
668 out_unlock:
669 spin_unlock_irqrestore(&base->lock, flags);
671 return ret;
675 * mod_timer_pending - modify a pending timer's timeout
676 * @timer: the pending timer to be modified
677 * @expires: new timeout in jiffies
679 * mod_timer_pending() is the same for pending timers as mod_timer(),
680 * but will not re-activate and modify already deleted timers.
682 * It is useful for unserialized use of timers.
684 int mod_timer_pending(struct timer_list *timer, unsigned long expires)
686 return __mod_timer(timer, expires, true, TIMER_NOT_PINNED);
688 EXPORT_SYMBOL(mod_timer_pending);
691 * mod_timer - modify a timer's timeout
692 * @timer: the timer to be modified
693 * @expires: new timeout in jiffies
695 * mod_timer() is a more efficient way to update the expire field of an
696 * active timer (if the timer is inactive it will be activated)
698 * mod_timer(timer, expires) is equivalent to:
700 * del_timer(timer); timer->expires = expires; add_timer(timer);
702 * Note that if there are multiple unserialized concurrent users of the
703 * same timer, then mod_timer() is the only safe way to modify the timeout,
704 * since add_timer() cannot modify an already running timer.
706 * The function returns whether it has modified a pending timer or not.
707 * (ie. mod_timer() of an inactive timer returns 0, mod_timer() of an
708 * active timer returns 1.)
710 int mod_timer(struct timer_list *timer, unsigned long expires)
713 * This is a common optimization triggered by the
714 * networking code - if the timer is re-modified
715 * to be the same thing then just return:
717 if (timer_pending(timer) && timer->expires == expires)
718 return 1;
720 return __mod_timer(timer, expires, false, TIMER_NOT_PINNED);
722 EXPORT_SYMBOL(mod_timer);
725 * mod_timer_pinned - modify a timer's timeout
726 * @timer: the timer to be modified
727 * @expires: new timeout in jiffies
729 * mod_timer_pinned() is a way to update the expire field of an
730 * active timer (if the timer is inactive it will be activated)
731 * and not allow the timer to be migrated to a different CPU.
733 * mod_timer_pinned(timer, expires) is equivalent to:
735 * del_timer(timer); timer->expires = expires; add_timer(timer);
737 int mod_timer_pinned(struct timer_list *timer, unsigned long expires)
739 if (timer->expires == expires && timer_pending(timer))
740 return 1;
742 return __mod_timer(timer, expires, false, TIMER_PINNED);
744 EXPORT_SYMBOL(mod_timer_pinned);
747 * add_timer - start a timer
748 * @timer: the timer to be added
750 * The kernel will do a ->function(->data) callback from the
751 * timer interrupt at the ->expires point in the future. The
752 * current time is 'jiffies'.
754 * The timer's ->expires, ->function (and if the handler uses it, ->data)
755 * fields must be set prior calling this function.
757 * Timers with an ->expires field in the past will be executed in the next
758 * timer tick.
760 void add_timer(struct timer_list *timer)
762 BUG_ON(timer_pending(timer));
763 mod_timer(timer, timer->expires);
765 EXPORT_SYMBOL(add_timer);
768 * add_timer_on - start a timer on a particular CPU
769 * @timer: the timer to be added
770 * @cpu: the CPU to start it on
772 * This is not very scalable on SMP. Double adds are not possible.
774 void add_timer_on(struct timer_list *timer, int cpu)
776 struct tvec_base *base = per_cpu(tvec_bases, cpu);
777 unsigned long flags;
779 timer_stats_timer_set_start_info(timer);
780 BUG_ON(timer_pending(timer) || !timer->function);
781 spin_lock_irqsave(&base->lock, flags);
782 timer_set_base(timer, base);
783 debug_timer_activate(timer);
784 internal_add_timer(base, timer);
786 * Check whether the other CPU is idle and needs to be
787 * triggered to reevaluate the timer wheel when nohz is
788 * active. We are protected against the other CPU fiddling
789 * with the timer by holding the timer base lock. This also
790 * makes sure that a CPU on the way to idle can not evaluate
791 * the timer wheel.
793 wake_up_idle_cpu(cpu);
794 spin_unlock_irqrestore(&base->lock, flags);
796 EXPORT_SYMBOL_GPL(add_timer_on);
799 * del_timer - deactive a timer.
