powerpc ioremap_prot
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / mm / filemap.c
blob6343f3c841b77f5b8c27203a5f63e0011104f031
1 /*
2 * linux/mm/filemap.c
4 * Copyright (C) 1994-1999 Linus Torvalds
5 */
7 /*
8 * This file handles the generic file mmap semantics used by
9 * most "normal" filesystems (but you don't /have/ to use this:
10 * the NFS filesystem used to do this differently, for example)
12 #include <linux/module.h>
13 #include <linux/slab.h>
14 #include <linux/compiler.h>
15 #include <linux/fs.h>
16 #include <linux/uaccess.h>
17 #include <linux/aio.h>
18 #include <linux/capability.h>
19 #include <linux/kernel_stat.h>
20 #include <linux/mm.h>
21 #include <linux/swap.h>
22 #include <linux/mman.h>
23 #include <linux/pagemap.h>
24 #include <linux/file.h>
25 #include <linux/uio.h>
26 #include <linux/hash.h>
27 #include <linux/writeback.h>
28 #include <linux/backing-dev.h>
29 #include <linux/pagevec.h>
30 #include <linux/blkdev.h>
31 #include <linux/security.h>
32 #include <linux/syscalls.h>
33 #include <linux/cpuset.h>
34 #include <linux/hardirq.h> /* for BUG_ON(!in_atomic()) only */
35 #include <linux/memcontrol.h>
36 #include "internal.h"
39 * FIXME: remove all knowledge of the buffer layer from the core VM
41 #include <linux/buffer_head.h> /* for generic_osync_inode */
43 #include <asm/mman.h>
47 * Shared mappings implemented 30.11.1994. It's not fully working yet,
48 * though.
50 * Shared mappings now work. 15.8.1995 Bruno.
52 * finished 'unifying' the page and buffer cache and SMP-threaded the
53 * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com>
55 * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de>
59 * Lock ordering:
61 * ->i_mmap_lock (vmtruncate)
62 * ->private_lock (__free_pte->__set_page_dirty_buffers)
63 * ->swap_lock (exclusive_swap_page, others)
64 * ->mapping->tree_lock
66 * ->i_mutex
67 * ->i_mmap_lock (truncate->unmap_mapping_range)
69 * ->mmap_sem
70 * ->i_mmap_lock
71 * ->page_table_lock or pte_lock (various, mainly in memory.c)
72 * ->mapping->tree_lock (arch-dependent flush_dcache_mmap_lock)
74 * ->mmap_sem
75 * ->lock_page (access_process_vm)
77 * ->i_mutex (generic_file_buffered_write)
78 * ->mmap_sem (fault_in_pages_readable->do_page_fault)
80 * ->i_mutex
81 * ->i_alloc_sem (various)
83 * ->inode_lock
84 * ->sb_lock (fs/fs-writeback.c)
85 * ->mapping->tree_lock (__sync_single_inode)
87 * ->i_mmap_lock
88 * ->anon_vma.lock (vma_adjust)
90 * ->anon_vma.lock
91 * ->page_table_lock or pte_lock (anon_vma_prepare and various)
93 * ->page_table_lock or pte_lock
94 * ->swap_lock (try_to_unmap_one)
95 * ->private_lock (try_to_unmap_one)
96 * ->tree_lock (try_to_unmap_one)
97 * ->zone.lru_lock (follow_page->mark_page_accessed)
98 * ->zone.lru_lock (check_pte_range->isolate_lru_page)
99 * ->private_lock (page_remove_rmap->set_page_dirty)
100 * ->tree_lock (page_remove_rmap->set_page_dirty)
101 * ->inode_lock (page_remove_rmap->set_page_dirty)
102 * ->inode_lock (zap_pte_range->set_page_dirty)
103 * ->private_lock (zap_pte_range->__set_page_dirty_buffers)
105 * ->task->proc_lock
106 * ->dcache_lock (proc_pid_lookup)
110 * Remove a page from the page cache and free it. Caller has to make
111 * sure the page is locked and that nobody else uses it - or that usage
112 * is safe. The caller must hold a write_lock on the mapping's tree_lock.
114 void __remove_from_page_cache(struct page *page)
116 struct address_space *mapping = page->mapping;
118 mem_cgroup_uncharge_page(page);
119 radix_tree_delete(&mapping->page_tree, page->index);
120 page->mapping = NULL;
121 mapping->nrpages--;
122 __dec_zone_page_state(page, NR_FILE_PAGES);
123 BUG_ON(page_mapped(page));
126 * Some filesystems seem to re-dirty the page even after
127 * the VM has canceled the dirty bit (eg ext3 journaling).
129 * Fix it up by doing a final dirty accounting check after
130 * having removed the page entirely.
132 if (PageDirty(page) && mapping_cap_account_dirty(mapping)) {
133 dec_zone_page_state(page, NR_FILE_DIRTY);
134 dec_bdi_stat(mapping->backing_dev_info, BDI_RECLAIMABLE);
138 void remove_from_page_cache(struct page *page)
140 struct address_space *mapping = page->mapping;
142 BUG_ON(!PageLocked(page));
144 write_lock_irq(&mapping->tree_lock);
145 __remove_from_page_cache(page);
146 write_unlock_irq(&mapping->tree_lock);
149 static int sync_page(void *word)
151 struct address_space *mapping;
152 struct page *page;
154 page = container_of((unsigned long *)word, struct page, flags);
157 * page_mapping() is being called without PG_locked held.
158 * Some knowledge of the state and use of the page is used to
159 * reduce the requirements down to a memory barrier.
160 * The danger here is of a stale page_mapping() return value
161 * indicating a struct address_space different from the one it's
162 * associated with when it is associated with one.
163 * After smp_mb(), it's either the correct page_mapping() for
164 * the page, or an old page_mapping() and the page's own
165 * page_mapping() has gone NULL.
166 * The ->sync_page() address_space operation must tolerate
167 * page_mapping() going NULL. By an amazing coincidence,
168 * this comes about because none of the users of the page
169 * in the ->sync_page() methods make essential use of the
170 * page_mapping(), merely passing the page down to the backing
171 * device's unplug functions when it's non-NULL, which in turn
172 * ignore it for all cases but swap, where only page_private(page) is
173 * of interest. When page_mapping() does go NULL, the entire
174 * call stack gracefully ignores the page and returns.
175 * -- wli
177 smp_mb();
178 mapping = page_mapping(page);
179 if (mapping && mapping->a_ops && mapping->a_ops->sync_page)
180 mapping->a_ops->sync_page(page);
181 io_schedule();
182 return 0;
185 static int sync_page_killable(void *word)
187 sync_page(word);
188 return fatal_signal_pending(current) ? -EINTR : 0;
192 * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range
193 * @mapping: address space structure to write
194 * @start: offset in bytes where the range starts
195 * @end: offset in bytes where the range ends (inclusive)
196 * @sync_mode: enable synchronous operation
198 * Start writeback against all of a mapping's dirty pages that lie
199 * within the byte offsets <start, end> inclusive.
201 * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
202 * opposed to a regular memory cleansing writeback. The difference between
203 * these two operations is that if a dirty page/buffer is encountered, it must
204 * be waited upon, and not just skipped over.
206 int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
207 loff_t end, int sync_mode)
209 int ret;
210 struct writeback_control wbc = {
211 .sync_mode = sync_mode,
212 .nr_to_write = mapping->nrpages * 2,
213 .range_start = start,
214 .range_end = end,
217 if (!mapping_cap_writeback_dirty(mapping))
218 return 0;
220 ret = do_writepages(mapping, &wbc);
221 return ret;
224 static inline int __filemap_fdatawrite(struct address_space *mapping,
225 int sync_mode)
227 return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode);
230 int filemap_fdatawrite(struct address_space *mapping)
232 return __filemap_fdatawrite(mapping, WB_SYNC_ALL);
234 EXPORT_SYMBOL(filemap_fdatawrite);
236 int filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
237 loff_t end)
239 return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL);
241 EXPORT_SYMBOL(filemap_fdatawrite_range);
244 * filemap_flush - mostly a non-blocking flush
245 * @mapping: target address_space
247 * This is a mostly non-blocking flush. Not suitable for data-integrity
248 * purposes - I/O may not be started against all dirty pages.
250 int filemap_flush(struct address_space *mapping)
252 return __filemap_fdatawrite(mapping, WB_SYNC_NONE);
254 EXPORT_SYMBOL(filemap_flush);
257 * wait_on_page_writeback_range - wait for writeback to complete
258 * @mapping: target address_space
259 * @start: beginning page index
260 * @end: ending page index
262 * Wait for writeback to complete against pages indexed by start->end
263 * inclusive
265 int wait_on_page_writeback_range(struct address_space *mapping,
266 pgoff_t start, pgoff_t end)
268 struct pagevec pvec;
269 int nr_pages;
270 int ret = 0;
271 pgoff_t index;
273 if (end < start)
274 return 0;
276 pagevec_init(&pvec, 0);
277 index = start;
278 while ((index <= end) &&
279 (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
280 PAGECACHE_TAG_WRITEBACK,
281 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1)) != 0) {
282 unsigned i;
284 for (i = 0; i < nr_pages; i++) {
285 struct page *page = pvec.pages[i];
287 /* until radix tree lookup accepts end_index */
288 if (page->index > end)
289 continue;
291 wait_on_page_writeback(page);
292 if (PageError(page))
293 ret = -EIO;
295 pagevec_release(&pvec);
296 cond_resched();
299 /* Check for outstanding write errors */
300 if (test_and_clear_bit(AS_ENOSPC, &mapping->flags))
301 ret = -ENOSPC;
302 if (test_and_clear_bit(AS_EIO, &mapping->flags))
303 ret = -EIO;
305 return ret;
309 * sync_page_range - write and wait on all pages in the passed range
310 * @inode: target inode
311 * @mapping: target address_space
312 * @pos: beginning offset in pages to write
313 * @count: number of bytes to write
315 * Write and wait upon all the pages in the passed range. This is a "data
316 * integrity" operation. It waits upon in-flight writeout before starting and
317 * waiting upon new writeout. If there was an IO error, return it.
319 * We need to re-take i_mutex during the generic_osync_inode list walk because
320 * it is otherwise livelockable.
