perf, x86: Implement initial P4 PMU driver
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / arch / x86 / kernel / cpu / perf_event.c
blobe6a3f5f81c96b7c2f203b87840ad2917907f639b
1 /*
2 * Performance events x86 architecture code
4 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5 * Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
6 * Copyright (C) 2009 Jaswinder Singh Rajput
7 * Copyright (C) 2009 Advanced Micro Devices, Inc., Robert Richter
8 * Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
9 * Copyright (C) 2009 Intel Corporation, <markus.t.metzger@intel.com>
10 * Copyright (C) 2009 Google, Inc., Stephane Eranian
12 * For licencing details see kernel-base/COPYING
15 #include <linux/perf_event.h>
16 #include <linux/capability.h>
17 #include <linux/notifier.h>
18 #include <linux/hardirq.h>
19 #include <linux/kprobes.h>
20 #include <linux/module.h>
21 #include <linux/kdebug.h>
22 #include <linux/sched.h>
23 #include <linux/uaccess.h>
24 #include <linux/highmem.h>
25 #include <linux/cpu.h>
26 #include <linux/bitops.h>
28 #include <asm/apic.h>
29 #include <asm/stacktrace.h>
30 #include <asm/nmi.h>
32 #if 0
33 #undef wrmsrl
34 #define wrmsrl(msr, val) \
35 do { \
36 trace_printk("wrmsrl(%lx, %lx)\n", (unsigned long)(msr),\
37 (unsigned long)(val)); \
38 native_write_msr((msr), (u32)((u64)(val)), \
39 (u32)((u64)(val) >> 32)); \
40 } while (0)
41 #endif
44 * best effort, GUP based copy_from_user() that assumes IRQ or NMI context
46 static unsigned long
47 copy_from_user_nmi(void *to, const void __user *from, unsigned long n)
49 unsigned long offset, addr = (unsigned long)from;
50 int type = in_nmi() ? KM_NMI : KM_IRQ0;
51 unsigned long size, len = 0;
52 struct page *page;
53 void *map;
54 int ret;
56 do {
57 ret = __get_user_pages_fast(addr, 1, 0, &page);
58 if (!ret)
59 break;
61 offset = addr & (PAGE_SIZE - 1);
62 size = min(PAGE_SIZE - offset, n - len);
64 map = kmap_atomic(page, type);
65 memcpy(to, map+offset, size);
66 kunmap_atomic(map, type);
67 put_page(page);
69 len += size;
70 to += size;
71 addr += size;
73 } while (len < n);
75 return len;
78 static u64 perf_event_mask __read_mostly;
80 struct event_constraint {
81 union {
82 unsigned long idxmsk[BITS_TO_LONGS(X86_PMC_IDX_MAX)];
83 u64 idxmsk64;
85 u64 code;
86 u64 cmask;
87 int weight;
90 struct amd_nb {
91 int nb_id; /* NorthBridge id */
92 int refcnt; /* reference count */
93 struct perf_event *owners[X86_PMC_IDX_MAX];
94 struct event_constraint event_constraints[X86_PMC_IDX_MAX];
97 #define MAX_LBR_ENTRIES 16
99 struct cpu_hw_events {
101 * Generic x86 PMC bits
103 struct perf_event *events[X86_PMC_IDX_MAX]; /* in counter order */
104 unsigned long active_mask[BITS_TO_LONGS(X86_PMC_IDX_MAX)];
105 unsigned long interrupts;
106 int enabled;
108 int n_events;
109 int n_added;
110 int assign[X86_PMC_IDX_MAX]; /* event to counter assignment */
111 u64 tags[X86_PMC_IDX_MAX];
112 struct perf_event *event_list[X86_PMC_IDX_MAX]; /* in enabled order */
115 * Intel DebugStore bits
117 struct debug_store *ds;
118 u64 pebs_enabled;
121 * Intel LBR bits
123 int lbr_users;
124 void *lbr_context;
125 struct perf_branch_stack lbr_stack;
126 struct perf_branch_entry lbr_entries[MAX_LBR_ENTRIES];
129 * AMD specific bits
131 struct amd_nb *amd_nb;
134 #define __EVENT_CONSTRAINT(c, n, m, w) {\
135 { .idxmsk64 = (n) }, \
136 .code = (c), \
137 .cmask = (m), \
138 .weight = (w), \
141 #define EVENT_CONSTRAINT(c, n, m) \
142 __EVENT_CONSTRAINT(c, n, m, HWEIGHT(n))
145 * Constraint on the Event code.
147 #define INTEL_EVENT_CONSTRAINT(c, n) \
148 EVENT_CONSTRAINT(c, n, INTEL_ARCH_EVTSEL_MASK)
151 * Constraint on the Event code + UMask + fixed-mask
153 #define FIXED_EVENT_CONSTRAINT(c, n) \
154 EVENT_CONSTRAINT(c, (1ULL << (32+n)), INTEL_ARCH_FIXED_MASK)
157 * Constraint on the Event code + UMask
159 #define PEBS_EVENT_CONSTRAINT(c, n) \
160 EVENT_CONSTRAINT(c, n, INTEL_ARCH_EVENT_MASK)
162 #define EVENT_CONSTRAINT_END \
163 EVENT_CONSTRAINT(0, 0, 0)
165 #define for_each_event_constraint(e, c) \
166 for ((e) = (c); (e)->cmask; (e)++)
168 union perf_capabilities {
169 struct {
170 u64 lbr_format : 6;
171 u64 pebs_trap : 1;
172 u64 pebs_arch_reg : 1;
173 u64 pebs_format : 4;
174 u64 smm_freeze : 1;
176 u64 capabilities;
180 * struct x86_pmu - generic x86 pmu
182 struct x86_pmu {
184 * Generic x86 PMC bits
186 const char *name;
187 int version;
188 int (*handle_irq)(struct pt_regs *);
189 void (*disable_all)(void);
190 void (*enable_all)(void);
191 void (*enable)(struct perf_event *);
192 void (*disable)(struct perf_event *);
193 int (*hw_config)(struct perf_event_attr *attr, struct hw_perf_event *hwc);
194 int (*schedule_events)(struct cpu_hw_events *cpuc, int n, int *assign);
195 unsigned eventsel;
196 unsigned perfctr;
197 u64 (*event_map)(int);
198 u64 (*raw_event)(u64);
199 int max_events;
200 int num_events;
201 int num_events_fixed;
202 int event_bits;
203 u64 event_mask;
204 int apic;
205 u64 max_period;
206 struct event_constraint *
207 (*get_event_constraints)(struct cpu_hw_events *cpuc,
208 struct perf_event *event);
210 void (*put_event_constraints)(struct cpu_hw_events *cpuc,
211 struct perf_event *event);
212 struct event_constraint *event_constraints;
213 void (*quirks)(void);
215 void (*cpu_prepare)(int cpu);
216 void (*cpu_starting)(int cpu);
217 void (*cpu_dying)(int cpu);
218 void (*cpu_dead)(int cpu);
221 * Intel Arch Perfmon v2+
223 u64 intel_ctrl;
224 union perf_capabilities intel_cap;
227 * Intel DebugStore bits
229 int bts, pebs;
230 int pebs_record_size;
231 void (*drain_pebs)(struct pt_regs *regs);
232 struct event_constraint *pebs_constraints;
235 * Intel LBR
237 unsigned long lbr_tos, lbr_from, lbr_to; /* MSR base regs */
238 int lbr_nr; /* hardware stack size */
241 static struct x86_pmu x86_pmu __read_mostly;
243 static DEFINE_PER_CPU(struct cpu_hw_events, cpu_hw_events) = {
244 .enabled = 1,
247 static int x86_perf_event_set_period(struct perf_event *event);
250 * Generalized hw caching related hw_event table, filled
251 * in on a per model basis. A value of 0 means
252 * 'not supported', -1 means 'hw_event makes no sense on
253 * this CPU', any other value means the raw hw_event
254 * ID.