800 * @timer: the timer to be deactivated
802 * del_timer() deactivates a timer - this works on both active and inactive
803 * timers.
805 * The function returns whether it has deactivated a pending timer or not.
806 * (ie. del_timer() of an inactive timer returns 0, del_timer() of an
807 * active timer returns 1.)
809 int del_timer(struct timer_list *timer)
811 struct tvec_base *base;
812 unsigned long flags;
813 int ret = 0;
815 timer_stats_timer_clear_start_info(timer);
816 if (timer_pending(timer)) {
817 base = lock_timer_base(timer, &flags);
818 if (timer_pending(timer)) {
819 detach_timer(timer, 1);
820 ret = 1;
822 spin_unlock_irqrestore(&base->lock, flags);
825 return ret;
827 EXPORT_SYMBOL(del_timer);
829 #ifdef CONFIG_SMP
831 * try_to_del_timer_sync - Try to deactivate a timer
832 * @timer: timer do del
834 * This function tries to deactivate a timer. Upon successful (ret >= 0)
835 * exit the timer is not queued and the handler is not running on any CPU.
837 * It must not be called from interrupt contexts.
839 int try_to_del_timer_sync(struct timer_list *timer)
841 struct tvec_base *base;
842 unsigned long flags;
843 int ret = -1;
845 base = lock_timer_base(timer, &flags);
847 if (base->running_timer == timer)
848 goto out;
850 ret = 0;
851 if (timer_pending(timer)) {
852 detach_timer(timer, 1);
853 ret = 1;
855 out:
856 spin_unlock_irqrestore(&base->lock, flags);
858 return ret;
860 EXPORT_SYMBOL(try_to_del_timer_sync);
863 * del_timer_sync - deactivate a timer and wait for the handler to finish.
864 * @timer: the timer to be deactivated
866 * This function only differs from del_timer() on SMP: besides deactivating
867 * the timer it also makes sure the handler has finished executing on other
868 * CPUs.
870 * Synchronization rules: Callers must prevent restarting of the timer,
871 * otherwise this function is meaningless. It must not be called from
872 * interrupt contexts. The caller must not hold locks which would prevent
873 * completion of the timer's handler. The timer's handler must not call
874 * add_timer_on(). Upon exit the timer is not queued and the handler is
875 * not running on any CPU.
877 * The function returns whether it has deactivated a pending timer or not.
879 int del_timer_sync(struct timer_list *timer)
881 #ifdef CONFIG_LOCKDEP
882 unsigned long flags;
884 local_irq_save(flags);
885 lock_map_acquire(&timer->lockdep_map);
886 lock_map_release(&timer->lockdep_map);
887 local_irq_restore(flags);
888 #endif
890 for (;;) {
891 int ret = try_to_del_timer_sync(timer);
892 if (ret >= 0)
893 return ret;
894 cpu_relax();
897 EXPORT_SYMBOL(del_timer_sync);
898 #endif
900 static int cascade(struct tvec_base *base, struct tvec *tv, int index)
902 /* cascade all the timers from tv up one level */
903 struct timer_list *timer, *tmp;
904 struct list_head tv_list;
906 list_replace_init(tv->vec + index, &tv_list);
909 * We are removing _all_ timers from the list, so we
910 * don't have to detach them individually.
912 list_for_each_entry_safe(timer, tmp, &tv_list, entry) {
913 BUG_ON(tbase_get_base(timer->base) != base);
914 internal_add_timer(base, timer);
917 return index;
920 #define INDEX(N) ((base->timer_jiffies >> (TVR_BITS + (N) * TVN_BITS)) & TVN_MASK)
923 * __run_timers - run all expired timers (if any) on this CPU.
924 * @base: the timer vector to be processed.
926 * This function cascades all vectors and executes all expired timer
927 * vectors.
