hugetlb: reserve huge pages for reliable MAP_PRIVATE hugetlbfs mappings until fork()
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / net / ipv4 / udp.c
blob383d17359d01f1a81080df5aabef22266c1dd1c4
1 /*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
6 * The User Datagram Protocol (UDP).
8 * Authors: Ross Biro
9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
11 * Alan Cox, <Alan.Cox@linux.org>
12 * Hirokazu Takahashi, <taka@valinux.co.jp>
14 * Fixes:
15 * Alan Cox : verify_area() calls
16 * Alan Cox : stopped close while in use off icmp
17 * messages. Not a fix but a botch that
18 * for udp at least is 'valid'.
19 * Alan Cox : Fixed icmp handling properly
20 * Alan Cox : Correct error for oversized datagrams
21 * Alan Cox : Tidied select() semantics.
22 * Alan Cox : udp_err() fixed properly, also now
23 * select and read wake correctly on errors
24 * Alan Cox : udp_send verify_area moved to avoid mem leak
25 * Alan Cox : UDP can count its memory
26 * Alan Cox : send to an unknown connection causes
27 * an ECONNREFUSED off the icmp, but
28 * does NOT close.
29 * Alan Cox : Switched to new sk_buff handlers. No more backlog!
30 * Alan Cox : Using generic datagram code. Even smaller and the PEEK
31 * bug no longer crashes it.
32 * Fred Van Kempen : Net2e support for sk->broadcast.
33 * Alan Cox : Uses skb_free_datagram
34 * Alan Cox : Added get/set sockopt support.
35 * Alan Cox : Broadcasting without option set returns EACCES.
36 * Alan Cox : No wakeup calls. Instead we now use the callbacks.
37 * Alan Cox : Use ip_tos and ip_ttl
38 * Alan Cox : SNMP Mibs
39 * Alan Cox : MSG_DONTROUTE, and 0.0.0.0 support.
40 * Matt Dillon : UDP length checks.
41 * Alan Cox : Smarter af_inet used properly.
42 * Alan Cox : Use new kernel side addressing.
43 * Alan Cox : Incorrect return on truncated datagram receive.
44 * Arnt Gulbrandsen : New udp_send and stuff
45 * Alan Cox : Cache last socket
46 * Alan Cox : Route cache
47 * Jon Peatfield : Minor efficiency fix to sendto().
48 * Mike Shaver : RFC1122 checks.
49 * Alan Cox : Nonblocking error fix.
50 * Willy Konynenberg : Transparent proxying support.
51 * Mike McLagan : Routing by source
52 * David S. Miller : New socket lookup architecture.
53 * Last socket cache retained as it
54 * does have a high hit rate.
55 * Olaf Kirch : Don't linearise iovec on sendmsg.
56 * Andi Kleen : Some cleanups, cache destination entry
57 * for connect.
58 * Vitaly E. Lavrov : Transparent proxy revived after year coma.
59 * Melvin Smith : Check msg_name not msg_namelen in sendto(),
60 * return ENOTCONN for unconnected sockets (POSIX)
61 * Janos Farkas : don't deliver multi/broadcasts to a different
62 * bound-to-device socket
63 * Hirokazu Takahashi : HW checksumming for outgoing UDP
64 * datagrams.
65 * Hirokazu Takahashi : sendfile() on UDP works now.
66 * Arnaldo C. Melo : convert /proc/net/udp to seq_file
67 * YOSHIFUJI Hideaki @USAGI and: Support IPV6_V6ONLY socket option, which
68 * Alexey Kuznetsov: allow both IPv4 and IPv6 sockets to bind
69 * a single port at the same time.
70 * Derek Atkins <derek@ihtfp.com>: Add Encapulation Support
71 * James Chapman : Add L2TP encapsulation type.
74 * This program is free software; you can redistribute it and/or
75 * modify it under the terms of the GNU General Public License
76 * as published by the Free Software Foundation; either version
77 * 2 of the License, or (at your option) any later version.
80 #include <asm/system.h>
81 #include <asm/uaccess.h>
82 #include <asm/ioctls.h>
83 #include <linux/bootmem.h>
84 #include <linux/types.h>
85 #include <linux/fcntl.h>
86 #include <linux/module.h>
87 #include <linux/socket.h>
88 #include <linux/sockios.h>
89 #include <linux/igmp.h>
90 #include <linux/in.h>
91 #include <linux/errno.h>
92 #include <linux/timer.h>
93 #include <linux/mm.h>
94 #include <linux/inet.h>
95 #include <linux/netdevice.h>
96 #include <net/tcp_states.h>
97 #include <linux/skbuff.h>
98 #include <linux/proc_fs.h>
99 #include <linux/seq_file.h>
100 #include <net/net_namespace.h>
101 #include <net/icmp.h>
102 #include <net/route.h>
103 #include <net/checksum.h>
104 #include <net/xfrm.h>
105 #include "udp_impl.h"
108 * Snmp MIB for the UDP layer
111 DEFINE_SNMP_STAT(struct udp_mib, udp_stats_in6) __read_mostly;
112 EXPORT_SYMBOL(udp_stats_in6);
114 struct hlist_head udp_hash[UDP_HTABLE_SIZE];
115 DEFINE_RWLOCK(udp_hash_lock);
117 int sysctl_udp_mem[3] __read_mostly;
118 int sysctl_udp_rmem_min __read_mostly;
119 int sysctl_udp_wmem_min __read_mostly;
121 EXPORT_SYMBOL(sysctl_udp_mem);
122 EXPORT_SYMBOL(sysctl_udp_rmem_min);
123 EXPORT_SYMBOL(sysctl_udp_wmem_min);
125 atomic_t udp_memory_allocated;
126 EXPORT_SYMBOL(udp_memory_allocated);
128 static inline int __udp_lib_lport_inuse(struct net *net, __u16 num,
129 const struct hlist_head udptable[])
131 struct sock *sk;
132 struct hlist_node *node;
134 sk_for_each(sk, node, &udptable[udp_hashfn(net, num)])
135 if (net_eq(sock_net(sk), net) && sk->sk_hash == num)
136 return 1;
137 return 0;
141 * udp_lib_get_port - UDP/-Lite port lookup for IPv4 and IPv6
143 * @sk: socket struct in question
144 * @snum: port number to look up
145 * @saddr_comp: AF-dependent comparison of bound local IP addresses
147 int udp_lib_get_port(struct sock *sk, unsigned short snum,
148 int (*saddr_comp)(const struct sock *sk1,
149 const struct sock *sk2 ) )
151 struct hlist_head *udptable = sk->sk_prot->h.udp_hash;
152 struct hlist_node *node;
153 struct hlist_head *head;
154 struct sock *sk2;
155 int error = 1;
156 struct net *net = sock_net(sk);
158 write_lock_bh(&udp_hash_lock);
160 if (!snum) {
161 int i, low, high, remaining;
162 unsigned rover, best, best_size_so_far;
164 inet_get_local_port_range(&low, &high);
165 remaining = (high - low) + 1;
167 best_size_so_far = UINT_MAX;
168 best = rover = net_random() % remaining + low;
170 /* 1st pass: look for empty (or shortest) hash chain */
171 for (i = 0; i < UDP_HTABLE_SIZE; i++) {
172 int size = 0;