257 #define C(x) PERF_COUNT_HW_CACHE_##x
259 static u64 __read_mostly hw_cache_event_ids
260 [PERF_COUNT_HW_CACHE_MAX]
261 [PERF_COUNT_HW_CACHE_OP_MAX]
262 [PERF_COUNT_HW_CACHE_RESULT_MAX];
265 * Propagate event elapsed time into the generic event.
266 * Can only be executed on the CPU where the event is active.
267 * Returns the delta events processed.
269 static u64
270 x86_perf_event_update(struct perf_event *event)
272 struct hw_perf_event *hwc = &event->hw;
273 int shift = 64 - x86_pmu.event_bits;
274 u64 prev_raw_count, new_raw_count;
275 int idx = hwc->idx;
276 s64 delta;
278 if (idx == X86_PMC_IDX_FIXED_BTS)
279 return 0;
282 * Careful: an NMI might modify the previous event value.
284 * Our tactic to handle this is to first atomically read and
285 * exchange a new raw count - then add that new-prev delta
286 * count to the generic event atomically:
288 again:
289 prev_raw_count = atomic64_read(&hwc->prev_count);
290 rdmsrl(hwc->event_base + idx, new_raw_count);
292 if (atomic64_cmpxchg(&hwc->prev_count, prev_raw_count,
293 new_raw_count) != prev_raw_count)
294 goto again;
297 * Now we have the new raw value and have updated the prev
298 * timestamp already. We can now calculate the elapsed delta
299 * (event-)time and add that to the generic event.
301 * Careful, not all hw sign-extends above the physical width
302 * of the count.
304 delta = (new_raw_count << shift) - (prev_raw_count << shift);
305 delta >>= shift;
307 atomic64_add(delta, &event->count);
308 atomic64_sub(delta, &hwc->period_left);
310 return new_raw_count;
313 static atomic_t active_events;
314 static DEFINE_MUTEX(pmc_reserve_mutex);
316 static bool reserve_pmc_hardware(void)
318 #ifdef CONFIG_X86_LOCAL_APIC
319 int i;
321 if (nmi_watchdog == NMI_LOCAL_APIC)
322 disable_lapic_nmi_watchdog();
324 for (i = 0; i < x86_pmu.num_events; i++) {
325 if (!reserve_perfctr_nmi(x86_pmu.perfctr + i))
326 goto perfctr_fail;
329 for (i = 0; i < x86_pmu.num_events; i++) {
330 if (!reserve_evntsel_nmi(x86_pmu.eventsel + i))
331 goto eventsel_fail;
333 #endif
335 return true;
337 #ifdef CONFIG_X86_LOCAL_APIC
338 eventsel_fail:
339 for (i--; i >= 0; i--)
340 release_evntsel_nmi(x86_pmu.eventsel + i);
342 i = x86_pmu.num_events;
344 perfctr_fail:
345 for (i--; i >= 0; i--)
346 release_perfctr_nmi(x86_pmu.perfctr + i);
348 if (nmi_watchdog == NMI_LOCAL_APIC)
349 enable_lapic_nmi_watchdog();
351 return false;
352 #endif
355 static void release_pmc_hardware(void)
357 #ifdef CONFIG_X86_LOCAL_APIC
358 int i;
360 for (i = 0; i < x86_pmu.num_events; i++) {
361 release_perfctr_nmi(x86_pmu.perfctr + i);
362 release_evntsel_nmi(x86_pmu.eventsel + i);
365 if (nmi_watchdog == NMI_LOCAL_APIC)
366 enable_lapic_nmi_watchdog();
367 #endif
370 static int reserve_ds_buffers(void);
371 static void release_ds_buffers(void);
373 static void hw_perf_event_destroy(struct perf_event *event)
375 if (atomic_dec_and_mutex_lock(&active_events, &pmc_reserve_mutex)) {
376 release_pmc_hardware();
377 release_ds_buffers();
378 mutex_unlock(&pmc_reserve_mutex);
382 static inline int x86_pmu_initialized(void)
384 return x86_pmu.handle_irq != NULL;
387 static inline int
388 set_ext_hw_attr(struct hw_perf_event *hwc, struct perf_event_attr *attr)
390 unsigned int cache_type, cache_op, cache_result;
391 u64 config, val;
393 config = attr->config;
395 cache_type = (config >> 0) & 0xff;
396 if (cache_type >= PERF_COUNT_HW_CACHE_MAX)
397 return -EINVAL;
399 cache_op = (config >> 8) & 0xff;
400 if (cache_op >= PERF_COUNT_HW_CACHE_OP_MAX)
401 return -EINVAL;
403 cache_result = (config >> 16) & 0xff;
404 if (cache_result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
405 return -EINVAL;
407 val = hw_cache_event_ids[cache_type][cache_op][cache_result];
409 if (val == 0)
410 return -ENOENT;
412 if (val == -1)
413 return -EINVAL;
415 hwc->config |= val;
417 return 0;
420 static int x86_hw_config(struct perf_event_attr *attr, struct hw_perf_event *hwc)
423 * Generate PMC IRQs:
424 * (keep 'enabled' bit clear for now)
426 hwc->config = ARCH_PERFMON_EVENTSEL_INT;
429 * Count user and OS events unless requested not to
431 if (!attr->exclude_user)
432 hwc->config |= ARCH_PERFMON_EVENTSEL_USR;
433 if (!attr->exclude_kernel)
434 hwc->config |= ARCH_PERFMON_EVENTSEL_OS;
436 return 0;
440 * Setup the hardware configuration for a given attr_type
442 static int __hw_perf_event_init(struct perf_event *event)
444 struct perf_event_attr *attr = &event->attr;