929 static inline void __run_timers(struct tvec_base *base)
931 struct timer_list *timer;
933 spin_lock_irq(&base->lock);
934 while (time_after_eq(jiffies, base->timer_jiffies)) {
935 struct list_head work_list;
936 struct list_head *head = &work_list;
937 int index = base->timer_jiffies & TVR_MASK;
940 * Cascade timers:
942 if (!index &&
943 (!cascade(base, &base->tv2, INDEX(0))) &&
944 (!cascade(base, &base->tv3, INDEX(1))) &&
945 !cascade(base, &base->tv4, INDEX(2)))
946 cascade(base, &base->tv5, INDEX(3));
947 ++base->timer_jiffies;
948 list_replace_init(base->tv1.vec + index, &work_list);
949 while (!list_empty(head)) {
950 void (*fn)(unsigned long);
951 unsigned long data;
953 timer = list_first_entry(head, struct timer_list,entry);
954 fn = timer->function;
955 data = timer->data;
957 timer_stats_account_timer(timer);
959 set_running_timer(base, timer);
960 detach_timer(timer, 1);
962 spin_unlock_irq(&base->lock);
964 int preempt_count = preempt_count();
966 #ifdef CONFIG_LOCKDEP
968 * It is permissible to free the timer from
969 * inside the function that is called from
970 * it, this we need to take into account for
971 * lockdep too. To avoid bogus "held lock
972 * freed" warnings as well as problems when
973 * looking into timer->lockdep_map, make a
974 * copy and use that here.
976 struct lockdep_map lockdep_map =
977 timer->lockdep_map;
978 #endif
980 * Couple the lock chain with the lock chain at
981 * del_timer_sync() by acquiring the lock_map
982 * around the fn() call here and in
983 * del_timer_sync().
985 lock_map_acquire(&lockdep_map);
987 fn(data);
989 lock_map_release(&lockdep_map);
991 if (preempt_count != preempt_count()) {
992 printk(KERN_ERR "huh, entered %p "
993 "with preempt_count %08x, exited"
994 " with %08x?\n",
995 fn, preempt_count,
996 preempt_count());
997 BUG();
1000 spin_lock_irq(&base->lock);
1003 set_running_timer(base, NULL);
1004 spin_unlock_irq(&base->lock);
1007 #ifdef CONFIG_NO_HZ
1009 * Find out when the next timer event is due to happen. This
1010 * is used on S/390 to stop all activity when a cpus is idle.
1011 * This functions needs to be called disabled.
1013 static unsigned long __next_timer_interrupt(struct tvec_base *base)
1015 unsigned long timer_jiffies = base->timer_jiffies;
1016 unsigned long expires = timer_jiffies + NEXT_TIMER_MAX_DELTA;
1017 int index, slot, array, found = 0;
1018 struct timer_list *nte;
1019 struct tvec *varray[4];
1021 /* Look for timer events in tv1. */
1022 index = slot = timer_jiffies & TVR_MASK;
1023 do {
1024 list_for_each_entry(nte, base->tv1.vec + slot, entry) {
1025 if (tbase_get_deferrable(nte->base))
1026 continue;
1028 found = 1;
1029 expires = nte->expires;
1030 /* Look at the cascade bucket(s)? */
1031 if (!index || slot < index)
1032 goto cascade;
1033 return expires;
1035 slot = (slot + 1) & TVR_MASK;
1036 } while (slot != index);
1038 cascade:
1039 /* Calculate the next cascade event */
1040 if (index)
1041 timer_jiffies += TVR_SIZE - index;
1042 timer_jiffies >>= TVR_BITS;
1044 /* Check tv2-tv5. */
1045 varray[0] = &base->tv2;
1046 varray[1] = &base->tv3;
1047 varray[2] = &base->tv4;
1048 varray[3] = &base->tv5;
1050 for (array = 0; array < 4; array++) {
1051 struct tvec *varp = varray[array];
1053 index = slot = timer_jiffies & TVN_MASK;
1054 do {
1055 list_for_each_entry(nte, varp->vec + slot, entry) {
1056 if (tbase_get_deferrable(nte->base))
1057 continue;
1059 found = 1;
1060 if (time_before(nte->expires, expires))
1061 expires = nte->expires;
1064 * Do we still search for the first timer or are
1065 * we looking up the cascade buckets ?
