libata: straighten out ATA_ID_* constants
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / drivers / ata / libata-core.c
blob7d4b002568e7831b3819e6d04f6822a5c7f6a6d2
1 /*
2 * libata-core.c - helper library for ATA
4 * Maintained by: Jeff Garzik <jgarzik@pobox.com>
5 * Please ALWAYS copy linux-ide@vger.kernel.org
6 * on emails.
8 * Copyright 2003-2004 Red Hat, Inc. All rights reserved.
9 * Copyright 2003-2004 Jeff Garzik
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation; either version 2, or (at your option)
15 * any later version.
17 * This program is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 * GNU General Public License for more details.
22 * You should have received a copy of the GNU General Public License
23 * along with this program; see the file COPYING. If not, write to
24 * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
27 * libata documentation is available via 'make {ps|pdf}docs',
28 * as Documentation/DocBook/libata.*
30 * Hardware documentation available from http://www.t13.org/ and
31 * http://www.sata-io.org/
35 #include <linux/kernel.h>
36 #include <linux/module.h>
37 #include <linux/pci.h>
38 #include <linux/init.h>
39 #include <linux/list.h>
40 #include <linux/mm.h>
41 #include <linux/highmem.h>
42 #include <linux/spinlock.h>
43 #include <linux/blkdev.h>
44 #include <linux/delay.h>
45 #include <linux/timer.h>
46 #include <linux/interrupt.h>
47 #include <linux/completion.h>
48 #include <linux/suspend.h>
49 #include <linux/workqueue.h>
50 #include <linux/jiffies.h>
51 #include <linux/scatterlist.h>
52 #include <scsi/scsi.h>
53 #include <scsi/scsi_cmnd.h>
54 #include <scsi/scsi_host.h>
55 #include <linux/libata.h>
56 #include <asm/io.h>
57 #include <asm/semaphore.h>
58 #include <asm/byteorder.h>
60 #include "libata.h"
62 /* debounce timing parameters in msecs { interval, duration, timeout } */
63 const unsigned long sata_deb_timing_normal[] = { 5, 100, 2000 };
64 const unsigned long sata_deb_timing_hotplug[] = { 25, 500, 2000 };
65 const unsigned long sata_deb_timing_long[] = { 100, 2000, 5000 };
67 static unsigned int ata_dev_init_params(struct ata_device *dev,
68 u16 heads, u16 sectors);
69 static unsigned int ata_dev_set_xfermode(struct ata_device *dev);
70 static void ata_dev_xfermask(struct ata_device *dev);
72 static unsigned int ata_unique_id = 1;
73 static struct workqueue_struct *ata_wq;
75 struct workqueue_struct *ata_aux_wq;
77 int atapi_enabled = 1;
78 module_param(atapi_enabled, int, 0444);
79 MODULE_PARM_DESC(atapi_enabled, "Enable discovery of ATAPI devices (0=off, 1=on)");
81 int atapi_dmadir = 0;
82 module_param(atapi_dmadir, int, 0444);
83 MODULE_PARM_DESC(atapi_dmadir, "Enable ATAPI DMADIR bridge support (0=off, 1=on)");
85 int libata_fua = 0;
86 module_param_named(fua, libata_fua, int, 0444);
87 MODULE_PARM_DESC(fua, "FUA support (0=off, 1=on)");
89 static int ata_probe_timeout = ATA_TMOUT_INTERNAL / HZ;
90 module_param(ata_probe_timeout, int, 0444);
91 MODULE_PARM_DESC(ata_probe_timeout, "Set ATA probing timeout (seconds)");
93 MODULE_AUTHOR("Jeff Garzik");
94 MODULE_DESCRIPTION("Library module for ATA devices");
95 MODULE_LICENSE("GPL");
96 MODULE_VERSION(DRV_VERSION);
99 /**
100 * ata_tf_to_fis - Convert ATA taskfile to SATA FIS structure
101 * @tf: Taskfile to convert
102 * @fis: Buffer into which data will output
103 * @pmp: Port multiplier port
105 * Converts a standard ATA taskfile to a Serial ATA
106 * FIS structure (Register - Host to Device).
108 * LOCKING:
109 * Inherited from caller.
112 void ata_tf_to_fis(const struct ata_taskfile *tf, u8 *fis, u8 pmp)
114 fis[0] = 0x27; /* Register - Host to Device FIS */
115 fis[1] = (pmp & 0xf) | (1 << 7); /* Port multiplier number,
116 bit 7 indicates Command FIS */
117 fis[2] = tf->command;
118 fis[3] = tf->feature;
120 fis[4] = tf->lbal;
121 fis[5] = tf->lbam;
122 fis[6] = tf->lbah;
123 fis[7] = tf->device;
125 fis[8] = tf->hob_lbal;
126 fis[9] = tf->hob_lbam;
127 fis[10] = tf->hob_lbah;
128 fis[11] = tf->hob_feature;
130 fis[12] = tf->nsect;
131 fis[13] = tf->hob_nsect;
132 fis[14] = 0;
133 fis[15] = tf->ctl;
135 fis[16] = 0;
136 fis[17] = 0;
137 fis[18] = 0;
138 fis[19] = 0;
142 * ata_tf_from_fis - Convert SATA FIS to ATA taskfile
143 * @fis: Buffer from which data will be input
144 * @tf: Taskfile to output
146 * Converts a serial ATA FIS structure to a standard ATA taskfile.
148 * LOCKING:
149 * Inherited from caller.
152 void ata_tf_from_fis(const u8 *fis, struct ata_taskfile *tf)
154 tf->command = fis[2]; /* status */
155 tf->feature = fis[3]; /* error */
157 tf->lbal = fis[4];
158 tf->lbam = fis[5];
159 tf->lbah = fis[6];
160 tf->device = fis[7];
162 tf->hob_lbal = fis[8];
163 tf->hob_lbam = fis[9];
164 tf->hob_lbah = fis[10];
166 tf->nsect = fis[12];
167 tf->hob_nsect = fis[13];
170 static const u8 ata_rw_cmds[] = {
171 /* pio multi */
172 ATA_CMD_READ_MULTI,
173 ATA_CMD_WRITE_MULTI,
174 ATA_CMD_READ_MULTI_EXT,
175 ATA_CMD_WRITE_MULTI_EXT,
179 ATA_CMD_WRITE_MULTI_FUA_EXT,
180 /* pio */
181 ATA_CMD_PIO_READ,
182 ATA_CMD_PIO_WRITE,
183 ATA_CMD_PIO_READ_EXT,
184 ATA_CMD_PIO_WRITE_EXT,
189 /* dma */
190 ATA_CMD_READ,
191 ATA_CMD_WRITE,
192 ATA_CMD_READ_EXT,
193 ATA_CMD_WRITE_EXT,
197 ATA_CMD_WRITE_FUA_EXT
201 * ata_rwcmd_protocol - set taskfile r/w commands and protocol
202 * @tf: command to examine and configure
203 * @dev: device tf belongs to
205 * Examine the device configuration and tf->flags to calculate
206 * the proper read/write commands and protocol to use.
208 * LOCKING:
209 * caller.
211 static int ata_rwcmd_protocol(struct ata_taskfile *tf, struct ata_device *dev)
213 u8 cmd;
215 int index, fua, lba48, write;
217 fua = (tf->flags & ATA_TFLAG_FUA) ? 4 : 0;
218 lba48 = (tf->flags & ATA_TFLAG_LBA48) ? 2 : 0;
219 write = (tf->flags & ATA_TFLAG_WRITE) ? 1 : 0;
221 if (dev->flags & ATA_DFLAG_PIO) {
222 tf->protocol = ATA_PROT_PIO;
223 index = dev->multi_count ? 0 : 8;
224 } else if (lba48 && (dev->ap->flags & ATA_FLAG_PIO_LBA48)) {
225 /* Unable to use DMA due to host limitation */
226 tf->protocol = ATA_PROT_PIO;
227 index = dev->multi_count ? 0 : 8;
228 } else {
229 tf->protocol = ATA_PROT_DMA;
230 index = 16;
233 cmd = ata_rw_cmds[index + fua + lba48 + write];
234 if (cmd) {
235 tf->command = cmd;
236 return 0;
238 return -1;
242 * ata_tf_read_block - Read block address from ATA taskfile
243 * @tf: ATA taskfile of interest
244 * @dev: ATA device @tf belongs to
246 * LOCKING:
247 * None.
249 * Read block address from @tf. This function can handle all
250 * three address formats - LBA, LBA48 and CHS. tf->protocol and
251 * flags select the address format to use.
253 * RETURNS:
254 * Block address read from @tf.
256 u64 ata_tf_read_block(struct ata_taskfile *tf, struct ata_device *dev)
258 u64 block = 0;
260 if (tf->flags & ATA_TFLAG_LBA) {
261 if (tf->flags & ATA_TFLAG_LBA48) {
262 block |= (u64)tf->hob_lbah << 40;
263 block |= (u64)tf->hob_lbam << 32;
264 block |= tf->hob_lbal << 24;
265 } else
266 block |= (tf->device & 0xf) << 24;
268 block |= tf->lbah << 16;
269 block |= tf->lbam << 8;
270 block |= tf->lbal;
271 } else {
272 u32 cyl, head, sect;
274 cyl = tf->lbam | (tf->lbah << 8);
275 head = tf->device & 0xf;
276 sect = tf->lbal;
278 block = (cyl * dev->heads + head) * dev->sectors + sect;
281 return block;
285 * ata_build_rw_tf - Build ATA taskfile for given read/write request
286 * @tf: Target ATA taskfile
287 * @dev: ATA device @tf belongs to
288 * @block: Block address
289 * @n_block: Number of blocks
290 * @tf_flags: RW/FUA etc...
291 * @tag: tag
293 * LOCKING:
294 * None.
296 * Build ATA taskfile @tf for read/write request described by
297 * @block, @n_block, @tf_flags and @tag on @dev.
299 * RETURNS:
301 * 0 on success, -ERANGE if the request is too large for @dev,
302 * -EINVAL if the request is invalid.
304 int ata_build_rw_tf(struct ata_taskfile *tf, struct ata_device *dev,
305 u64 block, u32 n_block, unsigned int tf_flags,
306 unsigned int tag)
308 tf->flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
309 tf->flags |= tf_flags;
311 if ((dev->flags & (ATA_DFLAG_PIO | ATA_DFLAG_NCQ_OFF |
312 ATA_DFLAG_NCQ)) == ATA_DFLAG_NCQ &&
313 likely(tag != ATA_TAG_INTERNAL)) {
314 /* yay, NCQ */
315 if (!lba_48_ok(block, n_block))
316 return -ERANGE;
318 tf->protocol = ATA_PROT_NCQ;
319 tf->flags |= ATA_TFLAG_LBA | ATA_TFLAG_LBA48;
321 if (tf->flags & ATA_TFLAG_WRITE)
322 tf->command = ATA_CMD_FPDMA_WRITE;
323 else
324 tf->command = ATA_CMD_FPDMA_READ;
326 tf->nsect = tag << 3;
327 tf->hob_feature = (n_block >> 8) & 0xff;
328 tf->feature = n_block & 0xff;
330 tf->hob_lbah = (block >> 40) & 0xff;
331 tf->hob_lbam = (block >> 32) & 0xff;
332 tf->hob_lbal = (block >> 24) & 0xff;
333 tf->lbah = (block >> 16) & 0xff;
334 tf->lbam = (block >> 8) & 0xff;
335 tf->lbal = block & 0xff;
337 tf->device = 1 << 6;
338 if (tf->flags & ATA_TFLAG_FUA)
339 tf->device |= 1 << 7;
340 } else if (dev->flags & ATA_DFLAG_LBA) {
341 tf->flags |= ATA_TFLAG_LBA;
343 if (lba_28_ok(block, n_block)) {
344 /* use LBA28 */
345 tf->device |= (block >> 24) & 0xf;
346 } else if (lba_48_ok(block, n_block)) {
347 if (!(dev->flags & ATA_DFLAG_LBA48))
348 return -ERANGE;
350 /* use LBA48 */
351 tf->flags |= ATA_TFLAG_LBA48;
353 tf->hob_nsect = (n_block >> 8) & 0xff;
355 tf->hob_lbah = (block >> 40) & 0xff;
356 tf->hob_lbam = (block >> 32) & 0xff;
357 tf->hob_lbal = (block >> 24) & 0xff;
358 } else
359 /* request too large even for LBA48 */
360 return -ERANGE;
362 if (unlikely(ata_rwcmd_protocol(tf, dev) < 0))
363 return -EINVAL;
365 tf->nsect = n_block & 0xff;
367 tf->lbah = (block >> 16) & 0xff;
368 tf->lbam = (block >> 8) & 0xff;
369 tf->lbal = block & 0xff;
371 tf->device |= ATA_LBA;
372 } else {
373 /* CHS */
374 u32 sect, head, cyl, track;
376 /* The request -may- be too large for CHS addressing. */
377 if (!lba_28_ok(block, n_block))
378 return -ERANGE;
380 if (unlikely(ata_rwcmd_protocol(tf, dev) < 0))
381 return -EINVAL;
383 /* Convert LBA to CHS */
384 track = (u32)block / dev->sectors;
385 cyl = track / dev->heads;
386 head = track % dev->heads;
387 sect = (u32)block % dev->sectors + 1;
389 DPRINTK("block %u track %u cyl %u head %u sect %u\n",
390 (u32)block, track, cyl, head, sect);
392 /* Check whether the converted CHS can fit.
393 Cylinder: 0-65535
394 Head: 0-15
395 Sector: 1-255*/
396 if ((cyl >> 16) || (head >> 4) || (sect >> 8) || (!sect))
397 return -ERANGE;
399 tf->nsect = n_block & 0xff; /* Sector count 0 means 256 sectors */
400 tf->lbal = sect;
401 tf->lbam = cyl;
402 tf->lbah = cyl >> 8;
403 tf->device |= head;
406 return 0;
410 * ata_pack_xfermask - Pack pio, mwdma and udma masks into xfer_mask
411 * @pio_mask: pio_mask
412 * @mwdma_mask: mwdma_mask
413 * @udma_mask: udma_mask
415 * Pack @pio_mask, @mwdma_mask and @udma_mask into a single
416 * unsigned int xfer_mask.
418 * LOCKING:
419 * None.
421 * RETURNS:
422 * Packed xfer_mask.
424 static unsigned int ata_pack_xfermask(unsigned int pio_mask,
425 unsigned int mwdma_mask,
426 unsigned int udma_mask)
428 return ((pio_mask << ATA_SHIFT_PIO) & ATA_MASK_PIO) |
429 ((mwdma_mask << ATA_SHIFT_MWDMA) & ATA_MASK_MWDMA) |
430 ((udma_mask << ATA_SHIFT_UDMA) & ATA_MASK_UDMA);
434 * ata_unpack_xfermask - Unpack xfer_mask into pio, mwdma and udma masks
435 * @xfer_mask: xfer_mask to unpack
436 * @pio_mask: resulting pio_mask
437 * @mwdma_mask: resulting mwdma_mask
438 * @udma_mask: resulting udma_mask
440 * Unpack @xfer_mask into @pio_mask, @mwdma_mask and @udma_mask.
441 * Any NULL distination masks will be ignored.
443 static void ata_unpack_xfermask(unsigned int xfer_mask,
444 unsigned int *pio_mask,
445 unsigned int *mwdma_mask,
446 unsigned int *udma_mask)
448 if (pio_mask)
449 *pio_mask = (xfer_mask & ATA_MASK_PIO) >> ATA_SHIFT_PIO;
450 if (mwdma_mask)
451 *mwdma_mask = (xfer_mask & ATA_MASK_MWDMA) >> ATA_SHIFT_MWDMA;
452 if (udma_mask)
453 *udma_mask = (xfer_mask & ATA_MASK_UDMA) >> ATA_SHIFT_UDMA;
456 static const struct ata_xfer_ent {
457 int shift, bits;
458 u8 base;
459 } ata_xfer_tbl[] = {
460 { ATA_SHIFT_PIO, ATA_BITS_PIO, XFER_PIO_0 },
461 { ATA_SHIFT_MWDMA, ATA_BITS_MWDMA, XFER_MW_DMA_0 },
462 { ATA_SHIFT_UDMA, ATA_BITS_UDMA, XFER_UDMA_0 },
463 { -1, },
467 * ata_xfer_mask2mode - Find matching XFER_* for the given xfer_mask
468 * @xfer_mask: xfer_mask of interest
470 * Return matching XFER_* value for @xfer_mask. Only the highest
471 * bit of @xfer_mask is considered.
473 * LOCKING:
474 * None.
476 * RETURNS:
477 * Matching XFER_* value, 0 if no match found.
479 static u8 ata_xfer_mask2mode(unsigned int xfer_mask)
481 int highbit = fls(xfer_mask) - 1;
482 const struct ata_xfer_ent *ent;
484 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
485 if (highbit >= ent->shift && highbit < ent->shift + ent->bits)
486 return ent->base + highbit - ent->shift;
487 return 0;
491 * ata_xfer_mode2mask - Find matching xfer_mask for XFER_*
492 * @xfer_mode: XFER_* of interest
494 * Return matching xfer_mask for @xfer_mode.
496 * LOCKING:
497 * None.
499 * RETURNS:
500 * Matching xfer_mask, 0 if no match found.
502 static unsigned int ata_xfer_mode2mask(u8 xfer_mode)
504 const struct ata_xfer_ent *ent;
506 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
507 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
508 return 1 << (ent->shift + xfer_mode - ent->base);
509 return 0;
513 * ata_xfer_mode2shift - Find matching xfer_shift for XFER_*
514 * @xfer_mode: XFER_* of interest
516 * Return matching xfer_shift for @xfer_mode.
518 * LOCKING:
519 * None.
521 * RETURNS:
522 * Matching xfer_shift, -1 if no match found.
524 static int ata_xfer_mode2shift(unsigned int xfer_mode)
526 const struct ata_xfer_ent *ent;
528 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
529 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
530 return ent->shift;
531 return -1;
535 * ata_mode_string - convert xfer_mask to string
536 * @xfer_mask: mask of bits supported; only highest bit counts.
538 * Determine string which represents the highest speed
539 * (highest bit in @modemask).
541 * LOCKING:
542 * None.
544 * RETURNS:
545 * Constant C string representing highest speed listed in
546 * @mode_mask, or the constant C string "<n/a>".
548 static const char *ata_mode_string(unsigned int xfer_mask)
550 static const char * const xfer_mode_str[] = {
551 "PIO0",
552 "PIO1",
553 "PIO2",
554 "PIO3",
555 "PIO4",
556 "PIO5",
557 "PIO6",
558 "MWDMA0",
559 "MWDMA1",
560 "MWDMA2",
561 "MWDMA3",
562 "MWDMA4",
563 "UDMA/16",
564 "UDMA/25",
565 "UDMA/33",
566 "UDMA/44",
567 "UDMA/66",
568 "UDMA/100",
569 "UDMA/133",
570 "UDMA7",
572 int highbit;
574 highbit = fls(xfer_mask) - 1;
575 if (highbit >= 0 && highbit < ARRAY_SIZE(xfer_mode_str))
576 return xfer_mode_str[highbit];
577 return "<n/a>";
580 static const char *sata_spd_string(unsigned int spd)
582 static const char * const spd_str[] = {
583 "1.5 Gbps",
584 "3.0 Gbps",
587 if (spd == 0 || (spd - 1) >= ARRAY_SIZE(spd_str))
588 return "<unknown>";
589 return spd_str[spd - 1];
592 void ata_dev_disable(struct ata_device *dev)
594 if (ata_dev_enabled(dev) && ata_msg_drv(dev->ap)) {
595 ata_dev_printk(dev, KERN_WARNING, "disabled\n");
596 dev->class++;
601 * ata_pio_devchk - PATA device presence detection
602 * @ap: ATA channel to examine
603 * @device: Device to examine (starting at zero)
605 * This technique was originally described in
606 * Hale Landis's ATADRVR (www.ata-atapi.com), and
607 * later found its way into the ATA/ATAPI spec.
609 * Write a pattern to the ATA shadow registers,
610 * and if a device is present, it will respond by
611 * correctly storing and echoing back the
612 * ATA shadow register contents.
614 * LOCKING:
615 * caller.
618 static unsigned int ata_pio_devchk(struct ata_port *ap,
619 unsigned int device)
621 struct ata_ioports *ioaddr = &ap->ioaddr;
622 u8 nsect, lbal;
624 ap->ops->dev_select(ap, device);
626 outb(0x55, ioaddr->nsect_addr);
627 outb(0xaa, ioaddr->lbal_addr);
629 outb(0xaa, ioaddr->nsect_addr);
630 outb(0x55, ioaddr->lbal_addr);
632 outb(0x55, ioaddr->nsect_addr);
633 outb(0xaa, ioaddr->lbal_addr);
635 nsect = inb(ioaddr->nsect_addr);
636 lbal = inb(ioaddr->lbal_addr);
638 if ((nsect == 0x55) && (lbal == 0xaa))
639 return 1; /* we found a device */
641 return 0; /* nothing found */
645 * ata_mmio_devchk - PATA device presence detection
646 * @ap: ATA channel to examine
647 * @device: Device to examine (starting at zero)
649 * This technique was originally described in
650 * Hale Landis's ATADRVR (www.ata-atapi.com), and
651 * later found its way into the ATA/ATAPI spec.
653 * Write a pattern to the ATA shadow registers,
654 * and if a device is present, it will respond by
655 * correctly storing and echoing back the
656 * ATA shadow register contents.
658 * LOCKING:
659 * caller.
662 static unsigned int ata_mmio_devchk(struct ata_port *ap,
663 unsigned int device)
665 struct ata_ioports *ioaddr = &ap->ioaddr;
666 u8 nsect, lbal;
668 ap->ops->dev_select(ap, device);
670 writeb(0x55, (void __iomem *) ioaddr->nsect_addr);
671 writeb(0xaa, (void __iomem *) ioaddr->lbal_addr);
673 writeb(0xaa, (void __iomem *) ioaddr->nsect_addr);
674 writeb(0x55, (void __iomem *) ioaddr->lbal_addr);
676 writeb(0x55, (void __iomem *) ioaddr->nsect_addr);
677 writeb(0xaa, (void __iomem *) ioaddr->lbal_addr);
679 nsect = readb((void __iomem *) ioaddr->nsect_addr);
680 lbal = readb((void __iomem *) ioaddr->lbal_addr);
682 if ((nsect == 0x55) && (lbal == 0xaa))
683 return 1; /* we found a device */
685 return 0; /* nothing found */
689 * ata_devchk - PATA device presence detection
690 * @ap: ATA channel to examine
691 * @device: Device to examine (starting at zero)
693 * Dispatch ATA device presence detection, depending
694 * on whether we are using PIO or MMIO to talk to the
695 * ATA shadow registers.
697 * LOCKING:
698 * caller.
701 static unsigned int ata_devchk(struct ata_port *ap,
702 unsigned int device)
704 if (ap->flags & ATA_FLAG_MMIO)
705 return ata_mmio_devchk(ap, device);
706 return ata_pio_devchk(ap, device);
710 * ata_dev_classify - determine device type based on ATA-spec signature
711 * @tf: ATA taskfile register set for device to be identified
713 * Determine from taskfile register contents whether a device is
714 * ATA or ATAPI, as per "Signature and persistence" section
715 * of ATA/PI spec (volume 1, sect 5.14).
717 * LOCKING:
718 * None.
720 * RETURNS:
721 * Device type, %ATA_DEV_ATA, %ATA_DEV_ATAPI, or %ATA_DEV_UNKNOWN
722 * the event of failure.
725 unsigned int ata_dev_classify(const struct ata_taskfile *tf)
727 /* Apple's open source Darwin code hints that some devices only
728 * put a proper signature into the LBA mid/high registers,
729 * So, we only check those. It's sufficient for uniqueness.
732 if (((tf->lbam == 0) && (tf->lbah == 0)) ||
733 ((tf->lbam == 0x3c) && (tf->lbah == 0xc3))) {
734 DPRINTK("found ATA device by sig\n");
735 return ATA_DEV_ATA;
738 if (((tf->lbam == 0x14) && (tf->lbah == 0xeb)) ||
739 ((tf->lbam == 0x69) && (tf->lbah == 0x96))) {
740 DPRINTK("found ATAPI device by sig\n");
741 return ATA_DEV_ATAPI;
744 DPRINTK("unknown device\n");
745 return ATA_DEV_UNKNOWN;
749 * ata_dev_try_classify - Parse returned ATA device signature
750 * @ap: ATA channel to examine
751 * @device: Device to examine (starting at zero)
752 * @r_err: Value of error register on completion
754 * After an event -- SRST, E.D.D., or SATA COMRESET -- occurs,
755 * an ATA/ATAPI-defined set of values is placed in the ATA
756 * shadow registers, indicating the results of device detection
757 * and diagnostics.
759 * Select the ATA device, and read the values from the ATA shadow
760 * registers. Then parse according to the Error register value,
761 * and the spec-defined values examined by ata_dev_classify().
763 * LOCKING:
764 * caller.
766 * RETURNS:
767 * Device type - %ATA_DEV_ATA, %ATA_DEV_ATAPI or %ATA_DEV_NONE.
770 static unsigned int
771 ata_dev_try_classify(struct ata_port *ap, unsigned int device, u8 *r_err)
773 struct ata_taskfile tf;
774 unsigned int class;
775 u8 err;
777 ap->ops->dev_select(ap, device);
779 memset(&tf, 0, sizeof(tf));
781 ap->ops->tf_read(ap, &tf);
782 err = tf.feature;
783 if (r_err)
784 *r_err = err;
786 /* see if device passed diags: if master then continue and warn later */
787 if (err == 0 && device == 0)
788 /* diagnostic fail : do nothing _YET_ */
789 ap->device[device].horkage |= ATA_HORKAGE_DIAGNOSTIC;
790 else if (err == 1)
791 /* do nothing */ ;
792 else if ((device == 0) && (err == 0x81))
793 /* do nothing */ ;
794 else
795 return ATA_DEV_NONE;
797 /* determine if device is ATA or ATAPI */
798 class = ata_dev_classify(&tf);
800 if (class == ATA_DEV_UNKNOWN)
801 return ATA_DEV_NONE;
802 if ((class == ATA_DEV_ATA) && (ata_chk_status(ap) == 0))
803 return ATA_DEV_NONE;
804 return class;
808 * ata_id_string - Convert IDENTIFY DEVICE page into string
809 * @id: IDENTIFY DEVICE results we will examine
810 * @s: string into which data is output
811 * @ofs: offset into identify device page
812 * @len: length of string to return. must be an even number.
814 * The strings in the IDENTIFY DEVICE page are broken up into
815 * 16-bit chunks. Run through the string, and output each
816 * 8-bit chunk linearly, regardless of platform.
818 * LOCKING:
819 * caller.
822 void ata_id_string(const u16 *id, unsigned char *s,
823 unsigned int ofs, unsigned int len)
825 unsigned int c;
827 while (len > 0) {
828 c = id[ofs] >> 8;
829 *s = c;
830 s++;
832 c = id[ofs] & 0xff;
833 *s = c;
834 s++;
836 ofs++;
837 len -= 2;
842 * ata_id_c_string - Convert IDENTIFY DEVICE page into C string
843 * @id: IDENTIFY DEVICE results we will examine
844 * @s: string into which data is output
845 * @ofs: offset into identify device page
846 * @len: length of string to return. must be an odd number.
848 * This function is identical to ata_id_string except that it
849 * trims trailing spaces and terminates the resulting string with
850 * null. @len must be actual maximum length (even number) + 1.
852 * LOCKING:
853 * caller.
