4 * Copyright (c) 1999-2002 Vojtech Pavlik
8 * This program is free software; you can redistribute it and/or modify it
9 * under the terms of the GNU General Public License version 2 as published by
10 * the Free Software Foundation.
13 #include <linux/init.h>
14 #include <linux/types.h>
15 #include <linux/input.h>
16 #include <linux/module.h>
17 #include <linux/slab.h>
18 #include <linux/random.h>
19 #include <linux/major.h>
20 #include <linux/proc_fs.h>
21 #include <linux/sched.h>
22 #include <linux/seq_file.h>
23 #include <linux/poll.h>
24 #include <linux/device.h>
25 #include <linux/mutex.h>
26 #include <linux/rcupdate.h>
27 #include <linux/smp_lock.h>
28 #include "input-compat.h"
30 MODULE_AUTHOR("Vojtech Pavlik <vojtech@suse.cz>");
31 MODULE_DESCRIPTION("Input core");
32 MODULE_LICENSE("GPL");
34 #define INPUT_DEVICES 256
36 static LIST_HEAD(input_dev_list
);
37 static LIST_HEAD(input_handler_list
);
40 * input_mutex protects access to both input_dev_list and input_handler_list.
41 * This also causes input_[un]register_device and input_[un]register_handler
42 * be mutually exclusive which simplifies locking in drivers implementing
45 static DEFINE_MUTEX(input_mutex
);
47 static struct input_handler
*input_table
[8];
49 static inline int is_event_supported(unsigned int code
,
50 unsigned long *bm
, unsigned int max
)
52 return code
<= max
&& test_bit(code
, bm
);
55 static int input_defuzz_abs_event(int value
, int old_val
, int fuzz
)
58 if (value
> old_val
- fuzz
/ 2 && value
< old_val
+ fuzz
/ 2)
61 if (value
> old_val
- fuzz
&& value
< old_val
+ fuzz
)
62 return (old_val
* 3 + value
) / 4;
64 if (value
> old_val
- fuzz
* 2 && value
< old_val
+ fuzz
* 2)
65 return (old_val
+ value
) / 2;
72 * Pass event first through all filters and then, if event has not been
73 * filtered out, through all open handles. This function is called with
74 * dev->event_lock held and interrupts disabled.
76 static void input_pass_event(struct input_dev
*dev
,
77 unsigned int type
, unsigned int code
, int value
)
79 struct input_handler
*handler
;
80 struct input_handle
*handle
;
84 handle
= rcu_dereference(dev
->grab
);
86 handle
->handler
->event(handle
, type
, code
, value
);
88 bool filtered
= false;
90 list_for_each_entry_rcu(handle
, &dev
->h_list
, d_node
) {
94 handler
= handle
->handler
;
95 if (!handler
->filter
) {
99 handler
->event(handle
, type
, code
, value
);
101 } else if (handler
->filter(handle
, type
, code
, value
))
110 * Generate software autorepeat event. Note that we take
111 * dev->event_lock here to avoid racing with input_event
112 * which may cause keys get "stuck".
114 static void input_repeat_key(unsigned long data
)
116 struct input_dev
*dev
= (void *) data
;
119 spin_lock_irqsave(&dev
->event_lock
, flags
);
121 if (test_bit(dev
->repeat_key
, dev
->key
) &&
122 is_event_supported(dev
->repeat_key
, dev
->keybit
, KEY_MAX
)) {
124 input_pass_event(dev
, EV_KEY
, dev
->repeat_key
, 2);
128 * Only send SYN_REPORT if we are not in a middle
129 * of driver parsing a new hardware packet.
130 * Otherwise assume that the driver will send
131 * SYN_REPORT once it's done.
133 input_pass_event(dev
, EV_SYN
, SYN_REPORT
, 1);
136 if (dev
->rep
[REP_PERIOD
])
137 mod_timer(&dev
->timer
, jiffies
+
138 msecs_to_jiffies(dev
->rep
[REP_PERIOD
]));
141 spin_unlock_irqrestore(&dev
->event_lock
, flags
);
144 static void input_start_autorepeat(struct input_dev
*dev
, int code
)
146 if (test_bit(EV_REP
, dev
->evbit
) &&
147 dev
->rep
[REP_PERIOD
] && dev
->rep
[REP_DELAY
] &&
149 dev
->repeat_key
= code
;
150 mod_timer(&dev
->timer
,
151 jiffies
+ msecs_to_jiffies(dev
->rep
[REP_DELAY
]));
155 static void input_stop_autorepeat(struct input_dev
*dev
)
157 del_timer(&dev
->timer
);
160 #define INPUT_IGNORE_EVENT 0
161 #define INPUT_PASS_TO_HANDLERS 1
162 #define INPUT_PASS_TO_DEVICE 2
163 #define INPUT_PASS_TO_ALL (INPUT_PASS_TO_HANDLERS | INPUT_PASS_TO_DEVICE)
165 static int input_handle_abs_event(struct input_dev
*dev
,
166 unsigned int code
, int *pval
)
171 if (code
== ABS_MT_SLOT
) {
173 * "Stage" the event; we'll flush it later, when we
174 * get actiual touch data.
176 if (*pval
>= 0 && *pval
< dev
->mtsize
)
179 return INPUT_IGNORE_EVENT
;
182 is_mt_event
= code
>= ABS_MT_FIRST
&& code
<= ABS_MT_LAST
;
185 pold
= &dev
->absinfo
[code
].value
;
186 } else if (dev
->mt
) {
187 struct input_mt_slot
*mtslot
= &dev
->mt
[dev
->slot
];
188 pold
= &mtslot
->abs
[code
- ABS_MT_FIRST
];
191 * Bypass filtering for multitouch events when
192 * not employing slots.
198 *pval
= input_defuzz_abs_event(*pval
, *pold
,
199 dev
->absinfo
[code
].fuzz
);
201 return INPUT_IGNORE_EVENT
;
206 /* Flush pending "slot" event */
207 if (is_mt_event
&& dev
->slot
!= input_abs_get_val(dev
, ABS_MT_SLOT
)) {
208 input_abs_set_val(dev
, ABS_MT_SLOT
, dev
->slot
);
209 input_pass_event(dev
, EV_ABS
, ABS_MT_SLOT
, dev
->slot
);
212 return INPUT_PASS_TO_HANDLERS
;
215 static void input_handle_event(struct input_dev
*dev
,
216 unsigned int type
, unsigned int code
, int value
)
218 int disposition
= INPUT_IGNORE_EVENT
;
225 disposition
= INPUT_PASS_TO_ALL
;
231 disposition
= INPUT_PASS_TO_HANDLERS
;
236 disposition
= INPUT_PASS_TO_HANDLERS
;
242 if (is_event_supported(code
, dev
->keybit
, KEY_MAX
) &&
243 !!test_bit(code
, dev
->key
) != value
) {
246 __change_bit(code
, dev
->key
);
248 input_start_autorepeat(dev
, code
);
250 input_stop_autorepeat(dev
);
253 disposition
= INPUT_PASS_TO_HANDLERS
;
258 if (is_event_supported(code
, dev
->swbit
, SW_MAX
) &&
259 !!test_bit(code
, dev
->sw
) != value
) {
261 __change_bit(code
, dev
->sw
);
262 disposition
= INPUT_PASS_TO_HANDLERS
;
267 if (is_event_supported(code
, dev
->absbit
, ABS_MAX
))
268 disposition
= input_handle_abs_event(dev
, code
, &value
);
273 if (is_event_supported(code
, dev
->relbit
, REL_MAX
) && value
)
274 disposition
= INPUT_PASS_TO_HANDLERS
;
279 if (is_event_supported(code
, dev
->mscbit
, MSC_MAX
))
280 disposition
= INPUT_PASS_TO_ALL
;
285 if (is_event_supported(code
, dev
->ledbit
, LED_MAX
) &&
286 !!test_bit(code
, dev
->led
) != value
) {
288 __change_bit(code
, dev
->led
);
289 disposition
= INPUT_PASS_TO_ALL
;
294 if (is_event_supported(code
, dev
->sndbit
, SND_MAX
)) {
296 if (!!test_bit(code
, dev
->snd
) != !!value
)
297 __change_bit(code
, dev
->snd
);
298 disposition
= INPUT_PASS_TO_ALL
;
303 if (code
<= REP_MAX
&& value
>= 0 && dev
->rep
[code
] != value
) {
304 dev
->rep
[code
] = value
;
305 disposition
= INPUT_PASS_TO_ALL
;
311 disposition
= INPUT_PASS_TO_ALL
;
315 disposition
= INPUT_PASS_TO_ALL
;
319 if (disposition
!= INPUT_IGNORE_EVENT
&& type
!= EV_SYN
)
322 if ((disposition
& INPUT_PASS_TO_DEVICE
) && dev
->event
)
323 dev
->event(dev
, type
, code
, value
);
325 if (disposition
& INPUT_PASS_TO_HANDLERS
)
326 input_pass_event(dev
, type
, code
, value
);
330 * input_event() - report new input event
331 * @dev: device that generated the event
332 * @type: type of the event
334 * @value: value of the event
336 * This function should be used by drivers implementing various input
337 * devices to report input events. See also input_inject_event().