322 int sync_page_range(struct inode *inode, struct address_space *mapping,
323 loff_t pos, loff_t count)
325 pgoff_t start = pos >> PAGE_CACHE_SHIFT;
326 pgoff_t end = (pos + count - 1) >> PAGE_CACHE_SHIFT;
327 int ret;
329 if (!mapping_cap_writeback_dirty(mapping) || !count)
330 return 0;
331 ret = filemap_fdatawrite_range(mapping, pos, pos + count - 1);
332 if (ret == 0) {
333 mutex_lock(&inode->i_mutex);
334 ret = generic_osync_inode(inode, mapping, OSYNC_METADATA);
335 mutex_unlock(&inode->i_mutex);
337 if (ret == 0)
338 ret = wait_on_page_writeback_range(mapping, start, end);
339 return ret;
341 EXPORT_SYMBOL(sync_page_range);
344 * sync_page_range_nolock - write & wait on all pages in the passed range without locking
345 * @inode: target inode
346 * @mapping: target address_space
347 * @pos: beginning offset in pages to write
348 * @count: number of bytes to write
350 * Note: Holding i_mutex across sync_page_range_nolock() is not a good idea
351 * as it forces O_SYNC writers to different parts of the same file
352 * to be serialised right until io completion.
354 int sync_page_range_nolock(struct inode *inode, struct address_space *mapping,
355 loff_t pos, loff_t count)
357 pgoff_t start = pos >> PAGE_CACHE_SHIFT;
358 pgoff_t end = (pos + count - 1) >> PAGE_CACHE_SHIFT;
359 int ret;
361 if (!mapping_cap_writeback_dirty(mapping) || !count)
362 return 0;
363 ret = filemap_fdatawrite_range(mapping, pos, pos + count - 1);
364 if (ret == 0)
365 ret = generic_osync_inode(inode, mapping, OSYNC_METADATA);
366 if (ret == 0)
367 ret = wait_on_page_writeback_range(mapping, start, end);
368 return ret;
370 EXPORT_SYMBOL(sync_page_range_nolock);
373 * filemap_fdatawait - wait for all under-writeback pages to complete
374 * @mapping: address space structure to wait for
376 * Walk the list of under-writeback pages of the given address space
377 * and wait for all of them.
379 int filemap_fdatawait(struct address_space *mapping)
381 loff_t i_size = i_size_read(mapping->host);
383 if (i_size == 0)
384 return 0;
386 return wait_on_page_writeback_range(mapping, 0,
387 (i_size - 1) >> PAGE_CACHE_SHIFT);
389 EXPORT_SYMBOL(filemap_fdatawait);
391 int filemap_write_and_wait(struct address_space *mapping)
393 int err = 0;
395 if (mapping->nrpages) {
396 err = filemap_fdatawrite(mapping);
398 * Even if the above returned error, the pages may be
399 * written partially (e.g. -ENOSPC), so we wait for it.
400 * But the -EIO is special case, it may indicate the worst
401 * thing (e.g. bug) happened, so we avoid waiting for it.
403 if (err != -EIO) {
404 int err2 = filemap_fdatawait(mapping);
405 if (!err)
406 err = err2;
409 return err;
411 EXPORT_SYMBOL(filemap_write_and_wait);
414 * filemap_write_and_wait_range - write out & wait on a file range
415 * @mapping: the address_space for the pages
416 * @lstart: offset in bytes where the range starts
417 * @lend: offset in bytes where the range ends (inclusive)
419 * Write out and wait upon file offsets lstart->lend, inclusive.
421 * Note that `lend' is inclusive (describes the last byte to be written) so
422 * that this function can be used to write to the very end-of-file (end = -1).
424 int filemap_write_and_wait_range(struct address_space *mapping,
425 loff_t lstart, loff_t lend)
427 int err = 0;
429 if (mapping->nrpages) {
430 err = __filemap_fdatawrite_range(mapping, lstart, lend,
431 WB_SYNC_ALL);
432 /* See comment of filemap_write_and_wait() */
433 if (err != -EIO) {
434 int err2 = wait_on_page_writeback_range(mapping,
435 lstart >> PAGE_CACHE_SHIFT,
436 lend >> PAGE_CACHE_SHIFT);
437 if (!err)
438 err = err2;
441 return err;
445 * add_to_page_cache - add newly allocated pagecache pages
446 * @page: page to add
447 * @mapping: the page's address_space
448 * @offset: page index
449 * @gfp_mask: page allocation mode
451 * This function is used to add newly allocated pagecache pages;
452 * the page is new, so we can just run SetPageLocked() against it.
453 * The other page state flags were set by rmqueue().
455 * This function does not add the page to the LRU. The caller must do that.
457 int add_to_page_cache(struct page *page, struct address_space *mapping,
458 pgoff_t offset, gfp_t gfp_mask)
460 int error = mem_cgroup_cache_charge(page, current->mm,
461 gfp_mask & ~__GFP_HIGHMEM);
462 if (error)
463 goto out;
465 error = radix_tree_preload(gfp_mask & ~__GFP_HIGHMEM);
466 if (error == 0) {
467 write_lock_irq(&mapping->tree_lock);
468 error = radix_tree_insert(&mapping->page_tree, offset, page);
469 if (!error) {
470 page_cache_get(page);
471 SetPageLocked(page);
472 page->mapping = mapping;
473 page->index = offset;
474 mapping->nrpages++;
475 __inc_zone_page_state(page, NR_FILE_PAGES);
476 } else
477 mem_cgroup_uncharge_page(page);
479 write_unlock_irq(&mapping->tree_lock);
480 radix_tree_preload_end();
481 } else
482 mem_cgroup_uncharge_page(page);
483 out:
484 return error;
486 EXPORT_SYMBOL(add_to_page_cache);
488 int add_to_page_cache_lru(struct page *page, struct address_space *mapping,
489 pgoff_t offset, gfp_t gfp_mask)
491 int ret = add_to_page_cache(page, mapping, offset, gfp_mask);
492 if (ret == 0)
493 lru_cache_add(page);
494 return ret;
497 #ifdef CONFIG_NUMA
498 struct page *__page_cache_alloc(gfp_t gfp)
500 if (cpuset_do_page_mem_spread()) {
501 int n = cpuset_mem_spread_node();
502 return alloc_pages_node(n, gfp, 0);
504 return alloc_pages(gfp, 0);
506 EXPORT_SYMBOL(__page_cache_alloc);
507 #endif
509 static int __sleep_on_page_lock(void *word)
511 io_schedule();
512 return 0;
516 * In order to wait for pages to become available there must be
517 * waitqueues associated with pages. By using a hash table of
518 * waitqueues where the bucket discipline is to maintain all
519 * waiters on the same queue and wake all when any of the pages
520 * become available, and for the woken contexts to check to be
521 * sure the appropriate page became available, this saves space
522 * at a cost of "thundering herd" phenomena during rare hash
523 * collisions.
525 static wait_queue_head_t *page_waitqueue(struct page *page)
527 const struct zone *zone = page_zone(page);
529 return &zone->wait_table[hash_ptr(page, zone->wait_table_bits)];
532 static inline void wake_up_page(struct page *page, int bit)
534 __wake_up_bit(page_waitqueue(page), &page->flags, bit);
537 void wait_on_page_bit(struct page *page, int bit_nr)
539 DEFINE_WAIT_BIT(wait, &page->flags, bit_nr);
541 if (test_bit(bit_nr, &page->flags))
542 __wait_on_bit(page_waitqueue(page), &wait, sync_page,
543 TASK_UNINTERRUPTIBLE);
545 EXPORT_SYMBOL(wait_on_page_bit);
548 * unlock_page - unlock a locked page
549 * @page: the page
551 * Unlocks the page and wakes up sleepers in ___wait_on_page_locked().
552 * Also wakes sleepers in wait_on_page_writeback() because the wakeup
553 * mechananism between PageLocked pages and PageWriteback pages is shared.
554 * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep.
556 * The first mb is necessary to safely close the critical section opened by the
557 * TestSetPageLocked(), the second mb is necessary to enforce ordering between
558 * the clear_bit and the read of the waitqueue (to avoid SMP races with a
559 * parallel wait_on_page_locked()).
561 void unlock_page(struct page *page)
563 smp_mb__before_clear_bit();
564 if (!TestClearPageLocked(page))
565 BUG();
566 smp_mb__after_clear_bit();
567 wake_up_page(page, PG_locked);
569 EXPORT_SYMBOL(unlock_page);
572 * end_page_writeback - end writeback against a page
573 * @page: the page
575 void end_page_writeback(struct page *page)
577 if (TestClearPageReclaim(page))
578 rotate_reclaimable_page(page);
580 if (!test_clear_page_writeback(page))
581 BUG();
583 smp_mb__after_clear_bit();
584 wake_up_page(page, PG_writeback);
586 EXPORT_SYMBOL(end_page_writeback);
589 * __lock_page - get a lock on the page, assuming we need to sleep to get it
590 * @page: the page to lock
592 * Ugly. Running sync_page() in state TASK_UNINTERRUPTIBLE is scary. If some
593 * random driver's requestfn sets TASK_RUNNING, we could busywait. However
594 * chances are that on the second loop, the block layer's plug list is empty,
595 * so sync_page() will then return in state TASK_UNINTERRUPTIBLE.
597 void __lock_page(struct page *page)
599 DEFINE_WAIT_BIT(wait, &page->flags, PG_locked);
601 __wait_on_bit_lock(page_waitqueue(page), &wait, sync_page,
602 TASK_UNINTERRUPTIBLE);
604 EXPORT_SYMBOL(__lock_page);
606 int __lock_page_killable(struct page *page)
608 DEFINE_WAIT_BIT(wait, &page->flags, PG_locked);
610 return __wait_on_bit_lock(page_waitqueue(page), &wait,
611 sync_page_killable, TASK_KILLABLE);
615 * __lock_page_nosync - get a lock on the page, without calling sync_page()
616 * @page: the page to lock
618 * Variant of lock_page that does not require the caller to hold a reference
619 * on the page's mapping.
621 void __lock_page_nosync(struct page *page)
623 DEFINE_WAIT_BIT(wait, &page->flags, PG_locked);
624 __wait_on_bit_lock(page_waitqueue(page), &wait, __sleep_on_page_lock,
625 TASK_UNINTERRUPTIBLE);
629 * find_get_page - find and get a page reference
630 * @mapping: the address_space to search
631 * @offset: the page index
633 * Is there a pagecache struct page at the given (mapping, offset) tuple?
