drm/i915: Disable GPU semaphores by default
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / drivers / gpu / drm / i915 / i915_gem_execbuffer.c
blob50ab1614571c746447781758c8355cb251276019
1 /*
2 * Copyright © 2008,2010 Intel Corporation
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 * Chris Wilson <chris@chris-wilson.co.uk>
29 #include "drmP.h"
30 #include "drm.h"
31 #include "i915_drm.h"
32 #include "i915_drv.h"
33 #include "i915_trace.h"
34 #include "intel_drv.h"
36 struct change_domains {
37 uint32_t invalidate_domains;
38 uint32_t flush_domains;
39 uint32_t flush_rings;
43 * Set the next domain for the specified object. This
44 * may not actually perform the necessary flushing/invaliding though,
45 * as that may want to be batched with other set_domain operations
47 * This is (we hope) the only really tricky part of gem. The goal
48 * is fairly simple -- track which caches hold bits of the object
49 * and make sure they remain coherent. A few concrete examples may
50 * help to explain how it works. For shorthand, we use the notation
51 * (read_domains, write_domain), e.g. (CPU, CPU) to indicate the
52 * a pair of read and write domain masks.
54 * Case 1: the batch buffer
56 * 1. Allocated
57 * 2. Written by CPU
58 * 3. Mapped to GTT
59 * 4. Read by GPU
60 * 5. Unmapped from GTT
61 * 6. Freed
63 * Let's take these a step at a time
65 * 1. Allocated
66 * Pages allocated from the kernel may still have
67 * cache contents, so we set them to (CPU, CPU) always.
68 * 2. Written by CPU (using pwrite)
69 * The pwrite function calls set_domain (CPU, CPU) and
70 * this function does nothing (as nothing changes)
71 * 3. Mapped by GTT
72 * This function asserts that the object is not
73 * currently in any GPU-based read or write domains
74 * 4. Read by GPU
75 * i915_gem_execbuffer calls set_domain (COMMAND, 0).
76 * As write_domain is zero, this function adds in the
77 * current read domains (CPU+COMMAND, 0).
78 * flush_domains is set to CPU.
79 * invalidate_domains is set to COMMAND
80 * clflush is run to get data out of the CPU caches
81 * then i915_dev_set_domain calls i915_gem_flush to
82 * emit an MI_FLUSH and drm_agp_chipset_flush
83 * 5. Unmapped from GTT
84 * i915_gem_object_unbind calls set_domain (CPU, CPU)
85 * flush_domains and invalidate_domains end up both zero
86 * so no flushing/invalidating happens
87 * 6. Freed
88 * yay, done
90 * Case 2: The shared render buffer
92 * 1. Allocated
93 * 2. Mapped to GTT
94 * 3. Read/written by GPU
95 * 4. set_domain to (CPU,CPU)
96 * 5. Read/written by CPU
97 * 6. Read/written by GPU
99 * 1. Allocated
100 * Same as last example, (CPU, CPU)
101 * 2. Mapped to GTT
102 * Nothing changes (assertions find that it is not in the GPU)
103 * 3. Read/written by GPU
104 * execbuffer calls set_domain (RENDER, RENDER)
105 * flush_domains gets CPU
106 * invalidate_domains gets GPU
107 * clflush (obj)
108 * MI_FLUSH and drm_agp_chipset_flush
109 * 4. set_domain (CPU, CPU)
110 * flush_domains gets GPU
111 * invalidate_domains gets CPU
112 * wait_rendering (obj) to make sure all drawing is complete.
113 * This will include an MI_FLUSH to get the data from GPU
114 * to memory
115 * clflush (obj) to invalidate the CPU cache
116 * Another MI_FLUSH in i915_gem_flush (eliminate this somehow?)
117 * 5. Read/written by CPU
118 * cache lines are loaded and dirtied
119 * 6. Read written by GPU
120 * Same as last GPU access
122 * Case 3: The constant buffer
124 * 1. Allocated
125 * 2. Written by CPU
126 * 3. Read by GPU
127 * 4. Updated (written) by CPU again
128 * 5. Read by GPU
130 * 1. Allocated
131 * (CPU, CPU)
132 * 2. Written by CPU
133 * (CPU, CPU)
134 * 3. Read by GPU
135 * (CPU+RENDER, 0)
136 * flush_domains = CPU
137 * invalidate_domains = RENDER
138 * clflush (obj)
139 * MI_FLUSH
140 * drm_agp_chipset_flush
141 * 4. Updated (written) by CPU again
142 * (CPU, CPU)
143 * flush_domains = 0 (no previous write domain)
144 * invalidate_domains = 0 (no new read domains)
145 * 5. Read by GPU
146 * (CPU+RENDER, 0)
147 * flush_domains = CPU
148 * invalidate_domains = RENDER
149 * clflush (obj)
150 * MI_FLUSH
151 * drm_agp_chipset_flush
153 static void
154 i915_gem_object_set_to_gpu_domain(struct drm_i915_gem_object *obj,
155 struct intel_ring_buffer *ring,
156 struct change_domains *cd)
158 uint32_t invalidate_domains = 0, flush_domains = 0;
161 * If the object isn't moving to a new write domain,
162 * let the object stay in multiple read domains
164 if (obj->base.pending_write_domain == 0)
165 obj->base.pending_read_domains |= obj->base.read_domains;
168 * Flush the current write domain if
169 * the new read domains don't match. Invalidate
170 * any read domains which differ from the old
171 * write domain
173 if (obj->base.write_domain &&
174 (((obj->base.write_domain != obj->base.pending_read_domains ||
175 obj->ring != ring)) ||
176 (obj->fenced_gpu_access && !obj->pending_fenced_gpu_access))) {
177 flush_domains |= obj->base.write_domain;
178 invalidate_domains |=
179 obj->base.pending_read_domains & ~obj->base.write_domain;
182 * Invalidate any read caches which may have
183 * stale data. That is, any new read domains.