339 * NOTE: input_event() may be safely used right after input device was
340 * allocated with input_allocate_device(), even before it is registered
341 * with input_register_device(), but the event will not reach any of the
342 * input handlers. Such early invocation of input_event() may be used
343 * to 'seed' initial state of a switch or initial position of absolute
346 void input_event(struct input_dev
*dev
,
347 unsigned int type
, unsigned int code
, int value
)
351 if (is_event_supported(type
, dev
->evbit
, EV_MAX
)) {
353 spin_lock_irqsave(&dev
->event_lock
, flags
);
354 add_input_randomness(type
, code
, value
);
355 input_handle_event(dev
, type
, code
, value
);
356 spin_unlock_irqrestore(&dev
->event_lock
, flags
);
359 EXPORT_SYMBOL(input_event
);
362 * input_inject_event() - send input event from input handler
363 * @handle: input handle to send event through
364 * @type: type of the event
366 * @value: value of the event
368 * Similar to input_event() but will ignore event if device is
369 * "grabbed" and handle injecting event is not the one that owns
372 void input_inject_event(struct input_handle
*handle
,
373 unsigned int type
, unsigned int code
, int value
)
375 struct input_dev
*dev
= handle
->dev
;
376 struct input_handle
*grab
;
379 if (is_event_supported(type
, dev
->evbit
, EV_MAX
)) {
380 spin_lock_irqsave(&dev
->event_lock
, flags
);
383 grab
= rcu_dereference(dev
->grab
);
384 if (!grab
|| grab
== handle
)
385 input_handle_event(dev
, type
, code
, value
);
388 spin_unlock_irqrestore(&dev
->event_lock
, flags
);
391 EXPORT_SYMBOL(input_inject_event
);
394 * input_alloc_absinfo - allocates array of input_absinfo structs
395 * @dev: the input device emitting absolute events
397 * If the absinfo struct the caller asked for is already allocated, this
398 * functions will not do anything.
400 void input_alloc_absinfo(struct input_dev
*dev
)
403 dev
->absinfo
= kcalloc(ABS_CNT
, sizeof(struct input_absinfo
),
406 WARN(!dev
->absinfo
, "%s(): kcalloc() failed?\n", __func__
);
408 EXPORT_SYMBOL(input_alloc_absinfo
);
410 void input_set_abs_params(struct input_dev
*dev
, unsigned int axis
,
411 int min
, int max
, int fuzz
, int flat
)
413 struct input_absinfo
*absinfo
;
415 input_alloc_absinfo(dev
);
419 absinfo
= &dev
->absinfo
[axis
];
420 absinfo
->minimum
= min
;
421 absinfo
->maximum
= max
;
422 absinfo
->fuzz
= fuzz
;
423 absinfo
->flat
= flat
;
425 dev
->absbit
[BIT_WORD(axis
)] |= BIT_MASK(axis
);
427 EXPORT_SYMBOL(input_set_abs_params
);
431 * input_grab_device - grabs device for exclusive use
432 * @handle: input handle that wants to own the device
434 * When a device is grabbed by an input handle all events generated by
435 * the device are delivered only to this handle. Also events injected
436 * by other input handles are ignored while device is grabbed.
438 int input_grab_device(struct input_handle
*handle
)
440 struct input_dev
*dev
= handle
->dev
;
443 retval
= mutex_lock_interruptible(&dev
->mutex
);
452 rcu_assign_pointer(dev
->grab
, handle
);
456 mutex_unlock(&dev
->mutex
);
459 EXPORT_SYMBOL(input_grab_device
);
461 static void __input_release_device(struct input_handle
*handle
)
463 struct input_dev
*dev
= handle
->dev
;
465 if (dev
->grab
== handle
) {
466 rcu_assign_pointer(dev
->grab
, NULL
);
467 /* Make sure input_pass_event() notices that grab is gone */
470 list_for_each_entry(handle
, &dev
->h_list
, d_node
)
471 if (handle
->open
&& handle
->handler
->start
)
472 handle
->handler
->start(handle
);
477 * input_release_device - release previously grabbed device
478 * @handle: input handle that owns the device
480 * Releases previously grabbed device so that other input handles can
481 * start receiving input events. Upon release all handlers attached
482 * to the device have their start() method called so they have a change
483 * to synchronize device state with the rest of the system.
485 void input_release_device(struct input_handle
*handle
)
487 struct input_dev
*dev
= handle
->dev
;
489 mutex_lock(&dev
->mutex
);
490 __input_release_device(handle
);
491 mutex_unlock(&dev
->mutex
);
493 EXPORT_SYMBOL(input_release_device
);
496 * input_open_device - open input device
497 * @handle: handle through which device is being accessed
499 * This function should be called by input handlers when they
500 * want to start receive events from given input device.
502 int input_open_device(struct input_handle
*handle
)
504 struct input_dev
*dev
= handle
->dev
;
507 retval
= mutex_lock_interruptible(&dev
->mutex
);
511 if (dev
->going_away
) {
518 if (!dev
->users
++ && dev
->open
)
519 retval
= dev
->open(dev
);
523 if (!--handle
->open
) {
525 * Make sure we are not delivering any more events
526 * through this handle
533 mutex_unlock(&dev
->mutex
);
536 EXPORT_SYMBOL(input_open_device
);
538 int input_flush_device(struct input_handle
*handle
, struct file
*file
)
540 struct input_dev
*dev
= handle
->dev
;
543 retval
= mutex_lock_interruptible(&dev
->mutex
);
548 retval
= dev
->flush(dev
, file
);
550 mutex_unlock(&dev
->mutex
);
553 EXPORT_SYMBOL(input_flush_device
);
556 * input_close_device - close input device
557 * @handle: handle through which device is being accessed
559 * This function should be called by input handlers when they
560 * want to stop receive events from given input device.
562 void input_close_device(struct input_handle
*handle
)
564 struct input_dev
*dev
= handle
->dev
;
566 mutex_lock(&dev
->mutex
);
568 __input_release_device(handle
);
570 if (!--dev
->users
&& dev
->close
)
573 if (!--handle
->open
) {
575 * synchronize_rcu() makes sure that input_pass_event()
576 * completed and that no more input events are delivered
577 * through this handle
582 mutex_unlock(&dev
->mutex
);
584 EXPORT_SYMBOL(input_close_device
);
587 * Simulate keyup events for all keys that are marked as pressed.
588 * The function must be called with dev->event_lock held.
