Linux 2.6.36.2
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / drivers / input / input.c
blobab6982056518e3c086c57738f360574b211108aa
1 /*
2 * The input core
4 * Copyright (c) 1999-2002 Vojtech Pavlik
5 */
7 /*
8 * This program is free software; you can redistribute it and/or modify it
9 * under the terms of the GNU General Public License version 2 as published by
10 * the Free Software Foundation.
13 #include <linux/init.h>
14 #include <linux/types.h>
15 #include <linux/input.h>
16 #include <linux/module.h>
17 #include <linux/slab.h>
18 #include <linux/random.h>
19 #include <linux/major.h>
20 #include <linux/proc_fs.h>
21 #include <linux/sched.h>
22 #include <linux/seq_file.h>
23 #include <linux/poll.h>
24 #include <linux/device.h>
25 #include <linux/mutex.h>
26 #include <linux/rcupdate.h>
27 #include <linux/smp_lock.h>
28 #include "input-compat.h"
30 MODULE_AUTHOR("Vojtech Pavlik <vojtech@suse.cz>");
31 MODULE_DESCRIPTION("Input core");
32 MODULE_LICENSE("GPL");
34 #define INPUT_DEVICES 256
36 static LIST_HEAD(input_dev_list);
37 static LIST_HEAD(input_handler_list);
40 * input_mutex protects access to both input_dev_list and input_handler_list.
41 * This also causes input_[un]register_device and input_[un]register_handler
42 * be mutually exclusive which simplifies locking in drivers implementing
43 * input handlers.
45 static DEFINE_MUTEX(input_mutex);
47 static struct input_handler *input_table[8];
49 static inline int is_event_supported(unsigned int code,
50 unsigned long *bm, unsigned int max)
52 return code <= max && test_bit(code, bm);
55 static int input_defuzz_abs_event(int value, int old_val, int fuzz)
57 if (fuzz) {
58 if (value > old_val - fuzz / 2 && value < old_val + fuzz / 2)
59 return old_val;
61 if (value > old_val - fuzz && value < old_val + fuzz)
62 return (old_val * 3 + value) / 4;
64 if (value > old_val - fuzz * 2 && value < old_val + fuzz * 2)
65 return (old_val + value) / 2;
68 return value;
72 * Pass event first through all filters and then, if event has not been
73 * filtered out, through all open handles. This function is called with
74 * dev->event_lock held and interrupts disabled.
76 static void input_pass_event(struct input_dev *dev,
77 unsigned int type, unsigned int code, int value)
79 struct input_handler *handler;
80 struct input_handle *handle;
82 rcu_read_lock();
84 handle = rcu_dereference(dev->grab);
85 if (handle)
86 handle->handler->event(handle, type, code, value);
87 else {
88 bool filtered = false;
90 list_for_each_entry_rcu(handle, &dev->h_list, d_node) {
91 if (!handle->open)
92 continue;
94 handler = handle->handler;
95 if (!handler->filter) {
96 if (filtered)
97 break;
99 handler->event(handle, type, code, value);
101 } else if (handler->filter(handle, type, code, value))
102 filtered = true;
106 rcu_read_unlock();
110 * Generate software autorepeat event. Note that we take
111 * dev->event_lock here to avoid racing with input_event
112 * which may cause keys get "stuck".
114 static void input_repeat_key(unsigned long data)
116 struct input_dev *dev = (void *) data;
117 unsigned long flags;
119 spin_lock_irqsave(&dev->event_lock, flags);
121 if (test_bit(dev->repeat_key, dev->key) &&
122 is_event_supported(dev->repeat_key, dev->keybit, KEY_MAX)) {
124 input_pass_event(dev, EV_KEY, dev->repeat_key, 2);
126 if (dev->sync) {
128 * Only send SYN_REPORT if we are not in a middle
129 * of driver parsing a new hardware packet.
130 * Otherwise assume that the driver will send
131 * SYN_REPORT once it's done.
133 input_pass_event(dev, EV_SYN, SYN_REPORT, 1);
136 if (dev->rep[REP_PERIOD])
137 mod_timer(&dev->timer, jiffies +
138 msecs_to_jiffies(dev->rep[REP_PERIOD]));
141 spin_unlock_irqrestore(&dev->event_lock, flags);
144 static void input_start_autorepeat(struct input_dev *dev, int code)
146 if (test_bit(EV_REP, dev->evbit) &&
147 dev->rep[REP_PERIOD] && dev->rep[REP_DELAY] &&
148 dev->timer.data) {
149 dev->repeat_key = code;
150 mod_timer(&dev->timer,
151 jiffies + msecs_to_jiffies(dev->rep[REP_DELAY]));
155 static void input_stop_autorepeat(struct input_dev *dev)
157 del_timer(&dev->timer);
160 #define INPUT_IGNORE_EVENT 0
161 #define INPUT_PASS_TO_HANDLERS 1
162 #define INPUT_PASS_TO_DEVICE 2
163 #define INPUT_PASS_TO_ALL (INPUT_PASS_TO_HANDLERS | INPUT_PASS_TO_DEVICE)
165 static int input_handle_abs_event(struct input_dev *dev,
166 unsigned int code, int *pval)
168 bool is_mt_event;
169 int *pold;
171 if (code == ABS_MT_SLOT) {
173 * "Stage" the event; we'll flush it later, when we
174 * get actiual touch data.
176 if (*pval >= 0 && *pval < dev->mtsize)
177 dev->slot = *pval;
179 return INPUT_IGNORE_EVENT;
182 is_mt_event = code >= ABS_MT_FIRST && code <= ABS_MT_LAST;
184 if (!is_mt_event) {
185 pold = &dev->absinfo[code].value;
186 } else if (dev->mt) {
187 struct input_mt_slot *mtslot = &dev->mt[dev->slot];
188 pold = &mtslot->abs[code - ABS_MT_FIRST];
189 } else {
191 * Bypass filtering for multitouch events when
192 * not employing slots.
194 pold = NULL;
197 if (pold) {
198 *pval = input_defuzz_abs_event(*pval, *pold,
199 dev->absinfo[code].fuzz);
200 if (*pold == *pval)
201 return INPUT_IGNORE_EVENT;
203 *pold = *pval;
206 /* Flush pending "slot" event */
207 if (is_mt_event && dev->slot != input_abs_get_val(dev, ABS_MT_SLOT)) {
208 input_abs_set_val(dev, ABS_MT_SLOT, dev->slot);
209 input_pass_event(dev, EV_ABS, ABS_MT_SLOT, dev->slot);
212 return INPUT_PASS_TO_HANDLERS;
215 static void input_handle_event(struct input_dev *dev,
216 unsigned int type, unsigned int code, int value)
218 int disposition = INPUT_IGNORE_EVENT;
220 switch (type) {
222 case EV_SYN:
223 switch (code) {
224 case SYN_CONFIG:
225 disposition = INPUT_PASS_TO_ALL;
226 break;
228 case SYN_REPORT:
229 if (!dev->sync) {
230 dev->sync = true;
231 disposition = INPUT_PASS_TO_HANDLERS;
233 break;
234 case SYN_MT_REPORT:
235 dev->sync = false;
236 disposition = INPUT_PASS_TO_HANDLERS;
237 break;
239 break;
241 case EV_KEY:
242 if (is_event_supported(code, dev->keybit, KEY_MAX) &&
243 !!test_bit(code, dev->key) != value) {
245 if (value != 2) {
246 __change_bit(code, dev->key);
247 if (value)
248 input_start_autorepeat(dev, code);
249 else
250 input_stop_autorepeat(dev);
253 disposition = INPUT_PASS_TO_HANDLERS;
255 break;
257 case EV_SW:
258 if (is_event_supported(code, dev->swbit, SW_MAX) &&
259 !!test_bit(code, dev->sw) != value) {
261 __change_bit(code, dev->sw);
262 disposition = INPUT_PASS_TO_HANDLERS;
264 break;
266 case EV_ABS:
267 if (is_event_supported(code, dev->absbit, ABS_MAX))
268 disposition = input_handle_abs_event(dev, code, &value);
270 break;
272 case EV_REL:
273 if (is_event_supported(code, dev->relbit, REL_MAX) && value)
274 disposition = INPUT_PASS_TO_HANDLERS;
276 break;
278 case EV_MSC:
279 if (is_event_supported(code, dev->mscbit, MSC_MAX))
280 disposition = INPUT_PASS_TO_ALL;
282 break;
284 case EV_LED:
285 if (is_event_supported(code, dev->ledbit, LED_MAX) &&
286 !!test_bit(code, dev->led) != value) {
288 __change_bit(code, dev->led);
289 disposition = INPUT_PASS_TO_ALL;
291 break;
293 case EV_SND:
294 if (is_event_supported(code, dev->sndbit, SND_MAX)) {
296 if (!!test_bit(code, dev->snd) != !!value)
297 __change_bit(code, dev->snd);
298 disposition = INPUT_PASS_TO_ALL;
300 break;
302 case EV_REP:
303 if (code <= REP_MAX && value >= 0 && dev->rep[code] != value) {
304 dev->rep[code] = value;
305 disposition = INPUT_PASS_TO_ALL;
307 break;
309 case EV_FF:
310 if (value >= 0)
311 disposition = INPUT_PASS_TO_ALL;
312 break;
314 case EV_PWR:
315 disposition = INPUT_PASS_TO_ALL;
316 break;
319 if (disposition != INPUT_IGNORE_EVENT && type != EV_SYN)
320 dev->sync = false;
322 if ((disposition & INPUT_PASS_TO_DEVICE) && dev->event)
323 dev->event(dev, type, code, value);
325 if (disposition & INPUT_PASS_TO_HANDLERS)
326 input_pass_event(dev, type, code, value);
330 * input_event() - report new input event
331 * @dev: device that generated the event
332 * @type: type of the event
333 * @code: event code
334 * @value: value of the event
336 * This function should be used by drivers implementing various input
337 * devices to report input events. See also input_inject_event().