185 invalidate_domains |= obj->base.pending_read_domains & ~obj->base.read_domains;
186 if ((flush_domains | invalidate_domains) & I915_GEM_DOMAIN_CPU)
187 i915_gem_clflush_object(obj);
189 /* blow away mappings if mapped through GTT */
190 if ((flush_domains | invalidate_domains) & I915_GEM_DOMAIN_GTT)
191 i915_gem_release_mmap(obj);
193 /* The actual obj->write_domain will be updated with
194 * pending_write_domain after we emit the accumulated flush for all
195 * of our domain changes in execbuffers (which clears objects'
196 * write_domains). So if we have a current write domain that we
197 * aren't changing, set pending_write_domain to that.
199 if (flush_domains == 0 && obj->base.pending_write_domain == 0)
200 obj->base.pending_write_domain = obj->base.write_domain;
202 cd->invalidate_domains |= invalidate_domains;
203 cd->flush_domains |= flush_domains;
204 if (flush_domains & I915_GEM_GPU_DOMAINS)
205 cd->flush_rings |= obj->ring->id;
206 if (invalidate_domains & I915_GEM_GPU_DOMAINS)
207 cd->flush_rings |= ring->id;
210 struct eb_objects {
211 int and;
212 struct hlist_head buckets[0];
215 static struct eb_objects *
216 eb_create(int size)
218 struct eb_objects *eb;
219 int count = PAGE_SIZE / sizeof(struct hlist_head) / 2;
220 while (count > size)
221 count >>= 1;
222 eb = kzalloc(count*sizeof(struct hlist_head) +
223 sizeof(struct eb_objects),
224 GFP_KERNEL);
225 if (eb == NULL)
226 return eb;
228 eb->and = count - 1;
229 return eb;
232 static void
233 eb_reset(struct eb_objects *eb)
235 memset(eb->buckets, 0, (eb->and+1)*sizeof(struct hlist_head));
238 static void
239 eb_add_object(struct eb_objects *eb, struct drm_i915_gem_object *obj)
241 hlist_add_head(&obj->exec_node,
242 &eb->buckets[obj->exec_handle & eb->and]);
245 static struct drm_i915_gem_object *
246 eb_get_object(struct eb_objects *eb, unsigned long handle)
248 struct hlist_head *head;
249 struct hlist_node *node;
250 struct drm_i915_gem_object *obj;
252 head = &eb->buckets[handle & eb->and];
253 hlist_for_each(node, head) {
254 obj = hlist_entry(node, struct drm_i915_gem_object, exec_node);
255 if (obj->exec_handle == handle)
256 return obj;
259 return NULL;
262 static void
263 eb_destroy(struct eb_objects *eb)
265 kfree(eb);
268 static int
269 i915_gem_execbuffer_relocate_entry(struct drm_i915_gem_object *obj,
270 struct eb_objects *eb,
271 struct drm_i915_gem_relocation_entry *reloc)
273 struct drm_device *dev = obj->base.dev;
274 struct drm_gem_object *target_obj;
275 uint32_t target_offset;
276 int ret = -EINVAL;
278 /* we've already hold a reference to all valid objects */
279 target_obj = &eb_get_object(eb, reloc->target_handle)->base;
280 if (unlikely(target_obj == NULL))
281 return -ENOENT;
283 target_offset = to_intel_bo(target_obj)->gtt_offset;
285 #if WATCH_RELOC
286 DRM_INFO("%s: obj %p offset %08x target %d "
287 "read %08x write %08x gtt %08x "
288 "presumed %08x delta %08x\n",
289 __func__,
290 obj,
291 (int) reloc->offset,
292 (int) reloc->target_handle,
293 (int) reloc->read_domains,
294 (int) reloc->write_domain,
295 (int) target_offset,
296 (int) reloc->presumed_offset,
297 reloc->delta);
298 #endif
300 /* The target buffer should have appeared before us in the
301 * exec_object list, so it should have a GTT space bound by now.
303 if (unlikely(target_offset == 0)) {
304 DRM_ERROR("No GTT space found for object %d\n",
305 reloc->target_handle);
306 return ret;
309 /* Validate that the target is in a valid r/w GPU domain */
310 if (unlikely(reloc->write_domain & (reloc->write_domain - 1))) {
311 DRM_ERROR("reloc with multiple write domains: "
312 "obj %p target %d offset %d "
313 "read %08x write %08x",
314 obj, reloc->target_handle,
315 (int) reloc->offset,
316 reloc->read_domains,
317 reloc->write_domain);
318 return ret;
320 if (unlikely((reloc->write_domain | reloc->read_domains) & I915_GEM_DOMAIN_CPU)) {
321 DRM_ERROR("reloc with read/write CPU domains: "
322 "obj %p target %d offset %d "
323 "read %08x write %08x",
324 obj, reloc->target_handle,
325 (int) reloc->offset,
326 reloc->read_domains,
327 reloc->write_domain);
328 return ret;
330 if (unlikely(reloc->write_domain && target_obj->pending_write_domain &&
331 reloc->write_domain != target_obj->pending_write_domain)) {
332 DRM_ERROR("Write domain conflict: "
333 "obj %p target %d offset %d "
334 "new %08x old %08x\n",
335 obj, reloc->target_handle,
336 (int) reloc->offset,
337 reloc->write_domain,
338 target_obj->pending_write_domain);
339 return ret;
342 target_obj->pending_read_domains |= reloc->read_domains;
343 target_obj->pending_write_domain |= reloc->write_domain;
345 /* If the relocation already has the right value in it, no
346 * more work needs to be done.