174 head = &udptable[udp_hashfn(net, rover)];
175 if (hlist_empty(head))
176 goto gotit;
178 sk_for_each(sk2, node, head) {
179 if (++size >= best_size_so_far)
180 goto next;
182 best_size_so_far = size;
183 best = rover;
184 next:
185 /* fold back if end of range */
186 if (++rover > high)
187 rover = low + ((rover - low)
188 & (UDP_HTABLE_SIZE - 1));
193 /* 2nd pass: find hole in shortest hash chain */
194 rover = best;
195 for (i = 0; i < (1 << 16) / UDP_HTABLE_SIZE; i++) {
196 if (! __udp_lib_lport_inuse(net, rover, udptable))
197 goto gotit;
198 rover += UDP_HTABLE_SIZE;
199 if (rover > high)
200 rover = low + ((rover - low)
201 & (UDP_HTABLE_SIZE - 1));
205 /* All ports in use! */
206 goto fail;
208 gotit:
209 snum = rover;
210 } else {
211 head = &udptable[udp_hashfn(net, snum)];
213 sk_for_each(sk2, node, head)
214 if (sk2->sk_hash == snum &&
215 sk2 != sk &&
216 net_eq(sock_net(sk2), net) &&
217 (!sk2->sk_reuse || !sk->sk_reuse) &&
218 (!sk2->sk_bound_dev_if || !sk->sk_bound_dev_if
219 || sk2->sk_bound_dev_if == sk->sk_bound_dev_if) &&
220 (*saddr_comp)(sk, sk2) )
221 goto fail;
224 inet_sk(sk)->num = snum;
225 sk->sk_hash = snum;
226 if (sk_unhashed(sk)) {
227 head = &udptable[udp_hashfn(net, snum)];
228 sk_add_node(sk, head);
229 sock_prot_inuse_add(sock_net(sk), sk->sk_prot, 1);
231 error = 0;
232 fail:
233 write_unlock_bh(&udp_hash_lock);
234 return error;
237 static int ipv4_rcv_saddr_equal(const struct sock *sk1, const struct sock *sk2)
239 struct inet_sock *inet1 = inet_sk(sk1), *inet2 = inet_sk(sk2);
241 return ( !ipv6_only_sock(sk2) &&
242 (!inet1->rcv_saddr || !inet2->rcv_saddr ||
243 inet1->rcv_saddr == inet2->rcv_saddr ));
246 int udp_v4_get_port(struct sock *sk, unsigned short snum)
248 return udp_lib_get_port(sk, snum, ipv4_rcv_saddr_equal);
251 /* UDP is nearly always wildcards out the wazoo, it makes no sense to try
252 * harder than this. -DaveM
254 static struct sock *__udp4_lib_lookup(struct net *net, __be32 saddr,
255 __be16 sport, __be32 daddr, __be16 dport,
256 int dif, struct hlist_head udptable[])
258 struct sock *sk, *result = NULL;
259 struct hlist_node *node;
260 unsigned short hnum = ntohs(dport);
261 int badness = -1;
263 read_lock(&udp_hash_lock);
264 sk_for_each(sk, node, &udptable[udp_hashfn(net, hnum)]) {
265 struct inet_sock *inet = inet_sk(sk);
267 if (net_eq(sock_net(sk), net) && sk->sk_hash == hnum &&
268 !ipv6_only_sock(sk)) {
269 int score = (sk->sk_family == PF_INET ? 1 : 0);
270 if (inet->rcv_saddr) {
271 if (inet->rcv_saddr != daddr)
272 continue;
273 score+=2;
275 if (inet->daddr) {
276 if (inet->daddr != saddr)
277 continue;
278 score+=2;
280 if (inet->dport) {
281 if (inet->dport != sport)
282 continue;
283 score+=2;
285 if (sk->sk_bound_dev_if) {
286 if (sk->sk_bound_dev_if != dif)
287 continue;
288 score+=2;
290 if (score == 9) {
291 result = sk;
292 break;
293 } else if (score > badness) {
294 result = sk;
295 badness = score;
299 if (result)
300 sock_hold(result);
301 read_unlock(&udp_hash_lock);
302 return result;
305 static inline struct sock *udp_v4_mcast_next(struct sock *sk,
306 __be16 loc_port, __be32 loc_addr,
307 __be16 rmt_port, __be32 rmt_addr,
308 int dif)
310 struct hlist_node *node;
311 struct sock *s = sk;
312 unsigned short hnum = ntohs(loc_port);
314 sk_for_each_from(s, node) {
315 struct inet_sock *inet = inet_sk(s);
317 if (s->sk_hash != hnum ||
318 (inet->daddr && inet->daddr != rmt_addr) ||
319 (inet->dport != rmt_port && inet->dport) ||
320 (inet->rcv_saddr && inet->rcv_saddr != loc_addr) ||
321 ipv6_only_sock(s) ||
322 (s->sk_bound_dev_if && s->sk_bound_dev_if != dif))
323 continue;
324 if (!ip_mc_sf_allow(s, loc_addr, rmt_addr, dif))
325 continue;
326 goto found;
328 s = NULL;
329 found:
330 return s;
334 * This routine is called by the ICMP module when it gets some
335 * sort of error condition. If err < 0 then the socket should
336 * be closed and the error returned to the user. If err > 0
337 * it's just the icmp type << 8 | icmp code.
338 * Header points to the ip header of the error packet. We move
339 * on past this. Then (as it used to claim before adjustment)
340 * header points to the first 8 bytes of the udp header. We need
341 * to find the appropriate port.
344 void __udp4_lib_err(struct sk_buff *skb, u32 info, struct hlist_head udptable[])
346 struct inet_sock *inet;
347 struct iphdr *iph = (struct iphdr*)skb->data;
348 struct udphdr *uh = (struct udphdr*)(skb->data+(iph->ihl<<2));
349 const int type = icmp_hdr(skb)->type;
350 const int code = icmp_hdr(skb)->code;
351 struct sock *sk;
352 int harderr;
353 int err;
354 struct net *net = dev_net(skb->dev);
356 sk = __udp4_lib_lookup(net, iph->daddr, uh->dest,
357 iph->saddr, uh->source, skb->dev->ifindex, udptable);
358 if (sk == NULL) {
359 ICMP_INC_STATS_BH(net, ICMP_MIB_INERRORS);
360 return; /* No socket for error */
363 err = 0;
364 harderr = 0;
365 inet = inet_sk(sk);
367 switch (type) {
368 default:
369 case ICMP_TIME_EXCEEDED:
370 err = EHOSTUNREACH;
371 break;
372 case ICMP_SOURCE_QUENCH:
373 goto out;
374 case ICMP_PARAMETERPROB:
375 err = EPROTO;
376 harderr = 1;
377 break;
378 case ICMP_DEST_UNREACH:
379 if (code == ICMP_FRAG_NEEDED) { /* Path MTU discovery */
380 if (inet->pmtudisc != IP_PMTUDISC_DONT) {
381 err = EMSGSIZE;
382 harderr = 1;
383 break;
385 goto out;
387 err = EHOSTUNREACH;
388 if (code <= NR_ICMP_UNREACH) {
389 harderr = icmp_err_convert[code].fatal;
390 err = icmp_err_convert[code].errno;
392 break;
396 * RFC1122: OK. Passes ICMP errors back to application, as per
397 * 4.1.3.3.
399 if (!inet->recverr) {
400 if (!harderr || sk->sk_state != TCP_ESTABLISHED)
401 goto out;
402 } else {
403 ip_icmp_error(sk, skb, err, uh->dest, info, (u8*)(uh+1));
405 sk->sk_err = err;
406 sk->sk_error_report(sk);
407 out:
408 sock_put(sk);
411 void udp_err(struct sk_buff *skb, u32 info)
413 __udp4_lib_err(skb, info, udp_hash);
417 * Throw away all pending data and cancel the corking. Socket is locked.