339 * NOTE: input_event() may be safely used right after input device was
340 * allocated with input_allocate_device(), even before it is registered
341 * with input_register_device(), but the event will not reach any of the
342 * input handlers. Such early invocation of input_event() may be used
343 * to 'seed' initial state of a switch or initial position of absolute
344 * axis, etc.
346 void input_event(struct input_dev *dev,
347 unsigned int type, unsigned int code, int value)
349 unsigned long flags;
351 if (is_event_supported(type, dev->evbit, EV_MAX)) {
353 spin_lock_irqsave(&dev->event_lock, flags);
354 add_input_randomness(type, code, value);
355 input_handle_event(dev, type, code, value);
356 spin_unlock_irqrestore(&dev->event_lock, flags);
359 EXPORT_SYMBOL(input_event);
362 * input_inject_event() - send input event from input handler
363 * @handle: input handle to send event through
364 * @type: type of the event
365 * @code: event code
366 * @value: value of the event
368 * Similar to input_event() but will ignore event if device is
369 * "grabbed" and handle injecting event is not the one that owns
370 * the device.
372 void input_inject_event(struct input_handle *handle,
373 unsigned int type, unsigned int code, int value)
375 struct input_dev *dev = handle->dev;
376 struct input_handle *grab;
377 unsigned long flags;
379 if (is_event_supported(type, dev->evbit, EV_MAX)) {
380 spin_lock_irqsave(&dev->event_lock, flags);
382 rcu_read_lock();
383 grab = rcu_dereference(dev->grab);
384 if (!grab || grab == handle)
385 input_handle_event(dev, type, code, value);
386 rcu_read_unlock();
388 spin_unlock_irqrestore(&dev->event_lock, flags);
391 EXPORT_SYMBOL(input_inject_event);
394 * input_alloc_absinfo - allocates array of input_absinfo structs
395 * @dev: the input device emitting absolute events
397 * If the absinfo struct the caller asked for is already allocated, this
398 * functions will not do anything.
400 void input_alloc_absinfo(struct input_dev *dev)
402 if (!dev->absinfo)
403 dev->absinfo = kcalloc(ABS_CNT, sizeof(struct input_absinfo),
404 GFP_KERNEL);
406 WARN(!dev->absinfo, "%s(): kcalloc() failed?\n", __func__);
408 EXPORT_SYMBOL(input_alloc_absinfo);
410 void input_set_abs_params(struct input_dev *dev, unsigned int axis,
411 int min, int max, int fuzz, int flat)
413 struct input_absinfo *absinfo;
415 input_alloc_absinfo(dev);
416 if (!dev->absinfo)
417 return;
419 absinfo = &dev->absinfo[axis];
420 absinfo->minimum = min;
421 absinfo->maximum = max;
422 absinfo->fuzz = fuzz;
423 absinfo->flat = flat;
425 dev->absbit[BIT_WORD(axis)] |= BIT_MASK(axis);
427 EXPORT_SYMBOL(input_set_abs_params);
431 * input_grab_device - grabs device for exclusive use
432 * @handle: input handle that wants to own the device
434 * When a device is grabbed by an input handle all events generated by
435 * the device are delivered only to this handle. Also events injected
436 * by other input handles are ignored while device is grabbed.
438 int input_grab_device(struct input_handle *handle)
440 struct input_dev *dev = handle->dev;
441 int retval;
443 retval = mutex_lock_interruptible(&dev->mutex);
444 if (retval)
445 return retval;
447 if (dev->grab) {
448 retval = -EBUSY;
449 goto out;
452 rcu_assign_pointer(dev->grab, handle);
453 synchronize_rcu();
455 out:
456 mutex_unlock(&dev->mutex);
457 return retval;
459 EXPORT_SYMBOL(input_grab_device);
461 static void __input_release_device(struct input_handle *handle)
463 struct input_dev *dev = handle->dev;
465 if (dev->grab == handle) {
466 rcu_assign_pointer(dev->grab, NULL);
467 /* Make sure input_pass_event() notices that grab is gone */
468 synchronize_rcu();
470 list_for_each_entry(handle, &dev->h_list, d_node)
471 if (handle->open && handle->handler->start)
472 handle->handler->start(handle);
477 * input_release_device - release previously grabbed device
478 * @handle: input handle that owns the device
480 * Releases previously grabbed device so that other input handles can
481 * start receiving input events. Upon release all handlers attached
482 * to the device have their start() method called so they have a change
483 * to synchronize device state with the rest of the system.
485 void input_release_device(struct input_handle *handle)
487 struct input_dev *dev = handle->dev;
489 mutex_lock(&dev->mutex);
490 __input_release_device(handle);
491 mutex_unlock(&dev->mutex);
493 EXPORT_SYMBOL(input_release_device);
496 * input_open_device - open input device
497 * @handle: handle through which device is being accessed
499 * This function should be called by input handlers when they
500 * want to start receive events from given input device.
502 int input_open_device(struct input_handle *handle)
504 struct input_dev *dev = handle->dev;
505 int retval;
507 retval = mutex_lock_interruptible(&dev->mutex);
508 if (retval)
509 return retval;
511 if (dev->going_away) {
512 retval = -ENODEV;
513 goto out;
516 handle->open++;
518 if (!dev->users++ && dev->open)
519 retval = dev->open(dev);
521 if (retval) {
522 dev->users--;
523 if (!--handle->open) {
525 * Make sure we are not delivering any more events
526 * through this handle
528 synchronize_rcu();
532 out:
533 mutex_unlock(&dev->mutex);
534 return retval;
536 EXPORT_SYMBOL(input_open_device);
538 int input_flush_device(struct input_handle *handle, struct file *file)
540 struct input_dev *dev = handle->dev;
541 int retval;
543 retval = mutex_lock_interruptible(&dev->mutex);
544 if (retval)
545 return retval;
547 if (dev->flush)
548 retval = dev->flush(dev, file);
550 mutex_unlock(&dev->mutex);
551 return retval;
553 EXPORT_SYMBOL(input_flush_device);
556 * input_close_device - close input device
557 * @handle: handle through which device is being accessed
559 * This function should be called by input handlers when they
560 * want to stop receive events from given input device.
