hugetlb: reserve huge pages for reliable MAP_PRIVATE hugetlbfs mappings until fork()
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / net / ipv4 / tcp_input.c
blob1f5e6049883e245e5042601456d1c38f5fd21ed9
1 /*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
6 * Implementation of the Transmission Control Protocol(TCP).
8 * Authors: Ross Biro
9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10 * Mark Evans, <evansmp@uhura.aston.ac.uk>
11 * Corey Minyard <wf-rch!minyard@relay.EU.net>
12 * Florian La Roche, <flla@stud.uni-sb.de>
13 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
14 * Linus Torvalds, <torvalds@cs.helsinki.fi>
15 * Alan Cox, <gw4pts@gw4pts.ampr.org>
16 * Matthew Dillon, <dillon@apollo.west.oic.com>
17 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
18 * Jorge Cwik, <jorge@laser.satlink.net>
22 * Changes:
23 * Pedro Roque : Fast Retransmit/Recovery.
24 * Two receive queues.
25 * Retransmit queue handled by TCP.
26 * Better retransmit timer handling.
27 * New congestion avoidance.
28 * Header prediction.
29 * Variable renaming.
31 * Eric : Fast Retransmit.
32 * Randy Scott : MSS option defines.
33 * Eric Schenk : Fixes to slow start algorithm.
34 * Eric Schenk : Yet another double ACK bug.
35 * Eric Schenk : Delayed ACK bug fixes.
36 * Eric Schenk : Floyd style fast retrans war avoidance.
37 * David S. Miller : Don't allow zero congestion window.
38 * Eric Schenk : Fix retransmitter so that it sends
39 * next packet on ack of previous packet.
40 * Andi Kleen : Moved open_request checking here
41 * and process RSTs for open_requests.
42 * Andi Kleen : Better prune_queue, and other fixes.
43 * Andrey Savochkin: Fix RTT measurements in the presence of
44 * timestamps.
45 * Andrey Savochkin: Check sequence numbers correctly when
46 * removing SACKs due to in sequence incoming
47 * data segments.
48 * Andi Kleen: Make sure we never ack data there is not
49 * enough room for. Also make this condition
50 * a fatal error if it might still happen.
51 * Andi Kleen: Add tcp_measure_rcv_mss to make
52 * connections with MSS<min(MTU,ann. MSS)
53 * work without delayed acks.
54 * Andi Kleen: Process packets with PSH set in the
55 * fast path.
56 * J Hadi Salim: ECN support
57 * Andrei Gurtov,
58 * Pasi Sarolahti,
59 * Panu Kuhlberg: Experimental audit of TCP (re)transmission
60 * engine. Lots of bugs are found.
61 * Pasi Sarolahti: F-RTO for dealing with spurious RTOs
64 #include <linux/mm.h>
65 #include <linux/module.h>
66 #include <linux/sysctl.h>
67 #include <net/dst.h>
68 #include <net/tcp.h>
69 #include <net/inet_common.h>
70 #include <linux/ipsec.h>
71 #include <asm/unaligned.h>
72 #include <net/netdma.h>
74 int sysctl_tcp_timestamps __read_mostly = 1;
75 int sysctl_tcp_window_scaling __read_mostly = 1;
76 int sysctl_tcp_sack __read_mostly = 1;
77 int sysctl_tcp_fack __read_mostly = 1;
78 int sysctl_tcp_reordering __read_mostly = TCP_FASTRETRANS_THRESH;
79 int sysctl_tcp_ecn __read_mostly;
80 int sysctl_tcp_dsack __read_mostly = 1;
81 int sysctl_tcp_app_win __read_mostly = 31;
82 int sysctl_tcp_adv_win_scale __read_mostly = 2;
84 int sysctl_tcp_stdurg __read_mostly;
85 int sysctl_tcp_rfc1337 __read_mostly;
86 int sysctl_tcp_max_orphans __read_mostly = NR_FILE;
87 int sysctl_tcp_frto __read_mostly = 2;
88 int sysctl_tcp_frto_response __read_mostly;
89 int sysctl_tcp_nometrics_save __read_mostly;
91 int sysctl_tcp_moderate_rcvbuf __read_mostly = 1;
92 int sysctl_tcp_abc __read_mostly;
94 #define FLAG_DATA 0x01 /* Incoming frame contained data. */
95 #define FLAG_WIN_UPDATE 0x02 /* Incoming ACK was a window update. */
96 #define FLAG_DATA_ACKED 0x04 /* This ACK acknowledged new data. */
97 #define FLAG_RETRANS_DATA_ACKED 0x08 /* "" "" some of which was retransmitted. */
98 #define FLAG_SYN_ACKED 0x10 /* This ACK acknowledged SYN. */
99 #define FLAG_DATA_SACKED 0x20 /* New SACK. */
100 #define FLAG_ECE 0x40 /* ECE in this ACK */
101 #define FLAG_DATA_LOST 0x80 /* SACK detected data lossage. */
102 #define FLAG_SLOWPATH 0x100 /* Do not skip RFC checks for window update.*/
103 #define FLAG_ONLY_ORIG_SACKED 0x200 /* SACKs only non-rexmit sent before RTO */
104 #define FLAG_SND_UNA_ADVANCED 0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */
105 #define FLAG_DSACKING_ACK 0x800 /* SACK blocks contained D-SACK info */
106 #define FLAG_NONHEAD_RETRANS_ACKED 0x1000 /* Non-head rexmitted data was ACKed */
107 #define FLAG_SACK_RENEGING 0x2000 /* snd_una advanced to a sacked seq */
109 #define FLAG_ACKED (FLAG_DATA_ACKED|FLAG_SYN_ACKED)
110 #define FLAG_NOT_DUP (FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED)
111 #define FLAG_CA_ALERT (FLAG_DATA_SACKED|FLAG_ECE)
112 #define FLAG_FORWARD_PROGRESS (FLAG_ACKED|FLAG_DATA_SACKED)
113 #define FLAG_ANY_PROGRESS (FLAG_FORWARD_PROGRESS|FLAG_SND_UNA_ADVANCED)
115 #define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH)
116 #define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH))
118 /* Adapt the MSS value used to make delayed ack decision to the
119 * real world.
121 static void tcp_measure_rcv_mss(struct sock *sk, const struct sk_buff *skb)
123 struct inet_connection_sock *icsk = inet_csk(sk);
124 const unsigned int lss = icsk->icsk_ack.last_seg_size;
125 unsigned int len;
127 icsk->icsk_ack.last_seg_size = 0;
129 /* skb->len may jitter because of SACKs, even if peer
130 * sends good full-sized frames.
132 len = skb_shinfo(skb)->gso_size ? : skb->len;
133 if (len >= icsk->icsk_ack.rcv_mss) {
134 icsk->icsk_ack.rcv_mss = len;
135 } else {
136 /* Otherwise, we make more careful check taking into account,
137 * that SACKs block is variable.
139 * "len" is invariant segment length, including TCP header.
141 len += skb->data - skb_transport_header(skb);
142 if (len >= TCP_MIN_RCVMSS + sizeof(struct tcphdr) ||
143 /* If PSH is not set, packet should be
144 * full sized, provided peer TCP is not badly broken.
145 * This observation (if it is correct 8)) allows
146 * to handle super-low mtu links fairly.
148 (len >= TCP_MIN_MSS + sizeof(struct tcphdr) &&
149 !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) {
150 /* Subtract also invariant (if peer is RFC compliant),
151 * tcp header plus fixed timestamp option length.
152 * Resulting "len" is MSS free of SACK jitter.
154 len -= tcp_sk(sk)->tcp_header_len;
155 icsk->icsk_ack.last_seg_size = len;
156 if (len == lss) {
157 icsk->icsk_ack.rcv_mss = len;
158 return;
161 if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED)
162 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2;
163 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
167 static void tcp_incr_quickack(struct sock *sk)
169 struct inet_connection_sock *icsk = inet_csk(sk);
170 unsigned quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss);
172 if (quickacks == 0)
173 quickacks = 2;
174 if (quickacks > icsk->icsk_ack.quick)
175 icsk->icsk_ack.quick = min(quickacks, TCP_MAX_QUICKACKS);
178 void tcp_enter_quickack_mode(struct sock *sk)
180 struct inet_connection_sock *icsk = inet_csk(sk);
181 tcp_incr_quickack(sk);
182 icsk->icsk_ack.pingpong = 0;
183 icsk->icsk_ack.ato = TCP_ATO_MIN;
186 /* Send ACKs quickly, if "quick" count is not exhausted
187 * and the session is not interactive.
190 static inline int tcp_in_quickack_mode(const struct sock *sk)
192 const struct inet_connection_sock *icsk = inet_csk(sk);
193 return icsk->icsk_ack.quick && !icsk->icsk_ack.pingpong;
196 static inline void TCP_ECN_queue_cwr(struct tcp_sock *tp)
198 if (tp->ecn_flags & TCP_ECN_OK)
199 tp->ecn_flags |= TCP_ECN_QUEUE_CWR;
202 static inline void TCP_ECN_accept_cwr(struct tcp_sock *tp, struct sk_buff *skb)
204 if (tcp_hdr(skb)->cwr)
205 tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
208 static inline void TCP_ECN_withdraw_cwr(struct tcp_sock *tp)
210 tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
213 static inline void TCP_ECN_check_ce(struct tcp_sock *tp, struct sk_buff *skb)
215 if (tp->ecn_flags & TCP_ECN_OK) {
216 if (INET_ECN_is_ce(TCP_SKB_CB(skb)->flags))
217 tp->ecn_flags |= TCP_ECN_DEMAND_CWR;
218 /* Funny extension: if ECT is not set on a segment,
219 * it is surely retransmit. It is not in ECN RFC,
220 * but Linux follows this rule. */
221 else if (INET_ECN_is_not_ect((TCP_SKB_CB(skb)->flags)))
222 tcp_enter_quickack_mode((struct sock *)tp);
226 static inline void TCP_ECN_rcv_synack(struct tcp_sock *tp, struct tcphdr *th)
228 if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || th->cwr))
229 tp->ecn_flags &= ~TCP_ECN_OK;
232 static inline void TCP_ECN_rcv_syn(struct tcp_sock *tp, struct tcphdr *th)
234 if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || !th->cwr))
235 tp->ecn_flags &= ~TCP_ECN_OK;
238 static inline int TCP_ECN_rcv_ecn_echo(struct tcp_sock *tp, struct tcphdr *th)
240 if (th->ece && !th->syn && (tp->ecn_flags & TCP_ECN_OK))
241 return 1;
242 return 0;
245 /* Buffer size and advertised window tuning.
247 * 1. Tuning sk->sk_sndbuf, when connection enters established state.
250 static void tcp_fixup_sndbuf(struct sock *sk)
252 int sndmem = tcp_sk(sk)->rx_opt.mss_clamp + MAX_TCP_HEADER + 16 +
253 sizeof(struct sk_buff);
255 if (sk->sk_sndbuf < 3 * sndmem)
256 sk->sk_sndbuf = min(3 * sndmem, sysctl_tcp_wmem[2]);
259 /* 2. Tuning advertised window (window_clamp, rcv_ssthresh)
261 * All tcp_full_space() is split to two parts: "network" buffer, allocated
262 * forward and advertised in receiver window (tp->rcv_wnd) and
263 * "application buffer", required to isolate scheduling/application
264 * latencies from network.
265 * window_clamp is maximal advertised window. It can be less than
266 * tcp_full_space(), in this case tcp_full_space() - window_clamp
267 * is reserved for "application" buffer. The less window_clamp is
268 * the smoother our behaviour from viewpoint of network, but the lower
269 * throughput and the higher sensitivity of the connection to losses. 8)
271 * rcv_ssthresh is more strict window_clamp used at "slow start"
272 * phase to predict further behaviour of this connection.
273 * It is used for two goals:
274 * - to enforce header prediction at sender, even when application
275 * requires some significant "application buffer". It is check #1.
276 * - to prevent pruning of receive queue because of misprediction
277 * of receiver window. Check #2.
279 * The scheme does not work when sender sends good segments opening
280 * window and then starts to feed us spaghetti. But it should work
281 * in common situations. Otherwise, we have to rely on queue collapsing.
284 /* Slow part of check#2. */
285 static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb)
287 struct tcp_sock *tp = tcp_sk(sk);
288 /* Optimize this! */
289 int truesize = tcp_win_from_space(skb->truesize) >> 1;
290 int window = tcp_win_from_space(sysctl_tcp_rmem[2]) >> 1;
292 while (tp->rcv_ssthresh <= window) {
293 if (truesize <= skb->len)
294 return 2 * inet_csk(sk)->icsk_ack.rcv_mss;
296 truesize >>= 1;
297 window >>= 1;
299 return 0;
302 static void tcp_grow_window(struct sock *sk, struct sk_buff *skb)
304 struct tcp_sock *tp = tcp_sk(sk);
306 /* Check #1 */
307 if (tp->rcv_ssthresh < tp->window_clamp &&
308 (int)tp->rcv_ssthresh < tcp_space(sk) &&
309 !tcp_memory_pressure) {
310 int incr;
312 /* Check #2. Increase window, if skb with such overhead
313 * will fit to rcvbuf in future.
315 if (tcp_win_from_space(skb->truesize) <= skb->len)
316 incr = 2 * tp->advmss;
317 else
318 incr = __tcp_grow_window(sk, skb);
320 if (incr) {
321 tp->rcv_ssthresh = min(tp->rcv_ssthresh + incr,
322 tp->window_clamp);
323 inet_csk(sk)->icsk_ack.quick |= 1;
328 /* 3. Tuning rcvbuf, when connection enters established state. */
330 static void tcp_fixup_rcvbuf(struct sock *sk)
332 struct tcp_sock *tp = tcp_sk(sk);
333 int rcvmem = tp->advmss + MAX_TCP_HEADER + 16 + sizeof(struct sk_buff);
335 /* Try to select rcvbuf so that 4 mss-sized segments
336 * will fit to window and corresponding skbs will fit to our rcvbuf.
337 * (was 3; 4 is minimum to allow fast retransmit to work.)
339 while (tcp_win_from_space(rcvmem) < tp->advmss)
340 rcvmem += 128;
341 if (sk->sk_rcvbuf < 4 * rcvmem)
342 sk->sk_rcvbuf = min(4 * rcvmem, sysctl_tcp_rmem[2]);
345 /* 4. Try to fixup all. It is made immediately after connection enters
346 * established state.
348 static void tcp_init_buffer_space(struct sock *sk)
350 struct tcp_sock *tp = tcp_sk(sk);
351 int maxwin;
353 if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK))
354 tcp_fixup_rcvbuf(sk);
355 if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK))
356 tcp_fixup_sndbuf(sk);
358 tp->rcvq_space.space = tp->rcv_wnd;
360 maxwin = tcp_full_space(sk);
362 if (tp->window_clamp >= maxwin) {
363 tp->window_clamp = maxwin;
365 if (sysctl_tcp_app_win && maxwin > 4 * tp->advmss)
366 tp->window_clamp = max(maxwin -
367 (maxwin >> sysctl_tcp_app_win),
368 4 * tp->advmss);
371 /* Force reservation of one segment. */
372 if (sysctl_tcp_app_win &&
373 tp->window_clamp > 2 * tp->advmss &&
374 tp->window_clamp + tp->advmss > maxwin)
375 tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss);
377 tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp);
378 tp->snd_cwnd_stamp = tcp_time_stamp;
381 /* 5. Recalculate window clamp after socket hit its memory bounds. */
382 static void tcp_clamp_window(struct sock *sk)
384 struct tcp_sock *tp = tcp_sk(sk);
385 struct inet_connection_sock *icsk = inet_csk(sk);
387 icsk->icsk_ack.quick = 0;
389 if (sk->sk_rcvbuf < sysctl_tcp_rmem[2] &&
390 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) &&
391 !tcp_memory_pressure &&
392 atomic_read(&tcp_memory_allocated) < sysctl_tcp_mem[0]) {
393 sk->sk_rcvbuf = min(atomic_read(&sk->sk_rmem_alloc),
394 sysctl_tcp_rmem[2]);
396 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf)
397 tp->rcv_ssthresh = min(tp->window_clamp, 2U * tp->advmss);
400 /* Initialize RCV_MSS value.
401 * RCV_MSS is an our guess about MSS used by the peer.
402 * We haven't any direct information about the MSS.
403 * It's better to underestimate the RCV_MSS rather than overestimate.
404 * Overestimations make us ACKing less frequently than needed.
405 * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss().
407 void tcp_initialize_rcv_mss(struct sock *sk)
409 struct tcp_sock *tp = tcp_sk(sk);
410 unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache);
412 hint = min(hint, tp->rcv_wnd / 2);
413 hint = min(hint, TCP_MIN_RCVMSS);
414 hint = max(hint, TCP_MIN_MSS);
416 inet_csk(sk)->icsk_ack.rcv_mss = hint;
419 /* Receiver "autotuning" code.
421 * The algorithm for RTT estimation w/o timestamps is based on
422 * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL.
423 * <http://www.lanl.gov/radiant/website/pubs/drs/lacsi2001.ps>
425 * More detail on this code can be found at
426 * <http://www.psc.edu/~jheffner/senior_thesis.ps>,
427 * though this reference is out of date. A new paper
428 * is pending.
430 static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep)
432 u32 new_sample = tp->rcv_rtt_est.rtt;
433 long m = sample;
435 if (m == 0)
436 m = 1;
438 if (new_sample != 0) {
439 /* If we sample in larger samples in the non-timestamp
440 * case, we could grossly overestimate the RTT especially
441 * with chatty applications or bulk transfer apps which
442 * are stalled on filesystem I/O.
444 * Also, since we are only going for a minimum in the
445 * non-timestamp case, we do not smooth things out
446 * else with timestamps disabled convergence takes too
447 * long.
449 if (!win_dep) {
450 m -= (new_sample >> 3);
451 new_sample += m;
452 } else if (m < new_sample)
453 new_sample = m << 3;
454 } else {
455 /* No previous measure. */
456 new_sample = m << 3;
459 if (tp->rcv_rtt_est.rtt != new_sample)
460 tp->rcv_rtt_est.rtt = new_sample;
463 static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp)
465 if (tp->rcv_rtt_est.time == 0)
466 goto new_measure;
467 if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq))
468 return;
469 tcp_rcv_rtt_update(tp, jiffies - tp->rcv_rtt_est.time, 1);
471 new_measure:
472 tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd;
473 tp->rcv_rtt_est.time = tcp_time_stamp;
476 static inline void tcp_rcv_rtt_measure_ts(struct sock *sk,
477 const struct sk_buff *skb)
479 struct tcp_sock *tp = tcp_sk(sk);
480 if (tp->rx_opt.rcv_tsecr &&
481 (TCP_SKB_CB(skb)->end_seq -
482 TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss))
483 tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rx_opt.rcv_tsecr, 0);
487 * This function should be called every time data is copied to user space.
488 * It calculates the appropriate TCP receive buffer space.
490 void tcp_rcv_space_adjust(struct sock *sk)
492 struct tcp_sock *tp = tcp_sk(sk);
493 int time;
494 int space;
496 if (tp->rcvq_space.time == 0)
497 goto new_measure;
499 time = tcp_time_stamp - tp->rcvq_space.time;
500 if (time < (tp->rcv_rtt_est.rtt >> 3) || tp->rcv_rtt_est.rtt == 0)
501 return;
503 space = 2 * (tp->copied_seq - tp->rcvq_space.seq);
505 space = max(tp->rcvq_space.space, space);
507 if (tp->rcvq_space.space != space) {
508 int rcvmem;
510 tp->rcvq_space.space = space;
512 if (sysctl_tcp_moderate_rcvbuf &&
513 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
514 int new_clamp = space;
516 /* Receive space grows, normalize in order to
517 * take into account packet headers and sk_buff
518 * structure overhead.
520 space /= tp->advmss;
521 if (!space)
522 space = 1;
523 rcvmem = (tp->advmss + MAX_TCP_HEADER +
524 16 + sizeof(struct sk_buff));
525 while (tcp_win_from_space(rcvmem) < tp->advmss)
526 rcvmem += 128;
527 space *= rcvmem;
528 space = min(space, sysctl_tcp_rmem[2]);
529 if (space > sk->sk_rcvbuf) {
530 sk->sk_rcvbuf = space;
532 /* Make the window clamp follow along. */
533 tp->window_clamp = new_clamp;
538 new_measure:
539 tp->rcvq_space.seq = tp->copied_seq;
540 tp->rcvq_space.time = tcp_time_stamp;
543 /* There is something which you must keep in mind when you analyze the
544 * behavior of the tp->ato delayed ack timeout interval. When a
545 * connection starts up, we want to ack as quickly as possible. The
546 * problem is that "good" TCP's do slow start at the beginning of data
547 * transmission. The means that until we send the first few ACK's the
548 * sender will sit on his end and only queue most of his data, because
549 * he can only send snd_cwnd unacked packets at any given time. For
550 * each ACK we send, he increments snd_cwnd and transmits more of his
551 * queue. -DaveM
553 static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb)
555 struct tcp_sock *tp = tcp_sk(sk);
556 struct inet_connection_sock *icsk = inet_csk(sk);
557 u32 now;
559 inet_csk_schedule_ack(sk);
561 tcp_measure_rcv_mss(sk, skb);
563 tcp_rcv_rtt_measure(tp);
565 now = tcp_time_stamp;
567 if (!icsk->icsk_ack.ato) {
568 /* The _first_ data packet received, initialize
569 * delayed ACK engine.
571 tcp_incr_quickack(sk);
572 icsk->icsk_ack.ato = TCP_ATO_MIN;
573 } else {
574 int m = now - icsk->icsk_ack.lrcvtime;
576 if (m <= TCP_ATO_MIN / 2) {
577 /* The fastest case is the first. */
578 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2;
579 } else if (m < icsk->icsk_ack.ato) {
580 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m;
581 if (icsk->icsk_ack.ato > icsk->icsk_rto)
582 icsk->icsk_ack.ato = icsk->icsk_rto;
583 } else if (m > icsk->icsk_rto) {
584 /* Too long gap. Apparently sender failed to
585 * restart window, so that we send ACKs quickly.
587 tcp_incr_quickack(sk);
588 sk_mem_reclaim(sk);
591 icsk->icsk_ack.lrcvtime = now;
593 TCP_ECN_check_ce(tp, skb);
595 if (skb->len >= 128)
596 tcp_grow_window(sk, skb);
599 static u32 tcp_rto_min(struct sock *sk)
601 struct dst_entry *dst = __sk_dst_get(sk);
602 u32 rto_min = TCP_RTO_MIN;
604 if (dst && dst_metric_locked(dst, RTAX_RTO_MIN))
605 rto_min = dst_metric_rtt(dst, RTAX_RTO_MIN);
606 return rto_min;
609 /* Called to compute a smoothed rtt estimate. The data fed to this
610 * routine either comes from timestamps, or from segments that were
611 * known _not_ to have been retransmitted [see Karn/Partridge
612 * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88
613 * piece by Van Jacobson.
614 * NOTE: the next three routines used to be one big routine.
615 * To save cycles in the RFC 1323 implementation it was better to break
616 * it up into three procedures. -- erics
618 static void tcp_rtt_estimator(struct sock *sk, const __u32 mrtt)
620 struct tcp_sock *tp = tcp_sk(sk);
621 long m = mrtt; /* RTT */
623 /* The following amusing code comes from Jacobson's
624 * article in SIGCOMM '88. Note that rtt and mdev
625 * are scaled versions of rtt and mean deviation.
626 * This is designed to be as fast as possible
627 * m stands for "measurement".
629 * On a 1990 paper the rto value is changed to:
630 * RTO = rtt + 4 * mdev
632 * Funny. This algorithm seems to be very broken.
633 * These formulae increase RTO, when it should be decreased, increase
634 * too slowly, when it should be increased quickly, decrease too quickly
635 * etc. I guess in BSD RTO takes ONE value, so that it is absolutely
636 * does not matter how to _calculate_ it. Seems, it was trap
637 * that VJ failed to avoid. 8)
639 if (m == 0)
640 m = 1;
641 if (tp->srtt != 0) {
642 m -= (tp->srtt >> 3); /* m is now error in rtt est */
643 tp->srtt += m; /* rtt = 7/8 rtt + 1/8 new */
644 if (m < 0) {
645 m = -m; /* m is now abs(error) */
646 m -= (tp->mdev >> 2); /* similar update on mdev */
647 /* This is similar to one of Eifel findings.
648 * Eifel blocks mdev updates when rtt decreases.
649 * This solution is a bit different: we use finer gain
650 * for mdev in this case (alpha*beta).
651 * Like Eifel it also prevents growth of rto,
652 * but also it limits too fast rto decreases,
653 * happening in pure Eifel.
