2 * linux/mm/page_alloc.c
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
17 #include <linux/stddef.h>
19 #include <linux/swap.h>
20 #include <linux/interrupt.h>
21 #include <linux/pagemap.h>
22 #include <linux/jiffies.h>
23 #include <linux/bootmem.h>
24 #include <linux/memblock.h>
25 #include <linux/compiler.h>
26 #include <linux/kernel.h>
27 #include <linux/kmemcheck.h>
28 #include <linux/module.h>
29 #include <linux/suspend.h>
30 #include <linux/pagevec.h>
31 #include <linux/blkdev.h>
32 #include <linux/slab.h>
33 #include <linux/ratelimit.h>
34 #include <linux/oom.h>
35 #include <linux/notifier.h>
36 #include <linux/topology.h>
37 #include <linux/sysctl.h>
38 #include <linux/cpu.h>
39 #include <linux/cpuset.h>
40 #include <linux/memory_hotplug.h>
41 #include <linux/nodemask.h>
42 #include <linux/vmalloc.h>
43 #include <linux/vmstat.h>
44 #include <linux/mempolicy.h>
45 #include <linux/stop_machine.h>
46 #include <linux/sort.h>
47 #include <linux/pfn.h>
48 #include <linux/backing-dev.h>
49 #include <linux/fault-inject.h>
50 #include <linux/page-isolation.h>
51 #include <linux/page_cgroup.h>
52 #include <linux/debugobjects.h>
53 #include <linux/kmemleak.h>
54 #include <linux/memory.h>
55 #include <linux/compaction.h>
56 #include <trace/events/kmem.h>
57 #include <linux/ftrace_event.h>
58 #include <linux/memcontrol.h>
59 #include <linux/prefetch.h>
61 #include <asm/tlbflush.h>
62 #include <asm/div64.h>
65 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
66 DEFINE_PER_CPU(int, numa_node
);
67 EXPORT_PER_CPU_SYMBOL(numa_node
);
70 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
72 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
73 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
74 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
75 * defined in <linux/topology.h>.
77 DEFINE_PER_CPU(int, _numa_mem_
); /* Kernel "local memory" node */
78 EXPORT_PER_CPU_SYMBOL(_numa_mem_
);
82 * Array of node states.
84 nodemask_t node_states
[NR_NODE_STATES
] __read_mostly
= {
85 [N_POSSIBLE
] = NODE_MASK_ALL
,
86 [N_ONLINE
] = { { [0] = 1UL } },
88 [N_NORMAL_MEMORY
] = { { [0] = 1UL } },
90 [N_HIGH_MEMORY
] = { { [0] = 1UL } },
92 [N_CPU
] = { { [0] = 1UL } },
95 EXPORT_SYMBOL(node_states
);
97 unsigned long totalram_pages __read_mostly
;
98 unsigned long totalreserve_pages __read_mostly
;
99 int percpu_pagelist_fraction
;
100 gfp_t gfp_allowed_mask __read_mostly
= GFP_BOOT_MASK
;
102 #ifdef CONFIG_PM_SLEEP
104 * The following functions are used by the suspend/hibernate code to temporarily
105 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
106 * while devices are suspended. To avoid races with the suspend/hibernate code,
107 * they should always be called with pm_mutex held (gfp_allowed_mask also should
108 * only be modified with pm_mutex held, unless the suspend/hibernate code is
109 * guaranteed not to run in parallel with that modification).
112 static gfp_t saved_gfp_mask
;
114 void pm_restore_gfp_mask(void)
116 WARN_ON(!mutex_is_locked(&pm_mutex
));
117 if (saved_gfp_mask
) {
118 gfp_allowed_mask
= saved_gfp_mask
;
123 void pm_restrict_gfp_mask(void)
125 WARN_ON(!mutex_is_locked(&pm_mutex
));
126 WARN_ON(saved_gfp_mask
);
127 saved_gfp_mask
= gfp_allowed_mask
;
128 gfp_allowed_mask
&= ~GFP_IOFS
;
130 #endif /* CONFIG_PM_SLEEP */
132 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
133 int pageblock_order __read_mostly
;
136 static void __free_pages_ok(struct page
*page
, unsigned int order
);
139 * results with 256, 32 in the lowmem_reserve sysctl:
140 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
141 * 1G machine -> (16M dma, 784M normal, 224M high)
142 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
143 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
144 * HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
146 * TBD: should special case ZONE_DMA32 machines here - in those we normally
147 * don't need any ZONE_NORMAL reservation
149 int sysctl_lowmem_reserve_ratio
[MAX_NR_ZONES
-1] = {
150 #ifdef CONFIG_ZONE_DMA
153 #ifdef CONFIG_ZONE_DMA32
156 #ifdef CONFIG_HIGHMEM
162 EXPORT_SYMBOL(totalram_pages
);
164 static char * const zone_names
[MAX_NR_ZONES
] = {
165 #ifdef CONFIG_ZONE_DMA
168 #ifdef CONFIG_ZONE_DMA32
172 #ifdef CONFIG_HIGHMEM
178 int min_free_kbytes
= 1024;
180 static unsigned long __meminitdata nr_kernel_pages
;
181 static unsigned long __meminitdata nr_all_pages
;
182 static unsigned long __meminitdata dma_reserve
;
184 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
186 * MAX_ACTIVE_REGIONS determines the maximum number of distinct
187 * ranges of memory (RAM) that may be registered with add_active_range().
188 * Ranges passed to add_active_range() will be merged if possible
189 * so the number of times add_active_range() can be called is
190 * related to the number of nodes and the number of holes
192 #ifdef CONFIG_MAX_ACTIVE_REGIONS
193 /* Allow an architecture to set MAX_ACTIVE_REGIONS to save memory */
194 #define MAX_ACTIVE_REGIONS CONFIG_MAX_ACTIVE_REGIONS
196 #if MAX_NUMNODES >= 32
197 /* If there can be many nodes, allow up to 50 holes per node */
198 #define MAX_ACTIVE_REGIONS (MAX_NUMNODES*50)
200 /* By default, allow up to 256 distinct regions */
201 #define MAX_ACTIVE_REGIONS 256
205 static struct node_active_region __meminitdata early_node_map
[MAX_ACTIVE_REGIONS
];
206 static int __meminitdata nr_nodemap_entries
;
207 static unsigned long __meminitdata arch_zone_lowest_possible_pfn
[MAX_NR_ZONES
];
208 static unsigned long __meminitdata arch_zone_highest_possible_pfn
[MAX_NR_ZONES
];
209 static unsigned long __initdata required_kernelcore
;
210 static unsigned long __initdata required_movablecore
;
211 static unsigned long __meminitdata zone_movable_pfn
[MAX_NUMNODES
];
213 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
215 EXPORT_SYMBOL(movable_zone
);
216 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
219 int nr_node_ids __read_mostly
= MAX_NUMNODES
;
220 int nr_online_nodes __read_mostly
= 1;
221 EXPORT_SYMBOL(nr_node_ids
);
222 EXPORT_SYMBOL(nr_online_nodes
);
225 int page_group_by_mobility_disabled __read_mostly
;
227 static void set_pageblock_migratetype(struct page
*page
, int migratetype
)
230 if (unlikely(page_group_by_mobility_disabled
))
231 migratetype
= MIGRATE_UNMOVABLE
;
233 set_pageblock_flags_group(page
, (unsigned long)migratetype
,
234 PB_migrate
, PB_migrate_end
);
237 bool oom_killer_disabled __read_mostly
;
239 #ifdef CONFIG_DEBUG_VM
240 static int page_outside_zone_boundaries(struct zone
*zone
, struct page
*page
)
244 unsigned long pfn
= page_to_pfn(page
);
247 seq
= zone_span_seqbegin(zone
);
248 if (pfn
>= zone
->zone_start_pfn
+ zone
->spanned_pages
)
250 else if (pfn
< zone
->zone_start_pfn
)
252 } while (zone_span_seqretry(zone
, seq
));
257 static int page_is_consistent(struct zone
*zone
, struct page
*page
)
259 if (!pfn_valid_within(page_to_pfn(page
)))
261 if (zone
!= page_zone(page
))
267 * Temporary debugging check for pages not lying within a given zone.
269 static int bad_range(struct zone
*zone
, struct page
*page
)
271 if (page_outside_zone_boundaries(zone
, page
))
273 if (!page_is_consistent(zone
, page
))
279 static inline int bad_range(struct zone
*zone
, struct page
*page
)
285 static void bad_page(struct page
*page
)
287 static unsigned long resume
;
288 static unsigned long nr_shown
;
289 static unsigned long nr_unshown
;
291 /* Don't complain about poisoned pages */
292 if (PageHWPoison(page
)) {
293 reset_page_mapcount(page
); /* remove PageBuddy */
298 * Allow a burst of 60 reports, then keep quiet for that minute;
299 * or allow a steady drip of one report per second.
301 if (nr_shown
== 60) {
302 if (time_before(jiffies
, resume
)) {
308 "BUG: Bad page state: %lu messages suppressed\n",
315 resume
= jiffies
+ 60 * HZ
;
317 printk(KERN_ALERT
"BUG: Bad page state in process %s pfn:%05lx\n",
318 current
->comm
, page_to_pfn(page
));
323 /* Leave bad fields for debug, except PageBuddy could make trouble */
324 reset_page_mapcount(page
); /* remove PageBuddy */
325 add_taint(TAINT_BAD_PAGE
);
329 * Higher-order pages are called "compound pages". They are structured thusly:
331 * The first PAGE_SIZE page is called the "head page".
333 * The remaining PAGE_SIZE pages are called "tail pages".
335 * All pages have PG_compound set. All pages have their ->private pointing at
336 * the head page (even the head page has this).
338 * The first tail page's ->lru.next holds the address of the compound page's
339 * put_page() function. Its ->lru.prev holds the order of allocation.
340 * This usage means that zero-order pages may not be compound.
343 static void free_compound_page(struct page
*page
)
345 __free_pages_ok(page
, compound_order(page
));
348 void prep_compound_page(struct page
*page
, unsigned long order
)
351 int nr_pages
= 1 << order
;
353 set_compound_page_dtor(page
, free_compound_page
);
354 set_compound_order(page
, order
);
356 for (i
= 1; i
< nr_pages
; i
++) {
357 struct page
*p
= page
+ i
;
360 p
->first_page
= page
;
364 /* update __split_huge_page_refcount if you change this function */
365 static int destroy_compound_page(struct page
*page
, unsigned long order
)
368 int nr_pages
= 1 << order
;
371 if (unlikely(compound_order(page
) != order
) ||
372 unlikely(!PageHead(page
))) {
377 __ClearPageHead(page
);
379 for (i
= 1; i
< nr_pages
; i
++) {
380 struct page
*p
= page
+ i
;
382 if (unlikely(!PageTail(p
) || (p
->first_page
!= page
))) {
392 static inline void prep_zero_page(struct page
*page
, int order
, gfp_t gfp_flags
)
397 * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO
398 * and __GFP_HIGHMEM from hard or soft interrupt context.
400 VM_BUG_ON((gfp_flags
& __GFP_HIGHMEM
) && in_interrupt());
401 for (i
= 0; i
< (1 << order
); i
++)
402 clear_highpage(page
+ i
);
405 static inline void set_page_order(struct page
*page
, int order
)
407 set_page_private(page
, order
);
408 __SetPageBuddy(page
);
411 static inline void rmv_page_order(struct page
*page
)
413 __ClearPageBuddy(page
);
414 set_page_private(page
, 0);
418 * Locate the struct page for both the matching buddy in our
419 * pair (buddy1) and the combined O(n+1) page they form (page).
421 * 1) Any buddy B1 will have an order O twin B2 which satisfies
422 * the following equation:
424 * For example, if the starting buddy (buddy2) is #8 its order
426 * B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
428 * 2) Any buddy B will have an order O+1 parent P which
429 * satisfies the following equation:
432 * Assumption: *_mem_map is contiguous at least up to MAX_ORDER
434 static inline unsigned long
435 __find_buddy_index(unsigned long page_idx
, unsigned int order
)
437 return page_idx
^ (1 << order
);
441 * This function checks whether a page is free && is the buddy
442 * we can do coalesce a page and its buddy if
443 * (a) the buddy is not in a hole &&
444 * (b) the buddy is in the buddy system &&
445 * (c) a page and its buddy have the same order &&
446 * (d) a page and its buddy are in the same zone.
448 * For recording whether a page is in the buddy system, we set ->_mapcount -2.
449 * Setting, clearing, and testing _mapcount -2 is serialized by zone->lock.
451 * For recording page's order, we use page_private(page).
453 static inline int page_is_buddy(struct page
*page
, struct page
*buddy
,
456 if (!pfn_valid_within(page_to_pfn(buddy
)))
459 if (page_zone_id(page
) != page_zone_id(buddy
))
462 if (PageBuddy(buddy
) && page_order(buddy
) == order
) {
463 VM_BUG_ON(page_count(buddy
) != 0);
470 * Freeing function for a buddy system allocator.
472 * The concept of a buddy system is to maintain direct-mapped table
473 * (containing bit values) for memory blocks of various "orders".
474 * The bottom level table contains the map for the smallest allocatable
475 * units of memory (here, pages), and each level above it describes
476 * pairs of units from the levels below, hence, "buddies".
477 * At a high level, all that happens here is marking the table entry
478 * at the bottom level available, and propagating the changes upward
479 * as necessary, plus some accounting needed to play nicely with other
480 * parts of the VM system.
481 * At each level, we keep a list of pages, which are heads of continuous
482 * free pages of length of (1 << order) and marked with _mapcount -2. Page's
483 * order is recorded in page_private(page) field.
484 * So when we are allocating or freeing one, we can derive the state of the
485 * other. That is, if we allocate a small block, and both were
486 * free, the remainder of the region must be split into blocks.
487 * If a block is freed, and its buddy is also free, then this
488 * triggers coalescing into a block of larger size.
493 static inline void __free_one_page(struct page
*page
,
494 struct zone
*zone
, unsigned int order
,
497 unsigned long page_idx
;
498 unsigned long combined_idx
;
499 unsigned long uninitialized_var(buddy_idx
);
502 if (unlikely(PageCompound(page
)))
503 if (unlikely(destroy_compound_page(page
, order
)))
506 VM_BUG_ON(migratetype
== -1);
508 page_idx
= page_to_pfn(page
) & ((1 << MAX_ORDER
) - 1);
510 VM_BUG_ON(page_idx
& ((1 << order
) - 1));
511 VM_BUG_ON(bad_range(zone
, page
));
513 while (order
< MAX_ORDER
-1) {
514 buddy_idx
= __find_buddy_index(page_idx
, order
);
515 buddy
= page
+ (buddy_idx
- page_idx
);
516 if (!page_is_buddy(page
, buddy
, order
))
519 /* Our buddy is free, merge with it and move up one order. */
520 list_del(&buddy
->lru
);
521 zone
->free_area
[order
].nr_free
--;
522 rmv_page_order(buddy
);
523 combined_idx
= buddy_idx
& page_idx
;
524 page
= page
+ (combined_idx
- page_idx
);
525 page_idx
= combined_idx
;
528 set_page_order(page
, order
);
531 * If this is not the largest possible page, check if the buddy
532 * of the next-highest order is free. If it is, it's possible
533 * that pages are being freed that will coalesce soon. In case,
534 * that is happening, add the free page to the tail of the list
535 * so it's less likely to be used soon and more likely to be merged
536 * as a higher order page
538 if ((order
< MAX_ORDER
-2) && pfn_valid_within(page_to_pfn(buddy
))) {
539 struct page
*higher_page
, *higher_buddy
;
540 combined_idx
= buddy_idx
& page_idx
;
541 higher_page
= page
+ (combined_idx
- page_idx
);
542 buddy_idx
= __find_buddy_index(combined_idx
, order
+ 1);
543 higher_buddy
= page
+ (buddy_idx
- combined_idx
);
544 if (page_is_buddy(higher_page
, higher_buddy
, order
+ 1)) {
545 list_add_tail(&page
->lru
,
546 &zone
->free_area
[order
].free_list
[migratetype
]);
551 list_add(&page
->lru
, &zone
->free_area
[order
].free_list
[migratetype
]);
553 zone
->free_area
[order
].nr_free
++;
557 * free_page_mlock() -- clean up attempts to free and mlocked() page.
558 * Page should not be on lru, so no need to fix that up.
559 * free_pages_check() will verify...
561 static inline void free_page_mlock(struct page
*page
)
563 __dec_zone_page_state(page
, NR_MLOCK
);
564 __count_vm_event(UNEVICTABLE_MLOCKFREED
);
567 static inline int free_pages_check(struct page
*page
)
569 if (unlikely(page_mapcount(page
) |
570 (page
->mapping
!= NULL
) |
571 (atomic_read(&page
->_count
) != 0) |
572 (page
->flags
& PAGE_FLAGS_CHECK_AT_FREE
) |
573 (mem_cgroup_bad_page_check(page
)))) {
577 if (page
->flags
& PAGE_FLAGS_CHECK_AT_PREP
)
578 page
->flags
&= ~PAGE_FLAGS_CHECK_AT_PREP
;
583 * Frees a number of pages from the PCP lists
584 * Assumes all pages on list are in same zone, and of same order.
585 * count is the number of pages to free.
587 * If the zone was previously in an "all pages pinned" state then look to
588 * see if this freeing clears that state.
590 * And clear the zone's pages_scanned counter, to hold off the "all pages are
591 * pinned" detection logic.
593 static void free_pcppages_bulk(struct zone
*zone
, int count
,
594 struct per_cpu_pages
*pcp
)
600 spin_lock(&zone
->lock
);
601 zone
->all_unreclaimable
= 0;
602 zone
->pages_scanned
= 0;
606 struct list_head
*list
;
609 * Remove pages from lists in a round-robin fashion. A
610 * batch_free count is maintained that is incremented when an
611 * empty list is encountered. This is so more pages are freed
612 * off fuller lists instead of spinning excessively around empty
617 if (++migratetype
== MIGRATE_PCPTYPES
)
619 list
= &pcp
->lists
[migratetype
];
620 } while (list_empty(list
));
622 /* This is the only non-empty list. Free them all. */
623 if (batch_free
== MIGRATE_PCPTYPES
)
624 batch_free
= to_free
;
627 page
= list_entry(list
->prev
, struct page
, lru
);
628 /* must delete as __free_one_page list manipulates */
629 list_del(&page
->lru
);
630 /* MIGRATE_MOVABLE list may include MIGRATE_RESERVEs */
631 __free_one_page(page
, zone
, 0, page_private(page
));
632 trace_mm_page_pcpu_drain(page
, 0, page_private(page
));
633 } while (--to_free
&& --batch_free
&& !list_empty(list
));
635 __mod_zone_page_state(zone
, NR_FREE_PAGES
, count
);
636 spin_unlock(&zone
->lock
);
639 static void free_one_page(struct zone
*zone
, struct page
*page
, int order
,
642 spin_lock(&zone
->lock
);
643 zone
->all_unreclaimable
= 0;
644 zone
->pages_scanned
= 0;
646 __free_one_page(page
, zone
, order
, migratetype
);
647 __mod_zone_page_state(zone
, NR_FREE_PAGES
, 1 << order
);
648 spin_unlock(&zone
->lock
);
651 static bool free_pages_prepare(struct page
*page
, unsigned int order
)
656 trace_mm_page_free_direct(page
, order
);
657 kmemcheck_free_shadow(page
, order
);
660 page
->mapping
= NULL
;
661 for (i
= 0; i
< (1 << order
); i
++)
662 bad
+= free_pages_check(page
+ i
);
666 if (!PageHighMem(page
)) {
667 debug_check_no_locks_freed(page_address(page
),PAGE_SIZE
<<order
);
668 debug_check_no_obj_freed(page_address(page
),
671 arch_free_page(page
, order
);
672 kernel_map_pages(page
, 1 << order
, 0);
677 static void __free_pages_ok(struct page
*page
, unsigned int order
)
680 int wasMlocked
= __TestClearPageMlocked(page
);
682 if (!free_pages_prepare(page
, order
))
685 local_irq_save(flags
);
686 if (unlikely(wasMlocked
))
687 free_page_mlock(page
);
688 __count_vm_events(PGFREE
, 1 << order
);
689 free_one_page(page_zone(page
), page
, order
,
690 get_pageblock_migratetype(page
));
691 local_irq_restore(flags
);
695 * permit the bootmem allocator to evade page validation on high-order frees
697 void __meminit
__free_pages_bootmem(struct page
*page
, unsigned int order
)
700 __ClearPageReserved(page
);
701 set_page_count(page
, 0);
702 set_page_refcounted(page
);
708 for (loop
= 0; loop
< BITS_PER_LONG
; loop
++) {
709 struct page
*p
= &page
[loop
];
711 if (loop
+ 1 < BITS_PER_LONG
)
713 __ClearPageReserved(p
);
714 set_page_count(p
, 0);
717 set_page_refcounted(page
);
718 __free_pages(page
, order
);
724 * The order of subdivision here is critical for the IO subsystem.
725 * Please do not alter this order without good reasons and regression
726 * testing. Specifically, as large blocks of memory are subdivided,
727 * the order in which smaller blocks are delivered depends on the order
728 * they're subdivided in this function. This is the primary factor
729 * influencing the order in which pages are delivered to the IO
730 * subsystem according to empirical testing, and this is also justified
731 * by considering the behavior of a buddy system containing a single
732 * large block of memory acted on by a series of small allocations.
733 * This behavior is a critical factor in sglist merging's success.
737 static inline void expand(struct zone
*zone
, struct page
*page
,
738 int low
, int high
, struct free_area
*area
,
741 unsigned long size
= 1 << high
;
747 VM_BUG_ON(bad_range(zone
, &page
[size
]));
748 list_add(&page
[size
].lru
, &area
->free_list
[migratetype
]);
750 set_page_order(&page
[size
], high
);
755 * This page is about to be returned from the page allocator
757 static inline int check_new_page(struct page
*page
)
759 if (unlikely(page_mapcount(page
) |
760 (page
->mapping
!= NULL
) |
761 (atomic_read(&page
->_count
) != 0) |
762 (page
->flags
& PAGE_FLAGS_CHECK_AT_PREP
) |
763 (mem_cgroup_bad_page_check(page
)))) {
770 static int prep_new_page(struct page
*page
, int order
, gfp_t gfp_flags
)
774 for (i
= 0; i
< (1 << order
); i
++) {
775 struct page
*p
= page
+ i
;
776 if (unlikely(check_new_page(p
)))
780 set_page_private(page
, 0);
781 set_page_refcounted(page
);
783 arch_alloc_page(page
, order
);
784 kernel_map_pages(page
, 1 << order
, 1);
786 if (gfp_flags
& __GFP_ZERO
)
787 prep_zero_page(page
, order
, gfp_flags
);
789 if (order
&& (gfp_flags
& __GFP_COMP
))
790 prep_compound_page(page
, order
);
796 * Go through the free lists for the given migratetype and remove
797 * the smallest available page from the freelists
800 struct page
*__rmqueue_smallest(struct zone
*zone
, unsigned int order
,
803 unsigned int current_order
;
804 struct free_area
* area
;
807 /* Find a page of the appropriate size in the preferred list */
808 for (current_order
= order
; current_order
< MAX_ORDER
; ++current_order
) {
809 area
= &(zone
->free_area
[current_order
]);
810 if (list_empty(&area
->free_list
[migratetype
]))
813 page
= list_entry(area
->free_list
[migratetype
].next
,
815 list_del(&page
->lru
);
816 rmv_page_order(page
);
818 expand(zone
, page
, order
, current_order
, area
, migratetype
);
827 * This array describes the order lists are fallen back to when
828 * the free lists for the desirable migrate type are depleted
830 static int fallbacks
[MIGRATE_TYPES
][MIGRATE_TYPES
-1] = {
831 [MIGRATE_UNMOVABLE
] = { MIGRATE_RECLAIMABLE
, MIGRATE_MOVABLE
, MIGRATE_RESERVE
},
832 [MIGRATE_RECLAIMABLE
] = { MIGRATE_UNMOVABLE
, MIGRATE_MOVABLE
, MIGRATE_RESERVE
},
833 [MIGRATE_MOVABLE
] = { MIGRATE_RECLAIMABLE
, MIGRATE_UNMOVABLE
, MIGRATE_RESERVE
},
834 [MIGRATE_RESERVE
] = { MIGRATE_RESERVE
, MIGRATE_RESERVE
, MIGRATE_RESERVE
}, /* Never used */
838 * Move the free pages in a range to the free lists of the requested type.
