USB: xHCI: allocate bigger ring for isochronous endpoint
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / drivers / regulator / core.c
blob422a709d271d51d593899db82b0b930cf93f2847
1 /*
2 * core.c -- Voltage/Current Regulator framework.
4 * Copyright 2007, 2008 Wolfson Microelectronics PLC.
5 * Copyright 2008 SlimLogic Ltd.
7 * Author: Liam Girdwood <lrg@slimlogic.co.uk>
9 * This program is free software; you can redistribute it and/or modify it
10 * under the terms of the GNU General Public License as published by the
11 * Free Software Foundation; either version 2 of the License, or (at your
12 * option) any later version.
16 #include <linux/kernel.h>
17 #include <linux/init.h>
18 #include <linux/device.h>
19 #include <linux/slab.h>
20 #include <linux/err.h>
21 #include <linux/mutex.h>
22 #include <linux/suspend.h>
23 #include <linux/delay.h>
24 #include <linux/regulator/consumer.h>
25 #include <linux/regulator/driver.h>
26 #include <linux/regulator/machine.h>
28 #include "dummy.h"
30 #define REGULATOR_VERSION "0.5"
32 static DEFINE_MUTEX(regulator_list_mutex);
33 static LIST_HEAD(regulator_list);
34 static LIST_HEAD(regulator_map_list);
35 static int has_full_constraints;
38 * struct regulator_map
40 * Used to provide symbolic supply names to devices.
42 struct regulator_map {
43 struct list_head list;
44 const char *dev_name; /* The dev_name() for the consumer */
45 const char *supply;
46 struct regulator_dev *regulator;
50 * struct regulator
52 * One for each consumer device.
54 struct regulator {
55 struct device *dev;
56 struct list_head list;
57 int uA_load;
58 int min_uV;
59 int max_uV;
60 char *supply_name;
61 struct device_attribute dev_attr;
62 struct regulator_dev *rdev;
65 static int _regulator_is_enabled(struct regulator_dev *rdev);
66 static int _regulator_disable(struct regulator_dev *rdev);
67 static int _regulator_get_voltage(struct regulator_dev *rdev);
68 static int _regulator_get_current_limit(struct regulator_dev *rdev);
69 static unsigned int _regulator_get_mode(struct regulator_dev *rdev);
70 static void _notifier_call_chain(struct regulator_dev *rdev,
71 unsigned long event, void *data);
73 static const char *rdev_get_name(struct regulator_dev *rdev)
75 if (rdev->constraints && rdev->constraints->name)
76 return rdev->constraints->name;
77 else if (rdev->desc->name)
78 return rdev->desc->name;
79 else
80 return "";
83 /* gets the regulator for a given consumer device */
84 static struct regulator *get_device_regulator(struct device *dev)
86 struct regulator *regulator = NULL;
87 struct regulator_dev *rdev;
89 mutex_lock(&regulator_list_mutex);
90 list_for_each_entry(rdev, &regulator_list, list) {
91 mutex_lock(&rdev->mutex);
92 list_for_each_entry(regulator, &rdev->consumer_list, list) {
93 if (regulator->dev == dev) {
94 mutex_unlock(&rdev->mutex);
95 mutex_unlock(&regulator_list_mutex);
96 return regulator;
99 mutex_unlock(&rdev->mutex);
101 mutex_unlock(&regulator_list_mutex);
102 return NULL;
105 /* Platform voltage constraint check */
106 static int regulator_check_voltage(struct regulator_dev *rdev,
107 int *min_uV, int *max_uV)
109 BUG_ON(*min_uV > *max_uV);
111 if (!rdev->constraints) {
112 printk(KERN_ERR "%s: no constraints for %s\n", __func__,
113 rdev_get_name(rdev));
114 return -ENODEV;
116 if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
117 printk(KERN_ERR "%s: operation not allowed for %s\n",
118 __func__, rdev_get_name(rdev));
119 return -EPERM;
122 if (*max_uV > rdev->constraints->max_uV)
123 *max_uV = rdev->constraints->max_uV;
124 if (*min_uV < rdev->constraints->min_uV)
125 *min_uV = rdev->constraints->min_uV;
127 if (*min_uV > *max_uV)
128 return -EINVAL;
130 return 0;
133 /* current constraint check */