655 if (m > 0)
656 m >>= 3;
657 } else {
658 m -= (tp->mdev >> 2); /* similar update on mdev */
660 tp->mdev += m; /* mdev = 3/4 mdev + 1/4 new */
661 if (tp->mdev > tp->mdev_max) {
662 tp->mdev_max = tp->mdev;
663 if (tp->mdev_max > tp->rttvar)
664 tp->rttvar = tp->mdev_max;
666 if (after(tp->snd_una, tp->rtt_seq)) {
667 if (tp->mdev_max < tp->rttvar)
668 tp->rttvar -= (tp->rttvar - tp->mdev_max) >> 2;
669 tp->rtt_seq = tp->snd_nxt;
670 tp->mdev_max = tcp_rto_min(sk);
672 } else {
673 /* no previous measure. */
674 tp->srtt = m << 3; /* take the measured time to be rtt */
675 tp->mdev = m << 1; /* make sure rto = 3*rtt */
676 tp->mdev_max = tp->rttvar = max(tp->mdev, tcp_rto_min(sk));
677 tp->rtt_seq = tp->snd_nxt;
681 /* Calculate rto without backoff. This is the second half of Van Jacobson's
682 * routine referred to above.
684 static inline void tcp_set_rto(struct sock *sk)
686 const struct tcp_sock *tp = tcp_sk(sk);
687 /* Old crap is replaced with new one. 8)
689 * More seriously:
690 * 1. If rtt variance happened to be less 50msec, it is hallucination.
691 * It cannot be less due to utterly erratic ACK generation made
692 * at least by solaris and freebsd. "Erratic ACKs" has _nothing_
693 * to do with delayed acks, because at cwnd>2 true delack timeout
694 * is invisible. Actually, Linux-2.4 also generates erratic
695 * ACKs in some circumstances.
697 inet_csk(sk)->icsk_rto = (tp->srtt >> 3) + tp->rttvar;
699 /* 2. Fixups made earlier cannot be right.
700 * If we do not estimate RTO correctly without them,
701 * all the algo is pure shit and should be replaced
702 * with correct one. It is exactly, which we pretend to do.
706 /* NOTE: clamping at TCP_RTO_MIN is not required, current algo
707 * guarantees that rto is higher.
709 static inline void tcp_bound_rto(struct sock *sk)
711 if (inet_csk(sk)->icsk_rto > TCP_RTO_MAX)
712 inet_csk(sk)->icsk_rto = TCP_RTO_MAX;
715 /* Save metrics learned by this TCP session.
716 This function is called only, when TCP finishes successfully
717 i.e. when it enters TIME-WAIT or goes from LAST-ACK to CLOSE.
719 void tcp_update_metrics(struct sock *sk)
721 struct tcp_sock *tp = tcp_sk(sk);
722 struct dst_entry *dst = __sk_dst_get(sk);
724 if (sysctl_tcp_nometrics_save)
725 return;
727 dst_confirm(dst);
729 if (dst && (dst->flags & DST_HOST)) {
730 const struct inet_connection_sock *icsk = inet_csk(sk);
731 int m;
732 unsigned long rtt;
734 if (icsk->icsk_backoff || !tp->srtt) {
735 /* This session failed to estimate rtt. Why?
736 * Probably, no packets returned in time.
737 * Reset our results.
739 if (!(dst_metric_locked(dst, RTAX_RTT)))
740 dst->metrics[RTAX_RTT - 1] = 0;
741 return;
744 rtt = dst_metric_rtt(dst, RTAX_RTT);
745 m = rtt - tp->srtt;
747 /* If newly calculated rtt larger than stored one,
748 * store new one. Otherwise, use EWMA. Remember,
749 * rtt overestimation is always better than underestimation.
751 if (!(dst_metric_locked(dst, RTAX_RTT))) {
752 if (m <= 0)
753 set_dst_metric_rtt(dst, RTAX_RTT, tp->srtt);
754 else
755 set_dst_metric_rtt(dst, RTAX_RTT, rtt - (m >> 3));
758 if (!(dst_metric_locked(dst, RTAX_RTTVAR))) {
759 unsigned long var;
760 if (m < 0)
761 m = -m;
763 /* Scale deviation to rttvar fixed point */
764 m >>= 1;
765 if (m < tp->mdev)
766 m = tp->mdev;
768 var = dst_metric_rtt(dst, RTAX_RTTVAR);
769 if (m >= var)
770 var = m;
771 else
772 var -= (var - m) >> 2;
774 set_dst_metric_rtt(dst, RTAX_RTTVAR, var);
777 if (tp->snd_ssthresh >= 0xFFFF) {
778 /* Slow start still did not finish. */
779 if (dst_metric(dst, RTAX_SSTHRESH) &&
780 !dst_metric_locked(dst, RTAX_SSTHRESH) &&
781 (tp->snd_cwnd >> 1) > dst_metric(dst, RTAX_SSTHRESH))
782 dst->metrics[RTAX_SSTHRESH-1] = tp->snd_cwnd >> 1;
783 if (!dst_metric_locked(dst, RTAX_CWND) &&
784 tp->snd_cwnd > dst_metric(dst, RTAX_CWND))
785 dst->metrics[RTAX_CWND - 1] = tp->snd_cwnd;
786 } else if (tp->snd_cwnd > tp->snd_ssthresh &&
787 icsk->icsk_ca_state == TCP_CA_Open) {
788 /* Cong. avoidance phase, cwnd is reliable. */
789 if (!dst_metric_locked(dst, RTAX_SSTHRESH))
790 dst->metrics[RTAX_SSTHRESH-1] =
791 max(tp->snd_cwnd >> 1, tp->snd_ssthresh);
792 if (!dst_metric_locked(dst, RTAX_CWND))
793 dst->metrics[RTAX_CWND-1] = (dst_metric(dst, RTAX_CWND) + tp->snd_cwnd) >> 1;
794 } else {
795 /* Else slow start did not finish, cwnd is non-sense,
796 ssthresh may be also invalid.
798 if (!dst_metric_locked(dst, RTAX_CWND))
799 dst->metrics[RTAX_CWND-1] = (dst_metric(dst, RTAX_CWND) + tp->snd_ssthresh) >> 1;
800 if (dst_metric(dst, RTAX_SSTHRESH) &&
801 !dst_metric_locked(dst, RTAX_SSTHRESH) &&
802 tp->snd_ssthresh > dst_metric(dst, RTAX_SSTHRESH))
803 dst->metrics[RTAX_SSTHRESH-1] = tp->snd_ssthresh;
806 if (!dst_metric_locked(dst, RTAX_REORDERING)) {
807 if (dst_metric(dst, RTAX_REORDERING) < tp->reordering &&
808 tp->reordering != sysctl_tcp_reordering)
809 dst->metrics[RTAX_REORDERING-1] = tp->reordering;
814 /* Numbers are taken from RFC3390.
816 * John Heffner states:
818 * The RFC specifies a window of no more than 4380 bytes
819 * unless 2*MSS > 4380. Reading the pseudocode in the RFC
820 * is a bit misleading because they use a clamp at 4380 bytes
821 * rather than use a multiplier in the relevant range.
823 __u32 tcp_init_cwnd(struct tcp_sock *tp, struct dst_entry *dst)
825 __u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0);
827 if (!cwnd) {
828 if (tp->mss_cache > 1460)
829 cwnd = 2;
830 else
831 cwnd = (tp->mss_cache > 1095) ? 3 : 4;
833 return min_t(__u32, cwnd, tp->snd_cwnd_clamp);
836 /* Set slow start threshold and cwnd not falling to slow start */
837 void tcp_enter_cwr(struct sock *sk, const int set_ssthresh)
839 struct tcp_sock *tp = tcp_sk(sk);
840 const struct inet_connection_sock *icsk = inet_csk(sk);
842 tp->prior_ssthresh = 0;
843 tp->bytes_acked = 0;
844 if (icsk->icsk_ca_state < TCP_CA_CWR) {
845 tp->undo_marker = 0;
846 if (set_ssthresh)
847 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
848 tp->snd_cwnd = min(tp->snd_cwnd,
849 tcp_packets_in_flight(tp) + 1U);
850 tp->snd_cwnd_cnt = 0;
851 tp->high_seq = tp->snd_nxt;
852 tp->snd_cwnd_stamp = tcp_time_stamp;
853 TCP_ECN_queue_cwr(tp);
855 tcp_set_ca_state(sk, TCP_CA_CWR);
860 * Packet counting of FACK is based on in-order assumptions, therefore TCP
861 * disables it when reordering is detected
863 static void tcp_disable_fack(struct tcp_sock *tp)
865 /* RFC3517 uses different metric in lost marker => reset on change */
866 if (tcp_is_fack(tp))
867 tp->lost_skb_hint = NULL;
868 tp->rx_opt.sack_ok &= ~2;
871 /* Take a notice that peer is sending D-SACKs */
872 static void tcp_dsack_seen(struct tcp_sock *tp)
874 tp->rx_opt.sack_ok |= 4;
877 /* Initialize metrics on socket. */
879 static void tcp_init_metrics(struct sock *sk)
881 struct tcp_sock *tp = tcp_sk(sk);
882 struct dst_entry *dst = __sk_dst_get(sk);
884 if (dst == NULL)
885 goto reset;
887 dst_confirm(dst);
889 if (dst_metric_locked(dst, RTAX_CWND))
890 tp->snd_cwnd_clamp = dst_metric(dst, RTAX_CWND);
891 if (dst_metric(dst, RTAX_SSTHRESH)) {
892 tp->snd_ssthresh = dst_metric(dst, RTAX_SSTHRESH);
893 if (tp->snd_ssthresh > tp->snd_cwnd_clamp)
894 tp->snd_ssthresh = tp->snd_cwnd_clamp;
896 if (dst_metric(dst, RTAX_REORDERING) &&
897 tp->reordering != dst_metric(dst, RTAX_REORDERING)) {
898 tcp_disable_fack(tp);
899 tp->reordering = dst_metric(dst, RTAX_REORDERING);
902 if (dst_metric(dst, RTAX_RTT) == 0)
903 goto reset;
905 if (!tp->srtt && dst_metric_rtt(dst, RTAX_RTT) < (TCP_TIMEOUT_INIT << 3))
906 goto reset;
908 /* Initial rtt is determined from SYN,SYN-ACK.
909 * The segment is small and rtt may appear much
910 * less than real one. Use per-dst memory
911 * to make it more realistic.
913 * A bit of theory. RTT is time passed after "normal" sized packet
914 * is sent until it is ACKed. In normal circumstances sending small
915 * packets force peer to delay ACKs and calculation is correct too.
916 * The algorithm is adaptive and, provided we follow specs, it
917 * NEVER underestimate RTT. BUT! If peer tries to make some clever
918 * tricks sort of "quick acks" for time long enough to decrease RTT
919 * to low value, and then abruptly stops to do it and starts to delay
920 * ACKs, wait for troubles.
922 if (dst_metric_rtt(dst, RTAX_RTT) > tp->srtt) {
923 tp->srtt = dst_metric_rtt(dst, RTAX_RTT);
924 tp->rtt_seq = tp->snd_nxt;
926 if (dst_metric_rtt(dst, RTAX_RTTVAR) > tp->mdev) {
927 tp->mdev = dst_metric_rtt(dst, RTAX_RTTVAR);
928 tp->mdev_max = tp->rttvar = max(tp->mdev, tcp_rto_min(sk));
930 tcp_set_rto(sk);
931 tcp_bound_rto(sk);
932 if (inet_csk(sk)->icsk_rto < TCP_TIMEOUT_INIT && !tp->rx_opt.saw_tstamp)
933 goto reset;
934 tp->snd_cwnd = tcp_init_cwnd(tp, dst);
935 tp->snd_cwnd_stamp = tcp_time_stamp;
936 return;
938 reset:
939 /* Play conservative. If timestamps are not
940 * supported, TCP will fail to recalculate correct
941 * rtt, if initial rto is too small. FORGET ALL AND RESET!
943 if (!tp->rx_opt.saw_tstamp && tp->srtt) {
944 tp->srtt = 0;
945 tp->mdev = tp->mdev_max = tp->rttvar = TCP_TIMEOUT_INIT;
946 inet_csk(sk)->icsk_rto = TCP_TIMEOUT_INIT;
950 static void tcp_update_reordering(struct sock *sk, const int metric,
951 const int ts)
953 struct tcp_sock *tp = tcp_sk(sk);
954 if (metric > tp->reordering) {
955 int mib_idx;
957 tp->reordering = min(TCP_MAX_REORDERING, metric);
959 /* This exciting event is worth to be remembered. 8) */
960 if (ts)
961 mib_idx = LINUX_MIB_TCPTSREORDER;
962 else if (tcp_is_reno(tp))
963 mib_idx = LINUX_MIB_TCPRENOREORDER;
964 else if (tcp_is_fack(tp))
965 mib_idx = LINUX_MIB_TCPFACKREORDER;
966 else
967 mib_idx = LINUX_MIB_TCPSACKREORDER;
969 NET_INC_STATS_BH(sock_net(sk), mib_idx);
970 #if FASTRETRANS_DEBUG > 1
971 printk(KERN_DEBUG "Disorder%d %d %u f%u s%u rr%d\n",
972 tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state,
973 tp->reordering,
974 tp->fackets_out,
975 tp->sacked_out,
976 tp->undo_marker ? tp->undo_retrans : 0);
977 #endif
978 tcp_disable_fack(tp);
982 /* This procedure tags the retransmission queue when SACKs arrive.
984 * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L).
985 * Packets in queue with these bits set are counted in variables
986 * sacked_out, retrans_out and lost_out, correspondingly.
988 * Valid combinations are:
989 * Tag InFlight Description
990 * 0 1 - orig segment is in flight.
991 * S 0 - nothing flies, orig reached receiver.
992 * L 0 - nothing flies, orig lost by net.
993 * R 2 - both orig and retransmit are in flight.
994 * L|R 1 - orig is lost, retransmit is in flight.
995 * S|R 1 - orig reached receiver, retrans is still in flight.
996 * (L|S|R is logically valid, it could occur when L|R is sacked,
997 * but it is equivalent to plain S and code short-curcuits it to S.
998 * L|S is logically invalid, it would mean -1 packet in flight 8))
1000 * These 6 states form finite state machine, controlled by the following events:
1001 * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue())
1002 * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue())
1003 * 3. Loss detection event of one of three flavors:
1004 * A. Scoreboard estimator decided the packet is lost.
1005 * A'. Reno "three dupacks" marks head of queue lost.
1006 * A''. Its FACK modfication, head until snd.fack is lost.
1007 * B. SACK arrives sacking data transmitted after never retransmitted
1008 * hole was sent out.
1009 * C. SACK arrives sacking SND.NXT at the moment, when the
1010 * segment was retransmitted.
1011 * 4. D-SACK added new rule: D-SACK changes any tag to S.
1013 * It is pleasant to note, that state diagram turns out to be commutative,
1014 * so that we are allowed not to be bothered by order of our actions,
1015 * when multiple events arrive simultaneously. (see the function below).
1017 * Reordering detection.
1018 * --------------------
1019 * Reordering metric is maximal distance, which a packet can be displaced
1020 * in packet stream. With SACKs we can estimate it:
1022 * 1. SACK fills old hole and the corresponding segment was not
1023 * ever retransmitted -> reordering. Alas, we cannot use it
1024 * when segment was retransmitted.
1025 * 2. The last flaw is solved with D-SACK. D-SACK arrives
1026 * for retransmitted and already SACKed segment -> reordering..
1027 * Both of these heuristics are not used in Loss state, when we cannot
1028 * account for retransmits accurately.
1030 * SACK block validation.
1031 * ----------------------
1033 * SACK block range validation checks that the received SACK block fits to
1034 * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT.
1035 * Note that SND.UNA is not included to the range though being valid because
1036 * it means that the receiver is rather inconsistent with itself reporting
1037 * SACK reneging when it should advance SND.UNA. Such SACK block this is
1038 * perfectly valid, however, in light of RFC2018 which explicitly states
1039 * that "SACK block MUST reflect the newest segment. Even if the newest
1040 * segment is going to be discarded ...", not that it looks very clever
1041 * in case of head skb. Due to potentional receiver driven attacks, we
1042 * choose to avoid immediate execution of a walk in write queue due to
1043 * reneging and defer head skb's loss recovery to standard loss recovery
1044 * procedure that will eventually trigger (nothing forbids us doing this).
1046 * Implements also blockage to start_seq wrap-around. Problem lies in the
1047 * fact that though start_seq (s) is before end_seq (i.e., not reversed),
1048 * there's no guarantee that it will be before snd_nxt (n). The problem
1049 * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt
1050 * wrap (s_w):
1052 * <- outs wnd -> <- wrapzone ->
1053 * u e n u_w e_w s n_w
1054 * | | | | | | |
1055 * |<------------+------+----- TCP seqno space --------------+---------->|
1056 * ...-- <2^31 ->| |<--------...
1057 * ...---- >2^31 ------>| |<--------...
1059 * Current code wouldn't be vulnerable but it's better still to discard such
1060 * crazy SACK blocks. Doing this check for start_seq alone closes somewhat
1061 * similar case (end_seq after snd_nxt wrap) as earlier reversed check in
1062 * snd_nxt wrap -> snd_una region will then become "well defined", i.e.,
1063 * equal to the ideal case (infinite seqno space without wrap caused issues).
1065 * With D-SACK the lower bound is extended to cover sequence space below
1066 * SND.UNA down to undo_marker, which is the last point of interest. Yet
1067 * again, D-SACK block must not to go across snd_una (for the same reason as
1068 * for the normal SACK blocks, explained above). But there all simplicity
1069 * ends, TCP might receive valid D-SACKs below that. As long as they reside
1070 * fully below undo_marker they do not affect behavior in anyway and can
1071 * therefore be safely ignored. In rare cases (which are more or less
1072 * theoretical ones), the D-SACK will nicely cross that boundary due to skb
1073 * fragmentation and packet reordering past skb's retransmission. To consider
1074 * them correctly, the acceptable range must be extended even more though
1075 * the exact amount is rather hard to quantify. However, tp->max_window can
1076 * be used as an exaggerated estimate.
1078 static int tcp_is_sackblock_valid(struct tcp_sock *tp, int is_dsack,
1079 u32 start_seq, u32 end_seq)
1081 /* Too far in future, or reversed (interpretation is ambiguous) */
1082 if (after(end_seq, tp->snd_nxt) || !before(start_seq, end_seq))
1083 return 0;
1085 /* Nasty start_seq wrap-around check (see comments above) */
1086 if (!before(start_seq, tp->snd_nxt))
1087 return 0;
1089 /* In outstanding window? ...This is valid exit for D-SACKs too.
1090 * start_seq == snd_una is non-sensical (see comments above)
1092 if (after(start_seq, tp->snd_una))
1093 return 1;
1095 if (!is_dsack || !tp->undo_marker)
1096 return 0;
1098 /* ...Then it's D-SACK, and must reside below snd_una completely */
1099 if (!after(end_seq, tp->snd_una))
1100 return 0;
1102 if (!before(start_seq, tp->undo_marker))
1103 return 1;
1105 /* Too old */
1106 if (!after(end_seq, tp->undo_marker))
1107 return 0;
1109 /* Undo_marker boundary crossing (overestimates a lot). Known already:
1110 * start_seq < undo_marker and end_seq >= undo_marker.
1112 return !before(start_seq, end_seq - tp->max_window);
1115 /* Check for lost retransmit. This superb idea is borrowed from "ratehalving".
1116 * Event "C". Later note: FACK people cheated me again 8), we have to account
1117 * for reordering! Ugly, but should help.
1119 * Search retransmitted skbs from write_queue that were sent when snd_nxt was
1120 * less than what is now known to be received by the other end (derived from
1121 * highest SACK block). Also calculate the lowest snd_nxt among the remaining
1122 * retransmitted skbs to avoid some costly processing per ACKs.
1124 static void tcp_mark_lost_retrans(struct sock *sk)
1126 const struct inet_connection_sock *icsk = inet_csk(sk);
1127 struct tcp_sock *tp = tcp_sk(sk);
1128 struct sk_buff *skb;
1129 int cnt = 0;
1130 u32 new_low_seq = tp->snd_nxt;
1131 u32 received_upto = tcp_highest_sack_seq(tp);
1133 if (!tcp_is_fack(tp) || !tp->retrans_out ||
1134 !after(received_upto, tp->lost_retrans_low) ||
1135 icsk->icsk_ca_state != TCP_CA_Recovery)
1136 return;
1138 tcp_for_write_queue(skb, sk) {
1139 u32 ack_seq = TCP_SKB_CB(skb)->ack_seq;
1141 if (skb == tcp_send_head(sk))
1142 break;
1143 if (cnt == tp->retrans_out)
1144 break;
1145 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1146 continue;
1148 if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS))
1149 continue;
1151 if (after(received_upto, ack_seq) &&
1152 (tcp_is_fack(tp) ||
1153 !before(received_upto,
1154 ack_seq + tp->reordering * tp->mss_cache))) {
1155 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1156 tp->retrans_out -= tcp_skb_pcount(skb);
1158 /* clear lost hint */
1159 tp->retransmit_skb_hint = NULL;
1161 if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
1162 tp->lost_out += tcp_skb_pcount(skb);
1163 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1165 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPLOSTRETRANSMIT);
1166 } else {
1167 if (before(ack_seq, new_low_seq))
1168 new_low_seq = ack_seq;
1169 cnt += tcp_skb_pcount(skb);
1173 if (tp->retrans_out)
1174 tp->lost_retrans_low = new_low_seq;
1177 static int tcp_check_dsack(struct sock *sk, struct sk_buff *ack_skb,
1178 struct tcp_sack_block_wire *sp, int num_sacks,
1179 u32 prior_snd_una)
1181 struct tcp_sock *tp = tcp_sk(sk);
1182 u32 start_seq_0 = get_unaligned_be32(&sp[0].start_seq);
1183 u32 end_seq_0 = get_unaligned_be32(&sp[0].end_seq);
1184 int dup_sack = 0;
1186 if (before(start_seq_0, TCP_SKB_CB(ack_skb)->ack_seq)) {
1187 dup_sack = 1;
1188 tcp_dsack_seen(tp);
1189 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPDSACKRECV);
1190 } else if (num_sacks > 1) {
1191 u32 end_seq_1 = get_unaligned_be32(&sp[1].end_seq);
1192 u32 start_seq_1 = get_unaligned_be32(&sp[1].start_seq);
1194 if (!after(end_seq_0, end_seq_1) &&
1195 !before(start_seq_0, start_seq_1)) {
1196 dup_sack = 1;
1197 tcp_dsack_seen(tp);
1198 NET_INC_STATS_BH(sock_net(sk),
1199 LINUX_MIB_TCPDSACKOFORECV);
1203 /* D-SACK for already forgotten data... Do dumb counting. */
1204 if (dup_sack &&
1205 !after(end_seq_0, prior_snd_una) &&
1206 after(end_seq_0, tp->undo_marker))
1207 tp->undo_retrans--;
1209 return dup_sack;
1212 /* Check if skb is fully within the SACK block. In presence of GSO skbs,
1213 * the incoming SACK may not exactly match but we can find smaller MSS
1214 * aligned portion of it that matches. Therefore we might need to fragment
1215 * which may fail and creates some hassle (caller must handle error case
1216 * returns).
1218 static int tcp_match_skb_to_sack(struct sock *sk, struct sk_buff *skb,
1219 u32 start_seq, u32 end_seq)
1221 int in_sack, err;
1222 unsigned int pkt_len;
1224 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1225 !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1227 if (tcp_skb_pcount(skb) > 1 && !in_sack &&
1228 after(TCP_SKB_CB(skb)->end_seq, start_seq)) {
1230 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1232 if (!in_sack)
1233 pkt_len = start_seq - TCP_SKB_CB(skb)->seq;
1234 else
1235 pkt_len = end_seq - TCP_SKB_CB(skb)->seq;
1236 err = tcp_fragment(sk, skb, pkt_len, skb_shinfo(skb)->gso_size);
1237 if (err < 0)
1238 return err;
1241 return in_sack;
1244 static int tcp_sacktag_one(struct sk_buff *skb, struct sock *sk,
1245 int *reord, int dup_sack, int fack_count)
1247 struct tcp_sock *tp = tcp_sk(sk);
1248 u8 sacked = TCP_SKB_CB(skb)->sacked;
1249 int flag = 0;
1251 /* Account D-SACK for retransmitted packet. */
1252 if (dup_sack && (sacked & TCPCB_RETRANS)) {
1253 if (after(TCP_SKB_CB(skb)->end_seq, tp->undo_marker))
1254 tp->undo_retrans--;
1255 if (sacked & TCPCB_SACKED_ACKED)
1256 *reord = min(fack_count, *reord);
1259 /* Nothing to do; acked frame is about to be dropped (was ACKed). */
1260 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1261 return flag;
1263 if (!(sacked & TCPCB_SACKED_ACKED)) {
1264 if (sacked & TCPCB_SACKED_RETRANS) {
1265 /* If the segment is not tagged as lost,
1266 * we do not clear RETRANS, believing
1267 * that retransmission is still in flight.
