Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/roland...
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / mm / vmstat.c
blob1a32130b958c418ec8a018aa676c73bb3d7cde32
1 /*
2 * linux/mm/vmstat.c
4 * Manages VM statistics
5 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
7 * zoned VM statistics
8 * Copyright (C) 2006 Silicon Graphics, Inc.,
9 * Christoph Lameter <christoph@lameter.com>
12 #include <linux/mm.h>
13 #include <linux/err.h>
14 #include <linux/module.h>
15 #include <linux/cpu.h>
16 #include <linux/sched.h>
18 #ifdef CONFIG_VM_EVENT_COUNTERS
19 DEFINE_PER_CPU(struct vm_event_state, vm_event_states) = {{0}};
20 EXPORT_PER_CPU_SYMBOL(vm_event_states);
22 static void sum_vm_events(unsigned long *ret, cpumask_t *cpumask)
24 int cpu;
25 int i;
27 memset(ret, 0, NR_VM_EVENT_ITEMS * sizeof(unsigned long));
29 for_each_cpu_mask(cpu, *cpumask) {
30 struct vm_event_state *this = &per_cpu(vm_event_states, cpu);
32 for (i = 0; i < NR_VM_EVENT_ITEMS; i++)
33 ret[i] += this->event[i];
38 * Accumulate the vm event counters across all CPUs.
39 * The result is unavoidably approximate - it can change
40 * during and after execution of this function.
42 void all_vm_events(unsigned long *ret)
44 sum_vm_events(ret, &cpu_online_map);
46 EXPORT_SYMBOL_GPL(all_vm_events);
48 #ifdef CONFIG_HOTPLUG
50 * Fold the foreign cpu events into our own.
52 * This is adding to the events on one processor
53 * but keeps the global counts constant.
55 void vm_events_fold_cpu(int cpu)
57 struct vm_event_state *fold_state = &per_cpu(vm_event_states, cpu);
58 int i;
60 for (i = 0; i < NR_VM_EVENT_ITEMS; i++) {
61 count_vm_events(i, fold_state->event[i]);
62 fold_state->event[i] = 0;
65 #endif /* CONFIG_HOTPLUG */
67 #endif /* CONFIG_VM_EVENT_COUNTERS */
70 * Manage combined zone based / global counters
72 * vm_stat contains the global counters
74 atomic_long_t vm_stat[NR_VM_ZONE_STAT_ITEMS];
75 EXPORT_SYMBOL(vm_stat);
77 #ifdef CONFIG_SMP
79 static int calculate_threshold(struct zone *zone)
81 int threshold;
82 int mem; /* memory in 128 MB units */
85 * The threshold scales with the number of processors and the amount
86 * of memory per zone. More memory means that we can defer updates for
87 * longer, more processors could lead to more contention.
88 * fls() is used to have a cheap way of logarithmic scaling.
90 * Some sample thresholds:
92 * Threshold Processors (fls) Zonesize fls(mem+1)
93 * ------------------------------------------------------------------
94 * 8 1 1 0.9-1 GB 4
95 * 16 2 2 0.9-1 GB 4
96 * 20 2 2 1-2 GB 5
97 * 24 2 2 2-4 GB 6
98 * 28 2 2 4-8 GB 7
99 * 32 2 2 8-16 GB 8
100 * 4 2 2 <128M 1
101 * 30 4 3 2-4 GB 5
102 * 48 4 3 8-16 GB 8
103 * 32 8 4 1-2 GB 4
104 * 32 8 4 0.9-1GB 4
105 * 10 16 5 <128M 1
106 * 40 16 5 900M 4
107 * 70 64 7 2-4 GB 5
108 * 84 64 7 4-8 GB 6
109 * 108 512 9 4-8 GB 6
110 * 125 1024 10 8-16 GB 8
111 * 125 1024 10 16-32 GB 9
114 mem = zone->present_pages >> (27 - PAGE_SHIFT);
116 threshold = 2 * fls(num_online_cpus()) * (1 + fls(mem));
119 * Maximum threshold is 125
121 threshold = min(125, threshold);
123 return threshold;
127 * Refresh the thresholds for each zone.
