perf, sparc: Implement group scheduling transactional APIs
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / arch / sparc / kernel / perf_event.c
blobcf4ce263ff81b44886c4297cf5c246e80216aea4
1 /* Performance event support for sparc64.
3 * Copyright (C) 2009, 2010 David S. Miller <davem@davemloft.net>
5 * This code is based almost entirely upon the x86 perf event
6 * code, which is:
8 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
9 * Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
10 * Copyright (C) 2009 Jaswinder Singh Rajput
11 * Copyright (C) 2009 Advanced Micro Devices, Inc., Robert Richter
12 * Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
15 #include <linux/perf_event.h>
16 #include <linux/kprobes.h>
17 #include <linux/kernel.h>
18 #include <linux/kdebug.h>
19 #include <linux/mutex.h>
21 #include <asm/stacktrace.h>
22 #include <asm/cpudata.h>
23 #include <asm/uaccess.h>
24 #include <asm/atomic.h>
25 #include <asm/nmi.h>
26 #include <asm/pcr.h>
28 #include "kstack.h"
30 /* Sparc64 chips have two performance counters, 32-bits each, with
31 * overflow interrupts generated on transition from 0xffffffff to 0.
32 * The counters are accessed in one go using a 64-bit register.
34 * Both counters are controlled using a single control register. The
35 * only way to stop all sampling is to clear all of the context (user,
36 * supervisor, hypervisor) sampling enable bits. But these bits apply
37 * to both counters, thus the two counters can't be enabled/disabled
38 * individually.
40 * The control register has two event fields, one for each of the two
41 * counters. It's thus nearly impossible to have one counter going
42 * while keeping the other one stopped. Therefore it is possible to
43 * get overflow interrupts for counters not currently "in use" and
44 * that condition must be checked in the overflow interrupt handler.
46 * So we use a hack, in that we program inactive counters with the
47 * "sw_count0" and "sw_count1" events. These count how many times
48 * the instruction "sethi %hi(0xfc000), %g0" is executed. It's an
49 * unusual way to encode a NOP and therefore will not trigger in
50 * normal code.
53 #define MAX_HWEVENTS 2
54 #define MAX_PERIOD ((1UL << 32) - 1)
56 #define PIC_UPPER_INDEX 0
57 #define PIC_LOWER_INDEX 1
58 #define PIC_NO_INDEX -1
60 struct cpu_hw_events {
61 /* Number of events currently scheduled onto this cpu.
62 * This tells how many entries in the arrays below
63 * are valid.
65 int n_events;
67 /* Number of new events added since the last hw_perf_disable().
68 * This works because the perf event layer always adds new
69 * events inside of a perf_{disable,enable}() sequence.
71 int n_added;
73 /* Array of events current scheduled on this cpu. */
74 struct perf_event *event[MAX_HWEVENTS];
76 /* Array of encoded longs, specifying the %pcr register
77 * encoding and the mask of PIC counters this even can
78 * be scheduled on. See perf_event_encode() et al.
80 unsigned long events[MAX_HWEVENTS];
82 /* The current counter index assigned to an event. When the
83 * event hasn't been programmed into the cpu yet, this will
84 * hold PIC_NO_INDEX. The event->hw.idx value tells us where
85 * we ought to schedule the event.
87 int current_idx[MAX_HWEVENTS];
89 /* Software copy of %pcr register on this cpu. */
90 u64 pcr;
92 /* Enabled/disable state. */
93 int enabled;
95 unsigned int group_flag;
97 DEFINE_PER_CPU(struct cpu_hw_events, cpu_hw_events) = { .enabled = 1, };
99 /* An event map describes the characteristics of a performance
100 * counter event. In particular it gives the encoding as well as
101 * a mask telling which counters the event can be measured on.
103 struct perf_event_map {
104 u16 encoding;
105 u8 pic_mask;
106 #define PIC_NONE 0x00
107 #define PIC_UPPER 0x01
108 #define PIC_LOWER 0x02
111 /* Encode a perf_event_map entry into a long. */
112 static unsigned long perf_event_encode(const struct perf_event_map *pmap)
114 return ((unsigned long) pmap->encoding << 16) | pmap->pic_mask;
117 static u8 perf_event_get_msk(unsigned long val)
119 return val & 0xff;
122 static u64 perf_event_get_enc(unsigned long val)
124 return val >> 16;
127 #define C(x) PERF_COUNT_HW_CACHE_##x
129 #define CACHE_OP_UNSUPPORTED 0xfffe
130 #define CACHE_OP_NONSENSE 0xffff
132 typedef struct perf_event_map cache_map_t
133 [PERF_COUNT_HW_CACHE_MAX]
134 [PERF_COUNT_HW_CACHE_OP_MAX]
135 [PERF_COUNT_HW_CACHE_RESULT_MAX];
137 struct sparc_pmu {
138 const struct perf_event_map *(*event_map)(int);
139 const cache_map_t *cache_map;
140 int max_events;
141 int upper_shift;
142 int lower_shift;
143 int event_mask;
144 int hv_bit;
145 int irq_bit;
146 int upper_nop;
147 int lower_nop;
150 static const struct perf_event_map ultra3_perfmon_event_map[] = {
151 [PERF_COUNT_HW_CPU_CYCLES] = { 0x0000, PIC_UPPER | PIC_LOWER },
152 [PERF_COUNT_HW_INSTRUCTIONS] = { 0x0001, PIC_UPPER | PIC_LOWER },
153 [PERF_COUNT_HW_CACHE_REFERENCES] = { 0x0009, PIC_LOWER },
154 [PERF_COUNT_HW_CACHE_MISSES] = { 0x0009, PIC_UPPER },
157 static const struct perf_event_map *ultra3_event_map(int event_id)
159 return &ultra3_perfmon_event_map[event_id];
162 static const cache_map_t ultra3_cache_map = {
163 [C(L1D)] = {