1067 if (found) {
1068 /* Look at the cascade bucket(s)? */
1069 if (!index || slot < index)
1070 break;
1071 return expires;
1073 slot = (slot + 1) & TVN_MASK;
1074 } while (slot != index);
1076 if (index)
1077 timer_jiffies += TVN_SIZE - index;
1078 timer_jiffies >>= TVN_BITS;
1080 return expires;
1084 * Check, if the next hrtimer event is before the next timer wheel
1085 * event:
1087 static unsigned long cmp_next_hrtimer_event(unsigned long now,
1088 unsigned long expires)
1090 ktime_t hr_delta = hrtimer_get_next_event();
1091 struct timespec tsdelta;
1092 unsigned long delta;
1094 if (hr_delta.tv64 == KTIME_MAX)
1095 return expires;
1098 * Expired timer available, let it expire in the next tick
1100 if (hr_delta.tv64 <= 0)
1101 return now + 1;
1103 tsdelta = ktime_to_timespec(hr_delta);
1104 delta = timespec_to_jiffies(&tsdelta);
1107 * Limit the delta to the max value, which is checked in
1108 * tick_nohz_stop_sched_tick():
1110 if (delta > NEXT_TIMER_MAX_DELTA)
1111 delta = NEXT_TIMER_MAX_DELTA;
1114 * Take rounding errors in to account and make sure, that it
1115 * expires in the next tick. Otherwise we go into an endless
1116 * ping pong due to tick_nohz_stop_sched_tick() retriggering
1117 * the timer softirq
1119 if (delta < 1)
1120 delta = 1;
1121 now += delta;
1122 if (time_before(now, expires))
1123 return now;
1124 return expires;
1128 * get_next_timer_interrupt - return the jiffy of the next pending timer
1129 * @now: current time (in jiffies)
1131 unsigned long get_next_timer_interrupt(unsigned long now)
1133 struct tvec_base *base = __get_cpu_var(tvec_bases);
1134 unsigned long expires;
1136 spin_lock(&base->lock);
1137 expires = __next_timer_interrupt(base);
1138 spin_unlock(&base->lock);
1140 if (time_before_eq(expires, now))
1141 return now;
1143 return cmp_next_hrtimer_event(now, expires);
1145 #endif
1148 * Called from the timer interrupt handler to charge one tick to the current
1149 * process. user_tick is 1 if the tick is user time, 0 for system.
1151 void update_process_times(int user_tick)
1153 struct task_struct *p = current;
1154 int cpu = smp_processor_id();
1156 /* Note: this timer irq context must be accounted for as well. */
1157 account_process_tick(p, user_tick);
1158 run_local_timers();
1159 if (rcu_pending(cpu))
1160 rcu_check_callbacks(cpu, user_tick);
1161 printk_tick();
1162 scheduler_tick();
1163 run_posix_cpu_timers(p);
1167 * This function runs timers and the timer-tq in bottom half context.
1169 static void run_timer_softirq(struct softirq_action *h)
1171 struct tvec_base *base = __get_cpu_var(tvec_bases);
1173 perf_counter_do_pending();
1175 hrtimer_run_pending();
1177 if (time_after_eq(jiffies, base->timer_jiffies))
1178 __run_timers(base);
1182 * Called by the local, per-CPU timer interrupt on SMP.
1184 void run_local_timers(void)
1186 hrtimer_run_queues();
1187 raise_softirq(TIMER_SOFTIRQ);
1188 softlockup_tick();
1192 * The 64-bit jiffies value is not atomic - you MUST NOT read it
1193 * without sampling the sequence number in xtime_lock.
1194 * jiffies is defined in the linker script...
1197 void do_timer(unsigned long ticks)
1199 jiffies_64 += ticks;
1200 update_wall_time();
1201 calc_global_load();
1204 #ifdef __ARCH_WANT_SYS_ALARM
1207 * For backwards compatibility? This can be done in libc so Alpha
1208 * and all newer ports shouldn't need it.
1210 SYSCALL_DEFINE1(alarm, unsigned int, seconds)
1212 return alarm_setitimer(seconds);
1215 #endif
1217 #ifndef __alpha__
1220 * The Alpha uses getxpid, getxuid, and getxgid instead. Maybe this
1221 * should be moved into arch/i386 instead?
1225 * sys_getpid - return the thread group id of the current process
1227 * Note, despite the name, this returns the tgid not the pid. The tgid and
1228 * the pid are identical unless CLONE_THREAD was specified on clone() in
1229 * which case the tgid is the same in all threads of the same group.
1231 * This is SMP safe as current->tgid does not change.