419 void udp_flush_pending_frames(struct sock *sk)
421 struct udp_sock *up = udp_sk(sk);
423 if (up->pending) {
424 up->len = 0;
425 up->pending = 0;
426 ip_flush_pending_frames(sk);
429 EXPORT_SYMBOL(udp_flush_pending_frames);
432 * udp4_hwcsum_outgoing - handle outgoing HW checksumming
433 * @sk: socket we are sending on
434 * @skb: sk_buff containing the filled-in UDP header
435 * (checksum field must be zeroed out)
437 static void udp4_hwcsum_outgoing(struct sock *sk, struct sk_buff *skb,
438 __be32 src, __be32 dst, int len )
440 unsigned int offset;
441 struct udphdr *uh = udp_hdr(skb);
442 __wsum csum = 0;
444 if (skb_queue_len(&sk->sk_write_queue) == 1) {
446 * Only one fragment on the socket.
448 skb->csum_start = skb_transport_header(skb) - skb->head;
449 skb->csum_offset = offsetof(struct udphdr, check);
450 uh->check = ~csum_tcpudp_magic(src, dst, len, IPPROTO_UDP, 0);
451 } else {
453 * HW-checksum won't work as there are two or more
454 * fragments on the socket so that all csums of sk_buffs
455 * should be together
457 offset = skb_transport_offset(skb);
458 skb->csum = skb_checksum(skb, offset, skb->len - offset, 0);
460 skb->ip_summed = CHECKSUM_NONE;
462 skb_queue_walk(&sk->sk_write_queue, skb) {
463 csum = csum_add(csum, skb->csum);
466 uh->check = csum_tcpudp_magic(src, dst, len, IPPROTO_UDP, csum);
467 if (uh->check == 0)
468 uh->check = CSUM_MANGLED_0;
473 * Push out all pending data as one UDP datagram. Socket is locked.
475 static int udp_push_pending_frames(struct sock *sk)
477 struct udp_sock *up = udp_sk(sk);
478 struct inet_sock *inet = inet_sk(sk);
479 struct flowi *fl = &inet->cork.fl;
480 struct sk_buff *skb;
481 struct udphdr *uh;
482 int err = 0;
483 int is_udplite = IS_UDPLITE(sk);
484 __wsum csum = 0;
486 /* Grab the skbuff where UDP header space exists. */
487 if ((skb = skb_peek(&sk->sk_write_queue)) == NULL)
488 goto out;
491 * Create a UDP header
493 uh = udp_hdr(skb);
494 uh->source = fl->fl_ip_sport;
495 uh->dest = fl->fl_ip_dport;
496 uh->len = htons(up->len);
497 uh->check = 0;
499 if (is_udplite) /* UDP-Lite */
500 csum = udplite_csum_outgoing(sk, skb);
502 else if (sk->sk_no_check == UDP_CSUM_NOXMIT) { /* UDP csum disabled */
504 skb->ip_summed = CHECKSUM_NONE;
505 goto send;
507 } else if (skb->ip_summed == CHECKSUM_PARTIAL) { /* UDP hardware csum */
509 udp4_hwcsum_outgoing(sk, skb, fl->fl4_src,fl->fl4_dst, up->len);
510 goto send;
512 } else /* `normal' UDP */
513 csum = udp_csum_outgoing(sk, skb);
515 /* add protocol-dependent pseudo-header */
516 uh->check = csum_tcpudp_magic(fl->fl4_src, fl->fl4_dst, up->len,
517 sk->sk_protocol, csum );
518 if (uh->check == 0)
519 uh->check = CSUM_MANGLED_0;
521 send:
522 err = ip_push_pending_frames(sk);
523 out:
524 up->len = 0;
525 up->pending = 0;
526 if (!err)
527 UDP_INC_STATS_USER(sock_net(sk),
528 UDP_MIB_OUTDATAGRAMS, is_udplite);
529 return err;
532 int udp_sendmsg(struct kiocb *iocb, struct sock *sk, struct msghdr *msg,
533 size_t len)
535 struct inet_sock *inet = inet_sk(sk);
536 struct udp_sock *up = udp_sk(sk);
537 int ulen = len;
538 struct ipcm_cookie ipc;
539 struct rtable *rt = NULL;
540 int free = 0;
541 int connected = 0;
542 __be32 daddr, faddr, saddr;
543 __be16 dport;
544 u8 tos;
545 int err, is_udplite = IS_UDPLITE(sk);
546 int corkreq = up->corkflag || msg->msg_flags&MSG_MORE;
547 int (*getfrag)(void *, char *, int, int, int, struct sk_buff *);
549 if (len > 0xFFFF)
550 return -EMSGSIZE;
553 * Check the flags.
556 if (msg->msg_flags&MSG_OOB) /* Mirror BSD error message compatibility */
557 return -EOPNOTSUPP;
559 ipc.opt = NULL;
561 if (up->pending) {
563 * There are pending frames.
564 * The socket lock must be held while it's corked.
566 lock_sock(sk);
567 if (likely(up->pending)) {
568 if (unlikely(up->pending != AF_INET)) {
569 release_sock(sk);
570 return -EINVAL;
572 goto do_append_data;
574 release_sock(sk);
576 ulen += sizeof(struct udphdr);
579 * Get and verify the address.
581 if (msg->msg_name) {
582 struct sockaddr_in * usin = (struct sockaddr_in*)msg->msg_name;
583 if (msg->msg_namelen < sizeof(*usin))
584 return -EINVAL;
585 if (usin->sin_family != AF_INET) {
586 if (usin->sin_family != AF_UNSPEC)
587 return -EAFNOSUPPORT;
590 daddr = usin->sin_addr.s_addr;
591 dport = usin->sin_port;
592 if (dport == 0)
593 return -EINVAL;
594 } else {
595 if (sk->sk_state != TCP_ESTABLISHED)
596 return -EDESTADDRREQ;
597 daddr = inet->daddr;
598 dport = inet->dport;
599 /* Open fast path for connected socket.