855 void ata_id_c_string(const u16 *id, unsigned char *s,
856 unsigned int ofs, unsigned int len)
858 unsigned char *p;
860 WARN_ON(!(len & 1));
862 ata_id_string(id, s, ofs, len - 1);
864 p = s + strnlen(s, len - 1);
865 while (p > s && p[-1] == ' ')
866 p--;
867 *p = '\0';
870 static u64 ata_id_n_sectors(const u16 *id)
872 if (ata_id_has_lba(id)) {
873 if (ata_id_has_lba48(id))
874 return ata_id_u64(id, 100);
875 else
876 return ata_id_u32(id, 60);
877 } else {
878 if (ata_id_current_chs_valid(id))
879 return ata_id_u32(id, 57);
880 else
881 return id[1] * id[3] * id[6];
886 * ata_noop_dev_select - Select device 0/1 on ATA bus
887 * @ap: ATA channel to manipulate
888 * @device: ATA device (numbered from zero) to select
890 * This function performs no actual function.
892 * May be used as the dev_select() entry in ata_port_operations.
894 * LOCKING:
895 * caller.
897 void ata_noop_dev_select (struct ata_port *ap, unsigned int device)
903 * ata_std_dev_select - Select device 0/1 on ATA bus
904 * @ap: ATA channel to manipulate
905 * @device: ATA device (numbered from zero) to select
907 * Use the method defined in the ATA specification to
908 * make either device 0, or device 1, active on the
909 * ATA channel. Works with both PIO and MMIO.
911 * May be used as the dev_select() entry in ata_port_operations.
913 * LOCKING:
914 * caller.
917 void ata_std_dev_select (struct ata_port *ap, unsigned int device)
919 u8 tmp;
921 if (device == 0)
922 tmp = ATA_DEVICE_OBS;
923 else
924 tmp = ATA_DEVICE_OBS | ATA_DEV1;
926 if (ap->flags & ATA_FLAG_MMIO) {
927 writeb(tmp, (void __iomem *) ap->ioaddr.device_addr);
928 } else {
929 outb(tmp, ap->ioaddr.device_addr);
931 ata_pause(ap); /* needed; also flushes, for mmio */
935 * ata_dev_select - Select device 0/1 on ATA bus
936 * @ap: ATA channel to manipulate
937 * @device: ATA device (numbered from zero) to select
938 * @wait: non-zero to wait for Status register BSY bit to clear
939 * @can_sleep: non-zero if context allows sleeping
941 * Use the method defined in the ATA specification to
942 * make either device 0, or device 1, active on the
943 * ATA channel.
945 * This is a high-level version of ata_std_dev_select(),
946 * which additionally provides the services of inserting
947 * the proper pauses and status polling, where needed.
949 * LOCKING:
950 * caller.
953 void ata_dev_select(struct ata_port *ap, unsigned int device,
954 unsigned int wait, unsigned int can_sleep)
956 if (ata_msg_probe(ap))
957 ata_port_printk(ap, KERN_INFO, "ata_dev_select: ENTER, ata%u: "
958 "device %u, wait %u\n", ap->id, device, wait);
960 if (wait)
961 ata_wait_idle(ap);
963 ap->ops->dev_select(ap, device);
965 if (wait) {
966 if (can_sleep && ap->device[device].class == ATA_DEV_ATAPI)
967 msleep(150);
968 ata_wait_idle(ap);
973 * ata_dump_id - IDENTIFY DEVICE info debugging output
974 * @id: IDENTIFY DEVICE page to dump
976 * Dump selected 16-bit words from the given IDENTIFY DEVICE
977 * page.
979 * LOCKING:
980 * caller.
983 static inline void ata_dump_id(const u16 *id)
985 DPRINTK("49==0x%04x "
986 "53==0x%04x "
987 "63==0x%04x "
988 "64==0x%04x "
989 "75==0x%04x \n",
990 id[49],
991 id[53],
992 id[63],
993 id[64],
994 id[75]);
995 DPRINTK("80==0x%04x "
996 "81==0x%04x "
997 "82==0x%04x "
998 "83==0x%04x "
999 "84==0x%04x \n",
1000 id[80],
1001 id[81],
1002 id[82],
1003 id[83],
1004 id[84]);
1005 DPRINTK("88==0x%04x "
1006 "93==0x%04x\n",
1007 id[88],
1008 id[93]);
1012 * ata_id_xfermask - Compute xfermask from the given IDENTIFY data
1013 * @id: IDENTIFY data to compute xfer mask from
1015 * Compute the xfermask for this device. This is not as trivial
1016 * as it seems if we must consider early devices correctly.
1018 * FIXME: pre IDE drive timing (do we care ?).
1020 * LOCKING:
1021 * None.
1023 * RETURNS:
1024 * Computed xfermask
1026 static unsigned int ata_id_xfermask(const u16 *id)
1028 unsigned int pio_mask, mwdma_mask, udma_mask;
1030 /* Usual case. Word 53 indicates word 64 is valid */
1031 if (id[ATA_ID_FIELD_VALID] & (1 << 1)) {
1032 pio_mask = id[ATA_ID_PIO_MODES] & 0x03;
1033 pio_mask <<= 3;
1034 pio_mask |= 0x7;
1035 } else {
1036 /* If word 64 isn't valid then Word 51 high byte holds
1037 * the PIO timing number for the maximum. Turn it into
1038 * a mask.
1040 u8 mode = (id[ATA_ID_OLD_PIO_MODES] >> 8) & 0xFF;
1041 if (mode < 5) /* Valid PIO range */
1042 pio_mask = (2 << mode) - 1;
1043 else
1044 pio_mask = 1;
1046 /* But wait.. there's more. Design your standards by
1047 * committee and you too can get a free iordy field to
1048 * process. However its the speeds not the modes that
1049 * are supported... Note drivers using the timing API
1050 * will get this right anyway
1054 mwdma_mask = id[ATA_ID_MWDMA_MODES] & 0x07;
1056 if (ata_id_is_cfa(id)) {
1058 * Process compact flash extended modes
1060 int pio = id[163] & 0x7;
1061 int dma = (id[163] >> 3) & 7;
1063 if (pio)
1064 pio_mask |= (1 << 5);
1065 if (pio > 1)
1066 pio_mask |= (1 << 6);
1067 if (dma)
1068 mwdma_mask |= (1 << 3);
1069 if (dma > 1)
1070 mwdma_mask |= (1 << 4);
1073 udma_mask = 0;
1074 if (id[ATA_ID_FIELD_VALID] & (1 << 2))
1075 udma_mask = id[ATA_ID_UDMA_MODES] & 0xff;
1077 return ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
1081 * ata_port_queue_task - Queue port_task
1082 * @ap: The ata_port to queue port_task for
1083 * @fn: workqueue function to be scheduled
1084 * @data: data for @fn to use
1085 * @delay: delay time for workqueue function
1087 * Schedule @fn(@data) for execution after @delay jiffies using
1088 * port_task. There is one port_task per port and it's the
1089 * user(low level driver)'s responsibility to make sure that only
1090 * one task is active at any given time.
1092 * libata core layer takes care of synchronization between
1093 * port_task and EH. ata_port_queue_task() may be ignored for EH
1094 * synchronization.
1096 * LOCKING:
1097 * Inherited from caller.
1099 void ata_port_queue_task(struct ata_port *ap, work_func_t fn, void *data,
1100 unsigned long delay)
1102 int rc;
1104 if (ap->pflags & ATA_PFLAG_FLUSH_PORT_TASK)
1105 return;
1107 PREPARE_DELAYED_WORK(&ap->port_task, fn);
1108 ap->port_task_data = data;
1110 rc = queue_delayed_work(ata_wq, &ap->port_task, delay);
1112 /* rc == 0 means that another user is using port task */
1113 WARN_ON(rc == 0);
1117 * ata_port_flush_task - Flush port_task
1118 * @ap: The ata_port to flush port_task for
1120 * After this function completes, port_task is guranteed not to
1121 * be running or scheduled.
1123 * LOCKING:
1124 * Kernel thread context (may sleep)
1126 void ata_port_flush_task(struct ata_port *ap)
1128 unsigned long flags;
1130 DPRINTK("ENTER\n");
1132 spin_lock_irqsave(ap->lock, flags);
1133 ap->pflags |= ATA_PFLAG_FLUSH_PORT_TASK;
1134 spin_unlock_irqrestore(ap->lock, flags);
1136 DPRINTK("flush #1\n");
1137 flush_workqueue(ata_wq);
1140 * At this point, if a task is running, it's guaranteed to see
1141 * the FLUSH flag; thus, it will never queue pio tasks again.
1142 * Cancel and flush.
1144 if (!cancel_delayed_work(&ap->port_task)) {
1145 if (ata_msg_ctl(ap))
1146 ata_port_printk(ap, KERN_DEBUG, "%s: flush #2\n",
1147 __FUNCTION__);
1148 flush_workqueue(ata_wq);
1151 spin_lock_irqsave(ap->lock, flags);
1152 ap->pflags &= ~ATA_PFLAG_FLUSH_PORT_TASK;
1153 spin_unlock_irqrestore(ap->lock, flags);
1155 if (ata_msg_ctl(ap))
1156 ata_port_printk(ap, KERN_DEBUG, "%s: EXIT\n", __FUNCTION__);
1159 static void ata_qc_complete_internal(struct ata_queued_cmd *qc)
1161 struct completion *waiting = qc->private_data;
1163 complete(waiting);
1167 * ata_exec_internal_sg - execute libata internal command
1168 * @dev: Device to which the command is sent
1169 * @tf: Taskfile registers for the command and the result
1170 * @cdb: CDB for packet command
1171 * @dma_dir: Data tranfer direction of the command
1172 * @sg: sg list for the data buffer of the command
1173 * @n_elem: Number of sg entries
1175 * Executes libata internal command with timeout. @tf contains
1176 * command on entry and result on return. Timeout and error
1177 * conditions are reported via return value. No recovery action
1178 * is taken after a command times out. It's caller's duty to
1179 * clean up after timeout.
1181 * LOCKING:
1182 * None. Should be called with kernel context, might sleep.
1184 * RETURNS:
1185 * Zero on success, AC_ERR_* mask on failure
1187 unsigned ata_exec_internal_sg(struct ata_device *dev,
1188 struct ata_taskfile *tf, const u8 *cdb,
1189 int dma_dir, struct scatterlist *sg,
1190 unsigned int n_elem)
1192 struct ata_port *ap = dev->ap;
1193 u8 command = tf->command;
1194 struct ata_queued_cmd *qc;
1195 unsigned int tag, preempted_tag;
1196 u32 preempted_sactive, preempted_qc_active;
1197 DECLARE_COMPLETION_ONSTACK(wait);
1198 unsigned long flags;
1199 unsigned int err_mask;
1200 int rc;
1202 spin_lock_irqsave(ap->lock, flags);
1204 /* no internal command while frozen */
1205 if (ap->pflags & ATA_PFLAG_FROZEN) {
1206 spin_unlock_irqrestore(ap->lock, flags);
1207 return AC_ERR_SYSTEM;
1210 /* initialize internal qc */
1212 /* XXX: Tag 0 is used for drivers with legacy EH as some
1213 * drivers choke if any other tag is given. This breaks
1214 * ata_tag_internal() test for those drivers. Don't use new
1215 * EH stuff without converting to it.
1217 if (ap->ops->error_handler)
1218 tag = ATA_TAG_INTERNAL;
1219 else
1220 tag = 0;
1222 if (test_and_set_bit(tag, &ap->qc_allocated))
1223 BUG();
1224 qc = __ata_qc_from_tag(ap, tag);
1226 qc->tag = tag;
1227 qc->scsicmd = NULL;
1228 qc->ap = ap;
1229 qc->dev = dev;
1230 ata_qc_reinit(qc);
1232 preempted_tag = ap->active_tag;
1233 preempted_sactive = ap->sactive;
1234 preempted_qc_active = ap->qc_active;
1235 ap->active_tag = ATA_TAG_POISON;
1236 ap->sactive = 0;
1237 ap->qc_active = 0;
1239 /* prepare & issue qc */
1240 qc->tf = *tf;
1241 if (cdb)
1242 memcpy(qc->cdb, cdb, ATAPI_CDB_LEN);
1243 qc->flags |= ATA_QCFLAG_RESULT_TF;
1244 qc->dma_dir = dma_dir;
1245 if (dma_dir != DMA_NONE) {
1246 unsigned int i, buflen = 0;
1248 for (i = 0; i < n_elem; i++)
1249 buflen += sg[i].length;
1251 ata_sg_init(qc, sg, n_elem);
1252 qc->nsect = buflen / ATA_SECT_SIZE;
1253 qc->nbytes = buflen;
1256 qc->private_data = &wait;
1257 qc->complete_fn = ata_qc_complete_internal;
1259 ata_qc_issue(qc);
1261 spin_unlock_irqrestore(ap->lock, flags);
1263 rc = wait_for_completion_timeout(&wait, ata_probe_timeout);
1265 ata_port_flush_task(ap);
1267 if (!rc) {
1268 spin_lock_irqsave(ap->lock, flags);
1270 /* We're racing with irq here. If we lose, the
1271 * following test prevents us from completing the qc
1272 * twice. If we win, the port is frozen and will be
1273 * cleaned up by ->post_internal_cmd().
1275 if (qc->flags & ATA_QCFLAG_ACTIVE) {
1276 qc->err_mask |= AC_ERR_TIMEOUT;
1278 if (ap->ops->error_handler)
1279 ata_port_freeze(ap);
1280 else
1281 ata_qc_complete(qc);
1283 if (ata_msg_warn(ap))
1284 ata_dev_printk(dev, KERN_WARNING,
1285 "qc timeout (cmd 0x%x)\n", command);
1288 spin_unlock_irqrestore(ap->lock, flags);
1291 /* do post_internal_cmd */
1292 if (ap->ops->post_internal_cmd)
1293 ap->ops->post_internal_cmd(qc);
1295 if (qc->flags & ATA_QCFLAG_FAILED && !qc->err_mask) {
1296 if (ata_msg_warn(ap))
1297 ata_dev_printk(dev, KERN_WARNING,
1298 "zero err_mask for failed "
1299 "internal command, assuming AC_ERR_OTHER\n");
1300 qc->err_mask |= AC_ERR_OTHER;
1303 /* finish up */
1304 spin_lock_irqsave(ap->lock, flags);
1306 *tf = qc->result_tf;
1307 err_mask = qc->err_mask;
1309 ata_qc_free(qc);
1310 ap->active_tag = preempted_tag;
1311 ap->sactive = preempted_sactive;
1312 ap->qc_active = preempted_qc_active;
1314 /* XXX - Some LLDDs (sata_mv) disable port on command failure.
1315 * Until those drivers are fixed, we detect the condition
1316 * here, fail the command with AC_ERR_SYSTEM and reenable the
1317 * port.
1319 * Note that this doesn't change any behavior as internal
1320 * command failure results in disabling the device in the
1321 * higher layer for LLDDs without new reset/EH callbacks.
1323 * Kill the following code as soon as those drivers are fixed.
1325 if (ap->flags & ATA_FLAG_DISABLED) {
1326 err_mask |= AC_ERR_SYSTEM;
1327 ata_port_probe(ap);
1330 spin_unlock_irqrestore(ap->lock, flags);
1332 return err_mask;
1336 * ata_exec_internal - execute libata internal command
1337 * @dev: Device to which the command is sent
1338 * @tf: Taskfile registers for the command and the result
1339 * @cdb: CDB for packet command
1340 * @dma_dir: Data tranfer direction of the command
1341 * @buf: Data buffer of the command
1342 * @buflen: Length of data buffer
1344 * Wrapper around ata_exec_internal_sg() which takes simple
1345 * buffer instead of sg list.
1347 * LOCKING:
1348 * None. Should be called with kernel context, might sleep.
1350 * RETURNS:
1351 * Zero on success, AC_ERR_* mask on failure
1353 unsigned ata_exec_internal(struct ata_device *dev,
1354 struct ata_taskfile *tf, const u8 *cdb,
1355 int dma_dir, void *buf, unsigned int buflen)
1357 struct scatterlist *psg = NULL, sg;
1358 unsigned int n_elem = 0;
1360 if (dma_dir != DMA_NONE) {
1361 WARN_ON(!buf);
1362 sg_init_one(&sg, buf, buflen);
1363 psg = &sg;
1364 n_elem++;
1367 return ata_exec_internal_sg(dev, tf, cdb, dma_dir, psg, n_elem);
1371 * ata_do_simple_cmd - execute simple internal command
1372 * @dev: Device to which the command is sent
1373 * @cmd: Opcode to execute
1375 * Execute a 'simple' command, that only consists of the opcode
1376 * 'cmd' itself, without filling any other registers
1378 * LOCKING:
1379 * Kernel thread context (may sleep).
1381 * RETURNS:
1382 * Zero on success, AC_ERR_* mask on failure
1384 unsigned int ata_do_simple_cmd(struct ata_device *dev, u8 cmd)
1386 struct ata_taskfile tf;
1388 ata_tf_init(dev, &tf);
1390 tf.command = cmd;
1391 tf.flags |= ATA_TFLAG_DEVICE;
1392 tf.protocol = ATA_PROT_NODATA;
1394 return ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
1398 * ata_pio_need_iordy - check if iordy needed
1399 * @adev: ATA device
1401 * Check if the current speed of the device requires IORDY. Used
1402 * by various controllers for chip configuration.
1405 unsigned int ata_pio_need_iordy(const struct ata_device *adev)
1407 int pio;
1408 int speed = adev->pio_mode - XFER_PIO_0;
1410 if (speed < 2)
1411 return 0;
1412 if (speed > 2)
1413 return 1;
1415 /* If we have no drive specific rule, then PIO 2 is non IORDY */
1417 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE */
1418 pio = adev->id[ATA_ID_EIDE_PIO];
1419 /* Is the speed faster than the drive allows non IORDY ? */
1420 if (pio) {
1421 /* This is cycle times not frequency - watch the logic! */
1422 if (pio > 240) /* PIO2 is 240nS per cycle */
1423 return 1;
1424 return 0;
1427 return 0;
1431 * ata_dev_read_id - Read ID data from the specified device
1432 * @dev: target device
1433 * @p_class: pointer to class of the target device (may be changed)
1434 * @flags: ATA_READID_* flags
1435 * @id: buffer to read IDENTIFY data into
1437 * Read ID data from the specified device. ATA_CMD_ID_ATA is
1438 * performed on ATA devices and ATA_CMD_ID_ATAPI on ATAPI
1439 * devices. This function also issues ATA_CMD_INIT_DEV_PARAMS
1440 * for pre-ATA4 drives.
1442 * LOCKING:
1443 * Kernel thread context (may sleep)
1445 * RETURNS:
1446 * 0 on success, -errno otherwise.
1448 int ata_dev_read_id(struct ata_device *dev, unsigned int *p_class,
1449 unsigned int flags, u16 *id)
1451 struct ata_port *ap = dev->ap;
1452 unsigned int class = *p_class;
1453 struct ata_taskfile tf;
1454 unsigned int err_mask = 0;
1455 const char *reason;
1456 int rc;
1458 if (ata_msg_ctl(ap))
1459 ata_dev_printk(dev, KERN_DEBUG, "%s: ENTER, host %u, dev %u\n",
1460 __FUNCTION__, ap->id, dev->devno);
1462 ata_dev_select(ap, dev->devno, 1, 1); /* select device 0/1 */
1464 retry:
1465 ata_tf_init(dev, &tf);
1467 switch (class) {
1468 case ATA_DEV_ATA:
1469 tf.command = ATA_CMD_ID_ATA;
1470 break;
1471 case ATA_DEV_ATAPI:
1472 tf.command = ATA_CMD_ID_ATAPI;
1473 break;
1474 default:
1475 rc = -ENODEV;
1476 reason = "unsupported class";
1477 goto err_out;
1480 tf.protocol = ATA_PROT_PIO;
1481 tf.flags |= ATA_TFLAG_POLLING; /* for polling presence detection */
1483 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_FROM_DEVICE,
1484 id, sizeof(id[0]) * ATA_ID_WORDS);
1485 if (err_mask) {
1486 if (err_mask & AC_ERR_NODEV_HINT) {
1487 DPRINTK("ata%u.%d: NODEV after polling detection\n",
1488 ap->id, dev->devno);
1489 return -ENOENT;
1492 rc = -EIO;
1493 reason = "I/O error";
1494 goto err_out;
1497 swap_buf_le16(id, ATA_ID_WORDS);
1499 /* sanity check */
1500 rc = -EINVAL;
1501 reason = "device reports illegal type";
1503 if (class == ATA_DEV_ATA) {
1504 if (!ata_id_is_ata(id) && !ata_id_is_cfa(id))
1505 goto err_out;
1506 } else {
1507 if (ata_id_is_ata(id))
1508 goto err_out;
1511 if ((flags & ATA_READID_POSTRESET) && class == ATA_DEV_ATA) {
1513 * The exact sequence expected by certain pre-ATA4 drives is:
1514 * SRST RESET
1515 * IDENTIFY
1516 * INITIALIZE DEVICE PARAMETERS
1517 * anything else..
1518 * Some drives were very specific about that exact sequence.
1520 if (ata_id_major_version(id) < 4 || !ata_id_has_lba(id)) {
1521 err_mask = ata_dev_init_params(dev, id[3], id[6]);
1522 if (err_mask) {
1523 rc = -EIO;
1524 reason = "INIT_DEV_PARAMS failed";
1525 goto err_out;
1528 /* current CHS translation info (id[53-58]) might be
1529 * changed. reread the identify device info.
1531 flags &= ~ATA_READID_POSTRESET;
1532 goto retry;
1536 *p_class = class;
1538 return 0;
1540 err_out:
1541 if (ata_msg_warn(ap))
1542 ata_dev_printk(dev, KERN_WARNING, "failed to IDENTIFY "
1543 "(%s, err_mask=0x%x)\n", reason, err_mask);
1544 return rc;
1547 static inline u8 ata_dev_knobble(struct ata_device *dev)
1549 return ((dev->ap->cbl == ATA_CBL_SATA) && (!ata_id_is_sata(dev->id)));
1552 static void ata_dev_config_ncq(struct ata_device *dev,
1553 char *desc, size_t desc_sz)
1555 struct ata_port *ap = dev->ap;
1556 int hdepth = 0, ddepth = ata_id_queue_depth(dev->id);
1558 if (!ata_id_has_ncq(dev->id)) {
1559 desc[0] = '\0';
1560 return;
1562 if (ata_device_blacklisted(dev) & ATA_HORKAGE_NONCQ) {
1563 snprintf(desc, desc_sz, "NCQ (not used)");
1564 return;
1566 if (ap->flags & ATA_FLAG_NCQ) {
1567 hdepth = min(ap->scsi_host->can_queue, ATA_MAX_QUEUE - 1);
1568 dev->flags |= ATA_DFLAG_NCQ;
1571 if (hdepth >= ddepth)
1572 snprintf(desc, desc_sz, "NCQ (depth %d)", ddepth);
1573 else
1574 snprintf(desc, desc_sz, "NCQ (depth %d/%d)", hdepth, ddepth);
1577 static void ata_set_port_max_cmd_len(struct ata_port *ap)
1579 int i;
1581 if (ap->scsi_host) {
1582 unsigned int len = 0;
1584 for (i = 0; i < ATA_MAX_DEVICES; i++)
1585 len = max(len, ap->device[i].cdb_len);
1587 ap->scsi_host->max_cmd_len = len;
1592 * ata_dev_configure - Configure the specified ATA/ATAPI device
1593 * @dev: Target device to configure
1595 * Configure @dev according to @dev->id. Generic and low-level
1596 * driver specific fixups are also applied.
1598 * LOCKING:
1599 * Kernel thread context (may sleep)
1601 * RETURNS:
1602 * 0 on success, -errno otherwise
1604 int ata_dev_configure(struct ata_device *dev)
1606 struct ata_port *ap = dev->ap;
1607 int print_info = ap->eh_context.i.flags & ATA_EHI_PRINTINFO;
1608 const u16 *id = dev->id;
1609 unsigned int xfer_mask;
1610 char revbuf[7]; /* XYZ-99\0 */
1611 int rc;
1613 if (!ata_dev_enabled(dev) && ata_msg_info(ap)) {
1614 ata_dev_printk(dev, KERN_INFO,
1615 "%s: ENTER/EXIT (host %u, dev %u) -- nodev\n",
1616 __FUNCTION__, ap->id, dev->devno);
1617 return 0;
1620 if (ata_msg_probe(ap))
1621 ata_dev_printk(dev, KERN_DEBUG, "%s: ENTER, host %u, dev %u\n",
1622 __FUNCTION__, ap->id, dev->devno);
1624 /* print device capabilities */
1625 if (ata_msg_probe(ap))
1626 ata_dev_printk(dev, KERN_DEBUG,
1627 "%s: cfg 49:%04x 82:%04x 83:%04x 84:%04x "
1628 "85:%04x 86:%04x 87:%04x 88:%04x\n",
1629 __FUNCTION__,
1630 id[49], id[82], id[83], id[84],
1631 id[85], id[86], id[87], id[88]);
1633 /* initialize to-be-configured parameters */
1634 dev->flags &= ~ATA_DFLAG_CFG_MASK;
1635 dev->max_sectors = 0;
1636 dev->cdb_len = 0;
1637 dev->n_sectors = 0;
1638 dev->cylinders = 0;
1639 dev->heads = 0;
1640 dev->sectors = 0;
1643 * common ATA, ATAPI feature tests
1646 /* find max transfer mode; for printk only */
1647 xfer_mask = ata_id_xfermask(id);
1649 if (ata_msg_probe(ap))
1650 ata_dump_id(id);
1652 /* ATA-specific feature tests */
1653 if (dev->class == ATA_DEV_ATA) {
1654 if (ata_id_is_cfa(id)) {
1655 if (id[162] & 1) /* CPRM may make this media unusable */
1656 ata_dev_printk(dev, KERN_WARNING, "ata%u: device %u supports DRM functions and may not be fully accessable.\n",
1657 ap->id, dev->devno);
1658 snprintf(revbuf, 7, "CFA");
1660 else
1661 snprintf(revbuf, 7, "ATA-%d", ata_id_major_version(id));
1663 dev->n_sectors = ata_id_n_sectors(id);
1665 if (ata_id_has_lba(id)) {
1666 const char *lba_desc;
1667 char ncq_desc[20];
1669 lba_desc = "LBA";
1670 dev->flags |= ATA_DFLAG_LBA;
1671 if (ata_id_has_lba48(id)) {
1672 dev->flags |= ATA_DFLAG_LBA48;
1673 lba_desc = "LBA48";
1675 if (dev->n_sectors >= (1UL << 28) &&
1676 ata_id_has_flush_ext(id))
1677 dev->flags |= ATA_DFLAG_FLUSH_EXT;
1680 /* config NCQ */
1681 ata_dev_config_ncq(dev, ncq_desc, sizeof(ncq_desc));
1683 /* print device info to dmesg */
1684 if (ata_msg_drv(ap) && print_info)
1685 ata_dev_printk(dev, KERN_INFO, "%s, "
1686 "max %s, %Lu sectors: %s %s\n",
1687 revbuf,
1688 ata_mode_string(xfer_mask),
1689 (unsigned long long)dev->n_sectors,
1690 lba_desc, ncq_desc);
1691 } else {
1692 /* CHS */
1694 /* Default translation */
1695 dev->cylinders = id[1];
1696 dev->heads = id[3];
1697 dev->sectors = id[6];
1699 if (ata_id_current_chs_valid(id)) {
1700 /* Current CHS translation is valid. */
1701 dev->cylinders = id[54];
1702 dev->heads = id[55];
1703 dev->sectors = id[56];
1706 /* print device info to dmesg */
1707 if (ata_msg_drv(ap) && print_info)
1708 ata_dev_printk(dev, KERN_INFO, "%s, "
1709 "max %s, %Lu sectors: CHS %u/%u/%u\n",
1710 revbuf,
1711 ata_mode_string(xfer_mask),
1712 (unsigned long long)dev->n_sectors,
1713 dev->cylinders, dev->heads,
1714 dev->sectors);
1717 if (dev->id[59] & 0x100) {
1718 dev->multi_count = dev->id[59] & 0xff;
1719 if (ata_msg_drv(ap) && print_info)
1720 ata_dev_printk(dev, KERN_INFO,
1721 "ata%u: dev %u multi count %u\n",
1722 ap->id, dev->devno, dev->multi_count);
1725 dev->cdb_len = 16;
1728 /* ATAPI-specific feature tests */
1729 else if (dev->class == ATA_DEV_ATAPI) {
1730 char *cdb_intr_string = "";
1732 rc = atapi_cdb_len(id);
1733 if ((rc < 12) || (rc > ATAPI_CDB_LEN)) {
1734 if (ata_msg_warn(ap))
1735 ata_dev_printk(dev, KERN_WARNING,
1736 "unsupported CDB len\n");
1737 rc = -EINVAL;
1738 goto err_out_nosup;
1740 dev->cdb_len = (unsigned int) rc;
1742 if (ata_id_cdb_intr(dev->id)) {
1743 dev->flags |= ATA_DFLAG_CDB_INTR;
1744 cdb_intr_string = ", CDB intr";
1747 /* print device info to dmesg */
1748 if (ata_msg_drv(ap) && print_info)
1749 ata_dev_printk(dev, KERN_INFO, "ATAPI, max %s%s\n",
1750 ata_mode_string(xfer_mask),
1751 cdb_intr_string);
1754 /* determine max_sectors */
1755 dev->max_sectors = ATA_MAX_SECTORS;
1756 if (dev->flags & ATA_DFLAG_LBA48)
1757 dev->max_sectors = ATA_MAX_SECTORS_LBA48;
1759 if (dev->horkage & ATA_HORKAGE_DIAGNOSTIC) {
1760 /* Let the user know. We don't want to disallow opens for
1761 rescue purposes, or in case the vendor is just a blithering
1762 idiot */
1763 if (print_info) {
1764 ata_dev_printk(dev, KERN_WARNING,
1765 "Drive reports diagnostics failure. This may indicate a drive\n");
1766 ata_dev_printk(dev, KERN_WARNING,
1767 "fault or invalid emulation. Contact drive vendor for information.\n");
1771 ata_set_port_max_cmd_len(ap);
1773 /* limit bridge transfers to udma5, 200 sectors */
1774 if (ata_dev_knobble(dev)) {
1775 if (ata_msg_drv(ap) && print_info)
1776 ata_dev_printk(dev, KERN_INFO,
1777 "applying bridge limits\n");
1778 dev->udma_mask &= ATA_UDMA5;
1779 dev->max_sectors = ATA_MAX_SECTORS;
1782 if (ap->ops->dev_config)
1783 ap->ops->dev_config(ap, dev);
1785 if (ata_msg_probe(ap))
1786 ata_dev_printk(dev, KERN_DEBUG, "%s: EXIT, drv_stat = 0x%x\n",
1787 __FUNCTION__, ata_chk_status(ap));
1788 return 0;
1790 err_out_nosup:
1791 if (ata_msg_probe(ap))
1792 ata_dev_printk(dev, KERN_DEBUG,
1793 "%s: EXIT, err\n", __FUNCTION__);
1794 return rc;
1798 * ata_bus_probe - Reset and probe ATA bus
1799 * @ap: Bus to probe
1801 * Master ATA bus probing function. Initiates a hardware-dependent
1802 * bus reset, then attempts to identify any devices found on
1803 * the bus.