129 static void refresh_zone_stat_thresholds(void)
131 struct zone *zone;
132 int cpu;
133 int threshold;
135 for_each_zone(zone) {
137 if (!zone->present_pages)
138 continue;
140 threshold = calculate_threshold(zone);
142 for_each_online_cpu(cpu)
143 zone_pcp(zone, cpu)->stat_threshold = threshold;
148 * For use when we know that interrupts are disabled.
150 void __mod_zone_page_state(struct zone *zone, enum zone_stat_item item,
151 int delta)
153 struct per_cpu_pageset *pcp = zone_pcp(zone, smp_processor_id());
154 s8 *p = pcp->vm_stat_diff + item;
155 long x;
157 x = delta + *p;
159 if (unlikely(x > pcp->stat_threshold || x < -pcp->stat_threshold)) {
160 zone_page_state_add(x, zone, item);
161 x = 0;
163 *p = x;
165 EXPORT_SYMBOL(__mod_zone_page_state);
168 * For an unknown interrupt state
170 void mod_zone_page_state(struct zone *zone, enum zone_stat_item item,
171 int delta)
173 unsigned long flags;
175 local_irq_save(flags);
176 __mod_zone_page_state(zone, item, delta);
177 local_irq_restore(flags);
179 EXPORT_SYMBOL(mod_zone_page_state);
182 * Optimized increment and decrement functions.
184 * These are only for a single page and therefore can take a struct page *
185 * argument instead of struct zone *. This allows the inclusion of the code
186 * generated for page_zone(page) into the optimized functions.
188 * No overflow check is necessary and therefore the differential can be
189 * incremented or decremented in place which may allow the compilers to
190 * generate better code.
191 * The increment or decrement is known and therefore one boundary check can
192 * be omitted.
194 * NOTE: These functions are very performance sensitive. Change only
195 * with care.
197 * Some processors have inc/dec instructions that are atomic vs an interrupt.
198 * However, the code must first determine the differential location in a zone
199 * based on the processor number and then inc/dec the counter. There is no
200 * guarantee without disabling preemption that the processor will not change
201 * in between and therefore the atomicity vs. interrupt cannot be exploited
202 * in a useful way here.
204 void __inc_zone_state(struct zone *zone, enum zone_stat_item item)
206 struct per_cpu_pageset *pcp = zone_pcp(zone, smp_processor_id());
207 s8 *p = pcp->vm_stat_diff + item;
209 (*p)++;
211 if (unlikely(*p > pcp->stat_threshold)) {
212 int overstep = pcp->stat_threshold / 2;
214 zone_page_state_add(*p + overstep, zone, item);
215 *p = -overstep;
219 void __inc_zone_page_state(struct page *page, enum zone_stat_item item)
221 __inc_zone_state(page_zone(page), item);
223 EXPORT_SYMBOL(__inc_zone_page_state);
225 void __dec_zone_state(struct zone *zone, enum zone_stat_item item)
227 struct per_cpu_pageset *pcp = zone_pcp(zone, smp_processor_id());
228 s8 *p = pcp->vm_stat_diff + item;
230 (*p)--;
232 if (unlikely(*p < - pcp->stat_threshold)) {
233 int overstep = pcp->stat_threshold / 2;
235 zone_page_state_add(*p - overstep, zone, item);
236 *p = overstep;
240 void __dec_zone_page_state(struct page *page, enum zone_stat_item item)
242 __dec_zone_state(page_zone(page), item);
244 EXPORT_SYMBOL(__dec_zone_page_state);
246 void inc_zone_state(struct zone *zone, enum zone_stat_item item)
248 unsigned long flags;
250 local_irq_save(flags);
251 __inc_zone_state(zone, item);
252 local_irq_restore(flags);
255 void inc_zone_page_state(struct page *page, enum zone_stat_item item)
257 unsigned long flags;
258 struct zone *zone;
260 zone = page_zone(page);
261 local_irq_save(flags);
262 __inc_zone_state(zone, item);
263 local_irq_restore(flags);
265 EXPORT_SYMBOL(inc_zone_page_state);
267 void dec_zone_page_state(struct page *page, enum zone_stat_item item)
269 unsigned long flags;
271 local_irq_save(flags);
272 __dec_zone_page_state(page, item);
273 local_irq_restore(flags);
275 EXPORT_SYMBOL(dec_zone_page_state);
278 * Update the zone counters for one cpu.