600 Route will not be used, if at least one option is set.
602 connected = 1;
604 ipc.addr = inet->saddr;
606 ipc.oif = sk->sk_bound_dev_if;
607 if (msg->msg_controllen) {
608 err = ip_cmsg_send(sock_net(sk), msg, &ipc);
609 if (err)
610 return err;
611 if (ipc.opt)
612 free = 1;
613 connected = 0;
615 if (!ipc.opt)
616 ipc.opt = inet->opt;
618 saddr = ipc.addr;
619 ipc.addr = faddr = daddr;
621 if (ipc.opt && ipc.opt->srr) {
622 if (!daddr)
623 return -EINVAL;
624 faddr = ipc.opt->faddr;
625 connected = 0;
627 tos = RT_TOS(inet->tos);
628 if (sock_flag(sk, SOCK_LOCALROUTE) ||
629 (msg->msg_flags & MSG_DONTROUTE) ||
630 (ipc.opt && ipc.opt->is_strictroute)) {
631 tos |= RTO_ONLINK;
632 connected = 0;
635 if (ipv4_is_multicast(daddr)) {
636 if (!ipc.oif)
637 ipc.oif = inet->mc_index;
638 if (!saddr)
639 saddr = inet->mc_addr;
640 connected = 0;
643 if (connected)
644 rt = (struct rtable*)sk_dst_check(sk, 0);
646 if (rt == NULL) {
647 struct flowi fl = { .oif = ipc.oif,
648 .nl_u = { .ip4_u =
649 { .daddr = faddr,
650 .saddr = saddr,
651 .tos = tos } },
652 .proto = sk->sk_protocol,
653 .uli_u = { .ports =
654 { .sport = inet->sport,
655 .dport = dport } } };
656 struct net *net = sock_net(sk);
658 security_sk_classify_flow(sk, &fl);
659 err = ip_route_output_flow(net, &rt, &fl, sk, 1);
660 if (err) {
661 if (err == -ENETUNREACH)
662 IP_INC_STATS_BH(net, IPSTATS_MIB_OUTNOROUTES);
663 goto out;
666 err = -EACCES;
667 if ((rt->rt_flags & RTCF_BROADCAST) &&
668 !sock_flag(sk, SOCK_BROADCAST))
669 goto out;
670 if (connected)
671 sk_dst_set(sk, dst_clone(&rt->u.dst));
674 if (msg->msg_flags&MSG_CONFIRM)
675 goto do_confirm;
676 back_from_confirm:
678 saddr = rt->rt_src;
679 if (!ipc.addr)
680 daddr = ipc.addr = rt->rt_dst;
682 lock_sock(sk);
683 if (unlikely(up->pending)) {
684 /* The socket is already corked while preparing it. */
685 /* ... which is an evident application bug. --ANK */
686 release_sock(sk);
688 LIMIT_NETDEBUG(KERN_DEBUG "udp cork app bug 2\n");
689 err = -EINVAL;
690 goto out;
693 * Now cork the socket to pend data.
695 inet->cork.fl.fl4_dst = daddr;
696 inet->cork.fl.fl_ip_dport = dport;
697 inet->cork.fl.fl4_src = saddr;
698 inet->cork.fl.fl_ip_sport = inet->sport;
699 up->pending = AF_INET;
701 do_append_data:
702 up->len += ulen;
703 getfrag = is_udplite ? udplite_getfrag : ip_generic_getfrag;
704 err = ip_append_data(sk, getfrag, msg->msg_iov, ulen,
705 sizeof(struct udphdr), &ipc, rt,
706 corkreq ? msg->msg_flags|MSG_MORE : msg->msg_flags);
707 if (err)
708 udp_flush_pending_frames(sk);
709 else if (!corkreq)
710 err = udp_push_pending_frames(sk);
711 else if (unlikely(skb_queue_empty(&sk->sk_write_queue)))
712 up->pending = 0;
713 release_sock(sk);
715 out:
716 ip_rt_put(rt);
717 if (free)
718 kfree(ipc.opt);
719 if (!err)
720 return len;
722 * ENOBUFS = no kernel mem, SOCK_NOSPACE = no sndbuf space. Reporting
723 * ENOBUFS might not be good (it's not tunable per se), but otherwise
724 * we don't have a good statistic (IpOutDiscards but it can be too many
725 * things). We could add another new stat but at least for now that
726 * seems like overkill.
728 if (err == -ENOBUFS || test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
729 UDP_INC_STATS_USER(sock_net(sk),
730 UDP_MIB_SNDBUFERRORS, is_udplite);
732 return err;
734 do_confirm:
735 dst_confirm(&rt->u.dst);
736 if (!(msg->msg_flags&MSG_PROBE) || len)
737 goto back_from_confirm;
738 err = 0;
739 goto out;
742 int udp_sendpage(struct sock *sk, struct page *page, int offset,
743 size_t size, int flags)
745 struct udp_sock *up = udp_sk(sk);
746 int ret;
748 if (!up->pending) {
749 struct msghdr msg = { .msg_flags = flags|MSG_MORE };
751 /* Call udp_sendmsg to specify destination address which
752 * sendpage interface can't pass.
753 * This will succeed only when the socket is connected.
755 ret = udp_sendmsg(NULL, sk, &msg, 0);
756 if (ret < 0)
757 return ret;
760 lock_sock(sk);
762 if (unlikely(!up->pending)) {
763 release_sock(sk);
765 LIMIT_NETDEBUG(KERN_DEBUG "udp cork app bug 3\n");
766 return -EINVAL;
769 ret = ip_append_page(sk, page, offset, size, flags);
770 if (ret == -EOPNOTSUPP) {
771 release_sock(sk);
772 return sock_no_sendpage(sk->sk_socket, page, offset,
773 size, flags);
775 if (ret < 0) {
776 udp_flush_pending_frames(sk);
777 goto out;
780 up->len += size;
781 if (!(up->corkflag || (flags&MSG_MORE)))
782 ret = udp_push_pending_frames(sk);
783 if (!ret)
784 ret = size;
785 out:
786 release_sock(sk);
787 return ret;
791 * IOCTL requests applicable to the UDP protocol
794 int udp_ioctl(struct sock *sk, int cmd, unsigned long arg)
796 switch (cmd) {
797 case SIOCOUTQ:
799 int amount = atomic_read(&sk->sk_wmem_alloc);
800 return put_user(amount, (int __user *)arg);
803 case SIOCINQ:
805 struct sk_buff *skb;
806 unsigned long amount;
808 amount = 0;
809 spin_lock_bh(&sk->sk_receive_queue.lock);
810 skb = skb_peek(&sk->sk_receive_queue);
811 if (skb != NULL) {
813 * We will only return the amount
814 * of this packet since that is all
815 * that will be read.
817 amount = skb->len - sizeof(struct udphdr);
819 spin_unlock_bh(&sk->sk_receive_queue.lock);
820 return put_user(amount, (int __user *)arg);
823 default:
824 return -ENOIOCTLCMD;
827 return 0;
831 * This should be easy, if there is something there we
832 * return it, otherwise we block.
835 int udp_recvmsg(struct kiocb *iocb, struct sock *sk, struct msghdr *msg,
836 size_t len, int noblock, int flags, int *addr_len)
838 struct inet_sock *inet = inet_sk(sk);
839 struct sockaddr_in *sin = (struct sockaddr_in *)msg->msg_name;
840 struct sk_buff *skb;
841 unsigned int ulen, copied;
842 int peeked;
843 int err;
844 int is_udplite = IS_UDPLITE(sk);
847 * Check any passed addresses
849 if (addr_len)
850 *addr_len=sizeof(*sin);
852 if (flags & MSG_ERRQUEUE)
853 return ip_recv_error(sk, msg, len);
855 try_again:
856 skb = __skb_recv_datagram(sk, flags | (noblock ? MSG_DONTWAIT : 0),
857 &peeked, &err);
858 if (!skb)
859 goto out;
861 ulen = skb->len - sizeof(struct udphdr);
862 copied = len;
863 if (copied > ulen)
864 copied = ulen;
865 else if (copied < ulen)
866 msg->msg_flags |= MSG_TRUNC;
869 * If checksum is needed at all, try to do it while copying the
870 * data. If the data is truncated, or if we only want a partial
871 * coverage checksum (UDP-Lite), do it before the copy.