562 void input_close_device(struct input_handle *handle)
564 struct input_dev *dev = handle->dev;
566 mutex_lock(&dev->mutex);
568 __input_release_device(handle);
570 if (!--dev->users && dev->close)
571 dev->close(dev);
573 if (!--handle->open) {
575 * synchronize_rcu() makes sure that input_pass_event()
576 * completed and that no more input events are delivered
577 * through this handle
579 synchronize_rcu();
582 mutex_unlock(&dev->mutex);
584 EXPORT_SYMBOL(input_close_device);
587 * Simulate keyup events for all keys that are marked as pressed.
588 * The function must be called with dev->event_lock held.
590 static void input_dev_release_keys(struct input_dev *dev)
592 int code;
594 if (is_event_supported(EV_KEY, dev->evbit, EV_MAX)) {
595 for (code = 0; code <= KEY_MAX; code++) {
596 if (is_event_supported(code, dev->keybit, KEY_MAX) &&
597 __test_and_clear_bit(code, dev->key)) {
598 input_pass_event(dev, EV_KEY, code, 0);
601 input_pass_event(dev, EV_SYN, SYN_REPORT, 1);
606 * Prepare device for unregistering
608 static void input_disconnect_device(struct input_dev *dev)
610 struct input_handle *handle;
613 * Mark device as going away. Note that we take dev->mutex here
614 * not to protect access to dev->going_away but rather to ensure
615 * that there are no threads in the middle of input_open_device()
617 mutex_lock(&dev->mutex);
618 dev->going_away = true;
619 mutex_unlock(&dev->mutex);
621 spin_lock_irq(&dev->event_lock);
624 * Simulate keyup events for all pressed keys so that handlers
625 * are not left with "stuck" keys. The driver may continue
626 * generate events even after we done here but they will not
627 * reach any handlers.
629 input_dev_release_keys(dev);
631 list_for_each_entry(handle, &dev->h_list, d_node)
632 handle->open = 0;
634 spin_unlock_irq(&dev->event_lock);
637 static int input_fetch_keycode(struct input_dev *dev, int scancode)
639 switch (dev->keycodesize) {
640 case 1:
641 return ((u8 *)dev->keycode)[scancode];
643 case 2:
644 return ((u16 *)dev->keycode)[scancode];
646 default:
647 return ((u32 *)dev->keycode)[scancode];
651 static int input_default_getkeycode(struct input_dev *dev,
652 unsigned int scancode,
653 unsigned int *keycode)
655 if (!dev->keycodesize)
656 return -EINVAL;
658 if (scancode >= dev->keycodemax)
659 return -EINVAL;
661 *keycode = input_fetch_keycode(dev, scancode);
663 return 0;
666 static int input_default_setkeycode(struct input_dev *dev,
667 unsigned int scancode,
668 unsigned int keycode)
670 int old_keycode;
671 int i;
673 if (scancode >= dev->keycodemax)
674 return -EINVAL;
676 if (!dev->keycodesize)
677 return -EINVAL;
679 if (dev->keycodesize < sizeof(keycode) && (keycode >> (dev->keycodesize * 8)))
680 return -EINVAL;
682 switch (dev->keycodesize) {
683 case 1: {
684 u8 *k = (u8 *)dev->keycode;
685 old_keycode = k[scancode];
686 k[scancode] = keycode;
687 break;
689 case 2: {
690 u16 *k = (u16 *)dev->keycode;
691 old_keycode = k[scancode];
692 k[scancode] = keycode;
693 break;
695 default: {
696 u32 *k = (u32 *)dev->keycode;
697 old_keycode = k[scancode];
698 k[scancode] = keycode;
699 break;
703 __clear_bit(old_keycode, dev->keybit);
704 __set_bit(keycode, dev->keybit);
706 for (i = 0; i < dev->keycodemax; i++) {
707 if (input_fetch_keycode(dev, i) == old_keycode) {
708 __set_bit(old_keycode, dev->keybit);
709 break; /* Setting the bit twice is useless, so break */
713 return 0;
717 * input_get_keycode - retrieve keycode currently mapped to a given scancode
718 * @dev: input device which keymap is being queried
719 * @scancode: scancode (or its equivalent for device in question) for which
720 * keycode is needed
721 * @keycode: result
723 * This function should be called by anyone interested in retrieving current
724 * keymap. Presently keyboard and evdev handlers use it.
726 int input_get_keycode(struct input_dev *dev,
727 unsigned int scancode, unsigned int *keycode)
729 unsigned long flags;
730 int retval;
732 spin_lock_irqsave(&dev->event_lock, flags);
733 retval = dev->getkeycode(dev, scancode, keycode);
734 spin_unlock_irqrestore(&dev->event_lock, flags);
736 return retval;
738 EXPORT_SYMBOL(input_get_keycode);
741 * input_get_keycode - assign new keycode to a given scancode
742 * @dev: input device which keymap is being updated
743 * @scancode: scancode (or its equivalent for device in question)
744 * @keycode: new keycode to be assigned to the scancode
746 * This function should be called by anyone needing to update current
747 * keymap. Presently keyboard and evdev handlers use it.
749 int input_set_keycode(struct input_dev *dev,
750 unsigned int scancode, unsigned int keycode)
752 unsigned long flags;
753 unsigned int old_keycode;
754 int retval;
756 if (keycode > KEY_MAX)
757 return -EINVAL;
759 spin_lock_irqsave(&dev->event_lock, flags);
761 retval = dev->getkeycode(dev, scancode, &old_keycode);
762 if (retval)
763 goto out;
765 retval = dev->setkeycode(dev, scancode, keycode);
766 if (retval)
767 goto out;
769 /* Make sure KEY_RESERVED did not get enabled. */
770 __clear_bit(KEY_RESERVED, dev->keybit);
773 * Simulate keyup event if keycode is not present
774 * in the keymap anymore
776 if (test_bit(EV_KEY, dev->evbit) &&
777 !is_event_supported(old_keycode, dev->keybit, KEY_MAX) &&
778 __test_and_clear_bit(old_keycode, dev->key)) {
780 input_pass_event(dev, EV_KEY, old_keycode, 0);
781 if (dev->sync)
782 input_pass_event(dev, EV_SYN, SYN_REPORT, 1);
785 out:
786 spin_unlock_irqrestore(&dev->event_lock, flags);
788 return retval;
790 EXPORT_SYMBOL(input_set_keycode);
792 #define MATCH_BIT(bit, max) \
793 for (i = 0; i < BITS_TO_LONGS(max); i++) \
794 if ((id->bit[i] & dev->bit[i]) != id->bit[i]) \
795 break; \
796 if (i != BITS_TO_LONGS(max)) \
797 continue;
799 static const struct input_device_id *input_match_device(struct input_handler *handler,
800 struct input_dev *dev)
802 const struct input_device_id *id;
803 int i;
805 for (id = handler->id_table; id->flags || id->driver_info; id++) {
807 if (id->flags & INPUT_DEVICE_ID_MATCH_BUS)
808 if (id->bustype != dev->id.bustype)
809 continue;
811 if (id->flags & INPUT_DEVICE_ID_MATCH_VENDOR)
812 if (id->vendor != dev->id.vendor)
813 continue;
815 if (id->flags & INPUT_DEVICE_ID_MATCH_PRODUCT)
816 if (id->product != dev->id.product)
817 continue;
819 if (id->flags & INPUT_DEVICE_ID_MATCH_VERSION)
820 if (id->version != dev->id.version)
821 continue;
823 MATCH_BIT(evbit, EV_MAX);
824 MATCH_BIT(keybit, KEY_MAX);
825 MATCH_BIT(relbit, REL_MAX);
826 MATCH_BIT(absbit, ABS_MAX);
827 MATCH_BIT(mscbit, MSC_MAX);
828 MATCH_BIT(ledbit, LED_MAX);
829 MATCH_BIT(sndbit, SND_MAX);
830 MATCH_BIT(ffbit, FF_MAX);
831 MATCH_BIT(swbit, SW_MAX);
833 if (!handler->match || handler->match(handler, dev))
834 return id;
837 return NULL;
840 static int input_attach_handler(struct input_dev *dev, struct input_handler *handler)
842 const struct input_device_id *id;
843 int error;
845 id = input_match_device(handler, dev);
846 if (!id)
847 return -ENODEV;
849 error = handler->connect(handler, dev, id);
850 if (error && error != -ENODEV)
851 printk(KERN_ERR
852 "input: failed to attach handler %s to device %s, "
853 "error: %d\n",
854 handler->name, kobject_name(&dev->dev.kobj), error);
856 return error;
859 #ifdef CONFIG_COMPAT
861 static int input_bits_to_string(char *buf, int buf_size,
862 unsigned long bits, bool skip_empty)
864 int len = 0;
866 if (INPUT_COMPAT_TEST) {
867 u32 dword = bits >> 32;
868 if (dword || !skip_empty)
869 len += snprintf(buf, buf_size, "%x ", dword);
871 dword = bits & 0xffffffffUL;
872 if (dword || !skip_empty || len)
873 len += snprintf(buf + len, max(buf_size - len, 0),
874 "%x", dword);
875 } else {
876 if (bits || !skip_empty)
877 len += snprintf(buf, buf_size, "%lx", bits);
880 return len;
883 #else /* !CONFIG_COMPAT */
885 static int input_bits_to_string(char *buf, int buf_size,
886 unsigned long bits, bool skip_empty)
888 return bits || !skip_empty ?