1233 SYSCALL_DEFINE0(getpid)
1235 return task_tgid_vnr(current);
1239 * Accessing ->real_parent is not SMP-safe, it could
1240 * change from under us. However, we can use a stale
1241 * value of ->real_parent under rcu_read_lock(), see
1242 * release_task()->call_rcu(delayed_put_task_struct).
1244 SYSCALL_DEFINE0(getppid)
1246 int pid;
1248 rcu_read_lock();
1249 pid = task_tgid_vnr(current->real_parent);
1250 rcu_read_unlock();
1252 return pid;
1255 SYSCALL_DEFINE0(getuid)
1257 /* Only we change this so SMP safe */
1258 return current_uid();
1261 SYSCALL_DEFINE0(geteuid)
1263 /* Only we change this so SMP safe */
1264 return current_euid();
1267 SYSCALL_DEFINE0(getgid)
1269 /* Only we change this so SMP safe */
1270 return current_gid();
1273 SYSCALL_DEFINE0(getegid)
1275 /* Only we change this so SMP safe */
1276 return current_egid();
1279 #endif
1281 static void process_timeout(unsigned long __data)
1283 wake_up_process((struct task_struct *)__data);
1287 * schedule_timeout - sleep until timeout
1288 * @timeout: timeout value in jiffies
1290 * Make the current task sleep until @timeout jiffies have
1291 * elapsed. The routine will return immediately unless
1292 * the current task state has been set (see set_current_state()).
1294 * You can set the task state as follows -
1296 * %TASK_UNINTERRUPTIBLE - at least @timeout jiffies are guaranteed to
1297 * pass before the routine returns. The routine will return 0
1299 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
1300 * delivered to the current task. In this case the remaining time
1301 * in jiffies will be returned, or 0 if the timer expired in time
1303 * The current task state is guaranteed to be TASK_RUNNING when this
1304 * routine returns.
1306 * Specifying a @timeout value of %MAX_SCHEDULE_TIMEOUT will schedule
1307 * the CPU away without a bound on the timeout. In this case the return
1308 * value will be %MAX_SCHEDULE_TIMEOUT.
1310 * In all cases the return value is guaranteed to be non-negative.
1312 signed long __sched schedule_timeout(signed long timeout)
1314 struct timer_list timer;
1315 unsigned long expire;
1317 switch (timeout)
1319 case MAX_SCHEDULE_TIMEOUT:
1321 * These two special cases are useful to be comfortable
1322 * in the caller. Nothing more. We could take
1323 * MAX_SCHEDULE_TIMEOUT from one of the negative value
1324 * but I' d like to return a valid offset (>=0) to allow
1325 * the caller to do everything it want with the retval.
1327 schedule();
1328 goto out;
1329 default:
1331 * Another bit of PARANOID. Note that the retval will be
1332 * 0 since no piece of kernel is supposed to do a check
1333 * for a negative retval of schedule_timeout() (since it
1334 * should never happens anyway). You just have the printk()
1335 * that will tell you if something is gone wrong and where.
1337 if (timeout < 0) {
1338 printk(KERN_ERR "schedule_timeout: wrong timeout "
1339 "value %lx\n", timeout);
1340 dump_stack();
1341 current->state = TASK_RUNNING;
1342 goto out;
1346 expire = timeout + jiffies;
1348 setup_timer_on_stack(&timer, process_timeout, (unsigned long)current);
1349 __mod_timer(&timer, expire, false, TIMER_NOT_PINNED);
1350 schedule();
1351 del_singleshot_timer_sync(&timer);
1353 /* Remove the timer from the object tracker */
1354 destroy_timer_on_stack(&timer);
1356 timeout = expire - jiffies;
1358 out:
1359 return timeout < 0 ? 0 : timeout;
1361 EXPORT_SYMBOL(schedule_timeout);
1364 * We can use __set_current_state() here because schedule_timeout() calls
1365 * schedule() unconditionally.