348 if (target_offset == reloc->presumed_offset)
349 return 0;
351 /* Check that the relocation address is valid... */
352 if (unlikely(reloc->offset > obj->base.size - 4)) {
353 DRM_ERROR("Relocation beyond object bounds: "
354 "obj %p target %d offset %d size %d.\n",
355 obj, reloc->target_handle,
356 (int) reloc->offset,
357 (int) obj->base.size);
358 return ret;
360 if (unlikely(reloc->offset & 3)) {
361 DRM_ERROR("Relocation not 4-byte aligned: "
362 "obj %p target %d offset %d.\n",
363 obj, reloc->target_handle,
364 (int) reloc->offset);
365 return ret;
368 /* and points to somewhere within the target object. */
369 if (unlikely(reloc->delta >= target_obj->size)) {
370 DRM_ERROR("Relocation beyond target object bounds: "
371 "obj %p target %d delta %d size %d.\n",
372 obj, reloc->target_handle,
373 (int) reloc->delta,
374 (int) target_obj->size);
375 return ret;
378 reloc->delta += target_offset;
379 if (obj->base.write_domain == I915_GEM_DOMAIN_CPU) {
380 uint32_t page_offset = reloc->offset & ~PAGE_MASK;
381 char *vaddr;
383 vaddr = kmap_atomic(obj->pages[reloc->offset >> PAGE_SHIFT]);
384 *(uint32_t *)(vaddr + page_offset) = reloc->delta;
385 kunmap_atomic(vaddr);
386 } else {
387 struct drm_i915_private *dev_priv = dev->dev_private;
388 uint32_t __iomem *reloc_entry;
389 void __iomem *reloc_page;
391 ret = i915_gem_object_set_to_gtt_domain(obj, 1);
392 if (ret)
393 return ret;
395 /* Map the page containing the relocation we're going to perform. */
396 reloc->offset += obj->gtt_offset;
397 reloc_page = io_mapping_map_atomic_wc(dev_priv->mm.gtt_mapping,
398 reloc->offset & PAGE_MASK);
399 reloc_entry = (uint32_t __iomem *)
400 (reloc_page + (reloc->offset & ~PAGE_MASK));
401 iowrite32(reloc->delta, reloc_entry);
402 io_mapping_unmap_atomic(reloc_page);
405 /* and update the user's relocation entry */
406 reloc->presumed_offset = target_offset;
408 return 0;
411 static int
412 i915_gem_execbuffer_relocate_object(struct drm_i915_gem_object *obj,
413 struct eb_objects *eb)
415 struct drm_i915_gem_relocation_entry __user *user_relocs;
416 struct drm_i915_gem_exec_object2 *entry = obj->exec_entry;
417 int i, ret;
419 user_relocs = (void __user *)(uintptr_t)entry->relocs_ptr;
420 for (i = 0; i < entry->relocation_count; i++) {
421 struct drm_i915_gem_relocation_entry reloc;
423 if (__copy_from_user_inatomic(&reloc,
424 user_relocs+i,
425 sizeof(reloc)))
426 return -EFAULT;
428 ret = i915_gem_execbuffer_relocate_entry(obj, eb, &reloc);
429 if (ret)
430 return ret;
432 if (__copy_to_user_inatomic(&user_relocs[i].presumed_offset,
433 &reloc.presumed_offset,
434 sizeof(reloc.presumed_offset)))
435 return -EFAULT;
438 return 0;
441 static int
442 i915_gem_execbuffer_relocate_object_slow(struct drm_i915_gem_object *obj,
443 struct eb_objects *eb,
444 struct drm_i915_gem_relocation_entry *relocs)
446 const struct drm_i915_gem_exec_object2 *entry = obj->exec_entry;
447 int i, ret;
449 for (i = 0; i < entry->relocation_count; i++) {
450 ret = i915_gem_execbuffer_relocate_entry(obj, eb, &relocs[i]);
451 if (ret)
452 return ret;
455 return 0;
458 static int
459 i915_gem_execbuffer_relocate(struct drm_device *dev,
460 struct eb_objects *eb,
461 struct list_head *objects)
463 struct drm_i915_gem_object *obj;
464 int ret;
466 list_for_each_entry(obj, objects, exec_list) {
467 ret = i915_gem_execbuffer_relocate_object(obj, eb);
468 if (ret)
469 return ret;
472 return 0;
475 static int
476 i915_gem_execbuffer_reserve(struct intel_ring_buffer *ring,
477 struct drm_file *file,
478 struct list_head *objects)
480 struct drm_i915_gem_object *obj;
481 int ret, retry;
482 bool has_fenced_gpu_access = INTEL_INFO(ring->dev)->gen < 4;
483 struct list_head ordered_objects;
485 INIT_LIST_HEAD(&ordered_objects);
486 while (!list_empty(objects)) {
487 struct drm_i915_gem_exec_object2 *entry;
488 bool need_fence, need_mappable;
490 obj = list_first_entry(objects,
491 struct drm_i915_gem_object,
492 exec_list);
493 entry = obj->exec_entry;
495 need_fence =
496 has_fenced_gpu_access &&
497 entry->flags & EXEC_OBJECT_NEEDS_FENCE &&
498 obj->tiling_mode != I915_TILING_NONE;
499 need_mappable =
500 entry->relocation_count ? true : need_fence;
502 if (need_mappable)
503 list_move(&obj->exec_list, &ordered_objects);
504 else
505 list_move_tail(&obj->exec_list, &ordered_objects);
507 obj->base.pending_read_domains = 0;
508 obj->base.pending_write_domain = 0;
510 list_splice(&ordered_objects, objects);
512 /* Attempt to pin all of the buffers into the GTT.
513 * This is done in 3 phases:
515 * 1a. Unbind all objects that do not match the GTT constraints for
516 * the execbuffer (fenceable, mappable, alignment etc).
517 * 1b. Increment pin count for already bound objects.
518 * 2. Bind new objects.