1269 if (sacked & TCPCB_LOST) {
1270 TCP_SKB_CB(skb)->sacked &=
1271 ~(TCPCB_LOST|TCPCB_SACKED_RETRANS);
1272 tp->lost_out -= tcp_skb_pcount(skb);
1273 tp->retrans_out -= tcp_skb_pcount(skb);
1275 /* clear lost hint */
1276 tp->retransmit_skb_hint = NULL;
1278 } else {
1279 if (!(sacked & TCPCB_RETRANS)) {
1280 /* New sack for not retransmitted frame,
1281 * which was in hole. It is reordering.
1283 if (before(TCP_SKB_CB(skb)->seq,
1284 tcp_highest_sack_seq(tp)))
1285 *reord = min(fack_count, *reord);
1287 /* SACK enhanced F-RTO (RFC4138; Appendix B) */
1288 if (!after(TCP_SKB_CB(skb)->end_seq, tp->frto_highmark))
1289 flag |= FLAG_ONLY_ORIG_SACKED;
1292 if (sacked & TCPCB_LOST) {
1293 TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
1294 tp->lost_out -= tcp_skb_pcount(skb);
1296 /* clear lost hint */
1297 tp->retransmit_skb_hint = NULL;
1301 TCP_SKB_CB(skb)->sacked |= TCPCB_SACKED_ACKED;
1302 flag |= FLAG_DATA_SACKED;
1303 tp->sacked_out += tcp_skb_pcount(skb);
1305 fack_count += tcp_skb_pcount(skb);
1307 /* Lost marker hint past SACKed? Tweak RFC3517 cnt */
1308 if (!tcp_is_fack(tp) && (tp->lost_skb_hint != NULL) &&
1309 before(TCP_SKB_CB(skb)->seq,
1310 TCP_SKB_CB(tp->lost_skb_hint)->seq))
1311 tp->lost_cnt_hint += tcp_skb_pcount(skb);
1313 if (fack_count > tp->fackets_out)
1314 tp->fackets_out = fack_count;
1316 if (!before(TCP_SKB_CB(skb)->seq, tcp_highest_sack_seq(tp)))
1317 tcp_advance_highest_sack(sk, skb);
1320 /* D-SACK. We can detect redundant retransmission in S|R and plain R
1321 * frames and clear it. undo_retrans is decreased above, L|R frames
1322 * are accounted above as well.
1324 if (dup_sack && (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS)) {
1325 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1326 tp->retrans_out -= tcp_skb_pcount(skb);
1327 tp->retransmit_skb_hint = NULL;
1330 return flag;
1333 static struct sk_buff *tcp_sacktag_walk(struct sk_buff *skb, struct sock *sk,
1334 struct tcp_sack_block *next_dup,
1335 u32 start_seq, u32 end_seq,
1336 int dup_sack_in, int *fack_count,
1337 int *reord, int *flag)
1339 tcp_for_write_queue_from(skb, sk) {
1340 int in_sack = 0;
1341 int dup_sack = dup_sack_in;
1343 if (skb == tcp_send_head(sk))
1344 break;
1346 /* queue is in-order => we can short-circuit the walk early */
1347 if (!before(TCP_SKB_CB(skb)->seq, end_seq))
1348 break;
1350 if ((next_dup != NULL) &&
1351 before(TCP_SKB_CB(skb)->seq, next_dup->end_seq)) {
1352 in_sack = tcp_match_skb_to_sack(sk, skb,
1353 next_dup->start_seq,
1354 next_dup->end_seq);
1355 if (in_sack > 0)
1356 dup_sack = 1;
1359 if (in_sack <= 0)
1360 in_sack = tcp_match_skb_to_sack(sk, skb, start_seq,
1361 end_seq);
1362 if (unlikely(in_sack < 0))
1363 break;
1365 if (in_sack)
1366 *flag |= tcp_sacktag_one(skb, sk, reord, dup_sack,
1367 *fack_count);
1369 *fack_count += tcp_skb_pcount(skb);
1371 return skb;
1374 /* Avoid all extra work that is being done by sacktag while walking in
1375 * a normal way
1377 static struct sk_buff *tcp_sacktag_skip(struct sk_buff *skb, struct sock *sk,
1378 u32 skip_to_seq, int *fack_count)
1380 tcp_for_write_queue_from(skb, sk) {
1381 if (skb == tcp_send_head(sk))
1382 break;
1384 if (!before(TCP_SKB_CB(skb)->end_seq, skip_to_seq))
1385 break;
1387 *fack_count += tcp_skb_pcount(skb);
1389 return skb;
1392 static struct sk_buff *tcp_maybe_skipping_dsack(struct sk_buff *skb,
1393 struct sock *sk,
1394 struct tcp_sack_block *next_dup,
1395 u32 skip_to_seq,
1396 int *fack_count, int *reord,
1397 int *flag)
1399 if (next_dup == NULL)
1400 return skb;
1402 if (before(next_dup->start_seq, skip_to_seq)) {
1403 skb = tcp_sacktag_skip(skb, sk, next_dup->start_seq, fack_count);
1404 skb = tcp_sacktag_walk(skb, sk, NULL,
1405 next_dup->start_seq, next_dup->end_seq,
1406 1, fack_count, reord, flag);
1409 return skb;
1412 static int tcp_sack_cache_ok(struct tcp_sock *tp, struct tcp_sack_block *cache)
1414 return cache < tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1417 static int
1418 tcp_sacktag_write_queue(struct sock *sk, struct sk_buff *ack_skb,
1419 u32 prior_snd_una)
1421 const struct inet_connection_sock *icsk = inet_csk(sk);
1422 struct tcp_sock *tp = tcp_sk(sk);
1423 unsigned char *ptr = (skb_transport_header(ack_skb) +
1424 TCP_SKB_CB(ack_skb)->sacked);
1425 struct tcp_sack_block_wire *sp_wire = (struct tcp_sack_block_wire *)(ptr+2);
1426 struct tcp_sack_block sp[TCP_NUM_SACKS];
1427 struct tcp_sack_block *cache;
1428 struct sk_buff *skb;
1429 int num_sacks = min(TCP_NUM_SACKS, (ptr[1] - TCPOLEN_SACK_BASE) >> 3);
1430 int used_sacks;
1431 int reord = tp->packets_out;
1432 int flag = 0;
1433 int found_dup_sack = 0;
1434 int fack_count;
1435 int i, j;
1436 int first_sack_index;
1438 if (!tp->sacked_out) {
1439 if (WARN_ON(tp->fackets_out))
1440 tp->fackets_out = 0;
1441 tcp_highest_sack_reset(sk);
1444 found_dup_sack = tcp_check_dsack(sk, ack_skb, sp_wire,
1445 num_sacks, prior_snd_una);
1446 if (found_dup_sack)
1447 flag |= FLAG_DSACKING_ACK;
1449 /* Eliminate too old ACKs, but take into
1450 * account more or less fresh ones, they can
1451 * contain valid SACK info.
1453 if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window))
1454 return 0;
1456 if (!tp->packets_out)
1457 goto out;
1459 used_sacks = 0;
1460 first_sack_index = 0;
1461 for (i = 0; i < num_sacks; i++) {
1462 int dup_sack = !i && found_dup_sack;
1464 sp[used_sacks].start_seq = get_unaligned_be32(&sp_wire[i].start_seq);
1465 sp[used_sacks].end_seq = get_unaligned_be32(&sp_wire[i].end_seq);
1467 if (!tcp_is_sackblock_valid(tp, dup_sack,
1468 sp[used_sacks].start_seq,
1469 sp[used_sacks].end_seq)) {
1470 int mib_idx;
1472 if (dup_sack) {
1473 if (!tp->undo_marker)
1474 mib_idx = LINUX_MIB_TCPDSACKIGNOREDNOUNDO;
1475 else
1476 mib_idx = LINUX_MIB_TCPDSACKIGNOREDOLD;
1477 } else {
1478 /* Don't count olds caused by ACK reordering */
1479 if ((TCP_SKB_CB(ack_skb)->ack_seq != tp->snd_una) &&
1480 !after(sp[used_sacks].end_seq, tp->snd_una))
1481 continue;
1482 mib_idx = LINUX_MIB_TCPSACKDISCARD;
1485 NET_INC_STATS_BH(sock_net(sk), mib_idx);
1486 if (i == 0)
1487 first_sack_index = -1;
1488 continue;
1491 /* Ignore very old stuff early */
1492 if (!after(sp[used_sacks].end_seq, prior_snd_una))
1493 continue;
1495 used_sacks++;
1498 /* order SACK blocks to allow in order walk of the retrans queue */
1499 for (i = used_sacks - 1; i > 0; i--) {
1500 for (j = 0; j < i; j++) {
1501 if (after(sp[j].start_seq, sp[j + 1].start_seq)) {
1502 struct tcp_sack_block tmp;
1504 tmp = sp[j];
1505 sp[j] = sp[j + 1];
1506 sp[j + 1] = tmp;
1508 /* Track where the first SACK block goes to */
1509 if (j == first_sack_index)
1510 first_sack_index = j + 1;
1515 skb = tcp_write_queue_head(sk);
1516 fack_count = 0;
1517 i = 0;
1519 if (!tp->sacked_out) {
1520 /* It's already past, so skip checking against it */
1521 cache = tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1522 } else {
1523 cache = tp->recv_sack_cache;
1524 /* Skip empty blocks in at head of the cache */
1525 while (tcp_sack_cache_ok(tp, cache) && !cache->start_seq &&
1526 !cache->end_seq)
1527 cache++;
1530 while (i < used_sacks) {
1531 u32 start_seq = sp[i].start_seq;
1532 u32 end_seq = sp[i].end_seq;
1533 int dup_sack = (found_dup_sack && (i == first_sack_index));
1534 struct tcp_sack_block *next_dup = NULL;
1536 if (found_dup_sack && ((i + 1) == first_sack_index))
1537 next_dup = &sp[i + 1];
1539 /* Event "B" in the comment above. */
1540 if (after(end_seq, tp->high_seq))
1541 flag |= FLAG_DATA_LOST;
1543 /* Skip too early cached blocks */
1544 while (tcp_sack_cache_ok(tp, cache) &&
1545 !before(start_seq, cache->end_seq))
1546 cache++;
1548 /* Can skip some work by looking recv_sack_cache? */
1549 if (tcp_sack_cache_ok(tp, cache) && !dup_sack &&
1550 after(end_seq, cache->start_seq)) {
1552 /* Head todo? */
1553 if (before(start_seq, cache->start_seq)) {
1554 skb = tcp_sacktag_skip(skb, sk, start_seq,
1555 &fack_count);
1556 skb = tcp_sacktag_walk(skb, sk, next_dup,
1557 start_seq,
1558 cache->start_seq,
1559 dup_sack, &fack_count,
1560 &reord, &flag);
1563 /* Rest of the block already fully processed? */
1564 if (!after(end_seq, cache->end_seq))
1565 goto advance_sp;
1567 skb = tcp_maybe_skipping_dsack(skb, sk, next_dup,
1568 cache->end_seq,
1569 &fack_count, &reord,
1570 &flag);
1572 /* ...tail remains todo... */
1573 if (tcp_highest_sack_seq(tp) == cache->end_seq) {
1574 /* ...but better entrypoint exists! */
1575 skb = tcp_highest_sack(sk);
1576 if (skb == NULL)
1577 break;
1578 fack_count = tp->fackets_out;
1579 cache++;
1580 goto walk;
1583 skb = tcp_sacktag_skip(skb, sk, cache->end_seq,
1584 &fack_count);
1585 /* Check overlap against next cached too (past this one already) */
1586 cache++;
1587 continue;
1590 if (!before(start_seq, tcp_highest_sack_seq(tp))) {
1591 skb = tcp_highest_sack(sk);
1592 if (skb == NULL)
1593 break;
1594 fack_count = tp->fackets_out;
1596 skb = tcp_sacktag_skip(skb, sk, start_seq, &fack_count);
1598 walk:
1599 skb = tcp_sacktag_walk(skb, sk, next_dup, start_seq, end_seq,
1600 dup_sack, &fack_count, &reord, &flag);
1602 advance_sp:
1603 /* SACK enhanced FRTO (RFC4138, Appendix B): Clearing correct
1604 * due to in-order walk
1606 if (after(end_seq, tp->frto_highmark))
1607 flag &= ~FLAG_ONLY_ORIG_SACKED;
1609 i++;
1612 /* Clear the head of the cache sack blocks so we can skip it next time */
1613 for (i = 0; i < ARRAY_SIZE(tp->recv_sack_cache) - used_sacks; i++) {
1614 tp->recv_sack_cache[i].start_seq = 0;
1615 tp->recv_sack_cache[i].end_seq = 0;
1617 for (j = 0; j < used_sacks; j++)
1618 tp->recv_sack_cache[i++] = sp[j];
1620 tcp_mark_lost_retrans(sk);
1622 tcp_verify_left_out(tp);
1624 if ((reord < tp->fackets_out) &&
1625 ((icsk->icsk_ca_state != TCP_CA_Loss) || tp->undo_marker) &&
1626 (!tp->frto_highmark || after(tp->snd_una, tp->frto_highmark)))
1627 tcp_update_reordering(sk, tp->fackets_out - reord, 0);
1629 out:
1631 #if FASTRETRANS_DEBUG > 0
1632 BUG_TRAP((int)tp->sacked_out >= 0);
1633 BUG_TRAP((int)tp->lost_out >= 0);
1634 BUG_TRAP((int)tp->retrans_out >= 0);
1635 BUG_TRAP((int)tcp_packets_in_flight(tp) >= 0);
1636 #endif
1637 return flag;
1640 /* Limits sacked_out so that sum with lost_out isn't ever larger than
1641 * packets_out. Returns zero if sacked_out adjustement wasn't necessary.
1643 int tcp_limit_reno_sacked(struct tcp_sock *tp)
1645 u32 holes;
1647 holes = max(tp->lost_out, 1U);
1648 holes = min(holes, tp->packets_out);
1650 if ((tp->sacked_out + holes) > tp->packets_out) {
1651 tp->sacked_out = tp->packets_out - holes;
1652 return 1;
1654 return 0;
1657 /* If we receive more dupacks than we expected counting segments
1658 * in assumption of absent reordering, interpret this as reordering.
1659 * The only another reason could be bug in receiver TCP.
1661 static void tcp_check_reno_reordering(struct sock *sk, const int addend)
1663 struct tcp_sock *tp = tcp_sk(sk);
1664 if (tcp_limit_reno_sacked(tp))
1665 tcp_update_reordering(sk, tp->packets_out + addend, 0);
1668 /* Emulate SACKs for SACKless connection: account for a new dupack. */
1670 static void tcp_add_reno_sack(struct sock *sk)
1672 struct tcp_sock *tp = tcp_sk(sk);
1673 tp->sacked_out++;
1674 tcp_check_reno_reordering(sk, 0);
1675 tcp_verify_left_out(tp);
1678 /* Account for ACK, ACKing some data in Reno Recovery phase. */
1680 static void tcp_remove_reno_sacks(struct sock *sk, int acked)
1682 struct tcp_sock *tp = tcp_sk(sk);
1684 if (acked > 0) {
1685 /* One ACK acked hole. The rest eat duplicate ACKs. */
1686 if (acked - 1 >= tp->sacked_out)
1687 tp->sacked_out = 0;
1688 else
1689 tp->sacked_out -= acked - 1;
1691 tcp_check_reno_reordering(sk, acked);
1692 tcp_verify_left_out(tp);
1695 static inline void tcp_reset_reno_sack(struct tcp_sock *tp)
1697 tp->sacked_out = 0;
1700 static int tcp_is_sackfrto(const struct tcp_sock *tp)
1702 return (sysctl_tcp_frto == 0x2) && !tcp_is_reno(tp);
1705 /* F-RTO can only be used if TCP has never retransmitted anything other than
1706 * head (SACK enhanced variant from Appendix B of RFC4138 is more robust here)
1708 int tcp_use_frto(struct sock *sk)
1710 const struct tcp_sock *tp = tcp_sk(sk);
1711 const struct inet_connection_sock *icsk = inet_csk(sk);
1712 struct sk_buff *skb;
1714 if (!sysctl_tcp_frto)
1715 return 0;
1717 /* MTU probe and F-RTO won't really play nicely along currently */
1718 if (icsk->icsk_mtup.probe_size)
1719 return 0;
1721 if (tcp_is_sackfrto(tp))
1722 return 1;
1724 /* Avoid expensive walking of rexmit queue if possible */
1725 if (tp->retrans_out > 1)
1726 return 0;
1728 skb = tcp_write_queue_head(sk);
1729 skb = tcp_write_queue_next(sk, skb); /* Skips head */
1730 tcp_for_write_queue_from(skb, sk) {
1731 if (skb == tcp_send_head(sk))
1732 break;
1733 if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
1734 return 0;
1735 /* Short-circuit when first non-SACKed skb has been checked */
1736 if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
1737 break;
1739 return 1;
1742 /* RTO occurred, but do not yet enter Loss state. Instead, defer RTO
1743 * recovery a bit and use heuristics in tcp_process_frto() to detect if
1744 * the RTO was spurious. Only clear SACKED_RETRANS of the head here to
1745 * keep retrans_out counting accurate (with SACK F-RTO, other than head
1746 * may still have that bit set); TCPCB_LOST and remaining SACKED_RETRANS
1747 * bits are handled if the Loss state is really to be entered (in
1748 * tcp_enter_frto_loss).
1750 * Do like tcp_enter_loss() would; when RTO expires the second time it
1751 * does:
1752 * "Reduce ssthresh if it has not yet been made inside this window."
1754 void tcp_enter_frto(struct sock *sk)
1756 const struct inet_connection_sock *icsk = inet_csk(sk);
1757 struct tcp_sock *tp = tcp_sk(sk);
1758 struct sk_buff *skb;
1760 if ((!tp->frto_counter && icsk->icsk_ca_state <= TCP_CA_Disorder) ||
1761 tp->snd_una == tp->high_seq ||
1762 ((icsk->icsk_ca_state == TCP_CA_Loss || tp->frto_counter) &&
1763 !icsk->icsk_retransmits)) {
1764 tp->prior_ssthresh = tcp_current_ssthresh(sk);
1765 /* Our state is too optimistic in ssthresh() call because cwnd
1766 * is not reduced until tcp_enter_frto_loss() when previous F-RTO
1767 * recovery has not yet completed. Pattern would be this: RTO,
1768 * Cumulative ACK, RTO (2xRTO for the same segment does not end
1769 * up here twice).
1770 * RFC4138 should be more specific on what to do, even though
1771 * RTO is quite unlikely to occur after the first Cumulative ACK
1772 * due to back-off and complexity of triggering events ...
1774 if (tp->frto_counter) {
1775 u32 stored_cwnd;
1776 stored_cwnd = tp->snd_cwnd;
1777 tp->snd_cwnd = 2;
1778 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
1779 tp->snd_cwnd = stored_cwnd;
1780 } else {
1781 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
1783 /* ... in theory, cong.control module could do "any tricks" in
1784 * ssthresh(), which means that ca_state, lost bits and lost_out
1785 * counter would have to be faked before the call occurs. We
1786 * consider that too expensive, unlikely and hacky, so modules
1787 * using these in ssthresh() must deal these incompatibility
1788 * issues if they receives CA_EVENT_FRTO and frto_counter != 0
1790 tcp_ca_event(sk, CA_EVENT_FRTO);
1793 tp->undo_marker = tp->snd_una;
1794 tp->undo_retrans = 0;
1796 skb = tcp_write_queue_head(sk);
1797 if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
1798 tp->undo_marker = 0;
1799 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
1800 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1801 tp->retrans_out -= tcp_skb_pcount(skb);
1803 tcp_verify_left_out(tp);
1805 /* Too bad if TCP was application limited */
1806 tp->snd_cwnd = min(tp->snd_cwnd, tcp_packets_in_flight(tp) + 1);
1808 /* Earlier loss recovery underway (see RFC4138; Appendix B).
1809 * The last condition is necessary at least in tp->frto_counter case.
1811 if (tcp_is_sackfrto(tp) && (tp->frto_counter ||
1812 ((1 << icsk->icsk_ca_state) & (TCPF_CA_Recovery|TCPF_CA_Loss))) &&
1813 after(tp->high_seq, tp->snd_una)) {
1814 tp->frto_highmark = tp->high_seq;
1815 } else {
1816 tp->frto_highmark = tp->snd_nxt;
1818 tcp_set_ca_state(sk, TCP_CA_Disorder);
1819 tp->high_seq = tp->snd_nxt;
1820 tp->frto_counter = 1;
1823 /* Enter Loss state after F-RTO was applied. Dupack arrived after RTO,
1824 * which indicates that we should follow the traditional RTO recovery,
1825 * i.e. mark everything lost and do go-back-N retransmission.
1827 static void tcp_enter_frto_loss(struct sock *sk, int allowed_segments, int flag)
1829 struct tcp_sock *tp = tcp_sk(sk);
1830 struct sk_buff *skb;
1832 tp->lost_out = 0;
1833 tp->retrans_out = 0;
1834 if (tcp_is_reno(tp))
1835 tcp_reset_reno_sack(tp);
1837 tcp_for_write_queue(skb, sk) {
1838 if (skb == tcp_send_head(sk))
1839 break;
1841 TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
1843 * Count the retransmission made on RTO correctly (only when
1844 * waiting for the first ACK and did not get it)...
1846 if ((tp->frto_counter == 1) && !(flag & FLAG_DATA_ACKED)) {
1847 /* For some reason this R-bit might get cleared? */
1848 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS)
1849 tp->retrans_out += tcp_skb_pcount(skb);
1850 /* ...enter this if branch just for the first segment */
1851 flag |= FLAG_DATA_ACKED;
1852 } else {
1853 if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
1854 tp->undo_marker = 0;
1855 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1858 /* Marking forward transmissions that were made after RTO lost
1859 * can cause unnecessary retransmissions in some scenarios,
1860 * SACK blocks will mitigate that in some but not in all cases.
1861 * We used to not mark them but it was causing break-ups with
1862 * receivers that do only in-order receival.
1864 * TODO: we could detect presence of such receiver and select
1865 * different behavior per flow.
1867 if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) {
1868 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1869 tp->lost_out += tcp_skb_pcount(skb);
1872 tcp_verify_left_out(tp);
1874 tp->snd_cwnd = tcp_packets_in_flight(tp) + allowed_segments;
1875 tp->snd_cwnd_cnt = 0;
1876 tp->snd_cwnd_stamp = tcp_time_stamp;
1877 tp->frto_counter = 0;
1878 tp->bytes_acked = 0;
1880 tp->reordering = min_t(unsigned int, tp->reordering,
1881 sysctl_tcp_reordering);
1882 tcp_set_ca_state(sk, TCP_CA_Loss);
1883 tp->high_seq = tp->snd_nxt;
1884 TCP_ECN_queue_cwr(tp);
1886 tcp_clear_retrans_hints_partial(tp);
1889 static void tcp_clear_retrans_partial(struct tcp_sock *tp)
1891 tp->retrans_out = 0;
1892 tp->lost_out = 0;
1894 tp->undo_marker = 0;
1895 tp->undo_retrans = 0;
1898 void tcp_clear_retrans(struct tcp_sock *tp)
1900 tcp_clear_retrans_partial(tp);
1902 tp->fackets_out = 0;
1903 tp->sacked_out = 0;
1906 /* Enter Loss state. If "how" is not zero, forget all SACK information
1907 * and reset tags completely, otherwise preserve SACKs. If receiver
1908 * dropped its ofo queue, we will know this due to reneging detection.
1910 void tcp_enter_loss(struct sock *sk, int how)
1912 const struct inet_connection_sock *icsk = inet_csk(sk);
1913 struct tcp_sock *tp = tcp_sk(sk);
1914 struct sk_buff *skb;
1916 /* Reduce ssthresh if it has not yet been made inside this window. */
1917 if (icsk->icsk_ca_state <= TCP_CA_Disorder || tp->snd_una == tp->high_seq ||
1918 (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) {
1919 tp->prior_ssthresh = tcp_current_ssthresh(sk);
1920 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
1921 tcp_ca_event(sk, CA_EVENT_LOSS);
1923 tp->snd_cwnd = 1;
1924 tp->snd_cwnd_cnt = 0;
1925 tp->snd_cwnd_stamp = tcp_time_stamp;
1927 tp->bytes_acked = 0;
1928 tcp_clear_retrans_partial(tp);
1930 if (tcp_is_reno(tp))
1931 tcp_reset_reno_sack(tp);
1933 if (!how) {
1934 /* Push undo marker, if it was plain RTO and nothing
1935 * was retransmitted. */
1936 tp->undo_marker = tp->snd_una;
1937 tcp_clear_retrans_hints_partial(tp);
1938 } else {
1939 tp->sacked_out = 0;
1940 tp->fackets_out = 0;
1941 tcp_clear_all_retrans_hints(tp);
1944 tcp_for_write_queue(skb, sk) {
1945 if (skb == tcp_send_head(sk))
1946 break;
1948 if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
1949 tp->undo_marker = 0;
1950 TCP_SKB_CB(skb)->sacked &= (~TCPCB_TAGBITS)|TCPCB_SACKED_ACKED;
1951 if (!(TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_ACKED) || how) {
1952 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED;
1953 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1954 tp->lost_out += tcp_skb_pcount(skb);
1957 tcp_verify_left_out(tp);
1959 tp->reordering = min_t(unsigned int, tp->reordering,
1960 sysctl_tcp_reordering);
1961 tcp_set_ca_state(sk, TCP_CA_Loss);
1962 tp->high_seq = tp->snd_nxt;
1963 TCP_ECN_queue_cwr(tp);
1964 /* Abort F-RTO algorithm if one is in progress */
1965 tp->frto_counter = 0;
1968 /* If ACK arrived pointing to a remembered SACK, it means that our
1969 * remembered SACKs do not reflect real state of receiver i.e.