134 static int regulator_check_current_limit(struct regulator_dev *rdev,
135 int *min_uA, int *max_uA)
137 BUG_ON(*min_uA > *max_uA);
139 if (!rdev->constraints) {
140 printk(KERN_ERR "%s: no constraints for %s\n", __func__,
141 rdev_get_name(rdev));
142 return -ENODEV;
144 if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_CURRENT)) {
145 printk(KERN_ERR "%s: operation not allowed for %s\n",
146 __func__, rdev_get_name(rdev));
147 return -EPERM;
150 if (*max_uA > rdev->constraints->max_uA)
151 *max_uA = rdev->constraints->max_uA;
152 if (*min_uA < rdev->constraints->min_uA)
153 *min_uA = rdev->constraints->min_uA;
155 if (*min_uA > *max_uA)
156 return -EINVAL;
158 return 0;
161 /* operating mode constraint check */
162 static int regulator_check_mode(struct regulator_dev *rdev, int mode)
164 switch (mode) {
165 case REGULATOR_MODE_FAST:
166 case REGULATOR_MODE_NORMAL:
167 case REGULATOR_MODE_IDLE:
168 case REGULATOR_MODE_STANDBY:
169 break;
170 default:
171 return -EINVAL;
174 if (!rdev->constraints) {
175 printk(KERN_ERR "%s: no constraints for %s\n", __func__,
176 rdev_get_name(rdev));
177 return -ENODEV;
179 if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_MODE)) {
180 printk(KERN_ERR "%s: operation not allowed for %s\n",
181 __func__, rdev_get_name(rdev));
182 return -EPERM;
184 if (!(rdev->constraints->valid_modes_mask & mode)) {
185 printk(KERN_ERR "%s: invalid mode %x for %s\n",
186 __func__, mode, rdev_get_name(rdev));
187 return -EINVAL;
189 return 0;
192 /* dynamic regulator mode switching constraint check */
193 static int regulator_check_drms(struct regulator_dev *rdev)
195 if (!rdev->constraints) {
196 printk(KERN_ERR "%s: no constraints for %s\n", __func__,
197 rdev_get_name(rdev));
198 return -ENODEV;
200 if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS)) {
201 printk(KERN_ERR "%s: operation not allowed for %s\n",
202 __func__, rdev_get_name(rdev));
203 return -EPERM;
205 return 0;
208 static ssize_t device_requested_uA_show(struct device *dev,
209 struct device_attribute *attr, char *buf)
211 struct regulator *regulator;
213 regulator = get_device_regulator(dev);
214 if (regulator == NULL)
215 return 0;
217 return sprintf(buf, "%d\n", regulator->uA_load);
220 static ssize_t regulator_uV_show(struct device *dev,
221 struct device_attribute *attr, char *buf)
223 struct regulator_dev *rdev = dev_get_drvdata(dev);
224 ssize_t ret;
226 mutex_lock(&rdev->mutex);
227 ret = sprintf(buf, "%d\n", _regulator_get_voltage(rdev));
228 mutex_unlock(&rdev->mutex);
230 return ret;
232 static DEVICE_ATTR(microvolts, 0444, regulator_uV_show, NULL);
234 static ssize_t regulator_uA_show(struct device *dev,
235 struct device_attribute *attr, char *buf)
237 struct regulator_dev *rdev = dev_get_drvdata(dev);
239 return sprintf(buf, "%d\n", _regulator_get_current_limit(rdev));
241 static DEVICE_ATTR(microamps, 0444, regulator_uA_show, NULL);
243 static ssize_t regulator_name_show(struct device *dev,
244 struct device_attribute *attr, char *buf)
246 struct regulator_dev *rdev = dev_get_drvdata(dev);
248 return sprintf(buf, "%s\n", rdev_get_name(rdev));
251 static ssize_t regulator_print_opmode(char *buf, int mode)
253 switch (mode) {
254 case REGULATOR_MODE_FAST:
255 return sprintf(buf, "fast\n");
256 case REGULATOR_MODE_NORMAL:
257 return sprintf(buf, "normal\n");
258 case REGULATOR_MODE_IDLE:
259 return sprintf(buf, "idle\n");
260 case REGULATOR_MODE_STANDBY:
261 return sprintf(buf, "standby\n");
263 return sprintf(buf, "unknown\n");
266 static ssize_t regulator_opmode_show(struct device *dev,
267 struct device_attribute *attr, char *buf)
269 struct regulator_dev *rdev = dev_get_drvdata(dev);
271 return regulator_print_opmode(buf, _regulator_get_mode(rdev));