1805 * LOCKING:
1806 * PCI/etc. bus probe sem.
1808 * RETURNS:
1809 * Zero on success, negative errno otherwise.
1812 int ata_bus_probe(struct ata_port *ap)
1814 unsigned int classes[ATA_MAX_DEVICES];
1815 int tries[ATA_MAX_DEVICES];
1816 int i, rc, down_xfermask;
1817 struct ata_device *dev;
1819 ata_port_probe(ap);
1821 for (i = 0; i < ATA_MAX_DEVICES; i++)
1822 tries[i] = ATA_PROBE_MAX_TRIES;
1824 retry:
1825 down_xfermask = 0;
1827 /* reset and determine device classes */
1828 ap->ops->phy_reset(ap);
1830 for (i = 0; i < ATA_MAX_DEVICES; i++) {
1831 dev = &ap->device[i];
1833 if (!(ap->flags & ATA_FLAG_DISABLED) &&
1834 dev->class != ATA_DEV_UNKNOWN)
1835 classes[dev->devno] = dev->class;
1836 else
1837 classes[dev->devno] = ATA_DEV_NONE;
1839 dev->class = ATA_DEV_UNKNOWN;
1842 ata_port_probe(ap);
1844 /* after the reset the device state is PIO 0 and the controller
1845 state is undefined. Record the mode */
1847 for (i = 0; i < ATA_MAX_DEVICES; i++)
1848 ap->device[i].pio_mode = XFER_PIO_0;
1850 /* read IDENTIFY page and configure devices */
1851 for (i = 0; i < ATA_MAX_DEVICES; i++) {
1852 dev = &ap->device[i];
1854 if (tries[i])
1855 dev->class = classes[i];
1857 if (!ata_dev_enabled(dev))
1858 continue;
1860 rc = ata_dev_read_id(dev, &dev->class, ATA_READID_POSTRESET,
1861 dev->id);
1862 if (rc)
1863 goto fail;
1865 ap->eh_context.i.flags |= ATA_EHI_PRINTINFO;
1866 rc = ata_dev_configure(dev);
1867 ap->eh_context.i.flags &= ~ATA_EHI_PRINTINFO;
1868 if (rc)
1869 goto fail;
1872 /* configure transfer mode */
1873 rc = ata_set_mode(ap, &dev);
1874 if (rc) {
1875 down_xfermask = 1;
1876 goto fail;
1879 for (i = 0; i < ATA_MAX_DEVICES; i++)
1880 if (ata_dev_enabled(&ap->device[i]))
1881 return 0;
1883 /* no device present, disable port */
1884 ata_port_disable(ap);
1885 ap->ops->port_disable(ap);
1886 return -ENODEV;
1888 fail:
1889 switch (rc) {
1890 case -EINVAL:
1891 case -ENODEV:
1892 tries[dev->devno] = 0;
1893 break;
1894 case -EIO:
1895 sata_down_spd_limit(ap);
1896 /* fall through */
1897 default:
1898 tries[dev->devno]--;
1899 if (down_xfermask &&
1900 ata_down_xfermask_limit(dev, tries[dev->devno] == 1))
1901 tries[dev->devno] = 0;
1904 if (!tries[dev->devno]) {
1905 ata_down_xfermask_limit(dev, 1);
1906 ata_dev_disable(dev);
1909 goto retry;
1913 * ata_port_probe - Mark port as enabled
1914 * @ap: Port for which we indicate enablement
1916 * Modify @ap data structure such that the system
1917 * thinks that the entire port is enabled.
1919 * LOCKING: host lock, or some other form of
1920 * serialization.
1923 void ata_port_probe(struct ata_port *ap)
1925 ap->flags &= ~ATA_FLAG_DISABLED;
1929 * sata_print_link_status - Print SATA link status
1930 * @ap: SATA port to printk link status about
1932 * This function prints link speed and status of a SATA link.
1934 * LOCKING:
1935 * None.
1937 static void sata_print_link_status(struct ata_port *ap)
1939 u32 sstatus, scontrol, tmp;
1941 if (sata_scr_read(ap, SCR_STATUS, &sstatus))
1942 return;
1943 sata_scr_read(ap, SCR_CONTROL, &scontrol);
1945 if (ata_port_online(ap)) {
1946 tmp = (sstatus >> 4) & 0xf;
1947 ata_port_printk(ap, KERN_INFO,
1948 "SATA link up %s (SStatus %X SControl %X)\n",
1949 sata_spd_string(tmp), sstatus, scontrol);
1950 } else {
1951 ata_port_printk(ap, KERN_INFO,
1952 "SATA link down (SStatus %X SControl %X)\n",
1953 sstatus, scontrol);
1958 * __sata_phy_reset - Wake/reset a low-level SATA PHY
1959 * @ap: SATA port associated with target SATA PHY.
1961 * This function issues commands to standard SATA Sxxx
1962 * PHY registers, to wake up the phy (and device), and
1963 * clear any reset condition.
1965 * LOCKING:
1966 * PCI/etc. bus probe sem.
1969 void __sata_phy_reset(struct ata_port *ap)
1971 u32 sstatus;
1972 unsigned long timeout = jiffies + (HZ * 5);
1974 if (ap->flags & ATA_FLAG_SATA_RESET) {
1975 /* issue phy wake/reset */
1976 sata_scr_write_flush(ap, SCR_CONTROL, 0x301);
1977 /* Couldn't find anything in SATA I/II specs, but
1978 * AHCI-1.1 10.4.2 says at least 1 ms. */
1979 mdelay(1);
1981 /* phy wake/clear reset */
1982 sata_scr_write_flush(ap, SCR_CONTROL, 0x300);
1984 /* wait for phy to become ready, if necessary */
1985 do {
1986 msleep(200);
1987 sata_scr_read(ap, SCR_STATUS, &sstatus);
1988 if ((sstatus & 0xf) != 1)
1989 break;
1990 } while (time_before(jiffies, timeout));
1992 /* print link status */
1993 sata_print_link_status(ap);
1995 /* TODO: phy layer with polling, timeouts, etc. */
1996 if (!ata_port_offline(ap))
1997 ata_port_probe(ap);
1998 else
1999 ata_port_disable(ap);
2001 if (ap->flags & ATA_FLAG_DISABLED)
2002 return;
2004 if (ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT)) {
2005 ata_port_disable(ap);
2006 return;
2009 ap->cbl = ATA_CBL_SATA;
2013 * sata_phy_reset - Reset SATA bus.
2014 * @ap: SATA port associated with target SATA PHY.
2016 * This function resets the SATA bus, and then probes
2017 * the bus for devices.
2019 * LOCKING:
2020 * PCI/etc. bus probe sem.
2023 void sata_phy_reset(struct ata_port *ap)
2025 __sata_phy_reset(ap);
2026 if (ap->flags & ATA_FLAG_DISABLED)
2027 return;
2028 ata_bus_reset(ap);
2032 * ata_dev_pair - return other device on cable
2033 * @adev: device
2035 * Obtain the other device on the same cable, or if none is
2036 * present NULL is returned
2039 struct ata_device *ata_dev_pair(struct ata_device *adev)
2041 struct ata_port *ap = adev->ap;
2042 struct ata_device *pair = &ap->device[1 - adev->devno];
2043 if (!ata_dev_enabled(pair))
2044 return NULL;
2045 return pair;
2049 * ata_port_disable - Disable port.
2050 * @ap: Port to be disabled.
2052 * Modify @ap data structure such that the system
2053 * thinks that the entire port is disabled, and should
2054 * never attempt to probe or communicate with devices
2055 * on this port.
2057 * LOCKING: host lock, or some other form of
2058 * serialization.
2061 void ata_port_disable(struct ata_port *ap)
2063 ap->device[0].class = ATA_DEV_NONE;
2064 ap->device[1].class = ATA_DEV_NONE;
2065 ap->flags |= ATA_FLAG_DISABLED;
2069 * sata_down_spd_limit - adjust SATA spd limit downward
2070 * @ap: Port to adjust SATA spd limit for
2072 * Adjust SATA spd limit of @ap downward. Note that this
2073 * function only adjusts the limit. The change must be applied
2074 * using sata_set_spd().
2076 * LOCKING:
2077 * Inherited from caller.
2079 * RETURNS:
2080 * 0 on success, negative errno on failure
2082 int sata_down_spd_limit(struct ata_port *ap)
2084 u32 sstatus, spd, mask;
2085 int rc, highbit;
2087 rc = sata_scr_read(ap, SCR_STATUS, &sstatus);
2088 if (rc)
2089 return rc;
2091 mask = ap->sata_spd_limit;
2092 if (mask <= 1)
2093 return -EINVAL;
2094 highbit = fls(mask) - 1;
2095 mask &= ~(1 << highbit);
2097 spd = (sstatus >> 4) & 0xf;
2098 if (spd <= 1)
2099 return -EINVAL;
2100 spd--;
2101 mask &= (1 << spd) - 1;
2102 if (!mask)
2103 return -EINVAL;
2105 ap->sata_spd_limit = mask;
2107 ata_port_printk(ap, KERN_WARNING, "limiting SATA link speed to %s\n",
2108 sata_spd_string(fls(mask)));
2110 return 0;
2113 static int __sata_set_spd_needed(struct ata_port *ap, u32 *scontrol)
2115 u32 spd, limit;
2117 if (ap->sata_spd_limit == UINT_MAX)
2118 limit = 0;
2119 else
2120 limit = fls(ap->sata_spd_limit);
2122 spd = (*scontrol >> 4) & 0xf;
2123 *scontrol = (*scontrol & ~0xf0) | ((limit & 0xf) << 4);
2125 return spd != limit;
2129 * sata_set_spd_needed - is SATA spd configuration needed
2130 * @ap: Port in question
2132 * Test whether the spd limit in SControl matches
2133 * @ap->sata_spd_limit. This function is used to determine
2134 * whether hardreset is necessary to apply SATA spd
2135 * configuration.
2137 * LOCKING:
2138 * Inherited from caller.
2140 * RETURNS:
2141 * 1 if SATA spd configuration is needed, 0 otherwise.
2143 int sata_set_spd_needed(struct ata_port *ap)
2145 u32 scontrol;
2147 if (sata_scr_read(ap, SCR_CONTROL, &scontrol))
2148 return 0;
2150 return __sata_set_spd_needed(ap, &scontrol);
2154 * sata_set_spd - set SATA spd according to spd limit
2155 * @ap: Port to set SATA spd for
2157 * Set SATA spd of @ap according to sata_spd_limit.
2159 * LOCKING:
2160 * Inherited from caller.
2162 * RETURNS:
2163 * 0 if spd doesn't need to be changed, 1 if spd has been
2164 * changed. Negative errno if SCR registers are inaccessible.
2166 int sata_set_spd(struct ata_port *ap)
2168 u32 scontrol;
2169 int rc;
2171 if ((rc = sata_scr_read(ap, SCR_CONTROL, &scontrol)))
2172 return rc;
2174 if (!__sata_set_spd_needed(ap, &scontrol))
2175 return 0;
2177 if ((rc = sata_scr_write(ap, SCR_CONTROL, scontrol)))
2178 return rc;
2180 return 1;
2184 * This mode timing computation functionality is ported over from
2185 * drivers/ide/ide-timing.h and was originally written by Vojtech Pavlik
2188 * PIO 0-4, MWDMA 0-2 and UDMA 0-6 timings (in nanoseconds).
2189 * These were taken from ATA/ATAPI-6 standard, rev 0a, except
2190 * for UDMA6, which is currently supported only by Maxtor drives.
2192 * For PIO 5/6 MWDMA 3/4 see the CFA specification 3.0.
2195 static const struct ata_timing ata_timing[] = {
2197 { XFER_UDMA_6, 0, 0, 0, 0, 0, 0, 0, 15 },
2198 { XFER_UDMA_5, 0, 0, 0, 0, 0, 0, 0, 20 },
2199 { XFER_UDMA_4, 0, 0, 0, 0, 0, 0, 0, 30 },
2200 { XFER_UDMA_3, 0, 0, 0, 0, 0, 0, 0, 45 },
2202 { XFER_MW_DMA_4, 25, 0, 0, 0, 55, 20, 80, 0 },
2203 { XFER_MW_DMA_3, 25, 0, 0, 0, 65, 25, 100, 0 },
2204 { XFER_UDMA_2, 0, 0, 0, 0, 0, 0, 0, 60 },
2205 { XFER_UDMA_1, 0, 0, 0, 0, 0, 0, 0, 80 },
2206 { XFER_UDMA_0, 0, 0, 0, 0, 0, 0, 0, 120 },
2208 /* { XFER_UDMA_SLOW, 0, 0, 0, 0, 0, 0, 0, 150 }, */
2210 { XFER_MW_DMA_2, 25, 0, 0, 0, 70, 25, 120, 0 },
2211 { XFER_MW_DMA_1, 45, 0, 0, 0, 80, 50, 150, 0 },
2212 { XFER_MW_DMA_0, 60, 0, 0, 0, 215, 215, 480, 0 },
2214 { XFER_SW_DMA_2, 60, 0, 0, 0, 120, 120, 240, 0 },
2215 { XFER_SW_DMA_1, 90, 0, 0, 0, 240, 240, 480, 0 },
2216 { XFER_SW_DMA_0, 120, 0, 0, 0, 480, 480, 960, 0 },
2218 { XFER_PIO_6, 10, 55, 20, 80, 55, 20, 80, 0 },
2219 { XFER_PIO_5, 15, 65, 25, 100, 65, 25, 100, 0 },
2220 { XFER_PIO_4, 25, 70, 25, 120, 70, 25, 120, 0 },
2221 { XFER_PIO_3, 30, 80, 70, 180, 80, 70, 180, 0 },
2223 { XFER_PIO_2, 30, 290, 40, 330, 100, 90, 240, 0 },
2224 { XFER_PIO_1, 50, 290, 93, 383, 125, 100, 383, 0 },
2225 { XFER_PIO_0, 70, 290, 240, 600, 165, 150, 600, 0 },
2227 /* { XFER_PIO_SLOW, 120, 290, 240, 960, 290, 240, 960, 0 }, */
2229 { 0xFF }
2232 #define ENOUGH(v,unit) (((v)-1)/(unit)+1)
2233 #define EZ(v,unit) ((v)?ENOUGH(v,unit):0)
2235 static void ata_timing_quantize(const struct ata_timing *t, struct ata_timing *q, int T, int UT)
2237 q->setup = EZ(t->setup * 1000, T);
2238 q->act8b = EZ(t->act8b * 1000, T);
2239 q->rec8b = EZ(t->rec8b * 1000, T);
2240 q->cyc8b = EZ(t->cyc8b * 1000, T);
2241 q->active = EZ(t->active * 1000, T);
2242 q->recover = EZ(t->recover * 1000, T);
2243 q->cycle = EZ(t->cycle * 1000, T);
2244 q->udma = EZ(t->udma * 1000, UT);
2247 void ata_timing_merge(const struct ata_timing *a, const struct ata_timing *b,
2248 struct ata_timing *m, unsigned int what)
2250 if (what & ATA_TIMING_SETUP ) m->setup = max(a->setup, b->setup);
2251 if (what & ATA_TIMING_ACT8B ) m->act8b = max(a->act8b, b->act8b);
2252 if (what & ATA_TIMING_REC8B ) m->rec8b = max(a->rec8b, b->rec8b);
2253 if (what & ATA_TIMING_CYC8B ) m->cyc8b = max(a->cyc8b, b->cyc8b);
2254 if (what & ATA_TIMING_ACTIVE ) m->active = max(a->active, b->active);
2255 if (what & ATA_TIMING_RECOVER) m->recover = max(a->recover, b->recover);
2256 if (what & ATA_TIMING_CYCLE ) m->cycle = max(a->cycle, b->cycle);
2257 if (what & ATA_TIMING_UDMA ) m->udma = max(a->udma, b->udma);
2260 static const struct ata_timing* ata_timing_find_mode(unsigned short speed)
2262 const struct ata_timing *t;
2264 for (t = ata_timing; t->mode != speed; t++)
2265 if (t->mode == 0xFF)
2266 return NULL;
2267 return t;
2270 int ata_timing_compute(struct ata_device *adev, unsigned short speed,
2271 struct ata_timing *t, int T, int UT)
2273 const struct ata_timing *s;
2274 struct ata_timing p;
2277 * Find the mode.
2280 if (!(s = ata_timing_find_mode(speed)))
2281 return -EINVAL;
2283 memcpy(t, s, sizeof(*s));
2286 * If the drive is an EIDE drive, it can tell us it needs extended
2287 * PIO/MW_DMA cycle timing.
2290 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE drive */
2291 memset(&p, 0, sizeof(p));
2292 if(speed >= XFER_PIO_0 && speed <= XFER_SW_DMA_0) {
2293 if (speed <= XFER_PIO_2) p.cycle = p.cyc8b = adev->id[ATA_ID_EIDE_PIO];
2294 else p.cycle = p.cyc8b = adev->id[ATA_ID_EIDE_PIO_IORDY];
2295 } else if(speed >= XFER_MW_DMA_0 && speed <= XFER_MW_DMA_2) {
2296 p.cycle = adev->id[ATA_ID_EIDE_DMA_MIN];
2298 ata_timing_merge(&p, t, t, ATA_TIMING_CYCLE | ATA_TIMING_CYC8B);
2302 * Convert the timing to bus clock counts.
2305 ata_timing_quantize(t, t, T, UT);
2308 * Even in DMA/UDMA modes we still use PIO access for IDENTIFY,
2309 * S.M.A.R.T * and some other commands. We have to ensure that the
2310 * DMA cycle timing is slower/equal than the fastest PIO timing.
2313 if (speed > XFER_PIO_6) {
2314 ata_timing_compute(adev, adev->pio_mode, &p, T, UT);
2315 ata_timing_merge(&p, t, t, ATA_TIMING_ALL);
2319 * Lengthen active & recovery time so that cycle time is correct.
2322 if (t->act8b + t->rec8b < t->cyc8b) {
2323 t->act8b += (t->cyc8b - (t->act8b + t->rec8b)) / 2;
2324 t->rec8b = t->cyc8b - t->act8b;
2327 if (t->active + t->recover < t->cycle) {
2328 t->active += (t->cycle - (t->active + t->recover)) / 2;
2329 t->recover = t->cycle - t->active;
2332 return 0;
2336 * ata_down_xfermask_limit - adjust dev xfer masks downward
2337 * @dev: Device to adjust xfer masks
2338 * @force_pio0: Force PIO0
2340 * Adjust xfer masks of @dev downward. Note that this function
2341 * does not apply the change. Invoking ata_set_mode() afterwards
2342 * will apply the limit.
2344 * LOCKING:
2345 * Inherited from caller.
2347 * RETURNS:
2348 * 0 on success, negative errno on failure
2350 int ata_down_xfermask_limit(struct ata_device *dev, int force_pio0)
2352 unsigned long xfer_mask;
2353 int highbit;
2355 xfer_mask = ata_pack_xfermask(dev->pio_mask, dev->mwdma_mask,
2356 dev->udma_mask);
2358 if (!xfer_mask)
2359 goto fail;
2360 /* don't gear down to MWDMA from UDMA, go directly to PIO */
2361 if (xfer_mask & ATA_MASK_UDMA)
2362 xfer_mask &= ~ATA_MASK_MWDMA;
2364 highbit = fls(xfer_mask) - 1;
2365 xfer_mask &= ~(1 << highbit);
2366 if (force_pio0)
2367 xfer_mask &= 1 << ATA_SHIFT_PIO;
2368 if (!xfer_mask)
2369 goto fail;
2371 ata_unpack_xfermask(xfer_mask, &dev->pio_mask, &dev->mwdma_mask,
2372 &dev->udma_mask);
2374 ata_dev_printk(dev, KERN_WARNING, "limiting speed to %s\n",
2375 ata_mode_string(xfer_mask));
2377 return 0;
2379 fail:
2380 return -EINVAL;
2383 static int ata_dev_set_mode(struct ata_device *dev)
2385 struct ata_eh_context *ehc = &dev->ap->eh_context;
2386 unsigned int err_mask;
2387 int rc;
2389 dev->flags &= ~ATA_DFLAG_PIO;
2390 if (dev->xfer_shift == ATA_SHIFT_PIO)
2391 dev->flags |= ATA_DFLAG_PIO;
2393 err_mask = ata_dev_set_xfermode(dev);
2394 if (err_mask) {
2395 ata_dev_printk(dev, KERN_ERR, "failed to set xfermode "
2396 "(err_mask=0x%x)\n", err_mask);
2397 return -EIO;
2400 ehc->i.flags |= ATA_EHI_POST_SETMODE;
2401 rc = ata_dev_revalidate(dev, 0);
2402 ehc->i.flags &= ~ATA_EHI_POST_SETMODE;
2403 if (rc)
2404 return rc;
2406 DPRINTK("xfer_shift=%u, xfer_mode=0x%x\n",
2407 dev->xfer_shift, (int)dev->xfer_mode);
2409 ata_dev_printk(dev, KERN_INFO, "configured for %s\n",
2410 ata_mode_string(ata_xfer_mode2mask(dev->xfer_mode)));
2411 return 0;
2415 * ata_set_mode - Program timings and issue SET FEATURES - XFER
2416 * @ap: port on which timings will be programmed
2417 * @r_failed_dev: out paramter for failed device
2419 * Set ATA device disk transfer mode (PIO3, UDMA6, etc.). If
2420 * ata_set_mode() fails, pointer to the failing device is
2421 * returned in @r_failed_dev.
2423 * LOCKING:
2424 * PCI/etc. bus probe sem.
2426 * RETURNS:
2427 * 0 on success, negative errno otherwise
2429 int ata_set_mode(struct ata_port *ap, struct ata_device **r_failed_dev)
2431 struct ata_device *dev;
2432 int i, rc = 0, used_dma = 0, found = 0;
2434 /* has private set_mode? */
2435 if (ap->ops->set_mode)
2436 return ap->ops->set_mode(ap, r_failed_dev);
2438 /* step 1: calculate xfer_mask */
2439 for (i = 0; i < ATA_MAX_DEVICES; i++) {
2440 unsigned int pio_mask, dma_mask;
2442 dev = &ap->device[i];
2444 if (!ata_dev_enabled(dev))
2445 continue;
2447 ata_dev_xfermask(dev);
2449 pio_mask = ata_pack_xfermask(dev->pio_mask, 0, 0);
2450 dma_mask = ata_pack_xfermask(0, dev->mwdma_mask, dev->udma_mask);
2451 dev->pio_mode = ata_xfer_mask2mode(pio_mask);
2452 dev->dma_mode = ata_xfer_mask2mode(dma_mask);
2454 found = 1;
2455 if (dev->dma_mode)
2456 used_dma = 1;
2458 if (!found)
2459 goto out;
2461 /* step 2: always set host PIO timings */
2462 for (i = 0; i < ATA_MAX_DEVICES; i++) {
2463 dev = &ap->device[i];
2464 if (!ata_dev_enabled(dev))
2465 continue;
2467 if (!dev->pio_mode) {
2468 ata_dev_printk(dev, KERN_WARNING, "no PIO support\n");
2469 rc = -EINVAL;
2470 goto out;
2473 dev->xfer_mode = dev->pio_mode;
2474 dev->xfer_shift = ATA_SHIFT_PIO;
2475 if (ap->ops->set_piomode)
2476 ap->ops->set_piomode(ap, dev);
2479 /* step 3: set host DMA timings */
2480 for (i = 0; i < ATA_MAX_DEVICES; i++) {
2481 dev = &ap->device[i];
2483 if (!ata_dev_enabled(dev) || !dev->dma_mode)
2484 continue;
2486 dev->xfer_mode = dev->dma_mode;
2487 dev->xfer_shift = ata_xfer_mode2shift(dev->dma_mode);
2488 if (ap->ops->set_dmamode)
2489 ap->ops->set_dmamode(ap, dev);
2492 /* step 4: update devices' xfer mode */
2493 for (i = 0; i < ATA_MAX_DEVICES; i++) {
2494 dev = &ap->device[i];
2496 /* don't udpate suspended devices' xfer mode */
2497 if (!ata_dev_ready(dev))
2498 continue;
2500 rc = ata_dev_set_mode(dev);
2501 if (rc)
2502 goto out;
2505 /* Record simplex status. If we selected DMA then the other
2506 * host channels are not permitted to do so.