445 struct hw_perf_event *hwc = &event->hw;
446 u64 config;
447 int err;
449 if (!x86_pmu_initialized())
450 return -ENODEV;
452 err = 0;
453 if (!atomic_inc_not_zero(&active_events)) {
454 mutex_lock(&pmc_reserve_mutex);
455 if (atomic_read(&active_events) == 0) {
456 if (!reserve_pmc_hardware())
457 err = -EBUSY;
458 else
459 err = reserve_ds_buffers();
461 if (!err)
462 atomic_inc(&active_events);
463 mutex_unlock(&pmc_reserve_mutex);
465 if (err)
466 return err;
468 event->destroy = hw_perf_event_destroy;
470 hwc->idx = -1;
471 hwc->last_cpu = -1;
472 hwc->last_tag = ~0ULL;
474 /* Processor specifics */
475 if (x86_pmu.hw_config(attr, hwc))
476 return -EOPNOTSUPP;
478 if (!hwc->sample_period) {
479 hwc->sample_period = x86_pmu.max_period;
480 hwc->last_period = hwc->sample_period;
481 atomic64_set(&hwc->period_left, hwc->sample_period);
482 } else {
484 * If we have a PMU initialized but no APIC
485 * interrupts, we cannot sample hardware
486 * events (user-space has to fall back and
487 * sample via a hrtimer based software event):
489 if (!x86_pmu.apic)
490 return -EOPNOTSUPP;
494 * Raw hw_event type provide the config in the hw_event structure
496 if (attr->type == PERF_TYPE_RAW) {
497 hwc->config |= x86_pmu.raw_event(attr->config);
498 if ((hwc->config & ARCH_PERFMON_EVENTSEL_ANY) &&
499 perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
500 return -EACCES;
501 return 0;
504 if (attr->type == PERF_TYPE_HW_CACHE)
505 return set_ext_hw_attr(hwc, attr);
507 if (attr->config >= x86_pmu.max_events)
508 return -EINVAL;
511 * The generic map:
513 config = x86_pmu.event_map(attr->config);
515 if (config == 0)
516 return -ENOENT;
518 if (config == -1LL)
519 return -EINVAL;
522 * Branch tracing:
524 if ((attr->config == PERF_COUNT_HW_BRANCH_INSTRUCTIONS) &&
525 (hwc->sample_period == 1)) {
526 /* BTS is not supported by this architecture. */
527 if (!x86_pmu.bts)
528 return -EOPNOTSUPP;
530 /* BTS is currently only allowed for user-mode. */
531 if (!attr->exclude_kernel)
532 return -EOPNOTSUPP;
535 hwc->config |= config;
537 return 0;
540 static void x86_pmu_disable_all(void)
542 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
543 int idx;
545 for (idx = 0; idx < x86_pmu.num_events; idx++) {
546 u64 val;
548 if (!test_bit(idx, cpuc->active_mask))
549 continue;
550 rdmsrl(x86_pmu.eventsel + idx, val);
551 if (!(val & ARCH_PERFMON_EVENTSEL_ENABLE))
552 continue;
553 val &= ~ARCH_PERFMON_EVENTSEL_ENABLE;
554 wrmsrl(x86_pmu.eventsel + idx, val);
558 void hw_perf_disable(void)
560 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
562 if (!x86_pmu_initialized())
563 return;
565 if (!cpuc->enabled)
566 return;
568 cpuc->n_added = 0;
569 cpuc->enabled = 0;
570 barrier();
572 x86_pmu.disable_all();
575 static void x86_pmu_enable_all(void)
577 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
578 int idx;
580 for (idx = 0; idx < x86_pmu.num_events; idx++) {
581 struct perf_event *event = cpuc->events[idx];
582 u64 val;
584 if (!test_bit(idx, cpuc->active_mask))
585 continue;
587 val = event->hw.config;
588 val |= ARCH_PERFMON_EVENTSEL_ENABLE;
589 wrmsrl(x86_pmu.eventsel + idx, val);
593 static const struct pmu pmu;
595 static inline int is_x86_event(struct perf_event *event)
597 return event->pmu == &pmu;
600 static int x86_schedule_events(struct cpu_hw_events *cpuc, int n, int *assign)
602 struct event_constraint *c, *constraints[X86_PMC_IDX_MAX];
603 unsigned long used_mask[BITS_TO_LONGS(X86_PMC_IDX_MAX)];
604 int i, j, w, wmax, num = 0;
605 struct hw_perf_event *hwc;
607 bitmap_zero(used_mask, X86_PMC_IDX_MAX);
609 for (i = 0; i < n; i++) {
610 c = x86_pmu.get_event_constraints(cpuc, cpuc->event_list[i]);
611 constraints[i] = c;
615 * fastpath, try to reuse previous register
617 for (i = 0; i < n; i++) {
618 hwc = &cpuc->event_list[i]->hw;
619 c = constraints[i];
621 /* never assigned */
622 if (hwc->idx == -1)
623 break;
625 /* constraint still honored */
626 if (!test_bit(hwc->idx, c->idxmsk))
627 break;
629 /* not already used */
630 if (test_bit(hwc->idx, used_mask))
631 break;
633 __set_bit(hwc->idx, used_mask);
634 if (assign)
635 assign[i] = hwc->idx;
637 if (i == n)
638 goto done;
641 * begin slow path
644 bitmap_zero(used_mask, X86_PMC_IDX_MAX);
647 * weight = number of possible counters
649 * 1 = most constrained, only works on one counter
650 * wmax = least constrained, works on any counter
652 * assign events to counters starting with most
653 * constrained events.