273 static DEVICE_ATTR(opmode, 0444, regulator_opmode_show, NULL);
275 static ssize_t regulator_print_state(char *buf, int state)
277 if (state > 0)
278 return sprintf(buf, "enabled\n");
279 else if (state == 0)
280 return sprintf(buf, "disabled\n");
281 else
282 return sprintf(buf, "unknown\n");
285 static ssize_t regulator_state_show(struct device *dev,
286 struct device_attribute *attr, char *buf)
288 struct regulator_dev *rdev = dev_get_drvdata(dev);
289 ssize_t ret;
291 mutex_lock(&rdev->mutex);
292 ret = regulator_print_state(buf, _regulator_is_enabled(rdev));
293 mutex_unlock(&rdev->mutex);
295 return ret;
297 static DEVICE_ATTR(state, 0444, regulator_state_show, NULL);
299 static ssize_t regulator_status_show(struct device *dev,
300 struct device_attribute *attr, char *buf)
302 struct regulator_dev *rdev = dev_get_drvdata(dev);
303 int status;
304 char *label;
306 status = rdev->desc->ops->get_status(rdev);
307 if (status < 0)
308 return status;
310 switch (status) {
311 case REGULATOR_STATUS_OFF:
312 label = "off";
313 break;
314 case REGULATOR_STATUS_ON:
315 label = "on";
316 break;
317 case REGULATOR_STATUS_ERROR:
318 label = "error";
319 break;
320 case REGULATOR_STATUS_FAST:
321 label = "fast";
322 break;
323 case REGULATOR_STATUS_NORMAL:
324 label = "normal";
325 break;
326 case REGULATOR_STATUS_IDLE:
327 label = "idle";
328 break;
329 case REGULATOR_STATUS_STANDBY:
330 label = "standby";
331 break;
332 default:
333 return -ERANGE;
336 return sprintf(buf, "%s\n", label);
338 static DEVICE_ATTR(status, 0444, regulator_status_show, NULL);
340 static ssize_t regulator_min_uA_show(struct device *dev,
341 struct device_attribute *attr, char *buf)
343 struct regulator_dev *rdev = dev_get_drvdata(dev);
345 if (!rdev->constraints)
346 return sprintf(buf, "constraint not defined\n");
348 return sprintf(buf, "%d\n", rdev->constraints->min_uA);
350 static DEVICE_ATTR(min_microamps, 0444, regulator_min_uA_show, NULL);
352 static ssize_t regulator_max_uA_show(struct device *dev,
353 struct device_attribute *attr, char *buf)
355 struct regulator_dev *rdev = dev_get_drvdata(dev);
357 if (!rdev->constraints)
358 return sprintf(buf, "constraint not defined\n");
360 return sprintf(buf, "%d\n", rdev->constraints->max_uA);
362 static DEVICE_ATTR(max_microamps, 0444, regulator_max_uA_show, NULL);
364 static ssize_t regulator_min_uV_show(struct device *dev,
365 struct device_attribute *attr, char *buf)
367 struct regulator_dev *rdev = dev_get_drvdata(dev);
369 if (!rdev->constraints)
370 return sprintf(buf, "constraint not defined\n");
372 return sprintf(buf, "%d\n", rdev->constraints->min_uV);
374 static DEVICE_ATTR(min_microvolts, 0444, regulator_min_uV_show, NULL);
376 static ssize_t regulator_max_uV_show(struct device *dev,
377 struct device_attribute *attr, char *buf)
379 struct regulator_dev *rdev = dev_get_drvdata(dev);
381 if (!rdev->constraints)
382 return sprintf(buf, "constraint not defined\n");
384 return sprintf(buf, "%d\n", rdev->constraints->max_uV);
386 static DEVICE_ATTR(max_microvolts, 0444, regulator_max_uV_show, NULL);
388 static ssize_t regulator_total_uA_show(struct device *dev,
389 struct device_attribute *attr, char *buf)
391 struct regulator_dev *rdev = dev_get_drvdata(dev);
392 struct regulator *regulator;
393 int uA = 0;
395 mutex_lock(&rdev->mutex);
396 list_for_each_entry(regulator, &rdev->consumer_list, list)
397 uA += regulator->uA_load;
398 mutex_unlock(&rdev->mutex);
399 return sprintf(buf, "%d\n", uA);
401 static DEVICE_ATTR(requested_microamps, 0444, regulator_total_uA_show, NULL);
403 static ssize_t regulator_num_users_show(struct device *dev,
404 struct device_attribute *attr, char *buf)