2508 if (used_dma && (ap->host->flags & ATA_HOST_SIMPLEX))
2509 ap->host->simplex_claimed = 1;
2511 /* step5: chip specific finalisation */
2512 if (ap->ops->post_set_mode)
2513 ap->ops->post_set_mode(ap);
2515 out:
2516 if (rc)
2517 *r_failed_dev = dev;
2518 return rc;
2522 * ata_tf_to_host - issue ATA taskfile to host controller
2523 * @ap: port to which command is being issued
2524 * @tf: ATA taskfile register set
2526 * Issues ATA taskfile register set to ATA host controller,
2527 * with proper synchronization with interrupt handler and
2528 * other threads.
2530 * LOCKING:
2531 * spin_lock_irqsave(host lock)
2534 static inline void ata_tf_to_host(struct ata_port *ap,
2535 const struct ata_taskfile *tf)
2537 ap->ops->tf_load(ap, tf);
2538 ap->ops->exec_command(ap, tf);
2542 * ata_busy_sleep - sleep until BSY clears, or timeout
2543 * @ap: port containing status register to be polled
2544 * @tmout_pat: impatience timeout
2545 * @tmout: overall timeout
2547 * Sleep until ATA Status register bit BSY clears,
2548 * or a timeout occurs.
2550 * LOCKING:
2551 * Kernel thread context (may sleep).
2553 * RETURNS:
2554 * 0 on success, -errno otherwise.
2556 int ata_busy_sleep(struct ata_port *ap,
2557 unsigned long tmout_pat, unsigned long tmout)
2559 unsigned long timer_start, timeout;
2560 u8 status;
2562 status = ata_busy_wait(ap, ATA_BUSY, 300);
2563 timer_start = jiffies;
2564 timeout = timer_start + tmout_pat;
2565 while (status != 0xff && (status & ATA_BUSY) &&
2566 time_before(jiffies, timeout)) {
2567 msleep(50);
2568 status = ata_busy_wait(ap, ATA_BUSY, 3);
2571 if (status != 0xff && (status & ATA_BUSY))
2572 ata_port_printk(ap, KERN_WARNING,
2573 "port is slow to respond, please be patient "
2574 "(Status 0x%x)\n", status);
2576 timeout = timer_start + tmout;
2577 while (status != 0xff && (status & ATA_BUSY) &&
2578 time_before(jiffies, timeout)) {
2579 msleep(50);
2580 status = ata_chk_status(ap);
2583 if (status == 0xff)
2584 return -ENODEV;
2586 if (status & ATA_BUSY) {
2587 ata_port_printk(ap, KERN_ERR, "port failed to respond "
2588 "(%lu secs, Status 0x%x)\n",
2589 tmout / HZ, status);
2590 return -EBUSY;
2593 return 0;
2596 static void ata_bus_post_reset(struct ata_port *ap, unsigned int devmask)
2598 struct ata_ioports *ioaddr = &ap->ioaddr;
2599 unsigned int dev0 = devmask & (1 << 0);
2600 unsigned int dev1 = devmask & (1 << 1);
2601 unsigned long timeout;
2603 /* if device 0 was found in ata_devchk, wait for its
2604 * BSY bit to clear
2606 if (dev0)
2607 ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT);
2609 /* if device 1 was found in ata_devchk, wait for
2610 * register access, then wait for BSY to clear
2612 timeout = jiffies + ATA_TMOUT_BOOT;
2613 while (dev1) {
2614 u8 nsect, lbal;
2616 ap->ops->dev_select(ap, 1);
2617 if (ap->flags & ATA_FLAG_MMIO) {
2618 nsect = readb((void __iomem *) ioaddr->nsect_addr);
2619 lbal = readb((void __iomem *) ioaddr->lbal_addr);
2620 } else {
2621 nsect = inb(ioaddr->nsect_addr);
2622 lbal = inb(ioaddr->lbal_addr);
2624 if ((nsect == 1) && (lbal == 1))
2625 break;
2626 if (time_after(jiffies, timeout)) {
2627 dev1 = 0;
2628 break;
2630 msleep(50); /* give drive a breather */
2632 if (dev1)
2633 ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT);
2635 /* is all this really necessary? */
2636 ap->ops->dev_select(ap, 0);
2637 if (dev1)
2638 ap->ops->dev_select(ap, 1);
2639 if (dev0)
2640 ap->ops->dev_select(ap, 0);
2643 static unsigned int ata_bus_softreset(struct ata_port *ap,
2644 unsigned int devmask)
2646 struct ata_ioports *ioaddr = &ap->ioaddr;
2648 DPRINTK("ata%u: bus reset via SRST\n", ap->id);
2650 /* software reset. causes dev0 to be selected */
2651 if (ap->flags & ATA_FLAG_MMIO) {
2652 writeb(ap->ctl, (void __iomem *) ioaddr->ctl_addr);
2653 udelay(20); /* FIXME: flush */
2654 writeb(ap->ctl | ATA_SRST, (void __iomem *) ioaddr->ctl_addr);
2655 udelay(20); /* FIXME: flush */
2656 writeb(ap->ctl, (void __iomem *) ioaddr->ctl_addr);
2657 } else {
2658 outb(ap->ctl, ioaddr->ctl_addr);
2659 udelay(10);
2660 outb(ap->ctl | ATA_SRST, ioaddr->ctl_addr);
2661 udelay(10);
2662 outb(ap->ctl, ioaddr->ctl_addr);
2665 /* spec mandates ">= 2ms" before checking status.
2666 * We wait 150ms, because that was the magic delay used for
2667 * ATAPI devices in Hale Landis's ATADRVR, for the period of time
2668 * between when the ATA command register is written, and then
2669 * status is checked. Because waiting for "a while" before
2670 * checking status is fine, post SRST, we perform this magic
2671 * delay here as well.
2673 * Old drivers/ide uses the 2mS rule and then waits for ready
2675 msleep(150);
2677 /* Before we perform post reset processing we want to see if
2678 * the bus shows 0xFF because the odd clown forgets the D7
2679 * pulldown resistor.
2681 if (ata_check_status(ap) == 0xFF)
2682 return 0;
2684 ata_bus_post_reset(ap, devmask);
2686 return 0;
2690 * ata_bus_reset - reset host port and associated ATA channel
2691 * @ap: port to reset
2693 * This is typically the first time we actually start issuing
2694 * commands to the ATA channel. We wait for BSY to clear, then
2695 * issue EXECUTE DEVICE DIAGNOSTIC command, polling for its
2696 * result. Determine what devices, if any, are on the channel
2697 * by looking at the device 0/1 error register. Look at the signature
2698 * stored in each device's taskfile registers, to determine if
2699 * the device is ATA or ATAPI.
2701 * LOCKING:
2702 * PCI/etc. bus probe sem.
2703 * Obtains host lock.
2705 * SIDE EFFECTS:
2706 * Sets ATA_FLAG_DISABLED if bus reset fails.
2709 void ata_bus_reset(struct ata_port *ap)
2711 struct ata_ioports *ioaddr = &ap->ioaddr;
2712 unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS;
2713 u8 err;
2714 unsigned int dev0, dev1 = 0, devmask = 0;
2716 DPRINTK("ENTER, host %u, port %u\n", ap->id, ap->port_no);
2718 /* determine if device 0/1 are present */
2719 if (ap->flags & ATA_FLAG_SATA_RESET)
2720 dev0 = 1;
2721 else {
2722 dev0 = ata_devchk(ap, 0);
2723 if (slave_possible)
2724 dev1 = ata_devchk(ap, 1);
2727 if (dev0)
2728 devmask |= (1 << 0);
2729 if (dev1)
2730 devmask |= (1 << 1);
2732 /* select device 0 again */
2733 ap->ops->dev_select(ap, 0);
2735 /* issue bus reset */
2736 if (ap->flags & ATA_FLAG_SRST)
2737 if (ata_bus_softreset(ap, devmask))
2738 goto err_out;
2741 * determine by signature whether we have ATA or ATAPI devices
2743 ap->device[0].class = ata_dev_try_classify(ap, 0, &err);
2744 if ((slave_possible) && (err != 0x81))
2745 ap->device[1].class = ata_dev_try_classify(ap, 1, &err);
2747 /* re-enable interrupts */
2748 if (ap->ioaddr.ctl_addr) /* FIXME: hack. create a hook instead */
2749 ata_irq_on(ap);
2751 /* is double-select really necessary? */
2752 if (ap->device[1].class != ATA_DEV_NONE)
2753 ap->ops->dev_select(ap, 1);
2754 if (ap->device[0].class != ATA_DEV_NONE)
2755 ap->ops->dev_select(ap, 0);
2757 /* if no devices were detected, disable this port */
2758 if ((ap->device[0].class == ATA_DEV_NONE) &&
2759 (ap->device[1].class == ATA_DEV_NONE))
2760 goto err_out;
2762 if (ap->flags & (ATA_FLAG_SATA_RESET | ATA_FLAG_SRST)) {
2763 /* set up device control for ATA_FLAG_SATA_RESET */
2764 if (ap->flags & ATA_FLAG_MMIO)
2765 writeb(ap->ctl, (void __iomem *) ioaddr->ctl_addr);
2766 else
2767 outb(ap->ctl, ioaddr->ctl_addr);
2770 DPRINTK("EXIT\n");
2771 return;
2773 err_out:
2774 ata_port_printk(ap, KERN_ERR, "disabling port\n");
2775 ap->ops->port_disable(ap);
2777 DPRINTK("EXIT\n");
2781 * sata_phy_debounce - debounce SATA phy status
2782 * @ap: ATA port to debounce SATA phy status for
2783 * @params: timing parameters { interval, duratinon, timeout } in msec
2785 * Make sure SStatus of @ap reaches stable state, determined by
2786 * holding the same value where DET is not 1 for @duration polled
2787 * every @interval, before @timeout. Timeout constraints the
2788 * beginning of the stable state. Because, after hot unplugging,
2789 * DET gets stuck at 1 on some controllers, this functions waits
2790 * until timeout then returns 0 if DET is stable at 1.
2792 * LOCKING:
2793 * Kernel thread context (may sleep)
2795 * RETURNS:
2796 * 0 on success, -errno on failure.
2798 int sata_phy_debounce(struct ata_port *ap, const unsigned long *params)
2800 unsigned long interval_msec = params[0];
2801 unsigned long duration = params[1] * HZ / 1000;
2802 unsigned long timeout = jiffies + params[2] * HZ / 1000;
2803 unsigned long last_jiffies;
2804 u32 last, cur;
2805 int rc;
2807 if ((rc = sata_scr_read(ap, SCR_STATUS, &cur)))
2808 return rc;
2809 cur &= 0xf;
2811 last = cur;
2812 last_jiffies = jiffies;
2814 while (1) {
2815 msleep(interval_msec);
2816 if ((rc = sata_scr_read(ap, SCR_STATUS, &cur)))
2817 return rc;
2818 cur &= 0xf;
2820 /* DET stable? */
2821 if (cur == last) {
2822 if (cur == 1 && time_before(jiffies, timeout))
2823 continue;
2824 if (time_after(jiffies, last_jiffies + duration))
2825 return 0;
2826 continue;
2829 /* unstable, start over */
2830 last = cur;
2831 last_jiffies = jiffies;
2833 /* check timeout */
2834 if (time_after(jiffies, timeout))
2835 return -EBUSY;
2840 * sata_phy_resume - resume SATA phy
2841 * @ap: ATA port to resume SATA phy for
2842 * @params: timing parameters { interval, duratinon, timeout } in msec
2844 * Resume SATA phy of @ap and debounce it.
2846 * LOCKING:
2847 * Kernel thread context (may sleep)
2849 * RETURNS:
2850 * 0 on success, -errno on failure.
2852 int sata_phy_resume(struct ata_port *ap, const unsigned long *params)
2854 u32 scontrol;
2855 int rc;
2857 if ((rc = sata_scr_read(ap, SCR_CONTROL, &scontrol)))
2858 return rc;
2860 scontrol = (scontrol & 0x0f0) | 0x300;
2862 if ((rc = sata_scr_write(ap, SCR_CONTROL, scontrol)))
2863 return rc;
2865 /* Some PHYs react badly if SStatus is pounded immediately
2866 * after resuming. Delay 200ms before debouncing.
2868 msleep(200);
2870 return sata_phy_debounce(ap, params);
2873 static void ata_wait_spinup(struct ata_port *ap)
2875 struct ata_eh_context *ehc = &ap->eh_context;
2876 unsigned long end, secs;
2877 int rc;
2879 /* first, debounce phy if SATA */
2880 if (ap->cbl == ATA_CBL_SATA) {
2881 rc = sata_phy_debounce(ap, sata_deb_timing_hotplug);
2883 /* if debounced successfully and offline, no need to wait */
2884 if ((rc == 0 || rc == -EOPNOTSUPP) && ata_port_offline(ap))
2885 return;
2888 /* okay, let's give the drive time to spin up */
2889 end = ehc->i.hotplug_timestamp + ATA_SPINUP_WAIT * HZ / 1000;
2890 secs = ((end - jiffies) + HZ - 1) / HZ;
2892 if (time_after(jiffies, end))
2893 return;
2895 if (secs > 5)
2896 ata_port_printk(ap, KERN_INFO, "waiting for device to spin up "
2897 "(%lu secs)\n", secs);
2899 schedule_timeout_uninterruptible(end - jiffies);
2903 * ata_std_prereset - prepare for reset
2904 * @ap: ATA port to be reset
2906 * @ap is about to be reset. Initialize it.
2908 * LOCKING:
2909 * Kernel thread context (may sleep)
2911 * RETURNS:
2912 * 0 on success, -errno otherwise.
2914 int ata_std_prereset(struct ata_port *ap)
2916 struct ata_eh_context *ehc = &ap->eh_context;
2917 const unsigned long *timing = sata_ehc_deb_timing(ehc);
2918 int rc;
2920 /* handle link resume & hotplug spinup */
2921 if ((ehc->i.flags & ATA_EHI_RESUME_LINK) &&
2922 (ap->flags & ATA_FLAG_HRST_TO_RESUME))
2923 ehc->i.action |= ATA_EH_HARDRESET;
2925 if ((ehc->i.flags & ATA_EHI_HOTPLUGGED) &&
2926 (ap->flags & ATA_FLAG_SKIP_D2H_BSY))
2927 ata_wait_spinup(ap);
2929 /* if we're about to do hardreset, nothing more to do */
2930 if (ehc->i.action & ATA_EH_HARDRESET)
2931 return 0;
2933 /* if SATA, resume phy */
2934 if (ap->cbl == ATA_CBL_SATA) {
2935 rc = sata_phy_resume(ap, timing);
2936 if (rc && rc != -EOPNOTSUPP) {
2937 /* phy resume failed */
2938 ata_port_printk(ap, KERN_WARNING, "failed to resume "
2939 "link for reset (errno=%d)\n", rc);
2940 return rc;
2944 /* Wait for !BSY if the controller can wait for the first D2H
2945 * Reg FIS and we don't know that no device is attached.
2947 if (!(ap->flags & ATA_FLAG_SKIP_D2H_BSY) && !ata_port_offline(ap))
2948 ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT);
2950 return 0;
2954 * ata_std_softreset - reset host port via ATA SRST
2955 * @ap: port to reset
2956 * @classes: resulting classes of attached devices
2958 * Reset host port using ATA SRST.
2960 * LOCKING:
2961 * Kernel thread context (may sleep)
2963 * RETURNS:
2964 * 0 on success, -errno otherwise.
2966 int ata_std_softreset(struct ata_port *ap, unsigned int *classes)
2968 unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS;
2969 unsigned int devmask = 0, err_mask;
2970 u8 err;
2972 DPRINTK("ENTER\n");
2974 if (ata_port_offline(ap)) {
2975 classes[0] = ATA_DEV_NONE;
2976 goto out;
2979 /* determine if device 0/1 are present */
2980 if (ata_devchk(ap, 0))
2981 devmask |= (1 << 0);
2982 if (slave_possible && ata_devchk(ap, 1))
2983 devmask |= (1 << 1);
2985 /* select device 0 again */
2986 ap->ops->dev_select(ap, 0);
2988 /* issue bus reset */
2989 DPRINTK("about to softreset, devmask=%x\n", devmask);
2990 err_mask = ata_bus_softreset(ap, devmask);
2991 if (err_mask) {
2992 ata_port_printk(ap, KERN_ERR, "SRST failed (err_mask=0x%x)\n",
2993 err_mask);
2994 return -EIO;
2997 /* determine by signature whether we have ATA or ATAPI devices */
2998 classes[0] = ata_dev_try_classify(ap, 0, &err);
2999 if (slave_possible && err != 0x81)
3000 classes[1] = ata_dev_try_classify(ap, 1, &err);
3002 out:
3003 DPRINTK("EXIT, classes[0]=%u [1]=%u\n", classes[0], classes[1]);
3004 return 0;
3008 * sata_port_hardreset - reset port via SATA phy reset
3009 * @ap: port to reset
3010 * @timing: timing parameters { interval, duratinon, timeout } in msec
3012 * SATA phy-reset host port using DET bits of SControl register.
3014 * LOCKING:
3015 * Kernel thread context (may sleep)
3017 * RETURNS:
3018 * 0 on success, -errno otherwise.
3020 int sata_port_hardreset(struct ata_port *ap, const unsigned long *timing)
3022 u32 scontrol;
3023 int rc;
3025 DPRINTK("ENTER\n");
3027 if (sata_set_spd_needed(ap)) {
3028 /* SATA spec says nothing about how to reconfigure
3029 * spd. To be on the safe side, turn off phy during
3030 * reconfiguration. This works for at least ICH7 AHCI
3031 * and Sil3124.
3033 if ((rc = sata_scr_read(ap, SCR_CONTROL, &scontrol)))
3034 goto out;
3036 scontrol = (scontrol & 0x0f0) | 0x304;
3038 if ((rc = sata_scr_write(ap, SCR_CONTROL, scontrol)))
3039 goto out;
3041 sata_set_spd(ap);
3044 /* issue phy wake/reset */
3045 if ((rc = sata_scr_read(ap, SCR_CONTROL, &scontrol)))
3046 goto out;
3048 scontrol = (scontrol & 0x0f0) | 0x301;
3050 if ((rc = sata_scr_write_flush(ap, SCR_CONTROL, scontrol)))
3051 goto out;
3053 /* Couldn't find anything in SATA I/II specs, but AHCI-1.1
3054 * 10.4.2 says at least 1 ms.
3056 msleep(1);
3058 /* bring phy back */
3059 rc = sata_phy_resume(ap, timing);
3060 out:
3061 DPRINTK("EXIT, rc=%d\n", rc);
3062 return rc;
3066 * sata_std_hardreset - reset host port via SATA phy reset
3067 * @ap: port to reset
3068 * @class: resulting class of attached device
3070 * SATA phy-reset host port using DET bits of SControl register,
3071 * wait for !BSY and classify the attached device.
3073 * LOCKING:
3074 * Kernel thread context (may sleep)
3076 * RETURNS:
3077 * 0 on success, -errno otherwise.
3079 int sata_std_hardreset(struct ata_port *ap, unsigned int *class)
3081 const unsigned long *timing = sata_ehc_deb_timing(&ap->eh_context);
3082 int rc;
3084 DPRINTK("ENTER\n");
3086 /* do hardreset */
3087 rc = sata_port_hardreset(ap, timing);
3088 if (rc) {
3089 ata_port_printk(ap, KERN_ERR,
3090 "COMRESET failed (errno=%d)\n", rc);
3091 return rc;
3094 /* TODO: phy layer with polling, timeouts, etc. */
3095 if (ata_port_offline(ap)) {
3096 *class = ATA_DEV_NONE;
3097 DPRINTK("EXIT, link offline\n");
3098 return 0;
3101 if (ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT)) {
3102 ata_port_printk(ap, KERN_ERR,
3103 "COMRESET failed (device not ready)\n");
3104 return -EIO;
3107 ap->ops->dev_select(ap, 0); /* probably unnecessary */
3109 *class = ata_dev_try_classify(ap, 0, NULL);
3111 DPRINTK("EXIT, class=%u\n", *class);
3112 return 0;
3116 * ata_std_postreset - standard postreset callback
3117 * @ap: the target ata_port
3118 * @classes: classes of attached devices
3120 * This function is invoked after a successful reset. Note that
3121 * the device might have been reset more than once using
3122 * different reset methods before postreset is invoked.
3124 * LOCKING:
3125 * Kernel thread context (may sleep)
3127 void ata_std_postreset(struct ata_port *ap, unsigned int *classes)
3129 u32 serror;
3131 DPRINTK("ENTER\n");
3133 /* print link status */
3134 sata_print_link_status(ap);
3136 /* clear SError */
3137 if (sata_scr_read(ap, SCR_ERROR, &serror) == 0)
3138 sata_scr_write(ap, SCR_ERROR, serror);
3140 /* re-enable interrupts */
3141 if (!ap->ops->error_handler) {
3142 /* FIXME: hack. create a hook instead */
3143 if (ap->ioaddr.ctl_addr)
3144 ata_irq_on(ap);
3147 /* is double-select really necessary? */
3148 if (classes[0] != ATA_DEV_NONE)
3149 ap->ops->dev_select(ap, 1);
3150 if (classes[1] != ATA_DEV_NONE)
3151 ap->ops->dev_select(ap, 0);
3153 /* bail out if no device is present */
3154 if (classes[0] == ATA_DEV_NONE && classes[1] == ATA_DEV_NONE) {
3155 DPRINTK("EXIT, no device\n");
3156 return;
3159 /* set up device control */
3160 if (ap->ioaddr.ctl_addr) {
3161 if (ap->flags & ATA_FLAG_MMIO)
3162 writeb(ap->ctl, (void __iomem *) ap->ioaddr.ctl_addr);
3163 else
3164 outb(ap->ctl, ap->ioaddr.ctl_addr);
3167 DPRINTK("EXIT\n");
3171 * ata_dev_same_device - Determine whether new ID matches configured device
3172 * @dev: device to compare against
3173 * @new_class: class of the new device
3174 * @new_id: IDENTIFY page of the new device
3176 * Compare @new_class and @new_id against @dev and determine
3177 * whether @dev is the device indicated by @new_class and
3178 * @new_id.
3180 * LOCKING:
3181 * None.
3183 * RETURNS:
3184 * 1 if @dev matches @new_class and @new_id, 0 otherwise.
3186 static int ata_dev_same_device(struct ata_device *dev, unsigned int new_class,
3187 const u16 *new_id)
3189 const u16 *old_id = dev->id;
3190 unsigned char model[2][ATA_ID_PROD_LEN + 1];
3191 unsigned char serial[2][ATA_ID_SERNO_LEN + 1];
3192 u64 new_n_sectors;
3194 if (dev->class != new_class) {
3195 ata_dev_printk(dev, KERN_INFO, "class mismatch %d != %d\n",
3196 dev->class, new_class);
3197 return 0;
3200 ata_id_c_string(old_id, model[0], ATA_ID_PROD, sizeof(model[0]));
3201 ata_id_c_string(new_id, model[1], ATA_ID_PROD, sizeof(model[1]));
3202 ata_id_c_string(old_id, serial[0], ATA_ID_SERNO, sizeof(serial[0]));
3203 ata_id_c_string(new_id, serial[1], ATA_ID_SERNO, sizeof(serial[1]));
3204 new_n_sectors = ata_id_n_sectors(new_id);
3206 if (strcmp(model[0], model[1])) {
3207 ata_dev_printk(dev, KERN_INFO, "model number mismatch "
3208 "'%s' != '%s'\n", model[0], model[1]);
3209 return 0;
3212 if (strcmp(serial[0], serial[1])) {
3213 ata_dev_printk(dev, KERN_INFO, "serial number mismatch "
3214 "'%s' != '%s'\n", serial[0], serial[1]);
3215 return 0;
3218 if (dev->class == ATA_DEV_ATA && dev->n_sectors != new_n_sectors) {
3219 ata_dev_printk(dev, KERN_INFO, "n_sectors mismatch "
3220 "%llu != %llu\n",
3221 (unsigned long long)dev->n_sectors,
3222 (unsigned long long)new_n_sectors);
3223 return 0;
3226 return 1;
3230 * ata_dev_revalidate - Revalidate ATA device
3231 * @dev: device to revalidate
3232 * @readid_flags: read ID flags
3234 * Re-read IDENTIFY page and make sure @dev is still attached to
3235 * the port.