1367 signed long __sched schedule_timeout_interruptible(signed long timeout)
1369 __set_current_state(TASK_INTERRUPTIBLE);
1370 return schedule_timeout(timeout);
1372 EXPORT_SYMBOL(schedule_timeout_interruptible);
1374 signed long __sched schedule_timeout_killable(signed long timeout)
1376 __set_current_state(TASK_KILLABLE);
1377 return schedule_timeout(timeout);
1379 EXPORT_SYMBOL(schedule_timeout_killable);
1381 signed long __sched schedule_timeout_uninterruptible(signed long timeout)
1383 __set_current_state(TASK_UNINTERRUPTIBLE);
1384 return schedule_timeout(timeout);
1386 EXPORT_SYMBOL(schedule_timeout_uninterruptible);
1388 /* Thread ID - the internal kernel "pid" */
1389 SYSCALL_DEFINE0(gettid)
1391 return task_pid_vnr(current);
1395 * do_sysinfo - fill in sysinfo struct
1396 * @info: pointer to buffer to fill
1398 int do_sysinfo(struct sysinfo *info)
1400 unsigned long mem_total, sav_total;
1401 unsigned int mem_unit, bitcount;
1402 struct timespec tp;
1404 memset(info, 0, sizeof(struct sysinfo));
1406 ktime_get_ts(&tp);
1407 monotonic_to_bootbased(&tp);
1408 info->uptime = tp.tv_sec + (tp.tv_nsec ? 1 : 0);
1410 get_avenrun(info->loads, 0, SI_LOAD_SHIFT - FSHIFT);
1412 info->procs = nr_threads;
1414 si_meminfo(info);
1415 si_swapinfo(info);
1418 * If the sum of all the available memory (i.e. ram + swap)
1419 * is less than can be stored in a 32 bit unsigned long then
1420 * we can be binary compatible with 2.2.x kernels. If not,
1421 * well, in that case 2.2.x was broken anyways...
1423 * -Erik Andersen <andersee@debian.org>
1426 mem_total = info->totalram + info->totalswap;
1427 if (mem_total < info->totalram || mem_total < info->totalswap)
1428 goto out;
1429 bitcount = 0;
1430 mem_unit = info->mem_unit;
1431 while (mem_unit > 1) {
1432 bitcount++;
1433 mem_unit >>= 1;
1434 sav_total = mem_total;
1435 mem_total <<= 1;
1436 if (mem_total < sav_total)
1437 goto out;
1441 * If mem_total did not overflow, multiply all memory values by
1442 * info->mem_unit and set it to 1. This leaves things compatible
1443 * with 2.2.x, and also retains compatibility with earlier 2.4.x
1444 * kernels...
1447 info->mem_unit = 1;
1448 info->totalram <<= bitcount;
1449 info->freeram <<= bitcount;
1450 info->sharedram <<= bitcount;
1451 info->bufferram <<= bitcount;
1452 info->totalswap <<= bitcount;
1453 info->freeswap <<= bitcount;
1454 info->totalhigh <<= bitcount;
1455 info->freehigh <<= bitcount;
1457 out:
1458 return 0;
1461 SYSCALL_DEFINE1(sysinfo, struct sysinfo __user *, info)
1463 struct sysinfo val;
1465 do_sysinfo(&val);
1467 if (copy_to_user(info, &val, sizeof(struct sysinfo)))
1468 return -EFAULT;
1470 return 0;
1473 static int __cpuinit init_timers_cpu(int cpu)
1475 int j;
1476 struct tvec_base *base;
1477 static char __cpuinitdata tvec_base_done[NR_CPUS];
1479 if (!tvec_base_done[cpu]) {
1480 static char boot_done;
1482 if (boot_done) {
1484 * The APs use this path later in boot
1486 base = kmalloc_node(sizeof(*base),
1487 GFP_KERNEL | __GFP_ZERO,
1488 cpu_to_node(cpu));
1489 if (!base)
1490 return -ENOMEM;
1492 /* Make sure that tvec_base is 2 byte aligned */
1493 if (tbase_get_deferrable(base)) {
1494 WARN_ON(1);
1495 kfree(base);
1496 return -ENOMEM;
1498 per_cpu(tvec_bases, cpu) = base;
1499 } else {
1501 * This is for the boot CPU - we use compile-time
1502 * static initialisation because per-cpu memory isn't
1503 * ready yet and because the memory allocators are not
1504 * initialised either.