519 * 3. Decrement pin count.
521 * This avoid unnecessary unbinding of later objects in order to makr
522 * room for the earlier objects *unless* we need to defragment.
524 retry = 0;
525 do {
526 ret = 0;
528 /* Unbind any ill-fitting objects or pin. */
529 list_for_each_entry(obj, objects, exec_list) {
530 struct drm_i915_gem_exec_object2 *entry = obj->exec_entry;
531 bool need_fence, need_mappable;
532 if (!obj->gtt_space)
533 continue;
535 need_fence =
536 has_fenced_gpu_access &&
537 entry->flags & EXEC_OBJECT_NEEDS_FENCE &&
538 obj->tiling_mode != I915_TILING_NONE;
539 need_mappable =
540 entry->relocation_count ? true : need_fence;
542 if ((entry->alignment && obj->gtt_offset & (entry->alignment - 1)) ||
543 (need_mappable && !obj->map_and_fenceable))
544 ret = i915_gem_object_unbind(obj);
545 else
546 ret = i915_gem_object_pin(obj,
547 entry->alignment,
548 need_mappable);
549 if (ret)
550 goto err;
552 entry++;
555 /* Bind fresh objects */
556 list_for_each_entry(obj, objects, exec_list) {
557 struct drm_i915_gem_exec_object2 *entry = obj->exec_entry;
558 bool need_fence;
560 need_fence =
561 has_fenced_gpu_access &&
562 entry->flags & EXEC_OBJECT_NEEDS_FENCE &&
563 obj->tiling_mode != I915_TILING_NONE;
565 if (!obj->gtt_space) {
566 bool need_mappable =
567 entry->relocation_count ? true : need_fence;
569 ret = i915_gem_object_pin(obj,
570 entry->alignment,
571 need_mappable);
572 if (ret)
573 break;
576 if (has_fenced_gpu_access) {
577 if (need_fence) {
578 ret = i915_gem_object_get_fence(obj, ring, 1);
579 if (ret)
580 break;
581 } else if (entry->flags & EXEC_OBJECT_NEEDS_FENCE &&
582 obj->tiling_mode == I915_TILING_NONE) {
583 /* XXX pipelined! */
584 ret = i915_gem_object_put_fence(obj);
585 if (ret)
586 break;
588 obj->pending_fenced_gpu_access = need_fence;
591 entry->offset = obj->gtt_offset;
594 /* Decrement pin count for bound objects */
595 list_for_each_entry(obj, objects, exec_list) {
596 if (obj->gtt_space)
597 i915_gem_object_unpin(obj);
600 if (ret != -ENOSPC || retry > 1)
601 return ret;
603 /* First attempt, just clear anything that is purgeable.
604 * Second attempt, clear the entire GTT.
606 ret = i915_gem_evict_everything(ring->dev, retry == 0);
607 if (ret)
608 return ret;
610 retry++;
611 } while (1);
613 err:
614 obj = list_entry(obj->exec_list.prev,
615 struct drm_i915_gem_object,
616 exec_list);
617 while (objects != &obj->exec_list) {
618 if (obj->gtt_space)
619 i915_gem_object_unpin(obj);
621 obj = list_entry(obj->exec_list.prev,
622 struct drm_i915_gem_object,
623 exec_list);
626 return ret;
629 static int
630 i915_gem_execbuffer_relocate_slow(struct drm_device *dev,
631 struct drm_file *file,
632 struct intel_ring_buffer *ring,
633 struct list_head *objects,
634 struct eb_objects *eb,
635 struct drm_i915_gem_exec_object2 *exec,
636 int count)
638 struct drm_i915_gem_relocation_entry *reloc;
639 struct drm_i915_gem_object *obj;
640 int *reloc_offset;
641 int i, total, ret;
643 /* We may process another execbuffer during the unlock... */
644 while (!list_empty(objects)) {
645 obj = list_first_entry(objects,
646 struct drm_i915_gem_object,
647 exec_list);
648 list_del_init(&obj->exec_list);
649 drm_gem_object_unreference(&obj->base);
652 mutex_unlock(&dev->struct_mutex);
654 total = 0;
655 for (i = 0; i < count; i++)
656 total += exec[i].relocation_count;
658 reloc_offset = drm_malloc_ab(count, sizeof(*reloc_offset));
659 reloc = drm_malloc_ab(total, sizeof(*reloc));
660 if (reloc == NULL || reloc_offset == NULL) {
661 drm_free_large(reloc);
662 drm_free_large(reloc_offset);
663 mutex_lock(&dev->struct_mutex);
664 return -ENOMEM;
667 total = 0;
668 for (i = 0; i < count; i++) {
669 struct drm_i915_gem_relocation_entry __user *user_relocs;
671 user_relocs = (void __user *)(uintptr_t)exec[i].relocs_ptr;
673 if (copy_from_user(reloc+total, user_relocs,
674 exec[i].relocation_count * sizeof(*reloc))) {
675 ret = -EFAULT;
676 mutex_lock(&dev->struct_mutex);
677 goto err;
680 reloc_offset[i] = total;
681 total += exec[i].relocation_count;
684 ret = i915_mutex_lock_interruptible(dev);
685 if (ret) {
686 mutex_lock(&dev->struct_mutex);
687 goto err;
690 /* reacquire the objects */
691 eb_reset(eb);
692 for (i = 0; i < count; i++) {
693 struct drm_i915_gem_object *obj;
695 obj = to_intel_bo(drm_gem_object_lookup(dev, file,
696 exec[i].handle));
697 if (obj == NULL) {
698 DRM_ERROR("Invalid object handle %d at index %d\n",
699 exec[i].handle, i);
700 ret = -ENOENT;
701 goto err;
704 list_add_tail(&obj->exec_list, objects);
705 obj->exec_handle = exec[i].handle;
706 obj->exec_entry = &exec[i];
707 eb_add_object(eb, obj);
710 ret = i915_gem_execbuffer_reserve(ring, file, objects);
711 if (ret)
712 goto err;
714 list_for_each_entry(obj, objects, exec_list) {
715 int offset = obj->exec_entry - exec;
716 ret = i915_gem_execbuffer_relocate_object_slow(obj, eb,
717 reloc + reloc_offset[offset]);
718 if (ret)
719 goto err;
722 /* Leave the user relocations as are, this is the painfully slow path,
723 * and we want to avoid the complication of dropping the lock whilst
724 * having buffers reserved in the aperture and so causing spurious
725 * ENOSPC for random operations.