839 * Note that start_page and end_pages are not aligned on a pageblock
840 * boundary. If alignment is required, use move_freepages_block()
842 static int move_freepages(struct zone
*zone
,
843 struct page
*start_page
, struct page
*end_page
,
850 #ifndef CONFIG_HOLES_IN_ZONE
852 * page_zone is not safe to call in this context when
853 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
854 * anyway as we check zone boundaries in move_freepages_block().
855 * Remove at a later date when no bug reports exist related to
856 * grouping pages by mobility
858 BUG_ON(page_zone(start_page
) != page_zone(end_page
));
861 for (page
= start_page
; page
<= end_page
;) {
862 /* Make sure we are not inadvertently changing nodes */
863 VM_BUG_ON(page_to_nid(page
) != zone_to_nid(zone
));
865 if (!pfn_valid_within(page_to_pfn(page
))) {
870 if (!PageBuddy(page
)) {
875 order
= page_order(page
);
876 list_move(&page
->lru
,
877 &zone
->free_area
[order
].free_list
[migratetype
]);
879 pages_moved
+= 1 << order
;
885 static int move_freepages_block(struct zone
*zone
, struct page
*page
,
888 unsigned long start_pfn
, end_pfn
;
889 struct page
*start_page
, *end_page
;
891 start_pfn
= page_to_pfn(page
);
892 start_pfn
= start_pfn
& ~(pageblock_nr_pages
-1);
893 start_page
= pfn_to_page(start_pfn
);
894 end_page
= start_page
+ pageblock_nr_pages
- 1;
895 end_pfn
= start_pfn
+ pageblock_nr_pages
- 1;
897 /* Do not cross zone boundaries */
898 if (start_pfn
< zone
->zone_start_pfn
)
900 if (end_pfn
>= zone
->zone_start_pfn
+ zone
->spanned_pages
)
903 return move_freepages(zone
, start_page
, end_page
, migratetype
);
906 static void change_pageblock_range(struct page
*pageblock_page
,
907 int start_order
, int migratetype
)
909 int nr_pageblocks
= 1 << (start_order
- pageblock_order
);
911 while (nr_pageblocks
--) {
912 set_pageblock_migratetype(pageblock_page
, migratetype
);
913 pageblock_page
+= pageblock_nr_pages
;
917 /* Remove an element from the buddy allocator from the fallback list */
918 static inline struct page
*
919 __rmqueue_fallback(struct zone
*zone
, int order
, int start_migratetype
)
921 struct free_area
* area
;
926 /* Find the largest possible block of pages in the other list */
927 for (current_order
= MAX_ORDER
-1; current_order
>= order
;
929 for (i
= 0; i
< MIGRATE_TYPES
- 1; i
++) {
930 migratetype
= fallbacks
[start_migratetype
][i
];
932 /* MIGRATE_RESERVE handled later if necessary */
933 if (migratetype
== MIGRATE_RESERVE
)
936 area
= &(zone
->free_area
[current_order
]);
937 if (list_empty(&area
->free_list
[migratetype
]))
940 page
= list_entry(area
->free_list
[migratetype
].next
,
945 * If breaking a large block of pages, move all free
946 * pages to the preferred allocation list. If falling
947 * back for a reclaimable kernel allocation, be more
948 * aggressive about taking ownership of free pages
950 if (unlikely(current_order
>= (pageblock_order
>> 1)) ||
951 start_migratetype
== MIGRATE_RECLAIMABLE
||
952 page_group_by_mobility_disabled
) {
954 pages
= move_freepages_block(zone
, page
,
957 /* Claim the whole block if over half of it is free */
958 if (pages
>= (1 << (pageblock_order
-1)) ||
959 page_group_by_mobility_disabled
)
960 set_pageblock_migratetype(page
,
963 migratetype
= start_migratetype
;
966 /* Remove the page from the freelists */
967 list_del(&page
->lru
);
968 rmv_page_order(page
);
970 /* Take ownership for orders >= pageblock_order */
971 if (current_order
>= pageblock_order
)
972 change_pageblock_range(page
, current_order
,
975 expand(zone
, page
, order
, current_order
, area
, migratetype
);
977 trace_mm_page_alloc_extfrag(page
, order
, current_order
,
978 start_migratetype
, migratetype
);
988 * Do the hard work of removing an element from the buddy allocator.
989 * Call me with the zone->lock already held.
991 static struct page
*__rmqueue(struct zone
*zone
, unsigned int order
,
997 page
= __rmqueue_smallest(zone
, order
, migratetype
);
999 if (unlikely(!page
) && migratetype
!= MIGRATE_RESERVE
) {
1000 page
= __rmqueue_fallback(zone
, order
, migratetype
);
1003 * Use MIGRATE_RESERVE rather than fail an allocation. goto
1004 * is used because __rmqueue_smallest is an inline function
1005 * and we want just one call site
1008 migratetype
= MIGRATE_RESERVE
;
1013 trace_mm_page_alloc_zone_locked(page
, order
, migratetype
);
1018 * Obtain a specified number of elements from the buddy allocator, all under
1019 * a single hold of the lock, for efficiency. Add them to the supplied list.
1020 * Returns the number of new pages which were placed at *list.
1022 static int rmqueue_bulk(struct zone
*zone
, unsigned int order
,
1023 unsigned long count
, struct list_head
*list
,
1024 int migratetype
, int cold
)
1028 spin_lock(&zone
->lock
);
1029 for (i
= 0; i
< count
; ++i
) {
1030 struct page
*page
= __rmqueue(zone
, order
, migratetype
);
1031 if (unlikely(page
== NULL
))
1035 * Split buddy pages returned by expand() are received here
1036 * in physical page order. The page is added to the callers and
1037 * list and the list head then moves forward. From the callers
1038 * perspective, the linked list is ordered by page number in
1039 * some conditions. This is useful for IO devices that can
1040 * merge IO requests if the physical pages are ordered
1043 if (likely(cold
== 0))
1044 list_add(&page
->lru
, list
);
1046 list_add_tail(&page
->lru
, list
);
1047 set_page_private(page
, migratetype
);
1050 __mod_zone_page_state(zone
, NR_FREE_PAGES
, -(i
<< order
));
1051 spin_unlock(&zone
->lock
);
1057 * Called from the vmstat counter updater to drain pagesets of this
1058 * currently executing processor on remote nodes after they have
1061 * Note that this function must be called with the thread pinned to
1062 * a single processor.
1064 void drain_zone_pages(struct zone
*zone
, struct per_cpu_pages
*pcp
)
1066 unsigned long flags
;
1069 local_irq_save(flags
);
1070 if (pcp
->count
>= pcp
->batch
)
1071 to_drain
= pcp
->batch
;
1073 to_drain
= pcp
->count
;
1074 free_pcppages_bulk(zone
, to_drain
, pcp
);
1075 pcp
->count
-= to_drain
;
1076 local_irq_restore(flags
);
1081 * Drain pages of the indicated processor.
1083 * The processor must either be the current processor and the
1084 * thread pinned to the current processor or a processor that
1087 static void drain_pages(unsigned int cpu
)
1089 unsigned long flags
;
1092 for_each_populated_zone(zone
) {
1093 struct per_cpu_pageset
*pset
;
1094 struct per_cpu_pages
*pcp
;
1096 local_irq_save(flags
);
1097 pset
= per_cpu_ptr(zone
->pageset
, cpu
);
1101 free_pcppages_bulk(zone
, pcp
->count
, pcp
);
1104 local_irq_restore(flags
);
1109 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
1111 void drain_local_pages(void *arg
)
1113 drain_pages(smp_processor_id());
1117 * Spill all the per-cpu pages from all CPUs back into the buddy allocator
1119 void drain_all_pages(void)
1121 on_each_cpu(drain_local_pages
, NULL
, 1);
1124 #ifdef CONFIG_HIBERNATION
1126 void mark_free_pages(struct zone
*zone
)
1128 unsigned long pfn
, max_zone_pfn
;
1129 unsigned long flags
;
1131 struct list_head
*curr
;
1133 if (!zone
->spanned_pages
)
1136 spin_lock_irqsave(&zone
->lock
, flags
);
1138 max_zone_pfn
= zone
->zone_start_pfn
+ zone
->spanned_pages
;
1139 for (pfn
= zone
->zone_start_pfn
; pfn
< max_zone_pfn
; pfn
++)
1140 if (pfn_valid(pfn
)) {
1141 struct page
*page
= pfn_to_page(pfn
);
1143 if (!swsusp_page_is_forbidden(page
))
1144 swsusp_unset_page_free(page
);
1147 for_each_migratetype_order(order
, t
) {
1148 list_for_each(curr
, &zone
->free_area
[order
].free_list
[t
]) {
1151 pfn
= page_to_pfn(list_entry(curr
, struct page
, lru
));
1152 for (i
= 0; i
< (1UL << order
); i
++)
1153 swsusp_set_page_free(pfn_to_page(pfn
+ i
));
1156 spin_unlock_irqrestore(&zone
->lock
, flags
);
1158 #endif /* CONFIG_PM */
1161 * Free a 0-order page
1162 * cold == 1 ? free a cold page : free a hot page
1164 void free_hot_cold_page(struct page
*page
, int cold
)
1166 struct zone
*zone
= page_zone(page
);
1167 struct per_cpu_pages
*pcp
;
1168 unsigned long flags
;
1170 int wasMlocked
= __TestClearPageMlocked(page
);
1172 if (!free_pages_prepare(page
, 0))
1175 migratetype
= get_pageblock_migratetype(page
);
1176 set_page_private(page
, migratetype
);
1177 local_irq_save(flags
);
1178 if (unlikely(wasMlocked
))
1179 free_page_mlock(page
);
1180 __count_vm_event(PGFREE
);
1183 * We only track unmovable, reclaimable and movable on pcp lists.
1184 * Free ISOLATE pages back to the allocator because they are being
1185 * offlined but treat RESERVE as movable pages so we can get those
1186 * areas back if necessary. Otherwise, we may have to free
1187 * excessively into the page allocator
1189 if (migratetype
>= MIGRATE_PCPTYPES
) {
1190 if (unlikely(migratetype
== MIGRATE_ISOLATE
)) {
1191 free_one_page(zone
, page
, 0, migratetype
);
1194 migratetype
= MIGRATE_MOVABLE
;
1197 pcp
= &this_cpu_ptr(zone
->pageset
)->pcp
;
1199 list_add_tail(&page
->lru
, &pcp
->lists
[migratetype
]);
1201 list_add(&page
->lru
, &pcp
->lists
[migratetype
]);
1203 if (pcp
->count
>= pcp
->high
) {
1204 free_pcppages_bulk(zone
, pcp
->batch
, pcp
);
1205 pcp
->count
-= pcp
->batch
;
1209 local_irq_restore(flags
);
1213 * split_page takes a non-compound higher-order page, and splits it into
1214 * n (1<<order) sub-pages: page[0..n]
1215 * Each sub-page must be freed individually.
1217 * Note: this is probably too low level an operation for use in drivers.
1218 * Please consult with lkml before using this in your driver.
1220 void split_page(struct page
*page
, unsigned int order
)
1224 VM_BUG_ON(PageCompound(page
));
1225 VM_BUG_ON(!page_count(page
));
1227 #ifdef CONFIG_KMEMCHECK
1229 * Split shadow pages too, because free(page[0]) would
1230 * otherwise free the whole shadow.
1232 if (kmemcheck_page_is_tracked(page
))
1233 split_page(virt_to_page(page
[0].shadow
), order
);
1236 for (i
= 1; i
< (1 << order
); i
++)
1237 set_page_refcounted(page
+ i
);
1241 * Similar to split_page except the page is already free. As this is only
1242 * being used for migration, the migratetype of the block also changes.
1243 * As this is called with interrupts disabled, the caller is responsible
1244 * for calling arch_alloc_page() and kernel_map_page() after interrupts
1247 * Note: this is probably too low level an operation for use in drivers.
1248 * Please consult with lkml before using this in your driver.
1250 int split_free_page(struct page
*page
)
1253 unsigned long watermark
;
1256 BUG_ON(!PageBuddy(page
));
1258 zone
= page_zone(page
);
1259 order
= page_order(page
);
1261 /* Obey watermarks as if the page was being allocated */
1262 watermark
= low_wmark_pages(zone
) + (1 << order
);
1263 if (!zone_watermark_ok(zone
, 0, watermark
, 0, 0))
1266 /* Remove page from free list */
1267 list_del(&page
->lru
);
1268 zone
->free_area
[order
].nr_free
--;
1269 rmv_page_order(page
);
1270 __mod_zone_page_state(zone
, NR_FREE_PAGES
, -(1UL << order
));
1272 /* Split into individual pages */
1273 set_page_refcounted(page
);
1274 split_page(page
, order
);
1276 if (order
>= pageblock_order
- 1) {
1277 struct page
*endpage
= page
+ (1 << order
) - 1;
1278 for (; page
< endpage
; page
+= pageblock_nr_pages
)
1279 set_pageblock_migratetype(page
, MIGRATE_MOVABLE
);
1286 * Really, prep_compound_page() should be called from __rmqueue_bulk(). But
1287 * we cheat by calling it from here, in the order > 0 path. Saves a branch
1291 struct page
*buffered_rmqueue(struct zone
*preferred_zone
,
1292 struct zone
*zone
, int order
, gfp_t gfp_flags
,
1295 unsigned long flags
;
1297 int cold
= !!(gfp_flags
& __GFP_COLD
);
1300 if (likely(order
== 0)) {
1301 struct per_cpu_pages
*pcp
;
1302 struct list_head
*list
;
1304 local_irq_save(flags
);
1305 pcp
= &this_cpu_ptr(zone
->pageset
)->pcp
;
1306 list
= &pcp
->lists
[migratetype
];
1307 if (list_empty(list
)) {
1308 pcp
->count
+= rmqueue_bulk(zone
, 0,
1311 if (unlikely(list_empty(list
)))
1316 page
= list_entry(list
->prev
, struct page
, lru
);
1318 page
= list_entry(list
->next
, struct page
, lru
);
1320 list_del(&page
->lru
);
1323 if (unlikely(gfp_flags
& __GFP_NOFAIL
)) {
1325 * __GFP_NOFAIL is not to be used in new code.
1327 * All __GFP_NOFAIL callers should be fixed so that they
1328 * properly detect and handle allocation failures.
1330 * We most definitely don't want callers attempting to
1331 * allocate greater than order-1 page units with
1334 WARN_ON_ONCE(order
> 1);
1336 spin_lock_irqsave(&zone
->lock
, flags
);
1337 page
= __rmqueue(zone
, order
, migratetype
);
1338 spin_unlock(&zone
->lock
);
1341 __mod_zone_page_state(zone
, NR_FREE_PAGES
, -(1 << order
));
1344 __count_zone_vm_events(PGALLOC
, zone
, 1 << order
);
1345 zone_statistics(preferred_zone
, zone
, gfp_flags
);
1346 local_irq_restore(flags
);
1348 VM_BUG_ON(bad_range(zone
, page
));
1349 if (prep_new_page(page
, order
, gfp_flags
))
1354 local_irq_restore(flags
);
1358 /* The ALLOC_WMARK bits are used as an index to zone->watermark */
1359 #define ALLOC_WMARK_MIN WMARK_MIN
1360 #define ALLOC_WMARK_LOW WMARK_LOW
1361 #define ALLOC_WMARK_HIGH WMARK_HIGH
1362 #define ALLOC_NO_WATERMARKS 0x04 /* don't check watermarks at all */
1364 /* Mask to get the watermark bits */
1365 #define ALLOC_WMARK_MASK (ALLOC_NO_WATERMARKS-1)
1367 #define ALLOC_HARDER 0x10 /* try to alloc harder */
1368 #define ALLOC_HIGH 0x20 /* __GFP_HIGH set */
1369 #define ALLOC_CPUSET 0x40 /* check for correct cpuset */
1371 #ifdef CONFIG_FAIL_PAGE_ALLOC
1374 struct fault_attr attr
;
1376 u32 ignore_gfp_highmem
;
1377 u32 ignore_gfp_wait
;
1379 } fail_page_alloc
= {
1380 .attr
= FAULT_ATTR_INITIALIZER
,
1381 .ignore_gfp_wait
= 1,
1382 .ignore_gfp_highmem
= 1,
1386 static int __init
setup_fail_page_alloc(char *str
)
1388 return setup_fault_attr(&fail_page_alloc
.attr
, str
);
1390 __setup("fail_page_alloc=", setup_fail_page_alloc
);
1392 static int should_fail_alloc_page(gfp_t gfp_mask
, unsigned int order
)
1394 if (order
< fail_page_alloc
.min_order
)
1396 if (gfp_mask
& __GFP_NOFAIL
)
1398 if (fail_page_alloc
.ignore_gfp_highmem
&& (gfp_mask
& __GFP_HIGHMEM
))
1400 if (fail_page_alloc
.ignore_gfp_wait
&& (gfp_mask
& __GFP_WAIT
))
1403 return should_fail(&fail_page_alloc
.attr
, 1 << order
);
1406 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1408 static int __init
fail_page_alloc_debugfs(void)
1410 mode_t mode
= S_IFREG
| S_IRUSR
| S_IWUSR
;
1414 err
= init_fault_attr_dentries(&fail_page_alloc
.attr
,
1419 dir
= fail_page_alloc
.attr
.dir
;
1421 if (!debugfs_create_bool("ignore-gfp-wait", mode
, dir
,
1422 &fail_page_alloc
.ignore_gfp_wait
))
1424 if (!debugfs_create_bool("ignore-gfp-highmem", mode
, dir
,
1425 &fail_page_alloc
.ignore_gfp_highmem
))
1427 if (!debugfs_create_u32("min-order", mode
, dir
,
1428 &fail_page_alloc
.min_order
))
1433 cleanup_fault_attr_dentries(&fail_page_alloc
.attr
);
1438 late_initcall(fail_page_alloc_debugfs
);
1440 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1442 #else /* CONFIG_FAIL_PAGE_ALLOC */
1444 static inline int should_fail_alloc_page(gfp_t gfp_mask
, unsigned int order
)
1449 #endif /* CONFIG_FAIL_PAGE_ALLOC */
1452 * Return true if free pages are above 'mark'. This takes into account the order
1453 * of the allocation.
1455 static bool __zone_watermark_ok(struct zone
*z
, int order
, unsigned long mark
,
1456 int classzone_idx
, int alloc_flags
, long free_pages
)
1458 /* free_pages my go negative - that's OK */
1462 free_pages
-= (1 << order
) + 1;
1463 if (alloc_flags
& ALLOC_HIGH
)
1465 if (alloc_flags
& ALLOC_HARDER
)
1468 if (free_pages
<= min
+ z
->lowmem_reserve
[classzone_idx
])
1470 for (o
= 0; o
< order
; o
++) {
1471 /* At the next order, this order's pages become unavailable */
1472 free_pages
-= z
->free_area
[o
].nr_free
<< o
;
1474 /* Require fewer higher order pages to be free */
1477 if (free_pages
<= min
)
1483 bool zone_watermark_ok(struct zone
*z
, int order
, unsigned long mark
,
1484 int classzone_idx
, int alloc_flags
)
1486 return __zone_watermark_ok(z
, order
, mark
, classzone_idx
, alloc_flags
,
1487 zone_page_state(z
, NR_FREE_PAGES
));
1490 bool zone_watermark_ok_safe(struct zone
*z
, int order
, unsigned long mark
,
1491 int classzone_idx
, int alloc_flags
)
1493 long free_pages
= zone_page_state(z
, NR_FREE_PAGES
);
1495 if (z
->percpu_drift_mark
&& free_pages
< z
->percpu_drift_mark
)
1496 free_pages
= zone_page_state_snapshot(z
, NR_FREE_PAGES
);
1498 return __zone_watermark_ok(z
, order
, mark
, classzone_idx
, alloc_flags
,
1504 * zlc_setup - Setup for "zonelist cache". Uses cached zone data to
1505 * skip over zones that are not allowed by the cpuset, or that have
1506 * been recently (in last second) found to be nearly full. See further
1507 * comments in mmzone.h. Reduces cache footprint of zonelist scans
1508 * that have to skip over a lot of full or unallowed zones.
1510 * If the zonelist cache is present in the passed in zonelist, then
1511 * returns a pointer to the allowed node mask (either the current
1512 * tasks mems_allowed, or node_states[N_HIGH_MEMORY].)
1514 * If the zonelist cache is not available for this zonelist, does
1515 * nothing and returns NULL.
1517 * If the fullzones BITMAP in the zonelist cache is stale (more than
1518 * a second since last zap'd) then we zap it out (clear its bits.)
1520 * We hold off even calling zlc_setup, until after we've checked the
1521 * first zone in the zonelist, on the theory that most allocations will
1522 * be satisfied from that first zone, so best to examine that zone as
1523 * quickly as we can.
1525 static nodemask_t
*zlc_setup(struct zonelist
*zonelist
, int alloc_flags
)
1527 struct zonelist_cache
*zlc
; /* cached zonelist speedup info */
1528 nodemask_t
*allowednodes
; /* zonelist_cache approximation */
1530 zlc
= zonelist
->zlcache_ptr
;
1534 if (time_after(jiffies
, zlc
->last_full_zap
+ HZ
)) {
1535 bitmap_zero(zlc
->fullzones
, MAX_ZONES_PER_ZONELIST
);
1536 zlc
->last_full_zap
= jiffies
;
1539 allowednodes
= !in_interrupt() && (alloc_flags
& ALLOC_CPUSET
) ?
1540 &cpuset_current_mems_allowed
:
1541 &node_states
[N_HIGH_MEMORY
];
1542 return allowednodes
;
1546 * Given 'z' scanning a zonelist, run a couple of quick checks to see
1547 * if it is worth looking at further for free memory:
1548 * 1) Check that the zone isn't thought to be full (doesn't have its
1549 * bit set in the zonelist_cache fullzones BITMAP).
