2 * Copyright (c) 2000-2006 Silicon Graphics, Inc.
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
20 #include "xfs_types.h"
25 #include "xfs_trans.h"
26 #include "xfs_trans_priv.h"
30 #include "xfs_dmapi.h"
31 #include "xfs_mount.h"
32 #include "xfs_bmap_btree.h"
33 #include "xfs_alloc_btree.h"
34 #include "xfs_ialloc_btree.h"
35 #include "xfs_dir2_sf.h"
36 #include "xfs_attr_sf.h"
37 #include "xfs_dinode.h"
38 #include "xfs_inode.h"
39 #include "xfs_buf_item.h"
40 #include "xfs_inode_item.h"
41 #include "xfs_btree.h"
42 #include "xfs_alloc.h"
43 #include "xfs_ialloc.h"
46 #include "xfs_error.h"
47 #include "xfs_utils.h"
48 #include "xfs_dir2_trace.h"
49 #include "xfs_quota.h"
54 kmem_zone_t
*xfs_ifork_zone
;
55 kmem_zone_t
*xfs_inode_zone
;
56 kmem_zone_t
*xfs_chashlist_zone
;
59 * Used in xfs_itruncate(). This is the maximum number of extents
60 * freed from a file in a single transaction.
62 #define XFS_ITRUNC_MAX_EXTENTS 2
64 STATIC
int xfs_iflush_int(xfs_inode_t
*, xfs_buf_t
*);
65 STATIC
int xfs_iformat_local(xfs_inode_t
*, xfs_dinode_t
*, int, int);
66 STATIC
int xfs_iformat_extents(xfs_inode_t
*, xfs_dinode_t
*, int);
67 STATIC
int xfs_iformat_btree(xfs_inode_t
*, xfs_dinode_t
*, int);
72 * Make sure that the extents in the given memory buffer
87 for (i
= 0; i
< nrecs
; i
++) {
88 ep
= xfs_iext_get_ext(ifp
, i
);
89 rec
.l0
= get_unaligned((__uint64_t
*)&ep
->l0
);
90 rec
.l1
= get_unaligned((__uint64_t
*)&ep
->l1
);
92 xfs_bmbt_disk_get_all(&rec
, &irec
);
94 xfs_bmbt_get_all(&rec
, &irec
);
95 if (fmt
== XFS_EXTFMT_NOSTATE
)
96 ASSERT(irec
.br_state
== XFS_EXT_NORM
);
100 #define xfs_validate_extents(ifp, nrecs, disk, fmt)
104 * Check that none of the inode's in the buffer have a next
105 * unlinked field of 0.
117 j
= mp
->m_inode_cluster_size
>> mp
->m_sb
.sb_inodelog
;
119 for (i
= 0; i
< j
; i
++) {
120 dip
= (xfs_dinode_t
*)xfs_buf_offset(bp
,
121 i
* mp
->m_sb
.sb_inodesize
);
122 if (!dip
->di_next_unlinked
) {
123 xfs_fs_cmn_err(CE_ALERT
, mp
,
124 "Detected a bogus zero next_unlinked field in incore inode buffer 0x%p. About to pop an ASSERT.",
126 ASSERT(dip
->di_next_unlinked
);
133 * This routine is called to map an inode number within a file
134 * system to the buffer containing the on-disk version of the
135 * inode. It returns a pointer to the buffer containing the
136 * on-disk inode in the bpp parameter, and in the dip parameter
137 * it returns a pointer to the on-disk inode within that buffer.
139 * If a non-zero error is returned, then the contents of bpp and
140 * dipp are undefined.
142 * Use xfs_imap() to determine the size and location of the
143 * buffer to read from disk.
161 * Call the space management code to find the location of the
165 error
= xfs_imap(mp
, tp
, ino
, &imap
, XFS_IMAP_LOOKUP
);
168 "xfs_inotobp: xfs_imap() returned an "
169 "error %d on %s. Returning error.", error
, mp
->m_fsname
);
174 * If the inode number maps to a block outside the bounds of the
175 * file system then return NULL rather than calling read_buf
176 * and panicing when we get an error from the driver.
178 if ((imap
.im_blkno
+ imap
.im_len
) >
179 XFS_FSB_TO_BB(mp
, mp
->m_sb
.sb_dblocks
)) {
181 "xfs_inotobp: inode number (%llu + %d) maps to a block outside the bounds "
182 "of the file system %s. Returning EINVAL.",
183 (unsigned long long)imap
.im_blkno
,
184 imap
.im_len
, mp
->m_fsname
);
185 return XFS_ERROR(EINVAL
);
189 * Read in the buffer. If tp is NULL, xfs_trans_read_buf() will
190 * default to just a read_buf() call.
192 error
= xfs_trans_read_buf(mp
, tp
, mp
->m_ddev_targp
, imap
.im_blkno
,
193 (int)imap
.im_len
, XFS_BUF_LOCK
, &bp
);
197 "xfs_inotobp: xfs_trans_read_buf() returned an "
198 "error %d on %s. Returning error.", error
, mp
->m_fsname
);
201 dip
= (xfs_dinode_t
*)xfs_buf_offset(bp
, 0);
203 INT_GET(dip
->di_core
.di_magic
, ARCH_CONVERT
) == XFS_DINODE_MAGIC
&&
204 XFS_DINODE_GOOD_VERSION(INT_GET(dip
->di_core
.di_version
, ARCH_CONVERT
));
205 if (unlikely(XFS_TEST_ERROR(!di_ok
, mp
, XFS_ERRTAG_ITOBP_INOTOBP
,
206 XFS_RANDOM_ITOBP_INOTOBP
))) {
207 XFS_CORRUPTION_ERROR("xfs_inotobp", XFS_ERRLEVEL_LOW
, mp
, dip
);
208 xfs_trans_brelse(tp
, bp
);
210 "xfs_inotobp: XFS_TEST_ERROR() returned an "
211 "error on %s. Returning EFSCORRUPTED.", mp
->m_fsname
);
212 return XFS_ERROR(EFSCORRUPTED
);
215 xfs_inobp_check(mp
, bp
);
218 * Set *dipp to point to the on-disk inode in the buffer.
220 *dipp
= (xfs_dinode_t
*)xfs_buf_offset(bp
, imap
.im_boffset
);
222 *offset
= imap
.im_boffset
;
228 * This routine is called to map an inode to the buffer containing
229 * the on-disk version of the inode. It returns a pointer to the
230 * buffer containing the on-disk inode in the bpp parameter, and in
231 * the dip parameter it returns a pointer to the on-disk inode within
234 * If a non-zero error is returned, then the contents of bpp and
235 * dipp are undefined.
237 * If the inode is new and has not yet been initialized, use xfs_imap()
238 * to determine the size and location of the buffer to read from disk.
239 * If the inode has already been mapped to its buffer and read in once,
240 * then use the mapping information stored in the inode rather than
241 * calling xfs_imap(). This allows us to avoid the overhead of looking
242 * at the inode btree for small block file systems (see xfs_dilocate()).
243 * We can tell whether the inode has been mapped in before by comparing
244 * its disk block address to 0. Only uninitialized inodes will have
245 * 0 for the disk block address.
263 if (ip
->i_blkno
== (xfs_daddr_t
)0) {
265 * Call the space management code to find the location of the
269 if ((error
= xfs_imap(mp
, tp
, ip
->i_ino
, &imap
,
270 XFS_IMAP_LOOKUP
| imap_flags
)))
274 * If the inode number maps to a block outside the bounds
275 * of the file system then return NULL rather than calling
276 * read_buf and panicing when we get an error from the
279 if ((imap
.im_blkno
+ imap
.im_len
) >
280 XFS_FSB_TO_BB(mp
, mp
->m_sb
.sb_dblocks
)) {
282 xfs_fs_cmn_err(CE_ALERT
, mp
, "xfs_itobp: "
283 "(imap.im_blkno (0x%llx) "
284 "+ imap.im_len (0x%llx)) > "
285 " XFS_FSB_TO_BB(mp, "
286 "mp->m_sb.sb_dblocks) (0x%llx)",
287 (unsigned long long) imap
.im_blkno
,
288 (unsigned long long) imap
.im_len
,
289 XFS_FSB_TO_BB(mp
, mp
->m_sb
.sb_dblocks
));
291 return XFS_ERROR(EINVAL
);
295 * Fill in the fields in the inode that will be used to
296 * map the inode to its buffer from now on.
298 ip
->i_blkno
= imap
.im_blkno
;
299 ip
->i_len
= imap
.im_len
;
300 ip
->i_boffset
= imap
.im_boffset
;
303 * We've already mapped the inode once, so just use the
304 * mapping that we saved the first time.
306 imap
.im_blkno
= ip
->i_blkno
;
307 imap
.im_len
= ip
->i_len
;
308 imap
.im_boffset
= ip
->i_boffset
;
310 ASSERT(bno
== 0 || bno
== imap
.im_blkno
);
313 * Read in the buffer. If tp is NULL, xfs_trans_read_buf() will
314 * default to just a read_buf() call.
316 error
= xfs_trans_read_buf(mp
, tp
, mp
->m_ddev_targp
, imap
.im_blkno
,
317 (int)imap
.im_len
, XFS_BUF_LOCK
, &bp
);
320 xfs_fs_cmn_err(CE_ALERT
, mp
, "xfs_itobp: "
321 "xfs_trans_read_buf() returned error %d, "
322 "imap.im_blkno 0x%llx, imap.im_len 0x%llx",
323 error
, (unsigned long long) imap
.im_blkno
,
324 (unsigned long long) imap
.im_len
);
330 * Validate the magic number and version of every inode in the buffer
331 * (if DEBUG kernel) or the first inode in the buffer, otherwise.
332 * No validation is done here in userspace (xfs_repair).
334 #if !defined(__KERNEL__)
337 ni
= BBTOB(imap
.im_len
) >> mp
->m_sb
.sb_inodelog
;
338 #else /* usual case */
342 for (i
= 0; i
< ni
; i
++) {
346 dip
= (xfs_dinode_t
*)xfs_buf_offset(bp
,
347 (i
<< mp
->m_sb
.sb_inodelog
));
348 di_ok
= INT_GET(dip
->di_core
.di_magic
, ARCH_CONVERT
) == XFS_DINODE_MAGIC
&&
349 XFS_DINODE_GOOD_VERSION(INT_GET(dip
->di_core
.di_version
, ARCH_CONVERT
));
350 if (unlikely(XFS_TEST_ERROR(!di_ok
, mp
,
351 XFS_ERRTAG_ITOBP_INOTOBP
,
352 XFS_RANDOM_ITOBP_INOTOBP
))) {
353 if (imap_flags
& XFS_IMAP_BULKSTAT
) {
354 xfs_trans_brelse(tp
, bp
);
355 return XFS_ERROR(EINVAL
);
359 "Device %s - bad inode magic/vsn "
360 "daddr %lld #%d (magic=%x)",
361 XFS_BUFTARG_NAME(mp
->m_ddev_targp
),
362 (unsigned long long)imap
.im_blkno
, i
,
363 INT_GET(dip
->di_core
.di_magic
, ARCH_CONVERT
));
365 XFS_CORRUPTION_ERROR("xfs_itobp", XFS_ERRLEVEL_HIGH
,
367 xfs_trans_brelse(tp
, bp
);
368 return XFS_ERROR(EFSCORRUPTED
);
372 xfs_inobp_check(mp
, bp
);
375 * Mark the buffer as an inode buffer now that it looks good
377 XFS_BUF_SET_VTYPE(bp
, B_FS_INO
);
380 * Set *dipp to point to the on-disk inode in the buffer.
382 *dipp
= (xfs_dinode_t
*)xfs_buf_offset(bp
, imap
.im_boffset
);
388 * Move inode type and inode format specific information from the
389 * on-disk inode to the in-core inode. For fifos, devs, and sockets
390 * this means set if_rdev to the proper value. For files, directories,
391 * and symlinks this means to bring in the in-line data or extent
392 * pointers. For a file in B-tree format, only the root is immediately
393 * brought in-core. The rest will be in-lined in if_extents when it
394 * is first referenced (see xfs_iread_extents()).
401 xfs_attr_shortform_t
*atp
;
405 ip
->i_df
.if_ext_max
=
406 XFS_IFORK_DSIZE(ip
) / (uint
)sizeof(xfs_bmbt_rec_t
);
410 INT_GET(dip
->di_core
.di_nextents
, ARCH_CONVERT
) +
411 INT_GET(dip
->di_core
.di_anextents
, ARCH_CONVERT
) >
412 INT_GET(dip
->di_core
.di_nblocks
, ARCH_CONVERT
))) {
413 xfs_fs_repair_cmn_err(CE_WARN
, ip
->i_mount
,
414 "corrupt dinode %Lu, extent total = %d, nblocks = %Lu.",
415 (unsigned long long)ip
->i_ino
,
416 (int)(INT_GET(dip
->di_core
.di_nextents
, ARCH_CONVERT
)
417 + INT_GET(dip
->di_core
.di_anextents
, ARCH_CONVERT
)),
419 INT_GET(dip
->di_core
.di_nblocks
, ARCH_CONVERT
));
420 XFS_CORRUPTION_ERROR("xfs_iformat(1)", XFS_ERRLEVEL_LOW
,
422 return XFS_ERROR(EFSCORRUPTED
);
425 if (unlikely(INT_GET(dip
->di_core
.di_forkoff
, ARCH_CONVERT
) > ip
->i_mount
->m_sb
.sb_inodesize
)) {
426 xfs_fs_repair_cmn_err(CE_WARN
, ip
->i_mount
,
427 "corrupt dinode %Lu, forkoff = 0x%x.",
428 (unsigned long long)ip
->i_ino
,
429 (int)(INT_GET(dip
->di_core
.di_forkoff
, ARCH_CONVERT
)));
430 XFS_CORRUPTION_ERROR("xfs_iformat(2)", XFS_ERRLEVEL_LOW
,
432 return XFS_ERROR(EFSCORRUPTED
);
435 switch (ip
->i_d
.di_mode
& S_IFMT
) {
440 if (unlikely(INT_GET(dip
->di_core
.di_format
, ARCH_CONVERT
) != XFS_DINODE_FMT_DEV
)) {
441 XFS_CORRUPTION_ERROR("xfs_iformat(3)", XFS_ERRLEVEL_LOW
,
443 return XFS_ERROR(EFSCORRUPTED
);
446 ip
->i_df
.if_u2
.if_rdev
= INT_GET(dip
->di_u
.di_dev
, ARCH_CONVERT
);
452 switch (INT_GET(dip
->di_core
.di_format
, ARCH_CONVERT
)) {
453 case XFS_DINODE_FMT_LOCAL
:
455 * no local regular files yet
457 if (unlikely((INT_GET(dip
->di_core
.di_mode
, ARCH_CONVERT
) & S_IFMT
) == S_IFREG
)) {
458 xfs_fs_repair_cmn_err(CE_WARN
, ip
->i_mount
,
460 "(local format for regular file).",
461 (unsigned long long) ip
->i_ino
);
462 XFS_CORRUPTION_ERROR("xfs_iformat(4)",
465 return XFS_ERROR(EFSCORRUPTED
);
468 di_size
= INT_GET(dip
->di_core
.di_size
, ARCH_CONVERT
);
469 if (unlikely(di_size
> XFS_DFORK_DSIZE(dip
, ip
->i_mount
))) {
470 xfs_fs_repair_cmn_err(CE_WARN
, ip
->i_mount
,
472 "(bad size %Ld for local inode).",
473 (unsigned long long) ip
->i_ino
,
474 (long long) di_size
);
475 XFS_CORRUPTION_ERROR("xfs_iformat(5)",
478 return XFS_ERROR(EFSCORRUPTED
);
482 error
= xfs_iformat_local(ip
, dip
, XFS_DATA_FORK
, size
);
484 case XFS_DINODE_FMT_EXTENTS
:
485 error
= xfs_iformat_extents(ip
, dip
, XFS_DATA_FORK
);
487 case XFS_DINODE_FMT_BTREE
:
488 error
= xfs_iformat_btree(ip
, dip
, XFS_DATA_FORK
);
491 XFS_ERROR_REPORT("xfs_iformat(6)", XFS_ERRLEVEL_LOW
,
493 return XFS_ERROR(EFSCORRUPTED
);
498 XFS_ERROR_REPORT("xfs_iformat(7)", XFS_ERRLEVEL_LOW
, ip
->i_mount
);
499 return XFS_ERROR(EFSCORRUPTED
);
504 if (!XFS_DFORK_Q(dip
))
506 ASSERT(ip
->i_afp
== NULL
);
507 ip
->i_afp
= kmem_zone_zalloc(xfs_ifork_zone
, KM_SLEEP
);
508 ip
->i_afp
->if_ext_max
=
509 XFS_IFORK_ASIZE(ip
) / (uint
)sizeof(xfs_bmbt_rec_t
);
510 switch (INT_GET(dip
->di_core
.di_aformat
, ARCH_CONVERT
)) {
511 case XFS_DINODE_FMT_LOCAL
:
512 atp
= (xfs_attr_shortform_t
*)XFS_DFORK_APTR(dip
);
513 size
= be16_to_cpu(atp
->hdr
.totsize
);
514 error
= xfs_iformat_local(ip
, dip
, XFS_ATTR_FORK
, size
);
516 case XFS_DINODE_FMT_EXTENTS
:
517 error
= xfs_iformat_extents(ip
, dip
, XFS_ATTR_FORK
);
519 case XFS_DINODE_FMT_BTREE
:
520 error
= xfs_iformat_btree(ip
, dip
, XFS_ATTR_FORK
);
523 error
= XFS_ERROR(EFSCORRUPTED
);
527 kmem_zone_free(xfs_ifork_zone
, ip
->i_afp
);
529 xfs_idestroy_fork(ip
, XFS_DATA_FORK
);
535 * The file is in-lined in the on-disk inode.
536 * If it fits into if_inline_data, then copy
537 * it there, otherwise allocate a buffer for it
538 * and copy the data there. Either way, set
539 * if_data to point at the data.
540 * If we allocate a buffer for the data, make
541 * sure that its size is a multiple of 4 and
542 * record the real size in i_real_bytes.
555 * If the size is unreasonable, then something
556 * is wrong and we just bail out rather than crash in
557 * kmem_alloc() or memcpy() below.
559 if (unlikely(size
> XFS_DFORK_SIZE(dip
, ip
->i_mount
, whichfork
))) {
560 xfs_fs_repair_cmn_err(CE_WARN
, ip
->i_mount
,
562 "(bad size %d for local fork, size = %d).",
563 (unsigned long long) ip
->i_ino
, size
,
564 XFS_DFORK_SIZE(dip
, ip
->i_mount
, whichfork
));
565 XFS_CORRUPTION_ERROR("xfs_iformat_local", XFS_ERRLEVEL_LOW
,
567 return XFS_ERROR(EFSCORRUPTED
);
569 ifp
= XFS_IFORK_PTR(ip
, whichfork
);
572 ifp
->if_u1
.if_data
= NULL
;
573 else if (size
<= sizeof(ifp
->if_u2
.if_inline_data
))
574 ifp
->if_u1
.if_data
= ifp
->if_u2
.if_inline_data
;
576 real_size
= roundup(size
, 4);
577 ifp
->if_u1
.if_data
= kmem_alloc(real_size
, KM_SLEEP
);
579 ifp
->if_bytes
= size
;
580 ifp
->if_real_bytes
= real_size
;
582 memcpy(ifp
->if_u1
.if_data
, XFS_DFORK_PTR(dip
, whichfork
), size
);
583 ifp
->if_flags
&= ~XFS_IFEXTENTS
;
584 ifp
->if_flags
|= XFS_IFINLINE
;
589 * The file consists of a set of extents all
590 * of which fit into the on-disk inode.
591 * If there are few enough extents to fit into
592 * the if_inline_ext, then copy them there.
593 * Otherwise allocate a buffer for them and copy
594 * them into it. Either way, set if_extents
595 * to point at the extents.
603 xfs_bmbt_rec_t
*ep
, *dp
;
609 ifp
= XFS_IFORK_PTR(ip
, whichfork
);
610 nex
= XFS_DFORK_NEXTENTS(dip
, whichfork
);
611 size
= nex
* (uint
)sizeof(xfs_bmbt_rec_t
);
614 * If the number of extents is unreasonable, then something
615 * is wrong and we just bail out rather than crash in
616 * kmem_alloc() or memcpy() below.
618 if (unlikely(size
< 0 || size
> XFS_DFORK_SIZE(dip
, ip
->i_mount
, whichfork
))) {
619 xfs_fs_repair_cmn_err(CE_WARN
, ip
->i_mount
,
620 "corrupt inode %Lu ((a)extents = %d).",
621 (unsigned long long) ip
->i_ino
, nex
);
622 XFS_CORRUPTION_ERROR("xfs_iformat_extents(1)", XFS_ERRLEVEL_LOW
,
624 return XFS_ERROR(EFSCORRUPTED
);
627 ifp
->if_real_bytes
= 0;
629 ifp
->if_u1
.if_extents
= NULL
;
630 else if (nex
<= XFS_INLINE_EXTS
)
631 ifp
->if_u1
.if_extents
= ifp
->if_u2
.if_inline_ext
;
633 xfs_iext_add(ifp
, 0, nex
);
635 ifp
->if_bytes
= size
;
637 dp
= (xfs_bmbt_rec_t
*) XFS_DFORK_PTR(dip
, whichfork
);
638 xfs_validate_extents(ifp
, nex
, 1, XFS_EXTFMT_INODE(ip
));
639 for (i
= 0; i
< nex
; i
++, dp
++) {
640 ep
= xfs_iext_get_ext(ifp
, i
);
641 ep
->l0
= INT_GET(get_unaligned((__uint64_t
*)&dp
->l0
),
643 ep
->l1
= INT_GET(get_unaligned((__uint64_t
*)&dp
->l1
),
646 xfs_bmap_trace_exlist("xfs_iformat_extents", ip
, nex
,
648 if (whichfork
!= XFS_DATA_FORK
||
649 XFS_EXTFMT_INODE(ip
) == XFS_EXTFMT_NOSTATE
)
650 if (unlikely(xfs_check_nostate_extents(
652 XFS_ERROR_REPORT("xfs_iformat_extents(2)",
655 return XFS_ERROR(EFSCORRUPTED
);
658 ifp
->if_flags
|= XFS_IFEXTENTS
;
663 * The file has too many extents to fit into
664 * the inode, so they are in B-tree format.