1970 * receiver _host_ is heavily congested (or buggy).
1972 * Do processing similar to RTO timeout.
1974 static int tcp_check_sack_reneging(struct sock *sk, int flag)
1976 if (flag & FLAG_SACK_RENEGING) {
1977 struct inet_connection_sock *icsk = inet_csk(sk);
1978 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPSACKRENEGING);
1980 tcp_enter_loss(sk, 1);
1981 icsk->icsk_retransmits++;
1982 tcp_retransmit_skb(sk, tcp_write_queue_head(sk));
1983 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
1984 icsk->icsk_rto, TCP_RTO_MAX);
1985 return 1;
1987 return 0;
1990 static inline int tcp_fackets_out(struct tcp_sock *tp)
1992 return tcp_is_reno(tp) ? tp->sacked_out + 1 : tp->fackets_out;
1995 /* Heurestics to calculate number of duplicate ACKs. There's no dupACKs
1996 * counter when SACK is enabled (without SACK, sacked_out is used for
1997 * that purpose).
1999 * Instead, with FACK TCP uses fackets_out that includes both SACKed
2000 * segments up to the highest received SACK block so far and holes in
2001 * between them.
2003 * With reordering, holes may still be in flight, so RFC3517 recovery
2004 * uses pure sacked_out (total number of SACKed segments) even though
2005 * it violates the RFC that uses duplicate ACKs, often these are equal
2006 * but when e.g. out-of-window ACKs or packet duplication occurs,
2007 * they differ. Since neither occurs due to loss, TCP should really
2008 * ignore them.
2010 static inline int tcp_dupack_heurestics(struct tcp_sock *tp)
2012 return tcp_is_fack(tp) ? tp->fackets_out : tp->sacked_out + 1;
2015 static inline int tcp_skb_timedout(struct sock *sk, struct sk_buff *skb)
2017 return (tcp_time_stamp - TCP_SKB_CB(skb)->when > inet_csk(sk)->icsk_rto);
2020 static inline int tcp_head_timedout(struct sock *sk)
2022 struct tcp_sock *tp = tcp_sk(sk);
2024 return tp->packets_out &&
2025 tcp_skb_timedout(sk, tcp_write_queue_head(sk));
2028 /* Linux NewReno/SACK/FACK/ECN state machine.
2029 * --------------------------------------
2031 * "Open" Normal state, no dubious events, fast path.
2032 * "Disorder" In all the respects it is "Open",
2033 * but requires a bit more attention. It is entered when
2034 * we see some SACKs or dupacks. It is split of "Open"
2035 * mainly to move some processing from fast path to slow one.
2036 * "CWR" CWND was reduced due to some Congestion Notification event.
2037 * It can be ECN, ICMP source quench, local device congestion.
2038 * "Recovery" CWND was reduced, we are fast-retransmitting.
2039 * "Loss" CWND was reduced due to RTO timeout or SACK reneging.
2041 * tcp_fastretrans_alert() is entered:
2042 * - each incoming ACK, if state is not "Open"
2043 * - when arrived ACK is unusual, namely:
2044 * * SACK
2045 * * Duplicate ACK.
2046 * * ECN ECE.
2048 * Counting packets in flight is pretty simple.
2050 * in_flight = packets_out - left_out + retrans_out
2052 * packets_out is SND.NXT-SND.UNA counted in packets.
2054 * retrans_out is number of retransmitted segments.
2056 * left_out is number of segments left network, but not ACKed yet.
2058 * left_out = sacked_out + lost_out
2060 * sacked_out: Packets, which arrived to receiver out of order
2061 * and hence not ACKed. With SACKs this number is simply
2062 * amount of SACKed data. Even without SACKs
2063 * it is easy to give pretty reliable estimate of this number,
2064 * counting duplicate ACKs.
2066 * lost_out: Packets lost by network. TCP has no explicit
2067 * "loss notification" feedback from network (for now).
2068 * It means that this number can be only _guessed_.
2069 * Actually, it is the heuristics to predict lossage that
2070 * distinguishes different algorithms.
2072 * F.e. after RTO, when all the queue is considered as lost,
2073 * lost_out = packets_out and in_flight = retrans_out.
2075 * Essentially, we have now two algorithms counting
2076 * lost packets.
2078 * FACK: It is the simplest heuristics. As soon as we decided
2079 * that something is lost, we decide that _all_ not SACKed
2080 * packets until the most forward SACK are lost. I.e.
2081 * lost_out = fackets_out - sacked_out and left_out = fackets_out.
2082 * It is absolutely correct estimate, if network does not reorder
2083 * packets. And it loses any connection to reality when reordering
2084 * takes place. We use FACK by default until reordering
2085 * is suspected on the path to this destination.
2087 * NewReno: when Recovery is entered, we assume that one segment
2088 * is lost (classic Reno). While we are in Recovery and
2089 * a partial ACK arrives, we assume that one more packet
2090 * is lost (NewReno). This heuristics are the same in NewReno
2091 * and SACK.
2093 * Imagine, that's all! Forget about all this shamanism about CWND inflation
2094 * deflation etc. CWND is real congestion window, never inflated, changes
2095 * only according to classic VJ rules.
2097 * Really tricky (and requiring careful tuning) part of algorithm
2098 * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue().
2099 * The first determines the moment _when_ we should reduce CWND and,
2100 * hence, slow down forward transmission. In fact, it determines the moment
2101 * when we decide that hole is caused by loss, rather than by a reorder.
2103 * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill
2104 * holes, caused by lost packets.
2106 * And the most logically complicated part of algorithm is undo
2107 * heuristics. We detect false retransmits due to both too early
2108 * fast retransmit (reordering) and underestimated RTO, analyzing
2109 * timestamps and D-SACKs. When we detect that some segments were
2110 * retransmitted by mistake and CWND reduction was wrong, we undo
2111 * window reduction and abort recovery phase. This logic is hidden
2112 * inside several functions named tcp_try_undo_<something>.
2115 /* This function decides, when we should leave Disordered state
2116 * and enter Recovery phase, reducing congestion window.
2118 * Main question: may we further continue forward transmission
2119 * with the same cwnd?
2121 static int tcp_time_to_recover(struct sock *sk)
2123 struct tcp_sock *tp = tcp_sk(sk);
2124 __u32 packets_out;
2126 /* Do not perform any recovery during F-RTO algorithm */
2127 if (tp->frto_counter)
2128 return 0;
2130 /* Trick#1: The loss is proven. */
2131 if (tp->lost_out)
2132 return 1;
2134 /* Not-A-Trick#2 : Classic rule... */
2135 if (tcp_dupack_heurestics(tp) > tp->reordering)
2136 return 1;
2138 /* Trick#3 : when we use RFC2988 timer restart, fast
2139 * retransmit can be triggered by timeout of queue head.
2141 if (tcp_is_fack(tp) && tcp_head_timedout(sk))
2142 return 1;
2144 /* Trick#4: It is still not OK... But will it be useful to delay
2145 * recovery more?
2147 packets_out = tp->packets_out;
2148 if (packets_out <= tp->reordering &&
2149 tp->sacked_out >= max_t(__u32, packets_out/2, sysctl_tcp_reordering) &&
2150 !tcp_may_send_now(sk)) {
2151 /* We have nothing to send. This connection is limited
2152 * either by receiver window or by application.
2154 return 1;
2157 return 0;
2160 /* RFC: This is from the original, I doubt that this is necessary at all:
2161 * clear xmit_retrans hint if seq of this skb is beyond hint. How could we
2162 * retransmitted past LOST markings in the first place? I'm not fully sure
2163 * about undo and end of connection cases, which can cause R without L?
2165 static void tcp_verify_retransmit_hint(struct tcp_sock *tp, struct sk_buff *skb)
2167 if ((tp->retransmit_skb_hint != NULL) &&
2168 before(TCP_SKB_CB(skb)->seq,
2169 TCP_SKB_CB(tp->retransmit_skb_hint)->seq))
2170 tp->retransmit_skb_hint = NULL;
2173 /* Mark head of queue up as lost. With RFC3517 SACK, the packets is
2174 * is against sacked "cnt", otherwise it's against facked "cnt"
2176 static void tcp_mark_head_lost(struct sock *sk, int packets)
2178 struct tcp_sock *tp = tcp_sk(sk);
2179 struct sk_buff *skb;
2180 int cnt, oldcnt;
2181 int err;
2182 unsigned int mss;
2184 BUG_TRAP(packets <= tp->packets_out);
2185 if (tp->lost_skb_hint) {
2186 skb = tp->lost_skb_hint;
2187 cnt = tp->lost_cnt_hint;
2188 } else {
2189 skb = tcp_write_queue_head(sk);
2190 cnt = 0;
2193 tcp_for_write_queue_from(skb, sk) {
2194 if (skb == tcp_send_head(sk))
2195 break;
2196 /* TODO: do this better */
2197 /* this is not the most efficient way to do this... */
2198 tp->lost_skb_hint = skb;
2199 tp->lost_cnt_hint = cnt;
2201 if (after(TCP_SKB_CB(skb)->end_seq, tp->high_seq))
2202 break;
2204 oldcnt = cnt;
2205 if (tcp_is_fack(tp) || tcp_is_reno(tp) ||
2206 (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
2207 cnt += tcp_skb_pcount(skb);
2209 if (cnt > packets) {
2210 if (tcp_is_sack(tp) || (oldcnt >= packets))
2211 break;
2213 mss = skb_shinfo(skb)->gso_size;
2214 err = tcp_fragment(sk, skb, (packets - oldcnt) * mss, mss);
2215 if (err < 0)
2216 break;
2217 cnt = packets;
2220 if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_SACKED_ACKED|TCPCB_LOST))) {
2221 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
2222 tp->lost_out += tcp_skb_pcount(skb);
2223 tcp_verify_retransmit_hint(tp, skb);
2226 tcp_verify_left_out(tp);
2229 /* Account newly detected lost packet(s) */
2231 static void tcp_update_scoreboard(struct sock *sk, int fast_rexmit)
2233 struct tcp_sock *tp = tcp_sk(sk);
2235 if (tcp_is_reno(tp)) {
2236 tcp_mark_head_lost(sk, 1);
2237 } else if (tcp_is_fack(tp)) {
2238 int lost = tp->fackets_out - tp->reordering;
2239 if (lost <= 0)
2240 lost = 1;
2241 tcp_mark_head_lost(sk, lost);
2242 } else {
2243 int sacked_upto = tp->sacked_out - tp->reordering;
2244 if (sacked_upto < fast_rexmit)
2245 sacked_upto = fast_rexmit;
2246 tcp_mark_head_lost(sk, sacked_upto);
2249 /* New heuristics: it is possible only after we switched
2250 * to restart timer each time when something is ACKed.
2251 * Hence, we can detect timed out packets during fast
2252 * retransmit without falling to slow start.
2254 if (tcp_is_fack(tp) && tcp_head_timedout(sk)) {
2255 struct sk_buff *skb;
2257 skb = tp->scoreboard_skb_hint ? tp->scoreboard_skb_hint
2258 : tcp_write_queue_head(sk);
2260 tcp_for_write_queue_from(skb, sk) {
2261 if (skb == tcp_send_head(sk))
2262 break;
2263 if (!tcp_skb_timedout(sk, skb))
2264 break;
2266 if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_SACKED_ACKED|TCPCB_LOST))) {
2267 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
2268 tp->lost_out += tcp_skb_pcount(skb);
2269 tcp_verify_retransmit_hint(tp, skb);
2273 tp->scoreboard_skb_hint = skb;
2275 tcp_verify_left_out(tp);
2279 /* CWND moderation, preventing bursts due to too big ACKs
2280 * in dubious situations.
2282 static inline void tcp_moderate_cwnd(struct tcp_sock *tp)
2284 tp->snd_cwnd = min(tp->snd_cwnd,
2285 tcp_packets_in_flight(tp) + tcp_max_burst(tp));
2286 tp->snd_cwnd_stamp = tcp_time_stamp;
2289 /* Lower bound on congestion window is slow start threshold
2290 * unless congestion avoidance choice decides to overide it.
2292 static inline u32 tcp_cwnd_min(const struct sock *sk)
2294 const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
2296 return ca_ops->min_cwnd ? ca_ops->min_cwnd(sk) : tcp_sk(sk)->snd_ssthresh;
2299 /* Decrease cwnd each second ack. */
2300 static void tcp_cwnd_down(struct sock *sk, int flag)
2302 struct tcp_sock *tp = tcp_sk(sk);
2303 int decr = tp->snd_cwnd_cnt + 1;
2305 if ((flag & (FLAG_ANY_PROGRESS | FLAG_DSACKING_ACK)) ||
2306 (tcp_is_reno(tp) && !(flag & FLAG_NOT_DUP))) {
2307 tp->snd_cwnd_cnt = decr & 1;
2308 decr >>= 1;
2310 if (decr && tp->snd_cwnd > tcp_cwnd_min(sk))
2311 tp->snd_cwnd -= decr;
2313 tp->snd_cwnd = min(tp->snd_cwnd, tcp_packets_in_flight(tp) + 1);
2314 tp->snd_cwnd_stamp = tcp_time_stamp;
2318 /* Nothing was retransmitted or returned timestamp is less
2319 * than timestamp of the first retransmission.
2321 static inline int tcp_packet_delayed(struct tcp_sock *tp)
2323 return !tp->retrans_stamp ||
2324 (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
2325 before(tp->rx_opt.rcv_tsecr, tp->retrans_stamp));
2328 /* Undo procedures. */
2330 #if FASTRETRANS_DEBUG > 1
2331 static void DBGUNDO(struct sock *sk, const char *msg)
2333 struct tcp_sock *tp = tcp_sk(sk);
2334 struct inet_sock *inet = inet_sk(sk);
2336 if (sk->sk_family == AF_INET) {
2337 printk(KERN_DEBUG "Undo %s " NIPQUAD_FMT "/%u c%u l%u ss%u/%u p%u\n",
2338 msg,
2339 NIPQUAD(inet->daddr), ntohs(inet->dport),
2340 tp->snd_cwnd, tcp_left_out(tp),
2341 tp->snd_ssthresh, tp->prior_ssthresh,
2342 tp->packets_out);
2344 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
2345 else if (sk->sk_family == AF_INET6) {
2346 struct ipv6_pinfo *np = inet6_sk(sk);
2347 printk(KERN_DEBUG "Undo %s " NIP6_FMT "/%u c%u l%u ss%u/%u p%u\n",
2348 msg,
2349 NIP6(np->daddr), ntohs(inet->dport),
2350 tp->snd_cwnd, tcp_left_out(tp),
2351 tp->snd_ssthresh, tp->prior_ssthresh,
2352 tp->packets_out);
2354 #endif
2356 #else
2357 #define DBGUNDO(x...) do { } while (0)
2358 #endif
2360 static void tcp_undo_cwr(struct sock *sk, const int undo)
2362 struct tcp_sock *tp = tcp_sk(sk);
2364 if (tp->prior_ssthresh) {
2365 const struct inet_connection_sock *icsk = inet_csk(sk);
2367 if (icsk->icsk_ca_ops->undo_cwnd)
2368 tp->snd_cwnd = icsk->icsk_ca_ops->undo_cwnd(sk);
2369 else
2370 tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh << 1);
2372 if (undo && tp->prior_ssthresh > tp->snd_ssthresh) {
2373 tp->snd_ssthresh = tp->prior_ssthresh;
2374 TCP_ECN_withdraw_cwr(tp);
2376 } else {
2377 tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh);
2379 tcp_moderate_cwnd(tp);
2380 tp->snd_cwnd_stamp = tcp_time_stamp;
2382 /* There is something screwy going on with the retrans hints after
2383 an undo */
2384 tcp_clear_all_retrans_hints(tp);
2387 static inline int tcp_may_undo(struct tcp_sock *tp)
2389 return tp->undo_marker && (!tp->undo_retrans || tcp_packet_delayed(tp));
2392 /* People celebrate: "We love our President!" */
2393 static int tcp_try_undo_recovery(struct sock *sk)
2395 struct tcp_sock *tp = tcp_sk(sk);
2397 if (tcp_may_undo(tp)) {
2398 int mib_idx;
2400 /* Happy end! We did not retransmit anything
2401 * or our original transmission succeeded.
2403 DBGUNDO(sk, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans");
2404 tcp_undo_cwr(sk, 1);
2405 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss)
2406 mib_idx = LINUX_MIB_TCPLOSSUNDO;
2407 else
2408 mib_idx = LINUX_MIB_TCPFULLUNDO;
2410 NET_INC_STATS_BH(sock_net(sk), mib_idx);
2411 tp->undo_marker = 0;
2413 if (tp->snd_una == tp->high_seq && tcp_is_reno(tp)) {
2414 /* Hold old state until something *above* high_seq
2415 * is ACKed. For Reno it is MUST to prevent false
2416 * fast retransmits (RFC2582). SACK TCP is safe. */
2417 tcp_moderate_cwnd(tp);
2418 return 1;
2420 tcp_set_ca_state(sk, TCP_CA_Open);
2421 return 0;
2424 /* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */
2425 static void tcp_try_undo_dsack(struct sock *sk)
2427 struct tcp_sock *tp = tcp_sk(sk);
2429 if (tp->undo_marker && !tp->undo_retrans) {
2430 DBGUNDO(sk, "D-SACK");
2431 tcp_undo_cwr(sk, 1);
2432 tp->undo_marker = 0;
2433 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPDSACKUNDO);
2437 /* Undo during fast recovery after partial ACK. */
2439 static int tcp_try_undo_partial(struct sock *sk, int acked)
2441 struct tcp_sock *tp = tcp_sk(sk);
2442 /* Partial ACK arrived. Force Hoe's retransmit. */
2443 int failed = tcp_is_reno(tp) || (tcp_fackets_out(tp) > tp->reordering);
2445 if (tcp_may_undo(tp)) {
2446 /* Plain luck! Hole if filled with delayed
2447 * packet, rather than with a retransmit.
2449 if (tp->retrans_out == 0)
2450 tp->retrans_stamp = 0;
2452 tcp_update_reordering(sk, tcp_fackets_out(tp) + acked, 1);
2454 DBGUNDO(sk, "Hoe");
2455 tcp_undo_cwr(sk, 0);
2456 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPPARTIALUNDO);
2458 /* So... Do not make Hoe's retransmit yet.
2459 * If the first packet was delayed, the rest
2460 * ones are most probably delayed as well.
2462 failed = 0;
2464 return failed;
2467 /* Undo during loss recovery after partial ACK. */
2468 static int tcp_try_undo_loss(struct sock *sk)
2470 struct tcp_sock *tp = tcp_sk(sk);
2472 if (tcp_may_undo(tp)) {
2473 struct sk_buff *skb;
2474 tcp_for_write_queue(skb, sk) {
2475 if (skb == tcp_send_head(sk))
2476 break;
2477 TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
2480 tcp_clear_all_retrans_hints(tp);
2482 DBGUNDO(sk, "partial loss");
2483 tp->lost_out = 0;
2484 tcp_undo_cwr(sk, 1);
2485 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPLOSSUNDO);
2486 inet_csk(sk)->icsk_retransmits = 0;
2487 tp->undo_marker = 0;
2488 if (tcp_is_sack(tp))
2489 tcp_set_ca_state(sk, TCP_CA_Open);
2490 return 1;
2492 return 0;
2495 static inline void tcp_complete_cwr(struct sock *sk)
2497 struct tcp_sock *tp = tcp_sk(sk);
2498 tp->snd_cwnd = min(tp->snd_cwnd, tp->snd_ssthresh);
2499 tp->snd_cwnd_stamp = tcp_time_stamp;
2500 tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR);
2503 static void tcp_try_keep_open(struct sock *sk)
2505 struct tcp_sock *tp = tcp_sk(sk);
2506 int state = TCP_CA_Open;
2508 if (tcp_left_out(tp) || tp->retrans_out || tp->undo_marker)
2509 state = TCP_CA_Disorder;
2511 if (inet_csk(sk)->icsk_ca_state != state) {
2512 tcp_set_ca_state(sk, state);
2513 tp->high_seq = tp->snd_nxt;
2517 static void tcp_try_to_open(struct sock *sk, int flag)
2519 struct tcp_sock *tp = tcp_sk(sk);
2521 tcp_verify_left_out(tp);
2523 if (!tp->frto_counter && tp->retrans_out == 0)
2524 tp->retrans_stamp = 0;
2526 if (flag & FLAG_ECE)
2527 tcp_enter_cwr(sk, 1);
2529 if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) {
2530 tcp_try_keep_open(sk);
2531 tcp_moderate_cwnd(tp);
2532 } else {
2533 tcp_cwnd_down(sk, flag);
2537 static void tcp_mtup_probe_failed(struct sock *sk)
2539 struct inet_connection_sock *icsk = inet_csk(sk);
2541 icsk->icsk_mtup.search_high = icsk->icsk_mtup.probe_size - 1;
2542 icsk->icsk_mtup.probe_size = 0;
2545 static void tcp_mtup_probe_success(struct sock *sk, struct sk_buff *skb)
2547 struct tcp_sock *tp = tcp_sk(sk);
2548 struct inet_connection_sock *icsk = inet_csk(sk);
2550 /* FIXME: breaks with very large cwnd */
2551 tp->prior_ssthresh = tcp_current_ssthresh(sk);
2552 tp->snd_cwnd = tp->snd_cwnd *
2553 tcp_mss_to_mtu(sk, tp->mss_cache) /
2554 icsk->icsk_mtup.probe_size;
2555 tp->snd_cwnd_cnt = 0;
2556 tp->snd_cwnd_stamp = tcp_time_stamp;
2557 tp->rcv_ssthresh = tcp_current_ssthresh(sk);
2559 icsk->icsk_mtup.search_low = icsk->icsk_mtup.probe_size;
2560 icsk->icsk_mtup.probe_size = 0;
2561 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
2564 /* Process an event, which can update packets-in-flight not trivially.
2565 * Main goal of this function is to calculate new estimate for left_out,
2566 * taking into account both packets sitting in receiver's buffer and
2567 * packets lost by network.
2569 * Besides that it does CWND reduction, when packet loss is detected
2570 * and changes state of machine.
2572 * It does _not_ decide what to send, it is made in function
2573 * tcp_xmit_retransmit_queue().
2575 static void tcp_fastretrans_alert(struct sock *sk, int pkts_acked, int flag)
2577 struct inet_connection_sock *icsk = inet_csk(sk);
2578 struct tcp_sock *tp = tcp_sk(sk);
2579 int is_dupack = !(flag & (FLAG_SND_UNA_ADVANCED | FLAG_NOT_DUP));
2580 int do_lost = is_dupack || ((flag & FLAG_DATA_SACKED) &&
2581 (tcp_fackets_out(tp) > tp->reordering));
2582 int fast_rexmit = 0, mib_idx;
2584 if (WARN_ON(!tp->packets_out && tp->sacked_out))
2585 tp->sacked_out = 0;
2586 if (WARN_ON(!tp->sacked_out && tp->fackets_out))
2587 tp->fackets_out = 0;
2589 /* Now state machine starts.