1550 * 2) Check that the zones node (obtained from the zonelist_cache
1551 * z_to_n[] mapping) is allowed in the passed in allowednodes mask.
1552 * Return true (non-zero) if zone is worth looking at further, or
1553 * else return false (zero) if it is not.
1555 * This check -ignores- the distinction between various watermarks,
1556 * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ... If a zone is
1557 * found to be full for any variation of these watermarks, it will
1558 * be considered full for up to one second by all requests, unless
1559 * we are so low on memory on all allowed nodes that we are forced
1560 * into the second scan of the zonelist.
1562 * In the second scan we ignore this zonelist cache and exactly
1563 * apply the watermarks to all zones, even it is slower to do so.
1564 * We are low on memory in the second scan, and should leave no stone
1565 * unturned looking for a free page.
1567 static int zlc_zone_worth_trying(struct zonelist
*zonelist
, struct zoneref
*z
,
1568 nodemask_t
*allowednodes
)
1570 struct zonelist_cache
*zlc
; /* cached zonelist speedup info */
1571 int i
; /* index of *z in zonelist zones */
1572 int n
; /* node that zone *z is on */
1574 zlc
= zonelist
->zlcache_ptr
;
1578 i
= z
- zonelist
->_zonerefs
;
1581 /* This zone is worth trying if it is allowed but not full */
1582 return node_isset(n
, *allowednodes
) && !test_bit(i
, zlc
->fullzones
);
1586 * Given 'z' scanning a zonelist, set the corresponding bit in
1587 * zlc->fullzones, so that subsequent attempts to allocate a page
1588 * from that zone don't waste time re-examining it.
1590 static void zlc_mark_zone_full(struct zonelist
*zonelist
, struct zoneref
*z
)
1592 struct zonelist_cache
*zlc
; /* cached zonelist speedup info */
1593 int i
; /* index of *z in zonelist zones */
1595 zlc
= zonelist
->zlcache_ptr
;
1599 i
= z
- zonelist
->_zonerefs
;
1601 set_bit(i
, zlc
->fullzones
);
1605 * clear all zones full, called after direct reclaim makes progress so that
1606 * a zone that was recently full is not skipped over for up to a second
1608 static void zlc_clear_zones_full(struct zonelist
*zonelist
)
1610 struct zonelist_cache
*zlc
; /* cached zonelist speedup info */
1612 zlc
= zonelist
->zlcache_ptr
;
1616 bitmap_zero(zlc
->fullzones
, MAX_ZONES_PER_ZONELIST
);
1619 #else /* CONFIG_NUMA */
1621 static nodemask_t
*zlc_setup(struct zonelist
*zonelist
, int alloc_flags
)
1626 static int zlc_zone_worth_trying(struct zonelist
*zonelist
, struct zoneref
*z
,
1627 nodemask_t
*allowednodes
)
1632 static void zlc_mark_zone_full(struct zonelist
*zonelist
, struct zoneref
*z
)
1636 static void zlc_clear_zones_full(struct zonelist
*zonelist
)
1639 #endif /* CONFIG_NUMA */
1642 * get_page_from_freelist goes through the zonelist trying to allocate
1645 static struct page
*
1646 get_page_from_freelist(gfp_t gfp_mask
, nodemask_t
*nodemask
, unsigned int order
,
1647 struct zonelist
*zonelist
, int high_zoneidx
, int alloc_flags
,
1648 struct zone
*preferred_zone
, int migratetype
)
1651 struct page
*page
= NULL
;
1654 nodemask_t
*allowednodes
= NULL
;/* zonelist_cache approximation */
1655 int zlc_active
= 0; /* set if using zonelist_cache */
1656 int did_zlc_setup
= 0; /* just call zlc_setup() one time */
1658 classzone_idx
= zone_idx(preferred_zone
);
1661 * Scan zonelist, looking for a zone with enough free.
1662 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
1664 for_each_zone_zonelist_nodemask(zone
, z
, zonelist
,
1665 high_zoneidx
, nodemask
) {
1666 if (NUMA_BUILD
&& zlc_active
&&
1667 !zlc_zone_worth_trying(zonelist
, z
, allowednodes
))
1669 if ((alloc_flags
& ALLOC_CPUSET
) &&
1670 !cpuset_zone_allowed_softwall(zone
, gfp_mask
))
1673 BUILD_BUG_ON(ALLOC_NO_WATERMARKS
< NR_WMARK
);
1674 if (!(alloc_flags
& ALLOC_NO_WATERMARKS
)) {
1678 mark
= zone
->watermark
[alloc_flags
& ALLOC_WMARK_MASK
];
1679 if (zone_watermark_ok(zone
, order
, mark
,
1680 classzone_idx
, alloc_flags
))
1683 if (NUMA_BUILD
&& !did_zlc_setup
&& nr_online_nodes
> 1) {
1685 * we do zlc_setup if there are multiple nodes
1686 * and before considering the first zone allowed
1689 allowednodes
= zlc_setup(zonelist
, alloc_flags
);
1694 if (zone_reclaim_mode
== 0)
1695 goto this_zone_full
;
1698 * As we may have just activated ZLC, check if the first
1699 * eligible zone has failed zone_reclaim recently.
1701 if (NUMA_BUILD
&& zlc_active
&&
1702 !zlc_zone_worth_trying(zonelist
, z
, allowednodes
))
1705 ret
= zone_reclaim(zone
, gfp_mask
, order
);
1707 case ZONE_RECLAIM_NOSCAN
:
1710 case ZONE_RECLAIM_FULL
:
1711 /* scanned but unreclaimable */
1714 /* did we reclaim enough */
1715 if (!zone_watermark_ok(zone
, order
, mark
,
1716 classzone_idx
, alloc_flags
))
1717 goto this_zone_full
;
1722 page
= buffered_rmqueue(preferred_zone
, zone
, order
,
1723 gfp_mask
, migratetype
);
1728 zlc_mark_zone_full(zonelist
, z
);
1731 if (unlikely(NUMA_BUILD
&& page
== NULL
&& zlc_active
)) {
1732 /* Disable zlc cache for second zonelist scan */
1740 * Large machines with many possible nodes should not always dump per-node
1741 * meminfo in irq context.
1743 static inline bool should_suppress_show_mem(void)
1748 ret
= in_interrupt();
1753 static DEFINE_RATELIMIT_STATE(nopage_rs
,
1754 DEFAULT_RATELIMIT_INTERVAL
,
1755 DEFAULT_RATELIMIT_BURST
);
1757 void warn_alloc_failed(gfp_t gfp_mask
, int order
, const char *fmt
, ...)
1760 unsigned int filter
= SHOW_MEM_FILTER_NODES
;
1762 if ((gfp_mask
& __GFP_NOWARN
) || !__ratelimit(&nopage_rs
))
1766 * This documents exceptions given to allocations in certain
1767 * contexts that are allowed to allocate outside current's set
1770 if (!(gfp_mask
& __GFP_NOMEMALLOC
))
1771 if (test_thread_flag(TIF_MEMDIE
) ||
1772 (current
->flags
& (PF_MEMALLOC
| PF_EXITING
)))
1773 filter
&= ~SHOW_MEM_FILTER_NODES
;
1774 if (in_interrupt() || !(gfp_mask
& __GFP_WAIT
))
1775 filter
&= ~SHOW_MEM_FILTER_NODES
;
1778 printk(KERN_WARNING
);
1779 va_start(args
, fmt
);
1784 pr_warning("%s: page allocation failure: order:%d, mode:0x%x\n",
1785 current
->comm
, order
, gfp_mask
);
1788 if (!should_suppress_show_mem())
1793 should_alloc_retry(gfp_t gfp_mask
, unsigned int order
,
1794 unsigned long pages_reclaimed
)
1796 /* Do not loop if specifically requested */
1797 if (gfp_mask
& __GFP_NORETRY
)
1801 * In this implementation, order <= PAGE_ALLOC_COSTLY_ORDER
1802 * means __GFP_NOFAIL, but that may not be true in other
1805 if (order
<= PAGE_ALLOC_COSTLY_ORDER
)
1809 * For order > PAGE_ALLOC_COSTLY_ORDER, if __GFP_REPEAT is
1810 * specified, then we retry until we no longer reclaim any pages
1811 * (above), or we've reclaimed an order of pages at least as
1812 * large as the allocation's order. In both cases, if the
1813 * allocation still fails, we stop retrying.
1815 if (gfp_mask
& __GFP_REPEAT
&& pages_reclaimed
< (1 << order
))
1819 * Don't let big-order allocations loop unless the caller
1820 * explicitly requests that.
1822 if (gfp_mask
& __GFP_NOFAIL
)
1828 static inline struct page
*
1829 __alloc_pages_may_oom(gfp_t gfp_mask
, unsigned int order
,
1830 struct zonelist
*zonelist
, enum zone_type high_zoneidx
,
1831 nodemask_t
*nodemask
, struct zone
*preferred_zone
,
1836 /* Acquire the OOM killer lock for the zones in zonelist */
1837 if (!try_set_zonelist_oom(zonelist
, gfp_mask
)) {
1838 schedule_timeout_uninterruptible(1);
1843 * Go through the zonelist yet one more time, keep very high watermark
1844 * here, this is only to catch a parallel oom killing, we must fail if
1845 * we're still under heavy pressure.
1847 page
= get_page_from_freelist(gfp_mask
|__GFP_HARDWALL
, nodemask
,
1848 order
, zonelist
, high_zoneidx
,
1849 ALLOC_WMARK_HIGH
|ALLOC_CPUSET
,
1850 preferred_zone
, migratetype
);
1854 if (!(gfp_mask
& __GFP_NOFAIL
)) {
1855 /* The OOM killer will not help higher order allocs */
1856 if (order
> PAGE_ALLOC_COSTLY_ORDER
)
1858 /* The OOM killer does not needlessly kill tasks for lowmem */
1859 if (high_zoneidx
< ZONE_NORMAL
)
1862 * GFP_THISNODE contains __GFP_NORETRY and we never hit this.
1863 * Sanity check for bare calls of __GFP_THISNODE, not real OOM.
1864 * The caller should handle page allocation failure by itself if
1865 * it specifies __GFP_THISNODE.
1866 * Note: Hugepage uses it but will hit PAGE_ALLOC_COSTLY_ORDER.
1868 if (gfp_mask
& __GFP_THISNODE
)
1871 /* Exhausted what can be done so it's blamo time */
1872 out_of_memory(zonelist
, gfp_mask
, order
, nodemask
);
1875 clear_zonelist_oom(zonelist
, gfp_mask
);
1879 #ifdef CONFIG_COMPACTION
1880 /* Try memory compaction for high-order allocations before reclaim */
1881 static struct page
*
1882 __alloc_pages_direct_compact(gfp_t gfp_mask
, unsigned int order
,
1883 struct zonelist
*zonelist
, enum zone_type high_zoneidx
,
1884 nodemask_t
*nodemask
, int alloc_flags
, struct zone
*preferred_zone
,
1885 int migratetype
, unsigned long *did_some_progress
,
1886 bool sync_migration
)
1890 if (!order
|| compaction_deferred(preferred_zone
))
1893 current
->flags
|= PF_MEMALLOC
;
1894 *did_some_progress
= try_to_compact_pages(zonelist
, order
, gfp_mask
,
1895 nodemask
, sync_migration
);
1896 current
->flags
&= ~PF_MEMALLOC
;
1897 if (*did_some_progress
!= COMPACT_SKIPPED
) {
1899 /* Page migration frees to the PCP lists but we want merging */
1900 drain_pages(get_cpu());
1903 page
= get_page_from_freelist(gfp_mask
, nodemask
,
1904 order
, zonelist
, high_zoneidx
,
1905 alloc_flags
, preferred_zone
,
1908 preferred_zone
->compact_considered
= 0;
1909 preferred_zone
->compact_defer_shift
= 0;
1910 count_vm_event(COMPACTSUCCESS
);
1915 * It's bad if compaction run occurs and fails.
1916 * The most likely reason is that pages exist,
1917 * but not enough to satisfy watermarks.
1919 count_vm_event(COMPACTFAIL
);
1920 defer_compaction(preferred_zone
);
1928 static inline struct page
*
1929 __alloc_pages_direct_compact(gfp_t gfp_mask
, unsigned int order
,
1930 struct zonelist
*zonelist
, enum zone_type high_zoneidx
,
1931 nodemask_t
*nodemask
, int alloc_flags
, struct zone
*preferred_zone
,
1932 int migratetype
, unsigned long *did_some_progress
,
1933 bool sync_migration
)
1937 #endif /* CONFIG_COMPACTION */
1939 /* The really slow allocator path where we enter direct reclaim */
1940 static inline struct page
*
1941 __alloc_pages_direct_reclaim(gfp_t gfp_mask
, unsigned int order
,
1942 struct zonelist
*zonelist
, enum zone_type high_zoneidx
,
1943 nodemask_t
*nodemask
, int alloc_flags
, struct zone
*preferred_zone
,
1944 int migratetype
, unsigned long *did_some_progress
)
1946 struct page
*page
= NULL
;
1947 struct reclaim_state reclaim_state
;
1948 bool drained
= false;
1952 /* We now go into synchronous reclaim */
1953 cpuset_memory_pressure_bump();
1954 current
->flags
|= PF_MEMALLOC
;
1955 lockdep_set_current_reclaim_state(gfp_mask
);
1956 reclaim_state
.reclaimed_slab
= 0;
1957 current
->reclaim_state
= &reclaim_state
;
1959 *did_some_progress
= try_to_free_pages(zonelist
, order
, gfp_mask
, nodemask
);
1961 current
->reclaim_state
= NULL
;
1962 lockdep_clear_current_reclaim_state();
1963 current
->flags
&= ~PF_MEMALLOC
;
1967 if (unlikely(!(*did_some_progress
)))
1970 /* After successful reclaim, reconsider all zones for allocation */
1972 zlc_clear_zones_full(zonelist
);
1975 page
= get_page_from_freelist(gfp_mask
, nodemask
, order
,
1976 zonelist
, high_zoneidx
,
1977 alloc_flags
, preferred_zone
,
1981 * If an allocation failed after direct reclaim, it could be because
1982 * pages are pinned on the per-cpu lists. Drain them and try again
1984 if (!page
&& !drained
) {
1994 * This is called in the allocator slow-path if the allocation request is of
1995 * sufficient urgency to ignore watermarks and take other desperate measures
1997 static inline struct page
*
1998 __alloc_pages_high_priority(gfp_t gfp_mask
, unsigned int order
,
1999 struct zonelist
*zonelist
, enum zone_type high_zoneidx
,
2000 nodemask_t
*nodemask
, struct zone
*preferred_zone
,
2006 page
= get_page_from_freelist(gfp_mask
, nodemask
, order
,
2007 zonelist
, high_zoneidx
, ALLOC_NO_WATERMARKS
,
2008 preferred_zone
, migratetype
);
2010 if (!page
&& gfp_mask
& __GFP_NOFAIL
)
2011 wait_iff_congested(preferred_zone
, BLK_RW_ASYNC
, HZ
/50);
2012 } while (!page
&& (gfp_mask
& __GFP_NOFAIL
));
2018 void wake_all_kswapd(unsigned int order
, struct zonelist
*zonelist
,
2019 enum zone_type high_zoneidx
,
2020 enum zone_type classzone_idx
)
2025 for_each_zone_zonelist(zone
, z
, zonelist
, high_zoneidx
)
2026 wakeup_kswapd(zone
, order
, classzone_idx
);
2030 gfp_to_alloc_flags(gfp_t gfp_mask
)
2032 int alloc_flags
= ALLOC_WMARK_MIN
| ALLOC_CPUSET
;
2033 const gfp_t wait
= gfp_mask
& __GFP_WAIT
;
2035 /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
2036 BUILD_BUG_ON(__GFP_HIGH
!= (__force gfp_t
) ALLOC_HIGH
);
2039 * The caller may dip into page reserves a bit more if the caller
2040 * cannot run direct reclaim, or if the caller has realtime scheduling
2041 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
2042 * set both ALLOC_HARDER (!wait) and ALLOC_HIGH (__GFP_HIGH).
2044 alloc_flags
|= (__force
int) (gfp_mask
& __GFP_HIGH
);
2048 * Not worth trying to allocate harder for
2049 * __GFP_NOMEMALLOC even if it can't schedule.
2051 if (!(gfp_mask
& __GFP_NOMEMALLOC
))
2052 alloc_flags
|= ALLOC_HARDER
;
2054 * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc.
2055 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
2057 alloc_flags
&= ~ALLOC_CPUSET
;
2058 } else if (unlikely(rt_task(current
)) && !in_interrupt())
2059 alloc_flags
|= ALLOC_HARDER
;
2061 if (likely(!(gfp_mask
& __GFP_NOMEMALLOC
))) {
2062 if (!in_interrupt() &&
2063 ((current
->flags
& PF_MEMALLOC
) ||
2064 unlikely(test_thread_flag(TIF_MEMDIE
))))
2065 alloc_flags
|= ALLOC_NO_WATERMARKS
;
2071 static inline struct page
*
2072 __alloc_pages_slowpath(gfp_t gfp_mask
, unsigned int order
,
2073 struct zonelist
*zonelist
, enum zone_type high_zoneidx
,
2074 nodemask_t
*nodemask
, struct zone
*preferred_zone
,
2077 const gfp_t wait
= gfp_mask
& __GFP_WAIT
;
2078 struct page
*page
= NULL
;
2080 unsigned long pages_reclaimed
= 0;
2081 unsigned long did_some_progress
;
2082 bool sync_migration
= false;
2085 * In the slowpath, we sanity check order to avoid ever trying to
2086 * reclaim >= MAX_ORDER areas which will never succeed. Callers may
2087 * be using allocators in order of preference for an area that is
2090 if (order
>= MAX_ORDER
) {
2091 WARN_ON_ONCE(!(gfp_mask
& __GFP_NOWARN
));
2096 * GFP_THISNODE (meaning __GFP_THISNODE, __GFP_NORETRY and
2097 * __GFP_NOWARN set) should not cause reclaim since the subsystem
2098 * (f.e. slab) using GFP_THISNODE may choose to trigger reclaim
2099 * using a larger set of nodes after it has established that the
2100 * allowed per node queues are empty and that nodes are
2103 if (NUMA_BUILD
&& (gfp_mask
& GFP_THISNODE
) == GFP_THISNODE
)
2107 if (!(gfp_mask
& __GFP_NO_KSWAPD
))
2108 wake_all_kswapd(order
, zonelist
, high_zoneidx
,
2109 zone_idx(preferred_zone
));
2112 * OK, we're below the kswapd watermark and have kicked background
2113 * reclaim. Now things get more complex, so set up alloc_flags according
2114 * to how we want to proceed.
2116 alloc_flags
= gfp_to_alloc_flags(gfp_mask
);
2119 * Find the true preferred zone if the allocation is unconstrained by
2122 if (!(alloc_flags
& ALLOC_CPUSET
) && !nodemask
)
2123 first_zones_zonelist(zonelist
, high_zoneidx
, NULL
,
2127 /* This is the last chance, in general, before the goto nopage. */
2128 page
= get_page_from_freelist(gfp_mask
, nodemask
, order
, zonelist
,
2129 high_zoneidx
, alloc_flags
& ~ALLOC_NO_WATERMARKS
,
2130 preferred_zone
, migratetype
);
2134 /* Allocate without watermarks if the context allows */
2135 if (alloc_flags
& ALLOC_NO_WATERMARKS
) {
2136 page
= __alloc_pages_high_priority(gfp_mask
, order
,
2137 zonelist
, high_zoneidx
, nodemask
,
2138 preferred_zone
, migratetype
);
2143 /* Atomic allocations - we can't balance anything */
2147 /* Avoid recursion of direct reclaim */
2148 if (current
->flags
& PF_MEMALLOC
)
2151 /* Avoid allocations with no watermarks from looping endlessly */
2152 if (test_thread_flag(TIF_MEMDIE
) && !(gfp_mask
& __GFP_NOFAIL
))
2156 * Try direct compaction. The first pass is asynchronous. Subsequent
2157 * attempts after direct reclaim are synchronous
2159 page
= __alloc_pages_direct_compact(gfp_mask
, order
,
2160 zonelist
, high_zoneidx
,
2162 alloc_flags
, preferred_zone
,
2163 migratetype
, &did_some_progress
,
2167 sync_migration
= true;
2169 /* Try direct reclaim and then allocating */
2170 page
= __alloc_pages_direct_reclaim(gfp_mask
, order
,
2171 zonelist
, high_zoneidx
,
2173 alloc_flags
, preferred_zone
,
2174 migratetype
, &did_some_progress
);
2179 * If we failed to make any progress reclaiming, then we are
2180 * running out of options and have to consider going OOM
2182 if (!did_some_progress
) {
2183 if ((gfp_mask
& __GFP_FS
) && !(gfp_mask
& __GFP_NORETRY
)) {
2184 if (oom_killer_disabled
)
2186 page
= __alloc_pages_may_oom(gfp_mask
, order
,
2187 zonelist
, high_zoneidx
,
2188 nodemask
, preferred_zone
,
2193 if (!(gfp_mask
& __GFP_NOFAIL
)) {
2195 * The oom killer is not called for high-order
2196 * allocations that may fail, so if no progress
2197 * is being made, there are no other options and
2198 * retrying is unlikely to help.
2200 if (order
> PAGE_ALLOC_COSTLY_ORDER
)
2203 * The oom killer is not called for lowmem
2204 * allocations to prevent needlessly killing
2207 if (high_zoneidx
< ZONE_NORMAL
)
2215 /* Check if we should retry the allocation */
2216 pages_reclaimed
+= did_some_progress
;
2217 if (should_alloc_retry(gfp_mask
, order
, pages_reclaimed
)) {
2218 /* Wait for some write requests to complete then retry */
2219 wait_iff_congested(preferred_zone
, BLK_RW_ASYNC
, HZ
/50);
2223 * High-order allocations do not necessarily loop after
2224 * direct reclaim and reclaim/compaction depends on compaction
2225 * being called after reclaim so call directly if necessary
2227 page
= __alloc_pages_direct_compact(gfp_mask
, order
,
2228 zonelist
, high_zoneidx
,
2230 alloc_flags
, preferred_zone
,
2231 migratetype
, &did_some_progress
,
2238 warn_alloc_failed(gfp_mask
, order
, NULL
);
2241 if (kmemcheck_enabled
)
2242 kmemcheck_pagealloc_alloc(page
, order
, gfp_mask
);
2248 * This is the 'heart' of the zoned buddy allocator.