655 wmax = x86_pmu.num_events;
658 * when fixed event counters are present,
659 * wmax is incremented by 1 to account
660 * for one more choice
662 if (x86_pmu.num_events_fixed)
663 wmax++;
665 for (w = 1, num = n; num && w <= wmax; w++) {
666 /* for each event */
667 for (i = 0; num && i < n; i++) {
668 c = constraints[i];
669 hwc = &cpuc->event_list[i]->hw;
671 if (c->weight != w)
672 continue;
674 for_each_set_bit(j, c->idxmsk, X86_PMC_IDX_MAX) {
675 if (!test_bit(j, used_mask))
676 break;
679 if (j == X86_PMC_IDX_MAX)
680 break;
682 __set_bit(j, used_mask);
684 if (assign)
685 assign[i] = j;
686 num--;
689 done:
691 * scheduling failed or is just a simulation,
692 * free resources if necessary
694 if (!assign || num) {
695 for (i = 0; i < n; i++) {
696 if (x86_pmu.put_event_constraints)
697 x86_pmu.put_event_constraints(cpuc, cpuc->event_list[i]);
700 return num ? -ENOSPC : 0;
704 * dogrp: true if must collect siblings events (group)
705 * returns total number of events and error code
707 static int collect_events(struct cpu_hw_events *cpuc, struct perf_event *leader, bool dogrp)
709 struct perf_event *event;
710 int n, max_count;
712 max_count = x86_pmu.num_events + x86_pmu.num_events_fixed;
714 /* current number of events already accepted */
715 n = cpuc->n_events;
717 if (is_x86_event(leader)) {
718 if (n >= max_count)
719 return -ENOSPC;
720 cpuc->event_list[n] = leader;
721 n++;
723 if (!dogrp)
724 return n;
726 list_for_each_entry(event, &leader->sibling_list, group_entry) {
727 if (!is_x86_event(event) ||
728 event->state <= PERF_EVENT_STATE_OFF)
729 continue;
731 if (n >= max_count)
732 return -ENOSPC;
734 cpuc->event_list[n] = event;
735 n++;
737 return n;
740 static inline void x86_assign_hw_event(struct perf_event *event,
741 struct cpu_hw_events *cpuc, int i)
743 struct hw_perf_event *hwc = &event->hw;
745 hwc->idx = cpuc->assign[i];
746 hwc->last_cpu = smp_processor_id();
747 hwc->last_tag = ++cpuc->tags[i];
749 if (hwc->idx == X86_PMC_IDX_FIXED_BTS) {
750 hwc->config_base = 0;
751 hwc->event_base = 0;
752 } else if (hwc->idx >= X86_PMC_IDX_FIXED) {
753 hwc->config_base = MSR_ARCH_PERFMON_FIXED_CTR_CTRL;
755 * We set it so that event_base + idx in wrmsr/rdmsr maps to
756 * MSR_ARCH_PERFMON_FIXED_CTR0 ... CTR2:
758 hwc->event_base =
759 MSR_ARCH_PERFMON_FIXED_CTR0 - X86_PMC_IDX_FIXED;
760 } else {
761 hwc->config_base = x86_pmu.eventsel;
762 hwc->event_base = x86_pmu.perfctr;
766 static inline int match_prev_assignment(struct hw_perf_event *hwc,
767 struct cpu_hw_events *cpuc,
768 int i)
770 return hwc->idx == cpuc->assign[i] &&
771 hwc->last_cpu == smp_processor_id() &&
772 hwc->last_tag == cpuc->tags[i];
775 static int x86_pmu_start(struct perf_event *event);
776 static void x86_pmu_stop(struct perf_event *event);
778 void hw_perf_enable(void)
780 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
781 struct perf_event *event;
782 struct hw_perf_event *hwc;
783 int i;
785 if (!x86_pmu_initialized())
786 return;
788 if (cpuc->enabled)
789 return;
791 if (cpuc->n_added) {
792 int n_running = cpuc->n_events - cpuc->n_added;
794 * apply assignment obtained either from
795 * hw_perf_group_sched_in() or x86_pmu_enable()
797 * step1: save events moving to new counters
798 * step2: reprogram moved events into new counters
800 for (i = 0; i < n_running; i++) {
802 event = cpuc->event_list[i];
803 hwc = &event->hw;
806 * we can avoid reprogramming counter if:
807 * - assigned same counter as last time
808 * - running on same CPU as last time
809 * - no other event has used the counter since
811 if (hwc->idx == -1 ||
812 match_prev_assignment(hwc, cpuc, i))
813 continue;
815 x86_pmu_stop(event);
817 hwc->idx = -1;
820 for (i = 0; i < cpuc->n_events; i++) {
822 event = cpuc->event_list[i];
823 hwc = &event->hw;
825 if (i < n_running &&
826 match_prev_assignment(hwc, cpuc, i))
827 continue;
829 if (hwc->idx == -1)
830 x86_assign_hw_event(event, cpuc, i);
832 x86_pmu_start(event);
834 cpuc->n_added = 0;
835 perf_events_lapic_init();
838 cpuc->enabled = 1;
839 barrier();
841 x86_pmu.enable_all();
844 static inline void __x86_pmu_enable_event(struct hw_perf_event *hwc)
846 wrmsrl(hwc->config_base + hwc->idx,
847 hwc->config | ARCH_PERFMON_EVENTSEL_ENABLE);
850 static inline void x86_pmu_disable_event(struct perf_event *event)
852 struct hw_perf_event *hwc = &event->hw;
854 wrmsrl(hwc->config_base + hwc->idx, hwc->config);
857 static DEFINE_PER_CPU(u64 [X86_PMC_IDX_MAX], pmc_prev_left);
860 * Set the next IRQ period, based on the hwc->period_left value.