406 struct regulator_dev *rdev = dev_get_drvdata(dev);
407 return sprintf(buf, "%d\n", rdev->use_count);
410 static ssize_t regulator_type_show(struct device *dev,
411 struct device_attribute *attr, char *buf)
413 struct regulator_dev *rdev = dev_get_drvdata(dev);
415 switch (rdev->desc->type) {
416 case REGULATOR_VOLTAGE:
417 return sprintf(buf, "voltage\n");
418 case REGULATOR_CURRENT:
419 return sprintf(buf, "current\n");
421 return sprintf(buf, "unknown\n");
424 static ssize_t regulator_suspend_mem_uV_show(struct device *dev,
425 struct device_attribute *attr, char *buf)
427 struct regulator_dev *rdev = dev_get_drvdata(dev);
429 return sprintf(buf, "%d\n", rdev->constraints->state_mem.uV);
431 static DEVICE_ATTR(suspend_mem_microvolts, 0444,
432 regulator_suspend_mem_uV_show, NULL);
434 static ssize_t regulator_suspend_disk_uV_show(struct device *dev,
435 struct device_attribute *attr, char *buf)
437 struct regulator_dev *rdev = dev_get_drvdata(dev);
439 return sprintf(buf, "%d\n", rdev->constraints->state_disk.uV);
441 static DEVICE_ATTR(suspend_disk_microvolts, 0444,
442 regulator_suspend_disk_uV_show, NULL);
444 static ssize_t regulator_suspend_standby_uV_show(struct device *dev,
445 struct device_attribute *attr, char *buf)
447 struct regulator_dev *rdev = dev_get_drvdata(dev);
449 return sprintf(buf, "%d\n", rdev->constraints->state_standby.uV);
451 static DEVICE_ATTR(suspend_standby_microvolts, 0444,
452 regulator_suspend_standby_uV_show, NULL);
454 static ssize_t regulator_suspend_mem_mode_show(struct device *dev,
455 struct device_attribute *attr, char *buf)
457 struct regulator_dev *rdev = dev_get_drvdata(dev);
459 return regulator_print_opmode(buf,
460 rdev->constraints->state_mem.mode);
462 static DEVICE_ATTR(suspend_mem_mode, 0444,
463 regulator_suspend_mem_mode_show, NULL);
465 static ssize_t regulator_suspend_disk_mode_show(struct device *dev,
466 struct device_attribute *attr, char *buf)
468 struct regulator_dev *rdev = dev_get_drvdata(dev);
470 return regulator_print_opmode(buf,
471 rdev->constraints->state_disk.mode);
473 static DEVICE_ATTR(suspend_disk_mode, 0444,
474 regulator_suspend_disk_mode_show, NULL);
476 static ssize_t regulator_suspend_standby_mode_show(struct device *dev,
477 struct device_attribute *attr, char *buf)
479 struct regulator_dev *rdev = dev_get_drvdata(dev);
481 return regulator_print_opmode(buf,
482 rdev->constraints->state_standby.mode);
484 static DEVICE_ATTR(suspend_standby_mode, 0444,
485 regulator_suspend_standby_mode_show, NULL);
487 static ssize_t regulator_suspend_mem_state_show(struct device *dev,
488 struct device_attribute *attr, char *buf)
490 struct regulator_dev *rdev = dev_get_drvdata(dev);
492 return regulator_print_state(buf,
493 rdev->constraints->state_mem.enabled);
495 static DEVICE_ATTR(suspend_mem_state, 0444,
496 regulator_suspend_mem_state_show, NULL);
498 static ssize_t regulator_suspend_disk_state_show(struct device *dev,
499 struct device_attribute *attr, char *buf)
501 struct regulator_dev *rdev = dev_get_drvdata(dev);
503 return regulator_print_state(buf,
504 rdev->constraints->state_disk.enabled);
506 static DEVICE_ATTR(suspend_disk_state, 0444,
507 regulator_suspend_disk_state_show, NULL);
509 static ssize_t regulator_suspend_standby_state_show(struct device *dev,
510 struct device_attribute *attr, char *buf)
512 struct regulator_dev *rdev = dev_get_drvdata(dev);
514 return regulator_print_state(buf,
515 rdev->constraints->state_standby.enabled);
517 static DEVICE_ATTR(suspend_standby_state, 0444,
518 regulator_suspend_standby_state_show, NULL);
522 * These are the only attributes are present for all regulators.
523 * Other attributes are a function of regulator functionality.