2251 __alloc_pages_nodemask(gfp_t gfp_mask
, unsigned int order
,
2252 struct zonelist
*zonelist
, nodemask_t
*nodemask
)
2254 enum zone_type high_zoneidx
= gfp_zone(gfp_mask
);
2255 struct zone
*preferred_zone
;
2257 int migratetype
= allocflags_to_migratetype(gfp_mask
);
2259 gfp_mask
&= gfp_allowed_mask
;
2261 lockdep_trace_alloc(gfp_mask
);
2263 might_sleep_if(gfp_mask
& __GFP_WAIT
);
2265 if (should_fail_alloc_page(gfp_mask
, order
))
2269 * Check the zones suitable for the gfp_mask contain at least one
2270 * valid zone. It's possible to have an empty zonelist as a result
2271 * of GFP_THISNODE and a memoryless node
2273 if (unlikely(!zonelist
->_zonerefs
->zone
))
2277 /* The preferred zone is used for statistics later */
2278 first_zones_zonelist(zonelist
, high_zoneidx
,
2279 nodemask
? : &cpuset_current_mems_allowed
,
2281 if (!preferred_zone
) {
2286 /* First allocation attempt */
2287 page
= get_page_from_freelist(gfp_mask
|__GFP_HARDWALL
, nodemask
, order
,
2288 zonelist
, high_zoneidx
, ALLOC_WMARK_LOW
|ALLOC_CPUSET
,
2289 preferred_zone
, migratetype
);
2290 if (unlikely(!page
))
2291 page
= __alloc_pages_slowpath(gfp_mask
, order
,
2292 zonelist
, high_zoneidx
, nodemask
,
2293 preferred_zone
, migratetype
);
2296 trace_mm_page_alloc(page
, order
, gfp_mask
, migratetype
);
2299 EXPORT_SYMBOL(__alloc_pages_nodemask
);
2302 * Common helper functions.
2304 unsigned long __get_free_pages(gfp_t gfp_mask
, unsigned int order
)
2309 * __get_free_pages() returns a 32-bit address, which cannot represent
2312 VM_BUG_ON((gfp_mask
& __GFP_HIGHMEM
) != 0);
2314 page
= alloc_pages(gfp_mask
, order
);
2317 return (unsigned long) page_address(page
);
2319 EXPORT_SYMBOL(__get_free_pages
);
2321 unsigned long get_zeroed_page(gfp_t gfp_mask
)
2323 return __get_free_pages(gfp_mask
| __GFP_ZERO
, 0);
2325 EXPORT_SYMBOL(get_zeroed_page
);
2327 void __pagevec_free(struct pagevec
*pvec
)
2329 int i
= pagevec_count(pvec
);
2332 trace_mm_pagevec_free(pvec
->pages
[i
], pvec
->cold
);
2333 free_hot_cold_page(pvec
->pages
[i
], pvec
->cold
);
2337 void __free_pages(struct page
*page
, unsigned int order
)
2339 if (put_page_testzero(page
)) {
2341 free_hot_cold_page(page
, 0);
2343 __free_pages_ok(page
, order
);
2347 EXPORT_SYMBOL(__free_pages
);
2349 void free_pages(unsigned long addr
, unsigned int order
)
2352 VM_BUG_ON(!virt_addr_valid((void *)addr
));
2353 __free_pages(virt_to_page((void *)addr
), order
);
2357 EXPORT_SYMBOL(free_pages
);
2359 static void *make_alloc_exact(unsigned long addr
, unsigned order
, size_t size
)
2362 unsigned long alloc_end
= addr
+ (PAGE_SIZE
<< order
);
2363 unsigned long used
= addr
+ PAGE_ALIGN(size
);
2365 split_page(virt_to_page((void *)addr
), order
);
2366 while (used
< alloc_end
) {
2371 return (void *)addr
;
2375 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
2376 * @size: the number of bytes to allocate
2377 * @gfp_mask: GFP flags for the allocation
2379 * This function is similar to alloc_pages(), except that it allocates the
2380 * minimum number of pages to satisfy the request. alloc_pages() can only
2381 * allocate memory in power-of-two pages.
2383 * This function is also limited by MAX_ORDER.
2385 * Memory allocated by this function must be released by free_pages_exact().
2387 void *alloc_pages_exact(size_t size
, gfp_t gfp_mask
)
2389 unsigned int order
= get_order(size
);
2392 addr
= __get_free_pages(gfp_mask
, order
);
2393 return make_alloc_exact(addr
, order
, size
);
2395 EXPORT_SYMBOL(alloc_pages_exact
);
2398 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
2400 * @nid: the preferred node ID where memory should be allocated
2401 * @size: the number of bytes to allocate
2402 * @gfp_mask: GFP flags for the allocation
2404 * Like alloc_pages_exact(), but try to allocate on node nid first before falling
2406 * Note this is not alloc_pages_exact_node() which allocates on a specific node,
2409 void *alloc_pages_exact_nid(int nid
, size_t size
, gfp_t gfp_mask
)
2411 unsigned order
= get_order(size
);
2412 struct page
*p
= alloc_pages_node(nid
, gfp_mask
, order
);
2415 return make_alloc_exact((unsigned long)page_address(p
), order
, size
);
2417 EXPORT_SYMBOL(alloc_pages_exact_nid
);
2420 * free_pages_exact - release memory allocated via alloc_pages_exact()
2421 * @virt: the value returned by alloc_pages_exact.
2422 * @size: size of allocation, same value as passed to alloc_pages_exact().
2424 * Release the memory allocated by a previous call to alloc_pages_exact.
2426 void free_pages_exact(void *virt
, size_t size
)
2428 unsigned long addr
= (unsigned long)virt
;
2429 unsigned long end
= addr
+ PAGE_ALIGN(size
);
2431 while (addr
< end
) {
2436 EXPORT_SYMBOL(free_pages_exact
);
2438 static unsigned int nr_free_zone_pages(int offset
)
2443 /* Just pick one node, since fallback list is circular */
2444 unsigned int sum
= 0;
2446 struct zonelist
*zonelist
= node_zonelist(numa_node_id(), GFP_KERNEL
);
2448 for_each_zone_zonelist(zone
, z
, zonelist
, offset
) {
2449 unsigned long size
= zone
->present_pages
;
2450 unsigned long high
= high_wmark_pages(zone
);
2459 * Amount of free RAM allocatable within ZONE_DMA and ZONE_NORMAL
2461 unsigned int nr_free_buffer_pages(void)
2463 return nr_free_zone_pages(gfp_zone(GFP_USER
));
2465 EXPORT_SYMBOL_GPL(nr_free_buffer_pages
);
2468 * Amount of free RAM allocatable within all zones
2470 unsigned int nr_free_pagecache_pages(void)
2472 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE
));
2475 static inline void show_node(struct zone
*zone
)
2478 printk("Node %d ", zone_to_nid(zone
));
2481 void si_meminfo(struct sysinfo
*val
)
2483 val
->totalram
= totalram_pages
;
2485 val
->freeram
= global_page_state(NR_FREE_PAGES
);
2486 val
->bufferram
= nr_blockdev_pages();
2487 val
->totalhigh
= totalhigh_pages
;
2488 val
->freehigh
= nr_free_highpages();
2489 val
->mem_unit
= PAGE_SIZE
;
2492 EXPORT_SYMBOL(si_meminfo
);
2495 void si_meminfo_node(struct sysinfo
*val
, int nid
)
2497 pg_data_t
*pgdat
= NODE_DATA(nid
);
2499 val
->totalram
= pgdat
->node_present_pages
;
2500 val
->freeram
= node_page_state(nid
, NR_FREE_PAGES
);
2501 #ifdef CONFIG_HIGHMEM
2502 val
->totalhigh
= pgdat
->node_zones
[ZONE_HIGHMEM
].present_pages
;
2503 val
->freehigh
= zone_page_state(&pgdat
->node_zones
[ZONE_HIGHMEM
],
2509 val
->mem_unit
= PAGE_SIZE
;
2514 * Determine whether the node should be displayed or not, depending on whether
2515 * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
2517 bool skip_free_areas_node(unsigned int flags
, int nid
)
2521 if (!(flags
& SHOW_MEM_FILTER_NODES
))
2525 ret
= !node_isset(nid
, cpuset_current_mems_allowed
);
2531 #define K(x) ((x) << (PAGE_SHIFT-10))
2534 * Show free area list (used inside shift_scroll-lock stuff)
2535 * We also calculate the percentage fragmentation. We do this by counting the
2536 * memory on each free list with the exception of the first item on the list.
2537 * Suppresses nodes that are not allowed by current's cpuset if
2538 * SHOW_MEM_FILTER_NODES is passed.
2540 void show_free_areas(unsigned int filter
)
2545 for_each_populated_zone(zone
) {
2546 if (skip_free_areas_node(filter
, zone_to_nid(zone
)))
2549 printk("%s per-cpu:\n", zone
->name
);
2551 for_each_online_cpu(cpu
) {
2552 struct per_cpu_pageset
*pageset
;
2554 pageset
= per_cpu_ptr(zone
->pageset
, cpu
);
2556 printk("CPU %4d: hi:%5d, btch:%4d usd:%4d\n",
2557 cpu
, pageset
->pcp
.high
,
2558 pageset
->pcp
.batch
, pageset
->pcp
.count
);
2562 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
2563 " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
2565 " dirty:%lu writeback:%lu unstable:%lu\n"
2566 " free:%lu slab_reclaimable:%lu slab_unreclaimable:%lu\n"
2567 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n",
2568 global_page_state(NR_ACTIVE_ANON
),
2569 global_page_state(NR_INACTIVE_ANON
),
2570 global_page_state(NR_ISOLATED_ANON
),
2571 global_page_state(NR_ACTIVE_FILE
),
2572 global_page_state(NR_INACTIVE_FILE
),
2573 global_page_state(NR_ISOLATED_FILE
),
2574 global_page_state(NR_UNEVICTABLE
),
2575 global_page_state(NR_FILE_DIRTY
),
2576 global_page_state(NR_WRITEBACK
),
2577 global_page_state(NR_UNSTABLE_NFS
),
2578 global_page_state(NR_FREE_PAGES
),
2579 global_page_state(NR_SLAB_RECLAIMABLE
),
2580 global_page_state(NR_SLAB_UNRECLAIMABLE
),
2581 global_page_state(NR_FILE_MAPPED
),
2582 global_page_state(NR_SHMEM
),
2583 global_page_state(NR_PAGETABLE
),
2584 global_page_state(NR_BOUNCE
));
2586 for_each_populated_zone(zone
) {
2589 if (skip_free_areas_node(filter
, zone_to_nid(zone
)))
2597 " active_anon:%lukB"
2598 " inactive_anon:%lukB"
2599 " active_file:%lukB"
2600 " inactive_file:%lukB"
2601 " unevictable:%lukB"
2602 " isolated(anon):%lukB"
2603 " isolated(file):%lukB"
2610 " slab_reclaimable:%lukB"
2611 " slab_unreclaimable:%lukB"
2612 " kernel_stack:%lukB"
2616 " writeback_tmp:%lukB"
2617 " pages_scanned:%lu"
2618 " all_unreclaimable? %s"
2621 K(zone_page_state(zone
, NR_FREE_PAGES
)),
2622 K(min_wmark_pages(zone
)),
2623 K(low_wmark_pages(zone
)),
2624 K(high_wmark_pages(zone
)),
2625 K(zone_page_state(zone
, NR_ACTIVE_ANON
)),
2626 K(zone_page_state(zone
, NR_INACTIVE_ANON
)),
2627 K(zone_page_state(zone
, NR_ACTIVE_FILE
)),
2628 K(zone_page_state(zone
, NR_INACTIVE_FILE
)),
2629 K(zone_page_state(zone
, NR_UNEVICTABLE
)),
2630 K(zone_page_state(zone
, NR_ISOLATED_ANON
)),
2631 K(zone_page_state(zone
, NR_ISOLATED_FILE
)),
2632 K(zone
->present_pages
),
2633 K(zone_page_state(zone
, NR_MLOCK
)),
2634 K(zone_page_state(zone
, NR_FILE_DIRTY
)),
2635 K(zone_page_state(zone
, NR_WRITEBACK
)),
2636 K(zone_page_state(zone
, NR_FILE_MAPPED
)),
2637 K(zone_page_state(zone
, NR_SHMEM
)),
2638 K(zone_page_state(zone
, NR_SLAB_RECLAIMABLE
)),
2639 K(zone_page_state(zone
, NR_SLAB_UNRECLAIMABLE
)),
2640 zone_page_state(zone
, NR_KERNEL_STACK
) *
2642 K(zone_page_state(zone
, NR_PAGETABLE
)),
2643 K(zone_page_state(zone
, NR_UNSTABLE_NFS
)),
2644 K(zone_page_state(zone
, NR_BOUNCE
)),
2645 K(zone_page_state(zone
, NR_WRITEBACK_TEMP
)),
2646 zone
->pages_scanned
,
2647 (zone
->all_unreclaimable
? "yes" : "no")
2649 printk("lowmem_reserve[]:");
2650 for (i
= 0; i
< MAX_NR_ZONES
; i
++)
2651 printk(" %lu", zone
->lowmem_reserve
[i
]);
2655 for_each_populated_zone(zone
) {
2656 unsigned long nr
[MAX_ORDER
], flags
, order
, total
= 0;
2658 if (skip_free_areas_node(filter
, zone_to_nid(zone
)))
2661 printk("%s: ", zone
->name
);
2663 spin_lock_irqsave(&zone
->lock
, flags
);
2664 for (order
= 0; order
< MAX_ORDER
; order
++) {
2665 nr
[order
] = zone
->free_area
[order
].nr_free
;
2666 total
+= nr
[order
] << order
;
2668 spin_unlock_irqrestore(&zone
->lock
, flags
);
2669 for (order
= 0; order
< MAX_ORDER
; order
++)
2670 printk("%lu*%lukB ", nr
[order
], K(1UL) << order
);
2671 printk("= %lukB\n", K(total
));
2674 printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES
));
2676 show_swap_cache_info();
2679 static void zoneref_set_zone(struct zone
*zone
, struct zoneref
*zoneref
)
2681 zoneref
->zone
= zone
;
2682 zoneref
->zone_idx
= zone_idx(zone
);
2686 * Builds allocation fallback zone lists.
2688 * Add all populated zones of a node to the zonelist.
2690 static int build_zonelists_node(pg_data_t
*pgdat
, struct zonelist
*zonelist
,
2691 int nr_zones
, enum zone_type zone_type
)
2695 BUG_ON(zone_type
>= MAX_NR_ZONES
);
2700 zone
= pgdat
->node_zones
+ zone_type
;
2701 if (populated_zone(zone
)) {
2702 zoneref_set_zone(zone
,
2703 &zonelist
->_zonerefs
[nr_zones
++]);
2704 check_highest_zone(zone_type
);
2707 } while (zone_type
);
2714 * 0 = automatic detection of better ordering.
2715 * 1 = order by ([node] distance, -zonetype)
2716 * 2 = order by (-zonetype, [node] distance)
2718 * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
2719 * the same zonelist. So only NUMA can configure this param.
2721 #define ZONELIST_ORDER_DEFAULT 0
2722 #define ZONELIST_ORDER_NODE 1
2723 #define ZONELIST_ORDER_ZONE 2
2725 /* zonelist order in the kernel.
2726 * set_zonelist_order() will set this to NODE or ZONE.
2728 static int current_zonelist_order
= ZONELIST_ORDER_DEFAULT
;
2729 static char zonelist_order_name
[3][8] = {"Default", "Node", "Zone"};
2733 /* The value user specified ....changed by config */
2734 static int user_zonelist_order
= ZONELIST_ORDER_DEFAULT
;
2735 /* string for sysctl */
2736 #define NUMA_ZONELIST_ORDER_LEN 16
2737 char numa_zonelist_order
[16] = "default";
2740 * interface for configure zonelist ordering.
2741 * command line option "numa_zonelist_order"
2742 * = "[dD]efault - default, automatic configuration.
2743 * = "[nN]ode - order by node locality, then by zone within node
2744 * = "[zZ]one - order by zone, then by locality within zone
2747 static int __parse_numa_zonelist_order(char *s
)
2749 if (*s
== 'd' || *s
== 'D') {
2750 user_zonelist_order
= ZONELIST_ORDER_DEFAULT
;
2751 } else if (*s
== 'n' || *s
== 'N') {
2752 user_zonelist_order
= ZONELIST_ORDER_NODE
;
2753 } else if (*s
== 'z' || *s
== 'Z') {
2754 user_zonelist_order
= ZONELIST_ORDER_ZONE
;
2757 "Ignoring invalid numa_zonelist_order value: "
2764 static __init
int setup_numa_zonelist_order(char *s
)
2771 ret
= __parse_numa_zonelist_order(s
);
2773 strlcpy(numa_zonelist_order
, s
, NUMA_ZONELIST_ORDER_LEN
);
2777 early_param("numa_zonelist_order", setup_numa_zonelist_order
);
2780 * sysctl handler for numa_zonelist_order
2782 int numa_zonelist_order_handler(ctl_table
*table
, int write
,
2783 void __user
*buffer
, size_t *length
,
2786 char saved_string
[NUMA_ZONELIST_ORDER_LEN
];
2788 static DEFINE_MUTEX(zl_order_mutex
);
2790 mutex_lock(&zl_order_mutex
);
2792 strcpy(saved_string
, (char*)table
->data
);
2793 ret
= proc_dostring(table
, write
, buffer
, length
, ppos
);
2797 int oldval
= user_zonelist_order
;
2798 if (__parse_numa_zonelist_order((char*)table
->data
)) {
2800 * bogus value. restore saved string
2802 strncpy((char*)table
->data
, saved_string
,
2803 NUMA_ZONELIST_ORDER_LEN
);
2804 user_zonelist_order
= oldval
;
2805 } else if (oldval
!= user_zonelist_order
) {
2806 mutex_lock(&zonelists_mutex
);
2807 build_all_zonelists(NULL
);
2808 mutex_unlock(&zonelists_mutex
);
2812 mutex_unlock(&zl_order_mutex
);
2817 #define MAX_NODE_LOAD (nr_online_nodes)
2818 static int node_load
[MAX_NUMNODES
];
2821 * find_next_best_node - find the next node that should appear in a given node's fallback list
2822 * @node: node whose fallback list we're appending
2823 * @used_node_mask: nodemask_t of already used nodes
2825 * We use a number of factors to determine which is the next node that should
2826 * appear on a given node's fallback list. The node should not have appeared
2827 * already in @node's fallback list, and it should be the next closest node
2828 * according to the distance array (which contains arbitrary distance values
2829 * from each node to each node in the system), and should also prefer nodes
2830 * with no CPUs, since presumably they'll have very little allocation pressure
2831 * on them otherwise.
2832 * It returns -1 if no node is found.
2834 static int find_next_best_node(int node
, nodemask_t
*used_node_mask
)
2837 int min_val
= INT_MAX
;
2839 const struct cpumask
*tmp
= cpumask_of_node(0);
2841 /* Use the local node if we haven't already */
2842 if (!node_isset(node
, *used_node_mask
)) {
2843 node_set(node
, *used_node_mask
);
2847 for_each_node_state(n
, N_HIGH_MEMORY
) {
2849 /* Don't want a node to appear more than once */
2850 if (node_isset(n
, *used_node_mask
))
2853 /* Use the distance array to find the distance */
2854 val
= node_distance(node
, n
);
2856 /* Penalize nodes under us ("prefer the next node") */
2859 /* Give preference to headless and unused nodes */
2860 tmp
= cpumask_of_node(n
);
2861 if (!cpumask_empty(tmp
))
2862 val
+= PENALTY_FOR_NODE_WITH_CPUS
;
2864 /* Slight preference for less loaded node */
2865 val
*= (MAX_NODE_LOAD
*MAX_NUMNODES
);
2866 val
+= node_load
[n
];
2868 if (val
< min_val
) {
2875 node_set(best_node
, *used_node_mask
);
2882 * Build zonelists ordered by node and zones within node.
2883 * This results in maximum locality--normal zone overflows into local
2884 * DMA zone, if any--but risks exhausting DMA zone.
2886 static void build_zonelists_in_node_order(pg_data_t
*pgdat
, int node
)
2889 struct zonelist
*zonelist
;
2891 zonelist
= &pgdat
->node_zonelists
[0];
2892 for (j
= 0; zonelist
->_zonerefs
[j
].zone
!= NULL
; j
++)
2894 j
= build_zonelists_node(NODE_DATA(node
), zonelist
, j
,
2896 zonelist
->_zonerefs
[j
].zone
= NULL
;
2897 zonelist
->_zonerefs
[j
].zone_idx
= 0;
2901 * Build gfp_thisnode zonelists
2903 static void build_thisnode_zonelists(pg_data_t
*pgdat
)
2906 struct zonelist
*zonelist
;
2908 zonelist
= &pgdat
->node_zonelists
[1];
2909 j
= build_zonelists_node(pgdat
, zonelist
, 0, MAX_NR_ZONES
- 1);
2910 zonelist
->_zonerefs
[j
].zone
= NULL
;
2911 zonelist
->_zonerefs
[j
].zone_idx
= 0;
2915 * Build zonelists ordered by zone and nodes within zones.
2916 * This results in conserving DMA zone[s] until all Normal memory is
2917 * exhausted, but results in overflowing to remote node while memory
2918 * may still exist in local DMA zone.
2920 static int node_order
[MAX_NUMNODES
];
2922 static void build_zonelists_in_zone_order(pg_data_t
*pgdat
, int nr_nodes
)
2925 int zone_type
; /* needs to be signed */
2927 struct zonelist
*zonelist
;
2929 zonelist
= &pgdat
->node_zonelists
[0];
2931 for (zone_type
= MAX_NR_ZONES
- 1; zone_type
>= 0; zone_type
--) {
2932 for (j
= 0; j
< nr_nodes
; j
++) {
2933 node
= node_order
[j
];
2934 z
= &NODE_DATA(node
)->node_zones
[zone_type
];
2935 if (populated_zone(z
)) {
2937 &zonelist
->_zonerefs
[pos
++]);
2938 check_highest_zone(zone_type
);
2942 zonelist
->_zonerefs
[pos
].zone
= NULL
;
2943 zonelist
->_zonerefs
[pos
].zone_idx
= 0;
2946 static int default_zonelist_order(void)
2949 unsigned long low_kmem_size
,total_size
;
2953 * ZONE_DMA and ZONE_DMA32 can be very small area in the system.
2954 * If they are really small and used heavily, the system can fall
2955 * into OOM very easily.
2956 * This function detect ZONE_DMA/DMA32 size and configures zone order.
2958 /* Is there ZONE_NORMAL ? (ex. ppc has only DMA zone..) */
2961 for_each_online_node(nid
) {
2962 for (zone_type
= 0; zone_type
< MAX_NR_ZONES
; zone_type
++) {
2963 z
= &NODE_DATA(nid
)->node_zones
[zone_type
];
2964 if (populated_zone(z
)) {
2965 if (zone_type
< ZONE_NORMAL
)
2966 low_kmem_size
+= z
->present_pages
;
2967 total_size
+= z
->present_pages
;
2968 } else if (zone_type
== ZONE_NORMAL
) {
2970 * If any node has only lowmem, then node order
2971 * is preferred to allow kernel allocations
2972 * locally; otherwise, they can easily infringe
2973 * on other nodes when there is an abundance of
2974 * lowmem available to allocate from.
2976 return ZONELIST_ORDER_NODE
;
2980 if (!low_kmem_size
|| /* there are no DMA area. */
2981 low_kmem_size
> total_size
/2) /* DMA/DMA32 is big. */
2982 return ZONELIST_ORDER_NODE
;
2984 * look into each node's config.