280 * The cpu specified must be either the current cpu or a processor that
281 * is not online. If it is the current cpu then the execution thread must
282 * be pinned to the current cpu.
284 * Note that refresh_cpu_vm_stats strives to only access
285 * node local memory. The per cpu pagesets on remote zones are placed
286 * in the memory local to the processor using that pageset. So the
287 * loop over all zones will access a series of cachelines local to
288 * the processor.
290 * The call to zone_page_state_add updates the cachelines with the
291 * statistics in the remote zone struct as well as the global cachelines
292 * with the global counters. These could cause remote node cache line
293 * bouncing and will have to be only done when necessary.
295 void refresh_cpu_vm_stats(int cpu)
297 struct zone *zone;
298 int i;
299 int global_diff[NR_VM_ZONE_STAT_ITEMS] = { 0, };
301 for_each_zone(zone) {
302 struct per_cpu_pageset *p;
304 if (!populated_zone(zone))
305 continue;
307 p = zone_pcp(zone, cpu);
309 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
310 if (p->vm_stat_diff[i]) {
311 unsigned long flags;
312 int v;
314 local_irq_save(flags);
315 v = p->vm_stat_diff[i];
316 p->vm_stat_diff[i] = 0;
317 local_irq_restore(flags);
318 atomic_long_add(v, &zone->vm_stat[i]);
319 global_diff[i] += v;
320 #ifdef CONFIG_NUMA
321 /* 3 seconds idle till flush */
322 p->expire = 3;
323 #endif
325 cond_resched();
326 #ifdef CONFIG_NUMA
328 * Deal with draining the remote pageset of this
329 * processor
331 * Check if there are pages remaining in this pageset
332 * if not then there is nothing to expire.
334 if (!p->expire || !p->pcp.count)
335 continue;
338 * We never drain zones local to this processor.
340 if (zone_to_nid(zone) == numa_node_id()) {
341 p->expire = 0;
342 continue;
345 p->expire--;
346 if (p->expire)
347 continue;
349 if (p->pcp.count)
350 drain_zone_pages(zone, &p->pcp);
351 #endif
354 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
355 if (global_diff[i])
356 atomic_long_add(global_diff[i], &vm_stat[i]);
359 #endif
361 #ifdef CONFIG_NUMA
363 * zonelist = the list of zones passed to the allocator
364 * z = the zone from which the allocation occurred.
366 * Must be called with interrupts disabled.