164 [C(OP_READ)] = {
165 [C(RESULT_ACCESS)] = { 0x09, PIC_LOWER, },
166 [C(RESULT_MISS)] = { 0x09, PIC_UPPER, },
168 [C(OP_WRITE)] = {
169 [C(RESULT_ACCESS)] = { 0x0a, PIC_LOWER },
170 [C(RESULT_MISS)] = { 0x0a, PIC_UPPER },
172 [C(OP_PREFETCH)] = {
173 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
174 [C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
177 [C(L1I)] = {
178 [C(OP_READ)] = {
179 [C(RESULT_ACCESS)] = { 0x09, PIC_LOWER, },
180 [C(RESULT_MISS)] = { 0x09, PIC_UPPER, },
182 [ C(OP_WRITE) ] = {
183 [ C(RESULT_ACCESS) ] = { CACHE_OP_NONSENSE },
184 [ C(RESULT_MISS) ] = { CACHE_OP_NONSENSE },
186 [ C(OP_PREFETCH) ] = {
187 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
188 [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
191 [C(LL)] = {
192 [C(OP_READ)] = {
193 [C(RESULT_ACCESS)] = { 0x0c, PIC_LOWER, },
194 [C(RESULT_MISS)] = { 0x0c, PIC_UPPER, },
196 [C(OP_WRITE)] = {
197 [C(RESULT_ACCESS)] = { 0x0c, PIC_LOWER },
198 [C(RESULT_MISS)] = { 0x0c, PIC_UPPER },
200 [C(OP_PREFETCH)] = {
201 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
202 [C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
205 [C(DTLB)] = {
206 [C(OP_READ)] = {
207 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
208 [C(RESULT_MISS)] = { 0x12, PIC_UPPER, },
210 [ C(OP_WRITE) ] = {
211 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
212 [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
214 [ C(OP_PREFETCH) ] = {
215 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
216 [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
219 [C(ITLB)] = {
220 [C(OP_READ)] = {
221 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
222 [C(RESULT_MISS)] = { 0x11, PIC_UPPER, },
224 [ C(OP_WRITE) ] = {
225 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
226 [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
228 [ C(OP_PREFETCH) ] = {
229 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
230 [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
233 [C(BPU)] = {
234 [C(OP_READ)] = {
235 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
236 [C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
238 [ C(OP_WRITE) ] = {
239 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
240 [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
242 [ C(OP_PREFETCH) ] = {
243 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
244 [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
249 static const struct sparc_pmu ultra3_pmu = {
250 .event_map = ultra3_event_map,
251 .cache_map = &ultra3_cache_map,
252 .max_events = ARRAY_SIZE(ultra3_perfmon_event_map),
253 .upper_shift = 11,
254 .lower_shift = 4,
255 .event_mask = 0x3f,
256 .upper_nop = 0x1c,
257 .lower_nop = 0x14,
260 /* Niagara1 is very limited. The upper PIC is hard-locked to count
261 * only instructions, so it is free running which creates all kinds of
262 * problems. Some hardware designs make one wonder if the creator
263 * even looked at how this stuff gets used by software.
265 static const struct perf_event_map niagara1_perfmon_event_map[] = {
266 [PERF_COUNT_HW_CPU_CYCLES] = { 0x00, PIC_UPPER },
267 [PERF_COUNT_HW_INSTRUCTIONS] = { 0x00, PIC_UPPER },
268 [PERF_COUNT_HW_CACHE_REFERENCES] = { 0, PIC_NONE },
269 [PERF_COUNT_HW_CACHE_MISSES] = { 0x03, PIC_LOWER },
272 static const struct perf_event_map *niagara1_event_map(int event_id)
274 return &niagara1_perfmon_event_map[event_id];
277 static const cache_map_t niagara1_cache_map = {
278 [C(L1D)] = {
279 [C(OP_READ)] = {
280 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
281 [C(RESULT_MISS)] = { 0x03, PIC_LOWER, },
283 [C(OP_WRITE)] = {
284 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
285 [C(RESULT_MISS)] = { 0x03, PIC_LOWER, },
287 [C(OP_PREFETCH)] = {
288 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
289 [C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
292 [C(L1I)] = {
293 [C(OP_READ)] = {
294 [C(RESULT_ACCESS)] = { 0x00, PIC_UPPER },
295 [C(RESULT_MISS)] = { 0x02, PIC_LOWER, },
297 [ C(OP_WRITE) ] = {
298 [ C(RESULT_ACCESS) ] = { CACHE_OP_NONSENSE },
299 [ C(RESULT_MISS) ] = { CACHE_OP_NONSENSE },
301 [ C(OP_PREFETCH) ] = {
302 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
303 [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
306 [C(LL)] = {
307 [C(OP_READ)] = {
308 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
309 [C(RESULT_MISS)] = { 0x07, PIC_LOWER, },
311 [C(OP_WRITE)] = {
312 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
313 [C(RESULT_MISS)] = { 0x07, PIC_LOWER, },
315 [C(OP_PREFETCH)] = {
316 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
317 [C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
320 [C(DTLB)] = {
321 [C(OP_READ)] = {
322 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
323 [C(RESULT_MISS)] = { 0x05, PIC_LOWER, },
325 [ C(OP_WRITE) ] = {
326 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
327 [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
329 [ C(OP_PREFETCH) ] = {
330 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
331 [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
334 [C(ITLB)] = {
335 [C(OP_READ)] = {
336 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