3237 * LOCKING:
3238 * Kernel thread context (may sleep)
3240 * RETURNS:
3241 * 0 on success, negative errno otherwise
3243 int ata_dev_revalidate(struct ata_device *dev, unsigned int readid_flags)
3245 unsigned int class = dev->class;
3246 u16 *id = (void *)dev->ap->sector_buf;
3247 int rc;
3249 if (!ata_dev_enabled(dev)) {
3250 rc = -ENODEV;
3251 goto fail;
3254 /* read ID data */
3255 rc = ata_dev_read_id(dev, &class, readid_flags, id);
3256 if (rc)
3257 goto fail;
3259 /* is the device still there? */
3260 if (!ata_dev_same_device(dev, class, id)) {
3261 rc = -ENODEV;
3262 goto fail;
3265 memcpy(dev->id, id, sizeof(id[0]) * ATA_ID_WORDS);
3267 /* configure device according to the new ID */
3268 rc = ata_dev_configure(dev);
3269 if (rc == 0)
3270 return 0;
3272 fail:
3273 ata_dev_printk(dev, KERN_ERR, "revalidation failed (errno=%d)\n", rc);
3274 return rc;
3277 struct ata_blacklist_entry {
3278 const char *model_num;
3279 const char *model_rev;
3280 unsigned long horkage;
3283 static const struct ata_blacklist_entry ata_device_blacklist [] = {
3284 /* Devices with DMA related problems under Linux */
3285 { "WDC AC11000H", NULL, ATA_HORKAGE_NODMA },
3286 { "WDC AC22100H", NULL, ATA_HORKAGE_NODMA },
3287 { "WDC AC32500H", NULL, ATA_HORKAGE_NODMA },
3288 { "WDC AC33100H", NULL, ATA_HORKAGE_NODMA },
3289 { "WDC AC31600H", NULL, ATA_HORKAGE_NODMA },
3290 { "WDC AC32100H", "24.09P07", ATA_HORKAGE_NODMA },
3291 { "WDC AC23200L", "21.10N21", ATA_HORKAGE_NODMA },
3292 { "Compaq CRD-8241B", NULL, ATA_HORKAGE_NODMA },
3293 { "CRD-8400B", NULL, ATA_HORKAGE_NODMA },
3294 { "CRD-8480B", NULL, ATA_HORKAGE_NODMA },
3295 { "CRD-8482B", NULL, ATA_HORKAGE_NODMA },
3296 { "CRD-84", NULL, ATA_HORKAGE_NODMA },
3297 { "SanDisk SDP3B", NULL, ATA_HORKAGE_NODMA },
3298 { "SanDisk SDP3B-64", NULL, ATA_HORKAGE_NODMA },
3299 { "SANYO CD-ROM CRD", NULL, ATA_HORKAGE_NODMA },
3300 { "HITACHI CDR-8", NULL, ATA_HORKAGE_NODMA },
3301 { "HITACHI CDR-8335", NULL, ATA_HORKAGE_NODMA },
3302 { "HITACHI CDR-8435", NULL, ATA_HORKAGE_NODMA },
3303 { "Toshiba CD-ROM XM-6202B", NULL, ATA_HORKAGE_NODMA },
3304 { "TOSHIBA CD-ROM XM-1702BC", NULL, ATA_HORKAGE_NODMA },
3305 { "CD-532E-A", NULL, ATA_HORKAGE_NODMA },
3306 { "E-IDE CD-ROM CR-840",NULL, ATA_HORKAGE_NODMA },
3307 { "CD-ROM Drive/F5A", NULL, ATA_HORKAGE_NODMA },
3308 { "WPI CDD-820", NULL, ATA_HORKAGE_NODMA },
3309 { "SAMSUNG CD-ROM SC-148C", NULL, ATA_HORKAGE_NODMA },
3310 { "SAMSUNG CD-ROM SC", NULL, ATA_HORKAGE_NODMA },
3311 { "SanDisk SDP3B-64", NULL, ATA_HORKAGE_NODMA },
3312 { "ATAPI CD-ROM DRIVE 40X MAXIMUM",NULL,ATA_HORKAGE_NODMA },
3313 { "_NEC DV5800A", NULL, ATA_HORKAGE_NODMA },
3314 { "SAMSUNG CD-ROM SN-124","N001", ATA_HORKAGE_NODMA },
3316 /* Devices we expect to fail diagnostics */
3318 /* Devices where NCQ should be avoided */
3319 /* NCQ is slow */
3320 { "WDC WD740ADFD-00", NULL, ATA_HORKAGE_NONCQ },
3322 /* Devices with NCQ limits */
3324 /* End Marker */
3328 static int ata_strim(char *s, size_t len)
3330 len = strnlen(s, len);
3332 /* ATAPI specifies that empty space is blank-filled; remove blanks */
3333 while ((len > 0) && (s[len - 1] == ' ')) {
3334 len--;
3335 s[len] = 0;
3337 return len;
3340 unsigned long ata_device_blacklisted(const struct ata_device *dev)
3342 unsigned char model_num[ATA_ID_PROD_LEN];
3343 unsigned char model_rev[ATA_ID_FW_REV_LEN];
3344 unsigned int nlen, rlen;
3345 const struct ata_blacklist_entry *ad = ata_device_blacklist;
3347 ata_id_string(dev->id, model_num, ATA_ID_PROD, sizeof(model_num));
3348 ata_id_string(dev->id, model_rev, ATA_ID_FW_REV, sizeof(model_rev));
3349 nlen = ata_strim(model_num, sizeof(model_num));
3350 rlen = ata_strim(model_rev, sizeof(model_rev));
3352 while (ad->model_num) {
3353 if (!strncmp(ad->model_num, model_num, nlen)) {
3354 if (ad->model_rev == NULL)
3355 return ad->horkage;
3356 if (!strncmp(ad->model_rev, model_rev, rlen))
3357 return ad->horkage;
3359 ad++;
3361 return 0;
3364 static int ata_dma_blacklisted(const struct ata_device *dev)
3366 /* We don't support polling DMA.
3367 * DMA blacklist those ATAPI devices with CDB-intr (and use PIO)
3368 * if the LLDD handles only interrupts in the HSM_ST_LAST state.
3370 if ((dev->ap->flags & ATA_FLAG_PIO_POLLING) &&
3371 (dev->flags & ATA_DFLAG_CDB_INTR))
3372 return 1;
3373 return (ata_device_blacklisted(dev) & ATA_HORKAGE_NODMA) ? 1 : 0;
3377 * ata_dev_xfermask - Compute supported xfermask of the given device
3378 * @dev: Device to compute xfermask for
3380 * Compute supported xfermask of @dev and store it in
3381 * dev->*_mask. This function is responsible for applying all
3382 * known limits including host controller limits, device
3383 * blacklist, etc...
3385 * LOCKING:
3386 * None.
3388 static void ata_dev_xfermask(struct ata_device *dev)
3390 struct ata_port *ap = dev->ap;
3391 struct ata_host *host = ap->host;
3392 unsigned long xfer_mask;
3394 /* controller modes available */
3395 xfer_mask = ata_pack_xfermask(ap->pio_mask,
3396 ap->mwdma_mask, ap->udma_mask);
3398 /* Apply cable rule here. Don't apply it early because when
3399 * we handle hot plug the cable type can itself change.
3401 if (ap->cbl == ATA_CBL_PATA40)
3402 xfer_mask &= ~(0xF8 << ATA_SHIFT_UDMA);
3403 /* Apply drive side cable rule. Unknown or 80 pin cables reported
3404 * host side are checked drive side as well. Cases where we know a
3405 * 40wire cable is used safely for 80 are not checked here.
3407 if (ata_drive_40wire(dev->id) && (ap->cbl == ATA_CBL_PATA_UNK || ap->cbl == ATA_CBL_PATA80))
3408 xfer_mask &= ~(0xF8 << ATA_SHIFT_UDMA);
3411 xfer_mask &= ata_pack_xfermask(dev->pio_mask,
3412 dev->mwdma_mask, dev->udma_mask);
3413 xfer_mask &= ata_id_xfermask(dev->id);
3416 * CFA Advanced TrueIDE timings are not allowed on a shared
3417 * cable
3419 if (ata_dev_pair(dev)) {
3420 /* No PIO5 or PIO6 */
3421 xfer_mask &= ~(0x03 << (ATA_SHIFT_PIO + 5));
3422 /* No MWDMA3 or MWDMA 4 */
3423 xfer_mask &= ~(0x03 << (ATA_SHIFT_MWDMA + 3));
3426 if (ata_dma_blacklisted(dev)) {
3427 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
3428 ata_dev_printk(dev, KERN_WARNING,
3429 "device is on DMA blacklist, disabling DMA\n");
3432 if ((host->flags & ATA_HOST_SIMPLEX) && host->simplex_claimed) {
3433 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
3434 ata_dev_printk(dev, KERN_WARNING, "simplex DMA is claimed by "
3435 "other device, disabling DMA\n");
3438 if (ap->ops->mode_filter)
3439 xfer_mask = ap->ops->mode_filter(ap, dev, xfer_mask);
3441 ata_unpack_xfermask(xfer_mask, &dev->pio_mask,
3442 &dev->mwdma_mask, &dev->udma_mask);
3446 * ata_dev_set_xfermode - Issue SET FEATURES - XFER MODE command
3447 * @dev: Device to which command will be sent
3449 * Issue SET FEATURES - XFER MODE command to device @dev
3450 * on port @ap.
3452 * LOCKING:
3453 * PCI/etc. bus probe sem.
3455 * RETURNS:
3456 * 0 on success, AC_ERR_* mask otherwise.
3459 static unsigned int ata_dev_set_xfermode(struct ata_device *dev)
3461 struct ata_taskfile tf;
3462 unsigned int err_mask;
3464 /* set up set-features taskfile */
3465 DPRINTK("set features - xfer mode\n");
3467 ata_tf_init(dev, &tf);
3468 tf.command = ATA_CMD_SET_FEATURES;
3469 tf.feature = SETFEATURES_XFER;
3470 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
3471 tf.protocol = ATA_PROT_NODATA;
3472 tf.nsect = dev->xfer_mode;
3474 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
3476 DPRINTK("EXIT, err_mask=%x\n", err_mask);
3477 return err_mask;
3481 * ata_dev_init_params - Issue INIT DEV PARAMS command
3482 * @dev: Device to which command will be sent
3483 * @heads: Number of heads (taskfile parameter)
3484 * @sectors: Number of sectors (taskfile parameter)
3486 * LOCKING:
3487 * Kernel thread context (may sleep)
3489 * RETURNS:
3490 * 0 on success, AC_ERR_* mask otherwise.
3492 static unsigned int ata_dev_init_params(struct ata_device *dev,
3493 u16 heads, u16 sectors)
3495 struct ata_taskfile tf;
3496 unsigned int err_mask;
3498 /* Number of sectors per track 1-255. Number of heads 1-16 */
3499 if (sectors < 1 || sectors > 255 || heads < 1 || heads > 16)
3500 return AC_ERR_INVALID;
3502 /* set up init dev params taskfile */
3503 DPRINTK("init dev params \n");
3505 ata_tf_init(dev, &tf);
3506 tf.command = ATA_CMD_INIT_DEV_PARAMS;
3507 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
3508 tf.protocol = ATA_PROT_NODATA;
3509 tf.nsect = sectors;
3510 tf.device |= (heads - 1) & 0x0f; /* max head = num. of heads - 1 */
3512 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
3514 DPRINTK("EXIT, err_mask=%x\n", err_mask);
3515 return err_mask;
3519 * ata_sg_clean - Unmap DMA memory associated with command
3520 * @qc: Command containing DMA memory to be released
3522 * Unmap all mapped DMA memory associated with this command.
3524 * LOCKING:
3525 * spin_lock_irqsave(host lock)
3527 void ata_sg_clean(struct ata_queued_cmd *qc)
3529 struct ata_port *ap = qc->ap;
3530 struct scatterlist *sg = qc->__sg;
3531 int dir = qc->dma_dir;
3532 void *pad_buf = NULL;
3534 WARN_ON(!(qc->flags & ATA_QCFLAG_DMAMAP));
3535 WARN_ON(sg == NULL);
3537 if (qc->flags & ATA_QCFLAG_SINGLE)
3538 WARN_ON(qc->n_elem > 1);
3540 VPRINTK("unmapping %u sg elements\n", qc->n_elem);
3542 /* if we padded the buffer out to 32-bit bound, and data
3543 * xfer direction is from-device, we must copy from the
3544 * pad buffer back into the supplied buffer
3546 if (qc->pad_len && !(qc->tf.flags & ATA_TFLAG_WRITE))
3547 pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
3549 if (qc->flags & ATA_QCFLAG_SG) {
3550 if (qc->n_elem)
3551 dma_unmap_sg(ap->dev, sg, qc->n_elem, dir);
3552 /* restore last sg */
3553 sg[qc->orig_n_elem - 1].length += qc->pad_len;
3554 if (pad_buf) {
3555 struct scatterlist *psg = &qc->pad_sgent;
3556 void *addr = kmap_atomic(psg->page, KM_IRQ0);
3557 memcpy(addr + psg->offset, pad_buf, qc->pad_len);
3558 kunmap_atomic(addr, KM_IRQ0);
3560 } else {
3561 if (qc->n_elem)
3562 dma_unmap_single(ap->dev,
3563 sg_dma_address(&sg[0]), sg_dma_len(&sg[0]),
3564 dir);
3565 /* restore sg */
3566 sg->length += qc->pad_len;
3567 if (pad_buf)
3568 memcpy(qc->buf_virt + sg->length - qc->pad_len,
3569 pad_buf, qc->pad_len);
3572 qc->flags &= ~ATA_QCFLAG_DMAMAP;
3573 qc->__sg = NULL;
3577 * ata_fill_sg - Fill PCI IDE PRD table
3578 * @qc: Metadata associated with taskfile to be transferred
3580 * Fill PCI IDE PRD (scatter-gather) table with segments
3581 * associated with the current disk command.
3583 * LOCKING:
3584 * spin_lock_irqsave(host lock)
3587 static void ata_fill_sg(struct ata_queued_cmd *qc)
3589 struct ata_port *ap = qc->ap;
3590 struct scatterlist *sg;
3591 unsigned int idx;
3593 WARN_ON(qc->__sg == NULL);
3594 WARN_ON(qc->n_elem == 0 && qc->pad_len == 0);
3596 idx = 0;
3597 ata_for_each_sg(sg, qc) {
3598 u32 addr, offset;
3599 u32 sg_len, len;
3601 /* determine if physical DMA addr spans 64K boundary.
3602 * Note h/w doesn't support 64-bit, so we unconditionally
3603 * truncate dma_addr_t to u32.
3605 addr = (u32) sg_dma_address(sg);
3606 sg_len = sg_dma_len(sg);
3608 while (sg_len) {
3609 offset = addr & 0xffff;
3610 len = sg_len;
3611 if ((offset + sg_len) > 0x10000)
3612 len = 0x10000 - offset;
3614 ap->prd[idx].addr = cpu_to_le32(addr);
3615 ap->prd[idx].flags_len = cpu_to_le32(len & 0xffff);
3616 VPRINTK("PRD[%u] = (0x%X, 0x%X)\n", idx, addr, len);
3618 idx++;
3619 sg_len -= len;
3620 addr += len;
3624 if (idx)
3625 ap->prd[idx - 1].flags_len |= cpu_to_le32(ATA_PRD_EOT);
3628 * ata_check_atapi_dma - Check whether ATAPI DMA can be supported
3629 * @qc: Metadata associated with taskfile to check
3631 * Allow low-level driver to filter ATA PACKET commands, returning
3632 * a status indicating whether or not it is OK to use DMA for the
3633 * supplied PACKET command.
3635 * LOCKING:
3636 * spin_lock_irqsave(host lock)
3638 * RETURNS: 0 when ATAPI DMA can be used
3639 * nonzero otherwise
3641 int ata_check_atapi_dma(struct ata_queued_cmd *qc)
3643 struct ata_port *ap = qc->ap;
3644 int rc = 0; /* Assume ATAPI DMA is OK by default */
3646 if (ap->ops->check_atapi_dma)
3647 rc = ap->ops->check_atapi_dma(qc);
3649 return rc;
3652 * ata_qc_prep - Prepare taskfile for submission
3653 * @qc: Metadata associated with taskfile to be prepared
3655 * Prepare ATA taskfile for submission.
3657 * LOCKING:
3658 * spin_lock_irqsave(host lock)
3660 void ata_qc_prep(struct ata_queued_cmd *qc)
3662 if (!(qc->flags & ATA_QCFLAG_DMAMAP))
3663 return;
3665 ata_fill_sg(qc);
3668 void ata_noop_qc_prep(struct ata_queued_cmd *qc) { }
3671 * ata_sg_init_one - Associate command with memory buffer
3672 * @qc: Command to be associated
3673 * @buf: Memory buffer
3674 * @buflen: Length of memory buffer, in bytes.
3676 * Initialize the data-related elements of queued_cmd @qc
3677 * to point to a single memory buffer, @buf of byte length @buflen.
3679 * LOCKING:
3680 * spin_lock_irqsave(host lock)
3683 void ata_sg_init_one(struct ata_queued_cmd *qc, void *buf, unsigned int buflen)
3685 qc->flags |= ATA_QCFLAG_SINGLE;
3687 qc->__sg = &qc->sgent;
3688 qc->n_elem = 1;
3689 qc->orig_n_elem = 1;
3690 qc->buf_virt = buf;
3691 qc->nbytes = buflen;
3693 sg_init_one(&qc->sgent, buf, buflen);
3697 * ata_sg_init - Associate command with scatter-gather table.
3698 * @qc: Command to be associated
3699 * @sg: Scatter-gather table.
3700 * @n_elem: Number of elements in s/g table.
3702 * Initialize the data-related elements of queued_cmd @qc
3703 * to point to a scatter-gather table @sg, containing @n_elem
3704 * elements.
3706 * LOCKING:
3707 * spin_lock_irqsave(host lock)
3710 void ata_sg_init(struct ata_queued_cmd *qc, struct scatterlist *sg,
3711 unsigned int n_elem)
3713 qc->flags |= ATA_QCFLAG_SG;
3714 qc->__sg = sg;
3715 qc->n_elem = n_elem;
3716 qc->orig_n_elem = n_elem;
3720 * ata_sg_setup_one - DMA-map the memory buffer associated with a command.
3721 * @qc: Command with memory buffer to be mapped.
3723 * DMA-map the memory buffer associated with queued_cmd @qc.
3725 * LOCKING:
3726 * spin_lock_irqsave(host lock)
3728 * RETURNS:
3729 * Zero on success, negative on error.
3732 static int ata_sg_setup_one(struct ata_queued_cmd *qc)
3734 struct ata_port *ap = qc->ap;
3735 int dir = qc->dma_dir;
3736 struct scatterlist *sg = qc->__sg;
3737 dma_addr_t dma_address;
3738 int trim_sg = 0;
3740 /* we must lengthen transfers to end on a 32-bit boundary */
3741 qc->pad_len = sg->length & 3;
3742 if (qc->pad_len) {
3743 void *pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
3744 struct scatterlist *psg = &qc->pad_sgent;
3746 WARN_ON(qc->dev->class != ATA_DEV_ATAPI);
3748 memset(pad_buf, 0, ATA_DMA_PAD_SZ);
3750 if (qc->tf.flags & ATA_TFLAG_WRITE)
3751 memcpy(pad_buf, qc->buf_virt + sg->length - qc->pad_len,
3752 qc->pad_len);
3754 sg_dma_address(psg) = ap->pad_dma + (qc->tag * ATA_DMA_PAD_SZ);
3755 sg_dma_len(psg) = ATA_DMA_PAD_SZ;
3756 /* trim sg */
3757 sg->length -= qc->pad_len;
3758 if (sg->length == 0)
3759 trim_sg = 1;
3761 DPRINTK("padding done, sg->length=%u pad_len=%u\n",
3762 sg->length, qc->pad_len);
3765 if (trim_sg) {
3766 qc->n_elem--;
3767 goto skip_map;
3770 dma_address = dma_map_single(ap->dev, qc->buf_virt,
3771 sg->length, dir);
3772 if (dma_mapping_error(dma_address)) {
3773 /* restore sg */
3774 sg->length += qc->pad_len;
3775 return -1;
3778 sg_dma_address(sg) = dma_address;
3779 sg_dma_len(sg) = sg->length;
3781 skip_map:
3782 DPRINTK("mapped buffer of %d bytes for %s\n", sg_dma_len(sg),
3783 qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
3785 return 0;
3789 * ata_sg_setup - DMA-map the scatter-gather table associated with a command.
3790 * @qc: Command with scatter-gather table to be mapped.
3792 * DMA-map the scatter-gather table associated with queued_cmd @qc.
3794 * LOCKING:
3795 * spin_lock_irqsave(host lock)
3797 * RETURNS:
3798 * Zero on success, negative on error.
3802 static int ata_sg_setup(struct ata_queued_cmd *qc)
3804 struct ata_port *ap = qc->ap;
3805 struct scatterlist *sg = qc->__sg;
3806 struct scatterlist *lsg = &sg[qc->n_elem - 1];
3807 int n_elem, pre_n_elem, dir, trim_sg = 0;
3809 VPRINTK("ENTER, ata%u\n", ap->id);
3810 WARN_ON(!(qc->flags & ATA_QCFLAG_SG));
3812 /* we must lengthen transfers to end on a 32-bit boundary */
3813 qc->pad_len = lsg->length & 3;
3814 if (qc->pad_len) {
3815 void *pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
3816 struct scatterlist *psg = &qc->pad_sgent;
3817 unsigned int offset;
3819 WARN_ON(qc->dev->class != ATA_DEV_ATAPI);
3821 memset(pad_buf, 0, ATA_DMA_PAD_SZ);
3824 * psg->page/offset are used to copy to-be-written
3825 * data in this function or read data in ata_sg_clean.
3827 offset = lsg->offset + lsg->length - qc->pad_len;
3828 psg->page = nth_page(lsg->page, offset >> PAGE_SHIFT);
3829 psg->offset = offset_in_page(offset);
3831 if (qc->tf.flags & ATA_TFLAG_WRITE) {
3832 void *addr = kmap_atomic(psg->page, KM_IRQ0);
3833 memcpy(pad_buf, addr + psg->offset, qc->pad_len);
3834 kunmap_atomic(addr, KM_IRQ0);
3837 sg_dma_address(psg) = ap->pad_dma + (qc->tag * ATA_DMA_PAD_SZ);
3838 sg_dma_len(psg) = ATA_DMA_PAD_SZ;
3839 /* trim last sg */
3840 lsg->length -= qc->pad_len;
3841 if (lsg->length == 0)
3842 trim_sg = 1;
3844 DPRINTK("padding done, sg[%d].length=%u pad_len=%u\n",
3845 qc->n_elem - 1, lsg->length, qc->pad_len);
3848 pre_n_elem = qc->n_elem;
3849 if (trim_sg && pre_n_elem)
3850 pre_n_elem--;
3852 if (!pre_n_elem) {
3853 n_elem = 0;
3854 goto skip_map;
3857 dir = qc->dma_dir;
3858 n_elem = dma_map_sg(ap->dev, sg, pre_n_elem, dir);
3859 if (n_elem < 1) {
3860 /* restore last sg */
3861 lsg->length += qc->pad_len;
3862 return -1;
3865 DPRINTK("%d sg elements mapped\n", n_elem);
3867 skip_map:
3868 qc->n_elem = n_elem;
3870 return 0;
3874 * swap_buf_le16 - swap halves of 16-bit words in place
3875 * @buf: Buffer to swap
3876 * @buf_words: Number of 16-bit words in buffer.
3878 * Swap halves of 16-bit words if needed to convert from
3879 * little-endian byte order to native cpu byte order, or
3880 * vice-versa.
3882 * LOCKING:
3883 * Inherited from caller.
3885 void swap_buf_le16(u16 *buf, unsigned int buf_words)
3887 #ifdef __BIG_ENDIAN
3888 unsigned int i;
3890 for (i = 0; i < buf_words; i++)
3891 buf[i] = le16_to_cpu(buf[i]);
3892 #endif /* __BIG_ENDIAN */
3896 * ata_mmio_data_xfer - Transfer data by MMIO
3897 * @adev: device for this I/O
3898 * @buf: data buffer
3899 * @buflen: buffer length
3900 * @write_data: read/write
3902 * Transfer data from/to the device data register by MMIO.
3904 * LOCKING:
3905 * Inherited from caller.
3908 void ata_mmio_data_xfer(struct ata_device *adev, unsigned char *buf,
3909 unsigned int buflen, int write_data)
3911 struct ata_port *ap = adev->ap;
3912 unsigned int i;
3913 unsigned int words = buflen >> 1;
3914 u16 *buf16 = (u16 *) buf;
3915 void __iomem *mmio = (void __iomem *)ap->ioaddr.data_addr;
3917 /* Transfer multiple of 2 bytes */
3918 if (write_data) {
3919 for (i = 0; i < words; i++)
3920 writew(le16_to_cpu(buf16[i]), mmio);
3921 } else {
3922 for (i = 0; i < words; i++)
3923 buf16[i] = cpu_to_le16(readw(mmio));
3926 /* Transfer trailing 1 byte, if any. */
3927 if (unlikely(buflen & 0x01)) {
3928 u16 align_buf[1] = { 0 };
3929 unsigned char *trailing_buf = buf + buflen - 1;
3931 if (write_data) {
3932 memcpy(align_buf, trailing_buf, 1);
3933 writew(le16_to_cpu(align_buf[0]), mmio);
3934 } else {
3935 align_buf[0] = cpu_to_le16(readw(mmio));
3936 memcpy(trailing_buf, align_buf, 1);
3942 * ata_pio_data_xfer - Transfer data by PIO
3943 * @adev: device to target
3944 * @buf: data buffer
3945 * @buflen: buffer length
3946 * @write_data: read/write
3948 * Transfer data from/to the device data register by PIO.
3950 * LOCKING:
3951 * Inherited from caller.
3954 void ata_pio_data_xfer(struct ata_device *adev, unsigned char *buf,
3955 unsigned int buflen, int write_data)
3957 struct ata_port *ap = adev->ap;
3958 unsigned int words = buflen >> 1;
3960 /* Transfer multiple of 2 bytes */
3961 if (write_data)
3962 outsw(ap->ioaddr.data_addr, buf, words);
3963 else
3964 insw(ap->ioaddr.data_addr, buf, words);
3966 /* Transfer trailing 1 byte, if any. */
3967 if (unlikely(buflen & 0x01)) {
3968 u16 align_buf[1] = { 0 };
3969 unsigned char *trailing_buf = buf + buflen - 1;
3971 if (write_data) {
3972 memcpy(align_buf, trailing_buf, 1);
3973 outw(le16_to_cpu(align_buf[0]), ap->ioaddr.data_addr);
3974 } else {
3975 align_buf[0] = cpu_to_le16(inw(ap->ioaddr.data_addr));
3976 memcpy(trailing_buf, align_buf, 1);
3982 * ata_pio_data_xfer_noirq - Transfer data by PIO
3983 * @adev: device to target
3984 * @buf: data buffer
3985 * @buflen: buffer length
3986 * @write_data: read/write
3988 * Transfer data from/to the device data register by PIO. Do the
3989 * transfer with interrupts disabled.
3991 * LOCKING:
3992 * Inherited from caller.
3995 void ata_pio_data_xfer_noirq(struct ata_device *adev, unsigned char *buf,
3996 unsigned int buflen, int write_data)
3998 unsigned long flags;
3999 local_irq_save(flags);
4000 ata_pio_data_xfer(adev, buf, buflen, write_data);
4001 local_irq_restore(flags);
4006 * ata_pio_sector - Transfer ATA_SECT_SIZE (512 bytes) of data.
4007 * @qc: Command on going
4009 * Transfer ATA_SECT_SIZE of data from/to the ATA device.
4011 * LOCKING:
4012 * Inherited from caller.
4015 static void ata_pio_sector(struct ata_queued_cmd *qc)
4017 int do_write = (qc->tf.flags & ATA_TFLAG_WRITE);
4018 struct scatterlist *sg = qc->__sg;
4019 struct ata_port *ap = qc->ap;
4020 struct page *page;
4021 unsigned int offset;
4022 unsigned char *buf;
4024 if (qc->cursect == (qc->nsect - 1))
4025 ap->hsm_task_state = HSM_ST_LAST;
4027 page = sg[qc->cursg].page;
4028 offset = sg[qc->cursg].offset + qc->cursg_ofs * ATA_SECT_SIZE;
4030 /* get the current page and offset */
4031 page = nth_page(page, (offset >> PAGE_SHIFT));
4032 offset %= PAGE_SIZE;
4034 DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
4036 if (PageHighMem(page)) {
4037 unsigned long flags;
4039 /* FIXME: use a bounce buffer */
4040 local_irq_save(flags);
4041 buf = kmap_atomic(page, KM_IRQ0);
4043 /* do the actual data transfer */
4044 ap->ops->data_xfer(qc->dev, buf + offset, ATA_SECT_SIZE, do_write);
4046 kunmap_atomic(buf, KM_IRQ0);
4047 local_irq_restore(flags);
4048 } else {
4049 buf = page_address(page);
4050 ap->ops->data_xfer(qc->dev, buf + offset, ATA_SECT_SIZE, do_write);
4053 qc->cursect++;
4054 qc->cursg_ofs++;
4056 if ((qc->cursg_ofs * ATA_SECT_SIZE) == (&sg[qc->cursg])->length) {
4057 qc->cursg++;
4058 qc->cursg_ofs = 0;
4063 * ata_pio_sectors - Transfer one or many 512-byte sectors.
4064 * @qc: Command on going
4066 * Transfer one or many ATA_SECT_SIZE of data from/to the
4067 * ATA device for the DRQ request.
4069 * LOCKING:
4070 * Inherited from caller.
4073 static void ata_pio_sectors(struct ata_queued_cmd *qc)
4075 if (is_multi_taskfile(&qc->tf)) {
4076 /* READ/WRITE MULTIPLE */
4077 unsigned int nsect;
4079 WARN_ON(qc->dev->multi_count == 0);
4081 nsect = min(qc->nsect - qc->cursect, qc->dev->multi_count);
4082 while (nsect--)
4083 ata_pio_sector(qc);
4084 } else
4085 ata_pio_sector(qc);
4089 * atapi_send_cdb - Write CDB bytes to hardware
4090 * @ap: Port to which ATAPI device is attached.