2590 * A. ECE, hence prohibit cwnd undoing, the reduction is required. */
2591 if (flag & FLAG_ECE)
2592 tp->prior_ssthresh = 0;
2594 /* B. In all the states check for reneging SACKs. */
2595 if (tcp_check_sack_reneging(sk, flag))
2596 return;
2598 /* C. Process data loss notification, provided it is valid. */
2599 if (tcp_is_fack(tp) && (flag & FLAG_DATA_LOST) &&
2600 before(tp->snd_una, tp->high_seq) &&
2601 icsk->icsk_ca_state != TCP_CA_Open &&
2602 tp->fackets_out > tp->reordering) {
2603 tcp_mark_head_lost(sk, tp->fackets_out - tp->reordering);
2604 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPLOSS);
2607 /* D. Check consistency of the current state. */
2608 tcp_verify_left_out(tp);
2610 /* E. Check state exit conditions. State can be terminated
2611 * when high_seq is ACKed. */
2612 if (icsk->icsk_ca_state == TCP_CA_Open) {
2613 BUG_TRAP(tp->retrans_out == 0);
2614 tp->retrans_stamp = 0;
2615 } else if (!before(tp->snd_una, tp->high_seq)) {
2616 switch (icsk->icsk_ca_state) {
2617 case TCP_CA_Loss:
2618 icsk->icsk_retransmits = 0;
2619 if (tcp_try_undo_recovery(sk))
2620 return;
2621 break;
2623 case TCP_CA_CWR:
2624 /* CWR is to be held something *above* high_seq
2625 * is ACKed for CWR bit to reach receiver. */
2626 if (tp->snd_una != tp->high_seq) {
2627 tcp_complete_cwr(sk);
2628 tcp_set_ca_state(sk, TCP_CA_Open);
2630 break;
2632 case TCP_CA_Disorder:
2633 tcp_try_undo_dsack(sk);
2634 if (!tp->undo_marker ||
2635 /* For SACK case do not Open to allow to undo
2636 * catching for all duplicate ACKs. */
2637 tcp_is_reno(tp) || tp->snd_una != tp->high_seq) {
2638 tp->undo_marker = 0;
2639 tcp_set_ca_state(sk, TCP_CA_Open);
2641 break;
2643 case TCP_CA_Recovery:
2644 if (tcp_is_reno(tp))
2645 tcp_reset_reno_sack(tp);
2646 if (tcp_try_undo_recovery(sk))
2647 return;
2648 tcp_complete_cwr(sk);
2649 break;
2653 /* F. Process state. */
2654 switch (icsk->icsk_ca_state) {
2655 case TCP_CA_Recovery:
2656 if (!(flag & FLAG_SND_UNA_ADVANCED)) {
2657 if (tcp_is_reno(tp) && is_dupack)
2658 tcp_add_reno_sack(sk);
2659 } else
2660 do_lost = tcp_try_undo_partial(sk, pkts_acked);
2661 break;
2662 case TCP_CA_Loss:
2663 if (flag & FLAG_DATA_ACKED)
2664 icsk->icsk_retransmits = 0;
2665 if (tcp_is_reno(tp) && flag & FLAG_SND_UNA_ADVANCED)
2666 tcp_reset_reno_sack(tp);
2667 if (!tcp_try_undo_loss(sk)) {
2668 tcp_moderate_cwnd(tp);
2669 tcp_xmit_retransmit_queue(sk);
2670 return;
2672 if (icsk->icsk_ca_state != TCP_CA_Open)
2673 return;
2674 /* Loss is undone; fall through to processing in Open state. */
2675 default:
2676 if (tcp_is_reno(tp)) {
2677 if (flag & FLAG_SND_UNA_ADVANCED)
2678 tcp_reset_reno_sack(tp);
2679 if (is_dupack)
2680 tcp_add_reno_sack(sk);
2683 if (icsk->icsk_ca_state == TCP_CA_Disorder)
2684 tcp_try_undo_dsack(sk);
2686 if (!tcp_time_to_recover(sk)) {
2687 tcp_try_to_open(sk, flag);
2688 return;
2691 /* MTU probe failure: don't reduce cwnd */
2692 if (icsk->icsk_ca_state < TCP_CA_CWR &&
2693 icsk->icsk_mtup.probe_size &&
2694 tp->snd_una == tp->mtu_probe.probe_seq_start) {
2695 tcp_mtup_probe_failed(sk);
2696 /* Restores the reduction we did in tcp_mtup_probe() */
2697 tp->snd_cwnd++;
2698 tcp_simple_retransmit(sk);
2699 return;
2702 /* Otherwise enter Recovery state */
2704 if (tcp_is_reno(tp))
2705 mib_idx = LINUX_MIB_TCPRENORECOVERY;
2706 else
2707 mib_idx = LINUX_MIB_TCPSACKRECOVERY;
2709 NET_INC_STATS_BH(sock_net(sk), mib_idx);
2711 tp->high_seq = tp->snd_nxt;
2712 tp->prior_ssthresh = 0;
2713 tp->undo_marker = tp->snd_una;
2714 tp->undo_retrans = tp->retrans_out;
2716 if (icsk->icsk_ca_state < TCP_CA_CWR) {
2717 if (!(flag & FLAG_ECE))
2718 tp->prior_ssthresh = tcp_current_ssthresh(sk);
2719 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
2720 TCP_ECN_queue_cwr(tp);
2723 tp->bytes_acked = 0;
2724 tp->snd_cwnd_cnt = 0;
2725 tcp_set_ca_state(sk, TCP_CA_Recovery);
2726 fast_rexmit = 1;
2729 if (do_lost || (tcp_is_fack(tp) && tcp_head_timedout(sk)))
2730 tcp_update_scoreboard(sk, fast_rexmit);
2731 tcp_cwnd_down(sk, flag);
2732 tcp_xmit_retransmit_queue(sk);
2735 /* Read draft-ietf-tcplw-high-performance before mucking
2736 * with this code. (Supersedes RFC1323)
2738 static void tcp_ack_saw_tstamp(struct sock *sk, int flag)
2740 /* RTTM Rule: A TSecr value received in a segment is used to
2741 * update the averaged RTT measurement only if the segment
2742 * acknowledges some new data, i.e., only if it advances the
2743 * left edge of the send window.
2745 * See draft-ietf-tcplw-high-performance-00, section 3.3.
2746 * 1998/04/10 Andrey V. Savochkin <saw@msu.ru>
2748 * Changed: reset backoff as soon as we see the first valid sample.
2749 * If we do not, we get strongly overestimated rto. With timestamps
2750 * samples are accepted even from very old segments: f.e., when rtt=1
2751 * increases to 8, we retransmit 5 times and after 8 seconds delayed
2752 * answer arrives rto becomes 120 seconds! If at least one of segments
2753 * in window is lost... Voila. --ANK (010210)
2755 struct tcp_sock *tp = tcp_sk(sk);
2756 const __u32 seq_rtt = tcp_time_stamp - tp->rx_opt.rcv_tsecr;
2757 tcp_rtt_estimator(sk, seq_rtt);
2758 tcp_set_rto(sk);
2759 inet_csk(sk)->icsk_backoff = 0;
2760 tcp_bound_rto(sk);
2763 static void tcp_ack_no_tstamp(struct sock *sk, u32 seq_rtt, int flag)
2765 /* We don't have a timestamp. Can only use
2766 * packets that are not retransmitted to determine
2767 * rtt estimates. Also, we must not reset the
2768 * backoff for rto until we get a non-retransmitted
2769 * packet. This allows us to deal with a situation
2770 * where the network delay has increased suddenly.
2771 * I.e. Karn's algorithm. (SIGCOMM '87, p5.)
2774 if (flag & FLAG_RETRANS_DATA_ACKED)
2775 return;
2777 tcp_rtt_estimator(sk, seq_rtt);
2778 tcp_set_rto(sk);
2779 inet_csk(sk)->icsk_backoff = 0;
2780 tcp_bound_rto(sk);
2783 static inline void tcp_ack_update_rtt(struct sock *sk, const int flag,
2784 const s32 seq_rtt)
2786 const struct tcp_sock *tp = tcp_sk(sk);
2787 /* Note that peer MAY send zero echo. In this case it is ignored. (rfc1323) */
2788 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
2789 tcp_ack_saw_tstamp(sk, flag);
2790 else if (seq_rtt >= 0)
2791 tcp_ack_no_tstamp(sk, seq_rtt, flag);
2794 static void tcp_cong_avoid(struct sock *sk, u32 ack, u32 in_flight)
2796 const struct inet_connection_sock *icsk = inet_csk(sk);
2797 icsk->icsk_ca_ops->cong_avoid(sk, ack, in_flight);
2798 tcp_sk(sk)->snd_cwnd_stamp = tcp_time_stamp;
2801 /* Restart timer after forward progress on connection.
2802 * RFC2988 recommends to restart timer to now+rto.
2804 static void tcp_rearm_rto(struct sock *sk)
2806 struct tcp_sock *tp = tcp_sk(sk);
2808 if (!tp->packets_out) {
2809 inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS);
2810 } else {
2811 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
2812 inet_csk(sk)->icsk_rto, TCP_RTO_MAX);
2816 /* If we get here, the whole TSO packet has not been acked. */
2817 static u32 tcp_tso_acked(struct sock *sk, struct sk_buff *skb)
2819 struct tcp_sock *tp = tcp_sk(sk);
2820 u32 packets_acked;
2822 BUG_ON(!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una));
2824 packets_acked = tcp_skb_pcount(skb);
2825 if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
2826 return 0;
2827 packets_acked -= tcp_skb_pcount(skb);
2829 if (packets_acked) {
2830 BUG_ON(tcp_skb_pcount(skb) == 0);
2831 BUG_ON(!before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq));
2834 return packets_acked;
2837 /* Remove acknowledged frames from the retransmission queue. If our packet
2838 * is before the ack sequence we can discard it as it's confirmed to have
2839 * arrived at the other end.
2841 static int tcp_clean_rtx_queue(struct sock *sk, int prior_fackets)
2843 struct tcp_sock *tp = tcp_sk(sk);
2844 const struct inet_connection_sock *icsk = inet_csk(sk);
2845 struct sk_buff *skb;
2846 u32 now = tcp_time_stamp;
2847 int fully_acked = 1;
2848 int flag = 0;
2849 u32 pkts_acked = 0;
2850 u32 reord = tp->packets_out;
2851 s32 seq_rtt = -1;
2852 s32 ca_seq_rtt = -1;
2853 ktime_t last_ackt = net_invalid_timestamp();
2855 while ((skb = tcp_write_queue_head(sk)) && skb != tcp_send_head(sk)) {
2856 struct tcp_skb_cb *scb = TCP_SKB_CB(skb);
2857 u32 end_seq;
2858 u32 acked_pcount;
2859 u8 sacked = scb->sacked;
2861 /* Determine how many packets and what bytes were acked, tso and else */
2862 if (after(scb->end_seq, tp->snd_una)) {
2863 if (tcp_skb_pcount(skb) == 1 ||
2864 !after(tp->snd_una, scb->seq))
2865 break;
2867 acked_pcount = tcp_tso_acked(sk, skb);
2868 if (!acked_pcount)
2869 break;
2871 fully_acked = 0;
2872 end_seq = tp->snd_una;
2873 } else {
2874 acked_pcount = tcp_skb_pcount(skb);
2875 end_seq = scb->end_seq;
2878 /* MTU probing checks */
2879 if (fully_acked && icsk->icsk_mtup.probe_size &&
2880 !after(tp->mtu_probe.probe_seq_end, scb->end_seq)) {
2881 tcp_mtup_probe_success(sk, skb);
2884 if (sacked & TCPCB_RETRANS) {
2885 if (sacked & TCPCB_SACKED_RETRANS)
2886 tp->retrans_out -= acked_pcount;
2887 flag |= FLAG_RETRANS_DATA_ACKED;
2888 ca_seq_rtt = -1;
2889 seq_rtt = -1;
2890 if ((flag & FLAG_DATA_ACKED) || (acked_pcount > 1))
2891 flag |= FLAG_NONHEAD_RETRANS_ACKED;
2892 } else {
2893 ca_seq_rtt = now - scb->when;
2894 last_ackt = skb->tstamp;
2895 if (seq_rtt < 0) {
2896 seq_rtt = ca_seq_rtt;
2898 if (!(sacked & TCPCB_SACKED_ACKED))
2899 reord = min(pkts_acked, reord);
2902 if (sacked & TCPCB_SACKED_ACKED)
2903 tp->sacked_out -= acked_pcount;
2904 if (sacked & TCPCB_LOST)
2905 tp->lost_out -= acked_pcount;
2907 if (unlikely(tp->urg_mode && !before(end_seq, tp->snd_up)))
2908 tp->urg_mode = 0;
2910 tp->packets_out -= acked_pcount;
2911 pkts_acked += acked_pcount;
2913 /* Initial outgoing SYN's get put onto the write_queue
2914 * just like anything else we transmit. It is not
2915 * true data, and if we misinform our callers that
2916 * this ACK acks real data, we will erroneously exit
2917 * connection startup slow start one packet too
2918 * quickly. This is severely frowned upon behavior.
2920 if (!(scb->flags & TCPCB_FLAG_SYN)) {
2921 flag |= FLAG_DATA_ACKED;
2922 } else {
2923 flag |= FLAG_SYN_ACKED;
2924 tp->retrans_stamp = 0;
2927 if (!fully_acked)
2928 break;
2930 tcp_unlink_write_queue(skb, sk);
2931 sk_wmem_free_skb(sk, skb);
2932 tcp_clear_all_retrans_hints(tp);
2935 if (skb && (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
2936 flag |= FLAG_SACK_RENEGING;
2938 if (flag & FLAG_ACKED) {
2939 const struct tcp_congestion_ops *ca_ops
2940 = inet_csk(sk)->icsk_ca_ops;
2942 tcp_ack_update_rtt(sk, flag, seq_rtt);
2943 tcp_rearm_rto(sk);
2945 if (tcp_is_reno(tp)) {
2946 tcp_remove_reno_sacks(sk, pkts_acked);
2947 } else {
2948 /* Non-retransmitted hole got filled? That's reordering */
2949 if (reord < prior_fackets)
2950 tcp_update_reordering(sk, tp->fackets_out - reord, 0);
2953 tp->fackets_out -= min(pkts_acked, tp->fackets_out);
2955 if (ca_ops->pkts_acked) {
2956 s32 rtt_us = -1;
2958 /* Is the ACK triggering packet unambiguous? */
2959 if (!(flag & FLAG_RETRANS_DATA_ACKED)) {
2960 /* High resolution needed and available? */
2961 if (ca_ops->flags & TCP_CONG_RTT_STAMP &&
2962 !ktime_equal(last_ackt,
2963 net_invalid_timestamp()))
2964 rtt_us = ktime_us_delta(ktime_get_real(),
2965 last_ackt);
2966 else if (ca_seq_rtt > 0)
2967 rtt_us = jiffies_to_usecs(ca_seq_rtt);
2970 ca_ops->pkts_acked(sk, pkts_acked, rtt_us);
2974 #if FASTRETRANS_DEBUG > 0
2975 BUG_TRAP((int)tp->sacked_out >= 0);
2976 BUG_TRAP((int)tp->lost_out >= 0);
2977 BUG_TRAP((int)tp->retrans_out >= 0);
2978 if (!tp->packets_out && tcp_is_sack(tp)) {
2979 icsk = inet_csk(sk);
2980 if (tp->lost_out) {
2981 printk(KERN_DEBUG "Leak l=%u %d\n",
2982 tp->lost_out, icsk->icsk_ca_state);
2983 tp->lost_out = 0;
2985 if (tp->sacked_out) {
2986 printk(KERN_DEBUG "Leak s=%u %d\n",
2987 tp->sacked_out, icsk->icsk_ca_state);
2988 tp->sacked_out = 0;
2990 if (tp->retrans_out) {
2991 printk(KERN_DEBUG "Leak r=%u %d\n",
2992 tp->retrans_out, icsk->icsk_ca_state);
2993 tp->retrans_out = 0;
2996 #endif
2997 return flag;
3000 static void tcp_ack_probe(struct sock *sk)
3002 const struct tcp_sock *tp = tcp_sk(sk);
3003 struct inet_connection_sock *icsk = inet_csk(sk);
3005 /* Was it a usable window open? */
3007 if (!after(TCP_SKB_CB(tcp_send_head(sk))->end_seq, tcp_wnd_end(tp))) {
3008 icsk->icsk_backoff = 0;
3009 inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0);
3010 /* Socket must be waked up by subsequent tcp_data_snd_check().
3011 * This function is not for random using!
3013 } else {
3014 inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
3015 min(icsk->icsk_rto << icsk->icsk_backoff, TCP_RTO_MAX),
3016 TCP_RTO_MAX);
3020 static inline int tcp_ack_is_dubious(const struct sock *sk, const int flag)
3022 return (!(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) ||
3023 inet_csk(sk)->icsk_ca_state != TCP_CA_Open);
3026 static inline int tcp_may_raise_cwnd(const struct sock *sk, const int flag)
3028 const struct tcp_sock *tp = tcp_sk(sk);
3029 return (!(flag & FLAG_ECE) || tp->snd_cwnd < tp->snd_ssthresh) &&
3030 !((1 << inet_csk(sk)->icsk_ca_state) & (TCPF_CA_Recovery | TCPF_CA_CWR));
3033 /* Check that window update is acceptable.
3034 * The function assumes that snd_una<=ack<=snd_next.
3036 static inline int tcp_may_update_window(const struct tcp_sock *tp,
3037 const u32 ack, const u32 ack_seq,
3038 const u32 nwin)
3040 return (after(ack, tp->snd_una) ||
3041 after(ack_seq, tp->snd_wl1) ||
3042 (ack_seq == tp->snd_wl1 && nwin > tp->snd_wnd));
3045 /* Update our send window.
3047 * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2
3048 * and in FreeBSD. NetBSD's one is even worse.) is wrong.
3050 static int tcp_ack_update_window(struct sock *sk, struct sk_buff *skb, u32 ack,
3051 u32 ack_seq)
3053 struct tcp_sock *tp = tcp_sk(sk);
3054 int flag = 0;
3055 u32 nwin = ntohs(tcp_hdr(skb)->window);
3057 if (likely(!tcp_hdr(skb)->syn))
3058 nwin <<= tp->rx_opt.snd_wscale;
3060 if (tcp_may_update_window(tp, ack, ack_seq, nwin)) {
3061 flag |= FLAG_WIN_UPDATE;
3062 tcp_update_wl(tp, ack, ack_seq);
3064 if (tp->snd_wnd != nwin) {
3065 tp->snd_wnd = nwin;
3067 /* Note, it is the only place, where
3068 * fast path is recovered for sending TCP.
3070 tp->pred_flags = 0;
3071 tcp_fast_path_check(sk);
3073 if (nwin > tp->max_window) {
3074 tp->max_window = nwin;
3075 tcp_sync_mss(sk, inet_csk(sk)->icsk_pmtu_cookie);
3080 tp->snd_una = ack;
3082 return flag;
3085 /* A very conservative spurious RTO response algorithm: reduce cwnd and
3086 * continue in congestion avoidance.
3088 static void tcp_conservative_spur_to_response(struct tcp_sock *tp)
3090 tp->snd_cwnd = min(tp->snd_cwnd, tp->snd_ssthresh);
3091 tp->snd_cwnd_cnt = 0;
3092 tp->bytes_acked = 0;
3093 TCP_ECN_queue_cwr(tp);
3094 tcp_moderate_cwnd(tp);
3097 /* A conservative spurious RTO response algorithm: reduce cwnd using
3098 * rate halving and continue in congestion avoidance.
3100 static void tcp_ratehalving_spur_to_response(struct sock *sk)
3102 tcp_enter_cwr(sk, 0);
3105 static void tcp_undo_spur_to_response(struct sock *sk, int flag)
3107 if (flag & FLAG_ECE)
3108 tcp_ratehalving_spur_to_response(sk);
3109 else
3110 tcp_undo_cwr(sk, 1);
3113 /* F-RTO spurious RTO detection algorithm (RFC4138)
3115 * F-RTO affects during two new ACKs following RTO (well, almost, see inline
3116 * comments). State (ACK number) is kept in frto_counter. When ACK advances
3117 * window (but not to or beyond highest sequence sent before RTO):
3118 * On First ACK, send two new segments out.
3119 * On Second ACK, RTO was likely spurious. Do spurious response (response
3120 * algorithm is not part of the F-RTO detection algorithm
3121 * given in RFC4138 but can be selected separately).
3122 * Otherwise (basically on duplicate ACK), RTO was (likely) caused by a loss
3123 * and TCP falls back to conventional RTO recovery. F-RTO allows overriding
3124 * of Nagle, this is done using frto_counter states 2 and 3, when a new data
3125 * segment of any size sent during F-RTO, state 2 is upgraded to 3.
3127 * Rationale: if the RTO was spurious, new ACKs should arrive from the
3128 * original window even after we transmit two new data segments.
3130 * SACK version:
3131 * on first step, wait until first cumulative ACK arrives, then move to
3132 * the second step. In second step, the next ACK decides.
3134 * F-RTO is implemented (mainly) in four functions:
3135 * - tcp_use_frto() is used to determine if TCP is can use F-RTO
3136 * - tcp_enter_frto() prepares TCP state on RTO if F-RTO is used, it is
3137 * called when tcp_use_frto() showed green light
3138 * - tcp_process_frto() handles incoming ACKs during F-RTO algorithm
3139 * - tcp_enter_frto_loss() is called if there is not enough evidence
3140 * to prove that the RTO is indeed spurious. It transfers the control
3141 * from F-RTO to the conventional RTO recovery
3143 static int tcp_process_frto(struct sock *sk, int flag)
3145 struct tcp_sock *tp = tcp_sk(sk);
3147 tcp_verify_left_out(tp);
3149 /* Duplicate the behavior from Loss state (fastretrans_alert) */
3150 if (flag & FLAG_DATA_ACKED)
3151 inet_csk(sk)->icsk_retransmits = 0;
3153 if ((flag & FLAG_NONHEAD_RETRANS_ACKED) ||
3154 ((tp->frto_counter >= 2) && (flag & FLAG_RETRANS_DATA_ACKED)))
3155 tp->undo_marker = 0;
3157 if (!before(tp->snd_una, tp->frto_highmark)) {
3158 tcp_enter_frto_loss(sk, (tp->frto_counter == 1 ? 2 : 3), flag);
3159 return 1;
3162 if (!tcp_is_sackfrto(tp)) {
3163 /* RFC4138 shortcoming in step 2; should also have case c):
3164 * ACK isn't duplicate nor advances window, e.g., opposite dir
3165 * data, winupdate
3167 if (!(flag & FLAG_ANY_PROGRESS) && (flag & FLAG_NOT_DUP))
3168 return 1;
3170 if (!(flag & FLAG_DATA_ACKED)) {
3171 tcp_enter_frto_loss(sk, (tp->frto_counter == 1 ? 0 : 3),
3172 flag);
3173 return 1;
3175 } else {
3176 if (!(flag & FLAG_DATA_ACKED) && (tp->frto_counter == 1)) {
3177 /* Prevent sending of new data. */
3178 tp->snd_cwnd = min(tp->snd_cwnd,
3179 tcp_packets_in_flight(tp));
3180 return 1;
3183 if ((tp->frto_counter >= 2) &&
3184 (!(flag & FLAG_FORWARD_PROGRESS) ||
3185 ((flag & FLAG_DATA_SACKED) &&
3186 !(flag & FLAG_ONLY_ORIG_SACKED)))) {
3187 /* RFC4138 shortcoming (see comment above) */
3188 if (!(flag & FLAG_FORWARD_PROGRESS) &&
3189 (flag & FLAG_NOT_DUP))
3190 return 1;
3192 tcp_enter_frto_loss(sk, 3, flag);
3193 return 1;
3197 if (tp->frto_counter == 1) {
3198 /* tcp_may_send_now needs to see updated state */
3199 tp->snd_cwnd = tcp_packets_in_flight(tp) + 2;
3200 tp->frto_counter = 2;
3202 if (!tcp_may_send_now(sk))
3203 tcp_enter_frto_loss(sk, 2, flag);
3205 return 1;
3206 } else {
3207 switch (sysctl_tcp_frto_response) {
3208 case 2:
3209 tcp_undo_spur_to_response(sk, flag);
3210 break;
3211 case 1:
3212 tcp_conservative_spur_to_response(tp);
3213 break;
3214 default:
3215 tcp_ratehalving_spur_to_response(sk);
3216 break;
3218 tp->frto_counter = 0;
3219 tp->undo_marker = 0;
3220 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPSPURIOUSRTOS);
3222 return 0;
3225 /* This routine deals with incoming acks, but not outgoing ones. */
3226 static int tcp_ack(struct sock *sk, struct sk_buff *skb, int flag)
3228 struct inet_connection_sock *icsk = inet_csk(sk);
3229 struct tcp_sock *tp = tcp_sk(sk);
3230 u32 prior_snd_una = tp->snd_una;
3231 u32 ack_seq = TCP_SKB_CB(skb)->seq;
3232 u32 ack = TCP_SKB_CB(skb)->ack_seq;
3233 u32 prior_in_flight;
3234 u32 prior_fackets;
3235 int prior_packets;
3236 int frto_cwnd = 0;
3238 /* If the ack is newer than sent or older than previous acks
3239 * then we can probably ignore it.
3241 if (after(ack, tp->snd_nxt))
3242 goto uninteresting_ack;
3244 if (before(ack, prior_snd_una))
3245 goto old_ack;
3247 if (after(ack, prior_snd_una))
3248 flag |= FLAG_SND_UNA_ADVANCED;
3250 if (sysctl_tcp_abc) {
3251 if (icsk->icsk_ca_state < TCP_CA_CWR)
3252 tp->bytes_acked += ack - prior_snd_una;
3253 else if (icsk->icsk_ca_state == TCP_CA_Loss)
3254 /* we assume just one segment left network */
3255 tp->bytes_acked += min(ack - prior_snd_una,
3256 tp->mss_cache);
3259 prior_fackets = tp->fackets_out;
3260 prior_in_flight = tcp_packets_in_flight(tp);
3262 if (!(flag & FLAG_SLOWPATH) && after(ack, prior_snd_una)) {
3263 /* Window is constant, pure forward advance.