368 void zone_statistics(struct zone *preferred_zone, struct zone *z)
370 if (z->zone_pgdat == preferred_zone->zone_pgdat) {
371 __inc_zone_state(z, NUMA_HIT);
372 } else {
373 __inc_zone_state(z, NUMA_MISS);
374 __inc_zone_state(preferred_zone, NUMA_FOREIGN);
376 if (z->node == numa_node_id())
377 __inc_zone_state(z, NUMA_LOCAL);
378 else
379 __inc_zone_state(z, NUMA_OTHER);
381 #endif
383 #ifdef CONFIG_PROC_FS
385 #include <linux/seq_file.h>
387 static char * const migratetype_names[MIGRATE_TYPES] = {
388 "Unmovable",
389 "Reclaimable",
390 "Movable",
391 "Reserve",
392 "Isolate",
395 static void *frag_start(struct seq_file *m, loff_t *pos)
397 pg_data_t *pgdat;
398 loff_t node = *pos;
399 for (pgdat = first_online_pgdat();
400 pgdat && node;
401 pgdat = next_online_pgdat(pgdat))
402 --node;
404 return pgdat;
407 static void *frag_next(struct seq_file *m, void *arg, loff_t *pos)
409 pg_data_t *pgdat = (pg_data_t *)arg;
411 (*pos)++;
412 return next_online_pgdat(pgdat);
415 static void frag_stop(struct seq_file *m, void *arg)
419 /* Walk all the zones in a node and print using a callback */
420 static void walk_zones_in_node(struct seq_file *m, pg_data_t *pgdat,
421 void (*print)(struct seq_file *m, pg_data_t *, struct zone *))
423 struct zone *zone;
424 struct zone *node_zones = pgdat->node_zones;
425 unsigned long flags;
427 for (zone = node_zones; zone - node_zones < MAX_NR_ZONES; ++zone) {
428 if (!populated_zone(zone))
429 continue;
431 spin_lock_irqsave(&zone->lock, flags);
432 print(m, pgdat, zone);
433 spin_unlock_irqrestore(&zone->lock, flags);
437 static void frag_show_print(struct seq_file *m, pg_data_t *pgdat,
438 struct zone *zone)
440 int order;
442 seq_printf(m, "Node %d, zone %8s ", pgdat->node_id, zone->name);
443 for (order = 0; order < MAX_ORDER; ++order)
444 seq_printf(m, "%6lu ", zone->free_area[order].nr_free);
445 seq_putc(m, '\n');
449 * This walks the free areas for each zone.
451 static int frag_show(struct seq_file *m, void *arg)
453 pg_data_t *pgdat = (pg_data_t *)arg;
454 walk_zones_in_node(m, pgdat, frag_show_print);
455 return 0;
458 static void pagetypeinfo_showfree_print(struct seq_file *m,
459 pg_data_t *pgdat, struct zone *zone)
461 int order, mtype;
463 for (mtype = 0; mtype < MIGRATE_TYPES; mtype++) {
464 seq_printf(m, "Node %4d, zone %8s, type %12s ",
465 pgdat->node_id,
466 zone->name,
467 migratetype_names[mtype]);
468 for (order = 0; order < MAX_ORDER; ++order) {
469 unsigned long freecount = 0;
470 struct free_area *area;
471 struct list_head *curr;
473 area = &(zone->free_area[order]);
475 list_for_each(curr, &area->free_list[mtype])
476 freecount++;
477 seq_printf(m, "%6lu ", freecount);
479 seq_putc(m, '\n');
483 /* Print out the free pages at each order for each migatetype */
484 static int pagetypeinfo_showfree(struct seq_file *m, void *arg)
486 int order;
487 pg_data_t *pgdat = (pg_data_t *)arg;
489 /* Print header */
490 seq_printf(m, "%-43s ", "Free pages count per migrate type at order");
491 for (order = 0; order < MAX_ORDER; ++order)
492 seq_printf(m, "%6d ", order);
493 seq_putc(m, '\n');
495 walk_zones_in_node(m, pgdat, pagetypeinfo_showfree_print);
497 return 0;
500 static void pagetypeinfo_showblockcount_print(struct seq_file *m,
501 pg_data_t *pgdat, struct zone *zone)
503 int mtype;
504 unsigned long pfn;
505 unsigned long start_pfn = zone->zone_start_pfn;
506 unsigned long end_pfn = start_pfn + zone->spanned_pages;
507 unsigned long count[MIGRATE_TYPES] = { 0, };
509 for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
510 struct page *page;
512 if (!pfn_valid(pfn))
513 continue;
515 page = pfn_to_page(pfn);
516 mtype = get_pageblock_migratetype(page);
518 count[mtype]++;
521 /* Print counts */
522 seq_printf(m, "Node %d, zone %8s ", pgdat->node_id, zone->name);
523 for (mtype = 0; mtype < MIGRATE_TYPES; mtype++)
524 seq_printf(m, "%12lu ", count[mtype]);
525 seq_putc(m, '\n');
528 /* Print out the free pages at each order for each migratetype */
529 static int pagetypeinfo_showblockcount(struct seq_file *m, void *arg)
531 int mtype;
532 pg_data_t *pgdat = (pg_data_t *)arg;
534 seq_printf(m, "\n%-23s", "Number of blocks type ");
535 for (mtype = 0; mtype < MIGRATE_TYPES; mtype++)
536 seq_printf(m, "%12s ", migratetype_names[mtype]);
537 seq_putc(m, '\n');
538 walk_zones_in_node(m, pgdat, pagetypeinfo_showblockcount_print);
540 return 0;
544 * This prints out statistics in relation to grouping pages by mobility.