337 [C(RESULT_MISS)] = { 0x04, PIC_LOWER, },
339 [ C(OP_WRITE) ] = {
340 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
341 [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
343 [ C(OP_PREFETCH) ] = {
344 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
345 [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
348 [C(BPU)] = {
349 [C(OP_READ)] = {
350 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
351 [C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
353 [ C(OP_WRITE) ] = {
354 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
355 [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
357 [ C(OP_PREFETCH) ] = {
358 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
359 [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
364 static const struct sparc_pmu niagara1_pmu = {
365 .event_map = niagara1_event_map,
366 .cache_map = &niagara1_cache_map,
367 .max_events = ARRAY_SIZE(niagara1_perfmon_event_map),
368 .upper_shift = 0,
369 .lower_shift = 4,
370 .event_mask = 0x7,
371 .upper_nop = 0x0,
372 .lower_nop = 0x0,
375 static const struct perf_event_map niagara2_perfmon_event_map[] = {
376 [PERF_COUNT_HW_CPU_CYCLES] = { 0x02ff, PIC_UPPER | PIC_LOWER },
377 [PERF_COUNT_HW_INSTRUCTIONS] = { 0x02ff, PIC_UPPER | PIC_LOWER },
378 [PERF_COUNT_HW_CACHE_REFERENCES] = { 0x0208, PIC_UPPER | PIC_LOWER },
379 [PERF_COUNT_HW_CACHE_MISSES] = { 0x0302, PIC_UPPER | PIC_LOWER },
380 [PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = { 0x0201, PIC_UPPER | PIC_LOWER },
381 [PERF_COUNT_HW_BRANCH_MISSES] = { 0x0202, PIC_UPPER | PIC_LOWER },
384 static const struct perf_event_map *niagara2_event_map(int event_id)
386 return &niagara2_perfmon_event_map[event_id];
389 static const cache_map_t niagara2_cache_map = {
390 [C(L1D)] = {
391 [C(OP_READ)] = {
392 [C(RESULT_ACCESS)] = { 0x0208, PIC_UPPER | PIC_LOWER, },
393 [C(RESULT_MISS)] = { 0x0302, PIC_UPPER | PIC_LOWER, },
395 [C(OP_WRITE)] = {
396 [C(RESULT_ACCESS)] = { 0x0210, PIC_UPPER | PIC_LOWER, },
397 [C(RESULT_MISS)] = { 0x0302, PIC_UPPER | PIC_LOWER, },
399 [C(OP_PREFETCH)] = {
400 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
401 [C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
404 [C(L1I)] = {
405 [C(OP_READ)] = {
406 [C(RESULT_ACCESS)] = { 0x02ff, PIC_UPPER | PIC_LOWER, },
407 [C(RESULT_MISS)] = { 0x0301, PIC_UPPER | PIC_LOWER, },
409 [ C(OP_WRITE) ] = {
410 [ C(RESULT_ACCESS) ] = { CACHE_OP_NONSENSE },
411 [ C(RESULT_MISS) ] = { CACHE_OP_NONSENSE },
413 [ C(OP_PREFETCH) ] = {
414 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
415 [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
418 [C(LL)] = {
419 [C(OP_READ)] = {
420 [C(RESULT_ACCESS)] = { 0x0208, PIC_UPPER | PIC_LOWER, },
421 [C(RESULT_MISS)] = { 0x0330, PIC_UPPER | PIC_LOWER, },
423 [C(OP_WRITE)] = {
424 [C(RESULT_ACCESS)] = { 0x0210, PIC_UPPER | PIC_LOWER, },
425 [C(RESULT_MISS)] = { 0x0320, PIC_UPPER | PIC_LOWER, },
427 [C(OP_PREFETCH)] = {
428 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
429 [C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
432 [C(DTLB)] = {
433 [C(OP_READ)] = {
434 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
435 [C(RESULT_MISS)] = { 0x0b08, PIC_UPPER | PIC_LOWER, },
437 [ C(OP_WRITE) ] = {
438 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
439 [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
441 [ C(OP_PREFETCH) ] = {
442 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
443 [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
446 [C(ITLB)] = {
447 [C(OP_READ)] = {
448 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
449 [C(RESULT_MISS)] = { 0xb04, PIC_UPPER | PIC_LOWER, },
451 [ C(OP_WRITE) ] = {
452 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
453 [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
455 [ C(OP_PREFETCH) ] = {
456 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
457 [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
460 [C(BPU)] = {
461 [C(OP_READ)] = {
462 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
463 [C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
465 [ C(OP_WRITE) ] = {
466 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
467 [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
469 [ C(OP_PREFETCH) ] = {
470 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
471 [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
476 static const struct sparc_pmu niagara2_pmu = {
477 .event_map = niagara2_event_map,
478 .cache_map = &niagara2_cache_map,
479 .max_events = ARRAY_SIZE(niagara2_perfmon_event_map),
480 .upper_shift = 19,
481 .lower_shift = 6,
482 .event_mask = 0xfff,
483 .hv_bit = 0x8,
484 .irq_bit = 0x30,
485 .upper_nop = 0x220,
486 .lower_nop = 0x220,
489 static const struct sparc_pmu *sparc_pmu __read_mostly;
491 static u64 event_encoding(u64 event_id, int idx)
493 if (idx == PIC_UPPER_INDEX)
494 event_id <<= sparc_pmu->upper_shift;
495 else
496 event_id <<= sparc_pmu->lower_shift;
497 return event_id;
500 static u64 mask_for_index(int idx)
502 return event_encoding(sparc_pmu->event_mask, idx);
505 static u64 nop_for_index(int idx)
507 return event_encoding(idx == PIC_UPPER_INDEX ?