889 snprintf(buf, buf_size, "%lx", bits) : 0;
892 #endif
894 #ifdef CONFIG_PROC_FS
896 static struct proc_dir_entry *proc_bus_input_dir;
897 static DECLARE_WAIT_QUEUE_HEAD(input_devices_poll_wait);
898 static int input_devices_state;
900 static inline void input_wakeup_procfs_readers(void)
902 input_devices_state++;
903 wake_up(&input_devices_poll_wait);
906 static unsigned int input_proc_devices_poll(struct file *file, poll_table *wait)
908 poll_wait(file, &input_devices_poll_wait, wait);
909 if (file->f_version != input_devices_state) {
910 file->f_version = input_devices_state;
911 return POLLIN | POLLRDNORM;
914 return 0;
917 union input_seq_state {
918 struct {
919 unsigned short pos;
920 bool mutex_acquired;
922 void *p;
925 static void *input_devices_seq_start(struct seq_file *seq, loff_t *pos)
927 union input_seq_state *state = (union input_seq_state *)&seq->private;
928 int error;
930 /* We need to fit into seq->private pointer */
931 BUILD_BUG_ON(sizeof(union input_seq_state) != sizeof(seq->private));
933 error = mutex_lock_interruptible(&input_mutex);
934 if (error) {
935 state->mutex_acquired = false;
936 return ERR_PTR(error);
939 state->mutex_acquired = true;
941 return seq_list_start(&input_dev_list, *pos);
944 static void *input_devices_seq_next(struct seq_file *seq, void *v, loff_t *pos)
946 return seq_list_next(v, &input_dev_list, pos);
949 static void input_seq_stop(struct seq_file *seq, void *v)
951 union input_seq_state *state = (union input_seq_state *)&seq->private;
953 if (state->mutex_acquired)
954 mutex_unlock(&input_mutex);
957 static void input_seq_print_bitmap(struct seq_file *seq, const char *name,
958 unsigned long *bitmap, int max)
960 int i;
961 bool skip_empty = true;
962 char buf[18];
964 seq_printf(seq, "B: %s=", name);
966 for (i = BITS_TO_LONGS(max) - 1; i >= 0; i--) {
967 if (input_bits_to_string(buf, sizeof(buf),
968 bitmap[i], skip_empty)) {
969 skip_empty = false;
970 seq_printf(seq, "%s%s", buf, i > 0 ? " " : "");
975 * If no output was produced print a single 0.
977 if (skip_empty)
978 seq_puts(seq, "0");
980 seq_putc(seq, '\n');
983 static int input_devices_seq_show(struct seq_file *seq, void *v)
985 struct input_dev *dev = container_of(v, struct input_dev, node);
986 const char *path = kobject_get_path(&dev->dev.kobj, GFP_KERNEL);
987 struct input_handle *handle;
989 seq_printf(seq, "I: Bus=%04x Vendor=%04x Product=%04x Version=%04x\n",
990 dev->id.bustype, dev->id.vendor, dev->id.product, dev->id.version);
992 seq_printf(seq, "N: Name=\"%s\"\n", dev->name ? dev->name : "");
993 seq_printf(seq, "P: Phys=%s\n", dev->phys ? dev->phys : "");
994 seq_printf(seq, "S: Sysfs=%s\n", path ? path : "");
995 seq_printf(seq, "U: Uniq=%s\n", dev->uniq ? dev->uniq : "");
996 seq_printf(seq, "H: Handlers=");
998 list_for_each_entry(handle, &dev->h_list, d_node)
999 seq_printf(seq, "%s ", handle->name);
1000 seq_putc(seq, '\n');
1002 input_seq_print_bitmap(seq, "EV", dev->evbit, EV_MAX);
1003 if (test_bit(EV_KEY, dev->evbit))
1004 input_seq_print_bitmap(seq, "KEY", dev->keybit, KEY_MAX);
1005 if (test_bit(EV_REL, dev->evbit))
1006 input_seq_print_bitmap(seq, "REL", dev->relbit, REL_MAX);
1007 if (test_bit(EV_ABS, dev->evbit))
1008 input_seq_print_bitmap(seq, "ABS", dev->absbit, ABS_MAX);
1009 if (test_bit(EV_MSC, dev->evbit))
1010 input_seq_print_bitmap(seq, "MSC", dev->mscbit, MSC_MAX);
1011 if (test_bit(EV_LED, dev->evbit))
1012 input_seq_print_bitmap(seq, "LED", dev->ledbit, LED_MAX);
1013 if (test_bit(EV_SND, dev->evbit))
1014 input_seq_print_bitmap(seq, "SND", dev->sndbit, SND_MAX);
1015 if (test_bit(EV_FF, dev->evbit))
1016 input_seq_print_bitmap(seq, "FF", dev->ffbit, FF_MAX);
1017 if (test_bit(EV_SW, dev->evbit))
1018 input_seq_print_bitmap(seq, "SW", dev->swbit, SW_MAX);
1020 seq_putc(seq, '\n');
1022 kfree(path);
1023 return 0;
1026 static const struct seq_operations input_devices_seq_ops = {
1027 .start = input_devices_seq_start,
1028 .next = input_devices_seq_next,
1029 .stop = input_seq_stop,
1030 .show = input_devices_seq_show,
1033 static int input_proc_devices_open(struct inode *inode, struct file *file)
1035 return seq_open(file, &input_devices_seq_ops);
1038 static const struct file_operations input_devices_fileops = {
1039 .owner = THIS_MODULE,
1040 .open = input_proc_devices_open,
1041 .poll = input_proc_devices_poll,
1042 .read = seq_read,
1043 .llseek = seq_lseek,
1044 .release = seq_release,
1047 static void *input_handlers_seq_start(struct seq_file *seq, loff_t *pos)
1049 union input_seq_state *state = (union input_seq_state *)&seq->private;
1050 int error;
1052 /* We need to fit into seq->private pointer */
1053 BUILD_BUG_ON(sizeof(union input_seq_state) != sizeof(seq->private));
1055 error = mutex_lock_interruptible(&input_mutex);
1056 if (error) {
1057 state->mutex_acquired = false;
1058 return ERR_PTR(error);
1061 state->mutex_acquired = true;
1062 state->pos = *pos;
1064 return seq_list_start(&input_handler_list, *pos);
1067 static void *input_handlers_seq_next(struct seq_file *seq, void *v, loff_t *pos)
1069 union input_seq_state *state = (union input_seq_state *)&seq->private;
1071 state->pos = *pos + 1;
1072 return seq_list_next(v, &input_handler_list, pos);
1075 static int input_handlers_seq_show(struct seq_file *seq, void *v)
1077 struct input_handler *handler = container_of(v, struct input_handler, node);
1078 union input_seq_state *state = (union input_seq_state *)&seq->private;
1080 seq_printf(seq, "N: Number=%u Name=%s", state->pos, handler->name);
1081 if (handler->filter)
1082 seq_puts(seq, " (filter)");
1083 if (handler->fops)