3264 * No more checks are required.
3265 * Note, we use the fact that SND.UNA>=SND.WL2.
3267 tcp_update_wl(tp, ack, ack_seq);
3268 tp->snd_una = ack;
3269 flag |= FLAG_WIN_UPDATE;
3271 tcp_ca_event(sk, CA_EVENT_FAST_ACK);
3273 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPACKS);
3274 } else {
3275 if (ack_seq != TCP_SKB_CB(skb)->end_seq)
3276 flag |= FLAG_DATA;
3277 else
3278 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPPUREACKS);
3280 flag |= tcp_ack_update_window(sk, skb, ack, ack_seq);
3282 if (TCP_SKB_CB(skb)->sacked)
3283 flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una);
3285 if (TCP_ECN_rcv_ecn_echo(tp, tcp_hdr(skb)))
3286 flag |= FLAG_ECE;
3288 tcp_ca_event(sk, CA_EVENT_SLOW_ACK);
3291 /* We passed data and got it acked, remove any soft error
3292 * log. Something worked...
3294 sk->sk_err_soft = 0;
3295 tp->rcv_tstamp = tcp_time_stamp;
3296 prior_packets = tp->packets_out;
3297 if (!prior_packets)
3298 goto no_queue;
3300 /* See if we can take anything off of the retransmit queue. */
3301 flag |= tcp_clean_rtx_queue(sk, prior_fackets);
3303 if (tp->frto_counter)
3304 frto_cwnd = tcp_process_frto(sk, flag);
3305 /* Guarantee sacktag reordering detection against wrap-arounds */
3306 if (before(tp->frto_highmark, tp->snd_una))
3307 tp->frto_highmark = 0;
3309 if (tcp_ack_is_dubious(sk, flag)) {
3310 /* Advance CWND, if state allows this. */
3311 if ((flag & FLAG_DATA_ACKED) && !frto_cwnd &&
3312 tcp_may_raise_cwnd(sk, flag))
3313 tcp_cong_avoid(sk, ack, prior_in_flight);
3314 tcp_fastretrans_alert(sk, prior_packets - tp->packets_out,
3315 flag);
3316 } else {
3317 if ((flag & FLAG_DATA_ACKED) && !frto_cwnd)
3318 tcp_cong_avoid(sk, ack, prior_in_flight);
3321 if ((flag & FLAG_FORWARD_PROGRESS) || !(flag & FLAG_NOT_DUP))
3322 dst_confirm(sk->sk_dst_cache);
3324 return 1;
3326 no_queue:
3327 icsk->icsk_probes_out = 0;
3329 /* If this ack opens up a zero window, clear backoff. It was
3330 * being used to time the probes, and is probably far higher than
3331 * it needs to be for normal retransmission.
3333 if (tcp_send_head(sk))
3334 tcp_ack_probe(sk);
3335 return 1;
3337 old_ack:
3338 if (TCP_SKB_CB(skb)->sacked) {
3339 tcp_sacktag_write_queue(sk, skb, prior_snd_una);
3340 if (icsk->icsk_ca_state == TCP_CA_Open)
3341 tcp_try_keep_open(sk);
3344 uninteresting_ack:
3345 SOCK_DEBUG(sk, "Ack %u out of %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
3346 return 0;
3349 /* Look for tcp options. Normally only called on SYN and SYNACK packets.
3350 * But, this can also be called on packets in the established flow when
3351 * the fast version below fails.
3353 void tcp_parse_options(struct sk_buff *skb, struct tcp_options_received *opt_rx,
3354 int estab)
3356 unsigned char *ptr;
3357 struct tcphdr *th = tcp_hdr(skb);
3358 int length = (th->doff * 4) - sizeof(struct tcphdr);
3360 ptr = (unsigned char *)(th + 1);
3361 opt_rx->saw_tstamp = 0;
3363 while (length > 0) {
3364 int opcode = *ptr++;
3365 int opsize;
3367 switch (opcode) {
3368 case TCPOPT_EOL:
3369 return;
3370 case TCPOPT_NOP: /* Ref: RFC 793 section 3.1 */
3371 length--;
3372 continue;
3373 default:
3374 opsize = *ptr++;
3375 if (opsize < 2) /* "silly options" */
3376 return;
3377 if (opsize > length)
3378 return; /* don't parse partial options */
3379 switch (opcode) {
3380 case TCPOPT_MSS:
3381 if (opsize == TCPOLEN_MSS && th->syn && !estab) {
3382 u16 in_mss = get_unaligned_be16(ptr);
3383 if (in_mss) {
3384 if (opt_rx->user_mss &&
3385 opt_rx->user_mss < in_mss)
3386 in_mss = opt_rx->user_mss;
3387 opt_rx->mss_clamp = in_mss;
3390 break;
3391 case TCPOPT_WINDOW:
3392 if (opsize == TCPOLEN_WINDOW && th->syn &&
3393 !estab && sysctl_tcp_window_scaling) {
3394 __u8 snd_wscale = *(__u8 *)ptr;
3395 opt_rx->wscale_ok = 1;
3396 if (snd_wscale > 14) {
3397 if (net_ratelimit())
3398 printk(KERN_INFO "tcp_parse_options: Illegal window "
3399 "scaling value %d >14 received.\n",
3400 snd_wscale);
3401 snd_wscale = 14;
3403 opt_rx->snd_wscale = snd_wscale;
3405 break;
3406 case TCPOPT_TIMESTAMP:
3407 if ((opsize == TCPOLEN_TIMESTAMP) &&
3408 ((estab && opt_rx->tstamp_ok) ||
3409 (!estab && sysctl_tcp_timestamps))) {
3410 opt_rx->saw_tstamp = 1;
3411 opt_rx->rcv_tsval = get_unaligned_be32(ptr);
3412 opt_rx->rcv_tsecr = get_unaligned_be32(ptr + 4);
3414 break;
3415 case TCPOPT_SACK_PERM:
3416 if (opsize == TCPOLEN_SACK_PERM && th->syn &&
3417 !estab && sysctl_tcp_sack) {
3418 opt_rx->sack_ok = 1;
3419 tcp_sack_reset(opt_rx);
3421 break;
3423 case TCPOPT_SACK:
3424 if ((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) &&
3425 !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) &&
3426 opt_rx->sack_ok) {
3427 TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th;
3429 break;
3430 #ifdef CONFIG_TCP_MD5SIG
3431 case TCPOPT_MD5SIG:
3433 * The MD5 Hash has already been
3434 * checked (see tcp_v{4,6}_do_rcv()).
3436 break;
3437 #endif
3440 ptr += opsize-2;
3441 length -= opsize;
3446 /* Fast parse options. This hopes to only see timestamps.
3447 * If it is wrong it falls back on tcp_parse_options().
3449 static int tcp_fast_parse_options(struct sk_buff *skb, struct tcphdr *th,
3450 struct tcp_sock *tp)
3452 if (th->doff == sizeof(struct tcphdr) >> 2) {
3453 tp->rx_opt.saw_tstamp = 0;
3454 return 0;
3455 } else if (tp->rx_opt.tstamp_ok &&
3456 th->doff == (sizeof(struct tcphdr)>>2)+(TCPOLEN_TSTAMP_ALIGNED>>2)) {
3457 __be32 *ptr = (__be32 *)(th + 1);
3458 if (*ptr == htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16)
3459 | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) {
3460 tp->rx_opt.saw_tstamp = 1;
3461 ++ptr;
3462 tp->rx_opt.rcv_tsval = ntohl(*ptr);
3463 ++ptr;
3464 tp->rx_opt.rcv_tsecr = ntohl(*ptr);
3465 return 1;
3468 tcp_parse_options(skb, &tp->rx_opt, 1);
3469 return 1;
3472 #ifdef CONFIG_TCP_MD5SIG
3474 * Parse MD5 Signature option
3476 u8 *tcp_parse_md5sig_option(struct tcphdr *th)
3478 int length = (th->doff << 2) - sizeof (*th);
3479 u8 *ptr = (u8*)(th + 1);
3481 /* If the TCP option is too short, we can short cut */
3482 if (length < TCPOLEN_MD5SIG)
3483 return NULL;
3485 while (length > 0) {
3486 int opcode = *ptr++;
3487 int opsize;
3489 switch(opcode) {
3490 case TCPOPT_EOL:
3491 return NULL;
3492 case TCPOPT_NOP:
3493 length--;
3494 continue;
3495 default:
3496 opsize = *ptr++;
3497 if (opsize < 2 || opsize > length)
3498 return NULL;
3499 if (opcode == TCPOPT_MD5SIG)
3500 return ptr;
3502 ptr += opsize - 2;
3503 length -= opsize;
3505 return NULL;
3507 #endif
3509 static inline void tcp_store_ts_recent(struct tcp_sock *tp)
3511 tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval;
3512 tp->rx_opt.ts_recent_stamp = get_seconds();
3515 static inline void tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq)
3517 if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) {
3518 /* PAWS bug workaround wrt. ACK frames, the PAWS discard
3519 * extra check below makes sure this can only happen
3520 * for pure ACK frames. -DaveM
3522 * Not only, also it occurs for expired timestamps.
3525 if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) >= 0 ||
3526 get_seconds() >= tp->rx_opt.ts_recent_stamp + TCP_PAWS_24DAYS)
3527 tcp_store_ts_recent(tp);
3531 /* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM
3533 * It is not fatal. If this ACK does _not_ change critical state (seqs, window)
3534 * it can pass through stack. So, the following predicate verifies that
3535 * this segment is not used for anything but congestion avoidance or
3536 * fast retransmit. Moreover, we even are able to eliminate most of such
3537 * second order effects, if we apply some small "replay" window (~RTO)
3538 * to timestamp space.
3540 * All these measures still do not guarantee that we reject wrapped ACKs
3541 * on networks with high bandwidth, when sequence space is recycled fastly,
3542 * but it guarantees that such events will be very rare and do not affect
3543 * connection seriously. This doesn't look nice, but alas, PAWS is really
3544 * buggy extension.
3546 * [ Later note. Even worse! It is buggy for segments _with_ data. RFC
3547 * states that events when retransmit arrives after original data are rare.
3548 * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is
3549 * the biggest problem on large power networks even with minor reordering.
3550 * OK, let's give it small replay window. If peer clock is even 1hz, it is safe
3551 * up to bandwidth of 18Gigabit/sec. 8) ]
3554 static int tcp_disordered_ack(const struct sock *sk, const struct sk_buff *skb)
3556 struct tcp_sock *tp = tcp_sk(sk);
3557 struct tcphdr *th = tcp_hdr(skb);
3558 u32 seq = TCP_SKB_CB(skb)->seq;
3559 u32 ack = TCP_SKB_CB(skb)->ack_seq;
3561 return (/* 1. Pure ACK with correct sequence number. */
3562 (th->ack && seq == TCP_SKB_CB(skb)->end_seq && seq == tp->rcv_nxt) &&
3564 /* 2. ... and duplicate ACK. */
3565 ack == tp->snd_una &&
3567 /* 3. ... and does not update window. */
3568 !tcp_may_update_window(tp, ack, seq, ntohs(th->window) << tp->rx_opt.snd_wscale) &&
3570 /* 4. ... and sits in replay window. */
3571 (s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) <= (inet_csk(sk)->icsk_rto * 1024) / HZ);
3574 static inline int tcp_paws_discard(const struct sock *sk,
3575 const struct sk_buff *skb)
3577 const struct tcp_sock *tp = tcp_sk(sk);
3578 return ((s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) > TCP_PAWS_WINDOW &&
3579 get_seconds() < tp->rx_opt.ts_recent_stamp + TCP_PAWS_24DAYS &&
3580 !tcp_disordered_ack(sk, skb));
3583 /* Check segment sequence number for validity.
3585 * Segment controls are considered valid, if the segment
3586 * fits to the window after truncation to the window. Acceptability
3587 * of data (and SYN, FIN, of course) is checked separately.
3588 * See tcp_data_queue(), for example.
3590 * Also, controls (RST is main one) are accepted using RCV.WUP instead
3591 * of RCV.NXT. Peer still did not advance his SND.UNA when we
3592 * delayed ACK, so that hisSND.UNA<=ourRCV.WUP.
3593 * (borrowed from freebsd)
3596 static inline int tcp_sequence(struct tcp_sock *tp, u32 seq, u32 end_seq)
3598 return !before(end_seq, tp->rcv_wup) &&
3599 !after(seq, tp->rcv_nxt + tcp_receive_window(tp));
3602 /* When we get a reset we do this. */
3603 static void tcp_reset(struct sock *sk)
3605 /* We want the right error as BSD sees it (and indeed as we do). */
3606 switch (sk->sk_state) {
3607 case TCP_SYN_SENT:
3608 sk->sk_err = ECONNREFUSED;
3609 break;
3610 case TCP_CLOSE_WAIT:
3611 sk->sk_err = EPIPE;
3612 break;
3613 case TCP_CLOSE:
3614 return;
3615 default:
3616 sk->sk_err = ECONNRESET;
3619 if (!sock_flag(sk, SOCK_DEAD))
3620 sk->sk_error_report(sk);
3622 tcp_done(sk);
3626 * Process the FIN bit. This now behaves as it is supposed to work
3627 * and the FIN takes effect when it is validly part of sequence
3628 * space. Not before when we get holes.
3630 * If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT
3631 * (and thence onto LAST-ACK and finally, CLOSE, we never enter
3632 * TIME-WAIT)
3634 * If we are in FINWAIT-1, a received FIN indicates simultaneous
3635 * close and we go into CLOSING (and later onto TIME-WAIT)
3637 * If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT.
3639 static void tcp_fin(struct sk_buff *skb, struct sock *sk, struct tcphdr *th)
3641 struct tcp_sock *tp = tcp_sk(sk);
3643 inet_csk_schedule_ack(sk);
3645 sk->sk_shutdown |= RCV_SHUTDOWN;
3646 sock_set_flag(sk, SOCK_DONE);
3648 switch (sk->sk_state) {
3649 case TCP_SYN_RECV:
3650 case TCP_ESTABLISHED:
3651 /* Move to CLOSE_WAIT */
3652 tcp_set_state(sk, TCP_CLOSE_WAIT);
3653 inet_csk(sk)->icsk_ack.pingpong = 1;
3654 break;
3656 case TCP_CLOSE_WAIT:
3657 case TCP_CLOSING:
3658 /* Received a retransmission of the FIN, do
3659 * nothing.
3661 break;
3662 case TCP_LAST_ACK:
3663 /* RFC793: Remain in the LAST-ACK state. */
3664 break;
3666 case TCP_FIN_WAIT1:
3667 /* This case occurs when a simultaneous close
3668 * happens, we must ack the received FIN and
3669 * enter the CLOSING state.
3671 tcp_send_ack(sk);
3672 tcp_set_state(sk, TCP_CLOSING);
3673 break;
3674 case TCP_FIN_WAIT2:
3675 /* Received a FIN -- send ACK and enter TIME_WAIT. */
3676 tcp_send_ack(sk);
3677 tcp_time_wait(sk, TCP_TIME_WAIT, 0);
3678 break;
3679 default:
3680 /* Only TCP_LISTEN and TCP_CLOSE are left, in these
3681 * cases we should never reach this piece of code.
3683 printk(KERN_ERR "%s: Impossible, sk->sk_state=%d\n",
3684 __func__, sk->sk_state);
3685 break;
3688 /* It _is_ possible, that we have something out-of-order _after_ FIN.
3689 * Probably, we should reset in this case. For now drop them.
3691 __skb_queue_purge(&tp->out_of_order_queue);
3692 if (tcp_is_sack(tp))
3693 tcp_sack_reset(&tp->rx_opt);
3694 sk_mem_reclaim(sk);
3696 if (!sock_flag(sk, SOCK_DEAD)) {
3697 sk->sk_state_change(sk);
3699 /* Do not send POLL_HUP for half duplex close. */
3700 if (sk->sk_shutdown == SHUTDOWN_MASK ||
3701 sk->sk_state == TCP_CLOSE)
3702 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP);
3703 else
3704 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
3708 static inline int tcp_sack_extend(struct tcp_sack_block *sp, u32 seq,
3709 u32 end_seq)
3711 if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) {
3712 if (before(seq, sp->start_seq))
3713 sp->start_seq = seq;
3714 if (after(end_seq, sp->end_seq))
3715 sp->end_seq = end_seq;
3716 return 1;
3718 return 0;
3721 static void tcp_dsack_set(struct sock *sk, u32 seq, u32 end_seq)
3723 struct tcp_sock *tp = tcp_sk(sk);
3725 if (tcp_is_sack(tp) && sysctl_tcp_dsack) {
3726 int mib_idx;
3728 if (before(seq, tp->rcv_nxt))
3729 mib_idx = LINUX_MIB_TCPDSACKOLDSENT;
3730 else
3731 mib_idx = LINUX_MIB_TCPDSACKOFOSENT;
3733 NET_INC_STATS_BH(sock_net(sk), mib_idx);
3735 tp->rx_opt.dsack = 1;
3736 tp->duplicate_sack[0].start_seq = seq;
3737 tp->duplicate_sack[0].end_seq = end_seq;
3738 tp->rx_opt.eff_sacks = tp->rx_opt.num_sacks + 1;
3742 static void tcp_dsack_extend(struct sock *sk, u32 seq, u32 end_seq)
3744 struct tcp_sock *tp = tcp_sk(sk);
3746 if (!tp->rx_opt.dsack)
3747 tcp_dsack_set(sk, seq, end_seq);
3748 else
3749 tcp_sack_extend(tp->duplicate_sack, seq, end_seq);
3752 static void tcp_send_dupack(struct sock *sk, struct sk_buff *skb)
3754 struct tcp_sock *tp = tcp_sk(sk);
3756 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
3757 before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
3758 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
3759 tcp_enter_quickack_mode(sk);
3761 if (tcp_is_sack(tp) && sysctl_tcp_dsack) {
3762 u32 end_seq = TCP_SKB_CB(skb)->end_seq;
3764 if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))
3765 end_seq = tp->rcv_nxt;
3766 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, end_seq);
3770 tcp_send_ack(sk);
3773 /* These routines update the SACK block as out-of-order packets arrive or
3774 * in-order packets close up the sequence space.
3776 static void tcp_sack_maybe_coalesce(struct tcp_sock *tp)
3778 int this_sack;
3779 struct tcp_sack_block *sp = &tp->selective_acks[0];
3780 struct tcp_sack_block *swalk = sp + 1;
3782 /* See if the recent change to the first SACK eats into
3783 * or hits the sequence space of other SACK blocks, if so coalesce.
3785 for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;) {
3786 if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) {
3787 int i;
3789 /* Zap SWALK, by moving every further SACK up by one slot.
3790 * Decrease num_sacks.
3792 tp->rx_opt.num_sacks--;
3793 tp->rx_opt.eff_sacks = tp->rx_opt.num_sacks +
3794 tp->rx_opt.dsack;
3795 for (i = this_sack; i < tp->rx_opt.num_sacks; i++)
3796 sp[i] = sp[i + 1];
3797 continue;
3799 this_sack++, swalk++;
3803 static inline void tcp_sack_swap(struct tcp_sack_block *sack1,
3804 struct tcp_sack_block *sack2)
3806 __u32 tmp;
3808 tmp = sack1->start_seq;
3809 sack1->start_seq = sack2->start_seq;
3810 sack2->start_seq = tmp;
3812 tmp = sack1->end_seq;
3813 sack1->end_seq = sack2->end_seq;
3814 sack2->end_seq = tmp;
3817 static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq)
3819 struct tcp_sock *tp = tcp_sk(sk);
3820 struct tcp_sack_block *sp = &tp->selective_acks[0];
3821 int cur_sacks = tp->rx_opt.num_sacks;
3822 int this_sack;
3824 if (!cur_sacks)
3825 goto new_sack;
3827 for (this_sack = 0; this_sack < cur_sacks; this_sack++, sp++) {
3828 if (tcp_sack_extend(sp, seq, end_seq)) {
3829 /* Rotate this_sack to the first one. */
3830 for (; this_sack > 0; this_sack--, sp--)
3831 tcp_sack_swap(sp, sp - 1);
3832 if (cur_sacks > 1)
3833 tcp_sack_maybe_coalesce(tp);
3834 return;
3838 /* Could not find an adjacent existing SACK, build a new one,
3839 * put it at the front, and shift everyone else down. We
3840 * always know there is at least one SACK present already here.
3842 * If the sack array is full, forget about the last one.
3844 if (this_sack >= TCP_NUM_SACKS) {
3845 this_sack--;
3846 tp->rx_opt.num_sacks--;
3847 sp--;
3849 for (; this_sack > 0; this_sack--, sp--)
3850 *sp = *(sp - 1);
3852 new_sack:
3853 /* Build the new head SACK, and we're done. */
3854 sp->start_seq = seq;
3855 sp->end_seq = end_seq;
3856 tp->rx_opt.num_sacks++;
3857 tp->rx_opt.eff_sacks = tp->rx_opt.num_sacks + tp->rx_opt.dsack;
3860 /* RCV.NXT advances, some SACKs should be eaten. */
3862 static void tcp_sack_remove(struct tcp_sock *tp)
3864 struct tcp_sack_block *sp = &tp->selective_acks[0];
3865 int num_sacks = tp->rx_opt.num_sacks;
3866 int this_sack;
3868 /* Empty ofo queue, hence, all the SACKs are eaten. Clear. */
3869 if (skb_queue_empty(&tp->out_of_order_queue)) {
3870 tp->rx_opt.num_sacks = 0;
3871 tp->rx_opt.eff_sacks = tp->rx_opt.dsack;
3872 return;
3875 for (this_sack = 0; this_sack < num_sacks;) {
3876 /* Check if the start of the sack is covered by RCV.NXT. */
3877 if (!before(tp->rcv_nxt, sp->start_seq)) {
3878 int i;
3880 /* RCV.NXT must cover all the block! */
3881 BUG_TRAP(!before(tp->rcv_nxt, sp->end_seq));
3883 /* Zap this SACK, by moving forward any other SACKS. */
3884 for (i=this_sack+1; i < num_sacks; i++)
3885 tp->selective_acks[i-1] = tp->selective_acks[i];
3886 num_sacks--;
3887 continue;
3889 this_sack++;
3890 sp++;
3892 if (num_sacks != tp->rx_opt.num_sacks) {
3893 tp->rx_opt.num_sacks = num_sacks;
3894 tp->rx_opt.eff_sacks = tp->rx_opt.num_sacks +
3895 tp->rx_opt.dsack;
3899 /* This one checks to see if we can put data from the
3900 * out_of_order queue into the receive_queue.
3902 static void tcp_ofo_queue(struct sock *sk)
3904 struct tcp_sock *tp = tcp_sk(sk);
3905 __u32 dsack_high = tp->rcv_nxt;
3906 struct sk_buff *skb;
3908 while ((skb = skb_peek(&tp->out_of_order_queue)) != NULL) {
3909 if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
3910 break;
3912 if (before(TCP_SKB_CB(skb)->seq, dsack_high)) {
3913 __u32 dsack = dsack_high;
3914 if (before(TCP_SKB_CB(skb)->end_seq, dsack_high))
3915 dsack_high = TCP_SKB_CB(skb)->end_seq;
3916 tcp_dsack_extend(sk, TCP_SKB_CB(skb)->seq, dsack);
3919 if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
3920 SOCK_DEBUG(sk, "ofo packet was already received \n");
3921 __skb_unlink(skb, &tp->out_of_order_queue);
3922 __kfree_skb(skb);
3923 continue;
3925 SOCK_DEBUG(sk, "ofo requeuing : rcv_next %X seq %X - %X\n",
3926 tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
3927 TCP_SKB_CB(skb)->end_seq);
3929 __skb_unlink(skb, &tp->out_of_order_queue);
3930 __skb_queue_tail(&sk->sk_receive_queue, skb);
3931 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
3932 if (tcp_hdr(skb)->fin)
3933 tcp_fin(skb, sk, tcp_hdr(skb));
3937 static int tcp_prune_ofo_queue(struct sock *sk);
3938 static int tcp_prune_queue(struct sock *sk);
3940 static inline int tcp_try_rmem_schedule(struct sock *sk, unsigned int size)
3942 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
3943 !sk_rmem_schedule(sk, size)) {
3945 if (tcp_prune_queue(sk) < 0)
3946 return -1;
3948 if (!sk_rmem_schedule(sk, size)) {
3949 if (!tcp_prune_ofo_queue(sk))
3950 return -1;
3952 if (!sk_rmem_schedule(sk, size))
3953 return -1;
3956 return 0;
3959 static void tcp_data_queue(struct sock *sk, struct sk_buff *skb)
3961 struct tcphdr *th = tcp_hdr(skb);
3962 struct tcp_sock *tp = tcp_sk(sk);
3963 int eaten = -1;
3965 if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq)
3966 goto drop;
3968 __skb_pull(skb, th->doff * 4);
3970 TCP_ECN_accept_cwr(tp, skb);
3972 if (tp->rx_opt.dsack) {
3973 tp->rx_opt.dsack = 0;
3974 tp->rx_opt.eff_sacks = tp->rx_opt.num_sacks;
3977 /* Queue data for delivery to the user.