590 static void input_dev_release_keys(struct input_dev
*dev
)
594 if (is_event_supported(EV_KEY
, dev
->evbit
, EV_MAX
)) {
595 for (code
= 0; code
<= KEY_MAX
; code
++) {
596 if (is_event_supported(code
, dev
->keybit
, KEY_MAX
) &&
597 __test_and_clear_bit(code
, dev
->key
)) {
598 input_pass_event(dev
, EV_KEY
, code
, 0);
601 input_pass_event(dev
, EV_SYN
, SYN_REPORT
, 1);
606 * Prepare device for unregistering
608 static void input_disconnect_device(struct input_dev
*dev
)
610 struct input_handle
*handle
;
613 * Mark device as going away. Note that we take dev->mutex here
614 * not to protect access to dev->going_away but rather to ensure
615 * that there are no threads in the middle of input_open_device()
617 mutex_lock(&dev
->mutex
);
618 dev
->going_away
= true;
619 mutex_unlock(&dev
->mutex
);
621 spin_lock_irq(&dev
->event_lock
);
624 * Simulate keyup events for all pressed keys so that handlers
625 * are not left with "stuck" keys. The driver may continue
626 * generate events even after we done here but they will not
627 * reach any handlers.
629 input_dev_release_keys(dev
);
631 list_for_each_entry(handle
, &dev
->h_list
, d_node
)
634 spin_unlock_irq(&dev
->event_lock
);
637 static int input_fetch_keycode(struct input_dev
*dev
, int scancode
)
639 switch (dev
->keycodesize
) {
641 return ((u8
*)dev
->keycode
)[scancode
];
644 return ((u16
*)dev
->keycode
)[scancode
];
647 return ((u32
*)dev
->keycode
)[scancode
];
651 static int input_default_getkeycode(struct input_dev
*dev
,
652 unsigned int scancode
,
653 unsigned int *keycode
)
655 if (!dev
->keycodesize
)
658 if (scancode
>= dev
->keycodemax
)
661 *keycode
= input_fetch_keycode(dev
, scancode
);
666 static int input_default_setkeycode(struct input_dev
*dev
,
667 unsigned int scancode
,
668 unsigned int keycode
)
673 if (scancode
>= dev
->keycodemax
)
676 if (!dev
->keycodesize
)
679 if (dev
->keycodesize
< sizeof(keycode
) && (keycode
>> (dev
->keycodesize
* 8)))
682 switch (dev
->keycodesize
) {
684 u8
*k
= (u8
*)dev
->keycode
;
685 old_keycode
= k
[scancode
];
686 k
[scancode
] = keycode
;
690 u16
*k
= (u16
*)dev
->keycode
;
691 old_keycode
= k
[scancode
];
692 k
[scancode
] = keycode
;
696 u32
*k
= (u32
*)dev
->keycode
;
697 old_keycode
= k
[scancode
];
698 k
[scancode
] = keycode
;
703 __clear_bit(old_keycode
, dev
->keybit
);
704 __set_bit(keycode
, dev
->keybit
);
706 for (i
= 0; i
< dev
->keycodemax
; i
++) {
707 if (input_fetch_keycode(dev
, i
) == old_keycode
) {
708 __set_bit(old_keycode
, dev
->keybit
);
709 break; /* Setting the bit twice is useless, so break */
717 * input_get_keycode - retrieve keycode currently mapped to a given scancode
718 * @dev: input device which keymap is being queried
719 * @scancode: scancode (or its equivalent for device in question) for which
723 * This function should be called by anyone interested in retrieving current
724 * keymap. Presently keyboard and evdev handlers use it.
726 int input_get_keycode(struct input_dev
*dev
,
727 unsigned int scancode
, unsigned int *keycode
)
732 spin_lock_irqsave(&dev
->event_lock
, flags
);
733 retval
= dev
->getkeycode(dev
, scancode
, keycode
);
734 spin_unlock_irqrestore(&dev
->event_lock
, flags
);
738 EXPORT_SYMBOL(input_get_keycode
);
741 * input_get_keycode - assign new keycode to a given scancode
742 * @dev: input device which keymap is being updated
743 * @scancode: scancode (or its equivalent for device in question)
744 * @keycode: new keycode to be assigned to the scancode
746 * This function should be called by anyone needing to update current
747 * keymap. Presently keyboard and evdev handlers use it.
749 int input_set_keycode(struct input_dev
*dev
,
750 unsigned int scancode
, unsigned int keycode
)
753 unsigned int old_keycode
;
756 if (keycode
> KEY_MAX
)
759 spin_lock_irqsave(&dev
->event_lock
, flags
);
761 retval
= dev
->getkeycode(dev
, scancode
, &old_keycode
);
765 retval
= dev
->setkeycode(dev
, scancode
, keycode
);
769 /* Make sure KEY_RESERVED did not get enabled. */
770 __clear_bit(KEY_RESERVED
, dev
->keybit
);
773 * Simulate keyup event if keycode is not present
774 * in the keymap anymore
776 if (test_bit(EV_KEY
, dev
->evbit
) &&
777 !is_event_supported(old_keycode
, dev
->keybit
, KEY_MAX
) &&
778 __test_and_clear_bit(old_keycode
, dev
->key
)) {
780 input_pass_event(dev
, EV_KEY
, old_keycode
, 0);
782 input_pass_event(dev
, EV_SYN
, SYN_REPORT
, 1);
786 spin_unlock_irqrestore(&dev
->event_lock
, flags
);
790 EXPORT_SYMBOL(input_set_keycode
);
792 #define MATCH_BIT(bit, max) \
793 for (i = 0; i < BITS_TO_LONGS(max); i++) \
794 if ((id->bit[i] & dev->bit[i]) != id->bit[i]) \
796 if (i != BITS_TO_LONGS(max)) \
799 static const struct input_device_id
*input_match_device(struct input_handler
*handler
,
800 struct input_dev
*dev
)
802 const struct input_device_id
*id
;
805 for (id
= handler
->id_table
; id
->flags
|| id
->driver_info
; id
++) {
807 if (id
->flags
& INPUT_DEVICE_ID_MATCH_BUS
)
808 if (id
->bustype
!= dev
->id
.bustype
)
811 if (id
->flags
& INPUT_DEVICE_ID_MATCH_VENDOR
)
812 if (id
->vendor
!= dev
->id
.vendor
)
815 if (id
->flags
& INPUT_DEVICE_ID_MATCH_PRODUCT
)
816 if (id
->product
!= dev
->id
.product
)
819 if (id
->flags
& INPUT_DEVICE_ID_MATCH_VERSION
)
820 if (id
->version
!= dev
->id
.version
)
823 MATCH_BIT(evbit
, EV_MAX
);
824 MATCH_BIT(keybit
, KEY_MAX
);
825 MATCH_BIT(relbit
, REL_MAX
);
826 MATCH_BIT(absbit
, ABS_MAX
);
827 MATCH_BIT(mscbit
, MSC_MAX
);
828 MATCH_BIT(ledbit
, LED_MAX
);
829 MATCH_BIT(sndbit
, SND_MAX
);
830 MATCH_BIT(ffbit
, FF_MAX
);
831 MATCH_BIT(swbit
, SW_MAX
);
833 if (!handler
->match
|| handler
->match(handler
, dev
))
840 static int input_attach_handler(struct input_dev
*dev
, struct input_handler
*handler
)
842 const struct input_device_id
*id
;
845 id
= input_match_device(handler
, dev
);
849 error
= handler
->connect(handler
, dev
, id
);
850 if (error
&& error
!= -ENODEV
)
852 "input: failed to attach handler %s to device %s, "
854 handler
->name
, kobject_name(&dev
->dev
.kobj
), error
);
861 static int input_bits_to_string(char *buf
, int buf_size
,
862 unsigned long bits
, bool skip_empty
)
866 if (INPUT_COMPAT_TEST
) {
867 u32 dword
= bits
>> 32;
868 if (dword
|| !skip_empty
)
869 len
+= snprintf(buf
, buf_size
, "%x ", dword
);
871 dword
= bits
& 0xffffffffUL
;
872 if (dword
|| !skip_empty
|| len
)
873 len
+= snprintf(buf
+ len
, max(buf_size
- len
, 0),
876 if (bits
|| !skip_empty
)
877 len
+= snprintf(buf
, buf_size
, "%lx", bits
);
883 #else /* !CONFIG_COMPAT */
885 static int input_bits_to_string(char *buf
, int buf_size
,
886 unsigned long bits
, bool skip_empty
)
888 return bits
|| !skip_empty
?