1506 boot_done = 1;
1507 base = &boot_tvec_bases;
1509 tvec_base_done[cpu] = 1;
1510 } else {
1511 base = per_cpu(tvec_bases, cpu);
1514 spin_lock_init(&base->lock);
1516 for (j = 0; j < TVN_SIZE; j++) {
1517 INIT_LIST_HEAD(base->tv5.vec + j);
1518 INIT_LIST_HEAD(base->tv4.vec + j);
1519 INIT_LIST_HEAD(base->tv3.vec + j);
1520 INIT_LIST_HEAD(base->tv2.vec + j);
1522 for (j = 0; j < TVR_SIZE; j++)
1523 INIT_LIST_HEAD(base->tv1.vec + j);
1525 base->timer_jiffies = jiffies;
1526 return 0;
1529 #ifdef CONFIG_HOTPLUG_CPU
1530 static void migrate_timer_list(struct tvec_base *new_base, struct list_head *head)
1532 struct timer_list *timer;
1534 while (!list_empty(head)) {
1535 timer = list_first_entry(head, struct timer_list, entry);
1536 detach_timer(timer, 0);
1537 timer_set_base(timer, new_base);
1538 internal_add_timer(new_base, timer);
1542 static void __cpuinit migrate_timers(int cpu)
1544 struct tvec_base *old_base;
1545 struct tvec_base *new_base;
1546 int i;
1548 BUG_ON(cpu_online(cpu));
1549 old_base = per_cpu(tvec_bases, cpu);
1550 new_base = get_cpu_var(tvec_bases);
1552 * The caller is globally serialized and nobody else
1553 * takes two locks at once, deadlock is not possible.
1555 spin_lock_irq(&new_base->lock);
1556 spin_lock_nested(&old_base->lock, SINGLE_DEPTH_NESTING);
1558 BUG_ON(old_base->running_timer);
1560 for (i = 0; i < TVR_SIZE; i++)
1561 migrate_timer_list(new_base, old_base->tv1.vec + i);
1562 for (i = 0; i < TVN_SIZE; i++) {
1563 migrate_timer_list(new_base, old_base->tv2.vec + i);
1564 migrate_timer_list(new_base, old_base->tv3.vec + i);
1565 migrate_timer_list(new_base, old_base->tv4.vec + i);
1566 migrate_timer_list(new_base, old_base->tv5.vec + i);
1569 spin_unlock(&old_base->lock);
1570 spin_unlock_irq(&new_base->lock);
1571 put_cpu_var(tvec_bases);
1573 #endif /* CONFIG_HOTPLUG_CPU */
1575 static int __cpuinit timer_cpu_notify(struct notifier_block *self,
1576 unsigned long action, void *hcpu)
1578 long cpu = (long)hcpu;
1579 switch(action) {
1580 case CPU_UP_PREPARE:
1581 case CPU_UP_PREPARE_FROZEN:
1582 if (init_timers_cpu(cpu) < 0)
1583 return NOTIFY_BAD;
1584 break;
1585 #ifdef CONFIG_HOTPLUG_CPU
1586 case CPU_DEAD:
1587 case CPU_DEAD_FROZEN:
1588 migrate_timers(cpu);
1589 break;
1590 #endif
1591 default:
1592 break;
1594 return NOTIFY_OK;
1597 static struct notifier_block __cpuinitdata timers_nb = {
1598 .notifier_call = timer_cpu_notify,
1602 void __init init_timers(void)
1604 int err = timer_cpu_notify(&timers_nb, (unsigned long)CPU_UP_PREPARE,
1605 (void *)(long)smp_processor_id());
1607 init_timer_stats();
1609 BUG_ON(err == NOTIFY_BAD);
1610 register_cpu_notifier(&timers_nb);
1611 open_softirq(TIMER_SOFTIRQ, run_timer_softirq);
1615 * msleep - sleep safely even with waitqueue interruptions
1616 * @msecs: Time in milliseconds to sleep for
1618 void msleep(unsigned int msecs)
1620 unsigned long timeout = msecs_to_jiffies(msecs) + 1;
1622 while (timeout)
1623 timeout = schedule_timeout_uninterruptible(timeout);
1626 EXPORT_SYMBOL(msleep);
1629 * msleep_interruptible - sleep waiting for signals
1630 * @msecs: Time in milliseconds to sleep for
1632 unsigned long msleep_interruptible(unsigned int msecs)
1634 unsigned long timeout = msecs_to_jiffies(msecs) + 1;
1636 while (timeout && !signal_pending(current))
1637 timeout = schedule_timeout_interruptible(timeout);
1638 return jiffies_to_msecs(timeout);
1641 EXPORT_SYMBOL(msleep_interruptible);