665 * Allocate a buffer for the root of the B-tree
666 * and copy the root into it. The i_extents
667 * field will remain NULL until all of the
668 * extents are read in (when they are needed).
676 xfs_bmdr_block_t
*dfp
;
682 ifp
= XFS_IFORK_PTR(ip
, whichfork
);
683 dfp
= (xfs_bmdr_block_t
*)XFS_DFORK_PTR(dip
, whichfork
);
684 size
= XFS_BMAP_BROOT_SPACE(dfp
);
685 nrecs
= XFS_BMAP_BROOT_NUMRECS(dfp
);
688 * blow out if -- fork has less extents than can fit in
689 * fork (fork shouldn't be a btree format), root btree
690 * block has more records than can fit into the fork,
691 * or the number of extents is greater than the number of
694 if (unlikely(XFS_IFORK_NEXTENTS(ip
, whichfork
) <= ifp
->if_ext_max
695 || XFS_BMDR_SPACE_CALC(nrecs
) >
696 XFS_DFORK_SIZE(dip
, ip
->i_mount
, whichfork
)
697 || XFS_IFORK_NEXTENTS(ip
, whichfork
) > ip
->i_d
.di_nblocks
)) {
698 xfs_fs_repair_cmn_err(CE_WARN
, ip
->i_mount
,
699 "corrupt inode %Lu (btree).",
700 (unsigned long long) ip
->i_ino
);
701 XFS_ERROR_REPORT("xfs_iformat_btree", XFS_ERRLEVEL_LOW
,
703 return XFS_ERROR(EFSCORRUPTED
);
706 ifp
->if_broot_bytes
= size
;
707 ifp
->if_broot
= kmem_alloc(size
, KM_SLEEP
);
708 ASSERT(ifp
->if_broot
!= NULL
);
710 * Copy and convert from the on-disk structure
711 * to the in-memory structure.
713 xfs_bmdr_to_bmbt(dfp
, XFS_DFORK_SIZE(dip
, ip
->i_mount
, whichfork
),
714 ifp
->if_broot
, size
);
715 ifp
->if_flags
&= ~XFS_IFEXTENTS
;
716 ifp
->if_flags
|= XFS_IFBROOT
;
722 * xfs_xlate_dinode_core - translate an xfs_inode_core_t between ondisk
725 * buf = on-disk representation
726 * dip = native representation
727 * dir = direction - +ve -> disk to native
728 * -ve -> native to disk
731 xfs_xlate_dinode_core(
733 xfs_dinode_core_t
*dip
,
736 xfs_dinode_core_t
*buf_core
= (xfs_dinode_core_t
*)buf
;
737 xfs_dinode_core_t
*mem_core
= (xfs_dinode_core_t
*)dip
;
738 xfs_arch_t arch
= ARCH_CONVERT
;
742 INT_XLATE(buf_core
->di_magic
, mem_core
->di_magic
, dir
, arch
);
743 INT_XLATE(buf_core
->di_mode
, mem_core
->di_mode
, dir
, arch
);
744 INT_XLATE(buf_core
->di_version
, mem_core
->di_version
, dir
, arch
);
745 INT_XLATE(buf_core
->di_format
, mem_core
->di_format
, dir
, arch
);
746 INT_XLATE(buf_core
->di_onlink
, mem_core
->di_onlink
, dir
, arch
);
747 INT_XLATE(buf_core
->di_uid
, mem_core
->di_uid
, dir
, arch
);
748 INT_XLATE(buf_core
->di_gid
, mem_core
->di_gid
, dir
, arch
);
749 INT_XLATE(buf_core
->di_nlink
, mem_core
->di_nlink
, dir
, arch
);
750 INT_XLATE(buf_core
->di_projid
, mem_core
->di_projid
, dir
, arch
);
753 memcpy(mem_core
->di_pad
, buf_core
->di_pad
,
754 sizeof(buf_core
->di_pad
));
756 memcpy(buf_core
->di_pad
, mem_core
->di_pad
,
757 sizeof(buf_core
->di_pad
));
760 INT_XLATE(buf_core
->di_flushiter
, mem_core
->di_flushiter
, dir
, arch
);
762 INT_XLATE(buf_core
->di_atime
.t_sec
, mem_core
->di_atime
.t_sec
,
764 INT_XLATE(buf_core
->di_atime
.t_nsec
, mem_core
->di_atime
.t_nsec
,
766 INT_XLATE(buf_core
->di_mtime
.t_sec
, mem_core
->di_mtime
.t_sec
,
768 INT_XLATE(buf_core
->di_mtime
.t_nsec
, mem_core
->di_mtime
.t_nsec
,
770 INT_XLATE(buf_core
->di_ctime
.t_sec
, mem_core
->di_ctime
.t_sec
,
772 INT_XLATE(buf_core
->di_ctime
.t_nsec
, mem_core
->di_ctime
.t_nsec
,
774 INT_XLATE(buf_core
->di_size
, mem_core
->di_size
, dir
, arch
);
775 INT_XLATE(buf_core
->di_nblocks
, mem_core
->di_nblocks
, dir
, arch
);
776 INT_XLATE(buf_core
->di_extsize
, mem_core
->di_extsize
, dir
, arch
);
777 INT_XLATE(buf_core
->di_nextents
, mem_core
->di_nextents
, dir
, arch
);
778 INT_XLATE(buf_core
->di_anextents
, mem_core
->di_anextents
, dir
, arch
);
779 INT_XLATE(buf_core
->di_forkoff
, mem_core
->di_forkoff
, dir
, arch
);
780 INT_XLATE(buf_core
->di_aformat
, mem_core
->di_aformat
, dir
, arch
);
781 INT_XLATE(buf_core
->di_dmevmask
, mem_core
->di_dmevmask
, dir
, arch
);
782 INT_XLATE(buf_core
->di_dmstate
, mem_core
->di_dmstate
, dir
, arch
);
783 INT_XLATE(buf_core
->di_flags
, mem_core
->di_flags
, dir
, arch
);
784 INT_XLATE(buf_core
->di_gen
, mem_core
->di_gen
, dir
, arch
);
793 if (di_flags
& XFS_DIFLAG_ANY
) {
794 if (di_flags
& XFS_DIFLAG_REALTIME
)
795 flags
|= XFS_XFLAG_REALTIME
;
796 if (di_flags
& XFS_DIFLAG_PREALLOC
)
797 flags
|= XFS_XFLAG_PREALLOC
;
798 if (di_flags
& XFS_DIFLAG_IMMUTABLE
)
799 flags
|= XFS_XFLAG_IMMUTABLE
;
800 if (di_flags
& XFS_DIFLAG_APPEND
)
801 flags
|= XFS_XFLAG_APPEND
;
802 if (di_flags
& XFS_DIFLAG_SYNC
)
803 flags
|= XFS_XFLAG_SYNC
;
804 if (di_flags
& XFS_DIFLAG_NOATIME
)
805 flags
|= XFS_XFLAG_NOATIME
;
806 if (di_flags
& XFS_DIFLAG_NODUMP
)
807 flags
|= XFS_XFLAG_NODUMP
;
808 if (di_flags
& XFS_DIFLAG_RTINHERIT
)
809 flags
|= XFS_XFLAG_RTINHERIT
;
810 if (di_flags
& XFS_DIFLAG_PROJINHERIT
)
811 flags
|= XFS_XFLAG_PROJINHERIT
;
812 if (di_flags
& XFS_DIFLAG_NOSYMLINKS
)
813 flags
|= XFS_XFLAG_NOSYMLINKS
;
814 if (di_flags
& XFS_DIFLAG_EXTSIZE
)
815 flags
|= XFS_XFLAG_EXTSIZE
;
816 if (di_flags
& XFS_DIFLAG_EXTSZINHERIT
)
817 flags
|= XFS_XFLAG_EXTSZINHERIT
;
818 if (di_flags
& XFS_DIFLAG_NODEFRAG
)
819 flags
|= XFS_XFLAG_NODEFRAG
;
829 xfs_dinode_core_t
*dic
= &ip
->i_d
;
831 return _xfs_dic2xflags(dic
->di_flags
) |
832 (XFS_CFORK_Q(dic
) ? XFS_XFLAG_HASATTR
: 0);
837 xfs_dinode_core_t
*dic
)
839 return _xfs_dic2xflags(INT_GET(dic
->di_flags
, ARCH_CONVERT
)) |
840 (XFS_CFORK_Q_DISK(dic
) ? XFS_XFLAG_HASATTR
: 0);
844 * Given a mount structure and an inode number, return a pointer
845 * to a newly allocated in-core inode corresponding to the given
848 * Initialize the inode's attributes and extent pointers if it
849 * already has them (it will not if the inode has no links).
864 ASSERT(xfs_inode_zone
!= NULL
);
866 ip
= kmem_zone_zalloc(xfs_inode_zone
, KM_SLEEP
);
871 * Get pointer's to the on-disk inode and the buffer containing it.
872 * If the inode number refers to a block outside the file system
873 * then xfs_itobp() will return NULL. In this case we should
874 * return NULL as well. Set i_blkno to 0 so that xfs_itobp() will
875 * know that this is a new incore inode.
877 error
= xfs_itobp(mp
, tp
, ip
, &dip
, &bp
, bno
, 0);
879 kmem_zone_free(xfs_inode_zone
, ip
);
884 * Initialize inode's trace buffers.
885 * Do this before xfs_iformat in case it adds entries.
887 #ifdef XFS_BMAP_TRACE
888 ip
->i_xtrace
= ktrace_alloc(XFS_BMAP_KTRACE_SIZE
, KM_SLEEP
);
890 #ifdef XFS_BMBT_TRACE
891 ip
->i_btrace
= ktrace_alloc(XFS_BMBT_KTRACE_SIZE
, KM_SLEEP
);
894 ip
->i_rwtrace
= ktrace_alloc(XFS_RW_KTRACE_SIZE
, KM_SLEEP
);
896 #ifdef XFS_ILOCK_TRACE
897 ip
->i_lock_trace
= ktrace_alloc(XFS_ILOCK_KTRACE_SIZE
, KM_SLEEP
);
899 #ifdef XFS_DIR2_TRACE
900 ip
->i_dir_trace
= ktrace_alloc(XFS_DIR2_KTRACE_SIZE
, KM_SLEEP
);
904 * If we got something that isn't an inode it means someone
905 * (nfs or dmi) has a stale handle.
907 if (INT_GET(dip
->di_core
.di_magic
, ARCH_CONVERT
) != XFS_DINODE_MAGIC
) {
908 kmem_zone_free(xfs_inode_zone
, ip
);
909 xfs_trans_brelse(tp
, bp
);
911 xfs_fs_cmn_err(CE_ALERT
, mp
, "xfs_iread: "
912 "dip->di_core.di_magic (0x%x) != "
913 "XFS_DINODE_MAGIC (0x%x)",
914 INT_GET(dip
->di_core
.di_magic
, ARCH_CONVERT
),
917 return XFS_ERROR(EINVAL
);
921 * If the on-disk inode is already linked to a directory
922 * entry, copy all of the inode into the in-core inode.
923 * xfs_iformat() handles copying in the inode format
924 * specific information.
925 * Otherwise, just get the truly permanent information.
927 if (dip
->di_core
.di_mode
) {
928 xfs_xlate_dinode_core((xfs_caddr_t
)&dip
->di_core
,
930 error
= xfs_iformat(ip
, dip
);
932 kmem_zone_free(xfs_inode_zone
, ip
);
933 xfs_trans_brelse(tp
, bp
);
935 xfs_fs_cmn_err(CE_ALERT
, mp
, "xfs_iread: "
936 "xfs_iformat() returned error %d",
942 ip
->i_d
.di_magic
= INT_GET(dip
->di_core
.di_magic
, ARCH_CONVERT
);
943 ip
->i_d
.di_version
= INT_GET(dip
->di_core
.di_version
, ARCH_CONVERT
);
944 ip
->i_d
.di_gen
= INT_GET(dip
->di_core
.di_gen
, ARCH_CONVERT
);
945 ip
->i_d
.di_flushiter
= INT_GET(dip
->di_core
.di_flushiter
, ARCH_CONVERT
);
947 * Make sure to pull in the mode here as well in
948 * case the inode is released without being used.
949 * This ensures that xfs_inactive() will see that
950 * the inode is already free and not try to mess
951 * with the uninitialized part of it.
955 * Initialize the per-fork minima and maxima for a new
956 * inode here. xfs_iformat will do it for old inodes.
958 ip
->i_df
.if_ext_max
=
959 XFS_IFORK_DSIZE(ip
) / (uint
)sizeof(xfs_bmbt_rec_t
);
962 INIT_LIST_HEAD(&ip
->i_reclaim
);
965 * The inode format changed when we moved the link count and
966 * made it 32 bits long. If this is an old format inode,
967 * convert it in memory to look like a new one. If it gets
968 * flushed to disk we will convert back before flushing or
969 * logging it. We zero out the new projid field and the old link
970 * count field. We'll handle clearing the pad field (the remains
971 * of the old uuid field) when we actually convert the inode to
972 * the new format. We don't change the version number so that we
973 * can distinguish this from a real new format inode.
975 if (ip
->i_d
.di_version
== XFS_DINODE_VERSION_1
) {
976 ip
->i_d
.di_nlink
= ip
->i_d
.di_onlink
;
977 ip
->i_d
.di_onlink
= 0;
978 ip
->i_d
.di_projid
= 0;
981 ip
->i_delayed_blks
= 0;
984 * Mark the buffer containing the inode as something to keep
985 * around for a while. This helps to keep recently accessed
986 * meta-data in-core longer.
988 XFS_BUF_SET_REF(bp
, XFS_INO_REF
);
991 * Use xfs_trans_brelse() to release the buffer containing the
992 * on-disk inode, because it was acquired with xfs_trans_read_buf()
993 * in xfs_itobp() above. If tp is NULL, this is just a normal
994 * brelse(). If we're within a transaction, then xfs_trans_brelse()
995 * will only release the buffer if it is not dirty within the
996 * transaction. It will be OK to release the buffer in this case,
997 * because inodes on disk are never destroyed and we will be
998 * locking the new in-core inode before putting it in the hash
999 * table where other processes can find it. Thus we don't have
1000 * to worry about the inode being changed just because we released
1003 xfs_trans_brelse(tp
, bp
);
1009 * Read in extents from a btree-format inode.
1010 * Allocate and fill in if_extents. Real work is done in xfs_bmap.c.
1020 xfs_extnum_t nextents
;
1023 if (unlikely(XFS_IFORK_FORMAT(ip
, whichfork
) != XFS_DINODE_FMT_BTREE
)) {
1024 XFS_ERROR_REPORT("xfs_iread_extents", XFS_ERRLEVEL_LOW
,
1026 return XFS_ERROR(EFSCORRUPTED
);
1028 nextents
= XFS_IFORK_NEXTENTS(ip
, whichfork
);
1029 size
= nextents
* sizeof(xfs_bmbt_rec_t
);
1030 ifp
= XFS_IFORK_PTR(ip
, whichfork
);
1033 * We know that the size is valid (it's checked in iformat_btree)
1035 ifp
->if_lastex
= NULLEXTNUM
;
1036 ifp
->if_bytes
= ifp
->if_real_bytes
= 0;
1037 ifp
->if_flags
|= XFS_IFEXTENTS
;
1038 xfs_iext_add(ifp
, 0, nextents
);
1039 error
= xfs_bmap_read_extents(tp
, ip
, whichfork
);
1041 xfs_iext_destroy(ifp
);
1042 ifp
->if_flags
&= ~XFS_IFEXTENTS
;
1045 xfs_validate_extents(ifp
, nextents
, 0, XFS_EXTFMT_INODE(ip
));
1050 * Allocate an inode on disk and return a copy of its in-core version.
1051 * The in-core inode is locked exclusively. Set mode, nlink, and rdev
1052 * appropriately within the inode. The uid and gid for the inode are
1053 * set according to the contents of the given cred structure.
1055 * Use xfs_dialloc() to allocate the on-disk inode. If xfs_dialloc()
1056 * has a free inode available, call xfs_iget()
1057 * to obtain the in-core version of the allocated inode. Finally,
1058 * fill in the inode and log its initial contents. In this case,
1059 * ialloc_context would be set to NULL and call_again set to false.
1061 * If xfs_dialloc() does not have an available inode,
1062 * it will replenish its supply by doing an allocation. Since we can
1063 * only do one allocation within a transaction without deadlocks, we
1064 * must commit the current transaction before returning the inode itself.
1065 * In this case, therefore, we will set call_again to true and return.
1066 * The caller should then commit the current transaction, start a new
1067 * transaction, and call xfs_ialloc() again to actually get the inode.
1069 * To ensure that some other process does not grab the inode that
1070 * was allocated during the first call to xfs_ialloc(), this routine
1071 * also returns the [locked] bp pointing to the head of the freelist
1072 * as ialloc_context. The caller should hold this buffer across
1073 * the commit and pass it back into this routine on the second call.
1085 xfs_buf_t
**ialloc_context
,
1086 boolean_t
*call_again
,
1096 * Call the space management code to pick
1097 * the on-disk inode to be allocated.
1099 error
= xfs_dialloc(tp
, pip
->i_ino
, mode
, okalloc
,
1100 ialloc_context
, call_again
, &ino
);
1104 if (*call_again
|| ino
== NULLFSINO
) {
1108 ASSERT(*ialloc_context
== NULL
);
1111 * Get the in-core inode with the lock held exclusively.
1112 * This is because we're setting fields here we need
1113 * to prevent others from looking at until we're done.
1115 error
= xfs_trans_iget(tp
->t_mountp
, tp
, ino
,
1116 IGET_CREATE
, XFS_ILOCK_EXCL
, &ip
);
1123 ip
->i_d
.di_mode
= (__uint16_t
)mode
;
1124 ip
->i_d
.di_onlink
= 0;
1125 ip
->i_d
.di_nlink
= nlink
;
1126 ASSERT(ip
->i_d
.di_nlink
== nlink
);
1127 ip
->i_d
.di_uid
= current_fsuid(cr
);
1128 ip
->i_d
.di_gid
= current_fsgid(cr
);
1129 ip
->i_d
.di_projid
= prid
;
1130 memset(&(ip
->i_d
.di_pad
[0]), 0, sizeof(ip
->i_d
.di_pad
));
1133 * If the superblock version is up to where we support new format
1134 * inodes and this is currently an old format inode, then change
1135 * the inode version number now. This way we only do the conversion
1136 * here rather than here and in the flush/logging code.
1138 if (XFS_SB_VERSION_HASNLINK(&tp
->t_mountp
->m_sb
) &&
1139 ip
->i_d
.di_version
== XFS_DINODE_VERSION_1
) {
1140 ip
->i_d
.di_version
= XFS_DINODE_VERSION_2
;
1142 * We've already zeroed the old link count, the projid field,
1143 * and the pad field.
1148 * Project ids won't be stored on disk if we are using a version 1 inode.
1150 if ( (prid
!= 0) && (ip
->i_d
.di_version
== XFS_DINODE_VERSION_1
))
1151 xfs_bump_ino_vers2(tp
, ip
);
1153 if (XFS_INHERIT_GID(pip
, vp
->v_vfsp
)) {
1154 ip
->i_d
.di_gid
= pip
->i_d
.di_gid
;
1155 if ((pip
->i_d
.di_mode
& S_ISGID
) && (mode
& S_IFMT
) == S_IFDIR
) {
1156 ip
->i_d
.di_mode
|= S_ISGID
;
1161 * If the group ID of the new file does not match the effective group
1162 * ID or one of the supplementary group IDs, the S_ISGID bit is cleared
1163 * (and only if the irix_sgid_inherit compatibility variable is set).
1165 if ((irix_sgid_inherit
) &&
1166 (ip
->i_d
.di_mode
& S_ISGID
) &&
1167 (!in_group_p((gid_t
)ip
->i_d
.di_gid
))) {
1168 ip
->i_d
.di_mode
&= ~S_ISGID
;
1171 ip
->i_d
.di_size
= 0;
1172 ip
->i_d
.di_nextents
= 0;
1173 ASSERT(ip
->i_d
.di_nblocks
== 0);
1174 xfs_ichgtime(ip
, XFS_ICHGTIME_CHG
|XFS_ICHGTIME_ACC
|XFS_ICHGTIME_MOD
);
1176 * di_gen will have been taken care of in xfs_iread.