889 snprintf(buf
, buf_size
, "%lx", bits
) : 0;
894 #ifdef CONFIG_PROC_FS
896 static struct proc_dir_entry
*proc_bus_input_dir
;
897 static DECLARE_WAIT_QUEUE_HEAD(input_devices_poll_wait
);
898 static int input_devices_state
;
900 static inline void input_wakeup_procfs_readers(void)
902 input_devices_state
++;
903 wake_up(&input_devices_poll_wait
);
906 static unsigned int input_proc_devices_poll(struct file
*file
, poll_table
*wait
)
908 poll_wait(file
, &input_devices_poll_wait
, wait
);
909 if (file
->f_version
!= input_devices_state
) {
910 file
->f_version
= input_devices_state
;
911 return POLLIN
| POLLRDNORM
;
917 union input_seq_state
{
925 static void *input_devices_seq_start(struct seq_file
*seq
, loff_t
*pos
)
927 union input_seq_state
*state
= (union input_seq_state
*)&seq
->private;
930 /* We need to fit into seq->private pointer */
931 BUILD_BUG_ON(sizeof(union input_seq_state
) != sizeof(seq
->private));
933 error
= mutex_lock_interruptible(&input_mutex
);
935 state
->mutex_acquired
= false;
936 return ERR_PTR(error
);
939 state
->mutex_acquired
= true;
941 return seq_list_start(&input_dev_list
, *pos
);
944 static void *input_devices_seq_next(struct seq_file
*seq
, void *v
, loff_t
*pos
)
946 return seq_list_next(v
, &input_dev_list
, pos
);
949 static void input_seq_stop(struct seq_file
*seq
, void *v
)
951 union input_seq_state
*state
= (union input_seq_state
*)&seq
->private;
953 if (state
->mutex_acquired
)
954 mutex_unlock(&input_mutex
);
957 static void input_seq_print_bitmap(struct seq_file
*seq
, const char *name
,
958 unsigned long *bitmap
, int max
)
961 bool skip_empty
= true;
964 seq_printf(seq
, "B: %s=", name
);
966 for (i
= BITS_TO_LONGS(max
) - 1; i
>= 0; i
--) {
967 if (input_bits_to_string(buf
, sizeof(buf
),
968 bitmap
[i
], skip_empty
)) {
970 seq_printf(seq
, "%s%s", buf
, i
> 0 ? " " : "");
975 * If no output was produced print a single 0.
983 static int input_devices_seq_show(struct seq_file
*seq
, void *v
)
985 struct input_dev
*dev
= container_of(v
, struct input_dev
, node
);
986 const char *path
= kobject_get_path(&dev
->dev
.kobj
, GFP_KERNEL
);
987 struct input_handle
*handle
;
989 seq_printf(seq
, "I: Bus=%04x Vendor=%04x Product=%04x Version=%04x\n",
990 dev
->id
.bustype
, dev
->id
.vendor
, dev
->id
.product
, dev
->id
.version
);
992 seq_printf(seq
, "N: Name=\"%s\"\n", dev
->name
? dev
->name
: "");
993 seq_printf(seq
, "P: Phys=%s\n", dev
->phys
? dev
->phys
: "");
994 seq_printf(seq
, "S: Sysfs=%s\n", path
? path
: "");
995 seq_printf(seq
, "U: Uniq=%s\n", dev
->uniq
? dev
->uniq
: "");
996 seq_printf(seq
, "H: Handlers=");
998 list_for_each_entry(handle
, &dev
->h_list
, d_node
)
999 seq_printf(seq
, "%s ", handle
->name
);
1000 seq_putc(seq
, '\n');
1002 input_seq_print_bitmap(seq
, "EV", dev
->evbit
, EV_MAX
);
1003 if (test_bit(EV_KEY
, dev
->evbit
))
1004 input_seq_print_bitmap(seq
, "KEY", dev
->keybit
, KEY_MAX
);
1005 if (test_bit(EV_REL
, dev
->evbit
))
1006 input_seq_print_bitmap(seq
, "REL", dev
->relbit
, REL_MAX
);
1007 if (test_bit(EV_ABS
, dev
->evbit
))
1008 input_seq_print_bitmap(seq
, "ABS", dev
->absbit
, ABS_MAX
);
1009 if (test_bit(EV_MSC
, dev
->evbit
))
1010 input_seq_print_bitmap(seq
, "MSC", dev
->mscbit
, MSC_MAX
);
1011 if (test_bit(EV_LED
, dev
->evbit
))
1012 input_seq_print_bitmap(seq
, "LED", dev
->ledbit
, LED_MAX
);
1013 if (test_bit(EV_SND
, dev
->evbit
))
1014 input_seq_print_bitmap(seq
, "SND", dev
->sndbit
, SND_MAX
);
1015 if (test_bit(EV_FF
, dev
->evbit
))
1016 input_seq_print_bitmap(seq
, "FF", dev
->ffbit
, FF_MAX
);
1017 if (test_bit(EV_SW
, dev
->evbit
))
1018 input_seq_print_bitmap(seq
, "SW", dev
->swbit
, SW_MAX
);
1020 seq_putc(seq
, '\n');
1026 static const struct seq_operations input_devices_seq_ops
= {
1027 .start
= input_devices_seq_start
,
1028 .next
= input_devices_seq_next
,
1029 .stop
= input_seq_stop
,
1030 .show
= input_devices_seq_show
,
1033 static int input_proc_devices_open(struct inode
*inode
, struct file
*file
)
1035 return seq_open(file
, &input_devices_seq_ops
);
1038 static const struct file_operations input_devices_fileops
= {
1039 .owner
= THIS_MODULE
,
1040 .open
= input_proc_devices_open
,
1041 .poll
= input_proc_devices_poll
,
1043 .llseek
= seq_lseek
,
1044 .release
= seq_release
,
1047 static void *input_handlers_seq_start(struct seq_file
*seq
, loff_t
*pos
)
1049 union input_seq_state
*state
= (union input_seq_state
*)&seq
->private;
1052 /* We need to fit into seq->private pointer */
1053 BUILD_BUG_ON(sizeof(union input_seq_state
) != sizeof(seq
->private));
1055 error
= mutex_lock_interruptible(&input_mutex
);
1057 state
->mutex_acquired
= false;
1058 return ERR_PTR(error
);
1061 state
->mutex_acquired
= true;
1064 return seq_list_start(&input_handler_list
, *pos
);
1067 static void *input_handlers_seq_next(struct seq_file
*seq
, void *v
, loff_t
*pos
)
1069 union input_seq_state
*state
= (union input_seq_state
*)&seq
->private;
1071 state
->pos
= *pos
+ 1;
1072 return seq_list_next(v
, &input_handler_list
, pos
);
1075 static int input_handlers_seq_show(struct seq_file
*seq
, void *v
)
1077 struct input_handler
*handler
= container_of(v
, struct input_handler
, node
);
1078 union input_seq_state
*state
= (union input_seq_state
*)&seq
->private;
1080 seq_printf(seq
, "N: Number=%u Name=%s", state
->pos
, handler
->name
);
1081 if (handler
->filter