728 err:
729 drm_free_large(reloc);
730 drm_free_large(reloc_offset);
731 return ret;
734 static int
735 i915_gem_execbuffer_flush(struct drm_device *dev,
736 uint32_t invalidate_domains,
737 uint32_t flush_domains,
738 uint32_t flush_rings)
740 drm_i915_private_t *dev_priv = dev->dev_private;
741 int i, ret;
743 if (flush_domains & I915_GEM_DOMAIN_CPU)
744 intel_gtt_chipset_flush();
746 if (flush_domains & I915_GEM_DOMAIN_GTT)
747 wmb();
749 if ((flush_domains | invalidate_domains) & I915_GEM_GPU_DOMAINS) {
750 for (i = 0; i < I915_NUM_RINGS; i++)
751 if (flush_rings & (1 << i)) {
752 ret = i915_gem_flush_ring(dev,
753 &dev_priv->ring[i],
754 invalidate_domains,
755 flush_domains);
756 if (ret)
757 return ret;
761 return 0;
764 static int
765 i915_gem_execbuffer_sync_rings(struct drm_i915_gem_object *obj,
766 struct intel_ring_buffer *to)
768 struct intel_ring_buffer *from = obj->ring;
769 u32 seqno;
770 int ret, idx;
772 if (from == NULL || to == from)
773 return 0;
775 /* XXX gpu semaphores are implicated in various hard hangs on SNB */
776 if (INTEL_INFO(obj->base.dev)->gen < 6 || !i915_semaphores)
777 return i915_gem_object_wait_rendering(obj, true);
779 idx = intel_ring_sync_index(from, to);
781 seqno = obj->last_rendering_seqno;
782 if (seqno <= from->sync_seqno[idx])
783 return 0;
785 if (seqno == from->outstanding_lazy_request) {
786 struct drm_i915_gem_request *request;
788 request = kzalloc(sizeof(*request), GFP_KERNEL);
789 if (request == NULL)
790 return -ENOMEM;
792 ret = i915_add_request(obj->base.dev, NULL, request, from);
793 if (ret) {
794 kfree(request);
795 return ret;
798 seqno = request->seqno;
801 from->sync_seqno[idx] = seqno;
802 return intel_ring_sync(to, from, seqno - 1);
805 static int
806 i915_gem_execbuffer_move_to_gpu(struct intel_ring_buffer *ring,
807 struct list_head *objects)
809 struct drm_i915_gem_object *obj;
810 struct change_domains cd;
811 int ret;
813 cd.invalidate_domains = 0;
814 cd.flush_domains = 0;
815 cd.flush_rings = 0;
816 list_for_each_entry(obj, objects, exec_list)
817 i915_gem_object_set_to_gpu_domain(obj, ring, &cd);
819 if (cd.invalidate_domains | cd.flush_domains) {
820 #if WATCH_EXEC
821 DRM_INFO("%s: invalidate_domains %08x flush_domains %08x\n",
822 __func__,
823 cd.invalidate_domains,
824 cd.flush_domains);
825 #endif
826 ret = i915_gem_execbuffer_flush(ring->dev,
827 cd.invalidate_domains,
828 cd.flush_domains,
829 cd.flush_rings);
830 if (ret)
831 return ret;
834 list_for_each_entry(obj, objects, exec_list) {
835 ret = i915_gem_execbuffer_sync_rings(obj, ring);
836 if (ret)
837 return ret;
840 return 0;
843 static bool
844 i915_gem_check_execbuffer(struct drm_i915_gem_execbuffer2 *exec)
846 return ((exec->batch_start_offset | exec->batch_len) & 0x7) == 0;
849 static int
850 validate_exec_list(struct drm_i915_gem_exec_object2 *exec,
851 int count)
853 int i;
855 for (i = 0; i < count; i++) {
856 char __user *ptr = (char __user *)(uintptr_t)exec[i].relocs_ptr;
857 int length; /* limited by fault_in_pages_readable() */
859 /* First check for malicious input causing overflow */
860 if (exec[i].relocation_count >
861 INT_MAX / sizeof(struct drm_i915_gem_relocation_entry))
862 return -EINVAL;
864 length = exec[i].relocation_count *
865 sizeof(struct drm_i915_gem_relocation_entry);
866 if (!access_ok(VERIFY_READ, ptr, length))
867 return -EFAULT;
869 /* we may also need to update the presumed offsets */
870 if (!access_ok(VERIFY_WRITE, ptr, length))
871 return -EFAULT;
873 if (fault_in_pages_readable(ptr, length))
874 return -EFAULT;
877 return 0;
880 static int
881 i915_gem_execbuffer_wait_for_flips(struct intel_ring_buffer *ring,
882 struct list_head *objects)
884 struct drm_i915_gem_object *obj;
885 int flips;
887 /* Check for any pending flips. As we only maintain a flip queue depth
888 * of 1, we can simply insert a WAIT for the next display flip prior
889 * to executing the batch and avoid stalling the CPU.