1178 ip
->i_d
.di_extsize
= 0;
1179 ip
->i_d
.di_dmevmask
= 0;
1180 ip
->i_d
.di_dmstate
= 0;
1181 ip
->i_d
.di_flags
= 0;
1182 flags
= XFS_ILOG_CORE
;
1183 switch (mode
& S_IFMT
) {
1188 ip
->i_d
.di_format
= XFS_DINODE_FMT_DEV
;
1189 ip
->i_df
.if_u2
.if_rdev
= rdev
;
1190 ip
->i_df
.if_flags
= 0;
1191 flags
|= XFS_ILOG_DEV
;
1195 if (unlikely(pip
->i_d
.di_flags
& XFS_DIFLAG_ANY
)) {
1198 if ((mode
& S_IFMT
) == S_IFDIR
) {
1199 if (pip
->i_d
.di_flags
& XFS_DIFLAG_RTINHERIT
)
1200 di_flags
|= XFS_DIFLAG_RTINHERIT
;
1201 if (pip
->i_d
.di_flags
& XFS_DIFLAG_EXTSZINHERIT
) {
1202 di_flags
|= XFS_DIFLAG_EXTSZINHERIT
;
1203 ip
->i_d
.di_extsize
= pip
->i_d
.di_extsize
;
1205 } else if ((mode
& S_IFMT
) == S_IFREG
) {
1206 if (pip
->i_d
.di_flags
& XFS_DIFLAG_RTINHERIT
) {
1207 di_flags
|= XFS_DIFLAG_REALTIME
;
1208 ip
->i_iocore
.io_flags
|= XFS_IOCORE_RT
;
1210 if (pip
->i_d
.di_flags
& XFS_DIFLAG_EXTSZINHERIT
) {
1211 di_flags
|= XFS_DIFLAG_EXTSIZE
;
1212 ip
->i_d
.di_extsize
= pip
->i_d
.di_extsize
;
1215 if ((pip
->i_d
.di_flags
& XFS_DIFLAG_NOATIME
) &&
1216 xfs_inherit_noatime
)
1217 di_flags
|= XFS_DIFLAG_NOATIME
;
1218 if ((pip
->i_d
.di_flags
& XFS_DIFLAG_NODUMP
) &&
1220 di_flags
|= XFS_DIFLAG_NODUMP
;
1221 if ((pip
->i_d
.di_flags
& XFS_DIFLAG_SYNC
) &&
1223 di_flags
|= XFS_DIFLAG_SYNC
;
1224 if ((pip
->i_d
.di_flags
& XFS_DIFLAG_NOSYMLINKS
) &&
1225 xfs_inherit_nosymlinks
)
1226 di_flags
|= XFS_DIFLAG_NOSYMLINKS
;
1227 if (pip
->i_d
.di_flags
& XFS_DIFLAG_PROJINHERIT
)
1228 di_flags
|= XFS_DIFLAG_PROJINHERIT
;
1229 if ((pip
->i_d
.di_flags
& XFS_DIFLAG_NODEFRAG
) &&
1230 xfs_inherit_nodefrag
)
1231 di_flags
|= XFS_DIFLAG_NODEFRAG
;
1232 ip
->i_d
.di_flags
|= di_flags
;
1236 ip
->i_d
.di_format
= XFS_DINODE_FMT_EXTENTS
;
1237 ip
->i_df
.if_flags
= XFS_IFEXTENTS
;
1238 ip
->i_df
.if_bytes
= ip
->i_df
.if_real_bytes
= 0;
1239 ip
->i_df
.if_u1
.if_extents
= NULL
;
1245 * Attribute fork settings for new inode.
1247 ip
->i_d
.di_aformat
= XFS_DINODE_FMT_EXTENTS
;
1248 ip
->i_d
.di_anextents
= 0;
1251 * Log the new values stuffed into the inode.
1253 xfs_trans_log_inode(tp
, ip
, flags
);
1255 /* now that we have an i_mode we can setup inode ops and unlock */
1256 bhv_vfs_init_vnode(XFS_MTOVFS(tp
->t_mountp
), vp
, XFS_ITOBHV(ip
), 1);
1263 * Check to make sure that there are no blocks allocated to the
1264 * file beyond the size of the file. We don't check this for
1265 * files with fixed size extents or real time extents, but we
1266 * at least do it for regular files.
1275 xfs_fileoff_t map_first
;
1277 xfs_bmbt_irec_t imaps
[2];
1279 if ((ip
->i_d
.di_mode
& S_IFMT
) != S_IFREG
)
1282 if (ip
->i_d
.di_flags
& (XFS_DIFLAG_REALTIME
| XFS_DIFLAG_EXTSIZE
))
1286 map_first
= XFS_B_TO_FSB(mp
, (xfs_ufsize_t
)isize
);
1288 * The filesystem could be shutting down, so bmapi may return
1291 if (xfs_bmapi(NULL
, ip
, map_first
,
1293 (xfs_ufsize_t
)XFS_MAXIOFFSET(mp
)) -
1295 XFS_BMAPI_ENTIRE
, NULL
, 0, imaps
, &nimaps
,
1298 ASSERT(nimaps
== 1);
1299 ASSERT(imaps
[0].br_startblock
== HOLESTARTBLOCK
);
1304 * Calculate the last possible buffered byte in a file. This must
1305 * include data that was buffered beyond the EOF by the write code.
1306 * This also needs to deal with overflowing the xfs_fsize_t type
1307 * which can happen for sizes near the limit.
1309 * We also need to take into account any blocks beyond the EOF. It
1310 * may be the case that they were buffered by a write which failed.
1311 * In that case the pages will still be in memory, but the inode size
1312 * will never have been updated.
1319 xfs_fsize_t last_byte
;
1320 xfs_fileoff_t last_block
;
1321 xfs_fileoff_t size_last_block
;
1324 ASSERT(ismrlocked(&(ip
->i_iolock
), MR_UPDATE
| MR_ACCESS
));
1328 * Only check for blocks beyond the EOF if the extents have
1329 * been read in. This eliminates the need for the inode lock,
1330 * and it also saves us from looking when it really isn't
1333 if (ip
->i_df
.if_flags
& XFS_IFEXTENTS
) {
1334 error
= xfs_bmap_last_offset(NULL
, ip
, &last_block
,
1342 size_last_block
= XFS_B_TO_FSB(mp
, (xfs_ufsize_t
)ip
->i_d
.di_size
);
1343 last_block
= XFS_FILEOFF_MAX(last_block
, size_last_block
);
1345 last_byte
= XFS_FSB_TO_B(mp
, last_block
);
1346 if (last_byte
< 0) {
1347 return XFS_MAXIOFFSET(mp
);
1349 last_byte
+= (1 << mp
->m_writeio_log
);
1350 if (last_byte
< 0) {
1351 return XFS_MAXIOFFSET(mp
);
1356 #if defined(XFS_RW_TRACE)
1362 xfs_fsize_t new_size
,
1363 xfs_off_t toss_start
,
1364 xfs_off_t toss_finish
)
1366 if (ip
->i_rwtrace
== NULL
) {
1370 ktrace_enter(ip
->i_rwtrace
,
1373 (void*)(unsigned long)((ip
->i_d
.di_size
>> 32) & 0xffffffff),
1374 (void*)(unsigned long)(ip
->i_d
.di_size
& 0xffffffff),
1375 (void*)((long)flag
),
1376 (void*)(unsigned long)((new_size
>> 32) & 0xffffffff),
1377 (void*)(unsigned long)(new_size
& 0xffffffff),
1378 (void*)(unsigned long)((toss_start
>> 32) & 0xffffffff),
1379 (void*)(unsigned long)(toss_start
& 0xffffffff),
1380 (void*)(unsigned long)((toss_finish
>> 32) & 0xffffffff),
1381 (void*)(unsigned long)(toss_finish
& 0xffffffff),
1382 (void*)(unsigned long)current_cpu(),
1383 (void*)(unsigned long)current_pid(),
1389 #define xfs_itrunc_trace(tag, ip, flag, new_size, toss_start, toss_finish)
1393 * Start the truncation of the file to new_size. The new size
1394 * must be smaller than the current size. This routine will
1395 * clear the buffer and page caches of file data in the removed
1396 * range, and xfs_itruncate_finish() will remove the underlying
1399 * The inode must have its I/O lock locked EXCLUSIVELY, and it
1400 * must NOT have the inode lock held at all. This is because we're
1401 * calling into the buffer/page cache code and we can't hold the
1402 * inode lock when we do so.
1404 * We need to wait for any direct I/Os in flight to complete before we
1405 * proceed with the truncate. This is needed to prevent the extents
1406 * being read or written by the direct I/Os from being removed while the
1407 * I/O is in flight as there is no other method of synchronising
1408 * direct I/O with the truncate operation. Also, because we hold
1409 * the IOLOCK in exclusive mode, we prevent new direct I/Os from being
1410 * started until the truncate completes and drops the lock. Essentially,
1411 * the vn_iowait() call forms an I/O barrier that provides strict ordering
1412 * between direct I/Os and the truncate operation.
1414 * The flags parameter can have either the value XFS_ITRUNC_DEFINITE
1415 * or XFS_ITRUNC_MAYBE. The XFS_ITRUNC_MAYBE value should be used
1416 * in the case that the caller is locking things out of order and
1417 * may not be able to call xfs_itruncate_finish() with the inode lock
1418 * held without dropping the I/O lock. If the caller must drop the
1419 * I/O lock before calling xfs_itruncate_finish(), then xfs_itruncate_start()
1420 * must be called again with all the same restrictions as the initial
1424 xfs_itruncate_start(
1427 xfs_fsize_t new_size
)
1429 xfs_fsize_t last_byte
;
1430 xfs_off_t toss_start
;
1434 ASSERT(ismrlocked(&ip
->i_iolock
, MR_UPDATE
) != 0);
1435 ASSERT((new_size
== 0) || (new_size
<= ip
->i_d
.di_size
));
1436 ASSERT((flags
== XFS_ITRUNC_DEFINITE
) ||
1437 (flags
== XFS_ITRUNC_MAYBE
));
1442 vn_iowait(vp
); /* wait for the completion of any pending DIOs */
1445 * Call toss_pages or flushinval_pages to get rid of pages
1446 * overlapping the region being removed. We have to use
1447 * the less efficient flushinval_pages in the case that the
1448 * caller may not be able to finish the truncate without
1449 * dropping the inode's I/O lock. Make sure
1450 * to catch any pages brought in by buffers overlapping
1451 * the EOF by searching out beyond the isize by our
1452 * block size. We round new_size up to a block boundary
1453 * so that we don't toss things on the same block as
1454 * new_size but before it.
1456 * Before calling toss_page or flushinval_pages, make sure to
1457 * call remapf() over the same region if the file is mapped.
1458 * This frees up mapped file references to the pages in the
1459 * given range and for the flushinval_pages case it ensures
1460 * that we get the latest mapped changes flushed out.
1462 toss_start
= XFS_B_TO_FSB(mp
, (xfs_ufsize_t
)new_size
);
1463 toss_start
= XFS_FSB_TO_B(mp
, toss_start
);
1464 if (toss_start
< 0) {
1466 * The place to start tossing is beyond our maximum
1467 * file size, so there is no way that the data extended
1472 last_byte
= xfs_file_last_byte(ip
);
1473 xfs_itrunc_trace(XFS_ITRUNC_START
, ip
, flags
, new_size
, toss_start
,
1475 if (last_byte
> toss_start
) {
1476 if (flags
& XFS_ITRUNC_DEFINITE
) {
1477 bhv_vop_toss_pages(vp
, toss_start
, -1, FI_REMAPF_LOCKED
);
1479 bhv_vop_flushinval_pages(vp
, toss_start
, -1, FI_REMAPF_LOCKED
);
1484 if (new_size
== 0) {
1485 ASSERT(VN_CACHED(vp
) == 0);
1491 * Shrink the file to the given new_size. The new
1492 * size must be smaller than the current size.
1493 * This will free up the underlying blocks
1494 * in the removed range after a call to xfs_itruncate_start()
1495 * or xfs_atruncate_start().
1497 * The transaction passed to this routine must have made
1498 * a permanent log reservation of at least XFS_ITRUNCATE_LOG_RES.
1499 * This routine may commit the given transaction and
1500 * start new ones, so make sure everything involved in
1501 * the transaction is tidy before calling here.
1502 * Some transaction will be returned to the caller to be
1503 * committed. The incoming transaction must already include
1504 * the inode, and both inode locks must be held exclusively.
1505 * The inode must also be "held" within the transaction. On
1506 * return the inode will be "held" within the returned transaction.
1507 * This routine does NOT require any disk space to be reserved
1508 * for it within the transaction.
1510 * The fork parameter must be either xfs_attr_fork or xfs_data_fork,
1511 * and it indicates the fork which is to be truncated. For the
1512 * attribute fork we only support truncation to size 0.
1514 * We use the sync parameter to indicate whether or not the first
1515 * transaction we perform might have to be synchronous. For the attr fork,
1516 * it needs to be so if the unlink of the inode is not yet known to be
1517 * permanent in the log. This keeps us from freeing and reusing the
1518 * blocks of the attribute fork before the unlink of the inode becomes
1521 * For the data fork, we normally have to run synchronously if we're
1522 * being called out of the inactive path or we're being called
1523 * out of the create path where we're truncating an existing file.
1524 * Either way, the truncate needs to be sync so blocks don't reappear
1525 * in the file with altered data in case of a crash. wsync filesystems
1526 * can run the first case async because anything that shrinks the inode
1527 * has to run sync so by the time we're called here from inactive, the
1528 * inode size is permanently set to 0.
1530 * Calls from the truncate path always need to be sync unless we're
1531 * in a wsync filesystem and the file has already been unlinked.
1533 * The caller is responsible for correctly setting the sync parameter.
1534 * It gets too hard for us to guess here which path we're being called
1535 * out of just based on inode state.
1538 xfs_itruncate_finish(
1541 xfs_fsize_t new_size
,
1545 xfs_fsblock_t first_block
;
1546 xfs_fileoff_t first_unmap_block
;
1547 xfs_fileoff_t last_block
;
1548 xfs_filblks_t unmap_len
=0;
1553 xfs_bmap_free_t free_list
;
1556 ASSERT(ismrlocked(&ip
->i_iolock
, MR_UPDATE
) != 0);
1557 ASSERT(ismrlocked(&ip
->i_lock
, MR_UPDATE
) != 0);
1558 ASSERT((new_size
== 0) || (new_size
<= ip
->i_d
.di_size
));
1559 ASSERT(*tp
!= NULL
);
1560 ASSERT((*tp
)->t_flags
& XFS_TRANS_PERM_LOG_RES
);
1561 ASSERT(ip
->i_transp
== *tp
);
1562 ASSERT(ip
->i_itemp
!= NULL
);
1563 ASSERT(ip
->i_itemp
->ili_flags
& XFS_ILI_HOLD
);
1567 mp
= (ntp
)->t_mountp
;
1568 ASSERT(! XFS_NOT_DQATTACHED(mp
, ip
));
1571 * We only support truncating the entire attribute fork.
1573 if (fork
== XFS_ATTR_FORK
) {
1576 first_unmap_block
= XFS_B_TO_FSB(mp
, (xfs_ufsize_t
)new_size
);
1577 xfs_itrunc_trace(XFS_ITRUNC_FINISH1
, ip
, 0, new_size
, 0, 0);
1579 * The first thing we do is set the size to new_size permanently
1580 * on disk. This way we don't have to worry about anyone ever
1581 * being able to look at the data being freed even in the face
1582 * of a crash. What we're getting around here is the case where
1583 * we free a block, it is allocated to another file, it is written
1584 * to, and then we crash. If the new data gets written to the
1585 * file but the log buffers containing the free and reallocation
1586 * don't, then we'd end up with garbage in the blocks being freed.
1587 * As long as we make the new_size permanent before actually
1588 * freeing any blocks it doesn't matter if they get writtten to.
1590 * The callers must signal into us whether or not the size
1591 * setting here must be synchronous. There are a few cases
1592 * where it doesn't have to be synchronous. Those cases
1593 * occur if the file is unlinked and we know the unlink is
1594 * permanent or if the blocks being truncated are guaranteed
1595 * to be beyond the inode eof (regardless of the link count)
1596 * and the eof value is permanent. Both of these cases occur
1597 * only on wsync-mounted filesystems. In those cases, we're
1598 * guaranteed that no user will ever see the data in the blocks
1599 * that are being truncated so the truncate can run async.
1600 * In the free beyond eof case, the file may wind up with
1601 * more blocks allocated to it than it needs if we crash
1602 * and that won't get fixed until the next time the file
1603 * is re-opened and closed but that's ok as that shouldn't
1604 * be too many blocks.
1606 * However, we can't just make all wsync xactions run async
1607 * because there's one call out of the create path that needs
1608 * to run sync where it's truncating an existing file to size
1609 * 0 whose size is > 0.
1611 * It's probably possible to come up with a test in this
1612 * routine that would correctly distinguish all the above
1613 * cases from the values of the function parameters and the
1614 * inode state but for sanity's sake, I've decided to let the
1615 * layers above just tell us. It's simpler to correctly figure
1616 * out in the layer above exactly under what conditions we
1617 * can run async and I think it's easier for others read and
1618 * follow the logic in case something has to be changed.
1619 * cscope is your friend -- rcc.
1621 * The attribute fork is much simpler.
1623 * For the attribute fork we allow the caller to tell us whether
1624 * the unlink of the inode that led to this call is yet permanent
1625 * in the on disk log. If it is not and we will be freeing extents
1626 * in this inode then we make the first transaction synchronous
1627 * to make sure that the unlink is permanent by the time we free
1630 if (fork
== XFS_DATA_FORK
) {
1631 if (ip
->i_d
.di_nextents
> 0) {
1632 ip
->i_d
.di_size
= new_size
;
1633 xfs_trans_log_inode(ntp
, ip
, XFS_ILOG_CORE
);
1636 ASSERT(!(mp
->m_flags
& XFS_MOUNT_WSYNC
));
1637 if (ip
->i_d
.di_anextents
> 0)
1638 xfs_trans_set_sync(ntp
);
1640 ASSERT(fork
== XFS_DATA_FORK
||
1641 (fork
== XFS_ATTR_FORK
&&
1642 ((sync
&& !(mp
->m_flags
& XFS_MOUNT_WSYNC
)) ||
1643 (sync
== 0 && (mp
->m_flags
& XFS_MOUNT_WSYNC
)))));
1646 * Since it is possible for space to become allocated beyond
1647 * the end of the file (in a crash where the space is allocated
1648 * but the inode size is not yet updated), simply remove any
1649 * blocks which show up between the new EOF and the maximum
1650 * possible file size. If the first block to be removed is
1651 * beyond the maximum file size (ie it is the same as last_block),
1652 * then there is nothing to do.
1654 last_block
= XFS_B_TO_FSB(mp
, (xfs_ufsize_t
)XFS_MAXIOFFSET(mp
));
1655 ASSERT(first_unmap_block
<= last_block
);
1657 if (last_block
== first_unmap_block
) {
1660 unmap_len
= last_block
- first_unmap_block
+ 1;
1664 * Free up up to XFS_ITRUNC_MAX_EXTENTS. xfs_bunmapi()
1665 * will tell us whether it freed the entire range or
1666 * not. If this is a synchronous mount (wsync),
1667 * then we can tell bunmapi to keep all the
1668 * transactions asynchronous since the unlink
1669 * transaction that made this inode inactive has
1670 * already hit the disk. There's no danger of
1671 * the freed blocks being reused, there being a
1672 * crash, and the reused blocks suddenly reappearing
1673 * in this file with garbage in them once recovery
1676 XFS_BMAP_INIT(&free_list
, &first_block
);
1677 error
= XFS_BUNMAPI(mp
, ntp
, &ip
->i_iocore
,
1678 first_unmap_block
, unmap_len
,
1679 XFS_BMAPI_AFLAG(fork
) |
1680 (sync
? 0 : XFS_BMAPI_ASYNC
),
1681 XFS_ITRUNC_MAX_EXTENTS
,
1682 &first_block
, &free_list
,
1686 * If the bunmapi call encounters an error,
1687 * return to the caller where the transaction
1688 * can be properly aborted. We just need to
1689 * make sure we're not holding any resources
1690 * that we were not when we came in.
1692 xfs_bmap_cancel(&free_list
);
1697 * Duplicate the transaction that has the permanent
1698 * reservation and commit the old transaction.
1700 error
= xfs_bmap_finish(tp
, &free_list
, first_block
,
1705 * If the bmap finish call encounters an error,
1706 * return to the caller where the transaction
1707 * can be properly aborted. We just need to
1708 * make sure we're not holding any resources
1709 * that we were not when we came in.
1711 * Aborting from this point might lose some
1712 * blocks in the file system, but oh well.
1714 xfs_bmap_cancel(&free_list
);
1717 * If the passed in transaction committed
1718 * in xfs_bmap_finish(), then we want to
1719 * add the inode to this one before returning.
1720 * This keeps things simple for the higher
1721 * level code, because it always knows that
1722 * the inode is locked and held in the
1723 * transaction that returns to it whether
1724 * errors occur or not. We don't mark the
1725 * inode dirty so that this transaction can
1726 * be easily aborted if possible.
1728 xfs_trans_ijoin(ntp
, ip
,
1729 XFS_ILOCK_EXCL
| XFS_IOLOCK_EXCL
);
1730 xfs_trans_ihold(ntp
, ip
);
1737 * The first xact was committed,
1738 * so add the inode to the new one.
1739 * Mark it dirty so it will be logged
1740 * and moved forward in the log as
1741 * part of every commit.
1743 xfs_trans_ijoin(ntp
, ip
,
1744 XFS_ILOCK_EXCL
| XFS_IOLOCK_EXCL
);
1745 xfs_trans_ihold(ntp
, ip
);
1746 xfs_trans_log_inode(ntp
, ip
, XFS_ILOG_CORE
);
1748 ntp
= xfs_trans_dup(ntp
);
1749 (void) xfs_trans_commit(*tp
, 0, NULL
);
1751 error
= xfs_trans_reserve(ntp
, 0, XFS_ITRUNCATE_LOG_RES(mp
), 0,
1752 XFS_TRANS_PERM_LOG_RES
,
1753 XFS_ITRUNCATE_LOG_COUNT
);
1755 * Add the inode being truncated to the next chained
1758 xfs_trans_ijoin(ntp
, ip
, XFS_ILOCK_EXCL
| XFS_IOLOCK_EXCL
);
1759 xfs_trans_ihold(ntp
, ip
);
1764 * Only update the size in the case of the data fork, but
1765 * always re-log the inode so that our permanent transaction
1766 * can keep on rolling it forward in the log.
1768 if (fork
== XFS_DATA_FORK
) {
1769 xfs_isize_check(mp
, ip
, new_size
);
1770 ip
->i_d
.di_size
= new_size
;
1772 xfs_trans_log_inode(ntp
, ip
, XFS_ILOG_CORE
);
1773 ASSERT((new_size
!= 0) ||
1774 (fork
== XFS_ATTR_FORK
) ||
1775 (ip
->i_delayed_blks
== 0));
1776 ASSERT((new_size
!= 0) ||
1777 (fork
== XFS_ATTR_FORK
) ||
1778 (ip
->i_d
.di_nextents
== 0));
1779 xfs_itrunc_trace(XFS_ITRUNC_FINISH2
, ip
, 0, new_size
, 0, 0);
1787 * Do the first part of growing a file: zero any data in the last
1788 * block that is beyond the old EOF. We need to do this before
1789 * the inode is joined to the transaction to modify the i_size.