)
1082 seq_puts(seq
, " (filter)");
1084 seq_printf(seq
, " Minor=%d", handler
->minor
);
1085 seq_putc(seq
, '\n');
1090 static const struct seq_operations input_handlers_seq_ops
= {
1091 .start
= input_handlers_seq_start
,
1092 .next
= input_handlers_seq_next
,
1093 .stop
= input_seq_stop
,
1094 .show
= input_handlers_seq_show
,
1097 static int input_proc_handlers_open(struct inode
*inode
, struct file
*file
)
1099 return seq_open(file
, &input_handlers_seq_ops
);
1102 static const struct file_operations input_handlers_fileops
= {
1103 .owner
= THIS_MODULE
,
1104 .open
= input_proc_handlers_open
,
1106 .llseek
= seq_lseek
,
1107 .release
= seq_release
,
1110 static int __init
input_proc_init(void)
1112 struct proc_dir_entry
*entry
;
1114 proc_bus_input_dir
= proc_mkdir("bus/input", NULL
);
1115 if (!proc_bus_input_dir
)
1118 entry
= proc_create("devices", 0, proc_bus_input_dir
,
1119 &input_devices_fileops
);
1123 entry
= proc_create("handlers", 0, proc_bus_input_dir
,
1124 &input_handlers_fileops
);
1130 fail2
: remove_proc_entry("devices", proc_bus_input_dir
);
1131 fail1
: remove_proc_entry("bus/input", NULL
);
1135 static void input_proc_exit(void)
1137 remove_proc_entry("devices", proc_bus_input_dir
);
1138 remove_proc_entry("handlers", proc_bus_input_dir
);
1139 remove_proc_entry("bus/input", NULL
);
1142 #else /* !CONFIG_PROC_FS */
1143 static inline void input_wakeup_procfs_readers(void) { }
1144 static inline int input_proc_init(void) { return 0; }
1145 static inline void input_proc_exit(void) { }
1148 #define INPUT_DEV_STRING_ATTR_SHOW(name) \
1149 static ssize_t input_dev_show_##name(struct device *dev, \
1150 struct device_attribute *attr, \
1153 struct input_dev *input_dev = to_input_dev(dev); \
1155 return scnprintf(buf, PAGE_SIZE, "%s\n", \
1156 input_dev->name ? input_dev->name : ""); \
1158 static DEVICE_ATTR(name, S_IRUGO, input_dev_show_##name, NULL)
1160 INPUT_DEV_STRING_ATTR_SHOW(name
);
1161 INPUT_DEV_STRING_ATTR_SHOW(phys
);
1162 INPUT_DEV_STRING_ATTR_SHOW(uniq
);
1164 static int input_print_modalias_bits(char *buf
, int size
,
1165 char name
, unsigned long *bm
,
1166 unsigned int min_bit
, unsigned int max_bit
)
1170 len
+= snprintf(buf
, max(size
, 0), "%c", name
);
1171 for (i
= min_bit
; i
< max_bit
; i
++)
1172 if (bm
[BIT_WORD(i
)] & BIT_MASK(i
))
1173 len
+= snprintf(buf
+ len
, max(size
- len
, 0), "%X,", i
);
1177 static int input_print_modalias(char *buf
, int size
, struct input_dev
*id
,
1182 len
= snprintf(buf
, max(size
, 0),
1183 "input:b%04Xv%04Xp%04Xe%04X-",
1184 id
->id
.bustype
, id
->id
.vendor
,
1185 id
->id
.product
, id
->id
.version
);
1187 len
+= input_print_modalias_bits(buf
+ len
, size
- len
,
1188 'e', id
->evbit
, 0, EV_MAX
);
1189 len
+= input_print_modalias_bits(buf
+ len
, size
- len
,
1190 'k', id
->keybit
, KEY_MIN_INTERESTING
, KEY_MAX
);
1191 len
+= input_print_modalias_bits(buf
+ len
, size
- len
,
1192 'r', id
->relbit
, 0, REL_MAX
);
1193 len
+= input_print_modalias_bits(buf
+ len
, size
- len
,
1194 'a', id
->absbit
, 0, ABS_MAX
);
1195 len
+= input_print_modalias_bits(buf
+ len
, size
- len
,
1196 'm', id
->mscbit
, 0, MSC_MAX
);
1197 len
+= input_print_modalias_bits(buf
+ len
, size
- len
,
1198 'l', id
->ledbit
, 0, LED_MAX
);
1199 len
+= input_print_modalias_bits(buf
+ len
, size
- len
,
1200 's', id
->sndbit
, 0, SND_MAX
);
1201 len
+= input_print_modalias_bits(buf
+ len
, size
- len
,
1202 'f', id
->ffbit
, 0, FF_MAX
);
1203 len
+= input_print_modalias_bits(buf
+ len
, size
- len
,
1204 'w', id
->swbit
, 0, SW_MAX
);
1207 len
+= snprintf(buf
+ len
, max(size
- len
, 0), "\n");
1212 static ssize_t
input_dev_show_modalias(struct device
*dev
,
1213 struct device_attribute
*attr
,
1216 struct input_dev
*id
= to_input_dev(dev
);
1219 len
= input_print_modalias(buf
, PAGE_SIZE
, id
, 1);
1221 return min_t(int, len
, PAGE_SIZE
);
1223 static DEVICE_ATTR(modalias
, S_IRUGO
, input_dev_show_modalias
, NULL
);
1225 static struct attribute
*input_dev_attrs
[] = {
1226 &dev_attr_name
.attr
,
1227 &dev_attr_phys
.attr
,
1228 &dev_attr_uniq
.attr
,
1229 &dev_attr_modalias
.attr
,
1233 static struct attribute_group input_dev_attr_group
= {
1234 .attrs
= input_dev_attrs
,
1237 #define INPUT_DEV_ID_ATTR(name) \
1238 static ssize_t input_dev_show_id_##name(struct device *dev, \
1239 struct device_attribute *attr, \
1242 struct input_dev *input_dev = to_input_dev(dev); \
1243 return scnprintf(buf, PAGE_SIZE, "%04x\n", input_dev->id.name); \
1245 static DEVICE_ATTR(name, S_IRUGO, input_dev_show_id_##name, NULL)
1247 INPUT_DEV_ID_ATTR(bustype
);
1248 INPUT_DEV_ID_ATTR(vendor
);
1249 INPUT_DEV_ID_ATTR(product
);
1250 INPUT_DEV_ID_ATTR(version
);
1252 static struct attribute
*input_dev_id_attrs
[] = {
1253 &dev_attr_bustype
.attr
,
1254 &dev_attr_vendor
.attr
,
1255 &dev_attr_product
.attr
,
1256 &dev_attr_version
.attr
,
1260 static struct attribute_group input_dev_id_attr_group
= {
1262 .attrs
= input_dev_id_attrs
,
1265 static int input_print_bitmap(char *buf
, int buf_size
, unsigned long *bitmap
,
1266 int max
, int add_cr
)
1270 bool skip_empty
= true;
1272 for (i
= BITS_TO_LONGS(max
) - 1; i
>= 0; i
--) {
1273 len
+= input_bits_to_string(buf
+ len
, max(buf_size
- len
, 0),
1274 bitmap
[i
], skip_empty
);
1278 len
+= snprintf(buf
+ len
, max(buf_size
- len
, 0), " ");
1283 * If no output was produced print a single 0.