2985 * If there is a node whose DMA/DMA32 memory is very big area on
2986 * local memory, NODE_ORDER may be suitable.
2988 average_size
= total_size
/
2989 (nodes_weight(node_states
[N_HIGH_MEMORY
]) + 1);
2990 for_each_online_node(nid
) {
2993 for (zone_type
= 0; zone_type
< MAX_NR_ZONES
; zone_type
++) {
2994 z
= &NODE_DATA(nid
)->node_zones
[zone_type
];
2995 if (populated_zone(z
)) {
2996 if (zone_type
< ZONE_NORMAL
)
2997 low_kmem_size
+= z
->present_pages
;
2998 total_size
+= z
->present_pages
;
3001 if (low_kmem_size
&&
3002 total_size
> average_size
&& /* ignore small node */
3003 low_kmem_size
> total_size
* 70/100)
3004 return ZONELIST_ORDER_NODE
;
3006 return ZONELIST_ORDER_ZONE
;
3009 static void set_zonelist_order(void)
3011 if (user_zonelist_order
== ZONELIST_ORDER_DEFAULT
)
3012 current_zonelist_order
= default_zonelist_order();
3014 current_zonelist_order
= user_zonelist_order
;
3017 static void build_zonelists(pg_data_t
*pgdat
)
3021 nodemask_t used_mask
;
3022 int local_node
, prev_node
;
3023 struct zonelist
*zonelist
;
3024 int order
= current_zonelist_order
;
3026 /* initialize zonelists */
3027 for (i
= 0; i
< MAX_ZONELISTS
; i
++) {
3028 zonelist
= pgdat
->node_zonelists
+ i
;
3029 zonelist
->_zonerefs
[0].zone
= NULL
;
3030 zonelist
->_zonerefs
[0].zone_idx
= 0;
3033 /* NUMA-aware ordering of nodes */
3034 local_node
= pgdat
->node_id
;
3035 load
= nr_online_nodes
;
3036 prev_node
= local_node
;
3037 nodes_clear(used_mask
);
3039 memset(node_order
, 0, sizeof(node_order
));
3042 while ((node
= find_next_best_node(local_node
, &used_mask
)) >= 0) {
3043 int distance
= node_distance(local_node
, node
);
3046 * If another node is sufficiently far away then it is better
3047 * to reclaim pages in a zone before going off node.
3049 if (distance
> RECLAIM_DISTANCE
)
3050 zone_reclaim_mode
= 1;
3053 * We don't want to pressure a particular node.
3054 * So adding penalty to the first node in same
3055 * distance group to make it round-robin.
3057 if (distance
!= node_distance(local_node
, prev_node
))
3058 node_load
[node
] = load
;
3062 if (order
== ZONELIST_ORDER_NODE
)
3063 build_zonelists_in_node_order(pgdat
, node
);
3065 node_order
[j
++] = node
; /* remember order */
3068 if (order
== ZONELIST_ORDER_ZONE
) {
3069 /* calculate node order -- i.e., DMA last! */
3070 build_zonelists_in_zone_order(pgdat
, j
);
3073 build_thisnode_zonelists(pgdat
);
3076 /* Construct the zonelist performance cache - see further mmzone.h */
3077 static void build_zonelist_cache(pg_data_t
*pgdat
)
3079 struct zonelist
*zonelist
;
3080 struct zonelist_cache
*zlc
;
3083 zonelist
= &pgdat
->node_zonelists
[0];
3084 zonelist
->zlcache_ptr
= zlc
= &zonelist
->zlcache
;
3085 bitmap_zero(zlc
->fullzones
, MAX_ZONES_PER_ZONELIST
);
3086 for (z
= zonelist
->_zonerefs
; z
->zone
; z
++)
3087 zlc
->z_to_n
[z
- zonelist
->_zonerefs
] = zonelist_node_idx(z
);
3090 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
3092 * Return node id of node used for "local" allocations.
3093 * I.e., first node id of first zone in arg node's generic zonelist.
3094 * Used for initializing percpu 'numa_mem', which is used primarily
3095 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
3097 int local_memory_node(int node
)
3101 (void)first_zones_zonelist(node_zonelist(node
, GFP_KERNEL
),
3102 gfp_zone(GFP_KERNEL
),
3109 #else /* CONFIG_NUMA */
3111 static void set_zonelist_order(void)
3113 current_zonelist_order
= ZONELIST_ORDER_ZONE
;
3116 static void build_zonelists(pg_data_t
*pgdat
)
3118 int node
, local_node
;
3120 struct zonelist
*zonelist
;
3122 local_node
= pgdat
->node_id
;
3124 zonelist
= &pgdat
->node_zonelists
[0];
3125 j
= build_zonelists_node(pgdat
, zonelist
, 0, MAX_NR_ZONES
- 1);
3128 * Now we build the zonelist so that it contains the zones
3129 * of all the other nodes.
3130 * We don't want to pressure a particular node, so when
3131 * building the zones for node N, we make sure that the
3132 * zones coming right after the local ones are those from
3133 * node N+1 (modulo N)
3135 for (node
= local_node
+ 1; node
< MAX_NUMNODES
; node
++) {
3136 if (!node_online(node
))
3138 j
= build_zonelists_node(NODE_DATA(node
), zonelist
, j
,
3141 for (node
= 0; node
< local_node
; node
++) {
3142 if (!node_online(node
))
3144 j
= build_zonelists_node(NODE_DATA(node
), zonelist
, j
,
3148 zonelist
->_zonerefs
[j
].zone
= NULL
;
3149 zonelist
->_zonerefs
[j
].zone_idx
= 0;
3152 /* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */
3153 static void build_zonelist_cache(pg_data_t
*pgdat
)
3155 pgdat
->node_zonelists
[0].zlcache_ptr
= NULL
;
3158 #endif /* CONFIG_NUMA */
3161 * Boot pageset table. One per cpu which is going to be used for all
3162 * zones and all nodes. The parameters will be set in such a way
3163 * that an item put on a list will immediately be handed over to
3164 * the buddy list. This is safe since pageset manipulation is done
3165 * with interrupts disabled.
3167 * The boot_pagesets must be kept even after bootup is complete for
3168 * unused processors and/or zones. They do play a role for bootstrapping
3169 * hotplugged processors.
3171 * zoneinfo_show() and maybe other functions do
3172 * not check if the processor is online before following the pageset pointer.
3173 * Other parts of the kernel may not check if the zone is available.
3175 static void setup_pageset(struct per_cpu_pageset
*p
, unsigned long batch
);
3176 static DEFINE_PER_CPU(struct per_cpu_pageset
, boot_pageset
);
3177 static void setup_zone_pageset(struct zone
*zone
);
3180 * Global mutex to protect against size modification of zonelists
3181 * as well as to serialize pageset setup for the new populated zone.
3183 DEFINE_MUTEX(zonelists_mutex
);
3185 /* return values int ....just for stop_machine() */
3186 static __init_refok
int __build_all_zonelists(void *data
)
3192 memset(node_load
, 0, sizeof(node_load
));
3194 for_each_online_node(nid
) {
3195 pg_data_t
*pgdat
= NODE_DATA(nid
);
3197 build_zonelists(pgdat
);
3198 build_zonelist_cache(pgdat
);
3202 * Initialize the boot_pagesets that are going to be used
3203 * for bootstrapping processors. The real pagesets for
3204 * each zone will be allocated later when the per cpu
3205 * allocator is available.
3207 * boot_pagesets are used also for bootstrapping offline
3208 * cpus if the system is already booted because the pagesets
3209 * are needed to initialize allocators on a specific cpu too.
3210 * F.e. the percpu allocator needs the page allocator which
3211 * needs the percpu allocator in order to allocate its pagesets
3212 * (a chicken-egg dilemma).
3214 for_each_possible_cpu(cpu
) {
3215 setup_pageset(&per_cpu(boot_pageset
, cpu
), 0);
3217 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
3219 * We now know the "local memory node" for each node--
3220 * i.e., the node of the first zone in the generic zonelist.
3221 * Set up numa_mem percpu variable for on-line cpus. During
3222 * boot, only the boot cpu should be on-line; we'll init the
3223 * secondary cpus' numa_mem as they come on-line. During
3224 * node/memory hotplug, we'll fixup all on-line cpus.
3226 if (cpu_online(cpu
))
3227 set_cpu_numa_mem(cpu
, local_memory_node(cpu_to_node(cpu
)));
3235 * Called with zonelists_mutex held always
3236 * unless system_state == SYSTEM_BOOTING.
3238 void __ref
build_all_zonelists(void *data
)
3240 set_zonelist_order();
3242 if (system_state
== SYSTEM_BOOTING
) {
3243 __build_all_zonelists(NULL
);
3244 mminit_verify_zonelist();
3245 cpuset_init_current_mems_allowed();
3247 /* we have to stop all cpus to guarantee there is no user
3249 #ifdef CONFIG_MEMORY_HOTPLUG
3251 setup_zone_pageset((struct zone
*)data
);
3253 stop_machine(__build_all_zonelists
, NULL
, NULL
);
3254 /* cpuset refresh routine should be here */
3256 vm_total_pages
= nr_free_pagecache_pages();
3258 * Disable grouping by mobility if the number of pages in the
3259 * system is too low to allow the mechanism to work. It would be
3260 * more accurate, but expensive to check per-zone. This check is
3261 * made on memory-hotadd so a system can start with mobility
3262 * disabled and enable it later
3264 if (vm_total_pages
< (pageblock_nr_pages
* MIGRATE_TYPES
))
3265 page_group_by_mobility_disabled
= 1;
3267 page_group_by_mobility_disabled
= 0;
3269 printk("Built %i zonelists in %s order, mobility grouping %s. "
3270 "Total pages: %ld\n",
3272 zonelist_order_name
[current_zonelist_order
],
3273 page_group_by_mobility_disabled
? "off" : "on",
3276 printk("Policy zone: %s\n", zone_names
[policy_zone
]);
3281 * Helper functions to size the waitqueue hash table.
3282 * Essentially these want to choose hash table sizes sufficiently
3283 * large so that collisions trying to wait on pages are rare.
3284 * But in fact, the number of active page waitqueues on typical
3285 * systems is ridiculously low, less than 200. So this is even
3286 * conservative, even though it seems large.
3288 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
3289 * waitqueues, i.e. the size of the waitq table given the number of pages.
3291 #define PAGES_PER_WAITQUEUE 256
3293 #ifndef CONFIG_MEMORY_HOTPLUG
3294 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages
)
3296 unsigned long size
= 1;
3298 pages
/= PAGES_PER_WAITQUEUE
;
3300 while (size
< pages
)
3304 * Once we have dozens or even hundreds of threads sleeping
3305 * on IO we've got bigger problems than wait queue collision.
3306 * Limit the size of the wait table to a reasonable size.
3308 size
= min(size
, 4096UL);
3310 return max(size
, 4UL);
3314 * A zone's size might be changed by hot-add, so it is not possible to determine
3315 * a suitable size for its wait_table. So we use the maximum size now.
3317 * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie:
3319 * i386 (preemption config) : 4096 x 16 = 64Kbyte.
3320 * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
3321 * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte.
3323 * The maximum entries are prepared when a zone's memory is (512K + 256) pages
3324 * or more by the traditional way. (See above). It equals:
3326 * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte.
3327 * ia64(16K page size) : = ( 8G + 4M)byte.
3328 * powerpc (64K page size) : = (32G +16M)byte.
3330 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages
)
3337 * This is an integer logarithm so that shifts can be used later
3338 * to extract the more random high bits from the multiplicative
3339 * hash function before the remainder is taken.
3341 static inline unsigned long wait_table_bits(unsigned long size
)
3346 #define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1))
3349 * Check if a pageblock contains reserved pages
3351 static int pageblock_is_reserved(unsigned long start_pfn
, unsigned long end_pfn
)
3355 for (pfn
= start_pfn
; pfn
< end_pfn
; pfn
++) {
3356 if (!pfn_valid_within(pfn
) || PageReserved(pfn_to_page(pfn
)))
3363 * Mark a number of pageblocks as MIGRATE_RESERVE. The number
3364 * of blocks reserved is based on min_wmark_pages(zone). The memory within
3365 * the reserve will tend to store contiguous free pages. Setting min_free_kbytes
3366 * higher will lead to a bigger reserve which will get freed as contiguous
3367 * blocks as reclaim kicks in
3369 static void setup_zone_migrate_reserve(struct zone
*zone
)
3371 unsigned long start_pfn
, pfn
, end_pfn
, block_end_pfn
;
3373 unsigned long block_migratetype
;
3376 /* Get the start pfn, end pfn and the number of blocks to reserve */
3377 start_pfn
= zone
->zone_start_pfn
;
3378 end_pfn
= start_pfn
+ zone
->spanned_pages
;
3379 reserve
= roundup(min_wmark_pages(zone
), pageblock_nr_pages
) >>
3383 * Reserve blocks are generally in place to help high-order atomic
3384 * allocations that are short-lived. A min_free_kbytes value that
3385 * would result in more than 2 reserve blocks for atomic allocations
3386 * is assumed to be in place to help anti-fragmentation for the
3387 * future allocation of hugepages at runtime.
3389 reserve
= min(2, reserve
);
3391 for (pfn
= start_pfn
; pfn
< end_pfn
; pfn
+= pageblock_nr_pages
) {
3392 if (!pfn_valid(pfn
))
3394 page
= pfn_to_page(pfn
);
3396 /* Watch out for overlapping nodes */
3397 if (page_to_nid(page
) != zone_to_nid(zone
))
3400 /* Blocks with reserved pages will never free, skip them. */
3401 block_end_pfn
= min(pfn
+ pageblock_nr_pages
, end_pfn
);
3402 if (pageblock_is_reserved(pfn
, block_end_pfn
))
3405 block_migratetype
= get_pageblock_migratetype(page
);
3407 /* If this block is reserved, account for it */
3408 if (reserve
> 0 && block_migratetype
== MIGRATE_RESERVE
) {
3413 /* Suitable for reserving if this block is movable */
3414 if (reserve
> 0 && block_migratetype
== MIGRATE_MOVABLE
) {
3415 set_pageblock_migratetype(page
, MIGRATE_RESERVE
);
3416 move_freepages_block(zone
, page
, MIGRATE_RESERVE
);
3422 * If the reserve is met and this is a previous reserved block,
3425 if (block_migratetype
== MIGRATE_RESERVE
) {
3426 set_pageblock_migratetype(page
, MIGRATE_MOVABLE
);
3427 move_freepages_block(zone
, page
, MIGRATE_MOVABLE
);
3433 * Initially all pages are reserved - free ones are freed
3434 * up by free_all_bootmem() once the early boot process is
3435 * done. Non-atomic initialization, single-pass.
3437 void __meminit
memmap_init_zone(unsigned long size
, int nid
, unsigned long zone
,
3438 unsigned long start_pfn
, enum memmap_context context
)
3441 unsigned long end_pfn
= start_pfn
+ size
;
3445 if (highest_memmap_pfn
< end_pfn
- 1)
3446 highest_memmap_pfn
= end_pfn
- 1;
3448 z
= &NODE_DATA(nid
)->node_zones
[zone
];
3449 for (pfn
= start_pfn
; pfn
< end_pfn
; pfn
++) {
3451 * There can be holes in boot-time mem_map[]s
3452 * handed to this function. They do not
3453 * exist on hotplugged memory.
3455 if (context
== MEMMAP_EARLY
) {
3456 if (!early_pfn_valid(pfn
))
3458 if (!early_pfn_in_nid(pfn
, nid
))
3461 page
= pfn_to_page(pfn
);
3462 set_page_links(page
, zone
, nid
, pfn
);
3463 mminit_verify_page_links(page
, zone
, nid
, pfn
);
3464 init_page_count(page
);
3465 reset_page_mapcount(page
);
3466 SetPageReserved(page
);
3468 * Mark the block movable so that blocks are reserved for
3469 * movable at startup. This will force kernel allocations
3470 * to reserve their blocks rather than leaking throughout
3471 * the address space during boot when many long-lived
3472 * kernel allocations are made. Later some blocks near
3473 * the start are marked MIGRATE_RESERVE by
3474 * setup_zone_migrate_reserve()
3476 * bitmap is created for zone's valid pfn range. but memmap
3477 * can be created for invalid pages (for alignment)
3478 * check here not to call set_pageblock_migratetype() against
3481 if ((z
->zone_start_pfn
<= pfn
)
3482 && (pfn
< z
->zone_start_pfn
+ z
->spanned_pages
)
3483 && !(pfn
& (pageblock_nr_pages
- 1)))
3484 set_pageblock_migratetype(page
, MIGRATE_MOVABLE
);
3486 INIT_LIST_HEAD(&page
->lru
);
3487 #ifdef WANT_PAGE_VIRTUAL
3488 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
3489 if (!is_highmem_idx(zone
))
3490 set_page_address(page
, __va(pfn
<< PAGE_SHIFT
));
3495 static void __meminit
zone_init_free_lists(struct zone
*zone
)
3498 for_each_migratetype_order(order
, t
) {
3499 INIT_LIST_HEAD(&zone
->free_area
[order
].free_list
[t
]);
3500 zone
->free_area
[order
].nr_free
= 0;
3504 #ifndef __HAVE_ARCH_MEMMAP_INIT
3505 #define memmap_init(size, nid, zone, start_pfn) \
3506 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
3509 static int zone_batchsize(struct zone
*zone
)
3515 * The per-cpu-pages pools are set to around 1000th of the
3516 * size of the zone. But no more than 1/2 of a meg.
3518 * OK, so we don't know how big the cache is. So guess.
3520 batch
= zone
->present_pages
/ 1024;
3521 if (batch
* PAGE_SIZE
> 512 * 1024)
3522 batch
= (512 * 1024) / PAGE_SIZE
;
3523 batch
/= 4; /* We effectively *= 4 below */
3528 * Clamp the batch to a 2^n - 1 value. Having a power
3529 * of 2 value was found to be more likely to have
3530 * suboptimal cache aliasing properties in some cases.
3532 * For example if 2 tasks are alternately allocating
3533 * batches of pages, one task can end up with a lot
3534 * of pages of one half of the possible page colors
3535 * and the other with pages of the other colors.
3537 batch
= rounddown_pow_of_two(batch
+ batch
/2) - 1;
3542 /* The deferral and batching of frees should be suppressed under NOMMU
3545 * The problem is that NOMMU needs to be able to allocate large chunks
3546 * of contiguous memory as there's no hardware page translation to
3547 * assemble apparent contiguous memory from discontiguous pages.
3549 * Queueing large contiguous runs of pages for batching, however,
3550 * causes the pages to actually be freed in smaller chunks. As there
3551 * can be a significant delay between the individual batches being
3552 * recycled, this leads to the once large chunks of space being
3553 * fragmented and becoming unavailable for high-order allocations.
3559 static void setup_pageset(struct per_cpu_pageset
*p
, unsigned long batch
)
3561 struct per_cpu_pages
*pcp
;
3564 memset(p
, 0, sizeof(*p
));
3568 pcp
->high
= 6 * batch
;
3569 pcp
->batch
= max(1UL, 1 * batch
);
3570 for (migratetype
= 0; migratetype
< MIGRATE_PCPTYPES
; migratetype
++)
3571 INIT_LIST_HEAD(&pcp
->lists
[migratetype
]);
3575 * setup_pagelist_highmark() sets the high water mark for hot per_cpu_pagelist
3576 * to the value high for the pageset p.
3579 static void setup_pagelist_highmark(struct per_cpu_pageset
*p
,
3582 struct per_cpu_pages
*pcp
;
3586 pcp
->batch
= max(1UL, high
/4);
3587 if ((high
/4) > (PAGE_SHIFT
* 8))
3588 pcp
->batch
= PAGE_SHIFT
* 8;
3591 static void setup_zone_pageset(struct zone
*zone
)
3595 zone
->pageset
= alloc_percpu(struct per_cpu_pageset
);
3597 for_each_possible_cpu(cpu
) {
3598 struct per_cpu_pageset
*pcp
= per_cpu_ptr(zone
->pageset
, cpu
);
3600 setup_pageset(pcp
, zone_batchsize(zone
));
3602 if (percpu_pagelist_fraction
)
3603 setup_pagelist_highmark(pcp
,
3604 (zone
->present_pages
/
3605 percpu_pagelist_fraction
));
3610 * Allocate per cpu pagesets and initialize them.
3611 * Before this call only boot pagesets were available.
3613 void __init
setup_per_cpu_pageset(void)
3617 for_each_populated_zone(zone
)
3618 setup_zone_pageset(zone
);
3621 static noinline __init_refok
3622 int zone_wait_table_init(struct zone
*zone
, unsigned long zone_size_pages
)
3625 struct pglist_data
*pgdat
= zone
->zone_pgdat
;
3629 * The per-page waitqueue mechanism uses hashed waitqueues
3632 zone
->wait_table_hash_nr_entries
=
3633 wait_table_hash_nr_entries(zone_size_pages
);
3634 zone
->wait_table_bits
=
3635 wait_table_bits(zone
->wait_table_hash_nr_entries
);
3636 alloc_size
= zone
->wait_table_hash_nr_entries
3637 * sizeof(wait_queue_head_t
);
3639 if (!slab_is_available()) {
3640 zone
->wait_table
= (wait_queue_head_t
*)
3641 alloc_bootmem_node_nopanic(pgdat
, alloc_size
);
3644 * This case means that a zone whose size was 0 gets new memory
3645 * via memory hot-add.
3646 * But it may be the case that a new node was hot-added. In
3647 * this case vmalloc() will not be able to use this new node's
3648 * memory - this wait_table must be initialized to use this new
3649 * node itself as well.
3650 * To use this new node's memory, further consideration will be
3653 zone
->wait_table
= vmalloc(alloc_size
);
3655 if (!zone
->wait_table
)
3658 for(i
= 0; i
< zone
->wait_table_hash_nr_entries
; ++i
)
3659 init_waitqueue_head(zone
->wait_table
+ i
);
3664 static int __zone_pcp_update(void *data
)
3666 struct zone
*zone
= data
;
3668 unsigned long batch
= zone_batchsize(zone
), flags
;
3670 for_each_possible_cpu(cpu
) {
3671 struct per_cpu_pageset
*pset
;
3672 struct per_cpu_pages
*pcp
;
3674 pset
= per_cpu_ptr(zone
->pageset
, cpu
);
3677 local_irq_save(flags
);
3678 free_pcppages_bulk(zone
, pcp
->count
, pcp
);
3679 setup_pageset(pset
, batch
);
3680 local_irq_restore(flags
);
3685 void zone_pcp_update(struct zone
*zone
)
3687 stop_machine(__zone_pcp_update
, zone
, NULL
);
3690 static __meminit
void zone_pcp_init(struct zone
*zone
)
3693 * per cpu subsystem is not up at this point. The following code
3694 * relies on the ability of the linker to provide the
3695 * offset of a (static) per cpu variable into the per cpu area.