874 if (copied < ulen || UDP_SKB_CB(skb)->partial_cov) {
875 if (udp_lib_checksum_complete(skb))
876 goto csum_copy_err;
879 if (skb_csum_unnecessary(skb))
880 err = skb_copy_datagram_iovec(skb, sizeof(struct udphdr),
881 msg->msg_iov, copied );
882 else {
883 err = skb_copy_and_csum_datagram_iovec(skb, sizeof(struct udphdr), msg->msg_iov);
885 if (err == -EINVAL)
886 goto csum_copy_err;
889 if (err)
890 goto out_free;
892 if (!peeked)
893 UDP_INC_STATS_USER(sock_net(sk),
894 UDP_MIB_INDATAGRAMS, is_udplite);
896 sock_recv_timestamp(msg, sk, skb);
898 /* Copy the address. */
899 if (sin)
901 sin->sin_family = AF_INET;
902 sin->sin_port = udp_hdr(skb)->source;
903 sin->sin_addr.s_addr = ip_hdr(skb)->saddr;
904 memset(sin->sin_zero, 0, sizeof(sin->sin_zero));
906 if (inet->cmsg_flags)
907 ip_cmsg_recv(msg, skb);
909 err = copied;
910 if (flags & MSG_TRUNC)
911 err = ulen;
913 out_free:
914 lock_sock(sk);
915 skb_free_datagram(sk, skb);
916 release_sock(sk);
917 out:
918 return err;
920 csum_copy_err:
921 lock_sock(sk);
922 if (!skb_kill_datagram(sk, skb, flags))
923 UDP_INC_STATS_USER(sock_net(sk), UDP_MIB_INERRORS, is_udplite);
924 release_sock(sk);
926 if (noblock)
927 return -EAGAIN;
928 goto try_again;
932 int udp_disconnect(struct sock *sk, int flags)
934 struct inet_sock *inet = inet_sk(sk);
936 * 1003.1g - break association.
939 sk->sk_state = TCP_CLOSE;
940 inet->daddr = 0;
941 inet->dport = 0;
942 sk->sk_bound_dev_if = 0;
943 if (!(sk->sk_userlocks & SOCK_BINDADDR_LOCK))
944 inet_reset_saddr(sk);
946 if (!(sk->sk_userlocks & SOCK_BINDPORT_LOCK)) {
947 sk->sk_prot->unhash(sk);
948 inet->sport = 0;
950 sk_dst_reset(sk);
951 return 0;
954 /* returns:
955 * -1: error
956 * 0: success
957 * >0: "udp encap" protocol resubmission
959 * Note that in the success and error cases, the skb is assumed to
960 * have either been requeued or freed.
962 int udp_queue_rcv_skb(struct sock * sk, struct sk_buff *skb)
964 struct udp_sock *up = udp_sk(sk);
965 int rc;
966 int is_udplite = IS_UDPLITE(sk);
969 * Charge it to the socket, dropping if the queue is full.
971 if (!xfrm4_policy_check(sk, XFRM_POLICY_IN, skb))
972 goto drop;
973 nf_reset(skb);
975 if (up->encap_type) {
977 * This is an encapsulation socket so pass the skb to
978 * the socket's udp_encap_rcv() hook. Otherwise, just
979 * fall through and pass this up the UDP socket.
980 * up->encap_rcv() returns the following value:
981 * =0 if skb was successfully passed to the encap
982 * handler or was discarded by it.
983 * >0 if skb should be passed on to UDP.
984 * <0 if skb should be resubmitted as proto -N
987 /* if we're overly short, let UDP handle it */
988 if (skb->len > sizeof(struct udphdr) &&
989 up->encap_rcv != NULL) {
990 int ret;
992 ret = (*up->encap_rcv)(sk, skb);
993 if (ret <= 0) {
994 UDP_INC_STATS_BH(sock_net(sk),
995 UDP_MIB_INDATAGRAMS,
996 is_udplite);
997 return -ret;
1001 /* FALLTHROUGH -- it's a UDP Packet */
1005 * UDP-Lite specific tests, ignored on UDP sockets
1007 if ((is_udplite & UDPLITE_RECV_CC) && UDP_SKB_CB(skb)->partial_cov) {
1010 * MIB statistics other than incrementing the error count are
1011 * disabled for the following two types of errors: these depend
1012 * on the application settings, not on the functioning of the
1013 * protocol stack as such.
1015 * RFC 3828 here recommends (sec 3.3): "There should also be a
1016 * way ... to ... at least let the receiving application block
1017 * delivery of packets with coverage values less than a value
1018 * provided by the application."
1020 if (up->pcrlen == 0) { /* full coverage was set */
1021 LIMIT_NETDEBUG(KERN_WARNING "UDPLITE: partial coverage "
1022 "%d while full coverage %d requested\n",
1023 UDP_SKB_CB(skb)->cscov, skb->len);
1024 goto drop;
1026 /* The next case involves violating the min. coverage requested
1027 * by the receiver. This is subtle: if receiver wants x and x is
1028 * greater than the buffersize/MTU then receiver will complain
1029 * that it wants x while sender emits packets of smaller size y.
1030 * Therefore the above ...()->partial_cov statement is essential.
1032 if (UDP_SKB_CB(skb)->cscov < up->pcrlen) {
1033 LIMIT_NETDEBUG(KERN_WARNING
1034 "UDPLITE: coverage %d too small, need min %d\n",
1035 UDP_SKB_CB(skb)->cscov, up->pcrlen);
1036 goto drop;
1040 if (sk->sk_filter) {
1041 if (udp_lib_checksum_complete(skb))
1042 goto drop;
1045 if ((rc = sock_queue_rcv_skb(sk,skb)) < 0) {
1046 /* Note that an ENOMEM error is charged twice */
1047 if (rc == -ENOMEM) {
1048 UDP_INC_STATS_BH(sock_net(sk),
1049 UDP_MIB_RCVBUFERRORS, is_udplite);
1050 atomic_inc(&sk->sk_drops);
1052 goto drop;
1055 return 0;
1057 drop:
1058 UDP_INC_STATS_BH(sock_net(sk), UDP_MIB_INERRORS, is_udplite);
1059 kfree_skb(skb);
1060 return -1;
1064 * Multicasts and broadcasts go to each listener.
1066 * Note: called only from the BH handler context,
1067 * so we don't need to lock the hashes.
1069 static int __udp4_lib_mcast_deliver(struct net *net, struct sk_buff *skb,
1070 struct udphdr *uh,
1071 __be32 saddr, __be32 daddr,
1072 struct hlist_head udptable[])
1074 struct sock *sk;
1075 int dif;
1077 read_lock(&udp_hash_lock);
1078 sk = sk_head(&udptable[udp_hashfn(net, ntohs(uh->dest))]);
1079 dif = skb->dev->ifindex;
1080 sk = udp_v4_mcast_next(sk, uh->dest, daddr, uh->source, saddr, dif);
1081 if (sk) {
1082 struct sock *sknext = NULL;
1084 do {
1085 struct sk_buff *skb1 = skb;
1087 sknext = udp_v4_mcast_next(sk_next(sk), uh->dest, daddr,
1088 uh->source, saddr, dif);
1089 if (sknext)
1090 skb1 = skb_clone(skb, GFP_ATOMIC);
1092 if (skb1) {
1093 int ret = 0;
1095 bh_lock_sock_nested(sk);
1096 if (!sock_owned_by_user(sk))
1097 ret = udp_queue_rcv_skb(sk, skb1);
1098 else
1099 sk_add_backlog(sk, skb1);
1100 bh_unlock_sock(sk);
1102 if (ret > 0)
1103 /* we should probably re-process instead
1104 * of dropping packets here. */
1105 kfree_skb(skb1);
1107 sk = sknext;
1108 } while (sknext);
1109 } else
1110 kfree_skb(skb);
1111 read_unlock(&udp_hash_lock);
1112 return 0;
1115 /* Initialize UDP checksum. If exited with zero value (success),
1116 * CHECKSUM_UNNECESSARY means, that no more checks are required.