1286 len
= snprintf(buf
, buf_size
, "%d", 0);
1289 len
+= snprintf(buf
+ len
, max(buf_size
- len
, 0), "\n");
1294 #define INPUT_DEV_CAP_ATTR(ev, bm) \
1295 static ssize_t input_dev_show_cap_##bm(struct device *dev, \
1296 struct device_attribute *attr, \
1299 struct input_dev *input_dev = to_input_dev(dev); \
1300 int len = input_print_bitmap(buf, PAGE_SIZE, \
1301 input_dev->bm##bit, ev##_MAX, \
1303 return min_t(int, len, PAGE_SIZE); \
1305 static DEVICE_ATTR(bm, S_IRUGO, input_dev_show_cap_##bm, NULL)
1307 INPUT_DEV_CAP_ATTR(EV
, ev
);
1308 INPUT_DEV_CAP_ATTR(KEY
, key
);
1309 INPUT_DEV_CAP_ATTR(REL
, rel
);
1310 INPUT_DEV_CAP_ATTR(ABS
, abs
);
1311 INPUT_DEV_CAP_ATTR(MSC
, msc
);
1312 INPUT_DEV_CAP_ATTR(LED
, led
);
1313 INPUT_DEV_CAP_ATTR(SND
, snd
);
1314 INPUT_DEV_CAP_ATTR(FF
, ff
);
1315 INPUT_DEV_CAP_ATTR(SW
, sw
);
1317 static struct attribute
*input_dev_caps_attrs
[] = {
1330 static struct attribute_group input_dev_caps_attr_group
= {
1331 .name
= "capabilities",
1332 .attrs
= input_dev_caps_attrs
,
1335 static const struct attribute_group
*input_dev_attr_groups
[] = {
1336 &input_dev_attr_group
,
1337 &input_dev_id_attr_group
,
1338 &input_dev_caps_attr_group
,
1342 static void input_dev_release(struct device
*device
)
1344 struct input_dev
*dev
= to_input_dev(device
);
1346 input_ff_destroy(dev
);
1347 input_mt_destroy_slots(dev
);
1348 kfree(dev
->absinfo
);
1351 module_put(THIS_MODULE
);
1355 * Input uevent interface - loading event handlers based on
1358 static int input_add_uevent_bm_var(struct kobj_uevent_env
*env
,
1359 const char *name
, unsigned long *bitmap
, int max
)
1363 if (add_uevent_var(env
, "%s=", name
))
1366 len
= input_print_bitmap(&env
->buf
[env
->buflen
- 1],
1367 sizeof(env
->buf
) - env
->buflen
,
1368 bitmap
, max
, false);
1369 if (len
>= (sizeof(env
->buf
) - env
->buflen
))
1376 static int input_add_uevent_modalias_var(struct kobj_uevent_env
*env
,
1377 struct input_dev
*dev
)
1381 if (add_uevent_var(env
, "MODALIAS="))
1384 len
= input_print_modalias(&env
->buf
[env
->buflen
- 1],
1385 sizeof(env
->buf
) - env
->buflen
,
1387 if (len
>= (sizeof(env
->buf
) - env
->buflen
))
1394 #define INPUT_ADD_HOTPLUG_VAR(fmt, val...) \
1396 int err = add_uevent_var(env, fmt, val); \
1401 #define INPUT_ADD_HOTPLUG_BM_VAR(name, bm, max) \
1403 int err = input_add_uevent_bm_var(env, name, bm, max); \
1408 #define INPUT_ADD_HOTPLUG_MODALIAS_VAR(dev) \
1410 int err = input_add_uevent_modalias_var(env, dev); \
1415 static int input_dev_uevent(struct device
*device
, struct kobj_uevent_env
*env
)
1417 struct input_dev
*dev
= to_input_dev(device
);
1419 INPUT_ADD_HOTPLUG_VAR("PRODUCT=%x/%x/%x/%x",
1420 dev
->id
.bustype
, dev
->id
.vendor
,
1421 dev
->id
.product
, dev
->id
.version
);
1423 INPUT_ADD_HOTPLUG_VAR("NAME=\"%s\"", dev
->name
);
1425 INPUT_ADD_HOTPLUG_VAR("PHYS=\"%s\"", dev
->phys
);
1427 INPUT_ADD_HOTPLUG_VAR("UNIQ=\"%s\"", dev
->uniq
);
1429 INPUT_ADD_HOTPLUG_BM_VAR("EV=", dev
->evbit
, EV_MAX
);
1430 if (test_bit(EV_KEY
, dev
->evbit
))
1431 INPUT_ADD_HOTPLUG_BM_VAR("KEY=", dev
->keybit
, KEY_MAX
);
1432 if (test_bit(EV_REL
, dev
->evbit
))
1433 INPUT_ADD_HOTPLUG_BM_VAR("REL=", dev
->relbit
, REL_MAX
);
1434 if (test_bit(EV_ABS
, dev
->evbit
))
1435 INPUT_ADD_HOTPLUG_BM_VAR("ABS=", dev
->absbit
, ABS_MAX
);
1436 if (test_bit(EV_MSC
, dev
->evbit
))
1437 INPUT_ADD_HOTPLUG_BM_VAR("MSC=", dev
->mscbit
, MSC_MAX
);
1438 if (test_bit(EV_LED
, dev
->evbit
))
1439 INPUT_ADD_HOTPLUG_BM_VAR("LED=", dev
->ledbit
, LED_MAX
);
1440 if (test_bit(EV_SND
, dev
->evbit
))
1441 INPUT_ADD_HOTPLUG_BM_VAR("SND=", dev
->sndbit
, SND_MAX
);
1442 if (test_bit(EV_FF
, dev
->evbit
))
1443 INPUT_ADD_HOTPLUG_BM_VAR("FF=", dev
->ffbit
, FF_MAX
);
1444 if (test_bit(EV_SW
, dev
->evbit
))
1445 INPUT_ADD_HOTPLUG_BM_VAR("SW=", dev
->swbit
, SW_MAX
);
1447 INPUT_ADD_HOTPLUG_MODALIAS_VAR(dev
);
1452 #define INPUT_DO_TOGGLE(dev, type, bits, on) \
1457 if (!test_bit(EV_##type, dev->evbit)) \
1460 for (i = 0; i < type##_MAX; i++) { \
1461 if (!test_bit(i, dev->bits##bit)) \
1464 active = test_bit(i, dev->bits); \
1465 if (!active && !on) \
1468 dev->event(dev, EV_##type, i, on ? active : 0); \
1473 static void input_dev_reset(struct input_dev
*dev
, bool activate
)
1478 INPUT_DO_TOGGLE(dev
, LED
, led
, activate
);
1479 INPUT_DO_TOGGLE(dev
, SND
, snd
, activate
);
1481 if (activate
&& test_bit(EV_REP
, dev
->evbit
)) {
1482 dev
->event(dev
, EV_REP
, REP_PERIOD
, dev
->rep
[REP_PERIOD
]);
1483 dev
->event(dev
, EV_REP
, REP_DELAY
, dev
->rep
[REP_DELAY
]);
1487 static int input_dev_suspend(struct device
*dev
)
1489 struct input_dev
*input_dev
= to_input_dev(dev
);
1491 mutex_lock(&input_dev
->mutex
);
1492 input_dev_reset(input_dev
, false);
1493 mutex_unlock(&input_dev
->mutex
);
1498 static int input_dev_resume(struct device
*dev
)
1500 struct input_dev
*input_dev
= to_input_dev(dev
);
1502 mutex_lock(&input_dev
->mutex
);
1503 input_dev_reset(input_dev
, true);
1506 * Keys that have been pressed at suspend time are unlikely
1507 * to be still pressed when we resume.