4091 * @qc: Taskfile currently active
4093 * When device has indicated its readiness to accept
4094 * a CDB, this function is called. Send the CDB.
4096 * LOCKING:
4097 * caller.
4100 static void atapi_send_cdb(struct ata_port *ap, struct ata_queued_cmd *qc)
4102 /* send SCSI cdb */
4103 DPRINTK("send cdb\n");
4104 WARN_ON(qc->dev->cdb_len < 12);
4106 ap->ops->data_xfer(qc->dev, qc->cdb, qc->dev->cdb_len, 1);
4107 ata_altstatus(ap); /* flush */
4109 switch (qc->tf.protocol) {
4110 case ATA_PROT_ATAPI:
4111 ap->hsm_task_state = HSM_ST;
4112 break;
4113 case ATA_PROT_ATAPI_NODATA:
4114 ap->hsm_task_state = HSM_ST_LAST;
4115 break;
4116 case ATA_PROT_ATAPI_DMA:
4117 ap->hsm_task_state = HSM_ST_LAST;
4118 /* initiate bmdma */
4119 ap->ops->bmdma_start(qc);
4120 break;
4125 * __atapi_pio_bytes - Transfer data from/to the ATAPI device.
4126 * @qc: Command on going
4127 * @bytes: number of bytes
4129 * Transfer Transfer data from/to the ATAPI device.
4131 * LOCKING:
4132 * Inherited from caller.
4136 static void __atapi_pio_bytes(struct ata_queued_cmd *qc, unsigned int bytes)
4138 int do_write = (qc->tf.flags & ATA_TFLAG_WRITE);
4139 struct scatterlist *sg = qc->__sg;
4140 struct ata_port *ap = qc->ap;
4141 struct page *page;
4142 unsigned char *buf;
4143 unsigned int offset, count;
4145 if (qc->curbytes + bytes >= qc->nbytes)
4146 ap->hsm_task_state = HSM_ST_LAST;
4148 next_sg:
4149 if (unlikely(qc->cursg >= qc->n_elem)) {
4151 * The end of qc->sg is reached and the device expects
4152 * more data to transfer. In order not to overrun qc->sg
4153 * and fulfill length specified in the byte count register,
4154 * - for read case, discard trailing data from the device
4155 * - for write case, padding zero data to the device
4157 u16 pad_buf[1] = { 0 };
4158 unsigned int words = bytes >> 1;
4159 unsigned int i;
4161 if (words) /* warning if bytes > 1 */
4162 ata_dev_printk(qc->dev, KERN_WARNING,
4163 "%u bytes trailing data\n", bytes);
4165 for (i = 0; i < words; i++)
4166 ap->ops->data_xfer(qc->dev, (unsigned char*)pad_buf, 2, do_write);
4168 ap->hsm_task_state = HSM_ST_LAST;
4169 return;
4172 sg = &qc->__sg[qc->cursg];
4174 page = sg->page;
4175 offset = sg->offset + qc->cursg_ofs;
4177 /* get the current page and offset */
4178 page = nth_page(page, (offset >> PAGE_SHIFT));
4179 offset %= PAGE_SIZE;
4181 /* don't overrun current sg */
4182 count = min(sg->length - qc->cursg_ofs, bytes);
4184 /* don't cross page boundaries */
4185 count = min(count, (unsigned int)PAGE_SIZE - offset);
4187 DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
4189 if (PageHighMem(page)) {
4190 unsigned long flags;
4192 /* FIXME: use bounce buffer */
4193 local_irq_save(flags);
4194 buf = kmap_atomic(page, KM_IRQ0);
4196 /* do the actual data transfer */
4197 ap->ops->data_xfer(qc->dev, buf + offset, count, do_write);
4199 kunmap_atomic(buf, KM_IRQ0);
4200 local_irq_restore(flags);
4201 } else {
4202 buf = page_address(page);
4203 ap->ops->data_xfer(qc->dev, buf + offset, count, do_write);
4206 bytes -= count;
4207 qc->curbytes += count;
4208 qc->cursg_ofs += count;
4210 if (qc->cursg_ofs == sg->length) {
4211 qc->cursg++;
4212 qc->cursg_ofs = 0;
4215 if (bytes)
4216 goto next_sg;
4220 * atapi_pio_bytes - Transfer data from/to the ATAPI device.
4221 * @qc: Command on going
4223 * Transfer Transfer data from/to the ATAPI device.
4225 * LOCKING:
4226 * Inherited from caller.
4229 static void atapi_pio_bytes(struct ata_queued_cmd *qc)
4231 struct ata_port *ap = qc->ap;
4232 struct ata_device *dev = qc->dev;
4233 unsigned int ireason, bc_lo, bc_hi, bytes;
4234 int i_write, do_write = (qc->tf.flags & ATA_TFLAG_WRITE) ? 1 : 0;
4236 /* Abuse qc->result_tf for temp storage of intermediate TF
4237 * here to save some kernel stack usage.
4238 * For normal completion, qc->result_tf is not relevant. For
4239 * error, qc->result_tf is later overwritten by ata_qc_complete().
4240 * So, the correctness of qc->result_tf is not affected.
4242 ap->ops->tf_read(ap, &qc->result_tf);
4243 ireason = qc->result_tf.nsect;
4244 bc_lo = qc->result_tf.lbam;
4245 bc_hi = qc->result_tf.lbah;
4246 bytes = (bc_hi << 8) | bc_lo;
4248 /* shall be cleared to zero, indicating xfer of data */
4249 if (ireason & (1 << 0))
4250 goto err_out;
4252 /* make sure transfer direction matches expected */
4253 i_write = ((ireason & (1 << 1)) == 0) ? 1 : 0;
4254 if (do_write != i_write)
4255 goto err_out;
4257 VPRINTK("ata%u: xfering %d bytes\n", ap->id, bytes);
4259 __atapi_pio_bytes(qc, bytes);
4261 return;
4263 err_out:
4264 ata_dev_printk(dev, KERN_INFO, "ATAPI check failed\n");
4265 qc->err_mask |= AC_ERR_HSM;
4266 ap->hsm_task_state = HSM_ST_ERR;
4270 * ata_hsm_ok_in_wq - Check if the qc can be handled in the workqueue.
4271 * @ap: the target ata_port
4272 * @qc: qc on going
4274 * RETURNS:
4275 * 1 if ok in workqueue, 0 otherwise.
4278 static inline int ata_hsm_ok_in_wq(struct ata_port *ap, struct ata_queued_cmd *qc)
4280 if (qc->tf.flags & ATA_TFLAG_POLLING)
4281 return 1;
4283 if (ap->hsm_task_state == HSM_ST_FIRST) {
4284 if (qc->tf.protocol == ATA_PROT_PIO &&
4285 (qc->tf.flags & ATA_TFLAG_WRITE))
4286 return 1;
4288 if (is_atapi_taskfile(&qc->tf) &&
4289 !(qc->dev->flags & ATA_DFLAG_CDB_INTR))
4290 return 1;
4293 return 0;
4297 * ata_hsm_qc_complete - finish a qc running on standard HSM
4298 * @qc: Command to complete
4299 * @in_wq: 1 if called from workqueue, 0 otherwise
4301 * Finish @qc which is running on standard HSM.
4303 * LOCKING:
4304 * If @in_wq is zero, spin_lock_irqsave(host lock).
4305 * Otherwise, none on entry and grabs host lock.
4307 static void ata_hsm_qc_complete(struct ata_queued_cmd *qc, int in_wq)
4309 struct ata_port *ap = qc->ap;
4310 unsigned long flags;
4312 if (ap->ops->error_handler) {
4313 if (in_wq) {
4314 spin_lock_irqsave(ap->lock, flags);
4316 /* EH might have kicked in while host lock is
4317 * released.
4319 qc = ata_qc_from_tag(ap, qc->tag);
4320 if (qc) {
4321 if (likely(!(qc->err_mask & AC_ERR_HSM))) {
4322 ata_irq_on(ap);
4323 ata_qc_complete(qc);
4324 } else
4325 ata_port_freeze(ap);
4328 spin_unlock_irqrestore(ap->lock, flags);
4329 } else {
4330 if (likely(!(qc->err_mask & AC_ERR_HSM)))
4331 ata_qc_complete(qc);
4332 else
4333 ata_port_freeze(ap);
4335 } else {
4336 if (in_wq) {
4337 spin_lock_irqsave(ap->lock, flags);
4338 ata_irq_on(ap);
4339 ata_qc_complete(qc);
4340 spin_unlock_irqrestore(ap->lock, flags);
4341 } else
4342 ata_qc_complete(qc);
4345 ata_altstatus(ap); /* flush */
4349 * ata_hsm_move - move the HSM to the next state.
4350 * @ap: the target ata_port
4351 * @qc: qc on going
4352 * @status: current device status
4353 * @in_wq: 1 if called from workqueue, 0 otherwise
4355 * RETURNS:
4356 * 1 when poll next status needed, 0 otherwise.
4358 int ata_hsm_move(struct ata_port *ap, struct ata_queued_cmd *qc,
4359 u8 status, int in_wq)
4361 unsigned long flags = 0;
4362 int poll_next;
4364 WARN_ON((qc->flags & ATA_QCFLAG_ACTIVE) == 0);
4366 /* Make sure ata_qc_issue_prot() does not throw things
4367 * like DMA polling into the workqueue. Notice that
4368 * in_wq is not equivalent to (qc->tf.flags & ATA_TFLAG_POLLING).
4370 WARN_ON(in_wq != ata_hsm_ok_in_wq(ap, qc));
4372 fsm_start:
4373 DPRINTK("ata%u: protocol %d task_state %d (dev_stat 0x%X)\n",
4374 ap->id, qc->tf.protocol, ap->hsm_task_state, status);
4376 switch (ap->hsm_task_state) {
4377 case HSM_ST_FIRST:
4378 /* Send first data block or PACKET CDB */
4380 /* If polling, we will stay in the work queue after
4381 * sending the data. Otherwise, interrupt handler
4382 * takes over after sending the data.
4384 poll_next = (qc->tf.flags & ATA_TFLAG_POLLING);
4386 /* check device status */
4387 if (unlikely((status & ATA_DRQ) == 0)) {
4388 /* handle BSY=0, DRQ=0 as error */
4389 if (likely(status & (ATA_ERR | ATA_DF)))
4390 /* device stops HSM for abort/error */
4391 qc->err_mask |= AC_ERR_DEV;
4392 else
4393 /* HSM violation. Let EH handle this */
4394 qc->err_mask |= AC_ERR_HSM;
4396 ap->hsm_task_state = HSM_ST_ERR;
4397 goto fsm_start;
4400 /* Device should not ask for data transfer (DRQ=1)
4401 * when it finds something wrong.
4402 * We ignore DRQ here and stop the HSM by
4403 * changing hsm_task_state to HSM_ST_ERR and
4404 * let the EH abort the command or reset the device.
4406 if (unlikely(status & (ATA_ERR | ATA_DF))) {
4407 printk(KERN_WARNING "ata%d: DRQ=1 with device error, dev_stat 0x%X\n",
4408 ap->id, status);
4409 qc->err_mask |= AC_ERR_HSM;
4410 ap->hsm_task_state = HSM_ST_ERR;
4411 goto fsm_start;
4414 /* Send the CDB (atapi) or the first data block (ata pio out).
4415 * During the state transition, interrupt handler shouldn't
4416 * be invoked before the data transfer is complete and
4417 * hsm_task_state is changed. Hence, the following locking.
4419 if (in_wq)
4420 spin_lock_irqsave(ap->lock, flags);
4422 if (qc->tf.protocol == ATA_PROT_PIO) {
4423 /* PIO data out protocol.
4424 * send first data block.
4427 /* ata_pio_sectors() might change the state
4428 * to HSM_ST_LAST. so, the state is changed here
4429 * before ata_pio_sectors().
4431 ap->hsm_task_state = HSM_ST;
4432 ata_pio_sectors(qc);
4433 ata_altstatus(ap); /* flush */
4434 } else
4435 /* send CDB */
4436 atapi_send_cdb(ap, qc);
4438 if (in_wq)
4439 spin_unlock_irqrestore(ap->lock, flags);
4441 /* if polling, ata_pio_task() handles the rest.
4442 * otherwise, interrupt handler takes over from here.
4444 break;
4446 case HSM_ST:
4447 /* complete command or read/write the data register */
4448 if (qc->tf.protocol == ATA_PROT_ATAPI) {
4449 /* ATAPI PIO protocol */
4450 if ((status & ATA_DRQ) == 0) {
4451 /* No more data to transfer or device error.
4452 * Device error will be tagged in HSM_ST_LAST.
4454 ap->hsm_task_state = HSM_ST_LAST;
4455 goto fsm_start;
4458 /* Device should not ask for data transfer (DRQ=1)
4459 * when it finds something wrong.
4460 * We ignore DRQ here and stop the HSM by
4461 * changing hsm_task_state to HSM_ST_ERR and
4462 * let the EH abort the command or reset the device.
4464 if (unlikely(status & (ATA_ERR | ATA_DF))) {
4465 printk(KERN_WARNING "ata%d: DRQ=1 with device error, dev_stat 0x%X\n",
4466 ap->id, status);
4467 qc->err_mask |= AC_ERR_HSM;
4468 ap->hsm_task_state = HSM_ST_ERR;
4469 goto fsm_start;
4472 atapi_pio_bytes(qc);
4474 if (unlikely(ap->hsm_task_state == HSM_ST_ERR))
4475 /* bad ireason reported by device */
4476 goto fsm_start;
4478 } else {
4479 /* ATA PIO protocol */
4480 if (unlikely((status & ATA_DRQ) == 0)) {
4481 /* handle BSY=0, DRQ=0 as error */
4482 if (likely(status & (ATA_ERR | ATA_DF)))
4483 /* device stops HSM for abort/error */
4484 qc->err_mask |= AC_ERR_DEV;
4485 else
4486 /* HSM violation. Let EH handle this.
4487 * Phantom devices also trigger this
4488 * condition. Mark hint.
4490 qc->err_mask |= AC_ERR_HSM |
4491 AC_ERR_NODEV_HINT;
4493 ap->hsm_task_state = HSM_ST_ERR;
4494 goto fsm_start;
4497 /* For PIO reads, some devices may ask for
4498 * data transfer (DRQ=1) alone with ERR=1.
4499 * We respect DRQ here and transfer one
4500 * block of junk data before changing the
4501 * hsm_task_state to HSM_ST_ERR.
4503 * For PIO writes, ERR=1 DRQ=1 doesn't make
4504 * sense since the data block has been
4505 * transferred to the device.
4507 if (unlikely(status & (ATA_ERR | ATA_DF))) {
4508 /* data might be corrputed */
4509 qc->err_mask |= AC_ERR_DEV;
4511 if (!(qc->tf.flags & ATA_TFLAG_WRITE)) {
4512 ata_pio_sectors(qc);
4513 ata_altstatus(ap);
4514 status = ata_wait_idle(ap);
4517 if (status & (ATA_BUSY | ATA_DRQ))
4518 qc->err_mask |= AC_ERR_HSM;
4520 /* ata_pio_sectors() might change the
4521 * state to HSM_ST_LAST. so, the state
4522 * is changed after ata_pio_sectors().
4524 ap->hsm_task_state = HSM_ST_ERR;
4525 goto fsm_start;
4528 ata_pio_sectors(qc);
4530 if (ap->hsm_task_state == HSM_ST_LAST &&
4531 (!(qc->tf.flags & ATA_TFLAG_WRITE))) {
4532 /* all data read */
4533 ata_altstatus(ap);
4534 status = ata_wait_idle(ap);
4535 goto fsm_start;
4539 ata_altstatus(ap); /* flush */
4540 poll_next = 1;
4541 break;
4543 case HSM_ST_LAST:
4544 if (unlikely(!ata_ok(status))) {
4545 qc->err_mask |= __ac_err_mask(status);
4546 ap->hsm_task_state = HSM_ST_ERR;
4547 goto fsm_start;
4550 /* no more data to transfer */
4551 DPRINTK("ata%u: dev %u command complete, drv_stat 0x%x\n",
4552 ap->id, qc->dev->devno, status);
4554 WARN_ON(qc->err_mask);
4556 ap->hsm_task_state = HSM_ST_IDLE;
4558 /* complete taskfile transaction */
4559 ata_hsm_qc_complete(qc, in_wq);
4561 poll_next = 0;
4562 break;
4564 case HSM_ST_ERR:
4565 /* make sure qc->err_mask is available to
4566 * know what's wrong and recover
4568 WARN_ON(qc->err_mask == 0);
4570 ap->hsm_task_state = HSM_ST_IDLE;
4572 /* complete taskfile transaction */
4573 ata_hsm_qc_complete(qc, in_wq);
4575 poll_next = 0;
4576 break;
4577 default:
4578 poll_next = 0;
4579 BUG();
4582 return poll_next;
4585 static void ata_pio_task(struct work_struct *work)
4587 struct ata_port *ap =
4588 container_of(work, struct ata_port, port_task.work);
4589 struct ata_queued_cmd *qc = ap->port_task_data;
4590 u8 status;
4591 int poll_next;
4593 fsm_start:
4594 WARN_ON(ap->hsm_task_state == HSM_ST_IDLE);
4597 * This is purely heuristic. This is a fast path.
4598 * Sometimes when we enter, BSY will be cleared in
4599 * a chk-status or two. If not, the drive is probably seeking
4600 * or something. Snooze for a couple msecs, then
4601 * chk-status again. If still busy, queue delayed work.
4603 status = ata_busy_wait(ap, ATA_BUSY, 5);
4604 if (status & ATA_BUSY) {
4605 msleep(2);
4606 status = ata_busy_wait(ap, ATA_BUSY, 10);
4607 if (status & ATA_BUSY) {
4608 ata_port_queue_task(ap, ata_pio_task, qc, ATA_SHORT_PAUSE);
4609 return;
4613 /* move the HSM */
4614 poll_next = ata_hsm_move(ap, qc, status, 1);
4616 /* another command or interrupt handler
4617 * may be running at this point.
4619 if (poll_next)
4620 goto fsm_start;
4624 * ata_qc_new - Request an available ATA command, for queueing
4625 * @ap: Port associated with device @dev
4626 * @dev: Device from whom we request an available command structure
4628 * LOCKING:
4629 * None.
4632 static struct ata_queued_cmd *ata_qc_new(struct ata_port *ap)
4634 struct ata_queued_cmd *qc = NULL;
4635 unsigned int i;
4637 /* no command while frozen */
4638 if (unlikely(ap->pflags & ATA_PFLAG_FROZEN))
4639 return NULL;
4641 /* the last tag is reserved for internal command. */
4642 for (i = 0; i < ATA_MAX_QUEUE - 1; i++)
4643 if (!test_and_set_bit(i, &ap->qc_allocated)) {
4644 qc = __ata_qc_from_tag(ap, i);
4645 break;
4648 if (qc)
4649 qc->tag = i;
4651 return qc;
4655 * ata_qc_new_init - Request an available ATA command, and initialize it
4656 * @dev: Device from whom we request an available command structure
4658 * LOCKING:
4659 * None.
4662 struct ata_queued_cmd *ata_qc_new_init(struct ata_device *dev)
4664 struct ata_port *ap = dev->ap;
4665 struct ata_queued_cmd *qc;
4667 qc = ata_qc_new(ap);
4668 if (qc) {
4669 qc->scsicmd = NULL;
4670 qc->ap = ap;
4671 qc->dev = dev;
4673 ata_qc_reinit(qc);
4676 return qc;
4680 * ata_qc_free - free unused ata_queued_cmd
4681 * @qc: Command to complete
4683 * Designed to free unused ata_queued_cmd object
4684 * in case something prevents using it.
4686 * LOCKING:
4687 * spin_lock_irqsave(host lock)
4689 void ata_qc_free(struct ata_queued_cmd *qc)
4691 struct ata_port *ap = qc->ap;
4692 unsigned int tag;
4694 WARN_ON(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
4696 qc->flags = 0;
4697 tag = qc->tag;
4698 if (likely(ata_tag_valid(tag))) {
4699 qc->tag = ATA_TAG_POISON;
4700 clear_bit(tag, &ap->qc_allocated);
4704 void __ata_qc_complete(struct ata_queued_cmd *qc)
4706 struct ata_port *ap = qc->ap;
4708 WARN_ON(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
4709 WARN_ON(!(qc->flags & ATA_QCFLAG_ACTIVE));
4711 if (likely(qc->flags & ATA_QCFLAG_DMAMAP))
4712 ata_sg_clean(qc);
4714 /* command should be marked inactive atomically with qc completion */
4715 if (qc->tf.protocol == ATA_PROT_NCQ)
4716 ap->sactive &= ~(1 << qc->tag);
4717 else
4718 ap->active_tag = ATA_TAG_POISON;
4720 /* atapi: mark qc as inactive to prevent the interrupt handler
4721 * from completing the command twice later, before the error handler
4722 * is called. (when rc != 0 and atapi request sense is needed)
4724 qc->flags &= ~ATA_QCFLAG_ACTIVE;
4725 ap->qc_active &= ~(1 << qc->tag);
4727 /* call completion callback */
4728 qc->complete_fn(qc);
4731 static void fill_result_tf(struct ata_queued_cmd *qc)
4733 struct ata_port *ap = qc->ap;
4735 ap->ops->tf_read(ap, &qc->result_tf);
4736 qc->result_tf.flags = qc->tf.flags;
4740 * ata_qc_complete - Complete an active ATA command
4741 * @qc: Command to complete
4742 * @err_mask: ATA Status register contents
4744 * Indicate to the mid and upper layers that an ATA
4745 * command has completed, with either an ok or not-ok status.
4747 * LOCKING:
4748 * spin_lock_irqsave(host lock)
4750 void ata_qc_complete(struct ata_queued_cmd *qc)
4752 struct ata_port *ap = qc->ap;
4754 /* XXX: New EH and old EH use different mechanisms to
4755 * synchronize EH with regular execution path.
4757 * In new EH, a failed qc is marked with ATA_QCFLAG_FAILED.
4758 * Normal execution path is responsible for not accessing a
4759 * failed qc. libata core enforces the rule by returning NULL
4760 * from ata_qc_from_tag() for failed qcs.
4762 * Old EH depends on ata_qc_complete() nullifying completion
4763 * requests if ATA_QCFLAG_EH_SCHEDULED is set. Old EH does
4764 * not synchronize with interrupt handler. Only PIO task is
4765 * taken care of.
4767 if (ap->ops->error_handler) {
4768 WARN_ON(ap->pflags & ATA_PFLAG_FROZEN);
4770 if (unlikely(qc->err_mask))
4771 qc->flags |= ATA_QCFLAG_FAILED;
4773 if (unlikely(qc->flags & ATA_QCFLAG_FAILED)) {
4774 if (!ata_tag_internal(qc->tag)) {
4775 /* always fill result TF for failed qc */
4776 fill_result_tf(qc);
4777 ata_qc_schedule_eh(qc);
4778 return;
4782 /* read result TF if requested */
4783 if (qc->flags & ATA_QCFLAG_RESULT_TF)
4784 fill_result_tf(qc);
4786 __ata_qc_complete(qc);
4787 } else {
4788 if (qc->flags & ATA_QCFLAG_EH_SCHEDULED)
4789 return;
4791 /* read result TF if failed or requested */
4792 if (qc->err_mask || qc->flags & ATA_QCFLAG_RESULT_TF)
4793 fill_result_tf(qc);
4795 __ata_qc_complete(qc);
4800 * ata_qc_complete_multiple - Complete multiple qcs successfully
4801 * @ap: port in question
4802 * @qc_active: new qc_active mask
4803 * @finish_qc: LLDD callback invoked before completing a qc
4805 * Complete in-flight commands. This functions is meant to be
4806 * called from low-level driver's interrupt routine to complete
4807 * requests normally. ap->qc_active and @qc_active is compared
4808 * and commands are completed accordingly.
4810 * LOCKING:
4811 * spin_lock_irqsave(host lock)
4813 * RETURNS:
4814 * Number of completed commands on success, -errno otherwise.
4816 int ata_qc_complete_multiple(struct ata_port *ap, u32 qc_active,
4817 void (*finish_qc)(struct ata_queued_cmd *))
4819 int nr_done = 0;
4820 u32 done_mask;
4821 int i;
4823 done_mask = ap->qc_active ^ qc_active;
4825 if (unlikely(done_mask & qc_active)) {
4826 ata_port_printk(ap, KERN_ERR, "illegal qc_active transition "
4827 "(%08x->%08x)\n", ap->qc_active, qc_active);
4828 return -EINVAL;
4831 for (i = 0; i < ATA_MAX_QUEUE; i++) {
4832 struct ata_queued_cmd *qc;
4834 if (!(done_mask & (1 << i)))
4835 continue;
4837 if ((qc = ata_qc_from_tag(ap, i))) {
4838 if (finish_qc)
4839 finish_qc(qc);
4840 ata_qc_complete(qc);
4841 nr_done++;
4845 return nr_done;
4848 static inline int ata_should_dma_map(struct ata_queued_cmd *qc)
4850 struct ata_port *ap = qc->ap;
4852 switch (qc->tf.protocol) {
4853 case ATA_PROT_NCQ:
4854 case ATA_PROT_DMA:
4855 case ATA_PROT_ATAPI_DMA:
4856 return 1;
4858 case ATA_PROT_ATAPI:
4859 case ATA_PROT_PIO:
4860 if (ap->flags & ATA_FLAG_PIO_DMA)
4861 return 1;
4863 /* fall through */
4865 default:
4866 return 0;
4869 /* never reached */
4873 * ata_qc_issue - issue taskfile to device
4874 * @qc: command to issue to device
4876 * Prepare an ATA command to submission to device.
4877 * This includes mapping the data into a DMA-able
4878 * area, filling in the S/G table, and finally
4879 * writing the taskfile to hardware, starting the command.
4881 * LOCKING:
4882 * spin_lock_irqsave(host lock)
4884 void ata_qc_issue(struct ata_queued_cmd *qc)
4886 struct ata_port *ap = qc->ap;
4888 /* Make sure only one non-NCQ command is outstanding. The
4889 * check is skipped for old EH because it reuses active qc to
4890 * request ATAPI sense.
4892 WARN_ON(ap->ops->error_handler && ata_tag_valid(ap->active_tag));
4894 if (qc->tf.protocol == ATA_PROT_NCQ) {
4895 WARN_ON(ap->sactive & (1 << qc->tag));
4896 ap->sactive |= 1 << qc->tag;
4897 } else {
4898 WARN_ON(ap->sactive);
4899 ap->active_tag = qc->tag;
4902 qc->flags |= ATA_QCFLAG_ACTIVE;
4903 ap->qc_active |= 1 << qc->tag;
4905 if (ata_should_dma_map(qc)) {
4906 if (qc->flags & ATA_QCFLAG_SG) {
4907 if (ata_sg_setup(qc))
4908 goto sg_err;
4909 } else if (qc->flags & ATA_QCFLAG_SINGLE) {
4910 if (ata_sg_setup_one(qc))
4911 goto sg_err;
4913 } else {
4914 qc->flags &= ~ATA_QCFLAG_DMAMAP;
4917 ap->ops->qc_prep(qc);
4919 qc->err_mask |= ap->ops->qc_issue(qc);
4920 if (unlikely(qc->err_mask))
4921 goto err;
4922 return;
4924 sg_err:
4925 qc->flags &= ~ATA_QCFLAG_DMAMAP;
4926 qc->err_mask |= AC_ERR_SYSTEM;
4927 err:
4928 ata_qc_complete(qc);
4932 * ata_qc_issue_prot - issue taskfile to device in proto-dependent manner
4933 * @qc: command to issue to device
4935 * Using various libata functions and hooks, this function
4936 * starts an ATA command. ATA commands are grouped into
4937 * classes called "protocols", and issuing each type of protocol
4938 * is slightly different.