3697 zone
->pageset
= &boot_pageset
;
3699 if (zone
->present_pages
)
3700 printk(KERN_DEBUG
" %s zone: %lu pages, LIFO batch:%u\n",
3701 zone
->name
, zone
->present_pages
,
3702 zone_batchsize(zone
));
3705 __meminit
int init_currently_empty_zone(struct zone
*zone
,
3706 unsigned long zone_start_pfn
,
3708 enum memmap_context context
)
3710 struct pglist_data
*pgdat
= zone
->zone_pgdat
;
3712 ret
= zone_wait_table_init(zone
, size
);
3715 pgdat
->nr_zones
= zone_idx(zone
) + 1;
3717 zone
->zone_start_pfn
= zone_start_pfn
;
3719 mminit_dprintk(MMINIT_TRACE
, "memmap_init",
3720 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
3722 (unsigned long)zone_idx(zone
),
3723 zone_start_pfn
, (zone_start_pfn
+ size
));
3725 zone_init_free_lists(zone
);
3730 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
3732 * Basic iterator support. Return the first range of PFNs for a node
3733 * Note: nid == MAX_NUMNODES returns first region regardless of node
3735 static int __meminit
first_active_region_index_in_nid(int nid
)
3739 for (i
= 0; i
< nr_nodemap_entries
; i
++)
3740 if (nid
== MAX_NUMNODES
|| early_node_map
[i
].nid
== nid
)
3747 * Basic iterator support. Return the next active range of PFNs for a node
3748 * Note: nid == MAX_NUMNODES returns next region regardless of node
3750 static int __meminit
next_active_region_index_in_nid(int index
, int nid
)
3752 for (index
= index
+ 1; index
< nr_nodemap_entries
; index
++)
3753 if (nid
== MAX_NUMNODES
|| early_node_map
[index
].nid
== nid
)
3759 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
3761 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
3762 * Architectures may implement their own version but if add_active_range()
3763 * was used and there are no special requirements, this is a convenient
3766 int __meminit
__early_pfn_to_nid(unsigned long pfn
)
3770 for (i
= 0; i
< nr_nodemap_entries
; i
++) {
3771 unsigned long start_pfn
= early_node_map
[i
].start_pfn
;
3772 unsigned long end_pfn
= early_node_map
[i
].end_pfn
;
3774 if (start_pfn
<= pfn
&& pfn
< end_pfn
)
3775 return early_node_map
[i
].nid
;
3777 /* This is a memory hole */
3780 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
3782 int __meminit
early_pfn_to_nid(unsigned long pfn
)
3786 nid
= __early_pfn_to_nid(pfn
);
3789 /* just returns 0 */
3793 #ifdef CONFIG_NODES_SPAN_OTHER_NODES
3794 bool __meminit
early_pfn_in_nid(unsigned long pfn
, int node
)
3798 nid
= __early_pfn_to_nid(pfn
);
3799 if (nid
>= 0 && nid
!= node
)
3805 /* Basic iterator support to walk early_node_map[] */
3806 #define for_each_active_range_index_in_nid(i, nid) \
3807 for (i = first_active_region_index_in_nid(nid); i != -1; \
3808 i = next_active_region_index_in_nid(i, nid))
3811 * free_bootmem_with_active_regions - Call free_bootmem_node for each active range
3812 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
3813 * @max_low_pfn: The highest PFN that will be passed to free_bootmem_node
3815 * If an architecture guarantees that all ranges registered with
3816 * add_active_ranges() contain no holes and may be freed, this
3817 * this function may be used instead of calling free_bootmem() manually.
3819 void __init
free_bootmem_with_active_regions(int nid
,
3820 unsigned long max_low_pfn
)
3824 for_each_active_range_index_in_nid(i
, nid
) {
3825 unsigned long size_pages
= 0;
3826 unsigned long end_pfn
= early_node_map
[i
].end_pfn
;
3828 if (early_node_map
[i
].start_pfn
>= max_low_pfn
)
3831 if (end_pfn
> max_low_pfn
)
3832 end_pfn
= max_low_pfn
;
3834 size_pages
= end_pfn
- early_node_map
[i
].start_pfn
;
3835 free_bootmem_node(NODE_DATA(early_node_map
[i
].nid
),
3836 PFN_PHYS(early_node_map
[i
].start_pfn
),
3837 size_pages
<< PAGE_SHIFT
);
3841 #ifdef CONFIG_HAVE_MEMBLOCK
3843 * Basic iterator support. Return the last range of PFNs for a node
3844 * Note: nid == MAX_NUMNODES returns last region regardless of node
3846 static int __meminit
last_active_region_index_in_nid(int nid
)
3850 for (i
= nr_nodemap_entries
- 1; i
>= 0; i
--)
3851 if (nid
== MAX_NUMNODES
|| early_node_map
[i
].nid
== nid
)
3858 * Basic iterator support. Return the previous active range of PFNs for a node
3859 * Note: nid == MAX_NUMNODES returns next region regardless of node
3861 static int __meminit
previous_active_region_index_in_nid(int index
, int nid
)
3863 for (index
= index
- 1; index
>= 0; index
--)
3864 if (nid
== MAX_NUMNODES
|| early_node_map
[index
].nid
== nid
)
3870 #define for_each_active_range_index_in_nid_reverse(i, nid) \
3871 for (i = last_active_region_index_in_nid(nid); i != -1; \
3872 i = previous_active_region_index_in_nid(i, nid))
3874 u64 __init
find_memory_core_early(int nid
, u64 size
, u64 align
,
3875 u64 goal
, u64 limit
)
3879 /* Need to go over early_node_map to find out good range for node */
3880 for_each_active_range_index_in_nid_reverse(i
, nid
) {
3882 u64 ei_start
, ei_last
;
3883 u64 final_start
, final_end
;
3885 ei_last
= early_node_map
[i
].end_pfn
;
3886 ei_last
<<= PAGE_SHIFT
;
3887 ei_start
= early_node_map
[i
].start_pfn
;
3888 ei_start
<<= PAGE_SHIFT
;
3890 final_start
= max(ei_start
, goal
);
3891 final_end
= min(ei_last
, limit
);
3893 if (final_start
>= final_end
)
3896 addr
= memblock_find_in_range(final_start
, final_end
, size
, align
);
3898 if (addr
== MEMBLOCK_ERROR
)
3904 return MEMBLOCK_ERROR
;
3908 int __init
add_from_early_node_map(struct range
*range
, int az
,
3909 int nr_range
, int nid
)
3914 /* need to go over early_node_map to find out good range for node */
3915 for_each_active_range_index_in_nid(i
, nid
) {
3916 start
= early_node_map
[i
].start_pfn
;
3917 end
= early_node_map
[i
].end_pfn
;
3918 nr_range
= add_range(range
, az
, nr_range
, start
, end
);
3923 void __init
work_with_active_regions(int nid
, work_fn_t work_fn
, void *data
)
3928 for_each_active_range_index_in_nid(i
, nid
) {
3929 ret
= work_fn(early_node_map
[i
].start_pfn
,
3930 early_node_map
[i
].end_pfn
, data
);
3936 * sparse_memory_present_with_active_regions - Call memory_present for each active range
3937 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
3939 * If an architecture guarantees that all ranges registered with
3940 * add_active_ranges() contain no holes and may be freed, this
3941 * function may be used instead of calling memory_present() manually.
3943 void __init
sparse_memory_present_with_active_regions(int nid
)
3947 for_each_active_range_index_in_nid(i
, nid
)
3948 memory_present(early_node_map
[i
].nid
,
3949 early_node_map
[i
].start_pfn
,
3950 early_node_map
[i
].end_pfn
);
3954 * get_pfn_range_for_nid - Return the start and end page frames for a node
3955 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
3956 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
3957 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
3959 * It returns the start and end page frame of a node based on information
3960 * provided by an arch calling add_active_range(). If called for a node
3961 * with no available memory, a warning is printed and the start and end
3964 void __meminit
get_pfn_range_for_nid(unsigned int nid
,
3965 unsigned long *start_pfn
, unsigned long *end_pfn
)
3971 for_each_active_range_index_in_nid(i
, nid
) {
3972 *start_pfn
= min(*start_pfn
, early_node_map
[i
].start_pfn
);
3973 *end_pfn
= max(*end_pfn
, early_node_map
[i
].end_pfn
);
3976 if (*start_pfn
== -1UL)
3981 * This finds a zone that can be used for ZONE_MOVABLE pages. The
3982 * assumption is made that zones within a node are ordered in monotonic
3983 * increasing memory addresses so that the "highest" populated zone is used
3985 static void __init
find_usable_zone_for_movable(void)
3988 for (zone_index
= MAX_NR_ZONES
- 1; zone_index
>= 0; zone_index
--) {
3989 if (zone_index
== ZONE_MOVABLE
)
3992 if (arch_zone_highest_possible_pfn
[zone_index
] >
3993 arch_zone_lowest_possible_pfn
[zone_index
])
3997 VM_BUG_ON(zone_index
== -1);
3998 movable_zone
= zone_index
;
4002 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
4003 * because it is sized independent of architecture. Unlike the other zones,
4004 * the starting point for ZONE_MOVABLE is not fixed. It may be different
4005 * in each node depending on the size of each node and how evenly kernelcore
4006 * is distributed. This helper function adjusts the zone ranges
4007 * provided by the architecture for a given node by using the end of the
4008 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
4009 * zones within a node are in order of monotonic increases memory addresses
4011 static void __meminit
adjust_zone_range_for_zone_movable(int nid
,
4012 unsigned long zone_type
,
4013 unsigned long node_start_pfn
,
4014 unsigned long node_end_pfn
,
4015 unsigned long *zone_start_pfn
,
4016 unsigned long *zone_end_pfn
)
4018 /* Only adjust if ZONE_MOVABLE is on this node */
4019 if (zone_movable_pfn
[nid
]) {
4020 /* Size ZONE_MOVABLE */
4021 if (zone_type
== ZONE_MOVABLE
) {
4022 *zone_start_pfn
= zone_movable_pfn
[nid
];
4023 *zone_end_pfn
= min(node_end_pfn
,
4024 arch_zone_highest_possible_pfn
[movable_zone
]);
4026 /* Adjust for ZONE_MOVABLE starting within this range */
4027 } else if (*zone_start_pfn
< zone_movable_pfn
[nid
] &&
4028 *zone_end_pfn
> zone_movable_pfn
[nid
]) {
4029 *zone_end_pfn
= zone_movable_pfn
[nid
];
4031 /* Check if this whole range is within ZONE_MOVABLE */
4032 } else if (*zone_start_pfn
>= zone_movable_pfn
[nid
])
4033 *zone_start_pfn
= *zone_end_pfn
;
4038 * Return the number of pages a zone spans in a node, including holes
4039 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
4041 static unsigned long __meminit
zone_spanned_pages_in_node(int nid
,
4042 unsigned long zone_type
,
4043 unsigned long *ignored
)
4045 unsigned long node_start_pfn
, node_end_pfn
;
4046 unsigned long zone_start_pfn
, zone_end_pfn
;
4048 /* Get the start and end of the node and zone */
4049 get_pfn_range_for_nid(nid
, &node_start_pfn
, &node_end_pfn
);
4050 zone_start_pfn
= arch_zone_lowest_possible_pfn
[zone_type
];
4051 zone_end_pfn
= arch_zone_highest_possible_pfn
[zone_type
];
4052 adjust_zone_range_for_zone_movable(nid
, zone_type
,
4053 node_start_pfn
, node_end_pfn
,
4054 &zone_start_pfn
, &zone_end_pfn
);
4056 /* Check that this node has pages within the zone's required range */
4057 if (zone_end_pfn
< node_start_pfn
|| zone_start_pfn
> node_end_pfn
)
4060 /* Move the zone boundaries inside the node if necessary */
4061 zone_end_pfn
= min(zone_end_pfn
, node_end_pfn
);
4062 zone_start_pfn
= max(zone_start_pfn
, node_start_pfn
);
4064 /* Return the spanned pages */
4065 return zone_end_pfn
- zone_start_pfn
;
4069 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
4070 * then all holes in the requested range will be accounted for.
4072 unsigned long __meminit
__absent_pages_in_range(int nid
,
4073 unsigned long range_start_pfn
,
4074 unsigned long range_end_pfn
)
4077 unsigned long prev_end_pfn
= 0, hole_pages
= 0;
4078 unsigned long start_pfn
;
4080 /* Find the end_pfn of the first active range of pfns in the node */
4081 i
= first_active_region_index_in_nid(nid
);
4085 prev_end_pfn
= min(early_node_map
[i
].start_pfn
, range_end_pfn
);
4087 /* Account for ranges before physical memory on this node */
4088 if (early_node_map
[i
].start_pfn
> range_start_pfn
)
4089 hole_pages
= prev_end_pfn
- range_start_pfn
;
4091 /* Find all holes for the zone within the node */
4092 for (; i
!= -1; i
= next_active_region_index_in_nid(i
, nid
)) {
4094 /* No need to continue if prev_end_pfn is outside the zone */
4095 if (prev_end_pfn
>= range_end_pfn
)
4098 /* Make sure the end of the zone is not within the hole */
4099 start_pfn
= min(early_node_map
[i
].start_pfn
, range_end_pfn
);
4100 prev_end_pfn
= max(prev_end_pfn
, range_start_pfn
);
4102 /* Update the hole size cound and move on */
4103 if (start_pfn
> range_start_pfn
) {
4104 BUG_ON(prev_end_pfn
> start_pfn
);
4105 hole_pages
+= start_pfn
- prev_end_pfn
;
4107 prev_end_pfn
= early_node_map
[i
].end_pfn
;
4110 /* Account for ranges past physical memory on this node */
4111 if (range_end_pfn
> prev_end_pfn
)
4112 hole_pages
+= range_end_pfn
-
4113 max(range_start_pfn
, prev_end_pfn
);
4119 * absent_pages_in_range - Return number of page frames in holes within a range
4120 * @start_pfn: The start PFN to start searching for holes
4121 * @end_pfn: The end PFN to stop searching for holes
4123 * It returns the number of pages frames in memory holes within a range.
4125 unsigned long __init
absent_pages_in_range(unsigned long start_pfn
,
4126 unsigned long end_pfn
)
4128 return __absent_pages_in_range(MAX_NUMNODES
, start_pfn
, end_pfn
);
4131 /* Return the number of page frames in holes in a zone on a node */
4132 static unsigned long __meminit
zone_absent_pages_in_node(int nid
,
4133 unsigned long zone_type
,
4134 unsigned long *ignored
)
4136 unsigned long node_start_pfn
, node_end_pfn
;
4137 unsigned long zone_start_pfn
, zone_end_pfn
;
4139 get_pfn_range_for_nid(nid
, &node_start_pfn
, &node_end_pfn
);
4140 zone_start_pfn
= max(arch_zone_lowest_possible_pfn
[zone_type
],
4142 zone_end_pfn
= min(arch_zone_highest_possible_pfn
[zone_type
],
4145 adjust_zone_range_for_zone_movable(nid
, zone_type
,
4146 node_start_pfn
, node_end_pfn
,
4147 &zone_start_pfn
, &zone_end_pfn
);
4148 return __absent_pages_in_range(nid
, zone_start_pfn
, zone_end_pfn
);
4152 static inline unsigned long __meminit
zone_spanned_pages_in_node(int nid
,
4153 unsigned long zone_type
,
4154 unsigned long *zones_size
)
4156 return zones_size
[zone_type
];
4159 static inline unsigned long __meminit
zone_absent_pages_in_node(int nid
,
4160 unsigned long zone_type
,
4161 unsigned long *zholes_size
)
4166 return zholes_size
[zone_type
];
4171 static void __meminit
calculate_node_totalpages(struct pglist_data
*pgdat
,
4172 unsigned long *zones_size
, unsigned long *zholes_size
)
4174 unsigned long realtotalpages
, totalpages
= 0;
4177 for (i
= 0; i
< MAX_NR_ZONES
; i
++)
4178 totalpages
+= zone_spanned_pages_in_node(pgdat
->node_id
, i
,
4180 pgdat
->node_spanned_pages
= totalpages
;
4182 realtotalpages
= totalpages
;
4183 for (i
= 0; i
< MAX_NR_ZONES
; i
++)
4185 zone_absent_pages_in_node(pgdat
->node_id
, i
,
4187 pgdat
->node_present_pages
= realtotalpages
;
4188 printk(KERN_DEBUG
"On node %d totalpages: %lu\n", pgdat
->node_id
,
4192 #ifndef CONFIG_SPARSEMEM
4194 * Calculate the size of the zone->blockflags rounded to an unsigned long
4195 * Start by making sure zonesize is a multiple of pageblock_order by rounding
4196 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
4197 * round what is now in bits to nearest long in bits, then return it in
4200 static unsigned long __init
usemap_size(unsigned long zonesize
)
4202 unsigned long usemapsize
;
4204 usemapsize
= roundup(zonesize
, pageblock_nr_pages
);
4205 usemapsize
= usemapsize
>> pageblock_order
;
4206 usemapsize
*= NR_PAGEBLOCK_BITS
;
4207 usemapsize
= roundup(usemapsize
, 8 * sizeof(unsigned long));
4209 return usemapsize
/ 8;
4212 static void __init
setup_usemap(struct pglist_data
*pgdat
,
4213 struct zone
*zone
, unsigned long zonesize
)
4215 unsigned long usemapsize
= usemap_size(zonesize
);
4216 zone
->pageblock_flags
= NULL
;
4218 zone
->pageblock_flags
= alloc_bootmem_node_nopanic(pgdat
,
4222 static inline void setup_usemap(struct pglist_data
*pgdat
,
4223 struct zone
*zone
, unsigned long zonesize
) {}
4224 #endif /* CONFIG_SPARSEMEM */
4226 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
4228 /* Return a sensible default order for the pageblock size. */
4229 static inline int pageblock_default_order(void)
4231 if (HPAGE_SHIFT
> PAGE_SHIFT
)
4232 return HUGETLB_PAGE_ORDER
;
4237 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
4238 static inline void __init
set_pageblock_order(unsigned int order
)
4240 /* Check that pageblock_nr_pages has not already been setup */
4241 if (pageblock_order
)
4245 * Assume the largest contiguous order of interest is a huge page.
4246 * This value may be variable depending on boot parameters on IA64
4248 pageblock_order
= order
;
4250 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
4253 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
4254 * and pageblock_default_order() are unused as pageblock_order is set
4255 * at compile-time. See include/linux/pageblock-flags.h for the values of
4256 * pageblock_order based on the kernel config
4258 static inline int pageblock_default_order(unsigned int order
)
4262 #define set_pageblock_order(x) do {} while (0)
4264 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
4267 * Set up the zone data structures:
4268 * - mark all pages reserved
4269 * - mark all memory queues empty
4270 * - clear the memory bitmaps
4272 static void __paginginit
free_area_init_core(struct pglist_data
*pgdat
,
4273 unsigned long *zones_size
, unsigned long *zholes_size
)
4276 int nid
= pgdat
->node_id
;
4277 unsigned long zone_start_pfn
= pgdat
->node_start_pfn
;
4280 pgdat_resize_init(pgdat
);
4281 pgdat
->nr_zones
= 0;
4282 init_waitqueue_head(&pgdat
->kswapd_wait
);
4283 pgdat
->kswapd_max_order
= 0;
4284 pgdat_page_cgroup_init(pgdat
);
4286 for (j
= 0; j
< MAX_NR_ZONES
; j
++) {
4287 struct zone
*zone
= pgdat
->node_zones
+ j
;
4288 unsigned long size
, realsize
, memmap_pages
;
4291 size
= zone_spanned_pages_in_node(nid
, j
, zones_size
);
4292 realsize
= size
- zone_absent_pages_in_node(nid
, j
,
4296 * Adjust realsize so that it accounts for how much memory
4297 * is used by this zone for memmap. This affects the watermark
4298 * and per-cpu initialisations
4301 PAGE_ALIGN(size
* sizeof(struct page
)) >> PAGE_SHIFT
;
4302 if (realsize
>= memmap_pages
) {
4303 realsize
-= memmap_pages
;
4306 " %s zone: %lu pages used for memmap\n",
4307 zone_names
[j
], memmap_pages
);
4310 " %s zone: %lu pages exceeds realsize %lu\n",
4311 zone_names
[j
], memmap_pages
, realsize
);
4313 /* Account for reserved pages */
4314 if (j
== 0 && realsize
> dma_reserve
) {
4315 realsize
-= dma_reserve
;
4316 printk(KERN_DEBUG
" %s zone: %lu pages reserved\n",
4317 zone_names
[0], dma_reserve
);
4320 if (!is_highmem_idx(j
))
4321 nr_kernel_pages
+= realsize
;
4322 nr_all_pages
+= realsize
;
4324 zone
->spanned_pages
= size
;
4325 zone
->present_pages
= realsize
;
4328 zone
->min_unmapped_pages
= (realsize
*sysctl_min_unmapped_ratio
)
4330 zone
->min_slab_pages
= (realsize
* sysctl_min_slab_ratio
) / 100;
4332 zone
->name
= zone_names
[j
];
4333 spin_lock_init(&zone
->lock
);
4334 spin_lock_init(&zone
->lru_lock
);
4335 zone_seqlock_init(zone
);
4336 zone
->zone_pgdat
= pgdat
;
4338 zone_pcp_init(zone
);
4340 INIT_LIST_HEAD(&zone
->lru
[l
].list
);
4341 zone
->reclaim_stat
.recent_rotated
[0] = 0;
4342 zone
->reclaim_stat
.recent_rotated
[1] = 0;
4343 zone
->reclaim_stat
.recent_scanned
[0] = 0;
4344 zone
->reclaim_stat
.recent_scanned
[1] = 0;
4345 zap_zone_vm_stats(zone
);
4350 set_pageblock_order(pageblock_default_order());
4351 setup_usemap(pgdat
, zone
, size
);
4352 ret
= init_currently_empty_zone(zone
, zone_start_pfn
,
4353 size
, MEMMAP_EARLY
);
4355 memmap_init(size
, nid
, j
, zone_start_pfn
);
4356 zone_start_pfn
+= size
;
4360 static void __init_refok
alloc_node_mem_map(struct pglist_data
*pgdat
)
4362 /* Skip empty nodes */
4363 if (!pgdat
->node_spanned_pages
)
4366 #ifdef CONFIG_FLAT_NODE_MEM_MAP
4367 /* ia64 gets its own node_mem_map, before this, without bootmem */
4368 if (!pgdat
->node_mem_map
) {
4369 unsigned long size
, start
, end
;
4373 * The zone's endpoints aren't required to be MAX_ORDER
4374 * aligned but the node_mem_map endpoints must be in order
4375 * for the buddy allocator to function correctly.