1790 * That way we can drop the inode lock and call into the buffer
1791 * cache to get the buffer mapping the EOF.
1796 xfs_fsize_t new_size
,
1801 ASSERT(ismrlocked(&(ip
->i_lock
), MR_UPDATE
) != 0);
1802 ASSERT(ismrlocked(&(ip
->i_iolock
), MR_UPDATE
) != 0);
1803 ASSERT(new_size
> ip
->i_d
.di_size
);
1806 * Zero any pages that may have been created by
1807 * xfs_write_file() beyond the end of the file
1808 * and any blocks between the old and new file sizes.
1810 error
= xfs_zero_eof(XFS_ITOV(ip
), &ip
->i_iocore
, new_size
,
1811 ip
->i_d
.di_size
, new_size
);
1818 * This routine is called to extend the size of a file.
1819 * The inode must have both the iolock and the ilock locked
1820 * for update and it must be a part of the current transaction.
1821 * The xfs_igrow_start() function must have been called previously.
1822 * If the change_flag is not zero, the inode change timestamp will
1829 xfs_fsize_t new_size
,
1832 ASSERT(ismrlocked(&(ip
->i_lock
), MR_UPDATE
) != 0);
1833 ASSERT(ismrlocked(&(ip
->i_iolock
), MR_UPDATE
) != 0);
1834 ASSERT(ip
->i_transp
== tp
);
1835 ASSERT(new_size
> ip
->i_d
.di_size
);
1838 * Update the file size. Update the inode change timestamp
1839 * if change_flag set.
1841 ip
->i_d
.di_size
= new_size
;
1843 xfs_ichgtime(ip
, XFS_ICHGTIME_CHG
);
1844 xfs_trans_log_inode(tp
, ip
, XFS_ILOG_CORE
);
1850 * This is called when the inode's link count goes to 0.
1851 * We place the on-disk inode on a list in the AGI. It
1852 * will be pulled from this list when the inode is freed.
1864 xfs_agnumber_t agno
;
1865 xfs_daddr_t agdaddr
;
1872 ASSERT(ip
->i_d
.di_nlink
== 0);
1873 ASSERT(ip
->i_d
.di_mode
!= 0);
1874 ASSERT(ip
->i_transp
== tp
);
1878 agno
= XFS_INO_TO_AGNO(mp
, ip
->i_ino
);
1879 agdaddr
= XFS_AG_DADDR(mp
, agno
, XFS_AGI_DADDR(mp
));
1882 * Get the agi buffer first. It ensures lock ordering
1885 error
= xfs_trans_read_buf(mp
, tp
, mp
->m_ddev_targp
, agdaddr
,
1886 XFS_FSS_TO_BB(mp
, 1), 0, &agibp
);
1891 * Validate the magic number of the agi block.
1893 agi
= XFS_BUF_TO_AGI(agibp
);
1895 be32_to_cpu(agi
->agi_magicnum
) == XFS_AGI_MAGIC
&&
1896 XFS_AGI_GOOD_VERSION(be32_to_cpu(agi
->agi_versionnum
));
1897 if (unlikely(XFS_TEST_ERROR(!agi_ok
, mp
, XFS_ERRTAG_IUNLINK
,
1898 XFS_RANDOM_IUNLINK
))) {
1899 XFS_CORRUPTION_ERROR("xfs_iunlink", XFS_ERRLEVEL_LOW
, mp
, agi
);
1900 xfs_trans_brelse(tp
, agibp
);
1901 return XFS_ERROR(EFSCORRUPTED
);
1904 * Get the index into the agi hash table for the
1905 * list this inode will go on.
1907 agino
= XFS_INO_TO_AGINO(mp
, ip
->i_ino
);
1909 bucket_index
= agino
% XFS_AGI_UNLINKED_BUCKETS
;
1910 ASSERT(agi
->agi_unlinked
[bucket_index
]);
1911 ASSERT(be32_to_cpu(agi
->agi_unlinked
[bucket_index
]) != agino
);
1913 if (be32_to_cpu(agi
->agi_unlinked
[bucket_index
]) != NULLAGINO
) {
1915 * There is already another inode in the bucket we need
1916 * to add ourselves to. Add us at the front of the list.
1917 * Here we put the head pointer into our next pointer,
1918 * and then we fall through to point the head at us.
1920 error
= xfs_itobp(mp
, tp
, ip
, &dip
, &ibp
, 0, 0);
1924 ASSERT(INT_GET(dip
->di_next_unlinked
, ARCH_CONVERT
) == NULLAGINO
);
1925 ASSERT(dip
->di_next_unlinked
);
1926 /* both on-disk, don't endian flip twice */
1927 dip
->di_next_unlinked
= agi
->agi_unlinked
[bucket_index
];
1928 offset
= ip
->i_boffset
+
1929 offsetof(xfs_dinode_t
, di_next_unlinked
);
1930 xfs_trans_inode_buf(tp
, ibp
);
1931 xfs_trans_log_buf(tp
, ibp
, offset
,
1932 (offset
+ sizeof(xfs_agino_t
) - 1));
1933 xfs_inobp_check(mp
, ibp
);
1937 * Point the bucket head pointer at the inode being inserted.
1940 agi
->agi_unlinked
[bucket_index
] = cpu_to_be32(agino
);
1941 offset
= offsetof(xfs_agi_t
, agi_unlinked
) +
1942 (sizeof(xfs_agino_t
) * bucket_index
);
1943 xfs_trans_log_buf(tp
, agibp
, offset
,
1944 (offset
+ sizeof(xfs_agino_t
) - 1));
1949 * Pull the on-disk inode from the AGI unlinked list.
1962 xfs_agnumber_t agno
;
1963 xfs_daddr_t agdaddr
;
1965 xfs_agino_t next_agino
;
1966 xfs_buf_t
*last_ibp
;
1967 xfs_dinode_t
*last_dip
= NULL
;
1969 int offset
, last_offset
= 0;
1974 * First pull the on-disk inode from the AGI unlinked list.
1978 agno
= XFS_INO_TO_AGNO(mp
, ip
->i_ino
);
1979 agdaddr
= XFS_AG_DADDR(mp
, agno
, XFS_AGI_DADDR(mp
));
1982 * Get the agi buffer first. It ensures lock ordering
1985 error
= xfs_trans_read_buf(mp
, tp
, mp
->m_ddev_targp
, agdaddr
,
1986 XFS_FSS_TO_BB(mp
, 1), 0, &agibp
);
1989 "xfs_iunlink_remove: xfs_trans_read_buf() returned an error %d on %s. Returning error.",
1990 error
, mp
->m_fsname
);
1994 * Validate the magic number of the agi block.
1996 agi
= XFS_BUF_TO_AGI(agibp
);
1998 be32_to_cpu(agi
->agi_magicnum
) == XFS_AGI_MAGIC
&&
1999 XFS_AGI_GOOD_VERSION(be32_to_cpu(agi
->agi_versionnum
));
2000 if (unlikely(XFS_TEST_ERROR(!agi_ok
, mp
, XFS_ERRTAG_IUNLINK_REMOVE
,
2001 XFS_RANDOM_IUNLINK_REMOVE
))) {
2002 XFS_CORRUPTION_ERROR("xfs_iunlink_remove", XFS_ERRLEVEL_LOW
,
2004 xfs_trans_brelse(tp
, agibp
);
2006 "xfs_iunlink_remove: XFS_TEST_ERROR() returned an error on %s. Returning EFSCORRUPTED.",
2008 return XFS_ERROR(EFSCORRUPTED
);
2011 * Get the index into the agi hash table for the
2012 * list this inode will go on.
2014 agino
= XFS_INO_TO_AGINO(mp
, ip
->i_ino
);
2016 bucket_index
= agino
% XFS_AGI_UNLINKED_BUCKETS
;
2017 ASSERT(be32_to_cpu(agi
->agi_unlinked
[bucket_index
]) != NULLAGINO
);
2018 ASSERT(agi
->agi_unlinked
[bucket_index
]);
2020 if (be32_to_cpu(agi
->agi_unlinked
[bucket_index
]) == agino
) {
2022 * We're at the head of the list. Get the inode's
2023 * on-disk buffer to see if there is anyone after us
2024 * on the list. Only modify our next pointer if it
2025 * is not already NULLAGINO. This saves us the overhead
2026 * of dealing with the buffer when there is no need to
2029 error
= xfs_itobp(mp
, tp
, ip
, &dip
, &ibp
, 0, 0);
2032 "xfs_iunlink_remove: xfs_itobp() returned an error %d on %s. Returning error.",
2033 error
, mp
->m_fsname
);
2036 next_agino
= INT_GET(dip
->di_next_unlinked
, ARCH_CONVERT
);
2037 ASSERT(next_agino
!= 0);
2038 if (next_agino
!= NULLAGINO
) {
2039 INT_SET(dip
->di_next_unlinked
, ARCH_CONVERT
, NULLAGINO
);
2040 offset
= ip
->i_boffset
+
2041 offsetof(xfs_dinode_t
, di_next_unlinked
);
2042 xfs_trans_inode_buf(tp
, ibp
);
2043 xfs_trans_log_buf(tp
, ibp
, offset
,
2044 (offset
+ sizeof(xfs_agino_t
) - 1));
2045 xfs_inobp_check(mp
, ibp
);
2047 xfs_trans_brelse(tp
, ibp
);
2050 * Point the bucket head pointer at the next inode.
2052 ASSERT(next_agino
!= 0);
2053 ASSERT(next_agino
!= agino
);
2054 agi
->agi_unlinked
[bucket_index
] = cpu_to_be32(next_agino
);
2055 offset
= offsetof(xfs_agi_t
, agi_unlinked
) +
2056 (sizeof(xfs_agino_t
) * bucket_index
);
2057 xfs_trans_log_buf(tp
, agibp
, offset
,
2058 (offset
+ sizeof(xfs_agino_t
) - 1));
2061 * We need to search the list for the inode being freed.
2063 next_agino
= be32_to_cpu(agi
->agi_unlinked
[bucket_index
]);
2065 while (next_agino
!= agino
) {
2067 * If the last inode wasn't the one pointing to
2068 * us, then release its buffer since we're not
2069 * going to do anything with it.
2071 if (last_ibp
!= NULL
) {
2072 xfs_trans_brelse(tp
, last_ibp
);
2074 next_ino
= XFS_AGINO_TO_INO(mp
, agno
, next_agino
);
2075 error
= xfs_inotobp(mp
, tp
, next_ino
, &last_dip
,
2076 &last_ibp
, &last_offset
);
2079 "xfs_iunlink_remove: xfs_inotobp() returned an error %d on %s. Returning error.",
2080 error
, mp
->m_fsname
);
2083 next_agino
= INT_GET(last_dip
->di_next_unlinked
, ARCH_CONVERT
);
2084 ASSERT(next_agino
!= NULLAGINO
);
2085 ASSERT(next_agino
!= 0);
2088 * Now last_ibp points to the buffer previous to us on
2089 * the unlinked list. Pull us from the list.
2091 error
= xfs_itobp(mp
, tp
, ip
, &dip
, &ibp
, 0, 0);
2094 "xfs_iunlink_remove: xfs_itobp() returned an error %d on %s. Returning error.",
2095 error
, mp
->m_fsname
);
2098 next_agino
= INT_GET(dip
->di_next_unlinked
, ARCH_CONVERT
);
2099 ASSERT(next_agino
!= 0);
2100 ASSERT(next_agino
!= agino
);
2101 if (next_agino
!= NULLAGINO
) {
2102 INT_SET(dip
->di_next_unlinked
, ARCH_CONVERT
, NULLAGINO
);
2103 offset
= ip
->i_boffset
+
2104 offsetof(xfs_dinode_t
, di_next_unlinked
);
2105 xfs_trans_inode_buf(tp
, ibp
);
2106 xfs_trans_log_buf(tp
, ibp
, offset
,
2107 (offset
+ sizeof(xfs_agino_t
) - 1));
2108 xfs_inobp_check(mp
, ibp
);
2110 xfs_trans_brelse(tp
, ibp
);
2113 * Point the previous inode on the list to the next inode.
2115 INT_SET(last_dip
->di_next_unlinked
, ARCH_CONVERT
, next_agino
);
2116 ASSERT(next_agino
!= 0);
2117 offset
= last_offset
+ offsetof(xfs_dinode_t
, di_next_unlinked
);
2118 xfs_trans_inode_buf(tp
, last_ibp
);
2119 xfs_trans_log_buf(tp
, last_ibp
, offset
,
2120 (offset
+ sizeof(xfs_agino_t
) - 1));
2121 xfs_inobp_check(mp
, last_ibp
);
2126 static __inline__
int xfs_inode_clean(xfs_inode_t
*ip
)
2128 return (((ip
->i_itemp
== NULL
) ||
2129 !(ip
->i_itemp
->ili_format
.ilf_fields
& XFS_ILOG_ALL
)) &&
2130 (ip
->i_update_core
== 0));
2135 xfs_inode_t
*free_ip
,
2139 xfs_mount_t
*mp
= free_ip
->i_mount
;
2140 int blks_per_cluster
;
2143 int i
, j
, found
, pre_flushed
;
2147 xfs_inode_t
*ip
, **ip_found
;
2148 xfs_inode_log_item_t
*iip
;
2149 xfs_log_item_t
*lip
;
2152 if (mp
->m_sb
.sb_blocksize
>= XFS_INODE_CLUSTER_SIZE(mp
)) {
2153 blks_per_cluster
= 1;
2154 ninodes
= mp
->m_sb
.sb_inopblock
;
2155 nbufs
= XFS_IALLOC_BLOCKS(mp
);
2157 blks_per_cluster
= XFS_INODE_CLUSTER_SIZE(mp
) /
2158 mp
->m_sb
.sb_blocksize
;
2159 ninodes
= blks_per_cluster
* mp
->m_sb
.sb_inopblock
;
2160 nbufs
= XFS_IALLOC_BLOCKS(mp
) / blks_per_cluster
;
2163 ip_found
= kmem_alloc(ninodes
* sizeof(xfs_inode_t
*), KM_NOFS
);
2165 for (j
= 0; j
< nbufs
; j
++, inum
+= ninodes
) {
2166 blkno
= XFS_AGB_TO_DADDR(mp
, XFS_INO_TO_AGNO(mp
, inum
),
2167 XFS_INO_TO_AGBNO(mp
, inum
));
2171 * Look for each inode in memory and attempt to lock it,
2172 * we can be racing with flush and tail pushing here.
2173 * any inode we get the locks on, add to an array of
2174 * inode items to process later.
2176 * The get the buffer lock, we could beat a flush
2177 * or tail pushing thread to the lock here, in which
2178 * case they will go looking for the inode buffer
2179 * and fail, we need some other form of interlock
2183 for (i
= 0; i
< ninodes
; i
++) {
2184 ih
= XFS_IHASH(mp
, inum
+ i
);
2185 read_lock(&ih
->ih_lock
);
2186 for (ip
= ih
->ih_next
; ip
!= NULL
; ip
= ip
->i_next
) {
2187 if (ip
->i_ino
== inum
+ i
)
2191 /* Inode not in memory or we found it already,
2194 if (!ip
|| (ip
->i_flags
& XFS_ISTALE
)) {
2195 read_unlock(&ih
->ih_lock
);
2199 if (xfs_inode_clean(ip
)) {
2200 read_unlock(&ih
->ih_lock
);
2204 /* If we can get the locks then add it to the
2205 * list, otherwise by the time we get the bp lock
2206 * below it will already be attached to the
2210 /* This inode will already be locked - by us, lets
2214 if (ip
== free_ip
) {
2215 if (xfs_iflock_nowait(ip
)) {
2216 ip
->i_flags
|= XFS_ISTALE
;
2218 if (xfs_inode_clean(ip
)) {
2221 ip_found
[found
++] = ip
;
2224 read_unlock(&ih
->ih_lock
);
2228 if (xfs_ilock_nowait(ip
, XFS_ILOCK_EXCL
)) {
2229 if (xfs_iflock_nowait(ip
)) {
2230 ip
->i_flags
|= XFS_ISTALE
;
2232 if (xfs_inode_clean(ip
)) {
2234 xfs_iunlock(ip
, XFS_ILOCK_EXCL
);
2236 ip_found
[found
++] = ip
;
2239 xfs_iunlock(ip
, XFS_ILOCK_EXCL
);
2243 read_unlock(&ih
->ih_lock
);
2246 bp
= xfs_trans_get_buf(tp
, mp
->m_ddev_targp
, blkno
,
2247 mp
->m_bsize
* blks_per_cluster
,
2251 lip
= XFS_BUF_FSPRIVATE(bp
, xfs_log_item_t
*);
2253 if (lip
->li_type
== XFS_LI_INODE
) {
2254 iip
= (xfs_inode_log_item_t
*)lip
;
2255 ASSERT(iip
->ili_logged
== 1);
2256 lip
->li_cb
= (void(*)(xfs_buf_t
*,xfs_log_item_t
*)) xfs_istale_done
;
2258 iip
->ili_flush_lsn
= iip
->ili_item
.li_lsn
;
2260 iip
->ili_inode
->i_flags
|= XFS_ISTALE
;
2263 lip
= lip
->li_bio_list
;
2266 for (i
= 0; i
< found
; i
++) {
2271 ip
->i_update_core
= 0;
2273 xfs_iunlock(ip
, XFS_ILOCK_EXCL
);
2277 iip
->ili_last_fields
= iip
->ili_format
.ilf_fields
;
2278 iip
->ili_format
.ilf_fields
= 0;
2279 iip
->ili_logged
= 1;
2281 iip
->ili_flush_lsn
= iip
->ili_item
.li_lsn
;
2284 xfs_buf_attach_iodone(bp
,
2285 (void(*)(xfs_buf_t
*,xfs_log_item_t
*))
2286 xfs_istale_done
, (xfs_log_item_t
*)iip
);
2287 if (ip
!= free_ip
) {
2288 xfs_iunlock(ip
, XFS_ILOCK_EXCL
);
2292 if (found
|| pre_flushed
)
2293 xfs_trans_stale_inode_buf(tp
, bp
);
2294 xfs_trans_binval(tp
, bp
);
2297 kmem_free(ip_found
, ninodes
* sizeof(xfs_inode_t
*));
2301 * This is called to return an inode to the inode free list.
2302 * The inode should already be truncated to 0 length and have
2303 * no pages associated with it. This routine also assumes that
2304 * the inode is already a part of the transaction.
2306 * The on-disk copy of the inode will have been added to the list
2307 * of unlinked inodes in the AGI. We need to remove the inode from
2308 * that list atomically with respect to freeing it here.
2314 xfs_bmap_free_t
*flist
)
2318 xfs_ino_t first_ino
;
2320 ASSERT(ismrlocked(&ip
->i_lock
, MR_UPDATE
));
2321 ASSERT(ip
->i_transp
== tp
);
2322 ASSERT(ip
->i_d
.di_nlink
== 0);
2323 ASSERT(ip
->i_d
.di_nextents
== 0);
2324 ASSERT(ip
->i_d
.di_anextents
== 0);
2325 ASSERT((ip
->i_d
.di_size
== 0) ||
2326 ((ip
->i_d
.di_mode
& S_IFMT
) != S_IFREG
));
2327 ASSERT(ip
->i_d
.di_nblocks
== 0);
2330 * Pull the on-disk inode from the AGI unlinked list.
2332 error
= xfs_iunlink_remove(tp
, ip
);
2337 error
= xfs_difree(tp
, ip
->i_ino
, flist
, &delete, &first_ino
);
2341 ip
->i_d
.di_mode
= 0; /* mark incore inode as free */
2342 ip
->i_d
.di_flags
= 0;
2343 ip
->i_d
.di_dmevmask
= 0;
2344 ip
->i_d
.di_forkoff
= 0; /* mark the attr fork not in use */
2345 ip
->i_df
.if_ext_max
=
2346 XFS_IFORK_DSIZE(ip
) / (uint
)sizeof(xfs_bmbt_rec_t
);
2347 ip
->i_d
.di_format
= XFS_DINODE_FMT_EXTENTS
;
2348 ip
->i_d
.di_aformat
= XFS_DINODE_FMT_EXTENTS
;
2350 * Bump the generation count so no one will be confused
2351 * by reincarnations of this inode.
2354 xfs_trans_log_inode(tp
, ip
, XFS_ILOG_CORE
);
2357 xfs_ifree_cluster(ip
, tp
, first_ino
);
2364 * Reallocate the space for if_broot based on the number of records
2365 * being added or deleted as indicated in rec_diff. Move the records
2366 * and pointers in if_broot to fit the new size. When shrinking this
2367 * will eliminate holes between the records and pointers created by
2368 * the caller. When growing this will create holes to be filled in
2371 * The caller must not request to add more records than would fit in
2372 * the on-disk inode root. If the if_broot is currently NULL, then
2373 * if we adding records one will be allocated. The caller must also
2374 * not request that the number of records go below zero, although
2375 * it can go to zero.
2377 * ip -- the inode whose if_broot area is changing
2378 * ext_diff -- the change in the number of records, positive or negative,
2379 * requested for the if_broot array.
2389 xfs_bmbt_block_t
*new_broot
;
2396 * Handle the degenerate case quietly.
2398 if (rec_diff
== 0) {
2402 ifp
= XFS_IFORK_PTR(ip
, whichfork
);
2405 * If there wasn't any memory allocated before, just
2406 * allocate it now and get out.
2408 if (ifp
->if_broot_bytes
== 0) {
2409 new_size
= (size_t)XFS_BMAP_BROOT_SPACE_CALC(rec_diff
);
2410 ifp
->if_broot
= (xfs_bmbt_block_t
*)kmem_alloc(new_size
,
2412 ifp
->if_broot_bytes
= (int)new_size
;
2417 * If there is already an existing if_broot, then we need
2418 * to realloc() it and shift the pointers to their new
2419 * location. The records don't change location because
2420 * they are kept butted up against the btree block header.