525 static struct device_attribute regulator_dev_attrs[] = {
526 __ATTR(name, 0444, regulator_name_show, NULL),
527 __ATTR(num_users, 0444, regulator_num_users_show, NULL),
528 __ATTR(type, 0444, regulator_type_show, NULL),
529 __ATTR_NULL,
532 static void regulator_dev_release(struct device *dev)
534 struct regulator_dev *rdev = dev_get_drvdata(dev);
535 kfree(rdev);
538 static struct class regulator_class = {
539 .name = "regulator",
540 .dev_release = regulator_dev_release,
541 .dev_attrs = regulator_dev_attrs,
544 /* Calculate the new optimum regulator operating mode based on the new total
545 * consumer load. All locks held by caller */
546 static void drms_uA_update(struct regulator_dev *rdev)
548 struct regulator *sibling;
549 int current_uA = 0, output_uV, input_uV, err;
550 unsigned int mode;
552 err = regulator_check_drms(rdev);
553 if (err < 0 || !rdev->desc->ops->get_optimum_mode ||
554 !rdev->desc->ops->get_voltage || !rdev->desc->ops->set_mode)
555 return;
557 /* get output voltage */
558 output_uV = rdev->desc->ops->get_voltage(rdev);
559 if (output_uV <= 0)
560 return;
562 /* get input voltage */
563 if (rdev->supply && rdev->supply->desc->ops->get_voltage)
564 input_uV = rdev->supply->desc->ops->get_voltage(rdev->supply);
565 else
566 input_uV = rdev->constraints->input_uV;
567 if (input_uV <= 0)
568 return;
570 /* calc total requested load */
571 list_for_each_entry(sibling, &rdev->consumer_list, list)
572 current_uA += sibling->uA_load;
574 /* now get the optimum mode for our new total regulator load */
575 mode = rdev->desc->ops->get_optimum_mode(rdev, input_uV,
576 output_uV, current_uA);
578 /* check the new mode is allowed */
579 err = regulator_check_mode(rdev, mode);
580 if (err == 0)
581 rdev->desc->ops->set_mode(rdev, mode);
584 static int suspend_set_state(struct regulator_dev *rdev,
585 struct regulator_state *rstate)
587 int ret = 0;
588 bool can_set_state;
590 can_set_state = rdev->desc->ops->set_suspend_enable &&
591 rdev->desc->ops->set_suspend_disable;
593 /* If we have no suspend mode configration don't set anything;
594 * only warn if the driver actually makes the suspend mode
595 * configurable.
597 if (!rstate->enabled && !rstate->disabled) {
598 if (can_set_state)
599 printk(KERN_WARNING "%s: No configuration for %s\n",
600 __func__, rdev_get_name(rdev));
601 return 0;
604 if (rstate->enabled && rstate->disabled) {
605 printk(KERN_ERR "%s: invalid configuration for %s\n",
606 __func__, rdev_get_name(rdev));
607 return -EINVAL;
610 if (!can_set_state) {
611 printk(KERN_ERR "%s: no way to set suspend state\n",
612 __func__);
613 return -EINVAL;
616 if (rstate->enabled)
617 ret = rdev->desc->ops->set_suspend_enable(rdev);
618 else
619 ret = rdev->desc->ops->set_suspend_disable(rdev);
620 if (ret < 0) {
621 printk(KERN_ERR "%s: failed to enabled/disable\n", __func__);
622 return ret;
625 if (rdev->desc->ops->set_suspend_voltage && rstate->uV > 0) {
626 ret = rdev->desc->ops->set_suspend_voltage(rdev, rstate->uV);
627 if (ret < 0) {
628 printk(KERN_ERR "%s: failed to set voltage\n",
629 __func__);
630 return ret;
634 if (rdev->desc->ops->set_suspend_mode && rstate->mode > 0) {
635 ret = rdev->desc->ops->set_suspend_mode(rdev, rstate->mode);
636 if (ret < 0) {
637 printk(KERN_ERR "%s: failed to set mode\n", __func__);
638 return ret;
641 return ret;
644 /* locks held by caller */
645 static int suspend_prepare(struct regulator_dev *rdev, suspend_state_t state)
647 if (!rdev->constraints)
648 return -EINVAL;
650 switch (state) {
651 case PM_SUSPEND_STANDBY:
652 return suspend_set_state(rdev,
653 &rdev->constraints->state_standby);
654 case PM_SUSPEND_MEM:
655 return suspend_set_state(rdev,
656 &rdev->constraints->state_mem);
657 case PM_SUSPEND_MAX:
658 return suspend_set_state(rdev,
659 &rdev->constraints->state_disk);
660 default:
661 return -EINVAL;
665 static void print_constraints(struct regulator_dev *rdev)
667 struct regulation_constraints *constraints = rdev->constraints;
668 char buf[80] = "";
669 int count = 0;
670 int ret;
672 if (constraints->min_uV && constraints->max_uV) {
673 if (constraints->min_uV == constraints->max_uV)
674 count += sprintf(buf + count, "%d mV ",
675 constraints->min_uV / 1000);
676 else
677 count += sprintf(buf + count, "%d <--> %d mV ",