508 sparc_pmu->upper_nop :
509 sparc_pmu->lower_nop, idx);
512 static inline void sparc_pmu_enable_event(struct cpu_hw_events *cpuc, struct hw_perf_event *hwc, int idx)
514 u64 val, mask = mask_for_index(idx);
516 val = cpuc->pcr;
517 val &= ~mask;
518 val |= hwc->config;
519 cpuc->pcr = val;
521 pcr_ops->write(cpuc->pcr);
524 static inline void sparc_pmu_disable_event(struct cpu_hw_events *cpuc, struct hw_perf_event *hwc, int idx)
526 u64 mask = mask_for_index(idx);
527 u64 nop = nop_for_index(idx);
528 u64 val;
530 val = cpuc->pcr;
531 val &= ~mask;
532 val |= nop;
533 cpuc->pcr = val;
535 pcr_ops->write(cpuc->pcr);
538 static u32 read_pmc(int idx)
540 u64 val;
542 read_pic(val);
543 if (idx == PIC_UPPER_INDEX)
544 val >>= 32;
546 return val & 0xffffffff;
549 static void write_pmc(int idx, u64 val)
551 u64 shift, mask, pic;
553 shift = 0;
554 if (idx == PIC_UPPER_INDEX)
555 shift = 32;
557 mask = ((u64) 0xffffffff) << shift;
558 val <<= shift;
560 read_pic(pic);
561 pic &= ~mask;
562 pic |= val;
563 write_pic(pic);
566 static u64 sparc_perf_event_update(struct perf_event *event,
567 struct hw_perf_event *hwc, int idx)
569 int shift = 64 - 32;
570 u64 prev_raw_count, new_raw_count;
571 s64 delta;
573 again:
574 prev_raw_count = atomic64_read(&hwc->prev_count);
575 new_raw_count = read_pmc(idx);
577 if (atomic64_cmpxchg(&hwc->prev_count, prev_raw_count,
578 new_raw_count) != prev_raw_count)
579 goto again;
581 delta = (new_raw_count << shift) - (prev_raw_count << shift);
582 delta >>= shift;
584 atomic64_add(delta, &event->count);
585 atomic64_sub(delta, &hwc->period_left);
587 return new_raw_count;
590 static int sparc_perf_event_set_period(struct perf_event *event,
591 struct hw_perf_event *hwc, int idx)
593 s64 left = atomic64_read(&hwc->period_left);
594 s64 period = hwc->sample_period;
595 int ret = 0;
597 if (unlikely(left <= -period)) {
598 left = period;
599 atomic64_set(&hwc->period_left, left);
600 hwc->last_period = period;
601 ret = 1;
604 if (unlikely(left <= 0)) {
605 left += period;
606 atomic64_set(&hwc->period_left, left);
607 hwc->last_period = period;
608 ret = 1;
610 if (left > MAX_PERIOD)
611 left = MAX_PERIOD;
613 atomic64_set(&hwc->prev_count, (u64)-left);
615 write_pmc(idx, (u64)(-left) & 0xffffffff);
617 perf_event_update_userpage(event);
619 return ret;
622 /* If performance event entries have been added, move existing
623 * events around (if necessary) and then assign new entries to
624 * counters.
626 static u64 maybe_change_configuration(struct cpu_hw_events *cpuc, u64 pcr)
628 int i;
630 if (!cpuc->n_added)
631 goto out;
633 /* Read in the counters which are moving. */
634 for (i = 0; i < cpuc->n_events; i++) {
635 struct perf_event *cp = cpuc->event[i];
637 if (cpuc->current_idx[i] != PIC_NO_INDEX &&
638 cpuc->current_idx[i] != cp->hw.idx) {
639 sparc_perf_event_update(cp, &cp->hw,
640 cpuc->current_idx[i]);
641 cpuc->current_idx[i] = PIC_NO_INDEX;
645 /* Assign to counters all unassigned events. */
646 for (i = 0; i < cpuc->n_events; i++) {
647 struct perf_event *cp = cpuc->event[i];
648 struct hw_perf_event *hwc = &cp->hw;
649 int idx = hwc->idx;
650 u64 enc;
652 if (cpuc->current_idx[i] != PIC_NO_INDEX)
653 continue;
655 sparc_perf_event_set_period(cp, hwc, idx);
656 cpuc->current_idx[i] = idx;
658 enc = perf_event_get_enc(cpuc->events[i]);
659 pcr |= event_encoding(enc, idx);
661 out:
662 return pcr;
665 void hw_perf_enable(void)
667 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
668 u64 pcr;
670 if (cpuc->enabled)
671 return;
673 cpuc->enabled = 1;
674 barrier();
676 pcr = cpuc->pcr;
677 if (!cpuc->n_events) {
678 pcr = 0;
679 } else {
680 pcr = maybe_change_configuration(cpuc, pcr);
682 /* We require that all of the events have the same
683 * configuration, so just fetch the settings from the
684 * first entry.