545 * It is expensive to collect so do not constantly read the file.
547 static int pagetypeinfo_show(struct seq_file *m, void *arg)
549 pg_data_t *pgdat = (pg_data_t *)arg;
551 /* check memoryless node */
552 if (!node_state(pgdat->node_id, N_HIGH_MEMORY))
553 return 0;
555 seq_printf(m, "Page block order: %d\n", pageblock_order);
556 seq_printf(m, "Pages per block: %lu\n", pageblock_nr_pages);
557 seq_putc(m, '\n');
558 pagetypeinfo_showfree(m, pgdat);
559 pagetypeinfo_showblockcount(m, pgdat);
561 return 0;
564 const struct seq_operations fragmentation_op = {
565 .start = frag_start,
566 .next = frag_next,
567 .stop = frag_stop,
568 .show = frag_show,
571 const struct seq_operations pagetypeinfo_op = {
572 .start = frag_start,
573 .next = frag_next,
574 .stop = frag_stop,
575 .show = pagetypeinfo_show,
578 #ifdef CONFIG_ZONE_DMA
579 #define TEXT_FOR_DMA(xx) xx "_dma",
580 #else
581 #define TEXT_FOR_DMA(xx)
582 #endif
584 #ifdef CONFIG_ZONE_DMA32
585 #define TEXT_FOR_DMA32(xx) xx "_dma32",
586 #else
587 #define TEXT_FOR_DMA32(xx)
588 #endif
590 #ifdef CONFIG_HIGHMEM
591 #define TEXT_FOR_HIGHMEM(xx) xx "_high",
592 #else
593 #define TEXT_FOR_HIGHMEM(xx)
594 #endif
596 #define TEXTS_FOR_ZONES(xx) TEXT_FOR_DMA(xx) TEXT_FOR_DMA32(xx) xx "_normal", \
597 TEXT_FOR_HIGHMEM(xx) xx "_movable",
599 static const char * const vmstat_text[] = {
600 /* Zoned VM counters */
601 "nr_free_pages",
602 "nr_inactive",
603 "nr_active",
604 "nr_anon_pages",
605 "nr_mapped",
606 "nr_file_pages",
607 "nr_dirty",
608 "nr_writeback",
609 "nr_slab_reclaimable",
610 "nr_slab_unreclaimable",
611 "nr_page_table_pages",
612 "nr_unstable",
613 "nr_bounce",
614 "nr_vmscan_write",
615 "nr_writeback_temp",
617 #ifdef CONFIG_NUMA
618 "numa_hit",
619 "numa_miss",
620 "numa_foreign",
621 "numa_interleave",
622 "numa_local",
623 "numa_other",
624 #endif
626 #ifdef CONFIG_VM_EVENT_COUNTERS
627 "pgpgin",
628 "pgpgout",
629 "pswpin",
630 "pswpout",
632 TEXTS_FOR_ZONES("pgalloc")
634 "pgfree",
635 "pgactivate",