1509 spin_lock_irq(&input_dev
->event_lock
);
1510 input_dev_release_keys(input_dev
);
1511 spin_unlock_irq(&input_dev
->event_lock
);
1513 mutex_unlock(&input_dev
->mutex
);
1518 static const struct dev_pm_ops input_dev_pm_ops
= {
1519 .suspend
= input_dev_suspend
,
1520 .resume
= input_dev_resume
,
1521 .poweroff
= input_dev_suspend
,
1522 .restore
= input_dev_resume
,
1524 #endif /* CONFIG_PM */
1526 static struct device_type input_dev_type
= {
1527 .groups
= input_dev_attr_groups
,
1528 .release
= input_dev_release
,
1529 .uevent
= input_dev_uevent
,
1531 .pm
= &input_dev_pm_ops
,
1535 static char *input_devnode(struct device
*dev
, mode_t
*mode
)
1537 return kasprintf(GFP_KERNEL
, "input/%s", dev_name(dev
));
1540 struct class input_class
= {
1542 .devnode
= input_devnode
,
1544 EXPORT_SYMBOL_GPL(input_class
);
1547 * input_allocate_device - allocate memory for new input device
1549 * Returns prepared struct input_dev or NULL.
1551 * NOTE: Use input_free_device() to free devices that have not been
1552 * registered; input_unregister_device() should be used for already
1553 * registered devices.
1555 struct input_dev
*input_allocate_device(void)
1557 struct input_dev
*dev
;
1559 dev
= kzalloc(sizeof(struct input_dev
), GFP_KERNEL
);
1561 dev
->dev
.type
= &input_dev_type
;
1562 dev
->dev
.class = &input_class
;
1563 device_initialize(&dev
->dev
);
1564 mutex_init(&dev
->mutex
);
1565 spin_lock_init(&dev
->event_lock
);
1566 INIT_LIST_HEAD(&dev
->h_list
);
1567 INIT_LIST_HEAD(&dev
->node
);
1569 __module_get(THIS_MODULE
);
1574 EXPORT_SYMBOL(input_allocate_device
);
1577 * input_free_device - free memory occupied by input_dev structure
1578 * @dev: input device to free
1580 * This function should only be used if input_register_device()
1581 * was not called yet or if it failed. Once device was registered
1582 * use input_unregister_device() and memory will be freed once last
1583 * reference to the device is dropped.
1585 * Device should be allocated by input_allocate_device().
1587 * NOTE: If there are references to the input device then memory
1588 * will not be freed until last reference is dropped.
1590 void input_free_device(struct input_dev
*dev
)
1593 input_put_device(dev
);
1595 EXPORT_SYMBOL(input_free_device
);
1598 * input_mt_create_slots() - create MT input slots
1599 * @dev: input device supporting MT events and finger tracking
1600 * @num_slots: number of slots used by the device
1602 * This function allocates all necessary memory for MT slot handling in the
1603 * input device, and adds ABS_MT_SLOT to the device capabilities. All slots
1604 * are initially marked as unused iby setting ABS_MT_TRACKING_ID to -1.
1606 int input_mt_create_slots(struct input_dev
*dev
, unsigned int num_slots
)
1613 dev
->mt
= kcalloc(num_slots
, sizeof(struct input_mt_slot
), GFP_KERNEL
);
1617 dev
->mtsize
= num_slots
;
1618 input_set_abs_params(dev
, ABS_MT_SLOT
, 0, num_slots
- 1, 0, 0);
1620 /* Mark slots as 'unused' */
1621 for (i
= 0; i
< num_slots
; i
++)
1622 dev
->mt
[i
].abs
[ABS_MT_TRACKING_ID
- ABS_MT_FIRST
] = -1;
1626 EXPORT_SYMBOL(input_mt_create_slots
);
1629 * input_mt_destroy_slots() - frees the MT slots of the input device
1630 * @dev: input device with allocated MT slots
1632 * This function is only needed in error path as the input core will
1633 * automatically free the MT slots when the device is destroyed.
1635 void input_mt_destroy_slots(struct input_dev
*dev
)
1641 EXPORT_SYMBOL(input_mt_destroy_slots
);
1644 * input_set_capability - mark device as capable of a certain event
1645 * @dev: device that is capable of emitting or accepting event
1646 * @type: type of the event (EV_KEY, EV_REL, etc...)
1649 * In addition to setting up corresponding bit in appropriate capability
1650 * bitmap the function also adjusts dev->evbit.
1652 void input_set_capability(struct input_dev
*dev
, unsigned int type
, unsigned int code
)
1656 __set_bit(code
, dev
->keybit
);
1660 __set_bit(code
, dev
->relbit
);
1664 __set_bit(code
, dev
->absbit
);
1668 __set_bit(code
, dev
->mscbit
);
1672 __set_bit(code
, dev
->swbit
);
1676 __set_bit(code
, dev
->ledbit
);
1680 __set_bit(code
, dev
->sndbit
);
1684 __set_bit(code
, dev
->ffbit
);
1693 "input_set_capability: unknown type %u (code %u)\n",
1699 __set_bit(type
, dev
->evbit
);
1701 EXPORT_SYMBOL(input_set_capability
);
1703 #define INPUT_CLEANSE_BITMASK(dev, type, bits) \
1705 if (!test_bit(EV_##type, dev->evbit)) \
1706 memset(dev->bits##bit, 0, \
1707 sizeof(dev->bits##bit)); \
1710 static void input_cleanse_bitmasks(struct input_dev
*dev
)
1712 INPUT_CLEANSE_BITMASK(dev
, KEY
, key
);
1713 INPUT_CLEANSE_BITMASK(dev
, REL
, rel
);
1714 INPUT_CLEANSE_BITMASK(dev
, ABS
, abs
);
1715 INPUT_CLEANSE_BITMASK(dev
, MSC
, msc
);
1716 INPUT_CLEANSE_BITMASK(dev
, LED
, led
);
1717 INPUT_CLEANSE_BITMASK(dev
, SND
, snd
);
1718 INPUT_CLEANSE_BITMASK(dev
, FF
, ff
);
1719 INPUT_CLEANSE_BITMASK(dev
, SW
, sw
);
1723 * input_register_device - register device with input core
1724 * @dev: device to be registered
1726 * This function registers device with input core. The device must be
1727 * allocated with input_allocate_device() and all it's capabilities
1728 * set up before registering.
1729 * If function fails the device must be freed with input_free_device().
1730 * Once device has been successfully registered it can be unregistered
1731 * with input_unregister_device(); input_free_device() should not be
1732 * called in this case.
1734 int input_register_device(struct input_dev
*dev
)
1736 static atomic_t input_no
= ATOMIC_INIT(0);
1737 struct input_handler
*handler
;
1741 /* Every input device generates EV_SYN/SYN_REPORT events. */
1742 __set_bit(EV_SYN
, dev
->evbit
);
1744 /* KEY_RESERVED is not supposed to be transmitted to userspace. */
1745 __clear_bit(KEY_RESERVED
, dev
->keybit
);
1747 /* Make sure that bitmasks not mentioned in dev->evbit are clean. */
1748 input_cleanse_bitmasks(dev
);
1751 * If delay and period are pre-set by the driver, then autorepeating
1752 * is handled by the driver itself and we don't do it in input.c.
1754 init_timer(&dev
->timer
);
1755 if (!dev
->rep
[REP_DELAY
] && !dev
->rep
[REP_PERIOD
]) {
1756 dev
->timer
.data
= (long) dev
;
1757 dev
->timer
.function
= input_repeat_key
;
1758 dev
->rep
[REP_DELAY
] = 250;
1759 dev
->rep
[REP_PERIOD
] = 33;
1762 if (!dev
->getkeycode
)
1763 dev
->getkeycode
= input_default_getkeycode
;
1765 if (!dev
->setkeycode
)
1766 dev
->setkeycode
= input_default_setkeycode
;
1768 dev_set_name(&dev
->dev
, "input%ld",
1769 (unsigned long) atomic_inc_return(&input_no
) - 1);
1771 error
= device_add(&dev
->dev
);
1775 path
= kobject_get_path(&dev
->dev
.kobj
, GFP_KERNEL
);
1776 printk(KERN_INFO
"input: %s as %s\n",
1777 dev
->name
? dev
->name
: "Unspecified device", path
? path
: "N/A");
1780 error
= mutex_lock_interruptible(&input_mutex
);
1782 device_del(&dev
->dev
);
1786 list_add_tail(&dev
->node
, &input_dev_list
);
1788 list_for_each_entry(handler
, &input_handler_list
, node
)
1789 input_attach_handler(dev
, handler
);
1791 input_wakeup_procfs_readers();
1793 mutex_unlock(&input_mutex
);
1797 EXPORT_SYMBOL(input_register_device
);
1800 * input_unregister_device - unregister previously registered device
1801 * @dev: device to be unregistered
1803 * This function unregisters an input device. Once device is unregistered
1804 * the caller should not try to access it as it may get freed at any moment.