678 constraints->min_uV / 1000,
679 constraints->max_uV / 1000);
682 if (!constraints->min_uV ||
683 constraints->min_uV != constraints->max_uV) {
684 ret = _regulator_get_voltage(rdev);
685 if (ret > 0)
686 count += sprintf(buf + count, "at %d mV ", ret / 1000);
689 if (constraints->min_uA && constraints->max_uA) {
690 if (constraints->min_uA == constraints->max_uA)
691 count += sprintf(buf + count, "%d mA ",
692 constraints->min_uA / 1000);
693 else
694 count += sprintf(buf + count, "%d <--> %d mA ",
695 constraints->min_uA / 1000,
696 constraints->max_uA / 1000);
699 if (!constraints->min_uA ||
700 constraints->min_uA != constraints->max_uA) {
701 ret = _regulator_get_current_limit(rdev);
702 if (ret > 0)
703 count += sprintf(buf + count, "at %d uA ", ret / 1000);
706 if (constraints->valid_modes_mask & REGULATOR_MODE_FAST)
707 count += sprintf(buf + count, "fast ");
708 if (constraints->valid_modes_mask & REGULATOR_MODE_NORMAL)
709 count += sprintf(buf + count, "normal ");
710 if (constraints->valid_modes_mask & REGULATOR_MODE_IDLE)
711 count += sprintf(buf + count, "idle ");
712 if (constraints->valid_modes_mask & REGULATOR_MODE_STANDBY)
713 count += sprintf(buf + count, "standby");
715 printk(KERN_INFO "regulator: %s: %s\n", rdev_get_name(rdev), buf);
718 static int machine_constraints_voltage(struct regulator_dev *rdev,
719 struct regulation_constraints *constraints)
721 struct regulator_ops *ops = rdev->desc->ops;
722 const char *name = rdev_get_name(rdev);
723 int ret;
725 /* do we need to apply the constraint voltage */
726 if (rdev->constraints->apply_uV &&
727 rdev->constraints->min_uV == rdev->constraints->max_uV &&
728 ops->set_voltage) {
729 ret = ops->set_voltage(rdev,
730 rdev->constraints->min_uV, rdev->constraints->max_uV);
731 if (ret < 0) {
732 printk(KERN_ERR "%s: failed to apply %duV constraint to %s\n",
733 __func__,
734 rdev->constraints->min_uV, name);
735 rdev->constraints = NULL;
736 return ret;
740 /* constrain machine-level voltage specs to fit
741 * the actual range supported by this regulator.
743 if (ops->list_voltage && rdev->desc->n_voltages) {
744 int count = rdev->desc->n_voltages;
745 int i;
746 int min_uV = INT_MAX;
747 int max_uV = INT_MIN;
748 int cmin = constraints->min_uV;
749 int cmax = constraints->max_uV;
751 /* it's safe to autoconfigure fixed-voltage supplies
752 and the constraints are used by list_voltage. */
753 if (count == 1 && !cmin) {
754 cmin = 1;
755 cmax = INT_MAX;
756 constraints->min_uV = cmin;
757 constraints->max_uV = cmax;
760 /* voltage constraints are optional */
761 if ((cmin == 0) && (cmax == 0))
762 return 0;
764 /* else require explicit machine-level constraints */
765 if (cmin <= 0 || cmax <= 0 || cmax < cmin) {
766 pr_err("%s: %s '%s' voltage constraints\n",
767 __func__, "invalid", name);
768 return -EINVAL;
771 /* initial: [cmin..cmax] valid, [min_uV..max_uV] not */
772 for (i = 0; i < count; i++) {
773 int value;
775 value = ops->list_voltage(rdev, i);
776 if (value <= 0)
777 continue;
779 /* maybe adjust [min_uV..max_uV] */
780 if (value >= cmin && value < min_uV)
781 min_uV = value;
782 if (value <= cmax && value > max_uV)
783 max_uV = value;
786 /* final: [min_uV..max_uV] valid iff constraints valid */
787 if (max_uV < min_uV) {
788 pr_err("%s: %s '%s' voltage constraints\n",
789 __func__, "unsupportable", name);
790 return -EINVAL;
793 /* use regulator's subset of machine constraints */
794 if (constraints->min_uV < min_uV) {
795 pr_debug("%s: override '%s' %s, %d -> %d\n",
796 __func__, name, "min_uV",
797 constraints->min_uV, min_uV);
798 constraints->min_uV = min_uV;
800 if (constraints->max_uV > max_uV) {
801 pr_debug("%s: override '%s' %s, %d -> %d\n",
802 __func__, name, "max_uV",
803 constraints->max_uV, max_uV);
804 constraints->max_uV = max_uV;
808 return 0;
812 * set_machine_constraints - sets regulator constraints
813 * @rdev: regulator source
814 * @constraints: constraints to apply
816 * Allows platform initialisation code to define and constrain
817 * regulator circuits e.g. valid voltage/current ranges, etc. NOTE:
818 * Constraints *must* be set by platform code in order for some
819 * regulator operations to proceed i.e. set_voltage, set_current_limit,
820 * set_mode.