686 cpuc->pcr = pcr | cpuc->event[0]->hw.config_base;
689 pcr_ops->write(cpuc->pcr);
692 void hw_perf_disable(void)
694 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
695 u64 val;
697 if (!cpuc->enabled)
698 return;
700 cpuc->enabled = 0;
701 cpuc->n_added = 0;
703 val = cpuc->pcr;
704 val &= ~(PCR_UTRACE | PCR_STRACE |
705 sparc_pmu->hv_bit | sparc_pmu->irq_bit);
706 cpuc->pcr = val;
708 pcr_ops->write(cpuc->pcr);
711 static void sparc_pmu_disable(struct perf_event *event)
713 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
714 struct hw_perf_event *hwc = &event->hw;
715 unsigned long flags;
716 int i;
718 local_irq_save(flags);
719 perf_disable();
721 for (i = 0; i < cpuc->n_events; i++) {
722 if (event == cpuc->event[i]) {
723 int idx = cpuc->current_idx[i];
725 /* Shift remaining entries down into
726 * the existing slot.
728 while (++i < cpuc->n_events) {
729 cpuc->event[i - 1] = cpuc->event[i];
730 cpuc->events[i - 1] = cpuc->events[i];
731 cpuc->current_idx[i - 1] =
732 cpuc->current_idx[i];
735 /* Absorb the final count and turn off the
736 * event.
738 sparc_pmu_disable_event(cpuc, hwc, idx);
739 barrier();
740 sparc_perf_event_update(event, hwc, idx);
742 perf_event_update_userpage(event);
744 cpuc->n_events--;
745 break;
749 perf_enable();
750 local_irq_restore(flags);
753 static int active_event_index(struct cpu_hw_events *cpuc,
754 struct perf_event *event)
756 int i;
758 for (i = 0; i < cpuc->n_events; i++) {
759 if (cpuc->event[i] == event)
760 break;
762 BUG_ON(i == cpuc->n_events);
763 return cpuc->current_idx[i];
766 static void sparc_pmu_read(struct perf_event *event)
768 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
769 int idx = active_event_index(cpuc, event);
770 struct hw_perf_event *hwc = &event->hw;
772 sparc_perf_event_update(event, hwc, idx);
775 static void sparc_pmu_unthrottle(struct perf_event *event)
777 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
778 int idx = active_event_index(cpuc, event);
779 struct hw_perf_event *hwc = &event->hw;
781 sparc_pmu_enable_event(cpuc, hwc, idx);
784 static atomic_t active_events = ATOMIC_INIT(0);
785 static DEFINE_MUTEX(pmc_grab_mutex);
787 static void perf_stop_nmi_watchdog(void *unused)
789 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
791 stop_nmi_watchdog(NULL);
792 cpuc->pcr = pcr_ops->read();
795 void perf_event_grab_pmc(void)
797 if (atomic_inc_not_zero(&active_events))
798 return;
800 mutex_lock(&pmc_grab_mutex);
801 if (atomic_read(&active_events) == 0) {
802 if (atomic_read(&nmi_active) > 0) {
803 on_each_cpu(perf_stop_nmi_watchdog, NULL, 1);
804 BUG_ON(atomic_read(&nmi_active) != 0);
806 atomic_inc(&active_events);
808 mutex_unlock(&pmc_grab_mutex);
811 void perf_event_release_pmc(void)
813 if (atomic_dec_and_mutex_lock(&active_events, &pmc_grab_mutex)) {
814 if (atomic_read(&nmi_active) == 0)
815 on_each_cpu(start_nmi_watchdog, NULL, 1);
816 mutex_unlock(&pmc_grab_mutex);
820 static const struct perf_event_map *sparc_map_cache_event(u64 config)
822 unsigned int cache_type, cache_op, cache_result;
823 const struct perf_event_map *pmap;
825 if (!sparc_pmu->cache_map)
826 return ERR_PTR(-ENOENT);
828 cache_type = (config >> 0) & 0xff;
829 if (cache_type >= PERF_COUNT_HW_CACHE_MAX)
830 return ERR_PTR(-EINVAL);
832 cache_op = (config >> 8) & 0xff;
833 if (cache_op >= PERF_COUNT_HW_CACHE_OP_MAX)
834 return ERR_PTR(-EINVAL);
836 cache_result = (config >> 16) & 0xff;
837 if (cache_result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
838 return ERR_PTR(-EINVAL);
840 pmap = &((*sparc_pmu->cache_map)[cache_type][cache_op][cache_result]);
842 if (pmap->encoding == CACHE_OP_UNSUPPORTED)
843 return ERR_PTR(-ENOENT);
845 if (pmap->encoding == CACHE_OP_NONSENSE)
846 return ERR_PTR(-EINVAL);
848 return pmap;
851 static void hw_perf_event_destroy(struct perf_event *event)
853 perf_event_release_pmc();
856 /* Make sure all events can be scheduled into the hardware at
857 * the same time. This is simplified by the fact that we only
858 * need to support 2 simultaneous HW events.
860 * As a side effect, the evts[]->hw.idx values will be assigned
861 * on success. These are pending indexes. When the events are
862 * actually programmed into the chip, these values will propagate
863 * to the per-cpu cpuc->current_idx[] slots, see the code in
864 * maybe_change_configuration() for details.
866 static int sparc_check_constraints(struct perf_event **evts,
867 unsigned long *events, int n_ev)
869 u8 msk0 = 0, msk1 = 0;
870 int idx0 = 0;
872 /* This case is possible when we are invoked from
873 * hw_perf_group_sched_in().