861 * To be called with the event disabled in hw:
863 static int
864 x86_perf_event_set_period(struct perf_event *event)
866 struct hw_perf_event *hwc = &event->hw;
867 s64 left = atomic64_read(&hwc->period_left);
868 s64 period = hwc->sample_period;
869 int ret = 0, idx = hwc->idx;
871 if (idx == X86_PMC_IDX_FIXED_BTS)
872 return 0;
875 * If we are way outside a reasonable range then just skip forward:
877 if (unlikely(left <= -period)) {
878 left = period;
879 atomic64_set(&hwc->period_left, left);
880 hwc->last_period = period;
881 ret = 1;
884 if (unlikely(left <= 0)) {
885 left += period;
886 atomic64_set(&hwc->period_left, left);
887 hwc->last_period = period;
888 ret = 1;
891 * Quirk: certain CPUs dont like it if just 1 hw_event is left:
893 if (unlikely(left < 2))
894 left = 2;
896 if (left > x86_pmu.max_period)
897 left = x86_pmu.max_period;
899 per_cpu(pmc_prev_left[idx], smp_processor_id()) = left;
902 * The hw event starts counting from this event offset,
903 * mark it to be able to extra future deltas:
905 atomic64_set(&hwc->prev_count, (u64)-left);
907 wrmsrl(hwc->event_base + idx,
908 (u64)(-left) & x86_pmu.event_mask);
910 perf_event_update_userpage(event);
912 return ret;
915 static void x86_pmu_enable_event(struct perf_event *event)
917 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
918 if (cpuc->enabled)
919 __x86_pmu_enable_event(&event->hw);
923 * activate a single event
925 * The event is added to the group of enabled events
926 * but only if it can be scehduled with existing events.
928 * Called with PMU disabled. If successful and return value 1,
929 * then guaranteed to call perf_enable() and hw_perf_enable()
931 static int x86_pmu_enable(struct perf_event *event)
933 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
934 struct hw_perf_event *hwc;
935 int assign[X86_PMC_IDX_MAX];
936 int n, n0, ret;
938 hwc = &event->hw;
940 n0 = cpuc->n_events;
941 n = collect_events(cpuc, event, false);
942 if (n < 0)
943 return n;
945 ret = x86_pmu.schedule_events(cpuc, n, assign);
946 if (ret)
947 return ret;
949 * copy new assignment, now we know it is possible
950 * will be used by hw_perf_enable()
952 memcpy(cpuc->assign, assign, n*sizeof(int));
954 cpuc->n_events = n;
955 cpuc->n_added += n - n0;
957 return 0;
960 static int x86_pmu_start(struct perf_event *event)
962 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
963 int idx = event->hw.idx;
965 if (idx == -1)
966 return -EAGAIN;
968 x86_perf_event_set_period(event);
969 cpuc->events[idx] = event;
970 __set_bit(idx, cpuc->active_mask);
971 x86_pmu.enable(event);
972 perf_event_update_userpage(event);
974 return 0;
977 static void x86_pmu_unthrottle(struct perf_event *event)
979 int ret = x86_pmu_start(event);
980 WARN_ON_ONCE(ret);
983 void perf_event_print_debug(void)
985 u64 ctrl, status, overflow, pmc_ctrl, pmc_count, prev_left, fixed;
986 u64 pebs;
987 struct cpu_hw_events *cpuc;
988 unsigned long flags;
989 int cpu, idx;
991 if (!x86_pmu.num_events)
992 return;
994 local_irq_save(flags);
996 cpu = smp_processor_id();
997 cpuc = &per_cpu(cpu_hw_events, cpu);
999 if (x86_pmu.version >= 2) {
1000 rdmsrl(MSR_CORE_PERF_GLOBAL_CTRL, ctrl);
1001 rdmsrl(MSR_CORE_PERF_GLOBAL_STATUS, status);
1002 rdmsrl(MSR_CORE_PERF_GLOBAL_OVF_CTRL, overflow);
1003 rdmsrl(MSR_ARCH_PERFMON_FIXED_CTR_CTRL, fixed);
1004 rdmsrl(MSR_IA32_PEBS_ENABLE, pebs);
1006 pr_info("\n");
1007 pr_info("CPU#%d: ctrl: %016llx\n", cpu, ctrl);
1008 pr_info("CPU#%d: status: %016llx\n", cpu, status);
1009 pr_info("CPU#%d: overflow: %016llx\n", cpu, overflow);
1010 pr_info("CPU#%d: fixed: %016llx\n", cpu, fixed);
1011 pr_info("CPU#%d: pebs: %016llx\n", cpu, pebs);
1013 pr_info("CPU#%d: active: %016llx\n", cpu, *(u64 *)cpuc->active_mask);
1015 for (idx = 0; idx < x86_pmu.num_events; idx++) {
1016 rdmsrl(x86_pmu.eventsel + idx, pmc_ctrl);
1017 rdmsrl(x86_pmu.perfctr + idx, pmc_count);
1019 prev_left = per_cpu(pmc_prev_left[idx], cpu);
1021 pr_info("CPU#%d: gen-PMC%d ctrl: %016llx\n",
1022 cpu, idx, pmc_ctrl);
1023 pr_info("CPU#%d: gen-PMC%d count: %016llx\n",
1024 cpu, idx, pmc_count);
1025 pr_info("CPU#%d: gen-PMC%d left: %016llx\n",
1026 cpu, idx, prev_left);
1028 for (idx = 0; idx < x86_pmu.num_events_fixed; idx++) {
1029 rdmsrl(MSR_ARCH_PERFMON_FIXED_CTR0 + idx, pmc_count);
1031 pr_info("CPU#%d: fixed-PMC%d count: %016llx\n",
1032 cpu, idx, pmc_count);
1034 local_irq_restore(flags);
1037 static void x86_pmu_stop(struct perf_event *event)
1039 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
1040 struct hw_perf_event *hwc = &event->hw;
1041 int idx = hwc->idx;
1043 if (!__test_and_clear_bit(idx, cpuc->active_mask))
1044 return;
1046 x86_pmu.disable(event);