634 * If yes, increment its refcount and return it; if no, return NULL.
636 struct page * find_get_page(struct address_space *mapping, pgoff_t offset)
638 struct page *page;
640 read_lock_irq(&mapping->tree_lock);
641 page = radix_tree_lookup(&mapping->page_tree, offset);
642 if (page)
643 page_cache_get(page);
644 read_unlock_irq(&mapping->tree_lock);
645 return page;
647 EXPORT_SYMBOL(find_get_page);
650 * find_lock_page - locate, pin and lock a pagecache page
651 * @mapping: the address_space to search
652 * @offset: the page index
654 * Locates the desired pagecache page, locks it, increments its reference
655 * count and returns its address.
657 * Returns zero if the page was not present. find_lock_page() may sleep.
659 struct page *find_lock_page(struct address_space *mapping,
660 pgoff_t offset)
662 struct page *page;
664 repeat:
665 read_lock_irq(&mapping->tree_lock);
666 page = radix_tree_lookup(&mapping->page_tree, offset);
667 if (page) {
668 page_cache_get(page);
669 if (TestSetPageLocked(page)) {
670 read_unlock_irq(&mapping->tree_lock);
671 __lock_page(page);
673 /* Has the page been truncated while we slept? */
674 if (unlikely(page->mapping != mapping)) {
675 unlock_page(page);
676 page_cache_release(page);
677 goto repeat;
679 VM_BUG_ON(page->index != offset);
680 goto out;
683 read_unlock_irq(&mapping->tree_lock);
684 out:
685 return page;
687 EXPORT_SYMBOL(find_lock_page);
690 * find_or_create_page - locate or add a pagecache page
691 * @mapping: the page's address_space
692 * @index: the page's index into the mapping
693 * @gfp_mask: page allocation mode
695 * Locates a page in the pagecache. If the page is not present, a new page
696 * is allocated using @gfp_mask and is added to the pagecache and to the VM's
697 * LRU list. The returned page is locked and has its reference count
698 * incremented.
700 * find_or_create_page() may sleep, even if @gfp_flags specifies an atomic
701 * allocation!
703 * find_or_create_page() returns the desired page's address, or zero on
704 * memory exhaustion.
706 struct page *find_or_create_page(struct address_space *mapping,
707 pgoff_t index, gfp_t gfp_mask)
709 struct page *page;
710 int err;
711 repeat:
712 page = find_lock_page(mapping, index);
713 if (!page) {
714 page = __page_cache_alloc(gfp_mask);
715 if (!page)
716 return NULL;
717 err = add_to_page_cache_lru(page, mapping, index, gfp_mask);
718 if (unlikely(err)) {
719 page_cache_release(page);
720 page = NULL;
721 if (err == -EEXIST)
722 goto repeat;
725 return page;
727 EXPORT_SYMBOL(find_or_create_page);
730 * find_get_pages - gang pagecache lookup
731 * @mapping: The address_space to search
732 * @start: The starting page index
733 * @nr_pages: The maximum number of pages
734 * @pages: Where the resulting pages are placed
736 * find_get_pages() will search for and return a group of up to
737 * @nr_pages pages in the mapping. The pages are placed at @pages.
738 * find_get_pages() takes a reference against the returned pages.
740 * The search returns a group of mapping-contiguous pages with ascending
741 * indexes. There may be holes in the indices due to not-present pages.
743 * find_get_pages() returns the number of pages which were found.
745 unsigned find_get_pages(struct address_space *mapping, pgoff_t start,
746 unsigned int nr_pages, struct page **pages)
748 unsigned int i;
749 unsigned int ret;
751 read_lock_irq(&mapping->tree_lock);
752 ret = radix_tree_gang_lookup(&mapping->page_tree,
753 (void **)pages, start, nr_pages);
754 for (i = 0; i < ret; i++)
755 page_cache_get(pages[i]);
756 read_unlock_irq(&mapping->tree_lock);
757 return ret;
761 * find_get_pages_contig - gang contiguous pagecache lookup
762 * @mapping: The address_space to search
763 * @index: The starting page index
764 * @nr_pages: The maximum number of pages
765 * @pages: Where the resulting pages are placed
767 * find_get_pages_contig() works exactly like find_get_pages(), except
768 * that the returned number of pages are guaranteed to be contiguous.
770 * find_get_pages_contig() returns the number of pages which were found.
772 unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t index,
773 unsigned int nr_pages, struct page **pages)
775 unsigned int i;
776 unsigned int ret;
778 read_lock_irq(&mapping->tree_lock);
779 ret = radix_tree_gang_lookup(&mapping->page_tree,
780 (void **)pages, index, nr_pages);
781 for (i = 0; i < ret; i++) {
782 if (pages[i]->mapping == NULL || pages[i]->index != index)
783 break;
785 page_cache_get(pages[i]);
786 index++;
788 read_unlock_irq(&mapping->tree_lock);
789 return i;
791 EXPORT_SYMBOL(find_get_pages_contig);
794 * find_get_pages_tag - find and return pages that match @tag
795 * @mapping: the address_space to search
796 * @index: the starting page index
797 * @tag: the tag index
798 * @nr_pages: the maximum number of pages
799 * @pages: where the resulting pages are placed
801 * Like find_get_pages, except we only return pages which are tagged with
802 * @tag. We update @index to index the next page for the traversal.
804 unsigned find_get_pages_tag(struct address_space *mapping, pgoff_t *index,
805 int tag, unsigned int nr_pages, struct page **pages)
807 unsigned int i;
808 unsigned int ret;
810 read_lock_irq(&mapping->tree_lock);
811 ret = radix_tree_gang_lookup_tag(&mapping->page_tree,
812 (void **)pages, *index, nr_pages, tag);
813 for (i = 0; i < ret; i++)
814 page_cache_get(pages[i]);
815 if (ret)
816 *index = pages[ret - 1]->index + 1;
817 read_unlock_irq(&mapping->tree_lock);
818 return ret;
820 EXPORT_SYMBOL(find_get_pages_tag);
823 * grab_cache_page_nowait - returns locked page at given index in given cache
824 * @mapping: target address_space
825 * @index: the page index
827 * Same as grab_cache_page(), but do not wait if the page is unavailable.
828 * This is intended for speculative data generators, where the data can
829 * be regenerated if the page couldn't be grabbed. This routine should
830 * be safe to call while holding the lock for another page.
832 * Clear __GFP_FS when allocating the page to avoid recursion into the fs
833 * and deadlock against the caller's locked page.
835 struct page *
836 grab_cache_page_nowait(struct address_space *mapping, pgoff_t index)
838 struct page *page = find_get_page(mapping, index);
840 if (page) {
841 if (!TestSetPageLocked(page))
842 return page;
843 page_cache_release(page);
844 return NULL;
846 page = __page_cache_alloc(mapping_gfp_mask(mapping) & ~__GFP_FS);
847 if (page && add_to_page_cache_lru(page, mapping, index, GFP_KERNEL)) {
848 page_cache_release(page);
849 page = NULL;
851 return page;
853 EXPORT_SYMBOL(grab_cache_page_nowait);
856 * CD/DVDs are error prone. When a medium error occurs, the driver may fail
857 * a _large_ part of the i/o request. Imagine the worst scenario:
859 * ---R__________________________________________B__________
860 * ^ reading here ^ bad block(assume 4k)
862 * read(R) => miss => readahead(R...B) => media error => frustrating retries
863 * => failing the whole request => read(R) => read(R+1) =>
864 * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) =>
865 * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) =>
866 * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ......
868 * It is going insane. Fix it by quickly scaling down the readahead size.
870 static void shrink_readahead_size_eio(struct file *filp,
871 struct file_ra_state *ra)
873 if (!ra->ra_pages)
874 return;
876 ra->ra_pages /= 4;
880 * do_generic_file_read - generic file read routine
881 * @filp: the file to read
882 * @ppos: current file position
883 * @desc: read_descriptor
884 * @actor: read method
886 * This is a generic file read routine, and uses the
887 * mapping->a_ops->readpage() function for the actual low-level stuff.
889 * This is really ugly. But the goto's actually try to clarify some
890 * of the logic when it comes to error handling etc.
892 static void do_generic_file_read(struct file *filp, loff_t *ppos,
893 read_descriptor_t *desc, read_actor_t actor)
895 struct address_space *mapping = filp->f_mapping;
896 struct inode *inode = mapping->host;
897 struct file_ra_state *ra = &filp->f_ra;
898 pgoff_t index;
899 pgoff_t last_index;
900 pgoff_t prev_index;
901 unsigned long offset; /* offset into pagecache page */
902 unsigned int prev_offset;
903 int error;
905 index = *ppos >> PAGE_CACHE_SHIFT;
906 prev_index = ra->prev_pos >> PAGE_CACHE_SHIFT;
907 prev_offset = ra->prev_pos & (PAGE_CACHE_SIZE-1);
908 last_index = (*ppos + desc->count + PAGE_CACHE_SIZE-1) >> PAGE_CACHE_SHIFT;
909 offset = *ppos & ~PAGE_CACHE_MASK;
911 for (;;) {
912 struct page *page;
913 pgoff_t end_index;
914 loff_t isize;
915 unsigned long nr, ret;
917 cond_resched();
918 find_page:
919 page = find_get_page(mapping, index);
920 if (!page) {
921 page_cache_sync_readahead(mapping,
922 ra, filp,
923 index, last_index - index);
924 page = find_get_page(mapping, index);
925 if (unlikely(page == NULL))
926 goto no_cached_page;
928 if (PageReadahead(page)) {
929 page_cache_async_readahead(mapping,
930 ra, filp, page,
931 index, last_index - index);
933 if (!PageUptodate(page))
934 goto page_not_up_to_date;
935 page_ok:
937 * i_size must be checked after we know the page is Uptodate.
939 * Checking i_size after the check allows us to calculate
940 * the correct value for "nr", which means the zero-filled
941 * part of the page is not copied back to userspace (unless
942 * another truncate extends the file - this is desired though).