875 if (!n_ev)
876 return 0;
878 if (n_ev > perf_max_events)
879 return -1;
881 msk0 = perf_event_get_msk(events[0]);
882 if (n_ev == 1) {
883 if (msk0 & PIC_LOWER)
884 idx0 = 1;
885 goto success;
887 BUG_ON(n_ev != 2);
888 msk1 = perf_event_get_msk(events[1]);
890 /* If both events can go on any counter, OK. */
891 if (msk0 == (PIC_UPPER | PIC_LOWER) &&
892 msk1 == (PIC_UPPER | PIC_LOWER))
893 goto success;
895 /* If one event is limited to a specific counter,
896 * and the other can go on both, OK.
898 if ((msk0 == PIC_UPPER || msk0 == PIC_LOWER) &&
899 msk1 == (PIC_UPPER | PIC_LOWER)) {
900 if (msk0 & PIC_LOWER)
901 idx0 = 1;
902 goto success;
905 if ((msk1 == PIC_UPPER || msk1 == PIC_LOWER) &&
906 msk0 == (PIC_UPPER | PIC_LOWER)) {
907 if (msk1 & PIC_UPPER)
908 idx0 = 1;
909 goto success;
912 /* If the events are fixed to different counters, OK. */
913 if ((msk0 == PIC_UPPER && msk1 == PIC_LOWER) ||
914 (msk0 == PIC_LOWER && msk1 == PIC_UPPER)) {
915 if (msk0 & PIC_LOWER)
916 idx0 = 1;
917 goto success;
920 /* Otherwise, there is a conflict. */
921 return -1;
923 success:
924 evts[0]->hw.idx = idx0;
925 if (n_ev == 2)
926 evts[1]->hw.idx = idx0 ^ 1;
927 return 0;
930 static int check_excludes(struct perf_event **evts, int n_prev, int n_new)
932 int eu = 0, ek = 0, eh = 0;
933 struct perf_event *event;
934 int i, n, first;
936 n = n_prev + n_new;
937 if (n <= 1)
938 return 0;
940 first = 1;
941 for (i = 0; i < n; i++) {
942 event = evts[i];
943 if (first) {
944 eu = event->attr.exclude_user;
945 ek = event->attr.exclude_kernel;
946 eh = event->attr.exclude_hv;
947 first = 0;
948 } else if (event->attr.exclude_user != eu ||
949 event->attr.exclude_kernel != ek ||
950 event->attr.exclude_hv != eh) {
951 return -EAGAIN;
955 return 0;
958 static int collect_events(struct perf_event *group, int max_count,
959 struct perf_event *evts[], unsigned long *events,
960 int *current_idx)
962 struct perf_event *event;
963 int n = 0;
965 if (!is_software_event(group)) {
966 if (n >= max_count)
967 return -1;
968 evts[n] = group;
969 events[n] = group->hw.event_base;
970 current_idx[n++] = PIC_NO_INDEX;
972 list_for_each_entry(event, &group->sibling_list, group_entry) {
973 if (!is_software_event(event) &&
974 event->state != PERF_EVENT_STATE_OFF) {
975 if (n >= max_count)
976 return -1;
977 evts[n] = event;
978 events[n] = event->hw.event_base;
979 current_idx[n++] = PIC_NO_INDEX;
982 return n;
985 static int sparc_pmu_enable(struct perf_event *event)
987 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
988 int n0, ret = -EAGAIN;
989 unsigned long flags;
991 local_irq_save(flags);
992 perf_disable();
994 n0 = cpuc->n_events;
995 if (n0 >= perf_max_events)
996 goto out;
998 cpuc->event[n0] = event;
999 cpuc->events[n0] = event->hw.event_base;
1000 cpuc->current_idx[n0] = PIC_NO_INDEX;
1003 * If group events scheduling transaction was started,
1004 * skip the schedulability test here, it will be peformed
1005 * at commit time(->commit_txn) as a whole
1007 if (cpuc->group_flag & PERF_EVENT_TXN_STARTED)
1008 goto nocheck;
1010 if (check_excludes(cpuc->event, n0, 1))
1011 goto out;
1012 if (sparc_check_constraints(cpuc->event, cpuc->events, n0 + 1))
1013 goto out;
1015 nocheck:
1016 cpuc->n_events++;
1017 cpuc->n_added++;
1019 ret = 0;
1020 out:
1021 perf_enable();
1022 local_irq_restore(flags);
1023 return ret;
1026 static int __hw_perf_event_init(struct perf_event *event)
1028 struct perf_event_attr *attr = &event->attr;
1029 struct perf_event *evts[MAX_HWEVENTS];
1030 struct hw_perf_event *hwc = &event->hw;
1031 unsigned long events[MAX_HWEVENTS];
1032 int current_idx_dmy[MAX_HWEVENTS];
1033 const struct perf_event_map *pmap;
1034 int n;
1036 if (atomic_read(&nmi_active) < 0)
1037 return -ENODEV;
1039 if (attr->type == PERF_TYPE_HARDWARE) {
1040 if (attr->config >= sparc_pmu->max_events)
1041 return -EINVAL;
1042 pmap = sparc_pmu->event_map(attr->config);
1043 } else if (attr->type == PERF_TYPE_HW_CACHE) {
1044 pmap = sparc_map_cache_event(attr->config);
1045 if (IS_ERR(pmap))
1046 return PTR_ERR(pmap);
1047 } else
1048 return -EOPNOTSUPP;
1050 /* We save the enable bits in the config_base. */
1051 hwc->config_base = sparc_pmu->irq_bit;
1052 if (!attr->exclude_user)
1053 hwc->config_base |= PCR_UTRACE;
1054 if (!attr->exclude_kernel)
1055 hwc->config_base |= PCR_STRACE;
1056 if (!attr->exclude_hv)
1057 hwc->config_base |= sparc_pmu->hv_bit;
1059 hwc->event_base = perf_event_encode(pmap);
1061 n = 0;
1062 if (event->group_leader != event) {
1063 n = collect_events(event->group_leader,
1064 perf_max_events - 1,
1065 evts, events, current_idx_dmy);
1066 if (n < 0)
1067 return -EINVAL;
1069 events[n] = hwc->event_base;
1070 evts[n] = event;
1072 if (check_excludes(evts, n, 1))
1073 return -EINVAL;
1075 if (sparc_check_constraints(evts, events, n + 1))
1076 return -EINVAL;
1078 hwc->idx = PIC_NO_INDEX;
1080 /* Try to do all error checking before this point, as unwinding
1081 * state after grabbing the PMC is difficult.