4377 start
= pgdat
->node_start_pfn
& ~(MAX_ORDER_NR_PAGES
- 1);
4378 end
= pgdat
->node_start_pfn
+ pgdat
->node_spanned_pages
;
4379 end
= ALIGN(end
, MAX_ORDER_NR_PAGES
);
4380 size
= (end
- start
) * sizeof(struct page
);
4381 map
= alloc_remap(pgdat
->node_id
, size
);
4383 map
= alloc_bootmem_node_nopanic(pgdat
, size
);
4384 pgdat
->node_mem_map
= map
+ (pgdat
->node_start_pfn
- start
);
4386 #ifndef CONFIG_NEED_MULTIPLE_NODES
4388 * With no DISCONTIG, the global mem_map is just set as node 0's
4390 if (pgdat
== NODE_DATA(0)) {
4391 mem_map
= NODE_DATA(0)->node_mem_map
;
4392 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
4393 if (page_to_pfn(mem_map
) != pgdat
->node_start_pfn
)
4394 mem_map
-= (pgdat
->node_start_pfn
- ARCH_PFN_OFFSET
);
4395 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
4398 #endif /* CONFIG_FLAT_NODE_MEM_MAP */
4401 void __paginginit
free_area_init_node(int nid
, unsigned long *zones_size
,
4402 unsigned long node_start_pfn
, unsigned long *zholes_size
)
4404 pg_data_t
*pgdat
= NODE_DATA(nid
);
4406 pgdat
->node_id
= nid
;
4407 pgdat
->node_start_pfn
= node_start_pfn
;
4408 calculate_node_totalpages(pgdat
, zones_size
, zholes_size
);
4410 alloc_node_mem_map(pgdat
);
4411 #ifdef CONFIG_FLAT_NODE_MEM_MAP
4412 printk(KERN_DEBUG
"free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
4413 nid
, (unsigned long)pgdat
,
4414 (unsigned long)pgdat
->node_mem_map
);
4417 free_area_init_core(pgdat
, zones_size
, zholes_size
);
4420 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
4422 #if MAX_NUMNODES > 1
4424 * Figure out the number of possible node ids.
4426 static void __init
setup_nr_node_ids(void)
4429 unsigned int highest
= 0;
4431 for_each_node_mask(node
, node_possible_map
)
4433 nr_node_ids
= highest
+ 1;
4436 static inline void setup_nr_node_ids(void)
4442 * add_active_range - Register a range of PFNs backed by physical memory
4443 * @nid: The node ID the range resides on
4444 * @start_pfn: The start PFN of the available physical memory
4445 * @end_pfn: The end PFN of the available physical memory
4447 * These ranges are stored in an early_node_map[] and later used by
4448 * free_area_init_nodes() to calculate zone sizes and holes. If the
4449 * range spans a memory hole, it is up to the architecture to ensure
4450 * the memory is not freed by the bootmem allocator. If possible
4451 * the range being registered will be merged with existing ranges.
4453 void __init
add_active_range(unsigned int nid
, unsigned long start_pfn
,
4454 unsigned long end_pfn
)
4458 mminit_dprintk(MMINIT_TRACE
, "memory_register",
4459 "Entering add_active_range(%d, %#lx, %#lx) "
4460 "%d entries of %d used\n",
4461 nid
, start_pfn
, end_pfn
,
4462 nr_nodemap_entries
, MAX_ACTIVE_REGIONS
);
4464 mminit_validate_memmodel_limits(&start_pfn
, &end_pfn
);
4466 /* Merge with existing active regions if possible */
4467 for (i
= 0; i
< nr_nodemap_entries
; i
++) {
4468 if (early_node_map
[i
].nid
!= nid
)
4471 /* Skip if an existing region covers this new one */
4472 if (start_pfn
>= early_node_map
[i
].start_pfn
&&
4473 end_pfn
<= early_node_map
[i
].end_pfn
)
4476 /* Merge forward if suitable */
4477 if (start_pfn
<= early_node_map
[i
].end_pfn
&&
4478 end_pfn
> early_node_map
[i
].end_pfn
) {
4479 early_node_map
[i
].end_pfn
= end_pfn
;
4483 /* Merge backward if suitable */
4484 if (start_pfn
< early_node_map
[i
].start_pfn
&&
4485 end_pfn
>= early_node_map
[i
].start_pfn
) {
4486 early_node_map
[i
].start_pfn
= start_pfn
;
4491 /* Check that early_node_map is large enough */
4492 if (i
>= MAX_ACTIVE_REGIONS
) {
4493 printk(KERN_CRIT
"More than %d memory regions, truncating\n",
4494 MAX_ACTIVE_REGIONS
);
4498 early_node_map
[i
].nid
= nid
;
4499 early_node_map
[i
].start_pfn
= start_pfn
;
4500 early_node_map
[i
].end_pfn
= end_pfn
;
4501 nr_nodemap_entries
= i
+ 1;
4505 * remove_active_range - Shrink an existing registered range of PFNs
4506 * @nid: The node id the range is on that should be shrunk
4507 * @start_pfn: The new PFN of the range
4508 * @end_pfn: The new PFN of the range
4510 * i386 with NUMA use alloc_remap() to store a node_mem_map on a local node.
4511 * The map is kept near the end physical page range that has already been
4512 * registered. This function allows an arch to shrink an existing registered
4515 void __init
remove_active_range(unsigned int nid
, unsigned long start_pfn
,
4516 unsigned long end_pfn
)
4521 printk(KERN_DEBUG
"remove_active_range (%d, %lu, %lu)\n",
4522 nid
, start_pfn
, end_pfn
);
4524 /* Find the old active region end and shrink */
4525 for_each_active_range_index_in_nid(i
, nid
) {
4526 if (early_node_map
[i
].start_pfn
>= start_pfn
&&
4527 early_node_map
[i
].end_pfn
<= end_pfn
) {
4529 early_node_map
[i
].start_pfn
= 0;
4530 early_node_map
[i
].end_pfn
= 0;
4534 if (early_node_map
[i
].start_pfn
< start_pfn
&&
4535 early_node_map
[i
].end_pfn
> start_pfn
) {
4536 unsigned long temp_end_pfn
= early_node_map
[i
].end_pfn
;
4537 early_node_map
[i
].end_pfn
= start_pfn
;
4538 if (temp_end_pfn
> end_pfn
)
4539 add_active_range(nid
, end_pfn
, temp_end_pfn
);
4542 if (early_node_map
[i
].start_pfn
>= start_pfn
&&
4543 early_node_map
[i
].end_pfn
> end_pfn
&&
4544 early_node_map
[i
].start_pfn
< end_pfn
) {
4545 early_node_map
[i
].start_pfn
= end_pfn
;
4553 /* remove the blank ones */
4554 for (i
= nr_nodemap_entries
- 1; i
> 0; i
--) {
4555 if (early_node_map
[i
].nid
!= nid
)
4557 if (early_node_map
[i
].end_pfn
)
4559 /* we found it, get rid of it */
4560 for (j
= i
; j
< nr_nodemap_entries
- 1; j
++)
4561 memcpy(&early_node_map
[j
], &early_node_map
[j
+1],
4562 sizeof(early_node_map
[j
]));
4563 j
= nr_nodemap_entries
- 1;
4564 memset(&early_node_map
[j
], 0, sizeof(early_node_map
[j
]));
4565 nr_nodemap_entries
--;
4570 * remove_all_active_ranges - Remove all currently registered regions
4572 * During discovery, it may be found that a table like SRAT is invalid
4573 * and an alternative discovery method must be used. This function removes
4574 * all currently registered regions.
4576 void __init
remove_all_active_ranges(void)
4578 memset(early_node_map
, 0, sizeof(early_node_map
));
4579 nr_nodemap_entries
= 0;
4582 /* Compare two active node_active_regions */
4583 static int __init
cmp_node_active_region(const void *a
, const void *b
)
4585 struct node_active_region
*arange
= (struct node_active_region
*)a
;
4586 struct node_active_region
*brange
= (struct node_active_region
*)b
;
4588 /* Done this way to avoid overflows */
4589 if (arange
->start_pfn
> brange
->start_pfn
)
4591 if (arange
->start_pfn
< brange
->start_pfn
)
4597 /* sort the node_map by start_pfn */
4598 void __init
sort_node_map(void)
4600 sort(early_node_map
, (size_t)nr_nodemap_entries
,
4601 sizeof(struct node_active_region
),
4602 cmp_node_active_region
, NULL
);
4606 * node_map_pfn_alignment - determine the maximum internode alignment
4608 * This function should be called after node map is populated and sorted.
4609 * It calculates the maximum power of two alignment which can distinguish
4612 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
4613 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the
4614 * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is
4615 * shifted, 1GiB is enough and this function will indicate so.
4617 * This is used to test whether pfn -> nid mapping of the chosen memory
4618 * model has fine enough granularity to avoid incorrect mapping for the
4619 * populated node map.
4621 * Returns the determined alignment in pfn's. 0 if there is no alignment
4622 * requirement (single node).
4624 unsigned long __init
node_map_pfn_alignment(void)
4626 unsigned long accl_mask
= 0, last_end
= 0;
4630 for_each_active_range_index_in_nid(i
, MAX_NUMNODES
) {
4631 int nid
= early_node_map
[i
].nid
;
4632 unsigned long start
= early_node_map
[i
].start_pfn
;
4633 unsigned long end
= early_node_map
[i
].end_pfn
;
4636 if (!start
|| last_nid
< 0 || last_nid
== nid
) {
4643 * Start with a mask granular enough to pin-point to the
4644 * start pfn and tick off bits one-by-one until it becomes
4645 * too coarse to separate the current node from the last.
4647 mask
= ~((1 << __ffs(start
)) - 1);
4648 while (mask
&& last_end
<= (start
& (mask
<< 1)))
4651 /* accumulate all internode masks */
4655 /* convert mask to number of pages */
4656 return ~accl_mask
+ 1;
4659 /* Find the lowest pfn for a node */
4660 static unsigned long __init
find_min_pfn_for_node(int nid
)
4663 unsigned long min_pfn
= ULONG_MAX
;
4665 /* Assuming a sorted map, the first range found has the starting pfn */
4666 for_each_active_range_index_in_nid(i
, nid
)
4667 min_pfn
= min(min_pfn
, early_node_map
[i
].start_pfn
);
4669 if (min_pfn
== ULONG_MAX
) {
4671 "Could not find start_pfn for node %d\n", nid
);
4679 * find_min_pfn_with_active_regions - Find the minimum PFN registered
4681 * It returns the minimum PFN based on information provided via
4682 * add_active_range().
4684 unsigned long __init
find_min_pfn_with_active_regions(void)
4686 return find_min_pfn_for_node(MAX_NUMNODES
);
4690 * early_calculate_totalpages()
4691 * Sum pages in active regions for movable zone.
4692 * Populate N_HIGH_MEMORY for calculating usable_nodes.
4694 static unsigned long __init
early_calculate_totalpages(void)
4697 unsigned long totalpages
= 0;
4699 for (i
= 0; i
< nr_nodemap_entries
; i
++) {
4700 unsigned long pages
= early_node_map
[i
].end_pfn
-
4701 early_node_map
[i
].start_pfn
;
4702 totalpages
+= pages
;
4704 node_set_state(early_node_map
[i
].nid
, N_HIGH_MEMORY
);
4710 * Find the PFN the Movable zone begins in each node. Kernel memory
4711 * is spread evenly between nodes as long as the nodes have enough
4712 * memory. When they don't, some nodes will have more kernelcore than
4715 static void __init
find_zone_movable_pfns_for_nodes(unsigned long *movable_pfn
)
4718 unsigned long usable_startpfn
;
4719 unsigned long kernelcore_node
, kernelcore_remaining
;
4720 /* save the state before borrow the nodemask */
4721 nodemask_t saved_node_state
= node_states
[N_HIGH_MEMORY
];
4722 unsigned long totalpages
= early_calculate_totalpages();
4723 int usable_nodes
= nodes_weight(node_states
[N_HIGH_MEMORY
]);
4726 * If movablecore was specified, calculate what size of
4727 * kernelcore that corresponds so that memory usable for
4728 * any allocation type is evenly spread. If both kernelcore
4729 * and movablecore are specified, then the value of kernelcore
4730 * will be used for required_kernelcore if it's greater than
4731 * what movablecore would have allowed.
4733 if (required_movablecore
) {
4734 unsigned long corepages
;
4737 * Round-up so that ZONE_MOVABLE is at least as large as what
4738 * was requested by the user
4740 required_movablecore
=
4741 roundup(required_movablecore
, MAX_ORDER_NR_PAGES
);
4742 corepages
= totalpages
- required_movablecore
;
4744 required_kernelcore
= max(required_kernelcore
, corepages
);
4747 /* If kernelcore was not specified, there is no ZONE_MOVABLE */
4748 if (!required_kernelcore
)
4751 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
4752 find_usable_zone_for_movable();
4753 usable_startpfn
= arch_zone_lowest_possible_pfn
[movable_zone
];
4756 /* Spread kernelcore memory as evenly as possible throughout nodes */
4757 kernelcore_node
= required_kernelcore
/ usable_nodes
;
4758 for_each_node_state(nid
, N_HIGH_MEMORY
) {
4760 * Recalculate kernelcore_node if the division per node
4761 * now exceeds what is necessary to satisfy the requested
4762 * amount of memory for the kernel
4764 if (required_kernelcore
< kernelcore_node
)
4765 kernelcore_node
= required_kernelcore
/ usable_nodes
;
4768 * As the map is walked, we track how much memory is usable
4769 * by the kernel using kernelcore_remaining. When it is
4770 * 0, the rest of the node is usable by ZONE_MOVABLE
4772 kernelcore_remaining
= kernelcore_node
;
4774 /* Go through each range of PFNs within this node */
4775 for_each_active_range_index_in_nid(i
, nid
) {
4776 unsigned long start_pfn
, end_pfn
;
4777 unsigned long size_pages
;
4779 start_pfn
= max(early_node_map
[i
].start_pfn
,
4780 zone_movable_pfn
[nid
]);
4781 end_pfn
= early_node_map
[i
].end_pfn
;
4782 if (start_pfn
>= end_pfn
)
4785 /* Account for what is only usable for kernelcore */
4786 if (start_pfn
< usable_startpfn
) {
4787 unsigned long kernel_pages
;
4788 kernel_pages
= min(end_pfn
, usable_startpfn
)
4791 kernelcore_remaining
-= min(kernel_pages
,
4792 kernelcore_remaining
);
4793 required_kernelcore
-= min(kernel_pages
,
4794 required_kernelcore
);
4796 /* Continue if range is now fully accounted */
4797 if (end_pfn
<= usable_startpfn
) {
4800 * Push zone_movable_pfn to the end so
4801 * that if we have to rebalance
4802 * kernelcore across nodes, we will
4803 * not double account here
4805 zone_movable_pfn
[nid
] = end_pfn
;
4808 start_pfn
= usable_startpfn
;
4812 * The usable PFN range for ZONE_MOVABLE is from
4813 * start_pfn->end_pfn. Calculate size_pages as the
4814 * number of pages used as kernelcore
4816 size_pages
= end_pfn
- start_pfn
;
4817 if (size_pages
> kernelcore_remaining
)
4818 size_pages
= kernelcore_remaining
;
4819 zone_movable_pfn
[nid
] = start_pfn
+ size_pages
;
4822 * Some kernelcore has been met, update counts and
4823 * break if the kernelcore for this node has been
4826 required_kernelcore
-= min(required_kernelcore
,
4828 kernelcore_remaining
-= size_pages
;
4829 if (!kernelcore_remaining
)
4835 * If there is still required_kernelcore, we do another pass with one
4836 * less node in the count. This will push zone_movable_pfn[nid] further
4837 * along on the nodes that still have memory until kernelcore is
4841 if (usable_nodes
&& required_kernelcore
> usable_nodes
)
4844 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
4845 for (nid
= 0; nid
< MAX_NUMNODES
; nid
++)
4846 zone_movable_pfn
[nid
] =
4847 roundup(zone_movable_pfn
[nid
], MAX_ORDER_NR_PAGES
);
4850 /* restore the node_state */
4851 node_states
[N_HIGH_MEMORY
] = saved_node_state
;
4854 /* Any regular memory on that node ? */
4855 static void check_for_regular_memory(pg_data_t
*pgdat
)
4857 #ifdef CONFIG_HIGHMEM
4858 enum zone_type zone_type
;
4860 for (zone_type
= 0; zone_type
<= ZONE_NORMAL
; zone_type
++) {
4861 struct zone
*zone
= &pgdat
->node_zones
[zone_type
];
4862 if (zone
->present_pages
)
4863 node_set_state(zone_to_nid(zone
), N_NORMAL_MEMORY
);
4869 * free_area_init_nodes - Initialise all pg_data_t and zone data
4870 * @max_zone_pfn: an array of max PFNs for each zone
4872 * This will call free_area_init_node() for each active node in the system.
4873 * Using the page ranges provided by add_active_range(), the size of each
4874 * zone in each node and their holes is calculated. If the maximum PFN
4875 * between two adjacent zones match, it is assumed that the zone is empty.
4876 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
4877 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
4878 * starts where the previous one ended. For example, ZONE_DMA32 starts
4879 * at arch_max_dma_pfn.
4881 void __init
free_area_init_nodes(unsigned long *max_zone_pfn
)
4886 /* Sort early_node_map as initialisation assumes it is sorted */
4889 /* Record where the zone boundaries are */
4890 memset(arch_zone_lowest_possible_pfn
, 0,
4891 sizeof(arch_zone_lowest_possible_pfn
));
4892 memset(arch_zone_highest_possible_pfn
, 0,
4893 sizeof(arch_zone_highest_possible_pfn
));
4894 arch_zone_lowest_possible_pfn
[0] = find_min_pfn_with_active_regions();
4895 arch_zone_highest_possible_pfn
[0] = max_zone_pfn
[0];
4896 for (i
= 1; i
< MAX_NR_ZONES
; i
++) {
4897 if (i
== ZONE_MOVABLE
)
4899 arch_zone_lowest_possible_pfn
[i
] =
4900 arch_zone_highest_possible_pfn
[i
-1];
4901 arch_zone_highest_possible_pfn
[i
] =
4902 max(max_zone_pfn
[i
], arch_zone_lowest_possible_pfn
[i
]);
4904 arch_zone_lowest_possible_pfn
[ZONE_MOVABLE
] = 0;
4905 arch_zone_highest_possible_pfn
[ZONE_MOVABLE
] = 0;
4907 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
4908 memset(zone_movable_pfn
, 0, sizeof(zone_movable_pfn
));
4909 find_zone_movable_pfns_for_nodes(zone_movable_pfn
);
4911 /* Print out the zone ranges */
4912 printk("Zone PFN ranges:\n");
4913 for (i
= 0; i
< MAX_NR_ZONES
; i
++) {
4914 if (i
== ZONE_MOVABLE
)
4916 printk(" %-8s ", zone_names
[i
]);
4917 if (arch_zone_lowest_possible_pfn
[i
] ==
4918 arch_zone_highest_possible_pfn
[i
])
4921 printk("%0#10lx -> %0#10lx\n",
4922 arch_zone_lowest_possible_pfn
[i
],
4923 arch_zone_highest_possible_pfn
[i
]);
4926 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
4927 printk("Movable zone start PFN for each node\n");
4928 for (i
= 0; i
< MAX_NUMNODES
; i
++) {
4929 if (zone_movable_pfn
[i
])
4930 printk(" Node %d: %lu\n", i
, zone_movable_pfn
[i
]);
4933 /* Print out the early_node_map[] */
4934 printk("early_node_map[%d] active PFN ranges\n", nr_nodemap_entries
);
4935 for (i
= 0; i
< nr_nodemap_entries
; i
++)
4936 printk(" %3d: %0#10lx -> %0#10lx\n", early_node_map
[i
].nid
,
4937 early_node_map
[i
].start_pfn
,
4938 early_node_map
[i
].end_pfn
);
4940 /* Initialise every node */
4941 mminit_verify_pageflags_layout();
4942 setup_nr_node_ids();
4943 for_each_online_node(nid
) {
4944 pg_data_t
*pgdat
= NODE_DATA(nid
);
4945 free_area_init_node(nid
, NULL
,
4946 find_min_pfn_for_node(nid
), NULL
);
4948 /* Any memory on that node */
4949 if (pgdat
->node_present_pages
)
4950 node_set_state(nid
, N_HIGH_MEMORY
);
4951 check_for_regular_memory(pgdat
);
4955 static int __init
cmdline_parse_core(char *p
, unsigned long *core
)
4957 unsigned long long coremem
;
4961 coremem
= memparse(p
, &p
);
4962 *core
= coremem
>> PAGE_SHIFT
;
4964 /* Paranoid check that UL is enough for the coremem value */
4965 WARN_ON((coremem
>> PAGE_SHIFT
) > ULONG_MAX
);
4971 * kernelcore=size sets the amount of memory for use for allocations that
4972 * cannot be reclaimed or migrated.
4974 static int __init
cmdline_parse_kernelcore(char *p
)
4976 return cmdline_parse_core(p
, &required_kernelcore
);
4980 * movablecore=size sets the amount of memory for use for allocations that
4981 * can be reclaimed or migrated.
4983 static int __init
cmdline_parse_movablecore(char *p
)
4985 return cmdline_parse_core(p
, &required_movablecore
);
4988 early_param("kernelcore", cmdline_parse_kernelcore
);
4989 early_param("movablecore", cmdline_parse_movablecore
);
4991 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
4994 * set_dma_reserve - set the specified number of pages reserved in the first zone
4995 * @new_dma_reserve: The number of pages to mark reserved
4997 * The per-cpu batchsize and zone watermarks are determined by present_pages.
4998 * In the DMA zone, a significant percentage may be consumed by kernel image
4999 * and other unfreeable allocations which can skew the watermarks badly. This
5000 * function may optionally be used to account for unfreeable pages in the
5001 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
5002 * smaller per-cpu batchsize.
5004 void __init
set_dma_reserve(unsigned long new_dma_reserve
)
5006 dma_reserve
= new_dma_reserve
;
5009 void __init
free_area_init(unsigned long *zones_size
)
5011 free_area_init_node(0, zones_size
,
5012 __pa(PAGE_OFFSET
) >> PAGE_SHIFT
, NULL
);
5015 static int page_alloc_cpu_notify(struct notifier_block
*self
,
5016 unsigned long action
, void *hcpu
)
5018 int cpu
= (unsigned long)hcpu
;
5020 if (action
== CPU_DEAD
|| action
== CPU_DEAD_FROZEN
) {
5024 * Spill the event counters of the dead processor
5025 * into the current processors event counters.
5026 * This artificially elevates the count of the current
5029 vm_events_fold_cpu(cpu
);
5032 * Zero the differential counters of the dead processor
5033 * so that the vm statistics are consistent.
5035 * This is only okay since the processor is dead and cannot
5036 * race with what we are doing.
5038 refresh_cpu_vm_stats(cpu
);
5043 void __init
page_alloc_init(void)
5045 hotcpu_notifier(page_alloc_cpu_notify
, 0);
5049 * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio
5050 * or min_free_kbytes changes.
5052 static void calculate_totalreserve_pages(void)
5054 struct pglist_data
*pgdat
;
5055 unsigned long reserve_pages
= 0;
5056 enum zone_type i
, j
;
5058 for_each_online_pgdat(pgdat
) {
5059 for (i
= 0; i
< MAX_NR_ZONES
; i
++) {
5060 struct zone
*zone
= pgdat
->node_zones
+ i
;
5061 unsigned long max
= 0;
5063 /* Find valid and maximum lowmem_reserve in the zone */
5064 for (j
= i
; j
< MAX_NR_ZONES
; j
++) {
5065 if (zone
->lowmem_reserve
[j
] > max
)
5066 max
= zone
->lowmem_reserve
[j
];
5069 /* we treat the high watermark as reserved pages. */
5070 max
+= high_wmark_pages(zone
);
5072 if (max
> zone
->present_pages
)
5073 max
= zone
->present_pages
;
5074 reserve_pages
+= max
;
5077 totalreserve_pages
= reserve_pages
;
5081 * setup_per_zone_lowmem_reserve - called whenever
5082 * sysctl_lower_zone_reserve_ratio changes. Ensures that each zone
5083 * has a correct pages reserved value, so an adequate number of
5084 * pages are left in the zone after a successful __alloc_pages().