4940 * May be used as the qc_issue() entry in ata_port_operations.
4942 * LOCKING:
4943 * spin_lock_irqsave(host lock)
4945 * RETURNS:
4946 * Zero on success, AC_ERR_* mask on failure
4949 unsigned int ata_qc_issue_prot(struct ata_queued_cmd *qc)
4951 struct ata_port *ap = qc->ap;
4953 /* Use polling pio if the LLD doesn't handle
4954 * interrupt driven pio and atapi CDB interrupt.
4956 if (ap->flags & ATA_FLAG_PIO_POLLING) {
4957 switch (qc->tf.protocol) {
4958 case ATA_PROT_PIO:
4959 case ATA_PROT_NODATA:
4960 case ATA_PROT_ATAPI:
4961 case ATA_PROT_ATAPI_NODATA:
4962 qc->tf.flags |= ATA_TFLAG_POLLING;
4963 break;
4964 case ATA_PROT_ATAPI_DMA:
4965 if (qc->dev->flags & ATA_DFLAG_CDB_INTR)
4966 /* see ata_dma_blacklisted() */
4967 BUG();
4968 break;
4969 default:
4970 break;
4974 /* Some controllers show flaky interrupt behavior after
4975 * setting xfer mode. Use polling instead.
4977 if (unlikely(qc->tf.command == ATA_CMD_SET_FEATURES &&
4978 qc->tf.feature == SETFEATURES_XFER) &&
4979 (ap->flags & ATA_FLAG_SETXFER_POLLING))
4980 qc->tf.flags |= ATA_TFLAG_POLLING;
4982 /* select the device */
4983 ata_dev_select(ap, qc->dev->devno, 1, 0);
4985 /* start the command */
4986 switch (qc->tf.protocol) {
4987 case ATA_PROT_NODATA:
4988 if (qc->tf.flags & ATA_TFLAG_POLLING)
4989 ata_qc_set_polling(qc);
4991 ata_tf_to_host(ap, &qc->tf);
4992 ap->hsm_task_state = HSM_ST_LAST;
4994 if (qc->tf.flags & ATA_TFLAG_POLLING)
4995 ata_port_queue_task(ap, ata_pio_task, qc, 0);
4997 break;
4999 case ATA_PROT_DMA:
5000 WARN_ON(qc->tf.flags & ATA_TFLAG_POLLING);
5002 ap->ops->tf_load(ap, &qc->tf); /* load tf registers */
5003 ap->ops->bmdma_setup(qc); /* set up bmdma */
5004 ap->ops->bmdma_start(qc); /* initiate bmdma */
5005 ap->hsm_task_state = HSM_ST_LAST;
5006 break;
5008 case ATA_PROT_PIO:
5009 if (qc->tf.flags & ATA_TFLAG_POLLING)
5010 ata_qc_set_polling(qc);
5012 ata_tf_to_host(ap, &qc->tf);
5014 if (qc->tf.flags & ATA_TFLAG_WRITE) {
5015 /* PIO data out protocol */
5016 ap->hsm_task_state = HSM_ST_FIRST;
5017 ata_port_queue_task(ap, ata_pio_task, qc, 0);
5019 /* always send first data block using
5020 * the ata_pio_task() codepath.
5022 } else {
5023 /* PIO data in protocol */
5024 ap->hsm_task_state = HSM_ST;
5026 if (qc->tf.flags & ATA_TFLAG_POLLING)
5027 ata_port_queue_task(ap, ata_pio_task, qc, 0);
5029 /* if polling, ata_pio_task() handles the rest.
5030 * otherwise, interrupt handler takes over from here.
5034 break;
5036 case ATA_PROT_ATAPI:
5037 case ATA_PROT_ATAPI_NODATA:
5038 if (qc->tf.flags & ATA_TFLAG_POLLING)
5039 ata_qc_set_polling(qc);
5041 ata_tf_to_host(ap, &qc->tf);
5043 ap->hsm_task_state = HSM_ST_FIRST;
5045 /* send cdb by polling if no cdb interrupt */
5046 if ((!(qc->dev->flags & ATA_DFLAG_CDB_INTR)) ||
5047 (qc->tf.flags & ATA_TFLAG_POLLING))
5048 ata_port_queue_task(ap, ata_pio_task, qc, 0);
5049 break;
5051 case ATA_PROT_ATAPI_DMA:
5052 WARN_ON(qc->tf.flags & ATA_TFLAG_POLLING);
5054 ap->ops->tf_load(ap, &qc->tf); /* load tf registers */
5055 ap->ops->bmdma_setup(qc); /* set up bmdma */
5056 ap->hsm_task_state = HSM_ST_FIRST;
5058 /* send cdb by polling if no cdb interrupt */
5059 if (!(qc->dev->flags & ATA_DFLAG_CDB_INTR))
5060 ata_port_queue_task(ap, ata_pio_task, qc, 0);
5061 break;
5063 default:
5064 WARN_ON(1);
5065 return AC_ERR_SYSTEM;
5068 return 0;
5072 * ata_host_intr - Handle host interrupt for given (port, task)
5073 * @ap: Port on which interrupt arrived (possibly...)
5074 * @qc: Taskfile currently active in engine
5076 * Handle host interrupt for given queued command. Currently,
5077 * only DMA interrupts are handled. All other commands are
5078 * handled via polling with interrupts disabled (nIEN bit).
5080 * LOCKING:
5081 * spin_lock_irqsave(host lock)
5083 * RETURNS:
5084 * One if interrupt was handled, zero if not (shared irq).
5087 inline unsigned int ata_host_intr (struct ata_port *ap,
5088 struct ata_queued_cmd *qc)
5090 struct ata_eh_info *ehi = &ap->eh_info;
5091 u8 status, host_stat = 0;
5093 VPRINTK("ata%u: protocol %d task_state %d\n",
5094 ap->id, qc->tf.protocol, ap->hsm_task_state);
5096 /* Check whether we are expecting interrupt in this state */
5097 switch (ap->hsm_task_state) {
5098 case HSM_ST_FIRST:
5099 /* Some pre-ATAPI-4 devices assert INTRQ
5100 * at this state when ready to receive CDB.
5103 /* Check the ATA_DFLAG_CDB_INTR flag is enough here.
5104 * The flag was turned on only for atapi devices.
5105 * No need to check is_atapi_taskfile(&qc->tf) again.
5107 if (!(qc->dev->flags & ATA_DFLAG_CDB_INTR))
5108 goto idle_irq;
5109 break;
5110 case HSM_ST_LAST:
5111 if (qc->tf.protocol == ATA_PROT_DMA ||
5112 qc->tf.protocol == ATA_PROT_ATAPI_DMA) {
5113 /* check status of DMA engine */
5114 host_stat = ap->ops->bmdma_status(ap);
5115 VPRINTK("ata%u: host_stat 0x%X\n", ap->id, host_stat);
5117 /* if it's not our irq... */
5118 if (!(host_stat & ATA_DMA_INTR))
5119 goto idle_irq;
5121 /* before we do anything else, clear DMA-Start bit */
5122 ap->ops->bmdma_stop(qc);
5124 if (unlikely(host_stat & ATA_DMA_ERR)) {
5125 /* error when transfering data to/from memory */
5126 qc->err_mask |= AC_ERR_HOST_BUS;
5127 ap->hsm_task_state = HSM_ST_ERR;
5130 break;
5131 case HSM_ST:
5132 break;
5133 default:
5134 goto idle_irq;
5137 /* check altstatus */
5138 status = ata_altstatus(ap);
5139 if (status & ATA_BUSY)
5140 goto idle_irq;
5142 /* check main status, clearing INTRQ */
5143 status = ata_chk_status(ap);
5144 if (unlikely(status & ATA_BUSY))
5145 goto idle_irq;
5147 /* ack bmdma irq events */
5148 ap->ops->irq_clear(ap);
5150 ata_hsm_move(ap, qc, status, 0);
5152 if (unlikely(qc->err_mask) && (qc->tf.protocol == ATA_PROT_DMA ||
5153 qc->tf.protocol == ATA_PROT_ATAPI_DMA))
5154 ata_ehi_push_desc(ehi, "BMDMA stat 0x%x", host_stat);
5156 return 1; /* irq handled */
5158 idle_irq:
5159 ap->stats.idle_irq++;
5161 #ifdef ATA_IRQ_TRAP
5162 if ((ap->stats.idle_irq % 1000) == 0) {
5163 ata_irq_ack(ap, 0); /* debug trap */
5164 ata_port_printk(ap, KERN_WARNING, "irq trap\n");
5165 return 1;
5167 #endif
5168 return 0; /* irq not handled */
5172 * ata_interrupt - Default ATA host interrupt handler
5173 * @irq: irq line (unused)
5174 * @dev_instance: pointer to our ata_host information structure
5176 * Default interrupt handler for PCI IDE devices. Calls
5177 * ata_host_intr() for each port that is not disabled.
5179 * LOCKING:
5180 * Obtains host lock during operation.
5182 * RETURNS:
5183 * IRQ_NONE or IRQ_HANDLED.
5186 irqreturn_t ata_interrupt (int irq, void *dev_instance)
5188 struct ata_host *host = dev_instance;
5189 unsigned int i;
5190 unsigned int handled = 0;
5191 unsigned long flags;
5193 /* TODO: make _irqsave conditional on x86 PCI IDE legacy mode */
5194 spin_lock_irqsave(&host->lock, flags);
5196 for (i = 0; i < host->n_ports; i++) {
5197 struct ata_port *ap;
5199 ap = host->ports[i];
5200 if (ap &&
5201 !(ap->flags & ATA_FLAG_DISABLED)) {
5202 struct ata_queued_cmd *qc;
5204 qc = ata_qc_from_tag(ap, ap->active_tag);
5205 if (qc && (!(qc->tf.flags & ATA_TFLAG_POLLING)) &&
5206 (qc->flags & ATA_QCFLAG_ACTIVE))
5207 handled |= ata_host_intr(ap, qc);
5211 spin_unlock_irqrestore(&host->lock, flags);
5213 return IRQ_RETVAL(handled);
5217 * sata_scr_valid - test whether SCRs are accessible
5218 * @ap: ATA port to test SCR accessibility for
5220 * Test whether SCRs are accessible for @ap.
5222 * LOCKING:
5223 * None.
5225 * RETURNS:
5226 * 1 if SCRs are accessible, 0 otherwise.
5228 int sata_scr_valid(struct ata_port *ap)
5230 return ap->cbl == ATA_CBL_SATA && ap->ops->scr_read;
5234 * sata_scr_read - read SCR register of the specified port
5235 * @ap: ATA port to read SCR for
5236 * @reg: SCR to read
5237 * @val: Place to store read value
5239 * Read SCR register @reg of @ap into *@val. This function is
5240 * guaranteed to succeed if the cable type of the port is SATA
5241 * and the port implements ->scr_read.
5243 * LOCKING:
5244 * None.
5246 * RETURNS:
5247 * 0 on success, negative errno on failure.
5249 int sata_scr_read(struct ata_port *ap, int reg, u32 *val)
5251 if (sata_scr_valid(ap)) {
5252 *val = ap->ops->scr_read(ap, reg);
5253 return 0;
5255 return -EOPNOTSUPP;
5259 * sata_scr_write - write SCR register of the specified port
5260 * @ap: ATA port to write SCR for
5261 * @reg: SCR to write
5262 * @val: value to write
5264 * Write @val to SCR register @reg of @ap. This function is
5265 * guaranteed to succeed if the cable type of the port is SATA
5266 * and the port implements ->scr_read.
5268 * LOCKING:
5269 * None.
5271 * RETURNS:
5272 * 0 on success, negative errno on failure.
5274 int sata_scr_write(struct ata_port *ap, int reg, u32 val)
5276 if (sata_scr_valid(ap)) {
5277 ap->ops->scr_write(ap, reg, val);
5278 return 0;
5280 return -EOPNOTSUPP;
5284 * sata_scr_write_flush - write SCR register of the specified port and flush
5285 * @ap: ATA port to write SCR for
5286 * @reg: SCR to write
5287 * @val: value to write
5289 * This function is identical to sata_scr_write() except that this
5290 * function performs flush after writing to the register.
5292 * LOCKING:
5293 * None.
5295 * RETURNS:
5296 * 0 on success, negative errno on failure.
5298 int sata_scr_write_flush(struct ata_port *ap, int reg, u32 val)
5300 if (sata_scr_valid(ap)) {
5301 ap->ops->scr_write(ap, reg, val);
5302 ap->ops->scr_read(ap, reg);
5303 return 0;
5305 return -EOPNOTSUPP;
5309 * ata_port_online - test whether the given port is online
5310 * @ap: ATA port to test
5312 * Test whether @ap is online. Note that this function returns 0
5313 * if online status of @ap cannot be obtained, so
5314 * ata_port_online(ap) != !ata_port_offline(ap).
5316 * LOCKING:
5317 * None.
5319 * RETURNS:
5320 * 1 if the port online status is available and online.
5322 int ata_port_online(struct ata_port *ap)
5324 u32 sstatus;
5326 if (!sata_scr_read(ap, SCR_STATUS, &sstatus) && (sstatus & 0xf) == 0x3)
5327 return 1;
5328 return 0;
5332 * ata_port_offline - test whether the given port is offline
5333 * @ap: ATA port to test
5335 * Test whether @ap is offline. Note that this function returns
5336 * 0 if offline status of @ap cannot be obtained, so
5337 * ata_port_online(ap) != !ata_port_offline(ap).
5339 * LOCKING:
5340 * None.
5342 * RETURNS:
5343 * 1 if the port offline status is available and offline.
5345 int ata_port_offline(struct ata_port *ap)
5347 u32 sstatus;
5349 if (!sata_scr_read(ap, SCR_STATUS, &sstatus) && (sstatus & 0xf) != 0x3)
5350 return 1;
5351 return 0;
5354 int ata_flush_cache(struct ata_device *dev)
5356 unsigned int err_mask;
5357 u8 cmd;
5359 if (!ata_try_flush_cache(dev))
5360 return 0;
5362 if (dev->flags & ATA_DFLAG_FLUSH_EXT)
5363 cmd = ATA_CMD_FLUSH_EXT;
5364 else
5365 cmd = ATA_CMD_FLUSH;
5367 err_mask = ata_do_simple_cmd(dev, cmd);
5368 if (err_mask) {
5369 ata_dev_printk(dev, KERN_ERR, "failed to flush cache\n");
5370 return -EIO;
5373 return 0;
5376 static int ata_host_request_pm(struct ata_host *host, pm_message_t mesg,
5377 unsigned int action, unsigned int ehi_flags,
5378 int wait)
5380 unsigned long flags;
5381 int i, rc;
5383 for (i = 0; i < host->n_ports; i++) {
5384 struct ata_port *ap = host->ports[i];
5386 /* Previous resume operation might still be in
5387 * progress. Wait for PM_PENDING to clear.
5389 if (ap->pflags & ATA_PFLAG_PM_PENDING) {
5390 ata_port_wait_eh(ap);
5391 WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING);
5394 /* request PM ops to EH */
5395 spin_lock_irqsave(ap->lock, flags);
5397 ap->pm_mesg = mesg;
5398 if (wait) {
5399 rc = 0;
5400 ap->pm_result = &rc;
5403 ap->pflags |= ATA_PFLAG_PM_PENDING;
5404 ap->eh_info.action |= action;
5405 ap->eh_info.flags |= ehi_flags;
5407 ata_port_schedule_eh(ap);
5409 spin_unlock_irqrestore(ap->lock, flags);
5411 /* wait and check result */
5412 if (wait) {
5413 ata_port_wait_eh(ap);
5414 WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING);
5415 if (rc)
5416 return rc;
5420 return 0;
5424 * ata_host_suspend - suspend host
5425 * @host: host to suspend
5426 * @mesg: PM message
5428 * Suspend @host. Actual operation is performed by EH. This
5429 * function requests EH to perform PM operations and waits for EH
5430 * to finish.
5432 * LOCKING:
5433 * Kernel thread context (may sleep).
5435 * RETURNS:
5436 * 0 on success, -errno on failure.
5438 int ata_host_suspend(struct ata_host *host, pm_message_t mesg)
5440 int i, j, rc;
5442 rc = ata_host_request_pm(host, mesg, 0, ATA_EHI_QUIET, 1);
5443 if (rc)
5444 goto fail;
5446 /* EH is quiescent now. Fail if we have any ready device.
5447 * This happens if hotplug occurs between completion of device
5448 * suspension and here.
5450 for (i = 0; i < host->n_ports; i++) {
5451 struct ata_port *ap = host->ports[i];
5453 for (j = 0; j < ATA_MAX_DEVICES; j++) {
5454 struct ata_device *dev = &ap->device[j];
5456 if (ata_dev_ready(dev)) {
5457 ata_port_printk(ap, KERN_WARNING,
5458 "suspend failed, device %d "
5459 "still active\n", dev->devno);
5460 rc = -EBUSY;
5461 goto fail;
5466 host->dev->power.power_state = mesg;
5467 return 0;
5469 fail:
5470 ata_host_resume(host);
5471 return rc;
5475 * ata_host_resume - resume host
5476 * @host: host to resume
5478 * Resume @host. Actual operation is performed by EH. This
5479 * function requests EH to perform PM operations and returns.
5480 * Note that all resume operations are performed parallely.
5482 * LOCKING:
5483 * Kernel thread context (may sleep).
5485 void ata_host_resume(struct ata_host *host)
5487 ata_host_request_pm(host, PMSG_ON, ATA_EH_SOFTRESET,
5488 ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET, 0);
5489 host->dev->power.power_state = PMSG_ON;
5493 * ata_port_start - Set port up for dma.
5494 * @ap: Port to initialize
5496 * Called just after data structures for each port are
5497 * initialized. Allocates space for PRD table.
5499 * May be used as the port_start() entry in ata_port_operations.
5501 * LOCKING:
5502 * Inherited from caller.
5505 int ata_port_start (struct ata_port *ap)
5507 struct device *dev = ap->dev;
5508 int rc;
5510 ap->prd = dma_alloc_coherent(dev, ATA_PRD_TBL_SZ, &ap->prd_dma, GFP_KERNEL);
5511 if (!ap->prd)
5512 return -ENOMEM;
5514 rc = ata_pad_alloc(ap, dev);
5515 if (rc) {
5516 dma_free_coherent(dev, ATA_PRD_TBL_SZ, ap->prd, ap->prd_dma);
5517 return rc;
5520 DPRINTK("prd alloc, virt %p, dma %llx\n", ap->prd, (unsigned long long) ap->prd_dma);
5522 return 0;
5527 * ata_port_stop - Undo ata_port_start()
5528 * @ap: Port to shut down
5530 * Frees the PRD table.
5532 * May be used as the port_stop() entry in ata_port_operations.
5534 * LOCKING:
5535 * Inherited from caller.
5538 void ata_port_stop (struct ata_port *ap)
5540 struct device *dev = ap->dev;
5542 dma_free_coherent(dev, ATA_PRD_TBL_SZ, ap->prd, ap->prd_dma);
5543 ata_pad_free(ap, dev);
5546 void ata_host_stop (struct ata_host *host)
5548 if (host->mmio_base)
5549 iounmap(host->mmio_base);
5553 * ata_dev_init - Initialize an ata_device structure
5554 * @dev: Device structure to initialize
5556 * Initialize @dev in preparation for probing.
5558 * LOCKING:
5559 * Inherited from caller.
5561 void ata_dev_init(struct ata_device *dev)
5563 struct ata_port *ap = dev->ap;
5564 unsigned long flags;
5566 /* SATA spd limit is bound to the first device */
5567 ap->sata_spd_limit = ap->hw_sata_spd_limit;
5569 /* High bits of dev->flags are used to record warm plug
5570 * requests which occur asynchronously. Synchronize using
5571 * host lock.
5573 spin_lock_irqsave(ap->lock, flags);
5574 dev->flags &= ~ATA_DFLAG_INIT_MASK;
5575 spin_unlock_irqrestore(ap->lock, flags);
5577 memset((void *)dev + ATA_DEVICE_CLEAR_OFFSET, 0,
5578 sizeof(*dev) - ATA_DEVICE_CLEAR_OFFSET);
5579 dev->pio_mask = UINT_MAX;
5580 dev->mwdma_mask = UINT_MAX;
5581 dev->udma_mask = UINT_MAX;
5585 * ata_port_init - Initialize an ata_port structure
5586 * @ap: Structure to initialize
5587 * @host: Collection of hosts to which @ap belongs
5588 * @ent: Probe information provided by low-level driver
5589 * @port_no: Port number associated with this ata_port
5591 * Initialize a new ata_port structure.
5593 * LOCKING:
5594 * Inherited from caller.
5596 void ata_port_init(struct ata_port *ap, struct ata_host *host,
5597 const struct ata_probe_ent *ent, unsigned int port_no)
5599 unsigned int i;
5601 ap->lock = &host->lock;
5602 ap->flags = ATA_FLAG_DISABLED;
5603 ap->id = ata_unique_id++;
5604 ap->ctl = ATA_DEVCTL_OBS;
5605 ap->host = host;
5606 ap->dev = ent->dev;
5607 ap->port_no = port_no;
5608 if (port_no == 1 && ent->pinfo2) {
5609 ap->pio_mask = ent->pinfo2->pio_mask;
5610 ap->mwdma_mask = ent->pinfo2->mwdma_mask;
5611 ap->udma_mask = ent->pinfo2->udma_mask;
5612 ap->flags |= ent->pinfo2->flags;
5613 ap->ops = ent->pinfo2->port_ops;
5614 } else {
5615 ap->pio_mask = ent->pio_mask;
5616 ap->mwdma_mask = ent->mwdma_mask;
5617 ap->udma_mask = ent->udma_mask;
5618 ap->flags |= ent->port_flags;
5619 ap->ops = ent->port_ops;
5621 ap->hw_sata_spd_limit = UINT_MAX;
5622 ap->active_tag = ATA_TAG_POISON;
5623 ap->last_ctl = 0xFF;
5625 #if defined(ATA_VERBOSE_DEBUG)
5626 /* turn on all debugging levels */
5627 ap->msg_enable = 0x00FF;
5628 #elif defined(ATA_DEBUG)
5629 ap->msg_enable = ATA_MSG_DRV | ATA_MSG_INFO | ATA_MSG_CTL | ATA_MSG_WARN | ATA_MSG_ERR;
5630 #else
5631 ap->msg_enable = ATA_MSG_DRV | ATA_MSG_ERR | ATA_MSG_WARN;
5632 #endif
5634 INIT_DELAYED_WORK(&ap->port_task, NULL);
5635 INIT_DELAYED_WORK(&ap->hotplug_task, ata_scsi_hotplug);
5636 INIT_WORK(&ap->scsi_rescan_task, ata_scsi_dev_rescan);
5637 INIT_LIST_HEAD(&ap->eh_done_q);
5638 init_waitqueue_head(&ap->eh_wait_q);
5640 /* set cable type */
5641 ap->cbl = ATA_CBL_NONE;
5642 if (ap->flags & ATA_FLAG_SATA)
5643 ap->cbl = ATA_CBL_SATA;
5645 for (i = 0; i < ATA_MAX_DEVICES; i++) {
5646 struct ata_device *dev = &ap->device[i];
5647 dev->ap = ap;
5648 dev->devno = i;
5649 ata_dev_init(dev);
5652 #ifdef ATA_IRQ_TRAP
5653 ap->stats.unhandled_irq = 1;
5654 ap->stats.idle_irq = 1;
5655 #endif
5657 memcpy(&ap->ioaddr, &ent->port[port_no], sizeof(struct ata_ioports));
5661 * ata_port_init_shost - Initialize SCSI host associated with ATA port
5662 * @ap: ATA port to initialize SCSI host for
5663 * @shost: SCSI host associated with @ap
5665 * Initialize SCSI host @shost associated with ATA port @ap.
5667 * LOCKING:
5668 * Inherited from caller.
5670 static void ata_port_init_shost(struct ata_port *ap, struct Scsi_Host *shost)
5672 ap->scsi_host = shost;
5674 shost->unique_id = ap->id;
5675 shost->max_id = 16;
5676 shost->max_lun = 1;
5677 shost->max_channel = 1;
5678 shost->max_cmd_len = 12;
5682 * ata_port_add - Attach low-level ATA driver to system
5683 * @ent: Information provided by low-level driver
5684 * @host: Collections of ports to which we add
5685 * @port_no: Port number associated with this host
5687 * Attach low-level ATA driver to system.
5689 * LOCKING:
5690 * PCI/etc. bus probe sem.
5692 * RETURNS:
5693 * New ata_port on success, for NULL on error.
5695 static struct ata_port * ata_port_add(const struct ata_probe_ent *ent,
5696 struct ata_host *host,
5697 unsigned int port_no)
5699 struct Scsi_Host *shost;
5700 struct ata_port *ap;
5702 DPRINTK("ENTER\n");
5704 if (!ent->port_ops->error_handler &&
5705 !(ent->port_flags & (ATA_FLAG_SATA_RESET | ATA_FLAG_SRST))) {
5706 printk(KERN_ERR "ata%u: no reset mechanism available\n",
5707 port_no);
5708 return NULL;
5711 shost = scsi_host_alloc(ent->sht, sizeof(struct ata_port));
5712 if (!shost)
5713 return NULL;
5715 shost->transportt = &ata_scsi_transport_template;
5717 ap = ata_shost_to_port(shost);
5719 ata_port_init(ap, host, ent, port_no);
5720 ata_port_init_shost(ap, shost);
5722 return ap;
5726 * ata_sas_host_init - Initialize a host struct
5727 * @host: host to initialize
5728 * @dev: device host is attached to
5729 * @flags: host flags
5730 * @ops: port_ops
5732 * LOCKING:
5733 * PCI/etc. bus probe sem.
5737 void ata_host_init(struct ata_host *host, struct device *dev,
5738 unsigned long flags, const struct ata_port_operations *ops)
5740 spin_lock_init(&host->lock);
5741 host->dev = dev;
5742 host->flags = flags;
5743 host->ops = ops;
5747 * ata_device_add - Register hardware device with ATA and SCSI layers
5748 * @ent: Probe information describing hardware device to be registered
5750 * This function processes the information provided in the probe
5751 * information struct @ent, allocates the necessary ATA and SCSI
5752 * host information structures, initializes them, and registers
5753 * everything with requisite kernel subsystems.
5755 * This function requests irqs, probes the ATA bus, and probes
5756 * the SCSI bus.
5758 * LOCKING:
5759 * PCI/etc. bus probe sem.
5761 * RETURNS:
5762 * Number of ports registered. Zero on error (no ports registered).