1084 seq_printf(seq, " Minor=%d", handler->minor);
1085 seq_putc(seq, '\n');
1087 return 0;
1090 static const struct seq_operations input_handlers_seq_ops = {
1091 .start = input_handlers_seq_start,
1092 .next = input_handlers_seq_next,
1093 .stop = input_seq_stop,
1094 .show = input_handlers_seq_show,
1097 static int input_proc_handlers_open(struct inode *inode, struct file *file)
1099 return seq_open(file, &input_handlers_seq_ops);
1102 static const struct file_operations input_handlers_fileops = {
1103 .owner = THIS_MODULE,
1104 .open = input_proc_handlers_open,
1105 .read = seq_read,
1106 .llseek = seq_lseek,
1107 .release = seq_release,
1110 static int __init input_proc_init(void)
1112 struct proc_dir_entry *entry;
1114 proc_bus_input_dir = proc_mkdir("bus/input", NULL);
1115 if (!proc_bus_input_dir)
1116 return -ENOMEM;
1118 entry = proc_create("devices", 0, proc_bus_input_dir,
1119 &input_devices_fileops);
1120 if (!entry)
1121 goto fail1;
1123 entry = proc_create("handlers", 0, proc_bus_input_dir,
1124 &input_handlers_fileops);
1125 if (!entry)
1126 goto fail2;
1128 return 0;
1130 fail2: remove_proc_entry("devices", proc_bus_input_dir);
1131 fail1: remove_proc_entry("bus/input", NULL);
1132 return -ENOMEM;
1135 static void input_proc_exit(void)
1137 remove_proc_entry("devices", proc_bus_input_dir);
1138 remove_proc_entry("handlers", proc_bus_input_dir);
1139 remove_proc_entry("bus/input", NULL);
1142 #else /* !CONFIG_PROC_FS */
1143 static inline void input_wakeup_procfs_readers(void) { }
1144 static inline int input_proc_init(void) { return 0; }
1145 static inline void input_proc_exit(void) { }
1146 #endif
1148 #define INPUT_DEV_STRING_ATTR_SHOW(name) \
1149 static ssize_t input_dev_show_##name(struct device *dev, \
1150 struct device_attribute *attr, \
1151 char *buf) \
1153 struct input_dev *input_dev = to_input_dev(dev); \
1155 return scnprintf(buf, PAGE_SIZE, "%s\n", \
1156 input_dev->name ? input_dev->name : ""); \
1158 static DEVICE_ATTR(name, S_IRUGO, input_dev_show_##name, NULL)
1160 INPUT_DEV_STRING_ATTR_SHOW(name);
1161 INPUT_DEV_STRING_ATTR_SHOW(phys);
1162 INPUT_DEV_STRING_ATTR_SHOW(uniq);
1164 static int input_print_modalias_bits(char *buf, int size,
1165 char name, unsigned long *bm,
1166 unsigned int min_bit, unsigned int max_bit)
1168 int len = 0, i;
1170 len += snprintf(buf, max(size, 0), "%c", name);
1171 for (i = min_bit; i < max_bit; i++)
1172 if (bm[BIT_WORD(i)] & BIT_MASK(i))
1173 len += snprintf(buf + len, max(size - len, 0), "%X,", i);
1174 return len;
1177 static int input_print_modalias(char *buf, int size, struct input_dev *id,
1178 int add_cr)
1180 int len;
1182 len = snprintf(buf, max(size, 0),
1183 "input:b%04Xv%04Xp%04Xe%04X-",
1184 id->id.bustype, id->id.vendor,
1185 id->id.product, id->id.version);
1187 len += input_print_modalias_bits(buf + len, size - len,
1188 'e', id->evbit, 0, EV_MAX);
1189 len += input_print_modalias_bits(buf + len, size - len,
1190 'k', id->keybit, KEY_MIN_INTERESTING, KEY_MAX);
1191 len += input_print_modalias_bits(buf + len, size - len,
1192 'r', id->relbit, 0, REL_MAX);
1193 len += input_print_modalias_bits(buf + len, size - len,
1194 'a', id->absbit, 0, ABS_MAX);
1195 len += input_print_modalias_bits(buf + len, size - len,
1196 'm', id->mscbit, 0, MSC_MAX);
1197 len += input_print_modalias_bits(buf + len, size - len,
1198 'l', id->ledbit, 0, LED_MAX);
1199 len += input_print_modalias_bits(buf + len, size - len,
1200 's', id->sndbit, 0, SND_MAX);
1201 len += input_print_modalias_bits(buf + len, size - len,
1202 'f', id->ffbit, 0, FF_MAX);
1203 len += input_print_modalias_bits(buf + len, size - len,
1204 'w', id->swbit, 0, SW_MAX);
1206 if (add_cr)
1207 len += snprintf(buf + len, max(size - len, 0), "\n");
1209 return len;
1212 static ssize_t input_dev_show_modalias(struct device *dev,
1213 struct device_attribute *attr,
1214 char *buf)
1216 struct input_dev *id = to_input_dev(dev);
1217 ssize_t len;
1219 len = input_print_modalias(buf, PAGE_SIZE, id, 1);
1221 return min_t(int, len, PAGE_SIZE);
1223 static DEVICE_ATTR(modalias, S_IRUGO, input_dev_show_modalias, NULL);
1225 static struct attribute *input_dev_attrs[] = {
1226 &dev_attr_name.attr,
1227 &dev_attr_phys.attr,
1228 &dev_attr_uniq.attr,
1229 &dev_attr_modalias.attr,
1230 NULL
1233 static struct attribute_group input_dev_attr_group = {
1234 .attrs = input_dev_attrs,
1237 #define INPUT_DEV_ID_ATTR(name) \
1238 static ssize_t input_dev_show_id_##name(struct device *dev, \
1239 struct device_attribute *attr, \
1240 char *buf) \
1242 struct input_dev *input_dev = to_input_dev(dev); \
1243 return scnprintf(buf, PAGE_SIZE, "%04x\n", input_dev->id.name); \
1245 static DEVICE_ATTR(name, S_IRUGO, input_dev_show_id_##name, NULL)
1247 INPUT_DEV_ID_ATTR(bustype);
1248 INPUT_DEV_ID_ATTR(vendor);
1249 INPUT_DEV_ID_ATTR(product);
1250 INPUT_DEV_ID_ATTR(version);
1252 static struct attribute *input_dev_id_attrs[] = {
1253 &dev_attr_bustype.attr,
1254 &dev_attr_vendor.attr,
1255 &dev_attr_product.attr,
1256 &dev_attr_version.attr,
1257 NULL
1260 static struct attribute_group input_dev_id_attr_group = {
1261 .name = "id",
1262 .attrs = input_dev_id_attrs,
1265 static int input_print_bitmap(char *buf, int buf_size, unsigned long *bitmap,
1266 int max, int add_cr)
1268 int i;
1269 int len = 0;
1270 bool skip_empty = true;
1272 for (i = BITS_TO_LONGS(max) - 1; i >= 0; i--) {
1273 len += input_bits_to_string(buf + len, max(buf_size - len, 0),
1274 bitmap[i], skip_empty);
1275 if (len) {
1276 skip_empty = false;
1277 if (i > 0)
1278 len += snprintf(buf + len, max(buf_size - len, 0), " ");
1283 * If no output was produced print a single 0.