1083 perf_event_grab_pmc();
1084 event->destroy = hw_perf_event_destroy;
1086 if (!hwc->sample_period) {
1087 hwc->sample_period = MAX_PERIOD;
1088 hwc->last_period = hwc->sample_period;
1089 atomic64_set(&hwc->period_left, hwc->sample_period);
1092 return 0;
1096 * Start group events scheduling transaction
1097 * Set the flag to make pmu::enable() not perform the
1098 * schedulability test, it will be performed at commit time
1100 static void sparc_pmu_start_txn(const struct pmu *pmu)
1102 struct cpu_hw_events *cpuhw = &__get_cpu_var(cpu_hw_events);
1104 cpuhw->group_flag |= PERF_EVENT_TXN_STARTED;
1108 * Stop group events scheduling transaction
1109 * Clear the flag and pmu::enable() will perform the
1110 * schedulability test.
1112 static void sparc_pmu_cancel_txn(const struct pmu *pmu)
1114 struct cpu_hw_events *cpuhw = &__get_cpu_var(cpu_hw_events);
1116 cpuhw->group_flag &= ~PERF_EVENT_TXN_STARTED;
1120 * Commit group events scheduling transaction
1121 * Perform the group schedulability test as a whole
1122 * Return 0 if success
1124 static int sparc_pmu_commit_txn(const struct pmu *pmu)
1126 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
1127 int n;
1129 if (!sparc_pmu)
1130 return -EINVAL;
1132 cpuc = &__get_cpu_var(cpu_hw_events);
1133 n = cpuc->n_events;
1134 if (check_excludes(cpuc->event, 0, n))
1135 return -EINVAL;
1136 if (sparc_check_constraints(cpuc->event, cpuc->events, n))
1137 return -EAGAIN;
1139 return 0;
1142 static const struct pmu pmu = {
1143 .enable = sparc_pmu_enable,
1144 .disable = sparc_pmu_disable,
1145 .read = sparc_pmu_read,
1146 .unthrottle = sparc_pmu_unthrottle,
1147 .start_txn = sparc_pmu_start_txn,
1148 .cancel_txn = sparc_pmu_cancel_txn,
1149 .commit_txn = sparc_pmu_commit_txn,
1152 const struct pmu *hw_perf_event_init(struct perf_event *event)
1154 int err = __hw_perf_event_init(event);
1156 if (err)
1157 return ERR_PTR(err);
1158 return &pmu;
1161 void perf_event_print_debug(void)
1163 unsigned long flags;
1164 u64 pcr, pic;
1165 int cpu;
1167 if (!sparc_pmu)
1168 return;
1170 local_irq_save(flags);
1172 cpu = smp_processor_id();
1174 pcr = pcr_ops->read();
1175 read_pic(pic);
1177 pr_info("\n");
1178 pr_info("CPU#%d: PCR[%016llx] PIC[%016llx]\n",
1179 cpu, pcr, pic);
1181 local_irq_restore(flags);
1184 static int __kprobes perf_event_nmi_handler(struct notifier_block *self,
1185 unsigned long cmd, void *__args)
1187 struct die_args *args = __args;
1188 struct perf_sample_data data;
1189 struct cpu_hw_events *cpuc;
1190 struct pt_regs *regs;
1191 int i;
1193 if (!atomic_read(&active_events))
1194 return NOTIFY_DONE;
1196 switch (cmd) {
1197 case DIE_NMI:
1198 break;
1200 default:
1201 return NOTIFY_DONE;
1204 regs = args->regs;
1206 perf_sample_data_init(&data, 0);
1208 cpuc = &__get_cpu_var(cpu_hw_events);
1210 /* If the PMU has the TOE IRQ enable bits, we need to do a
1211 * dummy write to the %pcr to clear the overflow bits and thus
1212 * the interrupt.
1214 * Do this before we peek at the counters to determine
1215 * overflow so we don't lose any events.