2422 cur_max
= XFS_BMAP_BROOT_MAXRECS(ifp
->if_broot_bytes
);
2423 new_max
= cur_max
+ rec_diff
;
2424 new_size
= (size_t)XFS_BMAP_BROOT_SPACE_CALC(new_max
);
2425 ifp
->if_broot
= (xfs_bmbt_block_t
*)
2426 kmem_realloc(ifp
->if_broot
,
2428 (size_t)XFS_BMAP_BROOT_SPACE_CALC(cur_max
), /* old size */
2430 op
= (char *)XFS_BMAP_BROOT_PTR_ADDR(ifp
->if_broot
, 1,
2431 ifp
->if_broot_bytes
);
2432 np
= (char *)XFS_BMAP_BROOT_PTR_ADDR(ifp
->if_broot
, 1,
2434 ifp
->if_broot_bytes
= (int)new_size
;
2435 ASSERT(ifp
->if_broot_bytes
<=
2436 XFS_IFORK_SIZE(ip
, whichfork
) + XFS_BROOT_SIZE_ADJ
);
2437 memmove(np
, op
, cur_max
* (uint
)sizeof(xfs_dfsbno_t
));
2442 * rec_diff is less than 0. In this case, we are shrinking the
2443 * if_broot buffer. It must already exist. If we go to zero
2444 * records, just get rid of the root and clear the status bit.
2446 ASSERT((ifp
->if_broot
!= NULL
) && (ifp
->if_broot_bytes
> 0));
2447 cur_max
= XFS_BMAP_BROOT_MAXRECS(ifp
->if_broot_bytes
);
2448 new_max
= cur_max
+ rec_diff
;
2449 ASSERT(new_max
>= 0);
2451 new_size
= (size_t)XFS_BMAP_BROOT_SPACE_CALC(new_max
);
2455 new_broot
= (xfs_bmbt_block_t
*)kmem_alloc(new_size
, KM_SLEEP
);
2457 * First copy over the btree block header.
2459 memcpy(new_broot
, ifp
->if_broot
, sizeof(xfs_bmbt_block_t
));
2462 ifp
->if_flags
&= ~XFS_IFBROOT
;
2466 * Only copy the records and pointers if there are any.
2470 * First copy the records.
2472 op
= (char *)XFS_BMAP_BROOT_REC_ADDR(ifp
->if_broot
, 1,
2473 ifp
->if_broot_bytes
);
2474 np
= (char *)XFS_BMAP_BROOT_REC_ADDR(new_broot
, 1,
2476 memcpy(np
, op
, new_max
* (uint
)sizeof(xfs_bmbt_rec_t
));
2479 * Then copy the pointers.
2481 op
= (char *)XFS_BMAP_BROOT_PTR_ADDR(ifp
->if_broot
, 1,
2482 ifp
->if_broot_bytes
);
2483 np
= (char *)XFS_BMAP_BROOT_PTR_ADDR(new_broot
, 1,
2485 memcpy(np
, op
, new_max
* (uint
)sizeof(xfs_dfsbno_t
));
2487 kmem_free(ifp
->if_broot
, ifp
->if_broot_bytes
);
2488 ifp
->if_broot
= new_broot
;
2489 ifp
->if_broot_bytes
= (int)new_size
;
2490 ASSERT(ifp
->if_broot_bytes
<=
2491 XFS_IFORK_SIZE(ip
, whichfork
) + XFS_BROOT_SIZE_ADJ
);
2497 * This is called when the amount of space needed for if_data
2498 * is increased or decreased. The change in size is indicated by
2499 * the number of bytes that need to be added or deleted in the
2500 * byte_diff parameter.
2502 * If the amount of space needed has decreased below the size of the
2503 * inline buffer, then switch to using the inline buffer. Otherwise,
2504 * use kmem_realloc() or kmem_alloc() to adjust the size of the buffer
2505 * to what is needed.
2507 * ip -- the inode whose if_data area is changing
2508 * byte_diff -- the change in the number of bytes, positive or negative,
2509 * requested for the if_data array.
2521 if (byte_diff
== 0) {
2525 ifp
= XFS_IFORK_PTR(ip
, whichfork
);
2526 new_size
= (int)ifp
->if_bytes
+ byte_diff
;
2527 ASSERT(new_size
>= 0);
2529 if (new_size
== 0) {
2530 if (ifp
->if_u1
.if_data
!= ifp
->if_u2
.if_inline_data
) {
2531 kmem_free(ifp
->if_u1
.if_data
, ifp
->if_real_bytes
);
2533 ifp
->if_u1
.if_data
= NULL
;
2535 } else if (new_size
<= sizeof(ifp
->if_u2
.if_inline_data
)) {
2537 * If the valid extents/data can fit in if_inline_ext/data,
2538 * copy them from the malloc'd vector and free it.
2540 if (ifp
->if_u1
.if_data
== NULL
) {
2541 ifp
->if_u1
.if_data
= ifp
->if_u2
.if_inline_data
;
2542 } else if (ifp
->if_u1
.if_data
!= ifp
->if_u2
.if_inline_data
) {
2543 ASSERT(ifp
->if_real_bytes
!= 0);
2544 memcpy(ifp
->if_u2
.if_inline_data
, ifp
->if_u1
.if_data
,
2546 kmem_free(ifp
->if_u1
.if_data
, ifp
->if_real_bytes
);
2547 ifp
->if_u1
.if_data
= ifp
->if_u2
.if_inline_data
;
2552 * Stuck with malloc/realloc.
2553 * For inline data, the underlying buffer must be
2554 * a multiple of 4 bytes in size so that it can be
2555 * logged and stay on word boundaries. We enforce
2558 real_size
= roundup(new_size
, 4);
2559 if (ifp
->if_u1
.if_data
== NULL
) {
2560 ASSERT(ifp
->if_real_bytes
== 0);
2561 ifp
->if_u1
.if_data
= kmem_alloc(real_size
, KM_SLEEP
);
2562 } else if (ifp
->if_u1
.if_data
!= ifp
->if_u2
.if_inline_data
) {
2564 * Only do the realloc if the underlying size
2565 * is really changing.
2567 if (ifp
->if_real_bytes
!= real_size
) {
2568 ifp
->if_u1
.if_data
=
2569 kmem_realloc(ifp
->if_u1
.if_data
,
2575 ASSERT(ifp
->if_real_bytes
== 0);
2576 ifp
->if_u1
.if_data
= kmem_alloc(real_size
, KM_SLEEP
);
2577 memcpy(ifp
->if_u1
.if_data
, ifp
->if_u2
.if_inline_data
,
2581 ifp
->if_real_bytes
= real_size
;
2582 ifp
->if_bytes
= new_size
;
2583 ASSERT(ifp
->if_bytes
<= XFS_IFORK_SIZE(ip
, whichfork
));
2590 * Map inode to disk block and offset.
2592 * mp -- the mount point structure for the current file system
2593 * tp -- the current transaction
2594 * ino -- the inode number of the inode to be located
2595 * imap -- this structure is filled in with the information necessary
2596 * to retrieve the given inode from disk
2597 * flags -- flags to pass to xfs_dilocate indicating whether or not
2598 * lookups in the inode btree were OK or not
2608 xfs_fsblock_t fsbno
;
2613 fsbno
= imap
->im_blkno
?
2614 XFS_DADDR_TO_FSB(mp
, imap
->im_blkno
) : NULLFSBLOCK
;
2615 error
= xfs_dilocate(mp
, tp
, ino
, &fsbno
, &len
, &off
, flags
);
2619 imap
->im_blkno
= XFS_FSB_TO_DADDR(mp
, fsbno
);
2620 imap
->im_len
= XFS_FSB_TO_BB(mp
, len
);
2621 imap
->im_agblkno
= XFS_FSB_TO_AGBNO(mp
, fsbno
);
2622 imap
->im_ioffset
= (ushort
)off
;
2623 imap
->im_boffset
= (ushort
)(off
<< mp
->m_sb
.sb_inodelog
);
2634 ifp
= XFS_IFORK_PTR(ip
, whichfork
);
2635 if (ifp
->if_broot
!= NULL
) {
2636 kmem_free(ifp
->if_broot
, ifp
->if_broot_bytes
);
2637 ifp
->if_broot
= NULL
;
2641 * If the format is local, then we can't have an extents
2642 * array so just look for an inline data array. If we're
2643 * not local then we may or may not have an extents list,
2644 * so check and free it up if we do.
2646 if (XFS_IFORK_FORMAT(ip
, whichfork
) == XFS_DINODE_FMT_LOCAL
) {
2647 if ((ifp
->if_u1
.if_data
!= ifp
->if_u2
.if_inline_data
) &&
2648 (ifp
->if_u1
.if_data
!= NULL
)) {
2649 ASSERT(ifp
->if_real_bytes
!= 0);
2650 kmem_free(ifp
->if_u1
.if_data
, ifp
->if_real_bytes
);
2651 ifp
->if_u1
.if_data
= NULL
;
2652 ifp
->if_real_bytes
= 0;
2654 } else if ((ifp
->if_flags
& XFS_IFEXTENTS
) &&
2655 ((ifp
->if_flags
& XFS_IFEXTIREC
) ||
2656 ((ifp
->if_u1
.if_extents
!= NULL
) &&
2657 (ifp
->if_u1
.if_extents
!= ifp
->if_u2
.if_inline_ext
)))) {
2658 ASSERT(ifp
->if_real_bytes
!= 0);
2659 xfs_iext_destroy(ifp
);
2661 ASSERT(ifp
->if_u1
.if_extents
== NULL
||
2662 ifp
->if_u1
.if_extents
== ifp
->if_u2
.if_inline_ext
);
2663 ASSERT(ifp
->if_real_bytes
== 0);
2664 if (whichfork
== XFS_ATTR_FORK
) {
2665 kmem_zone_free(xfs_ifork_zone
, ip
->i_afp
);
2671 * This is called free all the memory associated with an inode.
2672 * It must free the inode itself and any buffers allocated for
2673 * if_extents/if_data and if_broot. It must also free the lock
2674 * associated with the inode.
2681 switch (ip
->i_d
.di_mode
& S_IFMT
) {
2685 xfs_idestroy_fork(ip
, XFS_DATA_FORK
);
2689 xfs_idestroy_fork(ip
, XFS_ATTR_FORK
);
2690 mrfree(&ip
->i_lock
);
2691 mrfree(&ip
->i_iolock
);
2692 freesema(&ip
->i_flock
);
2693 #ifdef XFS_BMAP_TRACE
2694 ktrace_free(ip
->i_xtrace
);
2696 #ifdef XFS_BMBT_TRACE
2697 ktrace_free(ip
->i_btrace
);
2700 ktrace_free(ip
->i_rwtrace
);
2702 #ifdef XFS_ILOCK_TRACE
2703 ktrace_free(ip
->i_lock_trace
);
2705 #ifdef XFS_DIR2_TRACE
2706 ktrace_free(ip
->i_dir_trace
);
2709 /* XXXdpd should be able to assert this but shutdown
2710 * is leaving the AIL behind. */
2711 ASSERT(((ip
->i_itemp
->ili_item
.li_flags
& XFS_LI_IN_AIL
) == 0) ||
2712 XFS_FORCED_SHUTDOWN(ip
->i_mount
));
2713 xfs_inode_item_destroy(ip
);
2715 kmem_zone_free(xfs_inode_zone
, ip
);
2720 * Increment the pin count of the given buffer.
2721 * This value is protected by ipinlock spinlock in the mount structure.
2727 ASSERT(ismrlocked(&ip
->i_lock
, MR_UPDATE
));
2729 atomic_inc(&ip
->i_pincount
);
2733 * Decrement the pin count of the given inode, and wake up
2734 * anyone in xfs_iwait_unpin() if the count goes to 0. The
2735 * inode must have been previously pinned with a call to xfs_ipin().
2741 ASSERT(atomic_read(&ip
->i_pincount
) > 0);
2743 if (atomic_dec_and_test(&ip
->i_pincount
)) {
2745 * If the inode is currently being reclaimed, the
2746 * linux inode _and_ the xfs vnode may have been
2747 * freed so we cannot reference either of them safely.
2748 * Hence we should not try to do anything to them
2749 * if the xfs inode is currently in the reclaim
2752 * However, we still need to issue the unpin wakeup
2753 * call as the inode reclaim may be blocked waiting for
2754 * the inode to become unpinned.
2756 if (!(ip
->i_flags
& (XFS_IRECLAIM
|XFS_IRECLAIMABLE
))) {
2757 bhv_vnode_t
*vp
= XFS_ITOV_NULL(ip
);
2759 /* make sync come back and flush this inode */
2761 struct inode
*inode
= vn_to_inode(vp
);
2763 if (!(inode
->i_state
&
2764 (I_NEW
|I_FREEING
|I_CLEAR
)))
2765 mark_inode_dirty_sync(inode
);
2768 wake_up(&ip
->i_ipin_wait
);
2773 * This is called to wait for the given inode to be unpinned.
2774 * It will sleep until this happens. The caller must have the
2775 * inode locked in at least shared mode so that the buffer cannot
2776 * be subsequently pinned once someone is waiting for it to be
2783 xfs_inode_log_item_t
*iip
;
2786 ASSERT(ismrlocked(&ip
->i_lock
, MR_UPDATE
| MR_ACCESS
));
2788 if (atomic_read(&ip
->i_pincount
) == 0) {
2793 if (iip
&& iip
->ili_last_lsn
) {
2794 lsn
= iip
->ili_last_lsn
;
2800 * Give the log a push so we don't wait here too long.
2802 xfs_log_force(ip
->i_mount
, lsn
, XFS_LOG_FORCE
);
2804 wait_event(ip
->i_ipin_wait
, (atomic_read(&ip
->i_pincount
) == 0));
2809 * xfs_iextents_copy()
2811 * This is called to copy the REAL extents (as opposed to the delayed
2812 * allocation extents) from the inode into the given buffer. It
2813 * returns the number of bytes copied into the buffer.
2815 * If there are no delayed allocation extents, then we can just
2816 * memcpy() the extents into the buffer. Otherwise, we need to
2817 * examine each extent in turn and skip those which are delayed.
2822 xfs_bmbt_rec_t
*buffer
,
2826 xfs_bmbt_rec_t
*dest_ep
;
2828 #ifdef XFS_BMAP_TRACE
2829 static char fname
[] = "xfs_iextents_copy";
2834 xfs_fsblock_t start_block
;
2836 ifp
= XFS_IFORK_PTR(ip
, whichfork
);
2837 ASSERT(ismrlocked(&ip
->i_lock
, MR_UPDATE
|MR_ACCESS
));
2838 ASSERT(ifp
->if_bytes
> 0);
2840 nrecs
= ifp
->if_bytes
/ (uint
)sizeof(xfs_bmbt_rec_t
);
2841 xfs_bmap_trace_exlist(fname
, ip
, nrecs
, whichfork
);
2845 * There are some delayed allocation extents in the
2846 * inode, so copy the extents one at a time and skip
2847 * the delayed ones. There must be at least one
2848 * non-delayed extent.
2852 for (i
= 0; i
< nrecs
; i
++) {
2853 ep
= xfs_iext_get_ext(ifp
, i
);
2854 start_block
= xfs_bmbt_get_startblock(ep
);
2855 if (ISNULLSTARTBLOCK(start_block
)) {
2857 * It's a delayed allocation extent, so skip it.
2862 /* Translate to on disk format */
2863 put_unaligned(INT_GET(ep
->l0
, ARCH_CONVERT
),
2864 (__uint64_t
*)&dest_ep
->l0
);
2865 put_unaligned(INT_GET(ep
->l1
, ARCH_CONVERT
),
2866 (__uint64_t
*)&dest_ep
->l1
);
2870 ASSERT(copied
!= 0);
2871 xfs_validate_extents(ifp
, copied
, 1, XFS_EXTFMT_INODE(ip
));
2873 return (copied
* (uint
)sizeof(xfs_bmbt_rec_t
));
2877 * Each of the following cases stores data into the same region
2878 * of the on-disk inode, so only one of them can be valid at
2879 * any given time. While it is possible to have conflicting formats
2880 * and log flags, e.g. having XFS_ILOG_?DATA set when the fork is
2881 * in EXTENTS format, this can only happen when the fork has
2882 * changed formats after being modified but before being flushed.
2883 * In these cases, the format always takes precedence, because the
2884 * format indicates the current state of the fork.
2891 xfs_inode_log_item_t
*iip
,
2898 #ifdef XFS_TRANS_DEBUG
2901 static const short brootflag
[2] =
2902 { XFS_ILOG_DBROOT
, XFS_ILOG_ABROOT
};
2903 static const short dataflag
[2] =
2904 { XFS_ILOG_DDATA
, XFS_ILOG_ADATA
};
2905 static const short extflag
[2] =
2906 { XFS_ILOG_DEXT
, XFS_ILOG_AEXT
};
2910 ifp
= XFS_IFORK_PTR(ip
, whichfork
);
2912 * This can happen if we gave up in iformat in an error path,
2913 * for the attribute fork.
2916 ASSERT(whichfork
== XFS_ATTR_FORK
);
2919 cp
= XFS_DFORK_PTR(dip
, whichfork
);
2921 switch (XFS_IFORK_FORMAT(ip
, whichfork
)) {
2922 case XFS_DINODE_FMT_LOCAL
:
2923 if ((iip
->ili_format
.ilf_fields
& dataflag
[whichfork
]) &&
2924 (ifp
->if_bytes
> 0)) {
2925 ASSERT(ifp
->if_u1
.if_data
!= NULL
);
2926 ASSERT(ifp
->if_bytes
<= XFS_IFORK_SIZE(ip
, whichfork
));
2927 memcpy(cp
, ifp
->if_u1
.if_data
, ifp
->if_bytes
);
2931 case XFS_DINODE_FMT_EXTENTS
:
2932 ASSERT((ifp
->if_flags
& XFS_IFEXTENTS
) ||
2933 !(iip
->ili_format
.ilf_fields
& extflag
[whichfork
]));
2934 ASSERT((xfs_iext_get_ext(ifp
, 0) != NULL
) ||
2935 (ifp
->if_bytes
== 0));
2936 ASSERT((xfs_iext_get_ext(ifp
, 0) == NULL
) ||
2937 (ifp
->if_bytes
> 0));
2938 if ((iip
->ili_format
.ilf_fields
& extflag
[whichfork
]) &&
2939 (ifp
->if_bytes
> 0)) {
2940 ASSERT(XFS_IFORK_NEXTENTS(ip
, whichfork
) > 0);
2941 (void)xfs_iextents_copy(ip
, (xfs_bmbt_rec_t
*)cp
,
2946 case XFS_DINODE_FMT_BTREE
:
2947 if ((iip
->ili_format
.ilf_fields
& brootflag
[whichfork
]) &&
2948 (ifp
->if_broot_bytes
> 0)) {
2949 ASSERT(ifp
->if_broot
!= NULL
);
2950 ASSERT(ifp
->if_broot_bytes
<=
2951 (XFS_IFORK_SIZE(ip
, whichfork
) +
2952 XFS_BROOT_SIZE_ADJ
));
2953 xfs_bmbt_to_bmdr(ifp
->if_broot
, ifp
->if_broot_bytes
,
2954 (xfs_bmdr_block_t
*)cp
,
2955 XFS_DFORK_SIZE(dip
, mp
, whichfork
));
2959 case XFS_DINODE_FMT_DEV
:
2960 if (iip
->ili_format
.ilf_fields
& XFS_ILOG_DEV
) {
2961 ASSERT(whichfork
== XFS_DATA_FORK
);
2962 INT_SET(dip
->di_u
.di_dev
, ARCH_CONVERT
, ip
->i_df
.if_u2
.if_rdev
);
2966 case XFS_DINODE_FMT_UUID
:
2967 if (iip
->ili_format
.ilf_fields
& XFS_ILOG_UUID
) {
2968 ASSERT(whichfork
== XFS_DATA_FORK
);
2969 memcpy(&dip
->di_u
.di_muuid
, &ip
->i_df
.if_u2
.if_uuid
,
2983 * xfs_iflush() will write a modified inode's changes out to the
2984 * inode's on disk home. The caller must have the inode lock held
2985 * in at least shared mode and the inode flush semaphore must be
2986 * held as well. The inode lock will still be held upon return from
2987 * the call and the caller is free to unlock it.
2988 * The inode flush lock will be unlocked when the inode reaches the disk.
2989 * The flags indicate how the inode's buffer should be written out.
2996 xfs_inode_log_item_t
*iip
;
3004 int clcount
; /* count of inodes clustered */
3006 enum { INT_DELWRI
= (1 << 0), INT_ASYNC
= (1 << 1) };
3009 XFS_STATS_INC(xs_iflush_count
);
3011 ASSERT(ismrlocked(&ip
->i_lock
, MR_UPDATE
|MR_ACCESS
));
3012 ASSERT(issemalocked(&(ip
->i_flock
)));
3013 ASSERT(ip
->i_d
.di_format
!= XFS_DINODE_FMT_BTREE
||
3014 ip
->i_d
.di_nextents
> ip
->i_df
.if_ext_max
);
3020 * If the inode isn't dirty, then just release the inode
3021 * flush lock and do nothing.
3023 if ((ip
->i_update_core
== 0) &&
3024 ((iip
== NULL
) || !(iip
->ili_format
.ilf_fields
& XFS_ILOG_ALL
))) {
3025 ASSERT((iip
!= NULL
) ?
3026 !(iip
->ili_item
.li_flags
& XFS_LI_IN_AIL
) : 1);
3032 * We can't flush the inode until it is unpinned, so
3033 * wait for it. We know noone new can pin it, because
3034 * we are holding the inode lock shared and you need
3035 * to hold it exclusively to pin the inode.
3037 xfs_iunpin_wait(ip
);
3040 * This may have been unpinned because the filesystem is shutting
3041 * down forcibly. If that's the case we must not write this inode
3042 * to disk, because the log record didn't make it to disk!
3044 if (XFS_FORCED_SHUTDOWN(mp
)) {
3045 ip
->i_update_core
= 0;
3047 iip
->ili_format
.ilf_fields
= 0;
3049 return XFS_ERROR(EIO
);
3053 * Get the buffer containing the on-disk inode.