636 "pgdeactivate",
638 "pgfault",
639 "pgmajfault",
641 TEXTS_FOR_ZONES("pgrefill")
642 TEXTS_FOR_ZONES("pgsteal")
643 TEXTS_FOR_ZONES("pgscan_kswapd")
644 TEXTS_FOR_ZONES("pgscan_direct")
646 "pginodesteal",
647 "slabs_scanned",
648 "kswapd_steal",
649 "kswapd_inodesteal",
650 "pageoutrun",
651 "allocstall",
653 "pgrotated",
654 #ifdef CONFIG_HUGETLB_PAGE
655 "htlb_buddy_alloc_success",
656 "htlb_buddy_alloc_fail",
657 #endif
658 #endif
661 static void zoneinfo_show_print(struct seq_file *m, pg_data_t *pgdat,
662 struct zone *zone)
664 int i;
665 seq_printf(m, "Node %d, zone %8s", pgdat->node_id, zone->name);
666 seq_printf(m,
667 "\n pages free %lu"
668 "\n min %lu"
669 "\n low %lu"
670 "\n high %lu"
671 "\n scanned %lu (a: %lu i: %lu)"
672 "\n spanned %lu"
673 "\n present %lu",
674 zone_page_state(zone, NR_FREE_PAGES),
675 zone->pages_min,
676 zone->pages_low,
677 zone->pages_high,
678 zone->pages_scanned,
679 zone->nr_scan_active, zone->nr_scan_inactive,
680 zone->spanned_pages,
681 zone->present_pages);
683 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
684 seq_printf(m, "\n %-12s %lu", vmstat_text[i],
685 zone_page_state(zone, i));
687 seq_printf(m,
688 "\n protection: (%lu",
689 zone->lowmem_reserve[0]);
690 for (i = 1; i < ARRAY_SIZE(zone->lowmem_reserve); i++)
691 seq_printf(m, ", %lu", zone->lowmem_reserve[i]);
692 seq_printf(m,
694 "\n pagesets");
695 for_each_online_cpu(i) {
696 struct per_cpu_pageset *pageset;
698 pageset = zone_pcp(zone, i);
699 seq_printf(m,
700 "\n cpu: %i"
701 "\n count: %i"
702 "\n high: %i"
703 "\n batch: %i",
705 pageset->pcp.count,
706 pageset->pcp.high,
707 pageset->pcp.batch);
708 #ifdef CONFIG_SMP
709 seq_printf(m, "\n vm stats threshold: %d",
710 pageset->stat_threshold);
711 #endif
713 seq_printf(m,
714 "\n all_unreclaimable: %u"
715 "\n prev_priority: %i"
716 "\n start_pfn: %lu",
717 zone_is_all_unreclaimable(zone),
718 zone->prev_priority,
719 zone->zone_start_pfn);
720 seq_putc(m, '\n');
724 * Output information about zones in @pgdat.