1806 void input_unregister_device(struct input_dev
*dev
)
1808 struct input_handle
*handle
, *next
;
1810 input_disconnect_device(dev
);
1812 mutex_lock(&input_mutex
);
1814 list_for_each_entry_safe(handle
, next
, &dev
->h_list
, d_node
)
1815 handle
->handler
->disconnect(handle
);
1816 WARN_ON(!list_empty(&dev
->h_list
));
1818 del_timer_sync(&dev
->timer
);
1819 list_del_init(&dev
->node
);
1821 input_wakeup_procfs_readers();
1823 mutex_unlock(&input_mutex
);
1825 device_unregister(&dev
->dev
);
1827 EXPORT_SYMBOL(input_unregister_device
);
1830 * input_register_handler - register a new input handler
1831 * @handler: handler to be registered
1833 * This function registers a new input handler (interface) for input
1834 * devices in the system and attaches it to all input devices that
1835 * are compatible with the handler.
1837 int input_register_handler(struct input_handler
*handler
)
1839 struct input_dev
*dev
;
1842 retval
= mutex_lock_interruptible(&input_mutex
);
1846 INIT_LIST_HEAD(&handler
->h_list
);
1848 if (handler
->fops
!= NULL
) {
1849 if (input_table
[handler
->minor
>> 5]) {
1853 input_table
[handler
->minor
>> 5] = handler
;
1856 list_add_tail(&handler
->node
, &input_handler_list
);
1858 list_for_each_entry(dev
, &input_dev_list
, node
)
1859 input_attach_handler(dev
, handler
);
1861 input_wakeup_procfs_readers();
1864 mutex_unlock(&input_mutex
);
1867 EXPORT_SYMBOL(input_register_handler
);
1870 * input_unregister_handler - unregisters an input handler
1871 * @handler: handler to be unregistered
1873 * This function disconnects a handler from its input devices and
1874 * removes it from lists of known handlers.
1876 void input_unregister_handler(struct input_handler
*handler
)
1878 struct input_handle
*handle
, *next
;
1880 mutex_lock(&input_mutex
);
1882 list_for_each_entry_safe(handle
, next
, &handler
->h_list
, h_node
)
1883 handler
->disconnect(handle
);
1884 WARN_ON(!list_empty(&handler
->h_list
));
1886 list_del_init(&handler
->node
);
1888 if (handler
->fops
!= NULL
)
1889 input_table
[handler
->minor
>> 5] = NULL
;
1891 input_wakeup_procfs_readers();
1893 mutex_unlock(&input_mutex
);
1895 EXPORT_SYMBOL(input_unregister_handler
);
1898 * input_handler_for_each_handle - handle iterator
1899 * @handler: input handler to iterate
1900 * @data: data for the callback
1901 * @fn: function to be called for each handle
1903 * Iterate over @bus's list of devices, and call @fn for each, passing
1904 * it @data and stop when @fn returns a non-zero value. The function is
1905 * using RCU to traverse the list and therefore may be usind in atonic
1906 * contexts. The @fn callback is invoked from RCU critical section and
1907 * thus must not sleep.
1909 int input_handler_for_each_handle(struct input_handler
*handler
, void *data
,
1910 int (*fn
)(struct input_handle
*, void *))
1912 struct input_handle
*handle
;
1917 list_for_each_entry_rcu(handle
, &handler
->h_list
, h_node
) {
1918 retval
= fn(handle
, data
);
1927 EXPORT_SYMBOL(input_handler_for_each_handle
);
1930 * input_register_handle - register a new input handle
1931 * @handle: handle to register
1933 * This function puts a new input handle onto device's
1934 * and handler's lists so that events can flow through
1935 * it once it is opened using input_open_device().
1937 * This function is supposed to be called from handler's
1940 int input_register_handle(struct input_handle
*handle
)
1942 struct input_handler
*handler
= handle
->handler
;
1943 struct input_dev
*dev
= handle
->dev
;
1947 * We take dev->mutex here to prevent race with
1948 * input_release_device().
1950 error
= mutex_lock_interruptible(&dev
->mutex
);
1955 * Filters go to the head of the list, normal handlers
1958 if (handler
->filter
)
1959 list_add_rcu(&handle
->d_node
, &dev
->h_list
);
1961 list_add_tail_rcu(&handle
->d_node
, &dev
->h_list
);
1963 mutex_unlock(&dev
->mutex
);
1966 * Since we are supposed to be called from ->connect()
1967 * which is mutually exclusive with ->disconnect()
1968 * we can't be racing with input_unregister_handle()
1969 * and so separate lock is not needed here.
1971 list_add_tail_rcu(&handle
->h_node
, &handler
->h_list
);
1974 handler
->start(handle
);
1978 EXPORT_SYMBOL(input_register_handle
);
1981 * input_unregister_handle - unregister an input handle
1982 * @handle: handle to unregister
1984 * This function removes input handle from device's
1985 * and handler's lists.
1987 * This function is supposed to be called from handler's
1988 * disconnect() method.
1990 void input_unregister_handle(struct input_handle
*handle
)
1992 struct input_dev
*dev
= handle
->dev
;
1994 list_del_rcu(&handle
->h_node
);
1997 * Take dev->mutex to prevent race with input_release_device().
1999 mutex_lock(&dev
->mutex
);
2000 list_del_rcu(&handle
->d_node
);
2001 mutex_unlock(&dev
->mutex
);
2005 EXPORT_SYMBOL(input_unregister_handle
);
2007 static int input_open_file(struct inode
*inode
, struct file
*file
)
2009 struct input_handler
*handler
;
2010 const struct file_operations
*old_fops
, *new_fops
= NULL
;
2013 err
= mutex_lock_interruptible(&input_mutex
);
2017 /* No load-on-demand here? */
2018 handler
= input_table
[iminor(inode
) >> 5];
2020 new_fops
= fops_get(handler
->fops
);
2022 mutex_unlock(&input_mutex
);
2025 * That's _really_ odd. Usually NULL ->open means "nothing special",
2026 * not "no device". Oh, well...
2028 if (!new_fops
|| !new_fops
->open
) {
2034 old_fops
= file
->f_op
;
2035 file
->f_op
= new_fops
;
2037 err
= new_fops
->open(inode
, file
);
2039 fops_put(file
->f_op
);
2040 file
->f_op
= fops_get(old_fops
);
2047 static const struct file_operations input_fops
= {
2048 .owner
= THIS_MODULE
,
2049 .open
= input_open_file
,
2052 static int __init
input_init(void)
2056 err
= class_register(&input_class
);
2058 printk(KERN_ERR
"input: unable to register input_dev class\n");
2062 err
= input_proc_init();
2066 err
= register_chrdev(INPUT_MAJOR
, "input", &input_fops
);
2068 printk(KERN_ERR
"input: unable to register char major %d", INPUT_MAJOR
);
2074 fail2
: input_proc_exit();
2075 fail1
: class_unregister(&input_class
);
2079 static void __exit
input_exit(void)
2082 unregister_chrdev(INPUT_MAJOR
, "input");
2083 class_unregister(&input_class
);
2086 subsys_initcall(input_init
);
2087 module_exit(input_exit
);