3055 error
= xfs_itobp(mp
, NULL
, ip
, &dip
, &bp
, 0, 0);
3062 * Decide how buffer will be flushed out. This is done before
3063 * the call to xfs_iflush_int because this field is zeroed by it.
3065 if (iip
!= NULL
&& iip
->ili_format
.ilf_fields
!= 0) {
3067 * Flush out the inode buffer according to the directions
3068 * of the caller. In the cases where the caller has given
3069 * us a choice choose the non-delwri case. This is because
3070 * the inode is in the AIL and we need to get it out soon.
3073 case XFS_IFLUSH_SYNC
:
3074 case XFS_IFLUSH_DELWRI_ELSE_SYNC
:
3077 case XFS_IFLUSH_ASYNC
:
3078 case XFS_IFLUSH_DELWRI_ELSE_ASYNC
:
3081 case XFS_IFLUSH_DELWRI
:
3091 case XFS_IFLUSH_DELWRI_ELSE_SYNC
:
3092 case XFS_IFLUSH_DELWRI_ELSE_ASYNC
:
3093 case XFS_IFLUSH_DELWRI
:
3096 case XFS_IFLUSH_ASYNC
:
3099 case XFS_IFLUSH_SYNC
:
3110 * First flush out the inode that xfs_iflush was called with.
3112 error
= xfs_iflush_int(ip
, bp
);
3119 * see if other inodes can be gathered into this write
3122 ip
->i_chash
->chl_buf
= bp
;
3124 ch
= XFS_CHASH(mp
, ip
->i_blkno
);
3125 s
= mutex_spinlock(&ch
->ch_lock
);
3128 for (iq
= ip
->i_cnext
; iq
!= ip
; iq
= iq
->i_cnext
) {
3130 * Do an un-protected check to see if the inode is dirty and
3131 * is a candidate for flushing. These checks will be repeated
3132 * later after the appropriate locks are acquired.
3135 if ((iq
->i_update_core
== 0) &&
3137 !(iip
->ili_format
.ilf_fields
& XFS_ILOG_ALL
)) &&
3138 xfs_ipincount(iq
) == 0) {
3143 * Try to get locks. If any are unavailable,
3144 * then this inode cannot be flushed and is skipped.
3147 /* get inode locks (just i_lock) */
3148 if (xfs_ilock_nowait(iq
, XFS_ILOCK_SHARED
)) {
3149 /* get inode flush lock */
3150 if (xfs_iflock_nowait(iq
)) {
3151 /* check if pinned */
3152 if (xfs_ipincount(iq
) == 0) {
3153 /* arriving here means that
3154 * this inode can be flushed.
3155 * first re-check that it's
3159 if ((iq
->i_update_core
!= 0)||
3161 (iip
->ili_format
.ilf_fields
& XFS_ILOG_ALL
))) {
3163 error
= xfs_iflush_int(iq
, bp
);
3167 goto cluster_corrupt_out
;
3176 xfs_iunlock(iq
, XFS_ILOCK_SHARED
);
3179 mutex_spinunlock(&ch
->ch_lock
, s
);
3182 XFS_STATS_INC(xs_icluster_flushcnt
);
3183 XFS_STATS_ADD(xs_icluster_flushinode
, clcount
);
3187 * If the buffer is pinned then push on the log so we won't
3188 * get stuck waiting in the write for too long.
3190 if (XFS_BUF_ISPINNED(bp
)){
3191 xfs_log_force(mp
, (xfs_lsn_t
)0, XFS_LOG_FORCE
);
3194 if (flags
& INT_DELWRI
) {
3195 xfs_bdwrite(mp
, bp
);
3196 } else if (flags
& INT_ASYNC
) {
3197 xfs_bawrite(mp
, bp
);
3199 error
= xfs_bwrite(mp
, bp
);
3205 xfs_force_shutdown(mp
, SHUTDOWN_CORRUPT_INCORE
);
3206 xfs_iflush_abort(ip
);
3208 * Unlocks the flush lock
3210 return XFS_ERROR(EFSCORRUPTED
);
3212 cluster_corrupt_out
:
3213 /* Corruption detected in the clustering loop. Invalidate the
3214 * inode buffer and shut down the filesystem.
3216 mutex_spinunlock(&ch
->ch_lock
, s
);
3219 * Clean up the buffer. If it was B_DELWRI, just release it --
3220 * brelse can handle it with no problems. If not, shut down the
3221 * filesystem before releasing the buffer.
3223 if ((bufwasdelwri
= XFS_BUF_ISDELAYWRITE(bp
))) {
3227 xfs_force_shutdown(mp
, SHUTDOWN_CORRUPT_INCORE
);
3231 * Just like incore_relse: if we have b_iodone functions,
3232 * mark the buffer as an error and call them. Otherwise
3233 * mark it as stale and brelse.
3235 if (XFS_BUF_IODONE_FUNC(bp
)) {
3236 XFS_BUF_CLR_BDSTRAT_FUNC(bp
);
3240 XFS_BUF_ERROR(bp
,EIO
);
3248 xfs_iflush_abort(iq
);
3250 * Unlocks the flush lock
3252 return XFS_ERROR(EFSCORRUPTED
);
3261 xfs_inode_log_item_t
*iip
;
3264 #ifdef XFS_TRANS_DEBUG
3269 ASSERT(ismrlocked(&ip
->i_lock
, MR_UPDATE
|MR_ACCESS
));
3270 ASSERT(issemalocked(&(ip
->i_flock
)));
3271 ASSERT(ip
->i_d
.di_format
!= XFS_DINODE_FMT_BTREE
||
3272 ip
->i_d
.di_nextents
> ip
->i_df
.if_ext_max
);
3279 * If the inode isn't dirty, then just release the inode
3280 * flush lock and do nothing.
3282 if ((ip
->i_update_core
== 0) &&
3283 ((iip
== NULL
) || !(iip
->ili_format
.ilf_fields
& XFS_ILOG_ALL
))) {
3288 /* set *dip = inode's place in the buffer */
3289 dip
= (xfs_dinode_t
*)xfs_buf_offset(bp
, ip
->i_boffset
);
3292 * Clear i_update_core before copying out the data.
3293 * This is for coordination with our timestamp updates
3294 * that don't hold the inode lock. They will always
3295 * update the timestamps BEFORE setting i_update_core,
3296 * so if we clear i_update_core after they set it we
3297 * are guaranteed to see their updates to the timestamps.
3298 * I believe that this depends on strongly ordered memory
3299 * semantics, but we have that. We use the SYNCHRONIZE
3300 * macro to make sure that the compiler does not reorder
3301 * the i_update_core access below the data copy below.
3303 ip
->i_update_core
= 0;
3307 * Make sure to get the latest atime from the Linux inode.
3309 xfs_synchronize_atime(ip
);
3311 if (XFS_TEST_ERROR(INT_GET(dip
->di_core
.di_magic
,ARCH_CONVERT
) != XFS_DINODE_MAGIC
,
3312 mp
, XFS_ERRTAG_IFLUSH_1
, XFS_RANDOM_IFLUSH_1
)) {
3313 xfs_cmn_err(XFS_PTAG_IFLUSH
, CE_ALERT
, mp
,
3314 "xfs_iflush: Bad inode %Lu magic number 0x%x, ptr 0x%p",
3315 ip
->i_ino
, (int) INT_GET(dip
->di_core
.di_magic
, ARCH_CONVERT
), dip
);
3318 if (XFS_TEST_ERROR(ip
->i_d
.di_magic
!= XFS_DINODE_MAGIC
,
3319 mp
, XFS_ERRTAG_IFLUSH_2
, XFS_RANDOM_IFLUSH_2
)) {
3320 xfs_cmn_err(XFS_PTAG_IFLUSH
, CE_ALERT
, mp
,
3321 "xfs_iflush: Bad inode %Lu, ptr 0x%p, magic number 0x%x",
3322 ip
->i_ino
, ip
, ip
->i_d
.di_magic
);
3325 if ((ip
->i_d
.di_mode
& S_IFMT
) == S_IFREG
) {
3327 (ip
->i_d
.di_format
!= XFS_DINODE_FMT_EXTENTS
) &&
3328 (ip
->i_d
.di_format
!= XFS_DINODE_FMT_BTREE
),
3329 mp
, XFS_ERRTAG_IFLUSH_3
, XFS_RANDOM_IFLUSH_3
)) {
3330 xfs_cmn_err(XFS_PTAG_IFLUSH
, CE_ALERT
, mp
,
3331 "xfs_iflush: Bad regular inode %Lu, ptr 0x%p",
3335 } else if ((ip
->i_d
.di_mode
& S_IFMT
) == S_IFDIR
) {
3337 (ip
->i_d
.di_format
!= XFS_DINODE_FMT_EXTENTS
) &&
3338 (ip
->i_d
.di_format
!= XFS_DINODE_FMT_BTREE
) &&
3339 (ip
->i_d
.di_format
!= XFS_DINODE_FMT_LOCAL
),
3340 mp
, XFS_ERRTAG_IFLUSH_4
, XFS_RANDOM_IFLUSH_4
)) {
3341 xfs_cmn_err(XFS_PTAG_IFLUSH
, CE_ALERT
, mp
,
3342 "xfs_iflush: Bad directory inode %Lu, ptr 0x%p",
3347 if (XFS_TEST_ERROR(ip
->i_d
.di_nextents
+ ip
->i_d
.di_anextents
>
3348 ip
->i_d
.di_nblocks
, mp
, XFS_ERRTAG_IFLUSH_5
,
3349 XFS_RANDOM_IFLUSH_5
)) {
3350 xfs_cmn_err(XFS_PTAG_IFLUSH
, CE_ALERT
, mp
,
3351 "xfs_iflush: detected corrupt incore inode %Lu, total extents = %d, nblocks = %Ld, ptr 0x%p",
3353 ip
->i_d
.di_nextents
+ ip
->i_d
.di_anextents
,
3358 if (XFS_TEST_ERROR(ip
->i_d
.di_forkoff
> mp
->m_sb
.sb_inodesize
,
3359 mp
, XFS_ERRTAG_IFLUSH_6
, XFS_RANDOM_IFLUSH_6
)) {
3360 xfs_cmn_err(XFS_PTAG_IFLUSH
, CE_ALERT
, mp
,
3361 "xfs_iflush: bad inode %Lu, forkoff 0x%x, ptr 0x%p",
3362 ip
->i_ino
, ip
->i_d
.di_forkoff
, ip
);
3366 * bump the flush iteration count, used to detect flushes which
3367 * postdate a log record during recovery.
3370 ip
->i_d
.di_flushiter
++;
3373 * Copy the dirty parts of the inode into the on-disk
3374 * inode. We always copy out the core of the inode,
3375 * because if the inode is dirty at all the core must
3378 xfs_xlate_dinode_core((xfs_caddr_t
)&(dip
->di_core
), &(ip
->i_d
), -1);
3380 /* Wrap, we never let the log put out DI_MAX_FLUSH */
3381 if (ip
->i_d
.di_flushiter
== DI_MAX_FLUSH
)
3382 ip
->i_d
.di_flushiter
= 0;
3385 * If this is really an old format inode and the superblock version
3386 * has not been updated to support only new format inodes, then
3387 * convert back to the old inode format. If the superblock version
3388 * has been updated, then make the conversion permanent.
3390 ASSERT(ip
->i_d
.di_version
== XFS_DINODE_VERSION_1
||
3391 XFS_SB_VERSION_HASNLINK(&mp
->m_sb
));
3392 if (ip
->i_d
.di_version
== XFS_DINODE_VERSION_1
) {
3393 if (!XFS_SB_VERSION_HASNLINK(&mp
->m_sb
)) {
3397 ASSERT(ip
->i_d
.di_nlink
<= XFS_MAXLINK_1
);
3398 INT_SET(dip
->di_core
.di_onlink
, ARCH_CONVERT
, ip
->i_d
.di_nlink
);
3401 * The superblock version has already been bumped,
3402 * so just make the conversion to the new inode
3405 ip
->i_d
.di_version
= XFS_DINODE_VERSION_2
;
3406 INT_SET(dip
->di_core
.di_version
, ARCH_CONVERT
, XFS_DINODE_VERSION_2
);
3407 ip
->i_d
.di_onlink
= 0;
3408 dip
->di_core
.di_onlink
= 0;
3409 memset(&(ip
->i_d
.di_pad
[0]), 0, sizeof(ip
->i_d
.di_pad
));
3410 memset(&(dip
->di_core
.di_pad
[0]), 0,
3411 sizeof(dip
->di_core
.di_pad
));
3412 ASSERT(ip
->i_d
.di_projid
== 0);
3416 if (xfs_iflush_fork(ip
, dip
, iip
, XFS_DATA_FORK
, bp
) == EFSCORRUPTED
) {
3420 if (XFS_IFORK_Q(ip
)) {
3422 * The only error from xfs_iflush_fork is on the data fork.
3424 (void) xfs_iflush_fork(ip
, dip
, iip
, XFS_ATTR_FORK
, bp
);
3426 xfs_inobp_check(mp
, bp
);
3429 * We've recorded everything logged in the inode, so we'd
3430 * like to clear the ilf_fields bits so we don't log and
3431 * flush things unnecessarily. However, we can't stop
3432 * logging all this information until the data we've copied
3433 * into the disk buffer is written to disk. If we did we might
3434 * overwrite the copy of the inode in the log with all the
3435 * data after re-logging only part of it, and in the face of
3436 * a crash we wouldn't have all the data we need to recover.
3438 * What we do is move the bits to the ili_last_fields field.
3439 * When logging the inode, these bits are moved back to the
3440 * ilf_fields field. In the xfs_iflush_done() routine we
3441 * clear ili_last_fields, since we know that the information
3442 * those bits represent is permanently on disk. As long as
3443 * the flush completes before the inode is logged again, then
3444 * both ilf_fields and ili_last_fields will be cleared.
3446 * We can play with the ilf_fields bits here, because the inode
3447 * lock must be held exclusively in order to set bits there
3448 * and the flush lock protects the ili_last_fields bits.
3449 * Set ili_logged so the flush done
3450 * routine can tell whether or not to look in the AIL.
3451 * Also, store the current LSN of the inode so that we can tell
3452 * whether the item has moved in the AIL from xfs_iflush_done().
3453 * In order to read the lsn we need the AIL lock, because
3454 * it is a 64 bit value that cannot be read atomically.
3456 if (iip
!= NULL
&& iip
->ili_format
.ilf_fields
!= 0) {
3457 iip
->ili_last_fields
= iip
->ili_format
.ilf_fields
;
3458 iip
->ili_format
.ilf_fields
= 0;
3459 iip
->ili_logged
= 1;
3461 ASSERT(sizeof(xfs_lsn_t
) == 8); /* don't lock if it shrinks */
3463 iip
->ili_flush_lsn
= iip
->ili_item
.li_lsn
;
3467 * Attach the function xfs_iflush_done to the inode's
3468 * buffer. This will remove the inode from the AIL
3469 * and unlock the inode's flush lock when the inode is
3470 * completely written to disk.
3472 xfs_buf_attach_iodone(bp
, (void(*)(xfs_buf_t
*,xfs_log_item_t
*))
3473 xfs_iflush_done
, (xfs_log_item_t
*)iip
);
3475 ASSERT(XFS_BUF_FSPRIVATE(bp
, void *) != NULL
);
3476 ASSERT(XFS_BUF_IODONE_FUNC(bp
) != NULL
);
3479 * We're flushing an inode which is not in the AIL and has
3480 * not been logged but has i_update_core set. For this
3481 * case we can use a B_DELWRI flush and immediately drop
3482 * the inode flush lock because we can avoid the whole
3483 * AIL state thing. It's OK to drop the flush lock now,
3484 * because we've already locked the buffer and to do anything
3485 * you really need both.
3488 ASSERT(iip
->ili_logged
== 0);
3489 ASSERT(iip
->ili_last_fields
== 0);
3490 ASSERT((iip
->ili_item
.li_flags
& XFS_LI_IN_AIL
) == 0);
3498 return XFS_ERROR(EFSCORRUPTED
);
3503 * Flush all inactive inodes in mp.
3513 XFS_MOUNT_ILOCK(mp
);
3519 /* Make sure we skip markers inserted by sync */
3520 if (ip
->i_mount
== NULL
) {
3525 vp
= XFS_ITOV_NULL(ip
);
3527 XFS_MOUNT_IUNLOCK(mp
);
3528 xfs_finish_reclaim(ip
, 0, XFS_IFLUSH_ASYNC
);
3532 ASSERT(vn_count(vp
) == 0);
3535 } while (ip
!= mp
->m_inodes
);
3537 XFS_MOUNT_IUNLOCK(mp
);
3541 * xfs_iaccess: check accessibility of inode for mode.
3550 mode_t orgmode
= mode
;
3551 struct inode
*inode
= vn_to_inode(XFS_ITOV(ip
));
3553 if (mode
& S_IWUSR
) {
3554 umode_t imode
= inode
->i_mode
;
3556 if (IS_RDONLY(inode
) &&
3557 (S_ISREG(imode
) || S_ISDIR(imode
) || S_ISLNK(imode
)))
3558 return XFS_ERROR(EROFS
);
3560 if (IS_IMMUTABLE(inode
))
3561 return XFS_ERROR(EACCES
);
3565 * If there's an Access Control List it's used instead of
3568 if ((error
= _ACL_XFS_IACCESS(ip
, mode
, cr
)) != -1)
3569 return error
? XFS_ERROR(error
) : 0;
3571 if (current_fsuid(cr
) != ip
->i_d
.di_uid
) {
3573 if (!in_group_p((gid_t
)ip
->i_d
.di_gid
))
3578 * If the DACs are ok we don't need any capability check.
3580 if ((ip
->i_d
.di_mode
& mode
) == mode
)
3583 * Read/write DACs are always overridable.
3584 * Executable DACs are overridable if at least one exec bit is set.
3586 if (!(orgmode
& S_IXUSR
) ||
3587 (inode
->i_mode
& S_IXUGO
) || S_ISDIR(inode
->i_mode
))
3588 if (capable_cred(cr
, CAP_DAC_OVERRIDE
))
3591 if ((orgmode
== S_IRUSR
) ||
3592 (S_ISDIR(inode
->i_mode
) && (!(orgmode
& S_IWUSR
)))) {
3593 if (capable_cred(cr
, CAP_DAC_READ_SEARCH
))
3596 cmn_err(CE_NOTE
, "Ick: mode=%o, orgmode=%o", mode
, orgmode
);
3598 return XFS_ERROR(EACCES
);
3600 return XFS_ERROR(EACCES
);
3604 * xfs_iroundup: round up argument to next power of two
3613 if ((v
& (v
- 1)) == 0)
3615 ASSERT((v
& 0x80000000) == 0);
3616 if ((v
& (v
+ 1)) == 0)
3618 for (i
= 0, m
= 1; i
< 31; i
++, m
<<= 1) {
3622 if ((v
& (v
+ 1)) == 0)
3629 #ifdef XFS_ILOCK_TRACE
3630 ktrace_t
*xfs_ilock_trace_buf
;
3633 xfs_ilock_trace(xfs_inode_t
*ip
, int lock
, unsigned int lockflags
, inst_t
*ra
)
3635 ktrace_enter(ip
->i_lock_trace
,
3637 (void *)(unsigned long)lock
, /* 1 = LOCK, 3=UNLOCK, etc */
3638 (void *)(unsigned long)lockflags
, /* XFS_ILOCK_EXCL etc */
3639 (void *)ra
, /* caller of ilock */
3640 (void *)(unsigned long)current_cpu(),
3641 (void *)(unsigned long)current_pid(),
3642 NULL
,NULL
,NULL
,NULL
,NULL
,NULL
,NULL
,NULL
,NULL
,NULL
);
3647 * Return a pointer to the extent record at file index idx.
3651 xfs_ifork_t
*ifp
, /* inode fork pointer */
3652 xfs_extnum_t idx
) /* index of target extent */
3655 if ((ifp
->if_flags
& XFS_IFEXTIREC
) && (idx
== 0)) {
3656 return ifp
->if_u1
.if_ext_irec
->er_extbuf
;
3657 } else if (ifp
->if_flags
& XFS_IFEXTIREC
) {
3658 xfs_ext_irec_t
*erp
; /* irec pointer */
3659 int erp_idx
= 0; /* irec index */
3660 xfs_extnum_t page_idx
= idx
; /* ext index in target list */
3662 erp
= xfs_iext_idx_to_irec(ifp
, &page_idx
, &erp_idx
, 0);
3663 return &erp
->er_extbuf
[page_idx
];
3664 } else if (ifp
->if_bytes
) {
3665 return &ifp
->if_u1
.if_extents
[idx
];
3672 * Insert new item(s) into the extent records for incore inode
3673 * fork 'ifp'. 'count' new items are inserted at index 'idx'.