1117 * Otherwise, csum completion requires chacksumming packet body,
1118 * including udp header and folding it to skb->csum.
1120 static inline int udp4_csum_init(struct sk_buff *skb, struct udphdr *uh,
1121 int proto)
1123 const struct iphdr *iph;
1124 int err;
1126 UDP_SKB_CB(skb)->partial_cov = 0;
1127 UDP_SKB_CB(skb)->cscov = skb->len;
1129 if (proto == IPPROTO_UDPLITE) {
1130 err = udplite_checksum_init(skb, uh);
1131 if (err)
1132 return err;
1135 iph = ip_hdr(skb);
1136 if (uh->check == 0) {
1137 skb->ip_summed = CHECKSUM_UNNECESSARY;
1138 } else if (skb->ip_summed == CHECKSUM_COMPLETE) {
1139 if (!csum_tcpudp_magic(iph->saddr, iph->daddr, skb->len,
1140 proto, skb->csum))
1141 skb->ip_summed = CHECKSUM_UNNECESSARY;
1143 if (!skb_csum_unnecessary(skb))
1144 skb->csum = csum_tcpudp_nofold(iph->saddr, iph->daddr,
1145 skb->len, proto, 0);
1146 /* Probably, we should checksum udp header (it should be in cache
1147 * in any case) and data in tiny packets (< rx copybreak).
1150 return 0;
1154 * All we need to do is get the socket, and then do a checksum.
1157 int __udp4_lib_rcv(struct sk_buff *skb, struct hlist_head udptable[],
1158 int proto)
1160 struct sock *sk;
1161 struct udphdr *uh = udp_hdr(skb);
1162 unsigned short ulen;
1163 struct rtable *rt = (struct rtable*)skb->dst;
1164 __be32 saddr = ip_hdr(skb)->saddr;
1165 __be32 daddr = ip_hdr(skb)->daddr;
1166 struct net *net = dev_net(skb->dev);
1169 * Validate the packet.
1171 if (!pskb_may_pull(skb, sizeof(struct udphdr)))
1172 goto drop; /* No space for header. */
1174 ulen = ntohs(uh->len);
1175 if (ulen > skb->len)
1176 goto short_packet;
1178 if (proto == IPPROTO_UDP) {
1179 /* UDP validates ulen. */
1180 if (ulen < sizeof(*uh) || pskb_trim_rcsum(skb, ulen))
1181 goto short_packet;
1182 uh = udp_hdr(skb);
1185 if (udp4_csum_init(skb, uh, proto))
1186 goto csum_error;
1188 if (rt->rt_flags & (RTCF_BROADCAST|RTCF_MULTICAST))
1189 return __udp4_lib_mcast_deliver(net, skb, uh,
1190 saddr, daddr, udptable);
1192 sk = __udp4_lib_lookup(net, saddr, uh->source, daddr,
1193 uh->dest, inet_iif(skb), udptable);
1195 if (sk != NULL) {
1196 int ret = 0;
1197 bh_lock_sock_nested(sk);
1198 if (!sock_owned_by_user(sk))
1199 ret = udp_queue_rcv_skb(sk, skb);
1200 else
1201 sk_add_backlog(sk, skb);
1202 bh_unlock_sock(sk);
1203 sock_put(sk);
1205 /* a return value > 0 means to resubmit the input, but
1206 * it wants the return to be -protocol, or 0
1208 if (ret > 0)
1209 return -ret;
1210 return 0;
1213 if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb))
1214 goto drop;
1215 nf_reset(skb);
1217 /* No socket. Drop packet silently, if checksum is wrong */
1218 if (udp_lib_checksum_complete(skb))
1219 goto csum_error;
1221 UDP_INC_STATS_BH(net, UDP_MIB_NOPORTS, proto == IPPROTO_UDPLITE);
1222 icmp_send(skb, ICMP_DEST_UNREACH, ICMP_PORT_UNREACH, 0);
1225 * Hmm. We got an UDP packet to a port to which we
1226 * don't wanna listen. Ignore it.
1228 kfree_skb(skb);
1229 return 0;
1231 short_packet:
1232 LIMIT_NETDEBUG(KERN_DEBUG "UDP%s: short packet: From " NIPQUAD_FMT ":%u %d/%d to " NIPQUAD_FMT ":%u\n",
1233 proto == IPPROTO_UDPLITE ? "-Lite" : "",
1234 NIPQUAD(saddr),
1235 ntohs(uh->source),
1236 ulen,
1237 skb->len,
1238 NIPQUAD(daddr),
1239 ntohs(uh->dest));
1240 goto drop;
1242 csum_error:
1244 * RFC1122: OK. Discards the bad packet silently (as far as
1245 * the network is concerned, anyway) as per 4.1.3.4 (MUST).
1247 LIMIT_NETDEBUG(KERN_DEBUG "UDP%s: bad checksum. From " NIPQUAD_FMT ":%u to " NIPQUAD_FMT ":%u ulen %d\n",
1248 proto == IPPROTO_UDPLITE ? "-Lite" : "",
1249 NIPQUAD(saddr),
1250 ntohs(uh->source),
1251 NIPQUAD(daddr),
1252 ntohs(uh->dest),
1253 ulen);
1254 drop:
1255 UDP_INC_STATS_BH(net, UDP_MIB_INERRORS, proto == IPPROTO_UDPLITE);
1256 kfree_skb(skb);
1257 return 0;
1260 int udp_rcv(struct sk_buff *skb)
1262 return __udp4_lib_rcv(skb, udp_hash, IPPROTO_UDP);
1265 void udp_destroy_sock(struct sock *sk)
1267 lock_sock(sk);
1268 udp_flush_pending_frames(sk);
1269 release_sock(sk);
1273 * Socket option code for UDP
1275 int udp_lib_setsockopt(struct sock *sk, int level, int optname,
1276 char __user *optval, int optlen,
1277 int (*push_pending_frames)(struct sock *))
1279 struct udp_sock *up = udp_sk(sk);
1280 int val;
1281 int err = 0;
1282 int is_udplite = IS_UDPLITE(sk);
1284 if (optlen<sizeof(int))
1285 return -EINVAL;
1287 if (get_user(val, (int __user *)optval))
1288 return -EFAULT;
1290 switch (optname) {
1291 case UDP_CORK:
1292 if (val != 0) {
1293 up->corkflag = 1;
1294 } else {
1295 up->corkflag = 0;
1296 lock_sock(sk);
1297 (*push_pending_frames)(sk);
1298 release_sock(sk);
1300 break;
1302 case UDP_ENCAP:
1303 switch (val) {
1304 case 0:
1305 case UDP_ENCAP_ESPINUDP:
1306 case UDP_ENCAP_ESPINUDP_NON_IKE:
1307 up->encap_rcv = xfrm4_udp_encap_rcv;
1308 /* FALLTHROUGH */
1309 case UDP_ENCAP_L2TPINUDP:
1310 up->encap_type = val;
1311 break;
1312 default:
1313 err = -ENOPROTOOPT;
1314 break;
1316 break;
1319 * UDP-Lite's partial checksum coverage (RFC 3828).
1321 /* The sender sets actual checksum coverage length via this option.