1049 * Drain the remaining delta count out of a event
1050 * that we are disabling:
1052 x86_perf_event_update(event);
1054 cpuc->events[idx] = NULL;
1057 static void x86_pmu_disable(struct perf_event *event)
1059 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
1060 int i;
1062 x86_pmu_stop(event);
1064 for (i = 0; i < cpuc->n_events; i++) {
1065 if (event == cpuc->event_list[i]) {
1067 if (x86_pmu.put_event_constraints)
1068 x86_pmu.put_event_constraints(cpuc, event);
1070 while (++i < cpuc->n_events)
1071 cpuc->event_list[i-1] = cpuc->event_list[i];
1073 --cpuc->n_events;
1074 break;
1077 perf_event_update_userpage(event);
1080 static int x86_pmu_handle_irq(struct pt_regs *regs)
1082 struct perf_sample_data data;
1083 struct cpu_hw_events *cpuc;
1084 struct perf_event *event;
1085 struct hw_perf_event *hwc;
1086 int idx, handled = 0;
1087 u64 val;
1089 perf_sample_data_init(&data, 0);
1091 cpuc = &__get_cpu_var(cpu_hw_events);
1093 for (idx = 0; idx < x86_pmu.num_events; idx++) {
1094 if (!test_bit(idx, cpuc->active_mask))
1095 continue;
1097 event = cpuc->events[idx];
1098 hwc = &event->hw;
1100 val = x86_perf_event_update(event);
1101 if (val & (1ULL << (x86_pmu.event_bits - 1)))
1102 continue;
1105 * event overflow
1107 handled = 1;
1108 data.period = event->hw.last_period;
1110 if (!x86_perf_event_set_period(event))
1111 continue;
1113 if (perf_event_overflow(event, 1, &data, regs))
1114 x86_pmu_stop(event);
1117 if (handled)
1118 inc_irq_stat(apic_perf_irqs);
1120 return handled;
1123 void smp_perf_pending_interrupt(struct pt_regs *regs)
1125 irq_enter();
1126 ack_APIC_irq();
1127 inc_irq_stat(apic_pending_irqs);
1128 perf_event_do_pending();
1129 irq_exit();
1132 void set_perf_event_pending(void)
1134 #ifdef CONFIG_X86_LOCAL_APIC
1135 if (!x86_pmu.apic || !x86_pmu_initialized())
1136 return;
1138 apic->send_IPI_self(LOCAL_PENDING_VECTOR);
1139 #endif
1142 void perf_events_lapic_init(void)
1144 #ifdef CONFIG_X86_LOCAL_APIC
1145 if (!x86_pmu.apic || !x86_pmu_initialized())
1146 return;
1149 * Always use NMI for PMU
1151 apic_write(APIC_LVTPC, APIC_DM_NMI);
1152 #endif
1155 static int __kprobes
1156 perf_event_nmi_handler(struct notifier_block *self,
1157 unsigned long cmd, void *__args)
1159 struct die_args *args = __args;
1160 struct pt_regs *regs;
1162 if (!atomic_read(&active_events))
1163 return NOTIFY_DONE;
1165 switch (cmd) {
1166 case DIE_NMI:
1167 case DIE_NMI_IPI:
1168 break;
1170 default:
1171 return NOTIFY_DONE;
1174 regs = args->regs;
1176 #ifdef CONFIG_X86_LOCAL_APIC
1177 apic_write(APIC_LVTPC, APIC_DM_NMI);
1178 #endif
1180 * Can't rely on the handled return value to say it was our NMI, two
1181 * events could trigger 'simultaneously' raising two back-to-back NMIs.
1183 * If the first NMI handles both, the latter will be empty and daze
1184 * the CPU.
1186 x86_pmu.handle_irq(regs);
1188 return NOTIFY_STOP;
1191 static __read_mostly struct notifier_block perf_event_nmi_notifier = {
1192 .notifier_call = perf_event_nmi_handler,
1193 .next = NULL,
1194 .priority = 1
1197 static struct event_constraint unconstrained;
1198 static struct event_constraint emptyconstraint;
1200 static struct event_constraint *
1201 x86_get_event_constraints(struct cpu_hw_events *cpuc, struct perf_event *event)
1203 struct event_constraint *c;
1205 if (x86_pmu.event_constraints) {
1206 for_each_event_constraint(c, x86_pmu.event_constraints) {
1207 if ((event->hw.config & c->cmask) == c->code)
1208 return c;
1212 return &unconstrained;
1215 static int x86_event_sched_in(struct perf_event *event,
1216 struct perf_cpu_context *cpuctx)
1218 int ret = 0;
1220 event->state = PERF_EVENT_STATE_ACTIVE;
1221 event->oncpu = smp_processor_id();
1222 event->tstamp_running += event->ctx->time - event->tstamp_stopped;
1224 if (!is_x86_event(event))
1225 ret = event->pmu->enable(event);
1227 if (!ret && !is_software_event(event))
1228 cpuctx->active_oncpu++;
1230 if (!ret && event->attr.exclusive)
1231 cpuctx->exclusive = 1;
1233 return ret;
1236 static void x86_event_sched_out(struct perf_event *event,
1237 struct perf_cpu_context *cpuctx)
1239 event->state = PERF_EVENT_STATE_INACTIVE;
1240 event->oncpu = -1;
1242 if (!is_x86_event(event))
1243 event->pmu->disable(event);
1245 event->tstamp_running -= event->ctx->time - event->tstamp_stopped;
1247 if (!is_software_event(event))
1248 cpuctx->active_oncpu--;
1250 if (event->attr.exclusive || !cpuctx->active_oncpu)
1251 cpuctx->exclusive = 0;
1255 * Called to enable a whole group of events.
1256 * Returns 1 if the group was enabled, or -EAGAIN if it could not be.
1257 * Assumes the caller has disabled interrupts and has
1258 * frozen the PMU with hw_perf_save_disable.