3677 xfs_ifork_t
*ifp
, /* inode fork pointer */
3678 xfs_extnum_t idx
, /* starting index of new items */
3679 xfs_extnum_t count
, /* number of inserted items */
3680 xfs_bmbt_irec_t
*new) /* items to insert */
3682 xfs_bmbt_rec_t
*ep
; /* extent record pointer */
3683 xfs_extnum_t i
; /* extent record index */
3685 ASSERT(ifp
->if_flags
& XFS_IFEXTENTS
);
3686 xfs_iext_add(ifp
, idx
, count
);
3687 for (i
= idx
; i
< idx
+ count
; i
++, new++) {
3688 ep
= xfs_iext_get_ext(ifp
, i
);
3689 xfs_bmbt_set_all(ep
, new);
3694 * This is called when the amount of space required for incore file
3695 * extents needs to be increased. The ext_diff parameter stores the
3696 * number of new extents being added and the idx parameter contains
3697 * the extent index where the new extents will be added. If the new
3698 * extents are being appended, then we just need to (re)allocate and
3699 * initialize the space. Otherwise, if the new extents are being
3700 * inserted into the middle of the existing entries, a bit more work
3701 * is required to make room for the new extents to be inserted. The
3702 * caller is responsible for filling in the new extent entries upon
3707 xfs_ifork_t
*ifp
, /* inode fork pointer */
3708 xfs_extnum_t idx
, /* index to begin adding exts */
3709 int ext_diff
) /* number of extents to add */
3711 int byte_diff
; /* new bytes being added */
3712 int new_size
; /* size of extents after adding */
3713 xfs_extnum_t nextents
; /* number of extents in file */
3715 nextents
= ifp
->if_bytes
/ (uint
)sizeof(xfs_bmbt_rec_t
);
3716 ASSERT((idx
>= 0) && (idx
<= nextents
));
3717 byte_diff
= ext_diff
* sizeof(xfs_bmbt_rec_t
);
3718 new_size
= ifp
->if_bytes
+ byte_diff
;
3720 * If the new number of extents (nextents + ext_diff)
3721 * fits inside the inode, then continue to use the inline
3724 if (nextents
+ ext_diff
<= XFS_INLINE_EXTS
) {
3725 if (idx
< nextents
) {
3726 memmove(&ifp
->if_u2
.if_inline_ext
[idx
+ ext_diff
],
3727 &ifp
->if_u2
.if_inline_ext
[idx
],
3728 (nextents
- idx
) * sizeof(xfs_bmbt_rec_t
));
3729 memset(&ifp
->if_u2
.if_inline_ext
[idx
], 0, byte_diff
);
3731 ifp
->if_u1
.if_extents
= ifp
->if_u2
.if_inline_ext
;
3732 ifp
->if_real_bytes
= 0;
3733 ifp
->if_lastex
= nextents
+ ext_diff
;
3736 * Otherwise use a linear (direct) extent list.
3737 * If the extents are currently inside the inode,
3738 * xfs_iext_realloc_direct will switch us from
3739 * inline to direct extent allocation mode.
3741 else if (nextents
+ ext_diff
<= XFS_LINEAR_EXTS
) {
3742 xfs_iext_realloc_direct(ifp
, new_size
);
3743 if (idx
< nextents
) {
3744 memmove(&ifp
->if_u1
.if_extents
[idx
+ ext_diff
],
3745 &ifp
->if_u1
.if_extents
[idx
],
3746 (nextents
- idx
) * sizeof(xfs_bmbt_rec_t
));
3747 memset(&ifp
->if_u1
.if_extents
[idx
], 0, byte_diff
);
3750 /* Indirection array */
3752 xfs_ext_irec_t
*erp
;
3756 ASSERT(nextents
+ ext_diff
> XFS_LINEAR_EXTS
);
3757 if (ifp
->if_flags
& XFS_IFEXTIREC
) {
3758 erp
= xfs_iext_idx_to_irec(ifp
, &page_idx
, &erp_idx
, 1);
3760 xfs_iext_irec_init(ifp
);
3761 ASSERT(ifp
->if_flags
& XFS_IFEXTIREC
);
3762 erp
= ifp
->if_u1
.if_ext_irec
;
3764 /* Extents fit in target extent page */
3765 if (erp
&& erp
->er_extcount
+ ext_diff
<= XFS_LINEAR_EXTS
) {
3766 if (page_idx
< erp
->er_extcount
) {
3767 memmove(&erp
->er_extbuf
[page_idx
+ ext_diff
],
3768 &erp
->er_extbuf
[page_idx
],
3769 (erp
->er_extcount
- page_idx
) *
3770 sizeof(xfs_bmbt_rec_t
));
3771 memset(&erp
->er_extbuf
[page_idx
], 0, byte_diff
);
3773 erp
->er_extcount
+= ext_diff
;
3774 xfs_iext_irec_update_extoffs(ifp
, erp_idx
+ 1, ext_diff
);
3776 /* Insert a new extent page */
3778 xfs_iext_add_indirect_multi(ifp
,
3779 erp_idx
, page_idx
, ext_diff
);
3782 * If extent(s) are being appended to the last page in
3783 * the indirection array and the new extent(s) don't fit
3784 * in the page, then erp is NULL and erp_idx is set to
3785 * the next index needed in the indirection array.
3788 int count
= ext_diff
;
3791 erp
= xfs_iext_irec_new(ifp
, erp_idx
);
3792 erp
->er_extcount
= count
;
3793 count
-= MIN(count
, (int)XFS_LINEAR_EXTS
);
3800 ifp
->if_bytes
= new_size
;
3804 * This is called when incore extents are being added to the indirection
3805 * array and the new extents do not fit in the target extent list. The
3806 * erp_idx parameter contains the irec index for the target extent list
3807 * in the indirection array, and the idx parameter contains the extent
3808 * index within the list. The number of extents being added is stored
3809 * in the count parameter.
3811 * |-------| |-------|
3812 * | | | | idx - number of extents before idx
3814 * | | | | count - number of extents being inserted at idx
3815 * |-------| |-------|
3816 * | count | | nex2 | nex2 - number of extents after idx + count
3817 * |-------| |-------|
3820 xfs_iext_add_indirect_multi(
3821 xfs_ifork_t
*ifp
, /* inode fork pointer */
3822 int erp_idx
, /* target extent irec index */
3823 xfs_extnum_t idx
, /* index within target list */
3824 int count
) /* new extents being added */
3826 int byte_diff
; /* new bytes being added */
3827 xfs_ext_irec_t
*erp
; /* pointer to irec entry */
3828 xfs_extnum_t ext_diff
; /* number of extents to add */
3829 xfs_extnum_t ext_cnt
; /* new extents still needed */
3830 xfs_extnum_t nex2
; /* extents after idx + count */
3831 xfs_bmbt_rec_t
*nex2_ep
= NULL
; /* temp list for nex2 extents */
3832 int nlists
; /* number of irec's (lists) */
3834 ASSERT(ifp
->if_flags
& XFS_IFEXTIREC
);
3835 erp
= &ifp
->if_u1
.if_ext_irec
[erp_idx
];
3836 nex2
= erp
->er_extcount
- idx
;
3837 nlists
= ifp
->if_real_bytes
/ XFS_IEXT_BUFSZ
;
3840 * Save second part of target extent list
3841 * (all extents past */
3843 byte_diff
= nex2
* sizeof(xfs_bmbt_rec_t
);
3844 nex2_ep
= (xfs_bmbt_rec_t
*) kmem_alloc(byte_diff
, KM_SLEEP
);
3845 memmove(nex2_ep
, &erp
->er_extbuf
[idx
], byte_diff
);
3846 erp
->er_extcount
-= nex2
;
3847 xfs_iext_irec_update_extoffs(ifp
, erp_idx
+ 1, -nex2
);
3848 memset(&erp
->er_extbuf
[idx
], 0, byte_diff
);
3852 * Add the new extents to the end of the target
3853 * list, then allocate new irec record(s) and
3854 * extent buffer(s) as needed to store the rest
3855 * of the new extents.
3858 ext_diff
= MIN(ext_cnt
, (int)XFS_LINEAR_EXTS
- erp
->er_extcount
);
3860 erp
->er_extcount
+= ext_diff
;
3861 xfs_iext_irec_update_extoffs(ifp
, erp_idx
+ 1, ext_diff
);
3862 ext_cnt
-= ext_diff
;
3866 erp
= xfs_iext_irec_new(ifp
, erp_idx
);
3867 ext_diff
= MIN(ext_cnt
, (int)XFS_LINEAR_EXTS
);
3868 erp
->er_extcount
= ext_diff
;
3869 xfs_iext_irec_update_extoffs(ifp
, erp_idx
+ 1, ext_diff
);
3870 ext_cnt
-= ext_diff
;
3873 /* Add nex2 extents back to indirection array */
3875 xfs_extnum_t ext_avail
;
3878 byte_diff
= nex2
* sizeof(xfs_bmbt_rec_t
);
3879 ext_avail
= XFS_LINEAR_EXTS
- erp
->er_extcount
;
3882 * If nex2 extents fit in the current page, append
3883 * nex2_ep after the new extents.
3885 if (nex2
<= ext_avail
) {
3886 i
= erp
->er_extcount
;
3889 * Otherwise, check if space is available in the
3892 else if ((erp_idx
< nlists
- 1) &&
3893 (nex2
<= (ext_avail
= XFS_LINEAR_EXTS
-
3894 ifp
->if_u1
.if_ext_irec
[erp_idx
+1].er_extcount
))) {
3897 /* Create a hole for nex2 extents */
3898 memmove(&erp
->er_extbuf
[nex2
], erp
->er_extbuf
,
3899 erp
->er_extcount
* sizeof(xfs_bmbt_rec_t
));
3902 * Final choice, create a new extent page for
3907 erp
= xfs_iext_irec_new(ifp
, erp_idx
);
3909 memmove(&erp
->er_extbuf
[i
], nex2_ep
, byte_diff
);
3910 kmem_free(nex2_ep
, byte_diff
);
3911 erp
->er_extcount
+= nex2
;
3912 xfs_iext_irec_update_extoffs(ifp
, erp_idx
+ 1, nex2
);
3917 * This is called when the amount of space required for incore file
3918 * extents needs to be decreased. The ext_diff parameter stores the
3919 * number of extents to be removed and the idx parameter contains
3920 * the extent index where the extents will be removed from.
3922 * If the amount of space needed has decreased below the linear
3923 * limit, XFS_IEXT_BUFSZ, then switch to using the contiguous
3924 * extent array. Otherwise, use kmem_realloc() to adjust the
3925 * size to what is needed.
3929 xfs_ifork_t
*ifp
, /* inode fork pointer */
3930 xfs_extnum_t idx
, /* index to begin removing exts */
3931 int ext_diff
) /* number of extents to remove */
3933 xfs_extnum_t nextents
; /* number of extents in file */
3934 int new_size
; /* size of extents after removal */
3936 ASSERT(ext_diff
> 0);
3937 nextents
= ifp
->if_bytes
/ (uint
)sizeof(xfs_bmbt_rec_t
);
3938 new_size
= (nextents
- ext_diff
) * sizeof(xfs_bmbt_rec_t
);
3940 if (new_size
== 0) {
3941 xfs_iext_destroy(ifp
);
3942 } else if (ifp
->if_flags
& XFS_IFEXTIREC
) {
3943 xfs_iext_remove_indirect(ifp
, idx
, ext_diff
);
3944 } else if (ifp
->if_real_bytes
) {
3945 xfs_iext_remove_direct(ifp
, idx
, ext_diff
);
3947 xfs_iext_remove_inline(ifp
, idx
, ext_diff
);
3949 ifp
->if_bytes
= new_size
;
3953 * This removes ext_diff extents from the inline buffer, beginning
3954 * at extent index idx.
3957 xfs_iext_remove_inline(
3958 xfs_ifork_t
*ifp
, /* inode fork pointer */
3959 xfs_extnum_t idx
, /* index to begin removing exts */
3960 int ext_diff
) /* number of extents to remove */
3962 int nextents
; /* number of extents in file */
3964 ASSERT(!(ifp
->if_flags
& XFS_IFEXTIREC
));
3965 ASSERT(idx
< XFS_INLINE_EXTS
);
3966 nextents
= ifp
->if_bytes
/ (uint
)sizeof(xfs_bmbt_rec_t
);
3967 ASSERT(((nextents
- ext_diff
) > 0) &&
3968 (nextents
- ext_diff
) < XFS_INLINE_EXTS
);
3970 if (idx
+ ext_diff
< nextents
) {
3971 memmove(&ifp
->if_u2
.if_inline_ext
[idx
],
3972 &ifp
->if_u2
.if_inline_ext
[idx
+ ext_diff
],
3973 (nextents
- (idx
+ ext_diff
)) *
3974 sizeof(xfs_bmbt_rec_t
));
3975 memset(&ifp
->if_u2
.if_inline_ext
[nextents
- ext_diff
],
3976 0, ext_diff
* sizeof(xfs_bmbt_rec_t
));
3978 memset(&ifp
->if_u2
.if_inline_ext
[idx
], 0,
3979 ext_diff
* sizeof(xfs_bmbt_rec_t
));
3984 * This removes ext_diff extents from a linear (direct) extent list,
3985 * beginning at extent index idx. If the extents are being removed
3986 * from the end of the list (ie. truncate) then we just need to re-
3987 * allocate the list to remove the extra space. Otherwise, if the
3988 * extents are being removed from the middle of the existing extent
3989 * entries, then we first need to move the extent records beginning
3990 * at idx + ext_diff up in the list to overwrite the records being
3991 * removed, then remove the extra space via kmem_realloc.
3994 xfs_iext_remove_direct(
3995 xfs_ifork_t
*ifp
, /* inode fork pointer */
3996 xfs_extnum_t idx
, /* index to begin removing exts */
3997 int ext_diff
) /* number of extents to remove */
3999 xfs_extnum_t nextents
; /* number of extents in file */
4000 int new_size
; /* size of extents after removal */
4002 ASSERT(!(ifp
->if_flags
& XFS_IFEXTIREC
));
4003 new_size
= ifp
->if_bytes
-
4004 (ext_diff
* sizeof(xfs_bmbt_rec_t
));
4005 nextents
= ifp
->if_bytes
/ (uint
)sizeof(xfs_bmbt_rec_t
);
4007 if (new_size
== 0) {
4008 xfs_iext_destroy(ifp
);
4011 /* Move extents up in the list (if needed) */
4012 if (idx
+ ext_diff
< nextents
) {
4013 memmove(&ifp
->if_u1
.if_extents
[idx
],
4014 &ifp
->if_u1
.if_extents
[idx
+ ext_diff
],
4015 (nextents
- (idx
+ ext_diff
)) *
4016 sizeof(xfs_bmbt_rec_t
));
4018 memset(&ifp
->if_u1
.if_extents
[nextents
- ext_diff
],
4019 0, ext_diff
* sizeof(xfs_bmbt_rec_t
));
4021 * Reallocate the direct extent list. If the extents
4022 * will fit inside the inode then xfs_iext_realloc_direct
4023 * will switch from direct to inline extent allocation
4026 xfs_iext_realloc_direct(ifp
, new_size
);
4027 ifp
->if_bytes
= new_size
;
4031 * This is called when incore extents are being removed from the
4032 * indirection array and the extents being removed span multiple extent
4033 * buffers. The idx parameter contains the file extent index where we
4034 * want to begin removing extents, and the count parameter contains
4035 * how many extents need to be removed.
4037 * |-------| |-------|
4038 * | nex1 | | | nex1 - number of extents before idx
4039 * |-------| | count |
4040 * | | | | count - number of extents being removed at idx
4041 * | count | |-------|
4042 * | | | nex2 | nex2 - number of extents after idx + count
4043 * |-------| |-------|
4046 xfs_iext_remove_indirect(
4047 xfs_ifork_t
*ifp
, /* inode fork pointer */
4048 xfs_extnum_t idx
, /* index to begin removing extents */
4049 int count
) /* number of extents to remove */
4051 xfs_ext_irec_t
*erp
; /* indirection array pointer */
4052 int erp_idx
= 0; /* indirection array index */
4053 xfs_extnum_t ext_cnt
; /* extents left to remove */
4054 xfs_extnum_t ext_diff
; /* extents to remove in current list */
4055 xfs_extnum_t nex1
; /* number of extents before idx */
4056 xfs_extnum_t nex2
; /* extents after idx + count */
4057 int nlists
; /* entries in indirection array */
4058 int page_idx
= idx
; /* index in target extent list */
4060 ASSERT(ifp
->if_flags
& XFS_IFEXTIREC
);
4061 erp
= xfs_iext_idx_to_irec(ifp
, &page_idx
, &erp_idx
, 0);
4062 ASSERT(erp
!= NULL
);
4063 nlists
= ifp
->if_real_bytes
/ XFS_IEXT_BUFSZ
;
4067 nex2
= MAX((erp
->er_extcount
- (nex1
+ ext_cnt
)), 0);
4068 ext_diff
= MIN(ext_cnt
, (erp
->er_extcount
- nex1
));
4070 * Check for deletion of entire list;
4071 * xfs_iext_irec_remove() updates extent offsets.
4073 if (ext_diff
== erp
->er_extcount
) {
4074 xfs_iext_irec_remove(ifp
, erp_idx
);
4075 ext_cnt
-= ext_diff
;
4078 ASSERT(erp_idx
< ifp
->if_real_bytes
/
4080 erp
= &ifp
->if_u1
.if_ext_irec
[erp_idx
];
4087 /* Move extents up (if needed) */
4089 memmove(&erp
->er_extbuf
[nex1
],
4090 &erp
->er_extbuf
[nex1
+ ext_diff
],
4091 nex2
* sizeof(xfs_bmbt_rec_t
));
4093 /* Zero out rest of page */
4094 memset(&erp
->er_extbuf
[nex1
+ nex2
], 0, (XFS_IEXT_BUFSZ
-
4095 ((nex1
+ nex2
) * sizeof(xfs_bmbt_rec_t
))));
4096 /* Update remaining counters */
4097 erp
->er_extcount
-= ext_diff
;
4098 xfs_iext_irec_update_extoffs(ifp
, erp_idx
+ 1, -ext_diff
);
4099 ext_cnt
-= ext_diff
;
4104 ifp
->if_bytes
-= count
* sizeof(xfs_bmbt_rec_t
);
4105 xfs_iext_irec_compact(ifp
);
4109 * Create, destroy, or resize a linear (direct) block of extents.
4112 xfs_iext_realloc_direct(
4113 xfs_ifork_t
*ifp
, /* inode fork pointer */
4114 int new_size
) /* new size of extents */
4116 int rnew_size
; /* real new size of extents */
4118 rnew_size
= new_size
;
4120 ASSERT(!(ifp
->if_flags
& XFS_IFEXTIREC
) ||
4121 ((new_size
>= 0) && (new_size
<= XFS_IEXT_BUFSZ
) &&
4122 (new_size
!= ifp
->if_real_bytes
)));
4124 /* Free extent records */
4125 if (new_size
== 0) {
4126 xfs_iext_destroy(ifp
);
4128 /* Resize direct extent list and zero any new bytes */
4129 else if (ifp
->if_real_bytes
) {
4130 /* Check if extents will fit inside the inode */
4131 if (new_size
<= XFS_INLINE_EXTS
* sizeof(xfs_bmbt_rec_t
)) {
4132 xfs_iext_direct_to_inline(ifp
, new_size
/
4133 (uint
)sizeof(xfs_bmbt_rec_t
));
4134 ifp
->if_bytes
= new_size
;
4137 if ((new_size
& (new_size
- 1)) != 0) {
4138 rnew_size
= xfs_iroundup(new_size
);
4140 if (rnew_size
!= ifp
->if_real_bytes
) {
4141 ifp
->if_u1
.if_extents
= (xfs_bmbt_rec_t
*)
4142 kmem_realloc(ifp
->if_u1
.if_extents
,
4147 if (rnew_size
> ifp
->if_real_bytes
) {
4148 memset(&ifp
->if_u1
.if_extents
[ifp
->if_bytes
/
4149 (uint
)sizeof(xfs_bmbt_rec_t
)], 0,
4150 rnew_size
- ifp
->if_real_bytes
);
4154 * Switch from the inline extent buffer to a direct
4155 * extent list. Be sure to include the inline extent
4156 * bytes in new_size.
4159 new_size
+= ifp
->if_bytes
;
4160 if ((new_size
& (new_size
- 1)) != 0) {
4161 rnew_size
= xfs_iroundup(new_size
);
4163 xfs_iext_inline_to_direct(ifp
, rnew_size
);
4165 ifp
->if_real_bytes
= rnew_size
;
4166 ifp
->if_bytes
= new_size
;
4170 * Switch from linear (direct) extent records to inline buffer.
4173 xfs_iext_direct_to_inline(
4174 xfs_ifork_t
*ifp
, /* inode fork pointer */
4175 xfs_extnum_t nextents
) /* number of extents in file */
4177 ASSERT(ifp
->if_flags
& XFS_IFEXTENTS
);
4178 ASSERT(nextents
<= XFS_INLINE_EXTS
);
4180 * The inline buffer was zeroed when we switched
4181 * from inline to direct extent allocation mode,
4182 * so we don't need to clear it here.
4184 memcpy(ifp
->if_u2
.if_inline_ext
, ifp
->if_u1
.if_extents
,
4185 nextents
* sizeof(xfs_bmbt_rec_t
));
4186 kmem_free(ifp
->if_u1
.if_extents
, ifp
->if_real_bytes
);
4187 ifp
->if_u1
.if_extents
= ifp
->if_u2
.if_inline_ext
;
4188 ifp
->if_real_bytes
= 0;
4192 * Switch from inline buffer to linear (direct) extent records.
4193 * new_size should already be rounded up to the next power of 2
4194 * by the caller (when appropriate), so use new_size as it is.
4195 * However, since new_size may be rounded up, we can't update
4196 * if_bytes here. It is the caller's responsibility to update
4197 * if_bytes upon return.
4200 xfs_iext_inline_to_direct(
4201 xfs_ifork_t
*ifp
, /* inode fork pointer */
4202 int new_size
) /* number of extents in file */
4204 ifp
->if_u1
.if_extents
= (xfs_bmbt_rec_t
*)
4205 kmem_alloc(new_size
, KM_SLEEP
);
4206 memset(ifp
->if_u1
.if_extents
, 0, new_size
);
4207 if (ifp
->if_bytes
) {
4208 memcpy(ifp
->if_u1
.if_extents
, ifp
->if_u2
.if_inline_ext
,
4210 memset(ifp
->if_u2
.if_inline_ext
, 0, XFS_INLINE_EXTS
*
4211 sizeof(xfs_bmbt_rec_t
));
4213 ifp
->if_real_bytes
= new_size
;
4217 * Resize an extent indirection array to new_size bytes.