891 flips = 0;
892 list_for_each_entry(obj, objects, exec_list) {
893 if (obj->base.write_domain)
894 flips |= atomic_read(&obj->pending_flip);
896 if (flips) {
897 int plane, flip_mask, ret;
899 for (plane = 0; flips >> plane; plane++) {
900 if (((flips >> plane) & 1) == 0)
901 continue;
903 if (plane)
904 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
905 else
906 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
908 ret = intel_ring_begin(ring, 2);
909 if (ret)
910 return ret;
912 intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
913 intel_ring_emit(ring, MI_NOOP);
914 intel_ring_advance(ring);
918 return 0;
921 static void
922 i915_gem_execbuffer_move_to_active(struct list_head *objects,
923 struct intel_ring_buffer *ring,
924 u32 seqno)
926 struct drm_i915_gem_object *obj;
928 list_for_each_entry(obj, objects, exec_list) {
929 obj->base.read_domains = obj->base.pending_read_domains;
930 obj->base.write_domain = obj->base.pending_write_domain;
931 obj->fenced_gpu_access = obj->pending_fenced_gpu_access;
933 i915_gem_object_move_to_active(obj, ring, seqno);
934 if (obj->base.write_domain) {
935 obj->dirty = 1;
936 obj->pending_gpu_write = true;
937 list_move_tail(&obj->gpu_write_list,
938 &ring->gpu_write_list);
939 intel_mark_busy(ring->dev, obj);
942 trace_i915_gem_object_change_domain(obj,
943 obj->base.read_domains,
944 obj->base.write_domain);
948 static void
949 i915_gem_execbuffer_retire_commands(struct drm_device *dev,
950 struct drm_file *file,
951 struct intel_ring_buffer *ring)
953 struct drm_i915_gem_request *request;
954 u32 invalidate;
957 * Ensure that the commands in the batch buffer are
958 * finished before the interrupt fires.
960 * The sampler always gets flushed on i965 (sigh).
962 invalidate = I915_GEM_DOMAIN_COMMAND;
963 if (INTEL_INFO(dev)->gen >= 4)
964 invalidate |= I915_GEM_DOMAIN_SAMPLER;
965 if (ring->flush(ring, invalidate, 0)) {
966 i915_gem_next_request_seqno(dev, ring);
967 return;
970 /* Add a breadcrumb for the completion of the batch buffer */
971 request = kzalloc(sizeof(*request), GFP_KERNEL);
972 if (request == NULL || i915_add_request(dev, file, request, ring)) {
973 i915_gem_next_request_seqno(dev, ring);
974 kfree(request);
978 static int
979 i915_gem_do_execbuffer(struct drm_device *dev, void *data,
980 struct drm_file *file,
981 struct drm_i915_gem_execbuffer2 *args,
982 struct drm_i915_gem_exec_object2 *exec)
984 drm_i915_private_t *dev_priv = dev->dev_private;
985 struct list_head objects;
986 struct eb_objects *eb;
987 struct drm_i915_gem_object *batch_obj;
988 struct drm_clip_rect *cliprects = NULL;
989 struct intel_ring_buffer *ring;
990 u32 exec_start, exec_len;
991 u32 seqno;
992 int ret, mode, i;
994 if (!i915_gem_check_execbuffer(args)) {
995 DRM_ERROR("execbuf with invalid offset/length\n");
996 return -EINVAL;
999 ret = validate_exec_list(exec, args->buffer_count);
1000 if (ret)
1001 return ret;
1003 #if WATCH_EXEC
1004 DRM_INFO("buffers_ptr %d buffer_count %d len %08x\n",
1005 (int) args->buffers_ptr, args->buffer_count, args->batch_len);
1006 #endif
1007 switch (args->flags & I915_EXEC_RING_MASK) {
1008 case I915_EXEC_DEFAULT:
1009 case I915_EXEC_RENDER:
1010 ring = &dev_priv->ring[RCS];
1011 break;
1012 case I915_EXEC_BSD:
1013 if (!HAS_BSD(dev)) {
1014 DRM_ERROR("execbuf with invalid ring (BSD)\n");
1015 return -EINVAL;
1017 ring = &dev_priv->ring[VCS];
1018 break;
1019 case I915_EXEC_BLT:
1020 if (!HAS_BLT(dev)) {
1021 DRM_ERROR("execbuf with invalid ring (BLT)\n");
1022 return -EINVAL;
1024 ring = &dev_priv->ring[BCS];
1025 break;
1026 default:
1027 DRM_ERROR("execbuf with unknown ring: %d\n",
1028 (int)(args->flags & I915_EXEC_RING_MASK));
1029 return -EINVAL;
1032 mode = args->flags & I915_EXEC_CONSTANTS_MASK;
1033 switch (mode) {
1034 case I915_EXEC_CONSTANTS_REL_GENERAL:
1035 case I915_EXEC_CONSTANTS_ABSOLUTE:
1036 case I915_EXEC_CONSTANTS_REL_SURFACE:
1037 if (ring == &dev_priv->ring[RCS] &&
1038 mode != dev_priv->relative_constants_mode) {
1039 if (INTEL_INFO(dev)->gen < 4)
1040 return -EINVAL;
1042 if (INTEL_INFO(dev)->gen > 5 &&
1043 mode == I915_EXEC_CONSTANTS_REL_SURFACE)
1044 return -EINVAL;
1046 ret = intel_ring_begin(ring, 4);
1047 if (ret)
1048 return ret;
1050 intel_ring_emit(ring, MI_NOOP);
1051 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
1052 intel_ring_emit(ring, INSTPM);
1053 intel_ring_emit(ring,
1054 I915_EXEC_CONSTANTS_MASK << 16 | mode);
1055 intel_ring_advance(ring);
1057 dev_priv->relative_constants_mode = mode;
1059 break;
1060 default:
1061 DRM_ERROR("execbuf with unknown constants: %d\n", mode);
1062 return -EINVAL;
1065 if (args->buffer_count < 1) {
1066 DRM_ERROR("execbuf with %d buffers\n", args->buffer_count);
1067 return -EINVAL;
1070 if (args->num_cliprects != 0) {
1071 if (ring != &dev_priv->ring[RCS]) {
1072 DRM_ERROR("clip rectangles are only valid with the render ring\n");
1073 return -EINVAL;
1076 cliprects = kmalloc(args->num_cliprects * sizeof(*cliprects),
1077 GFP_KERNEL);
1078 if (cliprects == NULL) {
1079 ret = -ENOMEM;
1080 goto pre_mutex_err;
1083 if (copy_from_user(cliprects,
1084 (struct drm_clip_rect __user *)(uintptr_t)
1085 args->cliprects_ptr,
1086 sizeof(*cliprects)*args->num_cliprects)) {
1087 ret = -EFAULT;
1088 goto pre_mutex_err;
1092 ret = i915_mutex_lock_interruptible(dev);
1093 if (ret)
1094 goto pre_mutex_err;
1096 if (dev_priv->mm.suspended) {
1097 mutex_unlock(&dev->struct_mutex);
1098 ret = -EBUSY;
1099 goto pre_mutex_err;
1102 eb = eb_create(args->buffer_count);
1103 if (eb == NULL) {
1104 mutex_unlock(&dev->struct_mutex);
1105 ret = -ENOMEM;
1106 goto pre_mutex_err;
1109 /* Look up object handles */
1110 INIT_LIST_HEAD(&objects);
1111 for (i = 0; i < args->buffer_count; i++) {
1112 struct drm_i915_gem_object *obj;
1114 obj = to_intel_bo(drm_gem_object_lookup(dev, file,
1115 exec[i].handle));
1116 if (obj == NULL) {
1117 DRM_ERROR("Invalid object handle %d at index %d\n",
1118 exec[i].handle, i);
1119 /* prevent error path from reading uninitialized data */
1120 ret = -ENOENT;
1121 goto err;
1124 if (!list_empty(&obj->exec_list)) {
1125 DRM_ERROR("Object %p [handle %d, index %d] appears more than once in object list\n",
1126 obj, exec[i].handle, i);
1127 ret = -EINVAL;
1128 goto err;
1131 list_add_tail(&obj->exec_list, &objects);
1132 obj->exec_handle = exec[i].handle;
1133 obj->exec_entry = &exec[i];
1134 eb_add_object(eb, obj);
1137 /* take note of the batch buffer before we might reorder the lists */
1138 batch_obj = list_entry(objects.prev,
1139 struct drm_i915_gem_object,
1140 exec_list);
1142 /* Move the objects en-masse into the GTT, evicting if necessary. */
1143 ret = i915_gem_execbuffer_reserve(ring, file, &objects);
1144 if (ret)
1145 goto err;
1147 /* The objects are in their final locations, apply the relocations. */
1148 ret = i915_gem_execbuffer_relocate(dev, eb, &objects);
1149 if (ret) {
1150 if (ret == -EFAULT) {
1151 ret = i915_gem_execbuffer_relocate_slow(dev, file, ring,
1152 &objects, eb,
1153 exec,
1154 args->buffer_count);
1155 BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1157 if (ret)
1158 goto err;
1161 /* Set the pending read domains for the batch buffer to COMMAND */
1162 if (batch_obj->base.pending_write_domain) {
1163 DRM_ERROR("Attempting to use self-modifying batch buffer\n");
1164 ret = -EINVAL;
1165 goto err;
1167 batch_obj->base.pending_read_domains |= I915_GEM_DOMAIN_COMMAND;
1169 ret = i915_gem_execbuffer_move_to_gpu(ring, &objects);
1170 if (ret)
1171 goto err;
1173 ret = i915_gem_execbuffer_wait_for_flips(ring, &objects);
1174 if (ret)
1175 goto err;
1177 seqno = i915_gem_next_request_seqno(dev, ring);
1178 for (i = 0; i < ARRAY_SIZE(ring->sync_seqno); i++) {
1179 if (seqno < ring->sync_seqno[i]) {
1180 /* The GPU can not handle its semaphore value wrapping,
1181 * so every billion or so execbuffers, we need to stall
1182 * the GPU in order to reset the counters.
1184 ret = i915_gpu_idle(dev);
1185 if (ret)
1186 goto err;
1188 BUG_ON(ring->sync_seqno[i]);
1192 exec_start = batch_obj->gtt_offset + args->batch_start_offset;
1193 exec_len = args->batch_len;
1194 if (cliprects) {
1195 for (i = 0; i < args->num_cliprects; i++) {
1196 ret = i915_emit_box(dev, &cliprects[i],
1197 args->DR1, args->DR4);
1198 if (ret)
1199 goto err;
1201 ret = ring->dispatch_execbuffer(ring,
1202 exec_start, exec_len);
1203 if (ret)
1204 goto err;
1206 } else {
1207 ret = ring->dispatch_execbuffer(ring, exec_start, exec_len);
1208 if (ret)
1209 goto err;
1212 i915_gem_execbuffer_move_to_active(&objects, ring, seqno);
1213 i915_gem_execbuffer_retire_commands(dev, file, ring);
1215 err:
1216 eb_destroy(eb);
1217 while (!list_empty(&objects)) {
1218 struct drm_i915_gem_object *obj;
1220 obj = list_first_entry(&objects,
1221 struct drm_i915_gem_object,
1222 exec_list);
1223 list_del_init(&obj->exec_list);
1224 drm_gem_object_unreference(&obj->base);
1227 mutex_unlock(&dev->struct_mutex);
1229 pre_mutex_err:
1230 kfree(cliprects);
1231 return ret;
1235 * Legacy execbuffer just creates an exec2 list from the original exec object
1236 * list array and passes it to the real function.