822 static int set_machine_constraints(struct regulator_dev *rdev,
823 struct regulation_constraints *constraints)
825 int ret = 0;
826 const char *name;
827 struct regulator_ops *ops = rdev->desc->ops;
829 rdev->constraints = constraints;
831 name = rdev_get_name(rdev);
833 ret = machine_constraints_voltage(rdev, constraints);
834 if (ret != 0)
835 goto out;
837 /* do we need to setup our suspend state */
838 if (constraints->initial_state) {
839 ret = suspend_prepare(rdev, constraints->initial_state);
840 if (ret < 0) {
841 printk(KERN_ERR "%s: failed to set suspend state for %s\n",
842 __func__, name);
843 rdev->constraints = NULL;
844 goto out;
848 if (constraints->initial_mode) {
849 if (!ops->set_mode) {
850 printk(KERN_ERR "%s: no set_mode operation for %s\n",
851 __func__, name);
852 ret = -EINVAL;
853 goto out;
856 ret = ops->set_mode(rdev, constraints->initial_mode);
857 if (ret < 0) {
858 printk(KERN_ERR
859 "%s: failed to set initial mode for %s: %d\n",
860 __func__, name, ret);
861 goto out;
865 /* If the constraints say the regulator should be on at this point
866 * and we have control then make sure it is enabled.
868 if ((constraints->always_on || constraints->boot_on) && ops->enable) {
869 ret = ops->enable(rdev);
870 if (ret < 0) {
871 printk(KERN_ERR "%s: failed to enable %s\n",
872 __func__, name);
873 rdev->constraints = NULL;
874 goto out;
878 print_constraints(rdev);
879 out:
880 return ret;
884 * set_supply - set regulator supply regulator
885 * @rdev: regulator name
886 * @supply_rdev: supply regulator name
888 * Called by platform initialisation code to set the supply regulator for this
889 * regulator. This ensures that a regulators supply will also be enabled by the
890 * core if it's child is enabled.
892 static int set_supply(struct regulator_dev *rdev,
893 struct regulator_dev *supply_rdev)
895 int err;
897 err = sysfs_create_link(&rdev->dev.kobj, &supply_rdev->dev.kobj,
898 "supply");
899 if (err) {
900 printk(KERN_ERR
901 "%s: could not add device link %s err %d\n",
902 __func__, supply_rdev->dev.kobj.name, err);
903 goto out;
905 rdev->supply = supply_rdev;
906 list_add(&rdev->slist, &supply_rdev->supply_list);
907 out:
908 return err;
912 * set_consumer_device_supply: Bind a regulator to a symbolic supply
913 * @rdev: regulator source
914 * @consumer_dev: device the supply applies to
915 * @consumer_dev_name: dev_name() string for device supply applies to
916 * @supply: symbolic name for supply
918 * Allows platform initialisation code to map physical regulator
919 * sources to symbolic names for supplies for use by devices. Devices
920 * should use these symbolic names to request regulators, avoiding the
921 * need to provide board-specific regulator names as platform data.
923 * Only one of consumer_dev and consumer_dev_name may be specified.