3978 * Packets in sequence go to the receive queue.
3979 * Out of sequence packets to the out_of_order_queue.
3981 if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
3982 if (tcp_receive_window(tp) == 0)
3983 goto out_of_window;
3985 /* Ok. In sequence. In window. */
3986 if (tp->ucopy.task == current &&
3987 tp->copied_seq == tp->rcv_nxt && tp->ucopy.len &&
3988 sock_owned_by_user(sk) && !tp->urg_data) {
3989 int chunk = min_t(unsigned int, skb->len,
3990 tp->ucopy.len);
3992 __set_current_state(TASK_RUNNING);
3994 local_bh_enable();
3995 if (!skb_copy_datagram_iovec(skb, 0, tp->ucopy.iov, chunk)) {
3996 tp->ucopy.len -= chunk;
3997 tp->copied_seq += chunk;
3998 eaten = (chunk == skb->len && !th->fin);
3999 tcp_rcv_space_adjust(sk);
4001 local_bh_disable();
4004 if (eaten <= 0) {
4005 queue_and_out:
4006 if (eaten < 0 &&
4007 tcp_try_rmem_schedule(sk, skb->truesize))
4008 goto drop;
4010 skb_set_owner_r(skb, sk);
4011 __skb_queue_tail(&sk->sk_receive_queue, skb);
4013 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
4014 if (skb->len)
4015 tcp_event_data_recv(sk, skb);
4016 if (th->fin)
4017 tcp_fin(skb, sk, th);
4019 if (!skb_queue_empty(&tp->out_of_order_queue)) {
4020 tcp_ofo_queue(sk);
4022 /* RFC2581. 4.2. SHOULD send immediate ACK, when
4023 * gap in queue is filled.
4025 if (skb_queue_empty(&tp->out_of_order_queue))
4026 inet_csk(sk)->icsk_ack.pingpong = 0;
4029 if (tp->rx_opt.num_sacks)
4030 tcp_sack_remove(tp);
4032 tcp_fast_path_check(sk);
4034 if (eaten > 0)
4035 __kfree_skb(skb);
4036 else if (!sock_flag(sk, SOCK_DEAD))
4037 sk->sk_data_ready(sk, 0);
4038 return;
4041 if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
4042 /* A retransmit, 2nd most common case. Force an immediate ack. */
4043 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
4044 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
4046 out_of_window:
4047 tcp_enter_quickack_mode(sk);
4048 inet_csk_schedule_ack(sk);
4049 drop:
4050 __kfree_skb(skb);
4051 return;
4054 /* Out of window. F.e. zero window probe. */
4055 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt + tcp_receive_window(tp)))
4056 goto out_of_window;
4058 tcp_enter_quickack_mode(sk);
4060 if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4061 /* Partial packet, seq < rcv_next < end_seq */
4062 SOCK_DEBUG(sk, "partial packet: rcv_next %X seq %X - %X\n",
4063 tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
4064 TCP_SKB_CB(skb)->end_seq);
4066 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, tp->rcv_nxt);
4068 /* If window is closed, drop tail of packet. But after
4069 * remembering D-SACK for its head made in previous line.
4071 if (!tcp_receive_window(tp))
4072 goto out_of_window;
4073 goto queue_and_out;
4076 TCP_ECN_check_ce(tp, skb);
4078 if (tcp_try_rmem_schedule(sk, skb->truesize))
4079 goto drop;
4081 /* Disable header prediction. */
4082 tp->pred_flags = 0;
4083 inet_csk_schedule_ack(sk);
4085 SOCK_DEBUG(sk, "out of order segment: rcv_next %X seq %X - %X\n",
4086 tp->rcv_nxt, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
4088 skb_set_owner_r(skb, sk);
4090 if (!skb_peek(&tp->out_of_order_queue)) {
4091 /* Initial out of order segment, build 1 SACK. */
4092 if (tcp_is_sack(tp)) {
4093 tp->rx_opt.num_sacks = 1;
4094 tp->rx_opt.dsack = 0;
4095 tp->rx_opt.eff_sacks = 1;
4096 tp->selective_acks[0].start_seq = TCP_SKB_CB(skb)->seq;
4097 tp->selective_acks[0].end_seq =
4098 TCP_SKB_CB(skb)->end_seq;
4100 __skb_queue_head(&tp->out_of_order_queue, skb);
4101 } else {
4102 struct sk_buff *skb1 = tp->out_of_order_queue.prev;
4103 u32 seq = TCP_SKB_CB(skb)->seq;
4104 u32 end_seq = TCP_SKB_CB(skb)->end_seq;
4106 if (seq == TCP_SKB_CB(skb1)->end_seq) {
4107 __skb_queue_after(&tp->out_of_order_queue, skb1, skb);
4109 if (!tp->rx_opt.num_sacks ||
4110 tp->selective_acks[0].end_seq != seq)
4111 goto add_sack;
4113 /* Common case: data arrive in order after hole. */
4114 tp->selective_acks[0].end_seq = end_seq;
4115 return;
4118 /* Find place to insert this segment. */
4119 do {
4120 if (!after(TCP_SKB_CB(skb1)->seq, seq))
4121 break;
4122 } while ((skb1 = skb1->prev) !=
4123 (struct sk_buff *)&tp->out_of_order_queue);
4125 /* Do skb overlap to previous one? */
4126 if (skb1 != (struct sk_buff *)&tp->out_of_order_queue &&
4127 before(seq, TCP_SKB_CB(skb1)->end_seq)) {
4128 if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4129 /* All the bits are present. Drop. */
4130 __kfree_skb(skb);
4131 tcp_dsack_set(sk, seq, end_seq);
4132 goto add_sack;
4134 if (after(seq, TCP_SKB_CB(skb1)->seq)) {
4135 /* Partial overlap. */
4136 tcp_dsack_set(sk, seq,
4137 TCP_SKB_CB(skb1)->end_seq);
4138 } else {
4139 skb1 = skb1->prev;
4142 __skb_insert(skb, skb1, skb1->next, &tp->out_of_order_queue);
4144 /* And clean segments covered by new one as whole. */
4145 while ((skb1 = skb->next) !=
4146 (struct sk_buff *)&tp->out_of_order_queue &&
4147 after(end_seq, TCP_SKB_CB(skb1)->seq)) {
4148 if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4149 tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
4150 end_seq);
4151 break;
4153 __skb_unlink(skb1, &tp->out_of_order_queue);
4154 tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
4155 TCP_SKB_CB(skb1)->end_seq);
4156 __kfree_skb(skb1);
4159 add_sack:
4160 if (tcp_is_sack(tp))
4161 tcp_sack_new_ofo_skb(sk, seq, end_seq);
4165 /* Collapse contiguous sequence of skbs head..tail with
4166 * sequence numbers start..end.
4167 * Segments with FIN/SYN are not collapsed (only because this
4168 * simplifies code)
4170 static void
4171 tcp_collapse(struct sock *sk, struct sk_buff_head *list,
4172 struct sk_buff *head, struct sk_buff *tail,
4173 u32 start, u32 end)
4175 struct sk_buff *skb;
4177 /* First, check that queue is collapsible and find
4178 * the point where collapsing can be useful. */
4179 for (skb = head; skb != tail;) {
4180 /* No new bits? It is possible on ofo queue. */
4181 if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
4182 struct sk_buff *next = skb->next;
4183 __skb_unlink(skb, list);
4184 __kfree_skb(skb);
4185 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPRCVCOLLAPSED);
4186 skb = next;
4187 continue;
4190 /* The first skb to collapse is:
4191 * - not SYN/FIN and
4192 * - bloated or contains data before "start" or
4193 * overlaps to the next one.
4195 if (!tcp_hdr(skb)->syn && !tcp_hdr(skb)->fin &&
4196 (tcp_win_from_space(skb->truesize) > skb->len ||
4197 before(TCP_SKB_CB(skb)->seq, start) ||
4198 (skb->next != tail &&
4199 TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb->next)->seq)))
4200 break;
4202 /* Decided to skip this, advance start seq. */
4203 start = TCP_SKB_CB(skb)->end_seq;
4204 skb = skb->next;
4206 if (skb == tail || tcp_hdr(skb)->syn || tcp_hdr(skb)->fin)
4207 return;
4209 while (before(start, end)) {
4210 struct sk_buff *nskb;
4211 unsigned int header = skb_headroom(skb);
4212 int copy = SKB_MAX_ORDER(header, 0);
4214 /* Too big header? This can happen with IPv6. */
4215 if (copy < 0)
4216 return;
4217 if (end - start < copy)
4218 copy = end - start;
4219 nskb = alloc_skb(copy + header, GFP_ATOMIC);
4220 if (!nskb)
4221 return;
4223 skb_set_mac_header(nskb, skb_mac_header(skb) - skb->head);
4224 skb_set_network_header(nskb, (skb_network_header(skb) -
4225 skb->head));
4226 skb_set_transport_header(nskb, (skb_transport_header(skb) -
4227 skb->head));
4228 skb_reserve(nskb, header);
4229 memcpy(nskb->head, skb->head, header);
4230 memcpy(nskb->cb, skb->cb, sizeof(skb->cb));
4231 TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start;
4232 __skb_insert(nskb, skb->prev, skb, list);
4233 skb_set_owner_r(nskb, sk);
4235 /* Copy data, releasing collapsed skbs. */
4236 while (copy > 0) {
4237 int offset = start - TCP_SKB_CB(skb)->seq;
4238 int size = TCP_SKB_CB(skb)->end_seq - start;
4240 BUG_ON(offset < 0);
4241 if (size > 0) {
4242 size = min(copy, size);
4243 if (skb_copy_bits(skb, offset, skb_put(nskb, size), size))
4244 BUG();
4245 TCP_SKB_CB(nskb)->end_seq += size;
4246 copy -= size;
4247 start += size;
4249 if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
4250 struct sk_buff *next = skb->next;
4251 __skb_unlink(skb, list);
4252 __kfree_skb(skb);
4253 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPRCVCOLLAPSED);
4254 skb = next;
4255 if (skb == tail ||
4256 tcp_hdr(skb)->syn ||
4257 tcp_hdr(skb)->fin)
4258 return;
4264 /* Collapse ofo queue. Algorithm: select contiguous sequence of skbs
4265 * and tcp_collapse() them until all the queue is collapsed.
4267 static void tcp_collapse_ofo_queue(struct sock *sk)
4269 struct tcp_sock *tp = tcp_sk(sk);
4270 struct sk_buff *skb = skb_peek(&tp->out_of_order_queue);
4271 struct sk_buff *head;
4272 u32 start, end;
4274 if (skb == NULL)
4275 return;
4277 start = TCP_SKB_CB(skb)->seq;
4278 end = TCP_SKB_CB(skb)->end_seq;
4279 head = skb;
4281 for (;;) {
4282 skb = skb->next;
4284 /* Segment is terminated when we see gap or when
4285 * we are at the end of all the queue. */
4286 if (skb == (struct sk_buff *)&tp->out_of_order_queue ||
4287 after(TCP_SKB_CB(skb)->seq, end) ||
4288 before(TCP_SKB_CB(skb)->end_seq, start)) {
4289 tcp_collapse(sk, &tp->out_of_order_queue,
4290 head, skb, start, end);
4291 head = skb;
4292 if (skb == (struct sk_buff *)&tp->out_of_order_queue)
4293 break;
4294 /* Start new segment */
4295 start = TCP_SKB_CB(skb)->seq;
4296 end = TCP_SKB_CB(skb)->end_seq;
4297 } else {
4298 if (before(TCP_SKB_CB(skb)->seq, start))
4299 start = TCP_SKB_CB(skb)->seq;
4300 if (after(TCP_SKB_CB(skb)->end_seq, end))
4301 end = TCP_SKB_CB(skb)->end_seq;
4307 * Purge the out-of-order queue.
4308 * Return true if queue was pruned.
4310 static int tcp_prune_ofo_queue(struct sock *sk)
4312 struct tcp_sock *tp = tcp_sk(sk);
4313 int res = 0;
4315 if (!skb_queue_empty(&tp->out_of_order_queue)) {
4316 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_OFOPRUNED);
4317 __skb_queue_purge(&tp->out_of_order_queue);
4319 /* Reset SACK state. A conforming SACK implementation will
4320 * do the same at a timeout based retransmit. When a connection
4321 * is in a sad state like this, we care only about integrity
4322 * of the connection not performance.
4324 if (tp->rx_opt.sack_ok)
4325 tcp_sack_reset(&tp->rx_opt);
4326 sk_mem_reclaim(sk);
4327 res = 1;
4329 return res;
4332 /* Reduce allocated memory if we can, trying to get
4333 * the socket within its memory limits again.
4335 * Return less than zero if we should start dropping frames
4336 * until the socket owning process reads some of the data
4337 * to stabilize the situation.
4339 static int tcp_prune_queue(struct sock *sk)
4341 struct tcp_sock *tp = tcp_sk(sk);
4343 SOCK_DEBUG(sk, "prune_queue: c=%x\n", tp->copied_seq);
4345 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PRUNECALLED);
4347 if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf)
4348 tcp_clamp_window(sk);
4349 else if (tcp_memory_pressure)
4350 tp->rcv_ssthresh = min(tp->rcv_ssthresh, 4U * tp->advmss);
4352 tcp_collapse_ofo_queue(sk);
4353 tcp_collapse(sk, &sk->sk_receive_queue,
4354 sk->sk_receive_queue.next,
4355 (struct sk_buff *)&sk->sk_receive_queue,
4356 tp->copied_seq, tp->rcv_nxt);
4357 sk_mem_reclaim(sk);
4359 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
4360 return 0;
4362 /* Collapsing did not help, destructive actions follow.
4363 * This must not ever occur. */
4365 tcp_prune_ofo_queue(sk);
4367 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
4368 return 0;
4370 /* If we are really being abused, tell the caller to silently
4371 * drop receive data on the floor. It will get retransmitted
4372 * and hopefully then we'll have sufficient space.
4374 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_RCVPRUNED);
4376 /* Massive buffer overcommit. */
4377 tp->pred_flags = 0;
4378 return -1;
4381 /* RFC2861, slow part. Adjust cwnd, after it was not full during one rto.
4382 * As additional protections, we do not touch cwnd in retransmission phases,
4383 * and if application hit its sndbuf limit recently.
4385 void tcp_cwnd_application_limited(struct sock *sk)
4387 struct tcp_sock *tp = tcp_sk(sk);
4389 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Open &&
4390 sk->sk_socket && !test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
4391 /* Limited by application or receiver window. */
4392 u32 init_win = tcp_init_cwnd(tp, __sk_dst_get(sk));
4393 u32 win_used = max(tp->snd_cwnd_used, init_win);
4394 if (win_used < tp->snd_cwnd) {
4395 tp->snd_ssthresh = tcp_current_ssthresh(sk);
4396 tp->snd_cwnd = (tp->snd_cwnd + win_used) >> 1;
4398 tp->snd_cwnd_used = 0;
4400 tp->snd_cwnd_stamp = tcp_time_stamp;
4403 static int tcp_should_expand_sndbuf(struct sock *sk)
4405 struct tcp_sock *tp = tcp_sk(sk);
4407 /* If the user specified a specific send buffer setting, do
4408 * not modify it.
4410 if (sk->sk_userlocks & SOCK_SNDBUF_LOCK)
4411 return 0;
4413 /* If we are under global TCP memory pressure, do not expand. */
4414 if (tcp_memory_pressure)
4415 return 0;
4417 /* If we are under soft global TCP memory pressure, do not expand. */
4418 if (atomic_read(&tcp_memory_allocated) >= sysctl_tcp_mem[0])
4419 return 0;
4421 /* If we filled the congestion window, do not expand. */
4422 if (tp->packets_out >= tp->snd_cwnd)
4423 return 0;
4425 return 1;
4428 /* When incoming ACK allowed to free some skb from write_queue,
4429 * we remember this event in flag SOCK_QUEUE_SHRUNK and wake up socket
4430 * on the exit from tcp input handler.
4432 * PROBLEM: sndbuf expansion does not work well with largesend.
4434 static void tcp_new_space(struct sock *sk)
4436 struct tcp_sock *tp = tcp_sk(sk);
4438 if (tcp_should_expand_sndbuf(sk)) {
4439 int sndmem = max_t(u32, tp->rx_opt.mss_clamp, tp->mss_cache) +
4440 MAX_TCP_HEADER + 16 + sizeof(struct sk_buff),
4441 demanded = max_t(unsigned int, tp->snd_cwnd,
4442 tp->reordering + 1);
4443 sndmem *= 2 * demanded;
4444 if (sndmem > sk->sk_sndbuf)
4445 sk->sk_sndbuf = min(sndmem, sysctl_tcp_wmem[2]);
4446 tp->snd_cwnd_stamp = tcp_time_stamp;
4449 sk->sk_write_space(sk);
4452 static void tcp_check_space(struct sock *sk)
4454 if (sock_flag(sk, SOCK_QUEUE_SHRUNK)) {
4455 sock_reset_flag(sk, SOCK_QUEUE_SHRUNK);
4456 if (sk->sk_socket &&
4457 test_bit(SOCK_NOSPACE, &sk->sk_socket->flags))
4458 tcp_new_space(sk);
4462 static inline void tcp_data_snd_check(struct sock *sk)
4464 tcp_push_pending_frames(sk);
4465 tcp_check_space(sk);
4469 * Check if sending an ack is needed.
4471 static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible)
4473 struct tcp_sock *tp = tcp_sk(sk);
4475 /* More than one full frame received... */
4476 if (((tp->rcv_nxt - tp->rcv_wup) > inet_csk(sk)->icsk_ack.rcv_mss
4477 /* ... and right edge of window advances far enough.
4478 * (tcp_recvmsg() will send ACK otherwise). Or...
4480 && __tcp_select_window(sk) >= tp->rcv_wnd) ||
4481 /* We ACK each frame or... */
4482 tcp_in_quickack_mode(sk) ||
4483 /* We have out of order data. */
4484 (ofo_possible && skb_peek(&tp->out_of_order_queue))) {
4485 /* Then ack it now */
4486 tcp_send_ack(sk);
4487 } else {
4488 /* Else, send delayed ack. */
4489 tcp_send_delayed_ack(sk);
4493 static inline void tcp_ack_snd_check(struct sock *sk)
4495 if (!inet_csk_ack_scheduled(sk)) {
4496 /* We sent a data segment already. */
4497 return;
4499 __tcp_ack_snd_check(sk, 1);
4503 * This routine is only called when we have urgent data
4504 * signaled. Its the 'slow' part of tcp_urg. It could be
4505 * moved inline now as tcp_urg is only called from one
4506 * place. We handle URGent data wrong. We have to - as
4507 * BSD still doesn't use the correction from RFC961.
4508 * For 1003.1g we should support a new option TCP_STDURG to permit
4509 * either form (or just set the sysctl tcp_stdurg).
4512 static void tcp_check_urg(struct sock *sk, struct tcphdr *th)
4514 struct tcp_sock *tp = tcp_sk(sk);
4515 u32 ptr = ntohs(th->urg_ptr);
4517 if (ptr && !sysctl_tcp_stdurg)
4518 ptr--;
4519 ptr += ntohl(th->seq);
4521 /* Ignore urgent data that we've already seen and read. */
4522 if (after(tp->copied_seq, ptr))
4523 return;
4525 /* Do not replay urg ptr.
4527 * NOTE: interesting situation not covered by specs.
4528 * Misbehaving sender may send urg ptr, pointing to segment,
4529 * which we already have in ofo queue. We are not able to fetch
4530 * such data and will stay in TCP_URG_NOTYET until will be eaten
4531 * by recvmsg(). Seems, we are not obliged to handle such wicked
4532 * situations. But it is worth to think about possibility of some
4533 * DoSes using some hypothetical application level deadlock.
4535 if (before(ptr, tp->rcv_nxt))
4536 return;
4538 /* Do we already have a newer (or duplicate) urgent pointer? */
4539 if (tp->urg_data && !after(ptr, tp->urg_seq))
4540 return;
4542 /* Tell the world about our new urgent pointer. */
4543 sk_send_sigurg(sk);
4545 /* We may be adding urgent data when the last byte read was
4546 * urgent. To do this requires some care. We cannot just ignore
4547 * tp->copied_seq since we would read the last urgent byte again
4548 * as data, nor can we alter copied_seq until this data arrives
4549 * or we break the semantics of SIOCATMARK (and thus sockatmark())
4551 * NOTE. Double Dutch. Rendering to plain English: author of comment
4552 * above did something sort of send("A", MSG_OOB); send("B", MSG_OOB);
4553 * and expect that both A and B disappear from stream. This is _wrong_.
4554 * Though this happens in BSD with high probability, this is occasional.
4555 * Any application relying on this is buggy. Note also, that fix "works"
4556 * only in this artificial test. Insert some normal data between A and B and we will
4557 * decline of BSD again. Verdict: it is better to remove to trap
4558 * buggy users.
4560 if (tp->urg_seq == tp->copied_seq && tp->urg_data &&
4561 !sock_flag(sk, SOCK_URGINLINE) && tp->copied_seq != tp->rcv_nxt) {
4562 struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
4563 tp->copied_seq++;
4564 if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) {
4565 __skb_unlink(skb, &sk->sk_receive_queue);
4566 __kfree_skb(skb);
4570 tp->urg_data = TCP_URG_NOTYET;
4571 tp->urg_seq = ptr;
4573 /* Disable header prediction. */
4574 tp->pred_flags = 0;
4577 /* This is the 'fast' part of urgent handling. */
4578 static void tcp_urg(struct sock *sk, struct sk_buff *skb, struct tcphdr *th)
4580 struct tcp_sock *tp = tcp_sk(sk);
4582 /* Check if we get a new urgent pointer - normally not. */
4583 if (th->urg)
4584 tcp_check_urg(sk, th);
4586 /* Do we wait for any urgent data? - normally not... */
4587 if (tp->urg_data == TCP_URG_NOTYET) {
4588 u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) -
4589 th->syn;
4591 /* Is the urgent pointer pointing into this packet? */
4592 if (ptr < skb->len) {
4593 u8 tmp;
4594 if (skb_copy_bits(skb, ptr, &tmp, 1))
4595 BUG();
4596 tp->urg_data = TCP_URG_VALID | tmp;
4597 if (!sock_flag(sk, SOCK_DEAD))
4598 sk->sk_data_ready(sk, 0);
4603 static int tcp_copy_to_iovec(struct sock *sk, struct sk_buff *skb, int hlen)
4605 struct tcp_sock *tp = tcp_sk(sk);
4606 int chunk = skb->len - hlen;
4607 int err;
4609 local_bh_enable();
4610 if (skb_csum_unnecessary(skb))
4611 err = skb_copy_datagram_iovec(skb, hlen, tp->ucopy.iov, chunk);
4612 else
4613 err = skb_copy_and_csum_datagram_iovec(skb, hlen,
4614 tp->ucopy.iov);
4616 if (!err) {
4617 tp->ucopy.len -= chunk;
4618 tp->copied_seq += chunk;
4619 tcp_rcv_space_adjust(sk);
4622 local_bh_disable();
4623 return err;
4626 static __sum16 __tcp_checksum_complete_user(struct sock *sk,
4627 struct sk_buff *skb)
4629 __sum16 result;
4631 if (sock_owned_by_user(sk)) {
4632 local_bh_enable();
4633 result = __tcp_checksum_complete(skb);
4634 local_bh_disable();
4635 } else {
4636 result = __tcp_checksum_complete(skb);
4638 return result;
4641 static inline int tcp_checksum_complete_user(struct sock *sk,
4642 struct sk_buff *skb)
4644 return !skb_csum_unnecessary(skb) &&
4645 __tcp_checksum_complete_user(sk, skb);
4648 #ifdef CONFIG_NET_DMA
4649 static int tcp_dma_try_early_copy(struct sock *sk, struct sk_buff *skb,
4650 int hlen)
4652 struct tcp_sock *tp = tcp_sk(sk);
4653 int chunk = skb->len - hlen;
4654 int dma_cookie;
4655 int copied_early = 0;
4657 if (tp->ucopy.wakeup)
4658 return 0;
4660 if (!tp->ucopy.dma_chan && tp->ucopy.pinned_list)
4661 tp->ucopy.dma_chan = get_softnet_dma();
4663 if (tp->ucopy.dma_chan && skb_csum_unnecessary(skb)) {
4665 dma_cookie = dma_skb_copy_datagram_iovec(tp->ucopy.dma_chan,
4666 skb, hlen,
4667 tp->ucopy.iov, chunk,
4668 tp->ucopy.pinned_list);
4670 if (dma_cookie < 0)
4671 goto out;
4673 tp->ucopy.dma_cookie = dma_cookie;
4674 copied_early = 1;
4676 tp->ucopy.len -= chunk;
4677 tp->copied_seq += chunk;
4678 tcp_rcv_space_adjust(sk);
4680 if ((tp->ucopy.len == 0) ||
4681 (tcp_flag_word(tcp_hdr(skb)) & TCP_FLAG_PSH) ||
4682 (atomic_read(&sk->sk_rmem_alloc) > (sk->sk_rcvbuf >> 1))) {
4683 tp->ucopy.wakeup = 1;
4684 sk->sk_data_ready(sk, 0);
4686 } else if (chunk > 0) {
4687 tp->ucopy.wakeup = 1;
4688 sk->sk_data_ready(sk, 0);
4690 out:
4691 return copied_early;
4693 #endif /* CONFIG_NET_DMA */
4696 * TCP receive function for the ESTABLISHED state.