1285 if (len == 0)
1286 len = snprintf(buf, buf_size, "%d", 0);
1288 if (add_cr)
1289 len += snprintf(buf + len, max(buf_size - len, 0), "\n");
1291 return len;
1294 #define INPUT_DEV_CAP_ATTR(ev, bm) \
1295 static ssize_t input_dev_show_cap_##bm(struct device *dev, \
1296 struct device_attribute *attr, \
1297 char *buf) \
1299 struct input_dev *input_dev = to_input_dev(dev); \
1300 int len = input_print_bitmap(buf, PAGE_SIZE, \
1301 input_dev->bm##bit, ev##_MAX, \
1302 true); \
1303 return min_t(int, len, PAGE_SIZE); \
1305 static DEVICE_ATTR(bm, S_IRUGO, input_dev_show_cap_##bm, NULL)
1307 INPUT_DEV_CAP_ATTR(EV, ev);
1308 INPUT_DEV_CAP_ATTR(KEY, key);
1309 INPUT_DEV_CAP_ATTR(REL, rel);
1310 INPUT_DEV_CAP_ATTR(ABS, abs);
1311 INPUT_DEV_CAP_ATTR(MSC, msc);
1312 INPUT_DEV_CAP_ATTR(LED, led);
1313 INPUT_DEV_CAP_ATTR(SND, snd);
1314 INPUT_DEV_CAP_ATTR(FF, ff);
1315 INPUT_DEV_CAP_ATTR(SW, sw);
1317 static struct attribute *input_dev_caps_attrs[] = {
1318 &dev_attr_ev.attr,
1319 &dev_attr_key.attr,
1320 &dev_attr_rel.attr,
1321 &dev_attr_abs.attr,
1322 &dev_attr_msc.attr,
1323 &dev_attr_led.attr,
1324 &dev_attr_snd.attr,
1325 &dev_attr_ff.attr,
1326 &dev_attr_sw.attr,
1327 NULL
1330 static struct attribute_group input_dev_caps_attr_group = {
1331 .name = "capabilities",
1332 .attrs = input_dev_caps_attrs,
1335 static const struct attribute_group *input_dev_attr_groups[] = {
1336 &input_dev_attr_group,
1337 &input_dev_id_attr_group,
1338 &input_dev_caps_attr_group,
1339 NULL
1342 static void input_dev_release(struct device *device)
1344 struct input_dev *dev = to_input_dev(device);
1346 input_ff_destroy(dev);
1347 input_mt_destroy_slots(dev);
1348 kfree(dev->absinfo);
1349 kfree(dev);
1351 module_put(THIS_MODULE);
1355 * Input uevent interface - loading event handlers based on
1356 * device bitfields.
1358 static int input_add_uevent_bm_var(struct kobj_uevent_env *env,
1359 const char *name, unsigned long *bitmap, int max)
1361 int len;
1363 if (add_uevent_var(env, "%s=", name))
1364 return -ENOMEM;
1366 len = input_print_bitmap(&env->buf[env->buflen - 1],
1367 sizeof(env->buf) - env->buflen,
1368 bitmap, max, false);
1369 if (len >= (sizeof(env->buf) - env->buflen))
1370 return -ENOMEM;
1372 env->buflen += len;
1373 return 0;
1376 static int input_add_uevent_modalias_var(struct kobj_uevent_env *env,
1377 struct input_dev *dev)
1379 int len;
1381 if (add_uevent_var(env, "MODALIAS="))
1382 return -ENOMEM;
1384 len = input_print_modalias(&env->buf[env->buflen - 1],
1385 sizeof(env->buf) - env->buflen,
1386 dev, 0);
1387 if (len >= (sizeof(env->buf) - env->buflen))
1388 return -ENOMEM;
1390 env->buflen += len;
1391 return 0;
1394 #define INPUT_ADD_HOTPLUG_VAR(fmt, val...) \
1395 do { \
1396 int err = add_uevent_var(env, fmt, val); \
1397 if (err) \
1398 return err; \
1399 } while (0)
1401 #define INPUT_ADD_HOTPLUG_BM_VAR(name, bm, max) \
1402 do { \
1403 int err = input_add_uevent_bm_var(env, name, bm, max); \
1404 if (err) \
1405 return err; \
1406 } while (0)
1408 #define INPUT_ADD_HOTPLUG_MODALIAS_VAR(dev) \
1409 do { \
1410 int err = input_add_uevent_modalias_var(env, dev); \
1411 if (err) \
1412 return err; \
1413 } while (0)
1415 static int input_dev_uevent(struct device *device, struct kobj_uevent_env *env)
1417 struct input_dev *dev = to_input_dev(device);
1419 INPUT_ADD_HOTPLUG_VAR("PRODUCT=%x/%x/%x/%x",
1420 dev->id.bustype, dev->id.vendor,
1421 dev->id.product, dev->id.version);
1422 if (dev->name)
1423 INPUT_ADD_HOTPLUG_VAR("NAME=\"%s\"", dev->name);
1424 if (dev->phys)
1425 INPUT_ADD_HOTPLUG_VAR("PHYS=\"%s\"", dev->phys);
1426 if (dev->uniq)
1427 INPUT_ADD_HOTPLUG_VAR("UNIQ=\"%s\"", dev->uniq);
1429 INPUT_ADD_HOTPLUG_BM_VAR("EV=", dev->evbit, EV_MAX);
1430 if (test_bit(EV_KEY, dev->evbit))
1431 INPUT_ADD_HOTPLUG_BM_VAR("KEY=", dev->keybit, KEY_MAX);
1432 if (test_bit(EV_REL, dev->evbit))
1433 INPUT_ADD_HOTPLUG_BM_VAR("REL=", dev->relbit, REL_MAX);
1434 if (test_bit(EV_ABS, dev->evbit))
1435 INPUT_ADD_HOTPLUG_BM_VAR("ABS=", dev->absbit, ABS_MAX);
1436 if (test_bit(EV_MSC, dev->evbit))
1437 INPUT_ADD_HOTPLUG_BM_VAR("MSC=", dev->mscbit, MSC_MAX);
1438 if (test_bit(EV_LED, dev->evbit))
1439 INPUT_ADD_HOTPLUG_BM_VAR("LED=", dev->ledbit, LED_MAX);
1440 if (test_bit(EV_SND, dev->evbit))
1441 INPUT_ADD_HOTPLUG_BM_VAR("SND=", dev->sndbit, SND_MAX);
1442 if (test_bit(EV_FF, dev->evbit))
1443 INPUT_ADD_HOTPLUG_BM_VAR("FF=", dev->ffbit, FF_MAX);
1444 if (test_bit(EV_SW, dev->evbit))
1445 INPUT_ADD_HOTPLUG_BM_VAR("SW=", dev->swbit, SW_MAX);
1447 INPUT_ADD_HOTPLUG_MODALIAS_VAR(dev);
1449 return 0;
1452 #define INPUT_DO_TOGGLE(dev, type, bits, on) \
1453 do { \
1454 int i; \
1455 bool active; \
1457 if (!test_bit(EV_##type, dev->evbit)) \
1458 break; \
1460 for (i = 0; i < type##_MAX; i++) { \
1461 if (!test_bit(i, dev->bits##bit)) \
1462 continue; \
1464 active = test_bit(i, dev->bits); \
1465 if (!active && !on) \
1466 continue; \
1468 dev->event(dev, EV_##type, i, on ? active : 0); \
1470 } while (0)
1472 #ifdef CONFIG_PM
1473 static void input_dev_reset(struct input_dev *dev, bool activate)
1475 if (!dev->event)
1476 return;
1478 INPUT_DO_TOGGLE(dev, LED, led, activate);
1479 INPUT_DO_TOGGLE(dev, SND, snd, activate);
1481 if (activate && test_bit(EV_REP, dev->evbit)) {
1482 dev->event(dev, EV_REP, REP_PERIOD, dev->rep[REP_PERIOD]);
1483 dev->event(dev, EV_REP, REP_DELAY, dev->rep[REP_DELAY]);
1487 static int input_dev_suspend(struct device *dev)
1489 struct input_dev *input_dev = to_input_dev(dev);
1491 mutex_lock(&input_dev->mutex);
1492 input_dev_reset(input_dev, false);
1493 mutex_unlock(&input_dev->mutex);
1495 return 0;
1498 static int input_dev_resume(struct device *dev)
1500 struct input_dev *input_dev = to_input_dev(dev);
1502 mutex_lock(&input_dev->mutex);
1503 input_dev_reset(input_dev, true);
1506 * Keys that have been pressed at suspend time are unlikely
1507 * to be still pressed when we resume.
1509 spin_lock_irq(&input_dev->event_lock);
1510 input_dev_release_keys(input_dev);
1511 spin_unlock_irq(&input_dev->event_lock);
1513 mutex_unlock(&input_dev->mutex);
1515 return 0;
1518 static const struct dev_pm_ops input_dev_pm_ops = {
1519 .suspend = input_dev_suspend,
1520 .resume = input_dev_resume,
1521 .poweroff = input_dev_suspend,
1522 .restore = input_dev_resume,
1524 #endif /* CONFIG_PM */
1526 static struct device_type input_dev_type = {
1527 .groups = input_dev_attr_groups,
1528 .release = input_dev_release,
1529 .uevent = input_dev_uevent,
1530 #ifdef CONFIG_PM
1531 .pm = &input_dev_pm_ops,
1532 #endif
1535 static char *input_devnode(struct device *dev, mode_t *mode)
1537 return kasprintf(GFP_KERNEL, "input/%s", dev_name(dev));
1540 struct class input_class = {
1541 .name = "input",
1542 .devnode = input_devnode,
1544 EXPORT_SYMBOL_GPL(input_class);
1547 * input_allocate_device - allocate memory for new input device
1549 * Returns prepared struct input_dev or NULL.