945 isize = i_size_read(inode);
946 end_index = (isize - 1) >> PAGE_CACHE_SHIFT;
947 if (unlikely(!isize || index > end_index)) {
948 page_cache_release(page);
949 goto out;
952 /* nr is the maximum number of bytes to copy from this page */
953 nr = PAGE_CACHE_SIZE;
954 if (index == end_index) {
955 nr = ((isize - 1) & ~PAGE_CACHE_MASK) + 1;
956 if (nr <= offset) {
957 page_cache_release(page);
958 goto out;
961 nr = nr - offset;
963 /* If users can be writing to this page using arbitrary
964 * virtual addresses, take care about potential aliasing
965 * before reading the page on the kernel side.
967 if (mapping_writably_mapped(mapping))
968 flush_dcache_page(page);
971 * When a sequential read accesses a page several times,
972 * only mark it as accessed the first time.
974 if (prev_index != index || offset != prev_offset)
975 mark_page_accessed(page);
976 prev_index = index;
979 * Ok, we have the page, and it's up-to-date, so
980 * now we can copy it to user space...
982 * The actor routine returns how many bytes were actually used..
983 * NOTE! This may not be the same as how much of a user buffer
984 * we filled up (we may be padding etc), so we can only update
985 * "pos" here (the actor routine has to update the user buffer
986 * pointers and the remaining count).
988 ret = actor(desc, page, offset, nr);
989 offset += ret;
990 index += offset >> PAGE_CACHE_SHIFT;
991 offset &= ~PAGE_CACHE_MASK;
992 prev_offset = offset;
994 page_cache_release(page);
995 if (ret == nr && desc->count)
996 continue;
997 goto out;
999 page_not_up_to_date:
1000 /* Get exclusive access to the page ... */
1001 if (lock_page_killable(page))
1002 goto readpage_eio;
1004 /* Did it get truncated before we got the lock? */
1005 if (!page->mapping) {
1006 unlock_page(page);
1007 page_cache_release(page);
1008 continue;
1011 /* Did somebody else fill it already? */
1012 if (PageUptodate(page)) {
1013 unlock_page(page);
1014 goto page_ok;
1017 readpage:
1018 /* Start the actual read. The read will unlock the page. */
1019 error = mapping->a_ops->readpage(filp, page);
1021 if (unlikely(error)) {
1022 if (error == AOP_TRUNCATED_PAGE) {
1023 page_cache_release(page);
1024 goto find_page;
1026 goto readpage_error;
1029 if (!PageUptodate(page)) {
1030 if (lock_page_killable(page))
1031 goto readpage_eio;
1032 if (!PageUptodate(page)) {
1033 if (page->mapping == NULL) {
1035 * invalidate_inode_pages got it
1037 unlock_page(page);
1038 page_cache_release(page);
1039 goto find_page;
1041 unlock_page(page);
1042 shrink_readahead_size_eio(filp, ra);
1043 goto readpage_eio;
1045 unlock_page(page);
1048 goto page_ok;
1050 readpage_eio:
1051 error = -EIO;
1052 readpage_error:
1053 /* UHHUH! A synchronous read error occurred. Report it */
1054 desc->error = error;
1055 page_cache_release(page);
1056 goto out;
1058 no_cached_page:
1060 * Ok, it wasn't cached, so we need to create a new
1061 * page..
1063 page = page_cache_alloc_cold(mapping);
1064 if (!page) {
1065 desc->error = -ENOMEM;
1066 goto out;
1068 error = add_to_page_cache_lru(page, mapping,
1069 index, GFP_KERNEL);
1070 if (error) {
1071 page_cache_release(page);
1072 if (error == -EEXIST)
1073 goto find_page;
1074 desc->error = error;
1075 goto out;
1077 goto readpage;
1080 out:
1081 ra->prev_pos = prev_index;
1082 ra->prev_pos <<= PAGE_CACHE_SHIFT;
1083 ra->prev_pos |= prev_offset;
1085 *ppos = ((loff_t)index << PAGE_CACHE_SHIFT) + offset;
1086 if (filp)
1087 file_accessed(filp);
1090 int file_read_actor(read_descriptor_t *desc, struct page *page,
1091 unsigned long offset, unsigned long size)
1093 char *kaddr;
1094 unsigned long left, count = desc->count;
1096 if (size > count)
1097 size = count;
1100 * Faults on the destination of a read are common, so do it before
1101 * taking the kmap.
1103 if (!fault_in_pages_writeable(desc->arg.buf, size)) {
1104 kaddr = kmap_atomic(page, KM_USER0);
1105 left = __copy_to_user_inatomic(desc->arg.buf,
1106 kaddr + offset, size);
1107 kunmap_atomic(kaddr, KM_USER0);
1108 if (left == 0)
1109 goto success;
1112 /* Do it the slow way */
1113 kaddr = kmap(page);
1114 left = __copy_to_user(desc->arg.buf, kaddr + offset, size);
1115 kunmap(page);
1117 if (left) {
1118 size -= left;
1119 desc->error = -EFAULT;
1121 success:
1122 desc->count = count - size;
1123 desc->written += size;
1124 desc->arg.buf += size;
1125 return size;
1129 * Performs necessary checks before doing a write
1130 * @iov: io vector request
1131 * @nr_segs: number of segments in the iovec
1132 * @count: number of bytes to write
1133 * @access_flags: type of access: %VERIFY_READ or %VERIFY_WRITE
1135 * Adjust number of segments and amount of bytes to write (nr_segs should be
1136 * properly initialized first). Returns appropriate error code that caller
1137 * should return or zero in case that write should be allowed.
1139 int generic_segment_checks(const struct iovec *iov,
1140 unsigned long *nr_segs, size_t *count, int access_flags)
1142 unsigned long seg;
1143 size_t cnt = 0;
1144 for (seg = 0; seg < *nr_segs; seg++) {
1145 const struct iovec *iv = &iov[seg];
1148 * If any segment has a negative length, or the cumulative
1149 * length ever wraps negative then return -EINVAL.
1151 cnt += iv->iov_len;
1152 if (unlikely((ssize_t)(cnt|iv->iov_len) < 0))
1153 return -EINVAL;
1154 if (access_ok(access_flags, iv->iov_base, iv->iov_len))
1155 continue;
1156 if (seg == 0)
1157 return -EFAULT;
1158 *nr_segs = seg;
1159 cnt -= iv->iov_len; /* This segment is no good */
1160 break;
1162 *count = cnt;
1163 return 0;
1165 EXPORT_SYMBOL(generic_segment_checks);
1168 * generic_file_aio_read - generic filesystem read routine
1169 * @iocb: kernel I/O control block
1170 * @iov: io vector request
1171 * @nr_segs: number of segments in the iovec
1172 * @pos: current file position
1174 * This is the "read()" routine for all filesystems
1175 * that can use the page cache directly.
1177 ssize_t
1178 generic_file_aio_read(struct kiocb *iocb, const struct iovec *iov,
1179 unsigned long nr_segs, loff_t pos)
1181 struct file *filp = iocb->ki_filp;
1182 ssize_t retval;
1183 unsigned long seg;
1184 size_t count;
1185 loff_t *ppos = &iocb->ki_pos;
1187 count = 0;
1188 retval = generic_segment_checks(iov, &nr_segs, &count, VERIFY_WRITE);
1189 if (retval)
1190 return retval;
1192 /* coalesce the iovecs and go direct-to-BIO for O_DIRECT */
1193 if (filp->f_flags & O_DIRECT) {
1194 loff_t size;
1195 struct address_space *mapping;
1196 struct inode *inode;
1198 mapping = filp->f_mapping;
1199 inode = mapping->host;
1200 retval = 0;
1201 if (!count)
1202 goto out; /* skip atime */
1203 size = i_size_read(inode);
1204 if (pos < size) {
1205 retval = filemap_write_and_wait(mapping);
1206 if (!retval) {
1207 retval = mapping->a_ops->direct_IO(READ, iocb,
1208 iov, pos, nr_segs);
1210 if (retval > 0)
1211 *ppos = pos + retval;
1213 if (likely(retval != 0)) {
1214 file_accessed(filp);
1215 goto out;
1219 retval = 0;
1220 if (count) {
1221 for (seg = 0; seg < nr_segs; seg++) {
1222 read_descriptor_t desc;
1224 desc.written = 0;
1225 desc.arg.buf = iov[seg].iov_base;
1226 desc.count = iov[seg].iov_len;
1227 if (desc.count == 0)
1228 continue;
1229 desc.error = 0;
1230 do_generic_file_read(filp,ppos,&desc,file_read_actor);
1231 retval += desc.written;
1232 if (desc.error) {
1233 retval = retval ?: desc.error;
1234 break;
1236 if (desc.count > 0)
1237 break;
1240 out:
1241 return retval;
1243 EXPORT_SYMBOL(generic_file_aio_read);
1245 static ssize_t
1246 do_readahead(struct address_space *mapping, struct file *filp,
1247 pgoff_t index, unsigned long nr)
1249 if (!mapping || !mapping->a_ops || !mapping->a_ops->readpage)
1250 return -EINVAL;
1252 force_page_cache_readahead(mapping, filp, index,
1253 max_sane_readahead(nr));
1254 return 0;
1257 asmlinkage ssize_t sys_readahead(int fd, loff_t offset, size_t count)
1259 ssize_t ret;
1260 struct file *file;
1262 ret = -EBADF;
1263 file = fget(fd);
1264 if (file) {
1265 if (file->f_mode & FMODE_READ) {
1266 struct address_space *mapping = file->f_mapping;
1267 pgoff_t start = offset >> PAGE_CACHE_SHIFT;
1268 pgoff_t end = (offset + count - 1) >> PAGE_CACHE_SHIFT;
1269 unsigned long len = end - start + 1;
1270 ret = do_readahead(mapping, file, start, len);
1272 fput(file);
1274 return ret;
1277 #ifdef CONFIG_MMU
1279 * page_cache_read - adds requested page to the page cache if not already there
1280 * @file: file to read
1281 * @offset: page index
1283 * This adds the requested page to the page cache if it isn't already there,
1284 * and schedules an I/O to read in its contents from disk.