1239 i915_gem_execbuffer(struct drm_device *dev, void *data,
1240 struct drm_file *file)
1242 struct drm_i915_gem_execbuffer *args = data;
1243 struct drm_i915_gem_execbuffer2 exec2;
1244 struct drm_i915_gem_exec_object *exec_list = NULL;
1245 struct drm_i915_gem_exec_object2 *exec2_list = NULL;
1246 int ret, i;
1248 #if WATCH_EXEC
1249 DRM_INFO("buffers_ptr %d buffer_count %d len %08x\n",
1250 (int) args->buffers_ptr, args->buffer_count, args->batch_len);
1251 #endif
1253 if (args->buffer_count < 1) {
1254 DRM_ERROR("execbuf with %d buffers\n", args->buffer_count);
1255 return -EINVAL;
1258 /* Copy in the exec list from userland */
1259 exec_list = drm_malloc_ab(sizeof(*exec_list), args->buffer_count);
1260 exec2_list = drm_malloc_ab(sizeof(*exec2_list), args->buffer_count);
1261 if (exec_list == NULL || exec2_list == NULL) {
1262 DRM_ERROR("Failed to allocate exec list for %d buffers\n",
1263 args->buffer_count);
1264 drm_free_large(exec_list);
1265 drm_free_large(exec2_list);
1266 return -ENOMEM;
1268 ret = copy_from_user(exec_list,
1269 (struct drm_i915_relocation_entry __user *)
1270 (uintptr_t) args->buffers_ptr,
1271 sizeof(*exec_list) * args->buffer_count);
1272 if (ret != 0) {
1273 DRM_ERROR("copy %d exec entries failed %d\n",
1274 args->buffer_count, ret);
1275 drm_free_large(exec_list);
1276 drm_free_large(exec2_list);
1277 return -EFAULT;
1280 for (i = 0; i < args->buffer_count; i++) {
1281 exec2_list[i].handle = exec_list[i].handle;
1282 exec2_list[i].relocation_count = exec_list[i].relocation_count;
1283 exec2_list[i].relocs_ptr = exec_list[i].relocs_ptr;
1284 exec2_list[i].alignment = exec_list[i].alignment;
1285 exec2_list[i].offset = exec_list[i].offset;
1286 if (INTEL_INFO(dev)->gen < 4)
1287 exec2_list[i].flags = EXEC_OBJECT_NEEDS_FENCE;
1288 else
1289 exec2_list[i].flags = 0;
1292 exec2.buffers_ptr = args->buffers_ptr;
1293 exec2.buffer_count = args->buffer_count;
1294 exec2.batch_start_offset = args->batch_start_offset;
1295 exec2.batch_len = args->batch_len;
1296 exec2.DR1 = args->DR1;
1297 exec2.DR4 = args->DR4;
1298 exec2.num_cliprects = args->num_cliprects;
1299 exec2.cliprects_ptr = args->cliprects_ptr;
1300 exec2.flags = I915_EXEC_RENDER;
1302 ret = i915_gem_do_execbuffer(dev, data, file, &exec2, exec2_list);
1303 if (!ret) {
1304 /* Copy the new buffer offsets back to the user's exec list. */
1305 for (i = 0; i < args->buffer_count; i++)
1306 exec_list[i].offset = exec2_list[i].offset;
1307 /* ... and back out to userspace */
1308 ret = copy_to_user((struct drm_i915_relocation_entry __user *)
1309 (uintptr_t) args->buffers_ptr,
1310 exec_list,
1311 sizeof(*exec_list) * args->buffer_count);
1312 if (ret) {
1313 ret = -EFAULT;
1314 DRM_ERROR("failed to copy %d exec entries "
1315 "back to user (%d)\n",
1316 args->buffer_count, ret);
1320 drm_free_large(exec_list);
1321 drm_free_large(exec2_list);
1322 return ret;
1326 i915_gem_execbuffer2(struct drm_device *dev, void *data,
1327 struct drm_file *file)
1329 struct drm_i915_gem_execbuffer2 *args = data;
1330 struct drm_i915_gem_exec_object2 *exec2_list = NULL;
1331 int ret;
1333 #if WATCH_EXEC
1334 DRM_INFO("buffers_ptr %d buffer_count %d len %08x\n",
1335 (int) args->buffers_ptr, args->buffer_count, args->batch_len);
1336 #endif
1338 if (args->buffer_count < 1) {
1339 DRM_ERROR("execbuf2 with %d buffers\n", args->buffer_count);
1340 return -EINVAL;
1343 exec2_list = drm_malloc_ab(sizeof(*exec2_list), args->buffer_count);
1344 if (exec2_list == NULL) {
1345 DRM_ERROR("Failed to allocate exec list for %d buffers\n",
1346 args->buffer_count);
1347 return -ENOMEM;
1349 ret = copy_from_user(exec2_list,
1350 (struct drm_i915_relocation_entry __user *)
1351 (uintptr_t) args->buffers_ptr,
1352 sizeof(*exec2_list) * args->buffer_count);
1353 if (ret != 0) {
1354 DRM_ERROR("copy %d exec entries failed %d\n",
1355 args->buffer_count, ret);
1356 drm_free_large(exec2_list);
1357 return -EFAULT;
1360 ret = i915_gem_do_execbuffer(dev, data, file, args, exec2_list);
1361 if (!ret) {
1362 /* Copy the new buffer offsets back to the user's exec list. */
1363 ret = copy_to_user((struct drm_i915_relocation_entry __user *)
1364 (uintptr_t) args->buffers_ptr,
1365 exec2_list,
1366 sizeof(*exec2_list) * args->buffer_count);
1367 if (ret) {
1368 ret = -EFAULT;
1369 DRM_ERROR("failed to copy %d exec entries "
1370 "back to user (%d)\n",
1371 args->buffer_count, ret);
1375 drm_free_large(exec2_list);
1376 return ret;