1551 * NOTE: Use input_free_device() to free devices that have not been
1552 * registered; input_unregister_device() should be used for already
1553 * registered devices.
1555 struct input_dev *input_allocate_device(void)
1557 struct input_dev *dev;
1559 dev = kzalloc(sizeof(struct input_dev), GFP_KERNEL);
1560 if (dev) {
1561 dev->dev.type = &input_dev_type;
1562 dev->dev.class = &input_class;
1563 device_initialize(&dev->dev);
1564 mutex_init(&dev->mutex);
1565 spin_lock_init(&dev->event_lock);
1566 INIT_LIST_HEAD(&dev->h_list);
1567 INIT_LIST_HEAD(&dev->node);
1569 __module_get(THIS_MODULE);
1572 return dev;
1574 EXPORT_SYMBOL(input_allocate_device);
1577 * input_free_device - free memory occupied by input_dev structure
1578 * @dev: input device to free
1580 * This function should only be used if input_register_device()
1581 * was not called yet or if it failed. Once device was registered
1582 * use input_unregister_device() and memory will be freed once last
1583 * reference to the device is dropped.
1585 * Device should be allocated by input_allocate_device().
1587 * NOTE: If there are references to the input device then memory
1588 * will not be freed until last reference is dropped.
1590 void input_free_device(struct input_dev *dev)
1592 if (dev)
1593 input_put_device(dev);
1595 EXPORT_SYMBOL(input_free_device);
1598 * input_mt_create_slots() - create MT input slots
1599 * @dev: input device supporting MT events and finger tracking
1600 * @num_slots: number of slots used by the device
1602 * This function allocates all necessary memory for MT slot handling in the
1603 * input device, and adds ABS_MT_SLOT to the device capabilities. All slots
1604 * are initially marked as unused iby setting ABS_MT_TRACKING_ID to -1.
1606 int input_mt_create_slots(struct input_dev *dev, unsigned int num_slots)
1608 int i;
1610 if (!num_slots)
1611 return 0;
1613 dev->mt = kcalloc(num_slots, sizeof(struct input_mt_slot), GFP_KERNEL);
1614 if (!dev->mt)
1615 return -ENOMEM;
1617 dev->mtsize = num_slots;
1618 input_set_abs_params(dev, ABS_MT_SLOT, 0, num_slots - 1, 0, 0);
1620 /* Mark slots as 'unused' */
1621 for (i = 0; i < num_slots; i++)
1622 dev->mt[i].abs[ABS_MT_TRACKING_ID - ABS_MT_FIRST] = -1;
1624 return 0;
1626 EXPORT_SYMBOL(input_mt_create_slots);
1629 * input_mt_destroy_slots() - frees the MT slots of the input device
1630 * @dev: input device with allocated MT slots
1632 * This function is only needed in error path as the input core will
1633 * automatically free the MT slots when the device is destroyed.
1635 void input_mt_destroy_slots(struct input_dev *dev)
1637 kfree(dev->mt);
1638 dev->mt = NULL;
1639 dev->mtsize = 0;
1641 EXPORT_SYMBOL(input_mt_destroy_slots);
1644 * input_set_capability - mark device as capable of a certain event
1645 * @dev: device that is capable of emitting or accepting event
1646 * @type: type of the event (EV_KEY, EV_REL, etc...)
1647 * @code: event code
1649 * In addition to setting up corresponding bit in appropriate capability
1650 * bitmap the function also adjusts dev->evbit.
1652 void input_set_capability(struct input_dev *dev, unsigned int type, unsigned int code)
1654 switch (type) {
1655 case EV_KEY:
1656 __set_bit(code, dev->keybit);
1657 break;
1659 case EV_REL:
1660 __set_bit(code, dev->relbit);
1661 break;
1663 case EV_ABS:
1664 __set_bit(code, dev->absbit);
1665 break;
1667 case EV_MSC:
1668 __set_bit(code, dev->mscbit);
1669 break;
1671 case EV_SW:
1672 __set_bit(code, dev->swbit);
1673 break;
1675 case EV_LED:
1676 __set_bit(code, dev->ledbit);
1677 break;
1679 case EV_SND:
1680 __set_bit(code, dev->sndbit);
1681 break;
1683 case EV_FF:
1684 __set_bit(code, dev->ffbit);
1685 break;
1687 case EV_PWR:
1688 /* do nothing */
1689 break;
1691 default:
1692 printk(KERN_ERR
1693 "input_set_capability: unknown type %u (code %u)\n",
1694 type, code);
1695 dump_stack();
1696 return;
1699 __set_bit(type, dev->evbit);
1701 EXPORT_SYMBOL(input_set_capability);
1703 #define INPUT_CLEANSE_BITMASK(dev, type, bits) \
1704 do { \
1705 if (!test_bit(EV_##type, dev->evbit)) \
1706 memset(dev->bits##bit, 0, \
1707 sizeof(dev->bits##bit)); \
1708 } while (0)
1710 static void input_cleanse_bitmasks(struct input_dev *dev)
1712 INPUT_CLEANSE_BITMASK(dev, KEY, key);
1713 INPUT_CLEANSE_BITMASK(dev, REL, rel);
1714 INPUT_CLEANSE_BITMASK(dev, ABS, abs);
1715 INPUT_CLEANSE_BITMASK(dev, MSC, msc);
1716 INPUT_CLEANSE_BITMASK(dev, LED, led);
1717 INPUT_CLEANSE_BITMASK(dev, SND, snd);
1718 INPUT_CLEANSE_BITMASK(dev, FF, ff);
1719 INPUT_CLEANSE_BITMASK(dev, SW, sw);
1723 * input_register_device - register device with input core
1724 * @dev: device to be registered
1726 * This function registers device with input core. The device must be
1727 * allocated with input_allocate_device() and all it's capabilities
1728 * set up before registering.
1729 * If function fails the device must be freed with input_free_device().
1730 * Once device has been successfully registered it can be unregistered
1731 * with input_unregister_device(); input_free_device() should not be
1732 * called in this case.
1734 int input_register_device(struct input_dev *dev)
1736 static atomic_t input_no = ATOMIC_INIT(0);
1737 struct input_handler *handler;
1738 const char *path;
1739 int error;
1741 /* Every input device generates EV_SYN/SYN_REPORT events. */
1742 __set_bit(EV_SYN, dev->evbit);
1744 /* KEY_RESERVED is not supposed to be transmitted to userspace. */
1745 __clear_bit(KEY_RESERVED, dev->keybit);
1747 /* Make sure that bitmasks not mentioned in dev->evbit are clean. */
1748 input_cleanse_bitmasks(dev);
1751 * If delay and period are pre-set by the driver, then autorepeating
1752 * is handled by the driver itself and we don't do it in input.c.
1754 init_timer(&dev->timer);
1755 if (!dev->rep[REP_DELAY] && !dev->rep[REP_PERIOD]) {
1756 dev->timer.data = (long) dev;
1757 dev->timer.function = input_repeat_key;
1758 dev->rep[REP_DELAY] = 250;
1759 dev->rep[REP_PERIOD] = 33;
1762 if (!dev->getkeycode)
1763 dev->getkeycode = input_default_getkeycode;
1765 if (!dev->setkeycode)
1766 dev->setkeycode = input_default_setkeycode;
1768 dev_set_name(&dev->dev, "input%ld",
1769 (unsigned long) atomic_inc_return(&input_no) - 1);
1771 error = device_add(&dev->dev);
1772 if (error)
1773 return error;
1775 path = kobject_get_path(&dev->dev.kobj, GFP_KERNEL);
1776 printk(KERN_INFO "input: %s as %s\n",
1777 dev->name ? dev->name : "Unspecified device", path ? path : "N/A");
1778 kfree(path);
1780 error = mutex_lock_interruptible(&input_mutex);
1781 if (error) {
1782 device_del(&dev->dev);
1783 return error;
1786 list_add_tail(&dev->node, &input_dev_list);
1788 list_for_each_entry(handler, &input_handler_list, node)
1789 input_attach_handler(dev, handler);
1791 input_wakeup_procfs_readers();
1793 mutex_unlock(&input_mutex);
1795 return 0;
1797 EXPORT_SYMBOL(input_register_device);
1800 * input_unregister_device - unregister previously registered device
1801 * @dev: device to be unregistered
1803 * This function unregisters an input device. Once device is unregistered
1804 * the caller should not try to access it as it may get freed at any moment.