1286 static int page_cache_read(struct file *file, pgoff_t offset)
1288 struct address_space *mapping = file->f_mapping;
1289 struct page *page;
1290 int ret;
1292 do {
1293 page = page_cache_alloc_cold(mapping);
1294 if (!page)
1295 return -ENOMEM;
1297 ret = add_to_page_cache_lru(page, mapping, offset, GFP_KERNEL);
1298 if (ret == 0)
1299 ret = mapping->a_ops->readpage(file, page);
1300 else if (ret == -EEXIST)
1301 ret = 0; /* losing race to add is OK */
1303 page_cache_release(page);
1305 } while (ret == AOP_TRUNCATED_PAGE);
1307 return ret;
1310 #define MMAP_LOTSAMISS (100)
1313 * filemap_fault - read in file data for page fault handling
1314 * @vma: vma in which the fault was taken
1315 * @vmf: struct vm_fault containing details of the fault
1317 * filemap_fault() is invoked via the vma operations vector for a
1318 * mapped memory region to read in file data during a page fault.
1320 * The goto's are kind of ugly, but this streamlines the normal case of having
1321 * it in the page cache, and handles the special cases reasonably without
1322 * having a lot of duplicated code.
1324 int filemap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1326 int error;
1327 struct file *file = vma->vm_file;
1328 struct address_space *mapping = file->f_mapping;
1329 struct file_ra_state *ra = &file->f_ra;
1330 struct inode *inode = mapping->host;
1331 struct page *page;
1332 pgoff_t size;
1333 int did_readaround = 0;
1334 int ret = 0;
1336 size = (i_size_read(inode) + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1337 if (vmf->pgoff >= size)
1338 return VM_FAULT_SIGBUS;
1340 /* If we don't want any read-ahead, don't bother */
1341 if (VM_RandomReadHint(vma))
1342 goto no_cached_page;
1345 * Do we have something in the page cache already?
1347 retry_find:
1348 page = find_lock_page(mapping, vmf->pgoff);
1350 * For sequential accesses, we use the generic readahead logic.
1352 if (VM_SequentialReadHint(vma)) {
1353 if (!page) {
1354 page_cache_sync_readahead(mapping, ra, file,
1355 vmf->pgoff, 1);
1356 page = find_lock_page(mapping, vmf->pgoff);
1357 if (!page)
1358 goto no_cached_page;
1360 if (PageReadahead(page)) {
1361 page_cache_async_readahead(mapping, ra, file, page,
1362 vmf->pgoff, 1);
1366 if (!page) {
1367 unsigned long ra_pages;
1369 ra->mmap_miss++;
1372 * Do we miss much more than hit in this file? If so,
1373 * stop bothering with read-ahead. It will only hurt.
1375 if (ra->mmap_miss > MMAP_LOTSAMISS)
1376 goto no_cached_page;
1379 * To keep the pgmajfault counter straight, we need to
1380 * check did_readaround, as this is an inner loop.
1382 if (!did_readaround) {
1383 ret = VM_FAULT_MAJOR;
1384 count_vm_event(PGMAJFAULT);
1386 did_readaround = 1;
1387 ra_pages = max_sane_readahead(file->f_ra.ra_pages);
1388 if (ra_pages) {
1389 pgoff_t start = 0;
1391 if (vmf->pgoff > ra_pages / 2)
1392 start = vmf->pgoff - ra_pages / 2;
1393 do_page_cache_readahead(mapping, file, start, ra_pages);
1395 page = find_lock_page(mapping, vmf->pgoff);
1396 if (!page)
1397 goto no_cached_page;
1400 if (!did_readaround)
1401 ra->mmap_miss--;
1404 * We have a locked page in the page cache, now we need to check
1405 * that it's up-to-date. If not, it is going to be due to an error.
1407 if (unlikely(!PageUptodate(page)))
1408 goto page_not_uptodate;
1410 /* Must recheck i_size under page lock */
1411 size = (i_size_read(inode) + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1412 if (unlikely(vmf->pgoff >= size)) {
1413 unlock_page(page);
1414 page_cache_release(page);
1415 return VM_FAULT_SIGBUS;
1419 * Found the page and have a reference on it.
1421 mark_page_accessed(page);
1422 ra->prev_pos = (loff_t)page->index << PAGE_CACHE_SHIFT;
1423 vmf->page = page;
1424 return ret | VM_FAULT_LOCKED;
1426 no_cached_page:
1428 * We're only likely to ever get here if MADV_RANDOM is in
1429 * effect.
1431 error = page_cache_read(file, vmf->pgoff);
1434 * The page we want has now been added to the page cache.
1435 * In the unlikely event that someone removed it in the
1436 * meantime, we'll just come back here and read it again.
1438 if (error >= 0)
1439 goto retry_find;
1442 * An error return from page_cache_read can result if the
1443 * system is low on memory, or a problem occurs while trying
1444 * to schedule I/O.
1446 if (error == -ENOMEM)
1447 return VM_FAULT_OOM;
1448 return VM_FAULT_SIGBUS;
1450 page_not_uptodate:
1451 /* IO error path */
1452 if (!did_readaround) {
1453 ret = VM_FAULT_MAJOR;
1454 count_vm_event(PGMAJFAULT);
1458 * Umm, take care of errors if the page isn't up-to-date.
1459 * Try to re-read it _once_. We do this synchronously,
1460 * because there really aren't any performance issues here
1461 * and we need to check for errors.
1463 ClearPageError(page);
1464 error = mapping->a_ops->readpage(file, page);
1465 if (!error) {
1466 wait_on_page_locked(page);
1467 if (!PageUptodate(page))
1468 error = -EIO;
1470 page_cache_release(page);
1472 if (!error || error == AOP_TRUNCATED_PAGE)
1473 goto retry_find;
1475 /* Things didn't work out. Return zero to tell the mm layer so. */
1476 shrink_readahead_size_eio(file, ra);
1477 return VM_FAULT_SIGBUS;
1479 EXPORT_SYMBOL(filemap_fault);
1481 struct vm_operations_struct generic_file_vm_ops = {
1482 .fault = filemap_fault,
1485 /* This is used for a general mmap of a disk file */
1487 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
1489 struct address_space *mapping = file->f_mapping;
1491 if (!mapping->a_ops->readpage)
1492 return -ENOEXEC;
1493 file_accessed(file);
1494 vma->vm_ops = &generic_file_vm_ops;
1495 vma->vm_flags |= VM_CAN_NONLINEAR;
1496 return 0;
1500 * This is for filesystems which do not implement ->writepage.
1502 int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
1504 if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE))
1505 return -EINVAL;
1506 return generic_file_mmap(file, vma);
1508 #else
1509 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
1511 return -ENOSYS;
1513 int generic_file_readonly_mmap(struct file * file, struct vm_area_struct * vma)
1515 return -ENOSYS;
1517 #endif /* CONFIG_MMU */
1519 EXPORT_SYMBOL(generic_file_mmap);
1520 EXPORT_SYMBOL(generic_file_readonly_mmap);
1522 static struct page *__read_cache_page(struct address_space *mapping,
1523 pgoff_t index,
1524 int (*filler)(void *,struct page*),
1525 void *data)
1527 struct page *page;
1528 int err;
1529 repeat:
1530 page = find_get_page(mapping, index);
1531 if (!page) {
1532 page = page_cache_alloc_cold(mapping);
1533 if (!page)
1534 return ERR_PTR(-ENOMEM);
1535 err = add_to_page_cache_lru(page, mapping, index, GFP_KERNEL);
1536 if (unlikely(err)) {
1537 page_cache_release(page);
1538 if (err == -EEXIST)
1539 goto repeat;
1540 /* Presumably ENOMEM for radix tree node */
1541 return ERR_PTR(err);
1543 err = filler(data, page);
1544 if (err < 0) {
1545 page_cache_release(page);
1546 page = ERR_PTR(err);
1549 return page;
1553 * read_cache_page_async - read into page cache, fill it if needed
1554 * @mapping: the page's address_space
1555 * @index: the page index
1556 * @filler: function to perform the read
1557 * @data: destination for read data
1559 * Same as read_cache_page, but don't wait for page to become unlocked
1560 * after submitting it to the filler.
1562 * Read into the page cache. If a page already exists, and PageUptodate() is
1563 * not set, try to fill the page but don't wait for it to become unlocked.
1565 * If the page does not get brought uptodate, return -EIO.
1567 struct page *read_cache_page_async(struct address_space *mapping,
1568 pgoff_t index,
1569 int (*filler)(void *,struct page*),
1570 void *data)
1572 struct page *page;
1573 int err;
1575 retry:
1576 page = __read_cache_page(mapping, index, filler, data);
1577 if (IS_ERR(page))
1578 return page;
1579 if (PageUptodate(page))
1580 goto out;
1582 lock_page(page);
1583 if (!page->mapping) {
1584 unlock_page(page);
1585 page_cache_release(page);
1586 goto retry;
1588 if (PageUptodate(page)) {
1589 unlock_page(page);
1590 goto out;
1592 err = filler(data, page);
1593 if (err < 0) {
1594 page_cache_release(page);
1595 return ERR_PTR(err);
1597 out:
1598 mark_page_accessed(page);
1599 return page;
1601 EXPORT_SYMBOL(read_cache_page_async);
1604 * read_cache_page - read into page cache, fill it if needed
1605 * @mapping: the page's address_space
1606 * @index: the page index
1607 * @filler: function to perform the read
1608 * @data: destination for read data
1610 * Read into the page cache. If a page already exists, and PageUptodate() is
1611 * not set, try to fill the page then wait for it to become unlocked.
1613 * If the page does not get brought uptodate, return -EIO.
1615 struct page *read_cache_page(struct address_space *mapping,
1616 pgoff_t index,
1617 int (*filler)(void *,struct page*),
1618 void *data)
1620 struct page *page;
1622 page = read_cache_page_async(mapping, index, filler, data);
1623 if (IS_ERR(page))
1624 goto out;
1625 wait_on_page_locked(page);
1626 if (!PageUptodate(page)) {
1627 page_cache_release(page);
1628 page = ERR_PTR(-EIO);
1630 out:
1631 return page;
1633 EXPORT_SYMBOL(read_cache_page);
1636 * The logic we want is
1638 * if suid or (sgid and xgrp)
1639 * remove privs
1641 int should_remove_suid(struct dentry *dentry)
1643 mode_t mode = dentry->d_inode->i_mode;
1644 int kill = 0;
1646 /* suid always must be killed */
1647 if (unlikely(mode & S_ISUID))
1648 kill = ATTR_KILL_SUID;
1651 * sgid without any exec bits is just a mandatory locking mark; leave
1652 * it alone. If some exec bits are set, it's a real sgid; kill it.