1260 * called with PMU disabled. If successful and return value 1,
1261 * then guaranteed to call perf_enable() and hw_perf_enable()
1263 int hw_perf_group_sched_in(struct perf_event *leader,
1264 struct perf_cpu_context *cpuctx,
1265 struct perf_event_context *ctx)
1267 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
1268 struct perf_event *sub;
1269 int assign[X86_PMC_IDX_MAX];
1270 int n0, n1, ret;
1272 /* n0 = total number of events */
1273 n0 = collect_events(cpuc, leader, true);
1274 if (n0 < 0)
1275 return n0;
1277 ret = x86_pmu.schedule_events(cpuc, n0, assign);
1278 if (ret)
1279 return ret;
1281 ret = x86_event_sched_in(leader, cpuctx);
1282 if (ret)
1283 return ret;
1285 n1 = 1;
1286 list_for_each_entry(sub, &leader->sibling_list, group_entry) {
1287 if (sub->state > PERF_EVENT_STATE_OFF) {
1288 ret = x86_event_sched_in(sub, cpuctx);
1289 if (ret)
1290 goto undo;
1291 ++n1;
1295 * copy new assignment, now we know it is possible
1296 * will be used by hw_perf_enable()
1298 memcpy(cpuc->assign, assign, n0*sizeof(int));
1300 cpuc->n_events = n0;
1301 cpuc->n_added += n1;
1302 ctx->nr_active += n1;
1305 * 1 means successful and events are active
1306 * This is not quite true because we defer
1307 * actual activation until hw_perf_enable() but
1308 * this way we* ensure caller won't try to enable
1309 * individual events
1311 return 1;
1312 undo:
1313 x86_event_sched_out(leader, cpuctx);
1314 n0 = 1;
1315 list_for_each_entry(sub, &leader->sibling_list, group_entry) {
1316 if (sub->state == PERF_EVENT_STATE_ACTIVE) {
1317 x86_event_sched_out(sub, cpuctx);
1318 if (++n0 == n1)
1319 break;
1322 return ret;
1325 #include "perf_event_amd.c"
1326 #include "perf_event_p6.c"
1327 #include "perf_event_p4.c"
1328 #include "perf_event_intel_lbr.c"
1329 #include "perf_event_intel_ds.c"
1330 #include "perf_event_intel.c"
1332 static int __cpuinit
1333 x86_pmu_notifier(struct notifier_block *self, unsigned long action, void *hcpu)
1335 unsigned int cpu = (long)hcpu;
1337 switch (action & ~CPU_TASKS_FROZEN) {
1338 case CPU_UP_PREPARE:
1339 if (x86_pmu.cpu_prepare)
1340 x86_pmu.cpu_prepare(cpu);
1341 break;
1343 case CPU_STARTING:
1344 if (x86_pmu.cpu_starting)
1345 x86_pmu.cpu_starting(cpu);
1346 break;
1348 case CPU_DYING:
1349 if (x86_pmu.cpu_dying)
1350 x86_pmu.cpu_dying(cpu);
1351 break;
1353 case CPU_DEAD:
1354 if (x86_pmu.cpu_dead)
1355 x86_pmu.cpu_dead(cpu);
1356 break;
1358 default:
1359 break;
1362 return NOTIFY_OK;
1365 static void __init pmu_check_apic(void)
1367 if (cpu_has_apic)
1368 return;
1370 x86_pmu.apic = 0;
1371 pr_info("no APIC, boot with the \"lapic\" boot parameter to force-enable it.\n");
1372 pr_info("no hardware sampling interrupt available.\n");
1375 void __init init_hw_perf_events(void)
1377 struct event_constraint *c;
1378 int err;
1380 pr_info("Performance Events: ");
1382 switch (boot_cpu_data.x86_vendor) {
1383 case X86_VENDOR_INTEL:
1384 err = intel_pmu_init();
1385 break;
1386 case X86_VENDOR_AMD:
1387 err = amd_pmu_init();
1388 break;
1389 default:
1390 return;
1392 if (err != 0) {
1393 pr_cont("no PMU driver, software events only.\n");
1394 return;
1397 pmu_check_apic();
1399 pr_cont("%s PMU driver.\n", x86_pmu.name);
1401 if (x86_pmu.quirks)
1402 x86_pmu.quirks();
1404 if (x86_pmu.num_events > X86_PMC_MAX_GENERIC) {
1405 WARN(1, KERN_ERR "hw perf events %d > max(%d), clipping!",
1406 x86_pmu.num_events, X86_PMC_MAX_GENERIC);
1407 x86_pmu.num_events = X86_PMC_MAX_GENERIC;
1409 perf_event_mask = (1 << x86_pmu.num_events) - 1;
1410 perf_max_events = x86_pmu.num_events;
1412 if (x86_pmu.num_events_fixed > X86_PMC_MAX_FIXED) {
1413 WARN(1, KERN_ERR "hw perf events fixed %d > max(%d), clipping!",
1414 x86_pmu.num_events_fixed, X86_PMC_MAX_FIXED);
1415 x86_pmu.num_events_fixed = X86_PMC_MAX_FIXED;
1418 perf_event_mask |=
1419 ((1LL << x86_pmu.num_events_fixed)-1) << X86_PMC_IDX_FIXED;
1420 x86_pmu.intel_ctrl = perf_event_mask;
1422 perf_events_lapic_init();
1423 register_die_notifier(&perf_event_nmi_notifier);
1425 unconstrained = (struct event_constraint)
1426 __EVENT_CONSTRAINT(0, (1ULL << x86_pmu.num_events) - 1,
1427 0, x86_pmu.num_events);
1429 if (x86_pmu.event_constraints) {
1430 for_each_event_constraint(c, x86_pmu.event_constraints) {
1431 if (c->cmask != INTEL_ARCH_FIXED_MASK)
1432 continue;
1434 c->idxmsk64 |= (1ULL << x86_pmu.num_events) - 1;
1435 c->weight += x86_pmu.num_events;
1439 pr_info("... version: %d\n", x86_pmu.version);
1440 pr_info("... bit width: %d\n", x86_pmu.event_bits);
1441 pr_info("... generic registers: %d\n", x86_pmu.num_events);
1442 pr_info("... value mask: %016Lx\n", x86_pmu.event_mask);
1443 pr_info("... max period: %016Lx\n", x86_pmu.max_period);
1444 pr_info("... fixed-purpose events: %d\n", x86_pmu.num_events_fixed);
1445 pr_info("... event mask: %016Lx\n", perf_event_mask);
1447 perf_cpu_notifier(x86_pmu_notifier);
1450 static inline void x86_pmu_read(struct perf_event *event)
1452 x86_perf_event_update(event);
1455 static const struct pmu pmu = {
1456 .enable = x86_pmu_enable,
1457 .disable = x86_pmu_disable,
1458 .start = x86_pmu_start,
1459 .stop = x86_pmu_stop,
1460 .read = x86_pmu_read,
1461 .unthrottle = x86_pmu_unthrottle,
1465 * validate that we can schedule this event
1467 static int validate_event(struct perf_event *event)
1469 struct cpu_hw_events *fake_cpuc;
1470 struct event_constraint *c;
1471 int ret = 0;
1473 fake_cpuc = kmalloc(sizeof(*fake_cpuc), GFP_KERNEL | __GFP_ZERO);
1474 if (!fake_cpuc)
1475 return -ENOMEM;
1477 c = x86_pmu.get_event_constraints(fake_cpuc, event);
1479 if (!c || !c->weight)
1480 ret = -ENOSPC;
1482 if (x86_pmu.put_event_constraints)
1483 x86_pmu.put_event_constraints(fake_cpuc, event);
1485 kfree(fake_cpuc);
1487 return ret;
1491 * validate a single event group
1493 * validation include:
1494 * - check events are compatible which each other
1495 * - events do not compete for the same counter
1496 * - number of events <= number of counters
1498 * validation ensures the group can be loaded onto the
1499 * PMU if it was the only group available.