5086 static void setup_per_zone_lowmem_reserve(void)
5088 struct pglist_data
*pgdat
;
5089 enum zone_type j
, idx
;
5091 for_each_online_pgdat(pgdat
) {
5092 for (j
= 0; j
< MAX_NR_ZONES
; j
++) {
5093 struct zone
*zone
= pgdat
->node_zones
+ j
;
5094 unsigned long present_pages
= zone
->present_pages
;
5096 zone
->lowmem_reserve
[j
] = 0;
5100 struct zone
*lower_zone
;
5104 if (sysctl_lowmem_reserve_ratio
[idx
] < 1)
5105 sysctl_lowmem_reserve_ratio
[idx
] = 1;
5107 lower_zone
= pgdat
->node_zones
+ idx
;
5108 lower_zone
->lowmem_reserve
[j
] = present_pages
/
5109 sysctl_lowmem_reserve_ratio
[idx
];
5110 present_pages
+= lower_zone
->present_pages
;
5115 /* update totalreserve_pages */
5116 calculate_totalreserve_pages();
5120 * setup_per_zone_wmarks - called when min_free_kbytes changes
5121 * or when memory is hot-{added|removed}
5123 * Ensures that the watermark[min,low,high] values for each zone are set
5124 * correctly with respect to min_free_kbytes.
5126 void setup_per_zone_wmarks(void)
5128 unsigned long pages_min
= min_free_kbytes
>> (PAGE_SHIFT
- 10);
5129 unsigned long lowmem_pages
= 0;
5131 unsigned long flags
;
5133 /* Calculate total number of !ZONE_HIGHMEM pages */
5134 for_each_zone(zone
) {
5135 if (!is_highmem(zone
))
5136 lowmem_pages
+= zone
->present_pages
;
5139 for_each_zone(zone
) {
5142 spin_lock_irqsave(&zone
->lock
, flags
);
5143 tmp
= (u64
)pages_min
* zone
->present_pages
;
5144 do_div(tmp
, lowmem_pages
);
5145 if (is_highmem(zone
)) {
5147 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
5148 * need highmem pages, so cap pages_min to a small
5151 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
5152 * deltas controls asynch page reclaim, and so should
5153 * not be capped for highmem.
5157 min_pages
= zone
->present_pages
/ 1024;
5158 if (min_pages
< SWAP_CLUSTER_MAX
)
5159 min_pages
= SWAP_CLUSTER_MAX
;
5160 if (min_pages
> 128)
5162 zone
->watermark
[WMARK_MIN
] = min_pages
;
5165 * If it's a lowmem zone, reserve a number of pages
5166 * proportionate to the zone's size.
5168 zone
->watermark
[WMARK_MIN
] = tmp
;
5171 zone
->watermark
[WMARK_LOW
] = min_wmark_pages(zone
) + (tmp
>> 2);
5172 zone
->watermark
[WMARK_HIGH
] = min_wmark_pages(zone
) + (tmp
>> 1);
5173 setup_zone_migrate_reserve(zone
);
5174 spin_unlock_irqrestore(&zone
->lock
, flags
);
5177 /* update totalreserve_pages */
5178 calculate_totalreserve_pages();
5182 * The inactive anon list should be small enough that the VM never has to
5183 * do too much work, but large enough that each inactive page has a chance
5184 * to be referenced again before it is swapped out.
5186 * The inactive_anon ratio is the target ratio of ACTIVE_ANON to
5187 * INACTIVE_ANON pages on this zone's LRU, maintained by the
5188 * pageout code. A zone->inactive_ratio of 3 means 3:1 or 25% of
5189 * the anonymous pages are kept on the inactive list.
5192 * memory ratio inactive anon
5193 * -------------------------------------
5202 static void __meminit
calculate_zone_inactive_ratio(struct zone
*zone
)
5204 unsigned int gb
, ratio
;
5206 /* Zone size in gigabytes */
5207 gb
= zone
->present_pages
>> (30 - PAGE_SHIFT
);
5209 ratio
= int_sqrt(10 * gb
);
5213 zone
->inactive_ratio
= ratio
;
5216 static void __meminit
setup_per_zone_inactive_ratio(void)
5221 calculate_zone_inactive_ratio(zone
);
5225 * Initialise min_free_kbytes.
5227 * For small machines we want it small (128k min). For large machines
5228 * we want it large (64MB max). But it is not linear, because network
5229 * bandwidth does not increase linearly with machine size. We use
5231 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
5232 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
5248 int __meminit
init_per_zone_wmark_min(void)
5250 unsigned long lowmem_kbytes
;
5252 lowmem_kbytes
= nr_free_buffer_pages() * (PAGE_SIZE
>> 10);
5254 min_free_kbytes
= int_sqrt(lowmem_kbytes
* 16);
5255 if (min_free_kbytes
< 128)
5256 min_free_kbytes
= 128;
5257 if (min_free_kbytes
> 65536)
5258 min_free_kbytes
= 65536;
5259 setup_per_zone_wmarks();
5260 refresh_zone_stat_thresholds();
5261 setup_per_zone_lowmem_reserve();
5262 setup_per_zone_inactive_ratio();
5265 module_init(init_per_zone_wmark_min
)
5268 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
5269 * that we can call two helper functions whenever min_free_kbytes
5272 int min_free_kbytes_sysctl_handler(ctl_table
*table
, int write
,
5273 void __user
*buffer
, size_t *length
, loff_t
*ppos
)
5275 proc_dointvec(table
, write
, buffer
, length
, ppos
);
5277 setup_per_zone_wmarks();
5282 int sysctl_min_unmapped_ratio_sysctl_handler(ctl_table
*table
, int write
,
5283 void __user
*buffer
, size_t *length
, loff_t
*ppos
)
5288 rc
= proc_dointvec_minmax(table
, write
, buffer
, length
, ppos
);
5293 zone
->min_unmapped_pages
= (zone
->present_pages
*
5294 sysctl_min_unmapped_ratio
) / 100;
5298 int sysctl_min_slab_ratio_sysctl_handler(ctl_table
*table
, int write
,
5299 void __user
*buffer
, size_t *length
, loff_t
*ppos
)
5304 rc
= proc_dointvec_minmax(table
, write
, buffer
, length
, ppos
);
5309 zone
->min_slab_pages
= (zone
->present_pages
*
5310 sysctl_min_slab_ratio
) / 100;
5316 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
5317 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
5318 * whenever sysctl_lowmem_reserve_ratio changes.
5320 * The reserve ratio obviously has absolutely no relation with the
5321 * minimum watermarks. The lowmem reserve ratio can only make sense
5322 * if in function of the boot time zone sizes.
5324 int lowmem_reserve_ratio_sysctl_handler(ctl_table
*table
, int write
,
5325 void __user
*buffer
, size_t *length
, loff_t
*ppos
)
5327 proc_dointvec_minmax(table
, write
, buffer
, length
, ppos
);
5328 setup_per_zone_lowmem_reserve();
5333 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
5334 * cpu. It is the fraction of total pages in each zone that a hot per cpu pagelist
5335 * can have before it gets flushed back to buddy allocator.
5338 int percpu_pagelist_fraction_sysctl_handler(ctl_table
*table
, int write
,
5339 void __user
*buffer
, size_t *length
, loff_t
*ppos
)
5345 ret
= proc_dointvec_minmax(table
, write
, buffer
, length
, ppos
);
5346 if (!write
|| (ret
== -EINVAL
))
5348 for_each_populated_zone(zone
) {
5349 for_each_possible_cpu(cpu
) {
5351 high
= zone
->present_pages
/ percpu_pagelist_fraction
;
5352 setup_pagelist_highmark(
5353 per_cpu_ptr(zone
->pageset
, cpu
), high
);
5359 int hashdist
= HASHDIST_DEFAULT
;
5362 static int __init
set_hashdist(char *str
)
5366 hashdist
= simple_strtoul(str
, &str
, 0);
5369 __setup("hashdist=", set_hashdist
);
5373 * allocate a large system hash table from bootmem
5374 * - it is assumed that the hash table must contain an exact power-of-2
5375 * quantity of entries
5376 * - limit is the number of hash buckets, not the total allocation size
5378 void *__init
alloc_large_system_hash(const char *tablename
,
5379 unsigned long bucketsize
,
5380 unsigned long numentries
,
5383 unsigned int *_hash_shift
,
5384 unsigned int *_hash_mask
,
5385 unsigned long limit
)
5387 unsigned long long max
= limit
;
5388 unsigned long log2qty
, size
;
5391 /* allow the kernel cmdline to have a say */
5393 /* round applicable memory size up to nearest megabyte */
5394 numentries
= nr_kernel_pages
;
5395 numentries
+= (1UL << (20 - PAGE_SHIFT
)) - 1;
5396 numentries
>>= 20 - PAGE_SHIFT
;
5397 numentries
<<= 20 - PAGE_SHIFT
;
5399 /* limit to 1 bucket per 2^scale bytes of low memory */
5400 if (scale
> PAGE_SHIFT
)
5401 numentries
>>= (scale
- PAGE_SHIFT
);
5403 numentries
<<= (PAGE_SHIFT
- scale
);
5405 /* Make sure we've got at least a 0-order allocation.. */
5406 if (unlikely(flags
& HASH_SMALL
)) {
5407 /* Makes no sense without HASH_EARLY */
5408 WARN_ON(!(flags
& HASH_EARLY
));
5409 if (!(numentries
>> *_hash_shift
)) {
5410 numentries
= 1UL << *_hash_shift
;
5411 BUG_ON(!numentries
);
5413 } else if (unlikely((numentries
* bucketsize
) < PAGE_SIZE
))
5414 numentries
= PAGE_SIZE
/ bucketsize
;
5416 numentries
= roundup_pow_of_two(numentries
);
5418 /* limit allocation size to 1/16 total memory by default */
5420 max
= ((unsigned long long)nr_all_pages
<< PAGE_SHIFT
) >> 4;
5421 do_div(max
, bucketsize
);
5424 if (numentries
> max
)
5427 log2qty
= ilog2(numentries
);
5430 size
= bucketsize
<< log2qty
;
5431 if (flags
& HASH_EARLY
)
5432 table
= alloc_bootmem_nopanic(size
);
5434 table
= __vmalloc(size
, GFP_ATOMIC
, PAGE_KERNEL
);
5437 * If bucketsize is not a power-of-two, we may free
5438 * some pages at the end of hash table which
5439 * alloc_pages_exact() automatically does
5441 if (get_order(size
) < MAX_ORDER
) {
5442 table
= alloc_pages_exact(size
, GFP_ATOMIC
);
5443 kmemleak_alloc(table
, size
, 1, GFP_ATOMIC
);
5446 } while (!table
&& size
> PAGE_SIZE
&& --log2qty
);
5449 panic("Failed to allocate %s hash table\n", tablename
);
5451 printk(KERN_INFO
"%s hash table entries: %ld (order: %d, %lu bytes)\n",
5454 ilog2(size
) - PAGE_SHIFT
,
5458 *_hash_shift
= log2qty
;
5460 *_hash_mask
= (1 << log2qty
) - 1;
5465 /* Return a pointer to the bitmap storing bits affecting a block of pages */
5466 static inline unsigned long *get_pageblock_bitmap(struct zone
*zone
,
5469 #ifdef CONFIG_SPARSEMEM
5470 return __pfn_to_section(pfn
)->pageblock_flags
;
5472 return zone
->pageblock_flags
;
5473 #endif /* CONFIG_SPARSEMEM */
5476 static inline int pfn_to_bitidx(struct zone
*zone
, unsigned long pfn
)
5478 #ifdef CONFIG_SPARSEMEM
5479 pfn
&= (PAGES_PER_SECTION
-1);
5480 return (pfn
>> pageblock_order
) * NR_PAGEBLOCK_BITS
;
5482 pfn
= pfn
- zone
->zone_start_pfn
;
5483 return (pfn
>> pageblock_order
) * NR_PAGEBLOCK_BITS
;
5484 #endif /* CONFIG_SPARSEMEM */
5488 * get_pageblock_flags_group - Return the requested group of flags for the pageblock_nr_pages block of pages
5489 * @page: The page within the block of interest
5490 * @start_bitidx: The first bit of interest to retrieve
5491 * @end_bitidx: The last bit of interest
5492 * returns pageblock_bits flags
5494 unsigned long get_pageblock_flags_group(struct page
*page
,
5495 int start_bitidx
, int end_bitidx
)
5498 unsigned long *bitmap
;
5499 unsigned long pfn
, bitidx
;
5500 unsigned long flags
= 0;
5501 unsigned long value
= 1;
5503 zone
= page_zone(page
);
5504 pfn
= page_to_pfn(page
);
5505 bitmap
= get_pageblock_bitmap(zone
, pfn
);
5506 bitidx
= pfn_to_bitidx(zone
, pfn
);
5508 for (; start_bitidx
<= end_bitidx
; start_bitidx
++, value
<<= 1)
5509 if (test_bit(bitidx
+ start_bitidx
, bitmap
))
5516 * set_pageblock_flags_group - Set the requested group of flags for a pageblock_nr_pages block of pages
5517 * @page: The page within the block of interest
5518 * @start_bitidx: The first bit of interest
5519 * @end_bitidx: The last bit of interest
5520 * @flags: The flags to set
5522 void set_pageblock_flags_group(struct page
*page
, unsigned long flags
,
5523 int start_bitidx
, int end_bitidx
)
5526 unsigned long *bitmap
;
5527 unsigned long pfn
, bitidx
;
5528 unsigned long value
= 1;
5530 zone
= page_zone(page
);
5531 pfn
= page_to_pfn(page
);
5532 bitmap
= get_pageblock_bitmap(zone
, pfn
);
5533 bitidx
= pfn_to_bitidx(zone
, pfn
);
5534 VM_BUG_ON(pfn
< zone
->zone_start_pfn
);
5535 VM_BUG_ON(pfn
>= zone
->zone_start_pfn
+ zone
->spanned_pages
);
5537 for (; start_bitidx
<= end_bitidx
; start_bitidx
++, value
<<= 1)
5539 __set_bit(bitidx
+ start_bitidx
, bitmap
);
5541 __clear_bit(bitidx
+ start_bitidx
, bitmap
);
5545 * This is designed as sub function...plz see page_isolation.c also.
5546 * set/clear page block's type to be ISOLATE.
5547 * page allocater never alloc memory from ISOLATE block.
5551 __count_immobile_pages(struct zone
*zone
, struct page
*page
, int count
)
5553 unsigned long pfn
, iter
, found
;
5555 * For avoiding noise data, lru_add_drain_all() should be called
5556 * If ZONE_MOVABLE, the zone never contains immobile pages
5558 if (zone_idx(zone
) == ZONE_MOVABLE
)
5561 if (get_pageblock_migratetype(page
) == MIGRATE_MOVABLE
)
5564 pfn
= page_to_pfn(page
);
5565 for (found
= 0, iter
= 0; iter
< pageblock_nr_pages
; iter
++) {
5566 unsigned long check
= pfn
+ iter
;
5568 if (!pfn_valid_within(check
))
5571 page
= pfn_to_page(check
);
5572 if (!page_count(page
)) {
5573 if (PageBuddy(page
))
5574 iter
+= (1 << page_order(page
)) - 1;
5580 * If there are RECLAIMABLE pages, we need to check it.
5581 * But now, memory offline itself doesn't call shrink_slab()
5582 * and it still to be fixed.
5585 * If the page is not RAM, page_count()should be 0.
5586 * we don't need more check. This is an _used_ not-movable page.
5588 * The problematic thing here is PG_reserved pages. PG_reserved
5589 * is set to both of a memory hole page and a _used_ kernel
5598 bool is_pageblock_removable_nolock(struct page
*page
)
5600 struct zone
*zone
= page_zone(page
);
5601 return __count_immobile_pages(zone
, page
, 0);
5604 int set_migratetype_isolate(struct page
*page
)
5607 unsigned long flags
, pfn
;
5608 struct memory_isolate_notify arg
;
5612 zone
= page_zone(page
);
5614 spin_lock_irqsave(&zone
->lock
, flags
);
5616 pfn
= page_to_pfn(page
);
5617 arg
.start_pfn
= pfn
;
5618 arg
.nr_pages
= pageblock_nr_pages
;
5619 arg
.pages_found
= 0;
5622 * It may be possible to isolate a pageblock even if the
5623 * migratetype is not MIGRATE_MOVABLE. The memory isolation
5624 * notifier chain is used by balloon drivers to return the
5625 * number of pages in a range that are held by the balloon
5626 * driver to shrink memory. If all the pages are accounted for
5627 * by balloons, are free, or on the LRU, isolation can continue.
5628 * Later, for example, when memory hotplug notifier runs, these
5629 * pages reported as "can be isolated" should be isolated(freed)
5630 * by the balloon driver through the memory notifier chain.
5632 notifier_ret
= memory_isolate_notify(MEM_ISOLATE_COUNT
, &arg
);
5633 notifier_ret
= notifier_to_errno(notifier_ret
);
5637 * FIXME: Now, memory hotplug doesn't call shrink_slab() by itself.
5638 * We just check MOVABLE pages.
5640 if (__count_immobile_pages(zone
, page
, arg
.pages_found
))
5644 * immobile means "not-on-lru" paes. If immobile is larger than
5645 * removable-by-driver pages reported by notifier, we'll fail.
5650 set_pageblock_migratetype(page
, MIGRATE_ISOLATE
);
5651 move_freepages_block(zone
, page
, MIGRATE_ISOLATE
);
5654 spin_unlock_irqrestore(&zone
->lock
, flags
);
5660 void unset_migratetype_isolate(struct page
*page
)
5663 unsigned long flags
;
5664 zone
= page_zone(page
);
5665 spin_lock_irqsave(&zone
->lock
, flags
);
5666 if (get_pageblock_migratetype(page
) != MIGRATE_ISOLATE
)
5668 set_pageblock_migratetype(page
, MIGRATE_MOVABLE
);
5669 move_freepages_block(zone
, page
, MIGRATE_MOVABLE
);
5671 spin_unlock_irqrestore(&zone
->lock
, flags
);
5674 #ifdef CONFIG_MEMORY_HOTREMOVE
5676 * All pages in the range must be isolated before calling this.
5679 __offline_isolated_pages(unsigned long start_pfn
, unsigned long end_pfn
)
5685 unsigned long flags
;
5686 /* find the first valid pfn */
5687 for (pfn
= start_pfn
; pfn
< end_pfn
; pfn
++)
5692 zone
= page_zone(pfn_to_page(pfn
));
5693 spin_lock_irqsave(&zone
->lock
, flags
);
5695 while (pfn
< end_pfn
) {
5696 if (!pfn_valid(pfn
)) {
5700 page
= pfn_to_page(pfn
);
5701 BUG_ON(page_count(page
));
5702 BUG_ON(!PageBuddy(page
));
5703 order
= page_order(page
);
5704 #ifdef CONFIG_DEBUG_VM
5705 printk(KERN_INFO
"remove from free list %lx %d %lx\n",
5706 pfn
, 1 << order
, end_pfn
);
5708 list_del(&page
->lru
);
5709 rmv_page_order(page
);
5710 zone
->free_area
[order
].nr_free
--;
5711 __mod_zone_page_state(zone
, NR_FREE_PAGES
,
5713 for (i
= 0; i
< (1 << order
); i
++)
5714 SetPageReserved((page
+i
));
5715 pfn
+= (1 << order
);
5717 spin_unlock_irqrestore(&zone
->lock
, flags
);
5721 #ifdef CONFIG_MEMORY_FAILURE
5722 bool is_free_buddy_page(struct page
*page
)
5724 struct zone
*zone
= page_zone(page
);
5725 unsigned long pfn
= page_to_pfn(page
);
5726 unsigned long flags
;
5729 spin_lock_irqsave(&zone
->lock
, flags
);
5730 for (order
= 0; order
< MAX_ORDER
; order
++) {
5731 struct page
*page_head
= page
- (pfn
& ((1 << order
) - 1));
5733 if (PageBuddy(page_head
) && page_order(page_head
) >= order
)
5736 spin_unlock_irqrestore(&zone
->lock
, flags
);
5738 return order
< MAX_ORDER
;
5742 static struct trace_print_flags pageflag_names
[] = {
5743 {1UL << PG_locked
, "locked" },
5744 {1UL << PG_error
, "error" },
5745 {1UL << PG_referenced
, "referenced" },
5746 {1UL << PG_uptodate
, "uptodate" },
5747 {1UL << PG_dirty
, "dirty" },
5748 {1UL << PG_lru
, "lru" },
5749 {1UL << PG_active
, "active" },
5750 {1UL << PG_slab
, "slab" },
5751 {1UL << PG_owner_priv_1
, "owner_priv_1" },
5752 {1UL << PG_arch_1
, "arch_1" },
5753 {1UL << PG_reserved
, "reserved" },
5754 {1UL << PG_private
, "private" },
5755 {1UL << PG_private_2
, "private_2" },
5756 {1UL << PG_writeback
, "writeback" },
5757 #ifdef CONFIG_PAGEFLAGS_EXTENDED
5758 {1UL << PG_head
, "head" },
5759 {1UL << PG_tail
, "tail" },
5761 {1UL << PG_compound
, "compound" },
5763 {1UL << PG_swapcache
, "swapcache" },
5764 {1UL << PG_mappedtodisk
, "mappedtodisk" },
5765 {1UL << PG_reclaim
, "reclaim" },
5766 {1UL << PG_swapbacked
, "swapbacked" },
5767 {1UL << PG_unevictable
, "unevictable" },
5769 {1UL << PG_mlocked
, "mlocked" },
5771 #ifdef CONFIG_ARCH_USES_PG_UNCACHED
5772 {1UL << PG_uncached
, "uncached" },
5774 #ifdef CONFIG_MEMORY_FAILURE
5775 {1UL << PG_hwpoison
, "hwpoison" },
5780 static void dump_page_flags(unsigned long flags
)
5782 const char *delim
= "";
5786 printk(KERN_ALERT
"page flags: %#lx(", flags
);
5788 /* remove zone id */
5789 flags
&= (1UL << NR_PAGEFLAGS
) - 1;
5791 for (i
= 0; pageflag_names
[i
].name
&& flags
; i
++) {
5793 mask
= pageflag_names
[i
].mask
;
5794 if ((flags
& mask
) != mask
)
5798 printk("%s%s", delim
, pageflag_names
[i
].name
);
5802 /* check for left over flags */
5804 printk("%s%#lx", delim
, flags
);
5809 void dump_page(struct page
*page
)
5812 "page:%p count:%d mapcount:%d mapping:%p index:%#lx\n",
5813 page
, atomic_read(&page
->_count
), page_mapcount(page
),
5814 page
->mapping
, page
->index
);
5815 dump_page_flags(page
->flags
);
5816 mem_cgroup_print_bad_page(page
);