1654 if (unlikely((mode & S_ISGID) && (mode & S_IXGRP)))
1655 kill |= ATTR_KILL_SGID;
1657 if (unlikely(kill && !capable(CAP_FSETID)))
1658 return kill;
1660 return 0;
1662 EXPORT_SYMBOL(should_remove_suid);
1664 static int __remove_suid(struct dentry *dentry, int kill)
1666 struct iattr newattrs;
1668 newattrs.ia_valid = ATTR_FORCE | kill;
1669 return notify_change(dentry, &newattrs);
1672 int remove_suid(struct dentry *dentry)
1674 int killsuid = should_remove_suid(dentry);
1675 int killpriv = security_inode_need_killpriv(dentry);
1676 int error = 0;
1678 if (killpriv < 0)
1679 return killpriv;
1680 if (killpriv)
1681 error = security_inode_killpriv(dentry);
1682 if (!error && killsuid)
1683 error = __remove_suid(dentry, killsuid);
1685 return error;
1687 EXPORT_SYMBOL(remove_suid);
1689 static size_t __iovec_copy_from_user_inatomic(char *vaddr,
1690 const struct iovec *iov, size_t base, size_t bytes)
1692 size_t copied = 0, left = 0;
1694 while (bytes) {
1695 char __user *buf = iov->iov_base + base;
1696 int copy = min(bytes, iov->iov_len - base);
1698 base = 0;
1699 left = __copy_from_user_inatomic_nocache(vaddr, buf, copy);
1700 copied += copy;
1701 bytes -= copy;
1702 vaddr += copy;
1703 iov++;
1705 if (unlikely(left))
1706 break;
1708 return copied - left;
1712 * Copy as much as we can into the page and return the number of bytes which
1713 * were sucessfully copied. If a fault is encountered then return the number of
1714 * bytes which were copied.
1716 size_t iov_iter_copy_from_user_atomic(struct page *page,
1717 struct iov_iter *i, unsigned long offset, size_t bytes)
1719 char *kaddr;
1720 size_t copied;
1722 BUG_ON(!in_atomic());
1723 kaddr = kmap_atomic(page, KM_USER0);
1724 if (likely(i->nr_segs == 1)) {
1725 int left;
1726 char __user *buf = i->iov->iov_base + i->iov_offset;
1727 left = __copy_from_user_inatomic_nocache(kaddr + offset,
1728 buf, bytes);
1729 copied = bytes - left;
1730 } else {
1731 copied = __iovec_copy_from_user_inatomic(kaddr + offset,
1732 i->iov, i->iov_offset, bytes);
1734 kunmap_atomic(kaddr, KM_USER0);
1736 return copied;
1738 EXPORT_SYMBOL(iov_iter_copy_from_user_atomic);
1741 * This has the same sideeffects and return value as
1742 * iov_iter_copy_from_user_atomic().
1743 * The difference is that it attempts to resolve faults.
1744 * Page must not be locked.
1746 size_t iov_iter_copy_from_user(struct page *page,
1747 struct iov_iter *i, unsigned long offset, size_t bytes)
1749 char *kaddr;
1750 size_t copied;
1752 kaddr = kmap(page);
1753 if (likely(i->nr_segs == 1)) {
1754 int left;
1755 char __user *buf = i->iov->iov_base + i->iov_offset;
1756 left = __copy_from_user_nocache(kaddr + offset, buf, bytes);
1757 copied = bytes - left;
1758 } else {
1759 copied = __iovec_copy_from_user_inatomic(kaddr + offset,
1760 i->iov, i->iov_offset, bytes);
1762 kunmap(page);
1763 return copied;
1765 EXPORT_SYMBOL(iov_iter_copy_from_user);
1767 void iov_iter_advance(struct iov_iter *i, size_t bytes)
1769 BUG_ON(i->count < bytes);
1771 if (likely(i->nr_segs == 1)) {
1772 i->iov_offset += bytes;
1773 i->count -= bytes;
1774 } else {
1775 const struct iovec *iov = i->iov;
1776 size_t base = i->iov_offset;
1779 * The !iov->iov_len check ensures we skip over unlikely
1780 * zero-length segments (without overruning the iovec).
1782 while (bytes || unlikely(!iov->iov_len && i->count)) {
1783 int copy;
1785 copy = min(bytes, iov->iov_len - base);
1786 BUG_ON(!i->count || i->count < copy);
1787 i->count -= copy;
1788 bytes -= copy;
1789 base += copy;
1790 if (iov->iov_len == base) {
1791 iov++;
1792 base = 0;
1795 i->iov = iov;
1796 i->iov_offset = base;
1799 EXPORT_SYMBOL(iov_iter_advance);
1802 * Fault in the first iovec of the given iov_iter, to a maximum length
1803 * of bytes. Returns 0 on success, or non-zero if the memory could not be
1804 * accessed (ie. because it is an invalid address).
1806 * writev-intensive code may want this to prefault several iovecs -- that
1807 * would be possible (callers must not rely on the fact that _only_ the
1808 * first iovec will be faulted with the current implementation).
1810 int iov_iter_fault_in_readable(struct iov_iter *i, size_t bytes)
1812 char __user *buf = i->iov->iov_base + i->iov_offset;
1813 bytes = min(bytes, i->iov->iov_len - i->iov_offset);
1814 return fault_in_pages_readable(buf, bytes);
1816 EXPORT_SYMBOL(iov_iter_fault_in_readable);
1819 * Return the count of just the current iov_iter segment.
1821 size_t iov_iter_single_seg_count(struct iov_iter *i)
1823 const struct iovec *iov = i->iov;
1824 if (i->nr_segs == 1)
1825 return i->count;
1826 else
1827 return min(i->count, iov->iov_len - i->iov_offset);
1829 EXPORT_SYMBOL(iov_iter_single_seg_count);
1832 * Performs necessary checks before doing a write
1834 * Can adjust writing position or amount of bytes to write.
1835 * Returns appropriate error code that caller should return or
1836 * zero in case that write should be allowed.
1838 inline int generic_write_checks(struct file *file, loff_t *pos, size_t *count, int isblk)
1840 struct inode *inode = file->f_mapping->host;
1841 unsigned long limit = current->signal->rlim[RLIMIT_FSIZE].rlim_cur;
1843 if (unlikely(*pos < 0))
1844 return -EINVAL;
1846 if (!isblk) {
1847 /* FIXME: this is for backwards compatibility with 2.4 */
1848 if (file->f_flags & O_APPEND)
1849 *pos = i_size_read(inode);
1851 if (limit != RLIM_INFINITY) {
1852 if (*pos >= limit) {
1853 send_sig(SIGXFSZ, current, 0);
1854 return -EFBIG;
1856 if (*count > limit - (typeof(limit))*pos) {
1857 *count = limit - (typeof(limit))*pos;
1863 * LFS rule
1865 if (unlikely(*pos + *count > MAX_NON_LFS &&
1866 !(file->f_flags & O_LARGEFILE))) {
1867 if (*pos >= MAX_NON_LFS) {
1868 return -EFBIG;
1870 if (*count > MAX_NON_LFS - (unsigned long)*pos) {
1871 *count = MAX_NON_LFS - (unsigned long)*pos;
1876 * Are we about to exceed the fs block limit ?
1878 * If we have written data it becomes a short write. If we have
1879 * exceeded without writing data we send a signal and return EFBIG.
1880 * Linus frestrict idea will clean these up nicely..
1882 if (likely(!isblk)) {
1883 if (unlikely(*pos >= inode->i_sb->s_maxbytes)) {
1884 if (*count || *pos > inode->i_sb->s_maxbytes) {
1885 return -EFBIG;
1887 /* zero-length writes at ->s_maxbytes are OK */
1890 if (unlikely(*pos + *count > inode->i_sb->s_maxbytes))
1891 *count = inode->i_sb->s_maxbytes - *pos;
1892 } else {
1893 #ifdef CONFIG_BLOCK
1894 loff_t isize;
1895 if (bdev_read_only(I_BDEV(inode)))
1896 return -EPERM;
1897 isize = i_size_read(inode);
1898 if (*pos >= isize) {
1899 if (*count || *pos > isize)
1900 return -ENOSPC;
1903 if (*pos + *count > isize)
1904 *count = isize - *pos;
1905 #else
1906 return -EPERM;
1907 #endif
1909 return 0;
1911 EXPORT_SYMBOL(generic_write_checks);
1913 int pagecache_write_begin(struct file *file, struct address_space *mapping,
1914 loff_t pos, unsigned len, unsigned flags,
1915 struct page **pagep, void **fsdata)
1917 const struct address_space_operations *aops = mapping->a_ops;
1919 if (aops->write_begin) {
1920 return aops->write_begin(file, mapping, pos, len, flags,
1921 pagep, fsdata);
1922 } else {
1923 int ret;
1924 pgoff_t index = pos >> PAGE_CACHE_SHIFT;
1925 unsigned offset = pos & (PAGE_CACHE_SIZE - 1);
1926 struct inode *inode = mapping->host;
1927 struct page *page;
1928 again:
1929 page = __grab_cache_page(mapping, index);
1930 *pagep = page;
1931 if (!page)
1932 return -ENOMEM;
1934 if (flags & AOP_FLAG_UNINTERRUPTIBLE && !PageUptodate(page)) {
1936 * There is no way to resolve a short write situation
1937 * for a !Uptodate page (except by double copying in
1938 * the caller done by generic_perform_write_2copy).
1940 * Instead, we have to bring it uptodate here.