1501 static int validate_group(struct perf_event *event)
1503 struct perf_event *leader = event->group_leader;
1504 struct cpu_hw_events *fake_cpuc;
1505 int ret, n;
1507 ret = -ENOMEM;
1508 fake_cpuc = kmalloc(sizeof(*fake_cpuc), GFP_KERNEL | __GFP_ZERO);
1509 if (!fake_cpuc)
1510 goto out;
1513 * the event is not yet connected with its
1514 * siblings therefore we must first collect
1515 * existing siblings, then add the new event
1516 * before we can simulate the scheduling
1518 ret = -ENOSPC;
1519 n = collect_events(fake_cpuc, leader, true);
1520 if (n < 0)
1521 goto out_free;
1523 fake_cpuc->n_events = n;
1524 n = collect_events(fake_cpuc, event, false);
1525 if (n < 0)
1526 goto out_free;
1528 fake_cpuc->n_events = n;
1530 ret = x86_pmu.schedule_events(fake_cpuc, n, NULL);
1532 out_free:
1533 kfree(fake_cpuc);
1534 out:
1535 return ret;
1538 const struct pmu *hw_perf_event_init(struct perf_event *event)
1540 const struct pmu *tmp;
1541 int err;
1543 err = __hw_perf_event_init(event);
1544 if (!err) {
1546 * we temporarily connect event to its pmu
1547 * such that validate_group() can classify
1548 * it as an x86 event using is_x86_event()
1550 tmp = event->pmu;
1551 event->pmu = &pmu;
1553 if (event->group_leader != event)
1554 err = validate_group(event);
1555 else
1556 err = validate_event(event);
1558 event->pmu = tmp;
1560 if (err) {
1561 if (event->destroy)
1562 event->destroy(event);
1563 return ERR_PTR(err);
1566 return &pmu;
1570 * callchain support
1573 static inline
1574 void callchain_store(struct perf_callchain_entry *entry, u64 ip)
1576 if (entry->nr < PERF_MAX_STACK_DEPTH)
1577 entry->ip[entry->nr++] = ip;
1580 static DEFINE_PER_CPU(struct perf_callchain_entry, pmc_irq_entry);
1581 static DEFINE_PER_CPU(struct perf_callchain_entry, pmc_nmi_entry);
1584 static void
1585 backtrace_warning_symbol(void *data, char *msg, unsigned long symbol)
1587 /* Ignore warnings */
1590 static void backtrace_warning(void *data, char *msg)
1592 /* Ignore warnings */
1595 static int backtrace_stack(void *data, char *name)
1597 return 0;
1600 static void backtrace_address(void *data, unsigned long addr, int reliable)
1602 struct perf_callchain_entry *entry = data;
1604 if (reliable)
1605 callchain_store(entry, addr);
1608 static const struct stacktrace_ops backtrace_ops = {
1609 .warning = backtrace_warning,
1610 .warning_symbol = backtrace_warning_symbol,
1611 .stack = backtrace_stack,
1612 .address = backtrace_address,
1613 .walk_stack = print_context_stack_bp,
1616 #include "../dumpstack.h"
1618 static void
1619 perf_callchain_kernel(struct pt_regs *regs, struct perf_callchain_entry *entry)
1621 callchain_store(entry, PERF_CONTEXT_KERNEL);
1622 callchain_store(entry, regs->ip);
1624 dump_trace(NULL, regs, NULL, regs->bp, &backtrace_ops, entry);
1627 static int copy_stack_frame(const void __user *fp, struct stack_frame *frame)
1629 unsigned long bytes;
1631 bytes = copy_from_user_nmi(frame, fp, sizeof(*frame));
1633 return bytes == sizeof(*frame);
1636 static void
1637 perf_callchain_user(struct pt_regs *regs, struct perf_callchain_entry *entry)
1639 struct stack_frame frame;
1640 const void __user *fp;
1642 if (!user_mode(regs))
1643 regs = task_pt_regs(current);
1645 fp = (void __user *)regs->bp;
1647 callchain_store(entry, PERF_CONTEXT_USER);
1648 callchain_store(entry, regs->ip);
1650 while (entry->nr < PERF_MAX_STACK_DEPTH) {
1651 frame.next_frame = NULL;
1652 frame.return_address = 0;
1654 if (!copy_stack_frame(fp, &frame))
1655 break;
1657 if ((unsigned long)fp < regs->sp)
1658 break;
1660 callchain_store(entry, frame.return_address);
1661 fp = frame.next_frame;
1665 static void
1666 perf_do_callchain(struct pt_regs *regs, struct perf_callchain_entry *entry)
1668 int is_user;
1670 if (!regs)
1671 return;
1673 is_user = user_mode(regs);
1675 if (is_user && current->state != TASK_RUNNING)
1676 return;
1678 if (!is_user)
1679 perf_callchain_kernel(regs, entry);
1681 if (current->mm)
1682 perf_callchain_user(regs, entry);
1685 struct perf_callchain_entry *perf_callchain(struct pt_regs *regs)
1687 struct perf_callchain_entry *entry;
1689 if (in_nmi())
1690 entry = &__get_cpu_var(pmc_nmi_entry);
1691 else
1692 entry = &__get_cpu_var(pmc_irq_entry);
1694 entry->nr = 0;
1696 perf_do_callchain(regs, entry);
1698 return entry;