1322 * The case coverage > packet length is handled by send module. */
1323 case UDPLITE_SEND_CSCOV:
1324 if (!is_udplite) /* Disable the option on UDP sockets */
1325 return -ENOPROTOOPT;
1326 if (val != 0 && val < 8) /* Illegal coverage: use default (8) */
1327 val = 8;
1328 else if (val > USHORT_MAX)
1329 val = USHORT_MAX;
1330 up->pcslen = val;
1331 up->pcflag |= UDPLITE_SEND_CC;
1332 break;
1334 /* The receiver specifies a minimum checksum coverage value. To make
1335 * sense, this should be set to at least 8 (as done below). If zero is
1336 * used, this again means full checksum coverage. */
1337 case UDPLITE_RECV_CSCOV:
1338 if (!is_udplite) /* Disable the option on UDP sockets */
1339 return -ENOPROTOOPT;
1340 if (val != 0 && val < 8) /* Avoid silly minimal values. */
1341 val = 8;
1342 else if (val > USHORT_MAX)
1343 val = USHORT_MAX;
1344 up->pcrlen = val;
1345 up->pcflag |= UDPLITE_RECV_CC;
1346 break;
1348 default:
1349 err = -ENOPROTOOPT;
1350 break;
1353 return err;
1356 int udp_setsockopt(struct sock *sk, int level, int optname,
1357 char __user *optval, int optlen)
1359 if (level == SOL_UDP || level == SOL_UDPLITE)
1360 return udp_lib_setsockopt(sk, level, optname, optval, optlen,
1361 udp_push_pending_frames);
1362 return ip_setsockopt(sk, level, optname, optval, optlen);
1365 #ifdef CONFIG_COMPAT
1366 int compat_udp_setsockopt(struct sock *sk, int level, int optname,
1367 char __user *optval, int optlen)
1369 if (level == SOL_UDP || level == SOL_UDPLITE)
1370 return udp_lib_setsockopt(sk, level, optname, optval, optlen,
1371 udp_push_pending_frames);
1372 return compat_ip_setsockopt(sk, level, optname, optval, optlen);
1374 #endif
1376 int udp_lib_getsockopt(struct sock *sk, int level, int optname,
1377 char __user *optval, int __user *optlen)
1379 struct udp_sock *up = udp_sk(sk);
1380 int val, len;
1382 if (get_user(len,optlen))
1383 return -EFAULT;
1385 len = min_t(unsigned int, len, sizeof(int));
1387 if (len < 0)
1388 return -EINVAL;
1390 switch (optname) {
1391 case UDP_CORK:
1392 val = up->corkflag;
1393 break;
1395 case UDP_ENCAP:
1396 val = up->encap_type;
1397 break;
1399 /* The following two cannot be changed on UDP sockets, the return is
1400 * always 0 (which corresponds to the full checksum coverage of UDP). */
1401 case UDPLITE_SEND_CSCOV:
1402 val = up->pcslen;
1403 break;
1405 case UDPLITE_RECV_CSCOV:
1406 val = up->pcrlen;
1407 break;
1409 default:
1410 return -ENOPROTOOPT;
1413 if (put_user(len, optlen))
1414 return -EFAULT;
1415 if (copy_to_user(optval, &val,len))
1416 return -EFAULT;
1417 return 0;
1420 int udp_getsockopt(struct sock *sk, int level, int optname,
1421 char __user *optval, int __user *optlen)
1423 if (level == SOL_UDP || level == SOL_UDPLITE)
1424 return udp_lib_getsockopt(sk, level, optname, optval, optlen);
1425 return ip_getsockopt(sk, level, optname, optval, optlen);
1428 #ifdef CONFIG_COMPAT
1429 int compat_udp_getsockopt(struct sock *sk, int level, int optname,
1430 char __user *optval, int __user *optlen)
1432 if (level == SOL_UDP || level == SOL_UDPLITE)
1433 return udp_lib_getsockopt(sk, level, optname, optval, optlen);
1434 return compat_ip_getsockopt(sk, level, optname, optval, optlen);
1436 #endif
1438 * udp_poll - wait for a UDP event.
1439 * @file - file struct
1440 * @sock - socket
1441 * @wait - poll table
1443 * This is same as datagram poll, except for the special case of
1444 * blocking sockets. If application is using a blocking fd
1445 * and a packet with checksum error is in the queue;
1446 * then it could get return from select indicating data available
1447 * but then block when reading it. Add special case code
1448 * to work around these arguably broken applications.
1450 unsigned int udp_poll(struct file *file, struct socket *sock, poll_table *wait)
1452 unsigned int mask = datagram_poll(file, sock, wait);
1453 struct sock *sk = sock->sk;
1454 int is_lite = IS_UDPLITE(sk);
1456 /* Check for false positives due to checksum errors */
1457 if ( (mask & POLLRDNORM) &&
1458 !(file->f_flags & O_NONBLOCK) &&
1459 !(sk->sk_shutdown & RCV_SHUTDOWN)){
1460 struct sk_buff_head *rcvq = &sk->sk_receive_queue;
1461 struct sk_buff *skb;
1463 spin_lock_bh(&rcvq->lock);
1464 while ((skb = skb_peek(rcvq)) != NULL &&
1465 udp_lib_checksum_complete(skb)) {
1466 UDP_INC_STATS_BH(sock_net(sk),
1467 UDP_MIB_INERRORS, is_lite);
1468 __skb_unlink(skb, rcvq);
1469 kfree_skb(skb);
1471 spin_unlock_bh(&rcvq->lock);
1473 /* nothing to see, move along */
1474 if (skb == NULL)
1475 mask &= ~(POLLIN | POLLRDNORM);
1478 return mask;
1482 struct proto udp_prot = {
1483 .name = "UDP",
1484 .owner = THIS_MODULE,
1485 .close = udp_lib_close,
1486 .connect = ip4_datagram_connect,
1487 .disconnect = udp_disconnect,
1488 .ioctl = udp_ioctl,
1489 .destroy = udp_destroy_sock,
1490 .setsockopt = udp_setsockopt,
1491 .getsockopt = udp_getsockopt,
1492 .sendmsg = udp_sendmsg,
1493 .recvmsg = udp_recvmsg,
1494 .sendpage = udp_sendpage,
1495 .backlog_rcv = udp_queue_rcv_skb,
1496 .hash = udp_lib_hash,
1497 .unhash = udp_lib_unhash,
1498 .get_port = udp_v4_get_port,
1499 .memory_allocated = &udp_memory_allocated,
1500 .sysctl_mem = sysctl_udp_mem,
1501 .sysctl_wmem = &sysctl_udp_wmem_min,
1502 .sysctl_rmem = &sysctl_udp_rmem_min,
1503 .obj_size = sizeof(struct udp_sock),
1504 .h.udp_hash = udp_hash,
1505 #ifdef CONFIG_COMPAT
1506 .compat_setsockopt = compat_udp_setsockopt,
1507 .compat_getsockopt = compat_udp_getsockopt,
1508 #endif
1511 /* ------------------------------------------------------------------------ */
1512 #ifdef CONFIG_PROC_FS
1514 static struct sock *udp_get_first(struct seq_file *seq)
1516 struct sock *sk;
1517 struct udp_iter_state *state = seq->private;
1518 struct net *net = seq_file_net(seq);
1520 for (state->bucket = 0; state->bucket < UDP_HTABLE_SIZE; ++state->bucket) {