1217 if (sparc_pmu->irq_bit)
1218 pcr_ops->write(cpuc->pcr);
1220 for (i = 0; i < cpuc->n_events; i++) {
1221 struct perf_event *event = cpuc->event[i];
1222 int idx = cpuc->current_idx[i];
1223 struct hw_perf_event *hwc;
1224 u64 val;
1226 hwc = &event->hw;
1227 val = sparc_perf_event_update(event, hwc, idx);
1228 if (val & (1ULL << 31))
1229 continue;
1231 data.period = event->hw.last_period;
1232 if (!sparc_perf_event_set_period(event, hwc, idx))
1233 continue;
1235 if (perf_event_overflow(event, 1, &data, regs))
1236 sparc_pmu_disable_event(cpuc, hwc, idx);
1239 return NOTIFY_STOP;
1242 static __read_mostly struct notifier_block perf_event_nmi_notifier = {
1243 .notifier_call = perf_event_nmi_handler,
1246 static bool __init supported_pmu(void)
1248 if (!strcmp(sparc_pmu_type, "ultra3") ||
1249 !strcmp(sparc_pmu_type, "ultra3+") ||
1250 !strcmp(sparc_pmu_type, "ultra3i") ||
1251 !strcmp(sparc_pmu_type, "ultra4+")) {
1252 sparc_pmu = &ultra3_pmu;
1253 return true;
1255 if (!strcmp(sparc_pmu_type, "niagara")) {
1256 sparc_pmu = &niagara1_pmu;
1257 return true;
1259 if (!strcmp(sparc_pmu_type, "niagara2")) {
1260 sparc_pmu = &niagara2_pmu;
1261 return true;
1263 return false;
1266 void __init init_hw_perf_events(void)
1268 pr_info("Performance events: ");
1270 if (!supported_pmu()) {
1271 pr_cont("No support for PMU type '%s'\n", sparc_pmu_type);
1272 return;
1275 pr_cont("Supported PMU type is '%s'\n", sparc_pmu_type);
1277 /* All sparc64 PMUs currently have 2 events. */
1278 perf_max_events = 2;
1280 register_die_notifier(&perf_event_nmi_notifier);
1283 static inline void callchain_store(struct perf_callchain_entry *entry, u64 ip)
1285 if (entry->nr < PERF_MAX_STACK_DEPTH)
1286 entry->ip[entry->nr++] = ip;
1289 static void perf_callchain_kernel(struct pt_regs *regs,
1290 struct perf_callchain_entry *entry)
1292 unsigned long ksp, fp;
1294 callchain_store(entry, PERF_CONTEXT_KERNEL);
1295 callchain_store(entry, regs->tpc);
1297 ksp = regs->u_regs[UREG_I6];
1298 fp = ksp + STACK_BIAS;
1299 do {
1300 struct sparc_stackf *sf;
1301 struct pt_regs *regs;
1302 unsigned long pc;
1304 if (!kstack_valid(current_thread_info(), fp))
1305 break;
1307 sf = (struct sparc_stackf *) fp;
1308 regs = (struct pt_regs *) (sf + 1);
1310 if (kstack_is_trap_frame(current_thread_info(), regs)) {
1311 if (user_mode(regs))
1312 break;
1313 pc = regs->tpc;
1314 fp = regs->u_regs[UREG_I6] + STACK_BIAS;
1315 } else {
1316 pc = sf->callers_pc;
1317 fp = (unsigned long)sf->fp + STACK_BIAS;
1319 callchain_store(entry, pc);
1320 } while (entry->nr < PERF_MAX_STACK_DEPTH);
1323 static void perf_callchain_user_64(struct pt_regs *regs,
1324 struct perf_callchain_entry *entry)
1326 unsigned long ufp;
1328 callchain_store(entry, PERF_CONTEXT_USER);
1329 callchain_store(entry, regs->tpc);
1331 ufp = regs->u_regs[UREG_I6] + STACK_BIAS;
1332 do {
1333 struct sparc_stackf *usf, sf;
1334 unsigned long pc;
1336 usf = (struct sparc_stackf *) ufp;
1337 if (__copy_from_user_inatomic(&sf, usf, sizeof(sf)))
1338 break;
1340 pc = sf.callers_pc;
1341 ufp = (unsigned long)sf.fp + STACK_BIAS;
1342 callchain_store(entry, pc);
1343 } while (entry->nr < PERF_MAX_STACK_DEPTH);
1346 static void perf_callchain_user_32(struct pt_regs *regs,
1347 struct perf_callchain_entry *entry)
1349 unsigned long ufp;
1351 callchain_store(entry, PERF_CONTEXT_USER);
1352 callchain_store(entry, regs->tpc);
1354 ufp = regs->u_regs[UREG_I6] & 0xffffffffUL;
1355 do {
1356 struct sparc_stackf32 *usf, sf;
1357 unsigned long pc;
1359 usf = (struct sparc_stackf32 *) ufp;
1360 if (__copy_from_user_inatomic(&sf, usf, sizeof(sf)))
1361 break;
1363 pc = sf.callers_pc;
1364 ufp = (unsigned long)sf.fp;
1365 callchain_store(entry, pc);
1366 } while (entry->nr < PERF_MAX_STACK_DEPTH);
1369 /* Like powerpc we can't get PMU interrupts within the PMU handler,
1370 * so no need for separate NMI and IRQ chains as on x86.
1372 static DEFINE_PER_CPU(struct perf_callchain_entry, callchain);
1374 struct perf_callchain_entry *perf_callchain(struct pt_regs *regs)
1376 struct perf_callchain_entry *entry = &__get_cpu_var(callchain);
1378 entry->nr = 0;
1379 if (!user_mode(regs)) {
1380 stack_trace_flush();
1381 perf_callchain_kernel(regs, entry);
1382 if (current->mm)
1383 regs = task_pt_regs(current);
1384 else
1385 regs = NULL;
1387 if (regs) {
1388 flushw_user();
1389 if (test_thread_flag(TIF_32BIT))
1390 perf_callchain_user_32(regs, entry);
1391 else
1392 perf_callchain_user_64(regs, entry);
1394 return entry;