5764 int ata_device_add(const struct ata_probe_ent *ent)
5766 unsigned int i;
5767 struct device *dev = ent->dev;
5768 struct ata_host *host;
5769 int rc;
5771 DPRINTK("ENTER\n");
5773 if (ent->irq == 0) {
5774 dev_printk(KERN_ERR, dev, "is not available: No interrupt assigned.\n");
5775 return 0;
5777 /* alloc a container for our list of ATA ports (buses) */
5778 host = kzalloc(sizeof(struct ata_host) +
5779 (ent->n_ports * sizeof(void *)), GFP_KERNEL);
5780 if (!host)
5781 return 0;
5783 ata_host_init(host, dev, ent->_host_flags, ent->port_ops);
5784 host->n_ports = ent->n_ports;
5785 host->irq = ent->irq;
5786 host->irq2 = ent->irq2;
5787 host->mmio_base = ent->mmio_base;
5788 host->private_data = ent->private_data;
5790 /* register each port bound to this device */
5791 for (i = 0; i < host->n_ports; i++) {
5792 struct ata_port *ap;
5793 unsigned long xfer_mode_mask;
5794 int irq_line = ent->irq;
5796 ap = ata_port_add(ent, host, i);
5797 host->ports[i] = ap;
5798 if (!ap)
5799 goto err_out;
5801 /* dummy? */
5802 if (ent->dummy_port_mask & (1 << i)) {
5803 ata_port_printk(ap, KERN_INFO, "DUMMY\n");
5804 ap->ops = &ata_dummy_port_ops;
5805 continue;
5808 /* start port */
5809 rc = ap->ops->port_start(ap);
5810 if (rc) {
5811 host->ports[i] = NULL;
5812 scsi_host_put(ap->scsi_host);
5813 goto err_out;
5816 /* Report the secondary IRQ for second channel legacy */
5817 if (i == 1 && ent->irq2)
5818 irq_line = ent->irq2;
5820 xfer_mode_mask =(ap->udma_mask << ATA_SHIFT_UDMA) |
5821 (ap->mwdma_mask << ATA_SHIFT_MWDMA) |
5822 (ap->pio_mask << ATA_SHIFT_PIO);
5824 /* print per-port info to dmesg */
5825 ata_port_printk(ap, KERN_INFO, "%cATA max %s cmd 0x%lX "
5826 "ctl 0x%lX bmdma 0x%lX irq %d\n",
5827 ap->flags & ATA_FLAG_SATA ? 'S' : 'P',
5828 ata_mode_string(xfer_mode_mask),
5829 ap->ioaddr.cmd_addr,
5830 ap->ioaddr.ctl_addr,
5831 ap->ioaddr.bmdma_addr,
5832 irq_line);
5834 /* freeze port before requesting IRQ */
5835 ata_eh_freeze_port(ap);
5838 /* obtain irq, that may be shared between channels */
5839 rc = request_irq(ent->irq, ent->port_ops->irq_handler, ent->irq_flags,
5840 DRV_NAME, host);
5841 if (rc) {
5842 dev_printk(KERN_ERR, dev, "irq %lu request failed: %d\n",
5843 ent->irq, rc);
5844 goto err_out;
5847 /* do we have a second IRQ for the other channel, eg legacy mode */
5848 if (ent->irq2) {
5849 /* We will get weird core code crashes later if this is true
5850 so trap it now */
5851 BUG_ON(ent->irq == ent->irq2);
5853 rc = request_irq(ent->irq2, ent->port_ops->irq_handler, ent->irq_flags,
5854 DRV_NAME, host);
5855 if (rc) {
5856 dev_printk(KERN_ERR, dev, "irq %lu request failed: %d\n",
5857 ent->irq2, rc);
5858 goto err_out_free_irq;
5862 /* perform each probe synchronously */
5863 DPRINTK("probe begin\n");
5864 for (i = 0; i < host->n_ports; i++) {
5865 struct ata_port *ap = host->ports[i];
5866 u32 scontrol;
5867 int rc;
5869 /* init sata_spd_limit to the current value */
5870 if (sata_scr_read(ap, SCR_CONTROL, &scontrol) == 0) {
5871 int spd = (scontrol >> 4) & 0xf;
5872 ap->hw_sata_spd_limit &= (1 << spd) - 1;
5874 ap->sata_spd_limit = ap->hw_sata_spd_limit;
5876 rc = scsi_add_host(ap->scsi_host, dev);
5877 if (rc) {
5878 ata_port_printk(ap, KERN_ERR, "scsi_add_host failed\n");
5879 /* FIXME: do something useful here */
5880 /* FIXME: handle unconditional calls to
5881 * scsi_scan_host and ata_host_remove, below,
5882 * at the very least
5886 if (ap->ops->error_handler) {
5887 struct ata_eh_info *ehi = &ap->eh_info;
5888 unsigned long flags;
5890 ata_port_probe(ap);
5892 /* kick EH for boot probing */
5893 spin_lock_irqsave(ap->lock, flags);
5895 ehi->probe_mask = (1 << ATA_MAX_DEVICES) - 1;
5896 ehi->action |= ATA_EH_SOFTRESET;
5897 ehi->flags |= ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET;
5899 ap->pflags |= ATA_PFLAG_LOADING;
5900 ata_port_schedule_eh(ap);
5902 spin_unlock_irqrestore(ap->lock, flags);
5904 /* wait for EH to finish */
5905 ata_port_wait_eh(ap);
5906 } else {
5907 DPRINTK("ata%u: bus probe begin\n", ap->id);
5908 rc = ata_bus_probe(ap);
5909 DPRINTK("ata%u: bus probe end\n", ap->id);
5911 if (rc) {
5912 /* FIXME: do something useful here?
5913 * Current libata behavior will
5914 * tear down everything when
5915 * the module is removed
5916 * or the h/w is unplugged.
5922 /* probes are done, now scan each port's disk(s) */
5923 DPRINTK("host probe begin\n");
5924 for (i = 0; i < host->n_ports; i++) {
5925 struct ata_port *ap = host->ports[i];
5927 ata_scsi_scan_host(ap);
5930 dev_set_drvdata(dev, host);
5932 VPRINTK("EXIT, returning %u\n", ent->n_ports);
5933 return ent->n_ports; /* success */
5935 err_out_free_irq:
5936 free_irq(ent->irq, host);
5937 err_out:
5938 for (i = 0; i < host->n_ports; i++) {
5939 struct ata_port *ap = host->ports[i];
5940 if (ap) {
5941 ap->ops->port_stop(ap);
5942 scsi_host_put(ap->scsi_host);
5946 kfree(host);
5947 VPRINTK("EXIT, returning 0\n");
5948 return 0;
5952 * ata_port_detach - Detach ATA port in prepration of device removal
5953 * @ap: ATA port to be detached
5955 * Detach all ATA devices and the associated SCSI devices of @ap;
5956 * then, remove the associated SCSI host. @ap is guaranteed to
5957 * be quiescent on return from this function.
5959 * LOCKING:
5960 * Kernel thread context (may sleep).
5962 void ata_port_detach(struct ata_port *ap)
5964 unsigned long flags;
5965 int i;
5967 if (!ap->ops->error_handler)
5968 goto skip_eh;
5970 /* tell EH we're leaving & flush EH */
5971 spin_lock_irqsave(ap->lock, flags);
5972 ap->pflags |= ATA_PFLAG_UNLOADING;
5973 spin_unlock_irqrestore(ap->lock, flags);
5975 ata_port_wait_eh(ap);
5977 /* EH is now guaranteed to see UNLOADING, so no new device
5978 * will be attached. Disable all existing devices.
5980 spin_lock_irqsave(ap->lock, flags);
5982 for (i = 0; i < ATA_MAX_DEVICES; i++)
5983 ata_dev_disable(&ap->device[i]);
5985 spin_unlock_irqrestore(ap->lock, flags);
5987 /* Final freeze & EH. All in-flight commands are aborted. EH
5988 * will be skipped and retrials will be terminated with bad
5989 * target.
5991 spin_lock_irqsave(ap->lock, flags);
5992 ata_port_freeze(ap); /* won't be thawed */
5993 spin_unlock_irqrestore(ap->lock, flags);
5995 ata_port_wait_eh(ap);
5997 /* Flush hotplug task. The sequence is similar to
5998 * ata_port_flush_task().
6000 flush_workqueue(ata_aux_wq);
6001 cancel_delayed_work(&ap->hotplug_task);
6002 flush_workqueue(ata_aux_wq);
6004 skip_eh:
6005 /* remove the associated SCSI host */
6006 scsi_remove_host(ap->scsi_host);
6010 * ata_host_remove - PCI layer callback for device removal
6011 * @host: ATA host set that was removed
6013 * Unregister all objects associated with this host set. Free those
6014 * objects.
6016 * LOCKING:
6017 * Inherited from calling layer (may sleep).
6020 void ata_host_remove(struct ata_host *host)
6022 unsigned int i;
6024 for (i = 0; i < host->n_ports; i++)
6025 ata_port_detach(host->ports[i]);
6027 free_irq(host->irq, host);
6028 if (host->irq2)
6029 free_irq(host->irq2, host);
6031 for (i = 0; i < host->n_ports; i++) {
6032 struct ata_port *ap = host->ports[i];
6034 ata_scsi_release(ap->scsi_host);
6036 if ((ap->flags & ATA_FLAG_NO_LEGACY) == 0) {
6037 struct ata_ioports *ioaddr = &ap->ioaddr;
6039 /* FIXME: Add -ac IDE pci mods to remove these special cases */
6040 if (ioaddr->cmd_addr == ATA_PRIMARY_CMD)
6041 release_region(ATA_PRIMARY_CMD, 8);
6042 else if (ioaddr->cmd_addr == ATA_SECONDARY_CMD)
6043 release_region(ATA_SECONDARY_CMD, 8);
6046 scsi_host_put(ap->scsi_host);
6049 if (host->ops->host_stop)
6050 host->ops->host_stop(host);
6052 kfree(host);
6056 * ata_scsi_release - SCSI layer callback hook for host unload
6057 * @shost: libata host to be unloaded
6059 * Performs all duties necessary to shut down a libata port...
6060 * Kill port kthread, disable port, and release resources.
6062 * LOCKING:
6063 * Inherited from SCSI layer.
6065 * RETURNS:
6066 * One.
6069 int ata_scsi_release(struct Scsi_Host *shost)
6071 struct ata_port *ap = ata_shost_to_port(shost);
6073 DPRINTK("ENTER\n");
6075 ap->ops->port_disable(ap);
6076 ap->ops->port_stop(ap);
6078 DPRINTK("EXIT\n");
6079 return 1;
6082 struct ata_probe_ent *
6083 ata_probe_ent_alloc(struct device *dev, const struct ata_port_info *port)
6085 struct ata_probe_ent *probe_ent;
6087 probe_ent = kzalloc(sizeof(*probe_ent), GFP_KERNEL);
6088 if (!probe_ent) {
6089 printk(KERN_ERR DRV_NAME "(%s): out of memory\n",
6090 kobject_name(&(dev->kobj)));
6091 return NULL;
6094 INIT_LIST_HEAD(&probe_ent->node);
6095 probe_ent->dev = dev;
6097 probe_ent->sht = port->sht;
6098 probe_ent->port_flags = port->flags;
6099 probe_ent->pio_mask = port->pio_mask;
6100 probe_ent->mwdma_mask = port->mwdma_mask;
6101 probe_ent->udma_mask = port->udma_mask;
6102 probe_ent->port_ops = port->port_ops;
6103 probe_ent->private_data = port->private_data;
6105 return probe_ent;
6109 * ata_std_ports - initialize ioaddr with standard port offsets.
6110 * @ioaddr: IO address structure to be initialized
6112 * Utility function which initializes data_addr, error_addr,
6113 * feature_addr, nsect_addr, lbal_addr, lbam_addr, lbah_addr,
6114 * device_addr, status_addr, and command_addr to standard offsets
6115 * relative to cmd_addr.
6117 * Does not set ctl_addr, altstatus_addr, bmdma_addr, or scr_addr.
6120 void ata_std_ports(struct ata_ioports *ioaddr)
6122 ioaddr->data_addr = ioaddr->cmd_addr + ATA_REG_DATA;
6123 ioaddr->error_addr = ioaddr->cmd_addr + ATA_REG_ERR;
6124 ioaddr->feature_addr = ioaddr->cmd_addr + ATA_REG_FEATURE;
6125 ioaddr->nsect_addr = ioaddr->cmd_addr + ATA_REG_NSECT;
6126 ioaddr->lbal_addr = ioaddr->cmd_addr + ATA_REG_LBAL;
6127 ioaddr->lbam_addr = ioaddr->cmd_addr + ATA_REG_LBAM;
6128 ioaddr->lbah_addr = ioaddr->cmd_addr + ATA_REG_LBAH;
6129 ioaddr->device_addr = ioaddr->cmd_addr + ATA_REG_DEVICE;
6130 ioaddr->status_addr = ioaddr->cmd_addr + ATA_REG_STATUS;
6131 ioaddr->command_addr = ioaddr->cmd_addr + ATA_REG_CMD;
6135 #ifdef CONFIG_PCI
6137 void ata_pci_host_stop (struct ata_host *host)
6139 struct pci_dev *pdev = to_pci_dev(host->dev);
6141 pci_iounmap(pdev, host->mmio_base);
6145 * ata_pci_remove_one - PCI layer callback for device removal
6146 * @pdev: PCI device that was removed
6148 * PCI layer indicates to libata via this hook that
6149 * hot-unplug or module unload event has occurred.
6150 * Handle this by unregistering all objects associated
6151 * with this PCI device. Free those objects. Then finally
6152 * release PCI resources and disable device.
6154 * LOCKING:
6155 * Inherited from PCI layer (may sleep).
6158 void ata_pci_remove_one (struct pci_dev *pdev)
6160 struct device *dev = pci_dev_to_dev(pdev);
6161 struct ata_host *host = dev_get_drvdata(dev);
6163 ata_host_remove(host);
6165 pci_release_regions(pdev);
6166 pci_disable_device(pdev);
6167 dev_set_drvdata(dev, NULL);
6170 /* move to PCI subsystem */
6171 int pci_test_config_bits(struct pci_dev *pdev, const struct pci_bits *bits)
6173 unsigned long tmp = 0;
6175 switch (bits->width) {
6176 case 1: {
6177 u8 tmp8 = 0;
6178 pci_read_config_byte(pdev, bits->reg, &tmp8);
6179 tmp = tmp8;
6180 break;
6182 case 2: {
6183 u16 tmp16 = 0;
6184 pci_read_config_word(pdev, bits->reg, &tmp16);
6185 tmp = tmp16;
6186 break;
6188 case 4: {
6189 u32 tmp32 = 0;
6190 pci_read_config_dword(pdev, bits->reg, &tmp32);
6191 tmp = tmp32;
6192 break;
6195 default:
6196 return -EINVAL;
6199 tmp &= bits->mask;
6201 return (tmp == bits->val) ? 1 : 0;
6204 void ata_pci_device_do_suspend(struct pci_dev *pdev, pm_message_t mesg)
6206 pci_save_state(pdev);
6208 if (mesg.event == PM_EVENT_SUSPEND) {
6209 pci_disable_device(pdev);
6210 pci_set_power_state(pdev, PCI_D3hot);
6214 void ata_pci_device_do_resume(struct pci_dev *pdev)
6216 pci_set_power_state(pdev, PCI_D0);
6217 pci_restore_state(pdev);
6218 pci_enable_device(pdev);
6219 pci_set_master(pdev);
6222 int ata_pci_device_suspend(struct pci_dev *pdev, pm_message_t mesg)
6224 struct ata_host *host = dev_get_drvdata(&pdev->dev);
6225 int rc = 0;
6227 rc = ata_host_suspend(host, mesg);
6228 if (rc)
6229 return rc;
6231 ata_pci_device_do_suspend(pdev, mesg);
6233 return 0;
6236 int ata_pci_device_resume(struct pci_dev *pdev)
6238 struct ata_host *host = dev_get_drvdata(&pdev->dev);
6240 ata_pci_device_do_resume(pdev);
6241 ata_host_resume(host);
6242 return 0;
6244 #endif /* CONFIG_PCI */
6247 static int __init ata_init(void)
6249 ata_probe_timeout *= HZ;
6250 ata_wq = create_workqueue("ata");
6251 if (!ata_wq)
6252 return -ENOMEM;
6254 ata_aux_wq = create_singlethread_workqueue("ata_aux");
6255 if (!ata_aux_wq) {
6256 destroy_workqueue(ata_wq);
6257 return -ENOMEM;
6260 printk(KERN_DEBUG "libata version " DRV_VERSION " loaded.\n");
6261 return 0;
6264 static void __exit ata_exit(void)
6266 destroy_workqueue(ata_wq);
6267 destroy_workqueue(ata_aux_wq);
6270 subsys_initcall(ata_init);
6271 module_exit(ata_exit);
6273 static unsigned long ratelimit_time;
6274 static DEFINE_SPINLOCK(ata_ratelimit_lock);
6276 int ata_ratelimit(void)
6278 int rc;
6279 unsigned long flags;
6281 spin_lock_irqsave(&ata_ratelimit_lock, flags);
6283 if (time_after(jiffies, ratelimit_time)) {
6284 rc = 1;
6285 ratelimit_time = jiffies + (HZ/5);
6286 } else
6287 rc = 0;
6289 spin_unlock_irqrestore(&ata_ratelimit_lock, flags);
6291 return rc;
6295 * ata_wait_register - wait until register value changes
6296 * @reg: IO-mapped register
6297 * @mask: Mask to apply to read register value
6298 * @val: Wait condition
6299 * @interval_msec: polling interval in milliseconds
6300 * @timeout_msec: timeout in milliseconds
6302 * Waiting for some bits of register to change is a common
6303 * operation for ATA controllers. This function reads 32bit LE
6304 * IO-mapped register @reg and tests for the following condition.
6306 * (*@reg & mask) != val
6308 * If the condition is met, it returns; otherwise, the process is
6309 * repeated after @interval_msec until timeout.
6311 * LOCKING:
6312 * Kernel thread context (may sleep)
6314 * RETURNS:
6315 * The final register value.
6317 u32 ata_wait_register(void __iomem *reg, u32 mask, u32 val,
6318 unsigned long interval_msec,
6319 unsigned long timeout_msec)
6321 unsigned long timeout;
6322 u32 tmp;
6324 tmp = ioread32(reg);
6326 /* Calculate timeout _after_ the first read to make sure
6327 * preceding writes reach the controller before starting to
6328 * eat away the timeout.
6330 timeout = jiffies + (timeout_msec * HZ) / 1000;
6332 while ((tmp & mask) == val && time_before(jiffies, timeout)) {
6333 msleep(interval_msec);
6334 tmp = ioread32(reg);
6337 return tmp;
6341 * Dummy port_ops
6343 static void ata_dummy_noret(struct ata_port *ap) { }
6344 static int ata_dummy_ret0(struct ata_port *ap) { return 0; }
6345 static void ata_dummy_qc_noret(struct ata_queued_cmd *qc) { }
6347 static u8 ata_dummy_check_status(struct ata_port *ap)
6349 return ATA_DRDY;
6352 static unsigned int ata_dummy_qc_issue(struct ata_queued_cmd *qc)
6354 return AC_ERR_SYSTEM;
6357 const struct ata_port_operations ata_dummy_port_ops = {
6358 .port_disable = ata_port_disable,
6359 .check_status = ata_dummy_check_status,
6360 .check_altstatus = ata_dummy_check_status,
6361 .dev_select = ata_noop_dev_select,
6362 .qc_prep = ata_noop_qc_prep,
6363 .qc_issue = ata_dummy_qc_issue,
6364 .freeze = ata_dummy_noret,
6365 .thaw = ata_dummy_noret,
6366 .error_handler = ata_dummy_noret,
6367 .post_internal_cmd = ata_dummy_qc_noret,
6368 .irq_clear = ata_dummy_noret,
6369 .port_start = ata_dummy_ret0,
6370 .port_stop = ata_dummy_noret,
6374 * libata is essentially a library of internal helper functions for
6375 * low-level ATA host controller drivers. As such, the API/ABI is
6376 * likely to change as new drivers are added and updated.
6377 * Do not depend on ABI/API stability.
6380 EXPORT_SYMBOL_GPL(sata_deb_timing_normal);
6381 EXPORT_SYMBOL_GPL(sata_deb_timing_hotplug);
6382 EXPORT_SYMBOL_GPL(sata_deb_timing_long);
6383 EXPORT_SYMBOL_GPL(ata_dummy_port_ops);
6384 EXPORT_SYMBOL_GPL(ata_std_bios_param);
6385 EXPORT_SYMBOL_GPL(ata_std_ports);
6386 EXPORT_SYMBOL_GPL(ata_host_init);
6387 EXPORT_SYMBOL_GPL(ata_device_add);
6388 EXPORT_SYMBOL_GPL(ata_port_detach);
6389 EXPORT_SYMBOL_GPL(ata_host_remove);
6390 EXPORT_SYMBOL_GPL(ata_sg_init);
6391 EXPORT_SYMBOL_GPL(ata_sg_init_one);
6392 EXPORT_SYMBOL_GPL(ata_hsm_move);
6393 EXPORT_SYMBOL_GPL(ata_qc_complete);
6394 EXPORT_SYMBOL_GPL(ata_qc_complete_multiple);
6395 EXPORT_SYMBOL_GPL(ata_qc_issue_prot);
6396 EXPORT_SYMBOL_GPL(ata_tf_load);
6397 EXPORT_SYMBOL_GPL(ata_tf_read);
6398 EXPORT_SYMBOL_GPL(ata_noop_dev_select);
6399 EXPORT_SYMBOL_GPL(ata_std_dev_select);
6400 EXPORT_SYMBOL_GPL(ata_tf_to_fis);
6401 EXPORT_SYMBOL_GPL(ata_tf_from_fis);
6402 EXPORT_SYMBOL_GPL(ata_check_status);
6403 EXPORT_SYMBOL_GPL(ata_altstatus);
6404 EXPORT_SYMBOL_GPL(ata_exec_command);
6405 EXPORT_SYMBOL_GPL(ata_port_start);
6406 EXPORT_SYMBOL_GPL(ata_port_stop);
6407 EXPORT_SYMBOL_GPL(ata_host_stop);
6408 EXPORT_SYMBOL_GPL(ata_interrupt);
6409 EXPORT_SYMBOL_GPL(ata_mmio_data_xfer);
6410 EXPORT_SYMBOL_GPL(ata_pio_data_xfer);
6411 EXPORT_SYMBOL_GPL(ata_pio_data_xfer_noirq);
6412 EXPORT_SYMBOL_GPL(ata_qc_prep);
6413 EXPORT_SYMBOL_GPL(ata_noop_qc_prep);
6414 EXPORT_SYMBOL_GPL(ata_bmdma_setup);
6415 EXPORT_SYMBOL_GPL(ata_bmdma_start);
6416 EXPORT_SYMBOL_GPL(ata_bmdma_irq_clear);
6417 EXPORT_SYMBOL_GPL(ata_bmdma_status);
6418 EXPORT_SYMBOL_GPL(ata_bmdma_stop);
6419 EXPORT_SYMBOL_GPL(ata_bmdma_freeze);
6420 EXPORT_SYMBOL_GPL(ata_bmdma_thaw);
6421 EXPORT_SYMBOL_GPL(ata_bmdma_drive_eh);
6422 EXPORT_SYMBOL_GPL(ata_bmdma_error_handler);
6423 EXPORT_SYMBOL_GPL(ata_bmdma_post_internal_cmd);
6424 EXPORT_SYMBOL_GPL(ata_port_probe);
6425 EXPORT_SYMBOL_GPL(sata_set_spd);
6426 EXPORT_SYMBOL_GPL(sata_phy_debounce);
6427 EXPORT_SYMBOL_GPL(sata_phy_resume);
6428 EXPORT_SYMBOL_GPL(sata_phy_reset);
6429 EXPORT_SYMBOL_GPL(__sata_phy_reset);
6430 EXPORT_SYMBOL_GPL(ata_bus_reset);
6431 EXPORT_SYMBOL_GPL(ata_std_prereset);
6432 EXPORT_SYMBOL_GPL(ata_std_softreset);
6433 EXPORT_SYMBOL_GPL(sata_port_hardreset);
6434 EXPORT_SYMBOL_GPL(sata_std_hardreset);
6435 EXPORT_SYMBOL_GPL(ata_std_postreset);
6436 EXPORT_SYMBOL_GPL(ata_dev_classify);
6437 EXPORT_SYMBOL_GPL(ata_dev_pair);
6438 EXPORT_SYMBOL_GPL(ata_port_disable);
6439 EXPORT_SYMBOL_GPL(ata_ratelimit);
6440 EXPORT_SYMBOL_GPL(ata_wait_register);
6441 EXPORT_SYMBOL_GPL(ata_busy_sleep);
6442 EXPORT_SYMBOL_GPL(ata_port_queue_task);
6443 EXPORT_SYMBOL_GPL(ata_scsi_ioctl);
6444 EXPORT_SYMBOL_GPL(ata_scsi_queuecmd);
6445 EXPORT_SYMBOL_GPL(ata_scsi_slave_config);
6446 EXPORT_SYMBOL_GPL(ata_scsi_slave_destroy);
6447 EXPORT_SYMBOL_GPL(ata_scsi_change_queue_depth);
6448 EXPORT_SYMBOL_GPL(ata_scsi_release);
6449 EXPORT_SYMBOL_GPL(ata_host_intr);
6450 EXPORT_SYMBOL_GPL(sata_scr_valid);
6451 EXPORT_SYMBOL_GPL(sata_scr_read);
6452 EXPORT_SYMBOL_GPL(sata_scr_write);
6453 EXPORT_SYMBOL_GPL(sata_scr_write_flush);
6454 EXPORT_SYMBOL_GPL(ata_port_online);
6455 EXPORT_SYMBOL_GPL(ata_port_offline);
6456 EXPORT_SYMBOL_GPL(ata_host_suspend);
6457 EXPORT_SYMBOL_GPL(ata_host_resume);
6458 EXPORT_SYMBOL_GPL(ata_id_string);
6459 EXPORT_SYMBOL_GPL(ata_id_c_string);
6460 EXPORT_SYMBOL_GPL(ata_device_blacklisted);
6461 EXPORT_SYMBOL_GPL(ata_scsi_simulate);
6463 EXPORT_SYMBOL_GPL(ata_pio_need_iordy);
6464 EXPORT_SYMBOL_GPL(ata_timing_compute);
6465 EXPORT_SYMBOL_GPL(ata_timing_merge);
6467 #ifdef CONFIG_PCI
6468 EXPORT_SYMBOL_GPL(pci_test_config_bits);
6469 EXPORT_SYMBOL_GPL(ata_pci_host_stop);
6470 EXPORT_SYMBOL_GPL(ata_pci_init_native_mode);
6471 EXPORT_SYMBOL_GPL(ata_pci_init_one);
6472 EXPORT_SYMBOL_GPL(ata_pci_remove_one);
6473 EXPORT_SYMBOL_GPL(ata_pci_device_do_suspend);
6474 EXPORT_SYMBOL_GPL(ata_pci_device_do_resume);
6475 EXPORT_SYMBOL_GPL(ata_pci_device_suspend);
6476 EXPORT_SYMBOL_GPL(ata_pci_device_resume);
6477 EXPORT_SYMBOL_GPL(ata_pci_default_filter);
6478 EXPORT_SYMBOL_GPL(ata_pci_clear_simplex);
6479 #endif /* CONFIG_PCI */
6481 EXPORT_SYMBOL_GPL(ata_scsi_device_suspend);
6482 EXPORT_SYMBOL_GPL(ata_scsi_device_resume);
6484 EXPORT_SYMBOL_GPL(ata_eng_timeout);
6485 EXPORT_SYMBOL_GPL(ata_port_schedule_eh);
6486 EXPORT_SYMBOL_GPL(ata_port_abort);
6487 EXPORT_SYMBOL_GPL(ata_port_freeze);
6488 EXPORT_SYMBOL_GPL(ata_eh_freeze_port);
6489 EXPORT_SYMBOL_GPL(ata_eh_thaw_port);
6490 EXPORT_SYMBOL_GPL(ata_eh_qc_complete);
6491 EXPORT_SYMBOL_GPL(ata_eh_qc_retry);
6492 EXPORT_SYMBOL_GPL(ata_do_eh);