4698 * It is split into a fast path and a slow path. The fast path is
4699 * disabled when:
4700 * - A zero window was announced from us - zero window probing
4701 * is only handled properly in the slow path.
4702 * - Out of order segments arrived.
4703 * - Urgent data is expected.
4704 * - There is no buffer space left
4705 * - Unexpected TCP flags/window values/header lengths are received
4706 * (detected by checking the TCP header against pred_flags)
4707 * - Data is sent in both directions. Fast path only supports pure senders
4708 * or pure receivers (this means either the sequence number or the ack
4709 * value must stay constant)
4710 * - Unexpected TCP option.
4712 * When these conditions are not satisfied it drops into a standard
4713 * receive procedure patterned after RFC793 to handle all cases.
4714 * The first three cases are guaranteed by proper pred_flags setting,
4715 * the rest is checked inline. Fast processing is turned on in
4716 * tcp_data_queue when everything is OK.
4718 int tcp_rcv_established(struct sock *sk, struct sk_buff *skb,
4719 struct tcphdr *th, unsigned len)
4721 struct tcp_sock *tp = tcp_sk(sk);
4724 * Header prediction.
4725 * The code loosely follows the one in the famous
4726 * "30 instruction TCP receive" Van Jacobson mail.
4728 * Van's trick is to deposit buffers into socket queue
4729 * on a device interrupt, to call tcp_recv function
4730 * on the receive process context and checksum and copy
4731 * the buffer to user space. smart...
4733 * Our current scheme is not silly either but we take the
4734 * extra cost of the net_bh soft interrupt processing...
4735 * We do checksum and copy also but from device to kernel.
4738 tp->rx_opt.saw_tstamp = 0;
4740 /* pred_flags is 0xS?10 << 16 + snd_wnd
4741 * if header_prediction is to be made
4742 * 'S' will always be tp->tcp_header_len >> 2
4743 * '?' will be 0 for the fast path, otherwise pred_flags is 0 to
4744 * turn it off (when there are holes in the receive
4745 * space for instance)
4746 * PSH flag is ignored.
4749 if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags &&
4750 TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
4751 int tcp_header_len = tp->tcp_header_len;
4753 /* Timestamp header prediction: tcp_header_len
4754 * is automatically equal to th->doff*4 due to pred_flags
4755 * match.
4758 /* Check timestamp */
4759 if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) {
4760 __be32 *ptr = (__be32 *)(th + 1);
4762 /* No? Slow path! */
4763 if (*ptr != htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16)
4764 | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP))
4765 goto slow_path;
4767 tp->rx_opt.saw_tstamp = 1;
4768 ++ptr;
4769 tp->rx_opt.rcv_tsval = ntohl(*ptr);
4770 ++ptr;
4771 tp->rx_opt.rcv_tsecr = ntohl(*ptr);
4773 /* If PAWS failed, check it more carefully in slow path */
4774 if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) < 0)
4775 goto slow_path;
4777 /* DO NOT update ts_recent here, if checksum fails
4778 * and timestamp was corrupted part, it will result
4779 * in a hung connection since we will drop all
4780 * future packets due to the PAWS test.
4784 if (len <= tcp_header_len) {
4785 /* Bulk data transfer: sender */
4786 if (len == tcp_header_len) {
4787 /* Predicted packet is in window by definition.
4788 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
4789 * Hence, check seq<=rcv_wup reduces to:
4791 if (tcp_header_len ==
4792 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
4793 tp->rcv_nxt == tp->rcv_wup)
4794 tcp_store_ts_recent(tp);
4796 /* We know that such packets are checksummed
4797 * on entry.
4799 tcp_ack(sk, skb, 0);
4800 __kfree_skb(skb);
4801 tcp_data_snd_check(sk);
4802 return 0;
4803 } else { /* Header too small */
4804 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
4805 goto discard;
4807 } else {
4808 int eaten = 0;
4809 int copied_early = 0;
4811 if (tp->copied_seq == tp->rcv_nxt &&
4812 len - tcp_header_len <= tp->ucopy.len) {
4813 #ifdef CONFIG_NET_DMA
4814 if (tcp_dma_try_early_copy(sk, skb, tcp_header_len)) {
4815 copied_early = 1;
4816 eaten = 1;
4818 #endif
4819 if (tp->ucopy.task == current &&
4820 sock_owned_by_user(sk) && !copied_early) {
4821 __set_current_state(TASK_RUNNING);
4823 if (!tcp_copy_to_iovec(sk, skb, tcp_header_len))
4824 eaten = 1;
4826 if (eaten) {
4827 /* Predicted packet is in window by definition.
4828 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
4829 * Hence, check seq<=rcv_wup reduces to:
4831 if (tcp_header_len ==
4832 (sizeof(struct tcphdr) +
4833 TCPOLEN_TSTAMP_ALIGNED) &&
4834 tp->rcv_nxt == tp->rcv_wup)
4835 tcp_store_ts_recent(tp);
4837 tcp_rcv_rtt_measure_ts(sk, skb);
4839 __skb_pull(skb, tcp_header_len);
4840 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
4841 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPHITSTOUSER);
4843 if (copied_early)
4844 tcp_cleanup_rbuf(sk, skb->len);
4846 if (!eaten) {
4847 if (tcp_checksum_complete_user(sk, skb))
4848 goto csum_error;
4850 /* Predicted packet is in window by definition.
4851 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
4852 * Hence, check seq<=rcv_wup reduces to:
4854 if (tcp_header_len ==
4855 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
4856 tp->rcv_nxt == tp->rcv_wup)
4857 tcp_store_ts_recent(tp);
4859 tcp_rcv_rtt_measure_ts(sk, skb);
4861 if ((int)skb->truesize > sk->sk_forward_alloc)
4862 goto step5;
4864 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPHITS);
4866 /* Bulk data transfer: receiver */
4867 __skb_pull(skb, tcp_header_len);
4868 __skb_queue_tail(&sk->sk_receive_queue, skb);
4869 skb_set_owner_r(skb, sk);
4870 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
4873 tcp_event_data_recv(sk, skb);
4875 if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) {
4876 /* Well, only one small jumplet in fast path... */
4877 tcp_ack(sk, skb, FLAG_DATA);
4878 tcp_data_snd_check(sk);
4879 if (!inet_csk_ack_scheduled(sk))
4880 goto no_ack;
4883 __tcp_ack_snd_check(sk, 0);
4884 no_ack:
4885 #ifdef CONFIG_NET_DMA
4886 if (copied_early)
4887 __skb_queue_tail(&sk->sk_async_wait_queue, skb);
4888 else
4889 #endif
4890 if (eaten)
4891 __kfree_skb(skb);
4892 else
4893 sk->sk_data_ready(sk, 0);
4894 return 0;
4898 slow_path:
4899 if (len < (th->doff << 2) || tcp_checksum_complete_user(sk, skb))
4900 goto csum_error;
4903 * RFC1323: H1. Apply PAWS check first.
4905 if (tcp_fast_parse_options(skb, th, tp) && tp->rx_opt.saw_tstamp &&
4906 tcp_paws_discard(sk, skb)) {
4907 if (!th->rst) {
4908 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSESTABREJECTED);
4909 tcp_send_dupack(sk, skb);
4910 goto discard;
4912 /* Resets are accepted even if PAWS failed.
4914 ts_recent update must be made after we are sure
4915 that the packet is in window.
4920 * Standard slow path.
4923 if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) {
4924 /* RFC793, page 37: "In all states except SYN-SENT, all reset
4925 * (RST) segments are validated by checking their SEQ-fields."
4926 * And page 69: "If an incoming segment is not acceptable,
4927 * an acknowledgment should be sent in reply (unless the RST bit
4928 * is set, if so drop the segment and return)".
4930 if (!th->rst)
4931 tcp_send_dupack(sk, skb);
4932 goto discard;
4935 if (th->rst) {
4936 tcp_reset(sk);
4937 goto discard;
4940 tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
4942 if (th->syn && !before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4943 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
4944 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPABORTONSYN);
4945 tcp_reset(sk);
4946 return 1;
4949 step5:
4950 if (th->ack)
4951 tcp_ack(sk, skb, FLAG_SLOWPATH);
4953 tcp_rcv_rtt_measure_ts(sk, skb);
4955 /* Process urgent data. */
4956 tcp_urg(sk, skb, th);
4958 /* step 7: process the segment text */
4959 tcp_data_queue(sk, skb);
4961 tcp_data_snd_check(sk);
4962 tcp_ack_snd_check(sk);
4963 return 0;
4965 csum_error:
4966 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
4968 discard:
4969 __kfree_skb(skb);
4970 return 0;
4973 static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb,
4974 struct tcphdr *th, unsigned len)
4976 struct tcp_sock *tp = tcp_sk(sk);
4977 struct inet_connection_sock *icsk = inet_csk(sk);
4978 int saved_clamp = tp->rx_opt.mss_clamp;
4980 tcp_parse_options(skb, &tp->rx_opt, 0);
4982 if (th->ack) {
4983 /* rfc793:
4984 * "If the state is SYN-SENT then
4985 * first check the ACK bit
4986 * If the ACK bit is set
4987 * If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send
4988 * a reset (unless the RST bit is set, if so drop
4989 * the segment and return)"
4991 * We do not send data with SYN, so that RFC-correct
4992 * test reduces to:
4994 if (TCP_SKB_CB(skb)->ack_seq != tp->snd_nxt)
4995 goto reset_and_undo;
4997 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
4998 !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp,
4999 tcp_time_stamp)) {
5000 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSACTIVEREJECTED);
5001 goto reset_and_undo;
5004 /* Now ACK is acceptable.
5006 * "If the RST bit is set
5007 * If the ACK was acceptable then signal the user "error:
5008 * connection reset", drop the segment, enter CLOSED state,
5009 * delete TCB, and return."
5012 if (th->rst) {
5013 tcp_reset(sk);
5014 goto discard;
5017 /* rfc793:
5018 * "fifth, if neither of the SYN or RST bits is set then
5019 * drop the segment and return."
5021 * See note below!
5022 * --ANK(990513)
5024 if (!th->syn)
5025 goto discard_and_undo;
5027 /* rfc793:
5028 * "If the SYN bit is on ...
5029 * are acceptable then ...
5030 * (our SYN has been ACKed), change the connection
5031 * state to ESTABLISHED..."
5034 TCP_ECN_rcv_synack(tp, th);
5036 tp->snd_wl1 = TCP_SKB_CB(skb)->seq;
5037 tcp_ack(sk, skb, FLAG_SLOWPATH);
5039 /* Ok.. it's good. Set up sequence numbers and
5040 * move to established.
5042 tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
5043 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
5045 /* RFC1323: The window in SYN & SYN/ACK segments is
5046 * never scaled.
5048 tp->snd_wnd = ntohs(th->window);
5049 tcp_init_wl(tp, TCP_SKB_CB(skb)->ack_seq, TCP_SKB_CB(skb)->seq);
5051 if (!tp->rx_opt.wscale_ok) {
5052 tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0;
5053 tp->window_clamp = min(tp->window_clamp, 65535U);
5056 if (tp->rx_opt.saw_tstamp) {
5057 tp->rx_opt.tstamp_ok = 1;
5058 tp->tcp_header_len =
5059 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
5060 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
5061 tcp_store_ts_recent(tp);
5062 } else {
5063 tp->tcp_header_len = sizeof(struct tcphdr);
5066 if (tcp_is_sack(tp) && sysctl_tcp_fack)
5067 tcp_enable_fack(tp);
5069 tcp_mtup_init(sk);
5070 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
5071 tcp_initialize_rcv_mss(sk);
5073 /* Remember, tcp_poll() does not lock socket!
5074 * Change state from SYN-SENT only after copied_seq
5075 * is initialized. */
5076 tp->copied_seq = tp->rcv_nxt;
5077 smp_mb();
5078 tcp_set_state(sk, TCP_ESTABLISHED);
5080 security_inet_conn_established(sk, skb);
5082 /* Make sure socket is routed, for correct metrics. */
5083 icsk->icsk_af_ops->rebuild_header(sk);
5085 tcp_init_metrics(sk);
5087 tcp_init_congestion_control(sk);
5089 /* Prevent spurious tcp_cwnd_restart() on first data
5090 * packet.
5092 tp->lsndtime = tcp_time_stamp;
5094 tcp_init_buffer_space(sk);
5096 if (sock_flag(sk, SOCK_KEEPOPEN))
5097 inet_csk_reset_keepalive_timer(sk, keepalive_time_when(tp));
5099 if (!tp->rx_opt.snd_wscale)
5100 __tcp_fast_path_on(tp, tp->snd_wnd);
5101 else
5102 tp->pred_flags = 0;
5104 if (!sock_flag(sk, SOCK_DEAD)) {
5105 sk->sk_state_change(sk);
5106 sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
5109 if (sk->sk_write_pending ||
5110 icsk->icsk_accept_queue.rskq_defer_accept ||
5111 icsk->icsk_ack.pingpong) {
5112 /* Save one ACK. Data will be ready after
5113 * several ticks, if write_pending is set.
5115 * It may be deleted, but with this feature tcpdumps
5116 * look so _wonderfully_ clever, that I was not able
5117 * to stand against the temptation 8) --ANK
5119 inet_csk_schedule_ack(sk);
5120 icsk->icsk_ack.lrcvtime = tcp_time_stamp;
5121 icsk->icsk_ack.ato = TCP_ATO_MIN;
5122 tcp_incr_quickack(sk);
5123 tcp_enter_quickack_mode(sk);
5124 inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
5125 TCP_DELACK_MAX, TCP_RTO_MAX);
5127 discard:
5128 __kfree_skb(skb);
5129 return 0;
5130 } else {
5131 tcp_send_ack(sk);
5133 return -1;
5136 /* No ACK in the segment */
5138 if (th->rst) {
5139 /* rfc793:
5140 * "If the RST bit is set
5142 * Otherwise (no ACK) drop the segment and return."
5145 goto discard_and_undo;
5148 /* PAWS check. */
5149 if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp &&
5150 tcp_paws_check(&tp->rx_opt, 0))
5151 goto discard_and_undo;
5153 if (th->syn) {
5154 /* We see SYN without ACK. It is attempt of
5155 * simultaneous connect with crossed SYNs.
5156 * Particularly, it can be connect to self.
5158 tcp_set_state(sk, TCP_SYN_RECV);
5160 if (tp->rx_opt.saw_tstamp) {
5161 tp->rx_opt.tstamp_ok = 1;
5162 tcp_store_ts_recent(tp);
5163 tp->tcp_header_len =
5164 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
5165 } else {
5166 tp->tcp_header_len = sizeof(struct tcphdr);
5169 tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
5170 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
5172 /* RFC1323: The window in SYN & SYN/ACK segments is
5173 * never scaled.
5175 tp->snd_wnd = ntohs(th->window);
5176 tp->snd_wl1 = TCP_SKB_CB(skb)->seq;
5177 tp->max_window = tp->snd_wnd;
5179 TCP_ECN_rcv_syn(tp, th);
5181 tcp_mtup_init(sk);
5182 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
5183 tcp_initialize_rcv_mss(sk);
5185 tcp_send_synack(sk);
5186 #if 0
5187 /* Note, we could accept data and URG from this segment.
5188 * There are no obstacles to make this.
5190 * However, if we ignore data in ACKless segments sometimes,
5191 * we have no reasons to accept it sometimes.
5192 * Also, seems the code doing it in step6 of tcp_rcv_state_process
5193 * is not flawless. So, discard packet for sanity.
5194 * Uncomment this return to process the data.
5196 return -1;
5197 #else
5198 goto discard;
5199 #endif
5201 /* "fifth, if neither of the SYN or RST bits is set then
5202 * drop the segment and return."
5205 discard_and_undo:
5206 tcp_clear_options(&tp->rx_opt);
5207 tp->rx_opt.mss_clamp = saved_clamp;
5208 goto discard;
5210 reset_and_undo:
5211 tcp_clear_options(&tp->rx_opt);
5212 tp->rx_opt.mss_clamp = saved_clamp;
5213 return 1;
5217 * This function implements the receiving procedure of RFC 793 for
5218 * all states except ESTABLISHED and TIME_WAIT.
5219 * It's called from both tcp_v4_rcv and tcp_v6_rcv and should be
5220 * address independent.
5223 int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb,
5224 struct tcphdr *th, unsigned len)
5226 struct tcp_sock *tp = tcp_sk(sk);
5227 struct inet_connection_sock *icsk = inet_csk(sk);
5228 int queued = 0;
5230 tp->rx_opt.saw_tstamp = 0;
5232 switch (sk->sk_state) {
5233 case TCP_CLOSE:
5234 goto discard;
5236 case TCP_LISTEN:
5237 if (th->ack)
5238 return 1;
5240 if (th->rst)
5241 goto discard;
5243 if (th->syn) {
5244 if (icsk->icsk_af_ops->conn_request(sk, skb) < 0)
5245 return 1;
5247 /* Now we have several options: In theory there is
5248 * nothing else in the frame. KA9Q has an option to
5249 * send data with the syn, BSD accepts data with the
5250 * syn up to the [to be] advertised window and
5251 * Solaris 2.1 gives you a protocol error. For now
5252 * we just ignore it, that fits the spec precisely
5253 * and avoids incompatibilities. It would be nice in
5254 * future to drop through and process the data.
5256 * Now that TTCP is starting to be used we ought to
5257 * queue this data.
5258 * But, this leaves one open to an easy denial of
5259 * service attack, and SYN cookies can't defend
5260 * against this problem. So, we drop the data
5261 * in the interest of security over speed unless
5262 * it's still in use.
5264 kfree_skb(skb);
5265 return 0;
5267 goto discard;
5269 case TCP_SYN_SENT:
5270 queued = tcp_rcv_synsent_state_process(sk, skb, th, len);
5271 if (queued >= 0)
5272 return queued;
5274 /* Do step6 onward by hand. */
5275 tcp_urg(sk, skb, th);
5276 __kfree_skb(skb);
5277 tcp_data_snd_check(sk);
5278 return 0;
5281 if (tcp_fast_parse_options(skb, th, tp) && tp->rx_opt.saw_tstamp &&
5282 tcp_paws_discard(sk, skb)) {
5283 if (!th->rst) {
5284 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSESTABREJECTED);
5285 tcp_send_dupack(sk, skb);
5286 goto discard;
5288 /* Reset is accepted even if it did not pass PAWS. */
5291 /* step 1: check sequence number */
5292 if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) {
5293 if (!th->rst)
5294 tcp_send_dupack(sk, skb);
5295 goto discard;
5298 /* step 2: check RST bit */
5299 if (th->rst) {
5300 tcp_reset(sk);
5301 goto discard;
5304 tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
5306 /* step 3: check security and precedence [ignored] */
5308 /* step 4:
5310 * Check for a SYN in window.
5312 if (th->syn && !before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
5313 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPABORTONSYN);
5314 tcp_reset(sk);
5315 return 1;
5318 /* step 5: check the ACK field */
5319 if (th->ack) {
5320 int acceptable = tcp_ack(sk, skb, FLAG_SLOWPATH);
5322 switch (sk->sk_state) {
5323 case TCP_SYN_RECV:
5324 if (acceptable) {
5325 tp->copied_seq = tp->rcv_nxt;
5326 smp_mb();
5327 tcp_set_state(sk, TCP_ESTABLISHED);
5328 sk->sk_state_change(sk);
5330 /* Note, that this wakeup is only for marginal
5331 * crossed SYN case. Passively open sockets
5332 * are not waked up, because sk->sk_sleep ==
5333 * NULL and sk->sk_socket == NULL.
5335 if (sk->sk_socket)
5336 sk_wake_async(sk,
5337 SOCK_WAKE_IO, POLL_OUT);
5339 tp->snd_una = TCP_SKB_CB(skb)->ack_seq;
5340 tp->snd_wnd = ntohs(th->window) <<
5341 tp->rx_opt.snd_wscale;
5342 tcp_init_wl(tp, TCP_SKB_CB(skb)->ack_seq,
5343 TCP_SKB_CB(skb)->seq);
5345 /* tcp_ack considers this ACK as duplicate
5346 * and does not calculate rtt.
5347 * Fix it at least with timestamps.
5349 if (tp->rx_opt.saw_tstamp &&
5350 tp->rx_opt.rcv_tsecr && !tp->srtt)
5351 tcp_ack_saw_tstamp(sk, 0);
5353 if (tp->rx_opt.tstamp_ok)
5354 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
5356 /* Make sure socket is routed, for
5357 * correct metrics.
5359 icsk->icsk_af_ops->rebuild_header(sk);
5361 tcp_init_metrics(sk);
5363 tcp_init_congestion_control(sk);
5365 /* Prevent spurious tcp_cwnd_restart() on
5366 * first data packet.
5368 tp->lsndtime = tcp_time_stamp;
5370 tcp_mtup_init(sk);
5371 tcp_initialize_rcv_mss(sk);
5372 tcp_init_buffer_space(sk);
5373 tcp_fast_path_on(tp);
5374 } else {
5375 return 1;
5377 break;
5379 case TCP_FIN_WAIT1:
5380 if (tp->snd_una == tp->write_seq) {
5381 tcp_set_state(sk, TCP_FIN_WAIT2);
5382 sk->sk_shutdown |= SEND_SHUTDOWN;
5383 dst_confirm(sk->sk_dst_cache);
5385 if (!sock_flag(sk, SOCK_DEAD))
5386 /* Wake up lingering close() */
5387 sk->sk_state_change(sk);
5388 else {
5389 int tmo;
5391 if (tp->linger2 < 0 ||
5392 (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
5393 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt))) {
5394 tcp_done(sk);
5395 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
5396 return 1;
5399 tmo = tcp_fin_time(sk);
5400 if (tmo > TCP_TIMEWAIT_LEN) {
5401 inet_csk_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN);
5402 } else if (th->fin || sock_owned_by_user(sk)) {
5403 /* Bad case. We could lose such FIN otherwise.
5404 * It is not a big problem, but it looks confusing
5405 * and not so rare event. We still can lose it now,
5406 * if it spins in bh_lock_sock(), but it is really
5407 * marginal case.
5409 inet_csk_reset_keepalive_timer(sk, tmo);
5410 } else {
5411 tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
5412 goto discard;
5416 break;
5418 case TCP_CLOSING:
5419 if (tp->snd_una == tp->write_seq) {
5420 tcp_time_wait(sk, TCP_TIME_WAIT, 0);
5421 goto discard;
5423 break;
5425 case TCP_LAST_ACK:
5426 if (tp->snd_una == tp->write_seq) {
5427 tcp_update_metrics(sk);
5428 tcp_done(sk);
5429 goto discard;
5431 break;
5433 } else
5434 goto discard;
5436 /* step 6: check the URG bit */
5437 tcp_urg(sk, skb, th);
5439 /* step 7: process the segment text */
5440 switch (sk->sk_state) {
5441 case TCP_CLOSE_WAIT:
5442 case TCP_CLOSING:
5443 case TCP_LAST_ACK:
5444 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
5445 break;
5446 case TCP_FIN_WAIT1:
5447 case TCP_FIN_WAIT2:
5448 /* RFC 793 says to queue data in these states,
5449 * RFC 1122 says we MUST send a reset.
5450 * BSD 4.4 also does reset.
5452 if (sk->sk_shutdown & RCV_SHUTDOWN) {
5453 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
5454 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
5455 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
5456 tcp_reset(sk);
5457 return 1;
5460 /* Fall through */
5461 case TCP_ESTABLISHED:
5462 tcp_data_queue(sk, skb);
5463 queued = 1;
5464 break;
5467 /* tcp_data could move socket to TIME-WAIT */
5468 if (sk->sk_state != TCP_CLOSE) {
5469 tcp_data_snd_check(sk);
5470 tcp_ack_snd_check(sk);
5473 if (!queued) {
5474 discard:
5475 __kfree_skb(skb);
5477 return 0;
5480 EXPORT_SYMBOL(sysctl_tcp_ecn);
5481 EXPORT_SYMBOL(sysctl_tcp_reordering);
5482 EXPORT_SYMBOL(sysctl_tcp_adv_win_scale);
5483 EXPORT_SYMBOL(tcp_parse_options);
5484 #ifdef CONFIG_TCP_MD5SIG
5485 EXPORT_SYMBOL(tcp_parse_md5sig_option);
5486 #endif
5487 EXPORT_SYMBOL(tcp_rcv_established);
5488 EXPORT_SYMBOL(tcp_rcv_state_process);
5489 EXPORT_SYMBOL(tcp_initialize_rcv_mss);