726 static int zoneinfo_show(struct seq_file *m, void *arg)
728 pg_data_t *pgdat = (pg_data_t *)arg;
729 walk_zones_in_node(m, pgdat, zoneinfo_show_print);
730 return 0;
733 const struct seq_operations zoneinfo_op = {
734 .start = frag_start, /* iterate over all zones. The same as in
735 * fragmentation. */
736 .next = frag_next,
737 .stop = frag_stop,
738 .show = zoneinfo_show,
741 static void *vmstat_start(struct seq_file *m, loff_t *pos)
743 unsigned long *v;
744 #ifdef CONFIG_VM_EVENT_COUNTERS
745 unsigned long *e;
746 #endif
747 int i;
749 if (*pos >= ARRAY_SIZE(vmstat_text))
750 return NULL;
752 #ifdef CONFIG_VM_EVENT_COUNTERS
753 v = kmalloc(NR_VM_ZONE_STAT_ITEMS * sizeof(unsigned long)
754 + sizeof(struct vm_event_state), GFP_KERNEL);
755 #else
756 v = kmalloc(NR_VM_ZONE_STAT_ITEMS * sizeof(unsigned long),
757 GFP_KERNEL);
758 #endif
759 m->private = v;
760 if (!v)
761 return ERR_PTR(-ENOMEM);
762 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
763 v[i] = global_page_state(i);
764 #ifdef CONFIG_VM_EVENT_COUNTERS
765 e = v + NR_VM_ZONE_STAT_ITEMS;
766 all_vm_events(e);
767 e[PGPGIN] /= 2; /* sectors -> kbytes */
768 e[PGPGOUT] /= 2;
769 #endif
770 return v + *pos;
773 static void *vmstat_next(struct seq_file *m, void *arg, loff_t *pos)
775 (*pos)++;
776 if (*pos >= ARRAY_SIZE(vmstat_text))
777 return NULL;
778 return (unsigned long *)m->private + *pos;
781 static int vmstat_show(struct seq_file *m, void *arg)
783 unsigned long *l = arg;
784 unsigned long off = l - (unsigned long *)m->private;
786 seq_printf(m, "%s %lu\n", vmstat_text[off], *l);
787 return 0;
790 static void vmstat_stop(struct seq_file *m, void *arg)
792 kfree(m->private);
793 m->private = NULL;
796 const struct seq_operations vmstat_op = {
797 .start = vmstat_start,
798 .next = vmstat_next,
799 .stop = vmstat_stop,
800 .show = vmstat_show,
803 #endif /* CONFIG_PROC_FS */
805 #ifdef CONFIG_SMP
806 static DEFINE_PER_CPU(struct delayed_work, vmstat_work);
807 int sysctl_stat_interval __read_mostly = HZ;
809 static void vmstat_update(struct work_struct *w)
811 refresh_cpu_vm_stats(smp_processor_id());
812 schedule_delayed_work(&__get_cpu_var(vmstat_work),
813 sysctl_stat_interval);
816 static void __cpuinit start_cpu_timer(int cpu)
818 struct delayed_work *vmstat_work = &per_cpu(vmstat_work, cpu);
820 INIT_DELAYED_WORK_DEFERRABLE(vmstat_work, vmstat_update);
821 schedule_delayed_work_on(cpu, vmstat_work, HZ + cpu);
825 * Use the cpu notifier to insure that the thresholds are recalculated
826 * when necessary.
828 static int __cpuinit vmstat_cpuup_callback(struct notifier_block *nfb,
829 unsigned long action,
830 void *hcpu)
832 long cpu = (long)hcpu;
834 switch (action) {
835 case CPU_ONLINE:
836 case CPU_ONLINE_FROZEN:
837 start_cpu_timer(cpu);
838 break;
839 case CPU_DOWN_PREPARE:
840 case CPU_DOWN_PREPARE_FROZEN:
841 cancel_rearming_delayed_work(&per_cpu(vmstat_work, cpu));
842 per_cpu(vmstat_work, cpu).work.func = NULL;
843 break;
844 case CPU_DOWN_FAILED:
845 case CPU_DOWN_FAILED_FROZEN:
846 start_cpu_timer(cpu);
847 break;
848 case CPU_DEAD:
849 case CPU_DEAD_FROZEN:
850 refresh_zone_stat_thresholds();
851 break;
852 default:
853 break;
855 return NOTIFY_OK;
858 static struct notifier_block __cpuinitdata vmstat_notifier =
859 { &vmstat_cpuup_callback, NULL, 0 };
861 static int __init setup_vmstat(void)
863 int cpu;
865 refresh_zone_stat_thresholds();
866 register_cpu_notifier(&vmstat_notifier);
868 for_each_online_cpu(cpu)
869 start_cpu_timer(cpu);
870 return 0;
872 module_init(setup_vmstat)
873 #endif