4220 xfs_iext_realloc_indirect(
4221 xfs_ifork_t
*ifp
, /* inode fork pointer */
4222 int new_size
) /* new indirection array size */
4224 int nlists
; /* number of irec's (ex lists) */
4225 int size
; /* current indirection array size */
4227 ASSERT(ifp
->if_flags
& XFS_IFEXTIREC
);
4228 nlists
= ifp
->if_real_bytes
/ XFS_IEXT_BUFSZ
;
4229 size
= nlists
* sizeof(xfs_ext_irec_t
);
4230 ASSERT(ifp
->if_real_bytes
);
4231 ASSERT((new_size
>= 0) && (new_size
!= size
));
4232 if (new_size
== 0) {
4233 xfs_iext_destroy(ifp
);
4235 ifp
->if_u1
.if_ext_irec
= (xfs_ext_irec_t
*)
4236 kmem_realloc(ifp
->if_u1
.if_ext_irec
,
4237 new_size
, size
, KM_SLEEP
);
4242 * Switch from indirection array to linear (direct) extent allocations.
4245 xfs_iext_indirect_to_direct(
4246 xfs_ifork_t
*ifp
) /* inode fork pointer */
4248 xfs_bmbt_rec_t
*ep
; /* extent record pointer */
4249 xfs_extnum_t nextents
; /* number of extents in file */
4250 int size
; /* size of file extents */
4252 ASSERT(ifp
->if_flags
& XFS_IFEXTIREC
);
4253 nextents
= ifp
->if_bytes
/ (uint
)sizeof(xfs_bmbt_rec_t
);
4254 ASSERT(nextents
<= XFS_LINEAR_EXTS
);
4255 size
= nextents
* sizeof(xfs_bmbt_rec_t
);
4257 xfs_iext_irec_compact_full(ifp
);
4258 ASSERT(ifp
->if_real_bytes
== XFS_IEXT_BUFSZ
);
4260 ep
= ifp
->if_u1
.if_ext_irec
->er_extbuf
;
4261 kmem_free(ifp
->if_u1
.if_ext_irec
, sizeof(xfs_ext_irec_t
));
4262 ifp
->if_flags
&= ~XFS_IFEXTIREC
;
4263 ifp
->if_u1
.if_extents
= ep
;
4264 ifp
->if_bytes
= size
;
4265 if (nextents
< XFS_LINEAR_EXTS
) {
4266 xfs_iext_realloc_direct(ifp
, size
);
4271 * Free incore file extents.
4275 xfs_ifork_t
*ifp
) /* inode fork pointer */
4277 if (ifp
->if_flags
& XFS_IFEXTIREC
) {
4281 nlists
= ifp
->if_real_bytes
/ XFS_IEXT_BUFSZ
;
4282 for (erp_idx
= nlists
- 1; erp_idx
>= 0 ; erp_idx
--) {
4283 xfs_iext_irec_remove(ifp
, erp_idx
);
4285 ifp
->if_flags
&= ~XFS_IFEXTIREC
;
4286 } else if (ifp
->if_real_bytes
) {
4287 kmem_free(ifp
->if_u1
.if_extents
, ifp
->if_real_bytes
);
4288 } else if (ifp
->if_bytes
) {
4289 memset(ifp
->if_u2
.if_inline_ext
, 0, XFS_INLINE_EXTS
*
4290 sizeof(xfs_bmbt_rec_t
));
4292 ifp
->if_u1
.if_extents
= NULL
;
4293 ifp
->if_real_bytes
= 0;
4298 * Return a pointer to the extent record for file system block bno.
4300 xfs_bmbt_rec_t
* /* pointer to found extent record */
4301 xfs_iext_bno_to_ext(
4302 xfs_ifork_t
*ifp
, /* inode fork pointer */
4303 xfs_fileoff_t bno
, /* block number to search for */
4304 xfs_extnum_t
*idxp
) /* index of target extent */
4306 xfs_bmbt_rec_t
*base
; /* pointer to first extent */
4307 xfs_filblks_t blockcount
= 0; /* number of blocks in extent */
4308 xfs_bmbt_rec_t
*ep
= NULL
; /* pointer to target extent */
4309 xfs_ext_irec_t
*erp
= NULL
; /* indirection array pointer */
4310 int high
; /* upper boundary in search */
4311 xfs_extnum_t idx
= 0; /* index of target extent */
4312 int low
; /* lower boundary in search */
4313 xfs_extnum_t nextents
; /* number of file extents */
4314 xfs_fileoff_t startoff
= 0; /* start offset of extent */
4316 nextents
= ifp
->if_bytes
/ (uint
)sizeof(xfs_bmbt_rec_t
);
4317 if (nextents
== 0) {
4322 if (ifp
->if_flags
& XFS_IFEXTIREC
) {
4323 /* Find target extent list */
4325 erp
= xfs_iext_bno_to_irec(ifp
, bno
, &erp_idx
);
4326 base
= erp
->er_extbuf
;
4327 high
= erp
->er_extcount
- 1;
4329 base
= ifp
->if_u1
.if_extents
;
4330 high
= nextents
- 1;
4332 /* Binary search extent records */
4333 while (low
<= high
) {
4334 idx
= (low
+ high
) >> 1;
4336 startoff
= xfs_bmbt_get_startoff(ep
);
4337 blockcount
= xfs_bmbt_get_blockcount(ep
);
4338 if (bno
< startoff
) {
4340 } else if (bno
>= startoff
+ blockcount
) {
4343 /* Convert back to file-based extent index */
4344 if (ifp
->if_flags
& XFS_IFEXTIREC
) {
4345 idx
+= erp
->er_extoff
;
4351 /* Convert back to file-based extent index */
4352 if (ifp
->if_flags
& XFS_IFEXTIREC
) {
4353 idx
+= erp
->er_extoff
;
4355 if (bno
>= startoff
+ blockcount
) {
4356 if (++idx
== nextents
) {
4359 ep
= xfs_iext_get_ext(ifp
, idx
);
4367 * Return a pointer to the indirection array entry containing the
4368 * extent record for filesystem block bno. Store the index of the
4369 * target irec in *erp_idxp.
4371 xfs_ext_irec_t
* /* pointer to found extent record */
4372 xfs_iext_bno_to_irec(
4373 xfs_ifork_t
*ifp
, /* inode fork pointer */
4374 xfs_fileoff_t bno
, /* block number to search for */
4375 int *erp_idxp
) /* irec index of target ext list */
4377 xfs_ext_irec_t
*erp
= NULL
; /* indirection array pointer */
4378 xfs_ext_irec_t
*erp_next
; /* next indirection array entry */
4379 int erp_idx
; /* indirection array index */
4380 int nlists
; /* number of extent irec's (lists) */
4381 int high
; /* binary search upper limit */
4382 int low
; /* binary search lower limit */
4384 ASSERT(ifp
->if_flags
& XFS_IFEXTIREC
);
4385 nlists
= ifp
->if_real_bytes
/ XFS_IEXT_BUFSZ
;
4389 while (low
<= high
) {
4390 erp_idx
= (low
+ high
) >> 1;
4391 erp
= &ifp
->if_u1
.if_ext_irec
[erp_idx
];
4392 erp_next
= erp_idx
< nlists
- 1 ? erp
+ 1 : NULL
;
4393 if (bno
< xfs_bmbt_get_startoff(erp
->er_extbuf
)) {
4395 } else if (erp_next
&& bno
>=
4396 xfs_bmbt_get_startoff(erp_next
->er_extbuf
)) {
4402 *erp_idxp
= erp_idx
;
4407 * Return a pointer to the indirection array entry containing the
4408 * extent record at file extent index *idxp. Store the index of the
4409 * target irec in *erp_idxp and store the page index of the target
4410 * extent record in *idxp.
4413 xfs_iext_idx_to_irec(
4414 xfs_ifork_t
*ifp
, /* inode fork pointer */
4415 xfs_extnum_t
*idxp
, /* extent index (file -> page) */
4416 int *erp_idxp
, /* pointer to target irec */
4417 int realloc
) /* new bytes were just added */
4419 xfs_ext_irec_t
*prev
; /* pointer to previous irec */
4420 xfs_ext_irec_t
*erp
= NULL
; /* pointer to current irec */
4421 int erp_idx
; /* indirection array index */
4422 int nlists
; /* number of irec's (ex lists) */
4423 int high
; /* binary search upper limit */
4424 int low
; /* binary search lower limit */
4425 xfs_extnum_t page_idx
= *idxp
; /* extent index in target list */
4427 ASSERT(ifp
->if_flags
& XFS_IFEXTIREC
);
4428 ASSERT(page_idx
>= 0 && page_idx
<=
4429 ifp
->if_bytes
/ (uint
)sizeof(xfs_bmbt_rec_t
));
4430 nlists
= ifp
->if_real_bytes
/ XFS_IEXT_BUFSZ
;
4435 /* Binary search extent irec's */
4436 while (low
<= high
) {
4437 erp_idx
= (low
+ high
) >> 1;
4438 erp
= &ifp
->if_u1
.if_ext_irec
[erp_idx
];
4439 prev
= erp_idx
> 0 ? erp
- 1 : NULL
;
4440 if (page_idx
< erp
->er_extoff
|| (page_idx
== erp
->er_extoff
&&
4441 realloc
&& prev
&& prev
->er_extcount
< XFS_LINEAR_EXTS
)) {
4443 } else if (page_idx
> erp
->er_extoff
+ erp
->er_extcount
||
4444 (page_idx
== erp
->er_extoff
+ erp
->er_extcount
&&
4447 } else if (page_idx
== erp
->er_extoff
+ erp
->er_extcount
&&
4448 erp
->er_extcount
== XFS_LINEAR_EXTS
) {
4452 erp
= erp_idx
< nlists
? erp
+ 1 : NULL
;
4455 page_idx
-= erp
->er_extoff
;
4460 *erp_idxp
= erp_idx
;
4465 * Allocate and initialize an indirection array once the space needed
4466 * for incore extents increases above XFS_IEXT_BUFSZ.
4470 xfs_ifork_t
*ifp
) /* inode fork pointer */
4472 xfs_ext_irec_t
*erp
; /* indirection array pointer */
4473 xfs_extnum_t nextents
; /* number of extents in file */
4475 ASSERT(!(ifp
->if_flags
& XFS_IFEXTIREC
));
4476 nextents
= ifp
->if_bytes
/ (uint
)sizeof(xfs_bmbt_rec_t
);
4477 ASSERT(nextents
<= XFS_LINEAR_EXTS
);
4479 erp
= (xfs_ext_irec_t
*)
4480 kmem_alloc(sizeof(xfs_ext_irec_t
), KM_SLEEP
);
4482 if (nextents
== 0) {
4483 ifp
->if_u1
.if_extents
= (xfs_bmbt_rec_t
*)
4484 kmem_alloc(XFS_IEXT_BUFSZ
, KM_SLEEP
);
4485 } else if (!ifp
->if_real_bytes
) {
4486 xfs_iext_inline_to_direct(ifp
, XFS_IEXT_BUFSZ
);
4487 } else if (ifp
->if_real_bytes
< XFS_IEXT_BUFSZ
) {
4488 xfs_iext_realloc_direct(ifp
, XFS_IEXT_BUFSZ
);
4490 erp
->er_extbuf
= ifp
->if_u1
.if_extents
;
4491 erp
->er_extcount
= nextents
;
4494 ifp
->if_flags
|= XFS_IFEXTIREC
;
4495 ifp
->if_real_bytes
= XFS_IEXT_BUFSZ
;
4496 ifp
->if_bytes
= nextents
* sizeof(xfs_bmbt_rec_t
);
4497 ifp
->if_u1
.if_ext_irec
= erp
;
4503 * Allocate and initialize a new entry in the indirection array.
4507 xfs_ifork_t
*ifp
, /* inode fork pointer */
4508 int erp_idx
) /* index for new irec */
4510 xfs_ext_irec_t
*erp
; /* indirection array pointer */
4511 int i
; /* loop counter */
4512 int nlists
; /* number of irec's (ex lists) */
4514 ASSERT(ifp
->if_flags
& XFS_IFEXTIREC
);
4515 nlists
= ifp
->if_real_bytes
/ XFS_IEXT_BUFSZ
;
4517 /* Resize indirection array */
4518 xfs_iext_realloc_indirect(ifp
, ++nlists
*
4519 sizeof(xfs_ext_irec_t
));
4521 * Move records down in the array so the
4522 * new page can use erp_idx.
4524 erp
= ifp
->if_u1
.if_ext_irec
;
4525 for (i
= nlists
- 1; i
> erp_idx
; i
--) {
4526 memmove(&erp
[i
], &erp
[i
-1], sizeof(xfs_ext_irec_t
));
4528 ASSERT(i
== erp_idx
);
4530 /* Initialize new extent record */
4531 erp
= ifp
->if_u1
.if_ext_irec
;
4532 erp
[erp_idx
].er_extbuf
= (xfs_bmbt_rec_t
*)
4533 kmem_alloc(XFS_IEXT_BUFSZ
, KM_SLEEP
);
4534 ifp
->if_real_bytes
= nlists
* XFS_IEXT_BUFSZ
;
4535 memset(erp
[erp_idx
].er_extbuf
, 0, XFS_IEXT_BUFSZ
);
4536 erp
[erp_idx
].er_extcount
= 0;
4537 erp
[erp_idx
].er_extoff
= erp_idx
> 0 ?
4538 erp
[erp_idx
-1].er_extoff
+ erp
[erp_idx
-1].er_extcount
: 0;
4539 return (&erp
[erp_idx
]);
4543 * Remove a record from the indirection array.
4546 xfs_iext_irec_remove(
4547 xfs_ifork_t
*ifp
, /* inode fork pointer */
4548 int erp_idx
) /* irec index to remove */
4550 xfs_ext_irec_t
*erp
; /* indirection array pointer */
4551 int i
; /* loop counter */
4552 int nlists
; /* number of irec's (ex lists) */
4554 ASSERT(ifp
->if_flags
& XFS_IFEXTIREC
);
4555 nlists
= ifp
->if_real_bytes
/ XFS_IEXT_BUFSZ
;
4556 erp
= &ifp
->if_u1
.if_ext_irec
[erp_idx
];
4557 if (erp
->er_extbuf
) {
4558 xfs_iext_irec_update_extoffs(ifp
, erp_idx
+ 1,
4560 kmem_free(erp
->er_extbuf
, XFS_IEXT_BUFSZ
);
4562 /* Compact extent records */
4563 erp
= ifp
->if_u1
.if_ext_irec
;
4564 for (i
= erp_idx
; i
< nlists
- 1; i
++) {
4565 memmove(&erp
[i
], &erp
[i
+1], sizeof(xfs_ext_irec_t
));
4568 * Manually free the last extent record from the indirection
4569 * array. A call to xfs_iext_realloc_indirect() with a size
4570 * of zero would result in a call to xfs_iext_destroy() which
4571 * would in turn call this function again, creating a nasty
4575 xfs_iext_realloc_indirect(ifp
,
4576 nlists
* sizeof(xfs_ext_irec_t
));
4578 kmem_free(ifp
->if_u1
.if_ext_irec
,
4579 sizeof(xfs_ext_irec_t
));
4581 ifp
->if_real_bytes
= nlists
* XFS_IEXT_BUFSZ
;
4585 * This is called to clean up large amounts of unused memory allocated
4586 * by the indirection array. Before compacting anything though, verify
4587 * that the indirection array is still needed and switch back to the
4588 * linear extent list (or even the inline buffer) if possible. The
4589 * compaction policy is as follows:
4591 * Full Compaction: Extents fit into a single page (or inline buffer)
4592 * Full Compaction: Extents occupy less than 10% of allocated space
4593 * Partial Compaction: Extents occupy > 10% and < 50% of allocated space
4594 * No Compaction: Extents occupy at least 50% of allocated space
4597 xfs_iext_irec_compact(
4598 xfs_ifork_t
*ifp
) /* inode fork pointer */
4600 xfs_extnum_t nextents
; /* number of extents in file */
4601 int nlists
; /* number of irec's (ex lists) */
4603 ASSERT(ifp
->if_flags
& XFS_IFEXTIREC
);
4604 nlists
= ifp
->if_real_bytes
/ XFS_IEXT_BUFSZ
;
4605 nextents
= ifp
->if_bytes
/ (uint
)sizeof(xfs_bmbt_rec_t
);
4607 if (nextents
== 0) {
4608 xfs_iext_destroy(ifp
);
4609 } else if (nextents
<= XFS_INLINE_EXTS
) {
4610 xfs_iext_indirect_to_direct(ifp
);
4611 xfs_iext_direct_to_inline(ifp
, nextents
);
4612 } else if (nextents
<= XFS_LINEAR_EXTS
) {
4613 xfs_iext_indirect_to_direct(ifp
);
4614 } else if (nextents
< (nlists
* XFS_LINEAR_EXTS
) >> 3) {
4615 xfs_iext_irec_compact_full(ifp
);
4616 } else if (nextents
< (nlists
* XFS_LINEAR_EXTS
) >> 1) {
4617 xfs_iext_irec_compact_pages(ifp
);
4622 * Combine extents from neighboring extent pages.
4625 xfs_iext_irec_compact_pages(
4626 xfs_ifork_t
*ifp
) /* inode fork pointer */
4628 xfs_ext_irec_t
*erp
, *erp_next
;/* pointers to irec entries */
4629 int erp_idx
= 0; /* indirection array index */
4630 int nlists
; /* number of irec's (ex lists) */
4632 ASSERT(ifp
->if_flags
& XFS_IFEXTIREC
);
4633 nlists
= ifp
->if_real_bytes
/ XFS_IEXT_BUFSZ
;
4634 while (erp_idx
< nlists
- 1) {
4635 erp
= &ifp
->if_u1
.if_ext_irec
[erp_idx
];
4637 if (erp_next
->er_extcount
<=
4638 (XFS_LINEAR_EXTS
- erp
->er_extcount
)) {
4639 memmove(&erp
->er_extbuf
[erp
->er_extcount
],
4640 erp_next
->er_extbuf
, erp_next
->er_extcount
*
4641 sizeof(xfs_bmbt_rec_t
));
4642 erp
->er_extcount
+= erp_next
->er_extcount
;
4644 * Free page before removing extent record
4645 * so er_extoffs don't get modified in
4646 * xfs_iext_irec_remove.
4648 kmem_free(erp_next
->er_extbuf
, XFS_IEXT_BUFSZ
);
4649 erp_next
->er_extbuf
= NULL
;
4650 xfs_iext_irec_remove(ifp
, erp_idx
+ 1);
4651 nlists
= ifp
->if_real_bytes
/ XFS_IEXT_BUFSZ
;
4659 * Fully compact the extent records managed by the indirection array.
4662 xfs_iext_irec_compact_full(
4663 xfs_ifork_t
*ifp
) /* inode fork pointer */
4665 xfs_bmbt_rec_t
*ep
, *ep_next
; /* extent record pointers */
4666 xfs_ext_irec_t
*erp
, *erp_next
; /* extent irec pointers */
4667 int erp_idx
= 0; /* extent irec index */
4668 int ext_avail
; /* empty entries in ex list */
4669 int ext_diff
; /* number of exts to add */
4670 int nlists
; /* number of irec's (ex lists) */
4672 ASSERT(ifp
->if_flags
& XFS_IFEXTIREC
);
4673 nlists
= ifp
->if_real_bytes
/ XFS_IEXT_BUFSZ
;
4674 erp
= ifp
->if_u1
.if_ext_irec
;
4675 ep
= &erp
->er_extbuf
[erp
->er_extcount
];
4677 ep_next
= erp_next
->er_extbuf
;
4678 while (erp_idx
< nlists
- 1) {
4679 ext_avail
= XFS_LINEAR_EXTS
- erp
->er_extcount
;
4680 ext_diff
= MIN(ext_avail
, erp_next
->er_extcount
);
4681 memcpy(ep
, ep_next
, ext_diff
* sizeof(xfs_bmbt_rec_t
));
4682 erp
->er_extcount
+= ext_diff
;
4683 erp_next
->er_extcount
-= ext_diff
;
4684 /* Remove next page */
4685 if (erp_next
->er_extcount
== 0) {
4687 * Free page before removing extent record
4688 * so er_extoffs don't get modified in
4689 * xfs_iext_irec_remove.
4691 kmem_free(erp_next
->er_extbuf
,
4692 erp_next
->er_extcount
* sizeof(xfs_bmbt_rec_t
));
4693 erp_next
->er_extbuf
= NULL
;
4694 xfs_iext_irec_remove(ifp
, erp_idx
+ 1);
4695 erp
= &ifp
->if_u1
.if_ext_irec
[erp_idx
];
4696 nlists
= ifp
->if_real_bytes
/ XFS_IEXT_BUFSZ
;
4697 /* Update next page */
4699 /* Move rest of page up to become next new page */
4700 memmove(erp_next
->er_extbuf
, ep_next
,
4701 erp_next
->er_extcount
* sizeof(xfs_bmbt_rec_t
));
4702 ep_next
= erp_next
->er_extbuf
;
4703 memset(&ep_next
[erp_next
->er_extcount
], 0,
4704 (XFS_LINEAR_EXTS
- erp_next
->er_extcount
) *
4705 sizeof(xfs_bmbt_rec_t
));
4707 if (erp
->er_extcount
== XFS_LINEAR_EXTS
) {
4709 if (erp_idx
< nlists
)
4710 erp
= &ifp
->if_u1
.if_ext_irec
[erp_idx
];
4714 ep
= &erp
->er_extbuf
[erp
->er_extcount
];
4716 ep_next
= erp_next
->er_extbuf
;
4721 * This is called to update the er_extoff field in the indirection
4722 * array when extents have been added or removed from one of the
4723 * extent lists. erp_idx contains the irec index to begin updating
4724 * at and ext_diff contains the number of extents that were added
4728 xfs_iext_irec_update_extoffs(
4729 xfs_ifork_t
*ifp
, /* inode fork pointer */
4730 int erp_idx
, /* irec index to update */
4731 int ext_diff
) /* number of new extents */
4733 int i
; /* loop counter */
4734 int nlists
; /* number of irec's (ex lists */
4736 ASSERT(ifp
->if_flags
& XFS_IFEXTIREC
);
4737 nlists
= ifp
->if_real_bytes
/ XFS_IEXT_BUFSZ
;
4738 for (i
= erp_idx
; i
< nlists
; i
++) {
4739 ifp
->if_u1
.if_ext_irec
[i
].er_extoff
+= ext_diff
;