1942 ret = aops->readpage(file, page);
1943 page_cache_release(page);
1944 if (ret) {
1945 if (ret == AOP_TRUNCATED_PAGE)
1946 goto again;
1947 return ret;
1949 goto again;
1952 ret = aops->prepare_write(file, page, offset, offset+len);
1953 if (ret) {
1954 unlock_page(page);
1955 page_cache_release(page);
1956 if (pos + len > inode->i_size)
1957 vmtruncate(inode, inode->i_size);
1959 return ret;
1962 EXPORT_SYMBOL(pagecache_write_begin);
1964 int pagecache_write_end(struct file *file, struct address_space *mapping,
1965 loff_t pos, unsigned len, unsigned copied,
1966 struct page *page, void *fsdata)
1968 const struct address_space_operations *aops = mapping->a_ops;
1969 int ret;
1971 if (aops->write_end) {
1972 mark_page_accessed(page);
1973 ret = aops->write_end(file, mapping, pos, len, copied,
1974 page, fsdata);
1975 } else {
1976 unsigned offset = pos & (PAGE_CACHE_SIZE - 1);
1977 struct inode *inode = mapping->host;
1979 flush_dcache_page(page);
1980 ret = aops->commit_write(file, page, offset, offset+len);
1981 unlock_page(page);
1982 mark_page_accessed(page);
1983 page_cache_release(page);
1985 if (ret < 0) {
1986 if (pos + len > inode->i_size)
1987 vmtruncate(inode, inode->i_size);
1988 } else if (ret > 0)
1989 ret = min_t(size_t, copied, ret);
1990 else
1991 ret = copied;
1994 return ret;
1996 EXPORT_SYMBOL(pagecache_write_end);
1998 ssize_t
1999 generic_file_direct_write(struct kiocb *iocb, const struct iovec *iov,
2000 unsigned long *nr_segs, loff_t pos, loff_t *ppos,
2001 size_t count, size_t ocount)
2003 struct file *file = iocb->ki_filp;
2004 struct address_space *mapping = file->f_mapping;
2005 struct inode *inode = mapping->host;
2006 ssize_t written;
2007 size_t write_len;
2008 pgoff_t end;
2010 if (count != ocount)
2011 *nr_segs = iov_shorten((struct iovec *)iov, *nr_segs, count);
2014 * Unmap all mmappings of the file up-front.
2016 * This will cause any pte dirty bits to be propagated into the
2017 * pageframes for the subsequent filemap_write_and_wait().
2019 write_len = iov_length(iov, *nr_segs);
2020 end = (pos + write_len - 1) >> PAGE_CACHE_SHIFT;
2021 if (mapping_mapped(mapping))
2022 unmap_mapping_range(mapping, pos, write_len, 0);
2024 written = filemap_write_and_wait(mapping);
2025 if (written)
2026 goto out;
2029 * After a write we want buffered reads to be sure to go to disk to get
2030 * the new data. We invalidate clean cached page from the region we're
2031 * about to write. We do this *before* the write so that we can return
2032 * -EIO without clobbering -EIOCBQUEUED from ->direct_IO().
2034 if (mapping->nrpages) {
2035 written = invalidate_inode_pages2_range(mapping,
2036 pos >> PAGE_CACHE_SHIFT, end);
2037 if (written)
2038 goto out;
2041 written = mapping->a_ops->direct_IO(WRITE, iocb, iov, pos, *nr_segs);
2044 * Finally, try again to invalidate clean pages which might have been
2045 * cached by non-direct readahead, or faulted in by get_user_pages()
2046 * if the source of the write was an mmap'ed region of the file
2047 * we're writing. Either one is a pretty crazy thing to do,
2048 * so we don't support it 100%. If this invalidation
2049 * fails, tough, the write still worked...
2051 if (mapping->nrpages) {
2052 invalidate_inode_pages2_range(mapping,
2053 pos >> PAGE_CACHE_SHIFT, end);
2056 if (written > 0) {
2057 loff_t end = pos + written;
2058 if (end > i_size_read(inode) && !S_ISBLK(inode->i_mode)) {
2059 i_size_write(inode, end);
2060 mark_inode_dirty(inode);
2062 *ppos = end;
2066 * Sync the fs metadata but not the minor inode changes and
2067 * of course not the data as we did direct DMA for the IO.
2068 * i_mutex is held, which protects generic_osync_inode() from
2069 * livelocking. AIO O_DIRECT ops attempt to sync metadata here.
2071 out:
2072 if ((written >= 0 || written == -EIOCBQUEUED) &&
2073 ((file->f_flags & O_SYNC) || IS_SYNC(inode))) {
2074 int err = generic_osync_inode(inode, mapping, OSYNC_METADATA);
2075 if (err < 0)
2076 written = err;
2078 return written;
2080 EXPORT_SYMBOL(generic_file_direct_write);
2083 * Find or create a page at the given pagecache position. Return the locked
2084 * page. This function is specifically for buffered writes.
2086 struct page *__grab_cache_page(struct address_space *mapping, pgoff_t index)
2088 int status;
2089 struct page *page;
2090 repeat:
2091 page = find_lock_page(mapping, index);
2092 if (likely(page))
2093 return page;
2095 page = page_cache_alloc(mapping);
2096 if (!page)
2097 return NULL;
2098 status = add_to_page_cache_lru(page, mapping, index, GFP_KERNEL);
2099 if (unlikely(status)) {
2100 page_cache_release(page);
2101 if (status == -EEXIST)
2102 goto repeat;
2103 return NULL;
2105 return page;
2107 EXPORT_SYMBOL(__grab_cache_page);
2109 static ssize_t generic_perform_write_2copy(struct file *file,
2110 struct iov_iter *i, loff_t pos)
2112 struct address_space *mapping = file->f_mapping;
2113 const struct address_space_operations *a_ops = mapping->a_ops;
2114 struct inode *inode = mapping->host;
2115 long status = 0;
2116 ssize_t written = 0;
2118 do {
2119 struct page *src_page;
2120 struct page *page;
2121 pgoff_t index; /* Pagecache index for current page */
2122 unsigned long offset; /* Offset into pagecache page */
2123 unsigned long bytes; /* Bytes to write to page */
2124 size_t copied; /* Bytes copied from user */
2126 offset = (pos & (PAGE_CACHE_SIZE - 1));
2127 index = pos >> PAGE_CACHE_SHIFT;
2128 bytes = min_t(unsigned long, PAGE_CACHE_SIZE - offset,
2129 iov_iter_count(i));
2132 * a non-NULL src_page indicates that we're doing the
2133 * copy via get_user_pages and kmap.
2135 src_page = NULL;
2138 * Bring in the user page that we will copy from _first_.
2139 * Otherwise there's a nasty deadlock on copying from the
2140 * same page as we're writing to, without it being marked
2141 * up-to-date.
2143 * Not only is this an optimisation, but it is also required
2144 * to check that the address is actually valid, when atomic
2145 * usercopies are used, below.
2147 if (unlikely(iov_iter_fault_in_readable(i, bytes))) {
2148 status = -EFAULT;
2149 break;
2152 page = __grab_cache_page(mapping, index);
2153 if (!page) {
2154 status = -ENOMEM;
2155 break;
2159 * non-uptodate pages cannot cope with short copies, and we
2160 * cannot take a pagefault with the destination page locked.
2161 * So pin the source page to copy it.
2163 if (!PageUptodate(page) && !segment_eq(get_fs(), KERNEL_DS)) {
2164 unlock_page(page);
2166 src_page = alloc_page(GFP_KERNEL);
2167 if (!src_page) {
2168 page_cache_release(page);
2169 status = -ENOMEM;
2170 break;
2174 * Cannot get_user_pages with a page locked for the
2175 * same reason as we can't take a page fault with a
2176 * page locked (as explained below).
2178 copied = iov_iter_copy_from_user(src_page, i,
2179 offset, bytes);
2180 if (unlikely(copied == 0)) {
2181 status = -EFAULT;
2182 page_cache_release(page);
2183 page_cache_release(src_page);
2184 break;
2186 bytes = copied;
2188 lock_page(page);
2190 * Can't handle the page going uptodate here, because
2191 * that means we would use non-atomic usercopies, which
2192 * zero out the tail of the page, which can cause
2193 * zeroes to become transiently visible. We could just
2194 * use a non-zeroing copy, but the APIs aren't too
2195 * consistent.
2197 if (unlikely(!page->mapping || PageUptodate(page))) {
2198 unlock_page(page);
2199 page_cache_release(page);
2200 page_cache_release(src_page);
2201 continue;
2205 status = a_ops->prepare_write(file, page, offset, offset+bytes);
2206 if (unlikely(status))
2207 goto fs_write_aop_error;
2209 if (!src_page) {
2211 * Must not enter the pagefault handler here, because
2212 * we hold the page lock, so we might recursively
2213 * deadlock on the same lock, or get an ABBA deadlock
2214 * against a different lock, or against the mmap_sem
2215 * (which nests outside the page lock). So increment
2216 * preempt count, and use _atomic usercopies.
2218 * The page is uptodate so we are OK to encounter a
2219 * short copy: if unmodified parts of the page are
2220 * marked dirty and written out to disk, it doesn't
2221 * really matter.
2223 pagefault_disable();
2224 copied = iov_iter_copy_from_user_atomic(page, i,
2225 offset, bytes);
2226 pagefault_enable();
2227 } else {
2228 void *src, *dst;
2229 src = kmap_atomic(src_page, KM_USER0);
2230 dst = kmap_atomic(page, KM_USER1);
2231 memcpy(dst + offset, src + offset, bytes);
2232 kunmap_atomic(dst, KM_USER1);
2233 kunmap_atomic(src, KM_USER0);
2234 copied = bytes;
2236 flush_dcache_page(page);
2238 status = a_ops->commit_write(file, page, offset, offset+bytes);
2239 if (unlikely(status < 0))
2240 goto fs_write_aop_error;
2241 if (unlikely(status > 0)) /* filesystem did partial write */
2242 copied = min_t(size_t, copied, status);
2244 unlock_page(page);
2245 mark_page_accessed(page);
2246 page_cache_release(page);
2247 if (src_page)
2248 page_cache_release(src_page);
2250 iov_iter_advance(i, copied);
2251 pos += copied;
2252 written += copied;
2254 balance_dirty_pages_ratelimited(mapping);
2255 cond_resched();
2256 continue;
2258 fs_write_aop_error:
2259 unlock_page(page);
2260 page_cache_release(page);
2261 if (src_page)
2262 page_cache_release(src_page);
2265 * prepare_write() may have instantiated a few blocks
2266 * outside i_size. Trim these off again. Don't need
2267 * i_size_read because we hold i_mutex.
2269 if (pos + bytes > inode->i_size)
2270 vmtruncate(inode, inode->i_size);
2271 break;
2272 } while (iov_iter_count(i));
2274 return written ? written : status;
2277 static ssize_t generic_perform_write(struct file *file,
2278 struct iov_iter *i, loff_t pos)
2280 struct address_space *mapping = file->f_mapping;
2281 const struct address_space_operations *a_ops = mapping->a_ops;
2282 long status = 0;
2283 ssize_t written = 0;
2284 unsigned int flags = 0;
2287 * Copies from kernel address space cannot fail (NFSD is a big user).