1521 struct hlist_node *node;
1522 sk_for_each(sk, node, state->hashtable + state->bucket) {
1523 if (!net_eq(sock_net(sk), net))
1524 continue;
1525 if (sk->sk_family == state->family)
1526 goto found;
1529 sk = NULL;
1530 found:
1531 return sk;
1534 static struct sock *udp_get_next(struct seq_file *seq, struct sock *sk)
1536 struct udp_iter_state *state = seq->private;
1537 struct net *net = seq_file_net(seq);
1539 do {
1540 sk = sk_next(sk);
1541 try_again:
1543 } while (sk && (!net_eq(sock_net(sk), net) || sk->sk_family != state->family));
1545 if (!sk && ++state->bucket < UDP_HTABLE_SIZE) {
1546 sk = sk_head(state->hashtable + state->bucket);
1547 goto try_again;
1549 return sk;
1552 static struct sock *udp_get_idx(struct seq_file *seq, loff_t pos)
1554 struct sock *sk = udp_get_first(seq);
1556 if (sk)
1557 while (pos && (sk = udp_get_next(seq, sk)) != NULL)
1558 --pos;
1559 return pos ? NULL : sk;
1562 static void *udp_seq_start(struct seq_file *seq, loff_t *pos)
1563 __acquires(udp_hash_lock)
1565 read_lock(&udp_hash_lock);
1566 return *pos ? udp_get_idx(seq, *pos-1) : SEQ_START_TOKEN;
1569 static void *udp_seq_next(struct seq_file *seq, void *v, loff_t *pos)
1571 struct sock *sk;
1573 if (v == SEQ_START_TOKEN)
1574 sk = udp_get_idx(seq, 0);
1575 else
1576 sk = udp_get_next(seq, v);
1578 ++*pos;
1579 return sk;
1582 static void udp_seq_stop(struct seq_file *seq, void *v)
1583 __releases(udp_hash_lock)
1585 read_unlock(&udp_hash_lock);
1588 static int udp_seq_open(struct inode *inode, struct file *file)
1590 struct udp_seq_afinfo *afinfo = PDE(inode)->data;
1591 struct udp_iter_state *s;
1592 int err;
1594 err = seq_open_net(inode, file, &afinfo->seq_ops,
1595 sizeof(struct udp_iter_state));
1596 if (err < 0)
1597 return err;
1599 s = ((struct seq_file *)file->private_data)->private;
1600 s->family = afinfo->family;
1601 s->hashtable = afinfo->hashtable;
1602 return err;
1605 /* ------------------------------------------------------------------------ */
1606 int udp_proc_register(struct net *net, struct udp_seq_afinfo *afinfo)
1608 struct proc_dir_entry *p;
1609 int rc = 0;
1611 afinfo->seq_fops.open = udp_seq_open;
1612 afinfo->seq_fops.read = seq_read;
1613 afinfo->seq_fops.llseek = seq_lseek;
1614 afinfo->seq_fops.release = seq_release_net;
1616 afinfo->seq_ops.start = udp_seq_start;
1617 afinfo->seq_ops.next = udp_seq_next;
1618 afinfo->seq_ops.stop = udp_seq_stop;
1620 p = proc_create_data(afinfo->name, S_IRUGO, net->proc_net,
1621 &afinfo->seq_fops, afinfo);
1622 if (!p)
1623 rc = -ENOMEM;
1624 return rc;
1627 void udp_proc_unregister(struct net *net, struct udp_seq_afinfo *afinfo)
1629 proc_net_remove(net, afinfo->name);
1632 /* ------------------------------------------------------------------------ */
1633 static void udp4_format_sock(struct sock *sp, struct seq_file *f,
1634 int bucket, int *len)
1636 struct inet_sock *inet = inet_sk(sp);
1637 __be32 dest = inet->daddr;
1638 __be32 src = inet->rcv_saddr;
1639 __u16 destp = ntohs(inet->dport);
1640 __u16 srcp = ntohs(inet->sport);
1642 seq_printf(f, "%4d: %08X:%04X %08X:%04X"
1643 " %02X %08X:%08X %02X:%08lX %08X %5d %8d %lu %d %p %d%n",
1644 bucket, src, srcp, dest, destp, sp->sk_state,
1645 atomic_read(&sp->sk_wmem_alloc),
1646 atomic_read(&sp->sk_rmem_alloc),
1647 0, 0L, 0, sock_i_uid(sp), 0, sock_i_ino(sp),
1648 atomic_read(&sp->sk_refcnt), sp,
1649 atomic_read(&sp->sk_drops), len);
1652 int udp4_seq_show(struct seq_file *seq, void *v)
1654 if (v == SEQ_START_TOKEN)
1655 seq_printf(seq, "%-127s\n",
1656 " sl local_address rem_address st tx_queue "
1657 "rx_queue tr tm->when retrnsmt uid timeout "
1658 "inode ref pointer drops");
1659 else {
1660 struct udp_iter_state *state = seq->private;
1661 int len;
1663 udp4_format_sock(v, seq, state->bucket, &len);
1664 seq_printf(seq, "%*s\n", 127 - len ,"");
1666 return 0;
1669 /* ------------------------------------------------------------------------ */
1670 static struct udp_seq_afinfo udp4_seq_afinfo = {
1671 .name = "udp",
1672 .family = AF_INET,
1673 .hashtable = udp_hash,
1674 .seq_fops = {
1675 .owner = THIS_MODULE,
1677 .seq_ops = {
1678 .show = udp4_seq_show,
1682 static int udp4_proc_init_net(struct net *net)
1684 return udp_proc_register(net, &udp4_seq_afinfo);
1687 static void udp4_proc_exit_net(struct net *net)
1689 udp_proc_unregister(net, &udp4_seq_afinfo);
1692 static struct pernet_operations udp4_net_ops = {
1693 .init = udp4_proc_init_net,
1694 .exit = udp4_proc_exit_net,
1697 int __init udp4_proc_init(void)
1699 return register_pernet_subsys(&udp4_net_ops);
1702 void udp4_proc_exit(void)
1704 unregister_pernet_subsys(&udp4_net_ops);
1706 #endif /* CONFIG_PROC_FS */
1708 void __init udp_init(void)
1710 unsigned long limit;
1712 /* Set the pressure threshold up by the same strategy of TCP. It is a
1713 * fraction of global memory that is up to 1/2 at 256 MB, decreasing
1714 * toward zero with the amount of memory, with a floor of 128 pages.
1716 limit = min(nr_all_pages, 1UL<<(28-PAGE_SHIFT)) >> (20-PAGE_SHIFT);
1717 limit = (limit * (nr_all_pages >> (20-PAGE_SHIFT))) >> (PAGE_SHIFT-11);
1718 limit = max(limit, 128UL);
1719 sysctl_udp_mem[0] = limit / 4 * 3;
1720 sysctl_udp_mem[1] = limit;
1721 sysctl_udp_mem[2] = sysctl_udp_mem[0] * 2;
1723 sysctl_udp_rmem_min = SK_MEM_QUANTUM;
1724 sysctl_udp_wmem_min = SK_MEM_QUANTUM;
1727 EXPORT_SYMBOL(udp_disconnect);
1728 EXPORT_SYMBOL(udp_hash);
1729 EXPORT_SYMBOL(udp_hash_lock);
1730 EXPORT_SYMBOL(udp_ioctl);
1731 EXPORT_SYMBOL(udp_prot);
1732 EXPORT_SYMBOL(udp_sendmsg);
1733 EXPORT_SYMBOL(udp_lib_getsockopt);
1734 EXPORT_SYMBOL(udp_lib_setsockopt);
1735 EXPORT_SYMBOL(udp_poll);
1736 EXPORT_SYMBOL(udp_lib_get_port);
1738 #ifdef CONFIG_PROC_FS
1739 EXPORT_SYMBOL(udp_proc_register);
1740 EXPORT_SYMBOL(udp_proc_unregister);
1741 #endif