1806 void input_unregister_device(struct input_dev *dev)
1808 struct input_handle *handle, *next;
1810 input_disconnect_device(dev);
1812 mutex_lock(&input_mutex);
1814 list_for_each_entry_safe(handle, next, &dev->h_list, d_node)
1815 handle->handler->disconnect(handle);
1816 WARN_ON(!list_empty(&dev->h_list));
1818 del_timer_sync(&dev->timer);
1819 list_del_init(&dev->node);
1821 input_wakeup_procfs_readers();
1823 mutex_unlock(&input_mutex);
1825 device_unregister(&dev->dev);
1827 EXPORT_SYMBOL(input_unregister_device);
1830 * input_register_handler - register a new input handler
1831 * @handler: handler to be registered
1833 * This function registers a new input handler (interface) for input
1834 * devices in the system and attaches it to all input devices that
1835 * are compatible with the handler.
1837 int input_register_handler(struct input_handler *handler)
1839 struct input_dev *dev;
1840 int retval;
1842 retval = mutex_lock_interruptible(&input_mutex);
1843 if (retval)
1844 return retval;
1846 INIT_LIST_HEAD(&handler->h_list);
1848 if (handler->fops != NULL) {
1849 if (input_table[handler->minor >> 5]) {
1850 retval = -EBUSY;
1851 goto out;
1853 input_table[handler->minor >> 5] = handler;
1856 list_add_tail(&handler->node, &input_handler_list);
1858 list_for_each_entry(dev, &input_dev_list, node)
1859 input_attach_handler(dev, handler);
1861 input_wakeup_procfs_readers();
1863 out:
1864 mutex_unlock(&input_mutex);
1865 return retval;
1867 EXPORT_SYMBOL(input_register_handler);
1870 * input_unregister_handler - unregisters an input handler
1871 * @handler: handler to be unregistered
1873 * This function disconnects a handler from its input devices and
1874 * removes it from lists of known handlers.
1876 void input_unregister_handler(struct input_handler *handler)
1878 struct input_handle *handle, *next;
1880 mutex_lock(&input_mutex);
1882 list_for_each_entry_safe(handle, next, &handler->h_list, h_node)
1883 handler->disconnect(handle);
1884 WARN_ON(!list_empty(&handler->h_list));
1886 list_del_init(&handler->node);
1888 if (handler->fops != NULL)
1889 input_table[handler->minor >> 5] = NULL;
1891 input_wakeup_procfs_readers();
1893 mutex_unlock(&input_mutex);
1895 EXPORT_SYMBOL(input_unregister_handler);
1898 * input_handler_for_each_handle - handle iterator
1899 * @handler: input handler to iterate
1900 * @data: data for the callback
1901 * @fn: function to be called for each handle
1903 * Iterate over @bus's list of devices, and call @fn for each, passing
1904 * it @data and stop when @fn returns a non-zero value. The function is
1905 * using RCU to traverse the list and therefore may be usind in atonic
1906 * contexts. The @fn callback is invoked from RCU critical section and
1907 * thus must not sleep.
1909 int input_handler_for_each_handle(struct input_handler *handler, void *data,
1910 int (*fn)(struct input_handle *, void *))
1912 struct input_handle *handle;
1913 int retval = 0;
1915 rcu_read_lock();
1917 list_for_each_entry_rcu(handle, &handler->h_list, h_node) {
1918 retval = fn(handle, data);
1919 if (retval)
1920 break;
1923 rcu_read_unlock();
1925 return retval;
1927 EXPORT_SYMBOL(input_handler_for_each_handle);
1930 * input_register_handle - register a new input handle
1931 * @handle: handle to register
1933 * This function puts a new input handle onto device's
1934 * and handler's lists so that events can flow through
1935 * it once it is opened using input_open_device().
1937 * This function is supposed to be called from handler's
1938 * connect() method.
1940 int input_register_handle(struct input_handle *handle)
1942 struct input_handler *handler = handle->handler;
1943 struct input_dev *dev = handle->dev;
1944 int error;
1947 * We take dev->mutex here to prevent race with
1948 * input_release_device().
1950 error = mutex_lock_interruptible(&dev->mutex);
1951 if (error)
1952 return error;
1955 * Filters go to the head of the list, normal handlers
1956 * to the tail.
1958 if (handler->filter)
1959 list_add_rcu(&handle->d_node, &dev->h_list);
1960 else
1961 list_add_tail_rcu(&handle->d_node, &dev->h_list);
1963 mutex_unlock(&dev->mutex);
1966 * Since we are supposed to be called from ->connect()
1967 * which is mutually exclusive with ->disconnect()
1968 * we can't be racing with input_unregister_handle()
1969 * and so separate lock is not needed here.
1971 list_add_tail_rcu(&handle->h_node, &handler->h_list);
1973 if (handler->start)
1974 handler->start(handle);
1976 return 0;
1978 EXPORT_SYMBOL(input_register_handle);
1981 * input_unregister_handle - unregister an input handle
1982 * @handle: handle to unregister
1984 * This function removes input handle from device's
1985 * and handler's lists.
1987 * This function is supposed to be called from handler's
1988 * disconnect() method.
1990 void input_unregister_handle(struct input_handle *handle)
1992 struct input_dev *dev = handle->dev;
1994 list_del_rcu(&handle->h_node);
1997 * Take dev->mutex to prevent race with input_release_device().
1999 mutex_lock(&dev->mutex);
2000 list_del_rcu(&handle->d_node);
2001 mutex_unlock(&dev->mutex);
2003 synchronize_rcu();
2005 EXPORT_SYMBOL(input_unregister_handle);
2007 static int input_open_file(struct inode *inode, struct file *file)
2009 struct input_handler *handler;
2010 const struct file_operations *old_fops, *new_fops = NULL;
2011 int err;
2013 err = mutex_lock_interruptible(&input_mutex);
2014 if (err)
2015 return err;
2017 /* No load-on-demand here? */
2018 handler = input_table[iminor(inode) >> 5];
2019 if (handler)
2020 new_fops = fops_get(handler->fops);
2022 mutex_unlock(&input_mutex);
2025 * That's _really_ odd. Usually NULL ->open means "nothing special",
2026 * not "no device". Oh, well...
2028 if (!new_fops || !new_fops->open) {
2029 fops_put(new_fops);
2030 err = -ENODEV;
2031 goto out;
2034 old_fops = file->f_op;
2035 file->f_op = new_fops;
2037 err = new_fops->open(inode, file);
2038 if (err) {
2039 fops_put(file->f_op);
2040 file->f_op = fops_get(old_fops);
2042 fops_put(old_fops);
2043 out:
2044 return err;
2047 static const struct file_operations input_fops = {
2048 .owner = THIS_MODULE,
2049 .open = input_open_file,
2052 static int __init input_init(void)
2054 int err;
2056 err = class_register(&input_class);
2057 if (err) {
2058 printk(KERN_ERR "input: unable to register input_dev class\n");
2059 return err;
2062 err = input_proc_init();
2063 if (err)
2064 goto fail1;
2066 err = register_chrdev(INPUT_MAJOR, "input", &input_fops);
2067 if (err) {
2068 printk(KERN_ERR "input: unable to register char major %d", INPUT_MAJOR);
2069 goto fail2;
2072 return 0;
2074 fail2: input_proc_exit();
2075 fail1: class_unregister(&input_class);
2076 return err;
2079 static void __exit input_exit(void)
2081 input_proc_exit();
2082 unregister_chrdev(INPUT_MAJOR, "input");
2083 class_unregister(&input_class);
2086 subsys_initcall(input_init);
2087 module_exit(input_exit);