2289 if (segment_eq(get_fs(), KERNEL_DS))
2290 flags |= AOP_FLAG_UNINTERRUPTIBLE;
2292 do {
2293 struct page *page;
2294 pgoff_t index; /* Pagecache index for current page */
2295 unsigned long offset; /* Offset into pagecache page */
2296 unsigned long bytes; /* Bytes to write to page */
2297 size_t copied; /* Bytes copied from user */
2298 void *fsdata;
2300 offset = (pos & (PAGE_CACHE_SIZE - 1));
2301 index = pos >> PAGE_CACHE_SHIFT;
2302 bytes = min_t(unsigned long, PAGE_CACHE_SIZE - offset,
2303 iov_iter_count(i));
2305 again:
2308 * Bring in the user page that we will copy from _first_.
2309 * Otherwise there's a nasty deadlock on copying from the
2310 * same page as we're writing to, without it being marked
2311 * up-to-date.
2313 * Not only is this an optimisation, but it is also required
2314 * to check that the address is actually valid, when atomic
2315 * usercopies are used, below.
2317 if (unlikely(iov_iter_fault_in_readable(i, bytes))) {
2318 status = -EFAULT;
2319 break;
2322 status = a_ops->write_begin(file, mapping, pos, bytes, flags,
2323 &page, &fsdata);
2324 if (unlikely(status))
2325 break;
2327 pagefault_disable();
2328 copied = iov_iter_copy_from_user_atomic(page, i, offset, bytes);
2329 pagefault_enable();
2330 flush_dcache_page(page);
2332 status = a_ops->write_end(file, mapping, pos, bytes, copied,
2333 page, fsdata);
2334 if (unlikely(status < 0))
2335 break;
2336 copied = status;
2338 cond_resched();
2340 iov_iter_advance(i, copied);
2341 if (unlikely(copied == 0)) {
2343 * If we were unable to copy any data at all, we must
2344 * fall back to a single segment length write.
2346 * If we didn't fallback here, we could livelock
2347 * because not all segments in the iov can be copied at
2348 * once without a pagefault.
2350 bytes = min_t(unsigned long, PAGE_CACHE_SIZE - offset,
2351 iov_iter_single_seg_count(i));
2352 goto again;
2354 pos += copied;
2355 written += copied;
2357 balance_dirty_pages_ratelimited(mapping);
2359 } while (iov_iter_count(i));
2361 return written ? written : status;
2364 ssize_t
2365 generic_file_buffered_write(struct kiocb *iocb, const struct iovec *iov,
2366 unsigned long nr_segs, loff_t pos, loff_t *ppos,
2367 size_t count, ssize_t written)
2369 struct file *file = iocb->ki_filp;
2370 struct address_space *mapping = file->f_mapping;
2371 const struct address_space_operations *a_ops = mapping->a_ops;
2372 struct inode *inode = mapping->host;
2373 ssize_t status;
2374 struct iov_iter i;
2376 iov_iter_init(&i, iov, nr_segs, count, written);
2377 if (a_ops->write_begin)
2378 status = generic_perform_write(file, &i, pos);
2379 else
2380 status = generic_perform_write_2copy(file, &i, pos);
2382 if (likely(status >= 0)) {
2383 written += status;
2384 *ppos = pos + status;
2387 * For now, when the user asks for O_SYNC, we'll actually give
2388 * O_DSYNC
2390 if (unlikely((file->f_flags & O_SYNC) || IS_SYNC(inode))) {
2391 if (!a_ops->writepage || !is_sync_kiocb(iocb))
2392 status = generic_osync_inode(inode, mapping,
2393 OSYNC_METADATA|OSYNC_DATA);
2398 * If we get here for O_DIRECT writes then we must have fallen through
2399 * to buffered writes (block instantiation inside i_size). So we sync
2400 * the file data here, to try to honour O_DIRECT expectations.
2402 if (unlikely(file->f_flags & O_DIRECT) && written)
2403 status = filemap_write_and_wait(mapping);
2405 return written ? written : status;
2407 EXPORT_SYMBOL(generic_file_buffered_write);
2409 static ssize_t
2410 __generic_file_aio_write_nolock(struct kiocb *iocb, const struct iovec *iov,
2411 unsigned long nr_segs, loff_t *ppos)
2413 struct file *file = iocb->ki_filp;
2414 struct address_space * mapping = file->f_mapping;
2415 size_t ocount; /* original count */
2416 size_t count; /* after file limit checks */
2417 struct inode *inode = mapping->host;
2418 loff_t pos;
2419 ssize_t written;
2420 ssize_t err;
2422 ocount = 0;
2423 err = generic_segment_checks(iov, &nr_segs, &ocount, VERIFY_READ);
2424 if (err)
2425 return err;
2427 count = ocount;
2428 pos = *ppos;
2430 vfs_check_frozen(inode->i_sb, SB_FREEZE_WRITE);
2432 /* We can write back this queue in page reclaim */
2433 current->backing_dev_info = mapping->backing_dev_info;
2434 written = 0;
2436 err = generic_write_checks(file, &pos, &count, S_ISBLK(inode->i_mode));
2437 if (err)
2438 goto out;
2440 if (count == 0)
2441 goto out;
2443 err = remove_suid(file->f_path.dentry);
2444 if (err)
2445 goto out;
2447 file_update_time(file);
2449 /* coalesce the iovecs and go direct-to-BIO for O_DIRECT */
2450 if (unlikely(file->f_flags & O_DIRECT)) {
2451 loff_t endbyte;
2452 ssize_t written_buffered;
2454 written = generic_file_direct_write(iocb, iov, &nr_segs, pos,
2455 ppos, count, ocount);
2456 if (written < 0 || written == count)
2457 goto out;
2459 * direct-io write to a hole: fall through to buffered I/O
2460 * for completing the rest of the request.
2462 pos += written;
2463 count -= written;
2464 written_buffered = generic_file_buffered_write(iocb, iov,
2465 nr_segs, pos, ppos, count,
2466 written);
2468 * If generic_file_buffered_write() retuned a synchronous error
2469 * then we want to return the number of bytes which were
2470 * direct-written, or the error code if that was zero. Note
2471 * that this differs from normal direct-io semantics, which
2472 * will return -EFOO even if some bytes were written.
2474 if (written_buffered < 0) {
2475 err = written_buffered;
2476 goto out;
2480 * We need to ensure that the page cache pages are written to
2481 * disk and invalidated to preserve the expected O_DIRECT
2482 * semantics.
2484 endbyte = pos + written_buffered - written - 1;
2485 err = do_sync_mapping_range(file->f_mapping, pos, endbyte,
2486 SYNC_FILE_RANGE_WAIT_BEFORE|
2487 SYNC_FILE_RANGE_WRITE|
2488 SYNC_FILE_RANGE_WAIT_AFTER);
2489 if (err == 0) {
2490 written = written_buffered;
2491 invalidate_mapping_pages(mapping,
2492 pos >> PAGE_CACHE_SHIFT,
2493 endbyte >> PAGE_CACHE_SHIFT);
2494 } else {
2496 * We don't know how much we wrote, so just return
2497 * the number of bytes which were direct-written
2500 } else {
2501 written = generic_file_buffered_write(iocb, iov, nr_segs,
2502 pos, ppos, count, written);
2504 out:
2505 current->backing_dev_info = NULL;
2506 return written ? written : err;
2509 ssize_t generic_file_aio_write_nolock(struct kiocb *iocb,
2510 const struct iovec *iov, unsigned long nr_segs, loff_t pos)
2512 struct file *file = iocb->ki_filp;
2513 struct address_space *mapping = file->f_mapping;
2514 struct inode *inode = mapping->host;
2515 ssize_t ret;
2517 BUG_ON(iocb->ki_pos != pos);
2519 ret = __generic_file_aio_write_nolock(iocb, iov, nr_segs,
2520 &iocb->ki_pos);
2522 if (ret > 0 && ((file->f_flags & O_SYNC) || IS_SYNC(inode))) {
2523 ssize_t err;
2525 err = sync_page_range_nolock(inode, mapping, pos, ret);
2526 if (err < 0)
2527 ret = err;
2529 return ret;
2531 EXPORT_SYMBOL(generic_file_aio_write_nolock);
2533 ssize_t generic_file_aio_write(struct kiocb *iocb, const struct iovec *iov,
2534 unsigned long nr_segs, loff_t pos)
2536 struct file *file = iocb->ki_filp;
2537 struct address_space *mapping = file->f_mapping;
2538 struct inode *inode = mapping->host;
2539 ssize_t ret;
2541 BUG_ON(iocb->ki_pos != pos);
2543 mutex_lock(&inode->i_mutex);
2544 ret = __generic_file_aio_write_nolock(iocb, iov, nr_segs,
2545 &iocb->ki_pos);
2546 mutex_unlock(&inode->i_mutex);
2548 if (ret > 0 && ((file->f_flags & O_SYNC) || IS_SYNC(inode))) {
2549 ssize_t err;
2551 err = sync_page_range(inode, mapping, pos, ret);
2552 if (err < 0)
2553 ret = err;
2555 return ret;
2557 EXPORT_SYMBOL(generic_file_aio_write);
2560 * try_to_release_page() - release old fs-specific metadata on a page
2562 * @page: the page which the kernel is trying to free
2563 * @gfp_mask: memory allocation flags (and I/O mode)
2565 * The address_space is to try to release any data against the page
2566 * (presumably at page->private). If the release was successful, return `1'.
2567 * Otherwise return zero.
2569 * The @gfp_mask argument specifies whether I/O may be performed to release
2570 * this page (__GFP_IO), and whether the call may block (__GFP_WAIT).
2572 * NOTE: @gfp_mask may go away, and this function may become non-blocking.
2574 int try_to_release_page(struct page *page, gfp_t gfp_mask)
2576 struct address_space * const mapping = page->mapping;
2578 BUG_ON(!PageLocked(page));
2579 if (PageWriteback(page))
2580 return 0;
2582 if (mapping && mapping->a_ops->releasepage)
2583 return mapping->a_ops->releasepage(page, gfp_mask);
2584 return try_to_free_buffers(page);
2587 EXPORT_SYMBOL(try_to_release_page);