925 static int set_consumer_device_supply(struct regulator_dev *rdev,
926 struct device *consumer_dev, const char *consumer_dev_name,
927 const char *supply)
929 struct regulator_map *node;
930 int has_dev;
932 if (consumer_dev && consumer_dev_name)
933 return -EINVAL;
935 if (!consumer_dev_name && consumer_dev)
936 consumer_dev_name = dev_name(consumer_dev);
938 if (supply == NULL)
939 return -EINVAL;
941 if (consumer_dev_name != NULL)
942 has_dev = 1;
943 else
944 has_dev = 0;
946 list_for_each_entry(node, &regulator_map_list, list) {
947 if (node->dev_name && consumer_dev_name) {
948 if (strcmp(node->dev_name, consumer_dev_name) != 0)
949 continue;
950 } else if (node->dev_name || consumer_dev_name) {
951 continue;
954 if (strcmp(node->supply, supply) != 0)
955 continue;
957 dev_dbg(consumer_dev, "%s/%s is '%s' supply; fail %s/%s\n",
958 dev_name(&node->regulator->dev),
959 node->regulator->desc->name,
960 supply,
961 dev_name(&rdev->dev), rdev_get_name(rdev));
962 return -EBUSY;
965 node = kzalloc(sizeof(struct regulator_map), GFP_KERNEL);
966 if (node == NULL)
967 return -ENOMEM;
969 node->regulator = rdev;
970 node->supply = supply;
972 if (has_dev) {
973 node->dev_name = kstrdup(consumer_dev_name, GFP_KERNEL);
974 if (node->dev_name == NULL) {
975 kfree(node);
976 return -ENOMEM;
980 list_add(&node->list, &regulator_map_list);
981 return 0;
984 static void unset_regulator_supplies(struct regulator_dev *rdev)
986 struct regulator_map *node, *n;
988 list_for_each_entry_safe(node, n, &regulator_map_list, list) {
989 if (rdev == node->regulator) {
990 list_del(&node->list);
991 kfree(node->dev_name);
992 kfree(node);
997 #define REG_STR_SIZE 32
999 static struct regulator *create_regulator(struct regulator_dev *rdev,
1000 struct device *dev,
1001 const char *supply_name)
1003 struct regulator *regulator;
1004 char buf[REG_STR_SIZE];
1005 int err, size;
1007 regulator = kzalloc(sizeof(*regulator), GFP_KERNEL);
1008 if (regulator == NULL)
1009 return NULL;
1011 mutex_lock(&rdev->mutex);
1012 regulator->rdev = rdev;
1013 list_add(&regulator->list, &rdev->consumer_list);
1015 if (dev) {
1016 /* create a 'requested_microamps_name' sysfs entry */
1017 size = scnprintf(buf, REG_STR_SIZE, "microamps_requested_%s",
1018 supply_name);
1019 if (size >= REG_STR_SIZE)
1020 goto overflow_err;
1022 regulator->dev = dev;
1023 sysfs_attr_init(&regulator->dev_attr.attr);
1024 regulator->dev_attr.attr.name = kstrdup(buf, GFP_KERNEL);
1025 if (regulator->dev_attr.attr.name == NULL)
1026 goto attr_name_err;
1028 regulator->dev_attr.attr.mode = 0444;
1029 regulator->dev_attr.show = device_requested_uA_show;
1030 err = device_create_file(dev, &regulator->dev_attr);
1031 if (err < 0) {
1032 printk(KERN_WARNING "%s: could not add regulator_dev"
1033 " load sysfs\n", __func__);
1034 goto attr_name_err;
1037 /* also add a link to the device sysfs entry */
1038 size = scnprintf(buf, REG_STR_SIZE, "%s-%s",
1039 dev->kobj.name, supply_name);
1040 if (size >= REG_STR_SIZE)
1041 goto attr_err;
1043 regulator->supply_name = kstrdup(buf, GFP_KERNEL);
1044 if (regulator->supply_name == NULL)
1045 goto attr_err;
1047 err = sysfs_create_link(&rdev->dev.kobj, &dev->kobj,
1048 buf);
1049 if (err) {
1050 printk(KERN_WARNING
1051 "%s: could not add device link %s err %d\n",
1052 __func__, dev->kobj.name, err);
1053 device_remove_file(dev, &regulator->dev_attr);
1054 goto link_name_err;
1057 mutex_unlock(&rdev->mutex);
1058 return regulator;
1059 link_name_err:
1060 kfree(regulator->supply_name);
1061 attr_err:
1062 device_remove_file(regulator->dev, &regulator->dev_attr);
1063 attr_name_err:
1064 kfree(regulator->dev_attr.attr.name);
1065 overflow_err:
1066 list_del(&regulator->list);
1067 kfree(regulator);
1068 mutex_unlock(&rdev->mutex);
1069 return NULL;
1072 static int _regulator_get_enable_time(struct regulator_dev *rdev)
1074 if (!rdev->desc->ops->enable_time)
1075 return 0;
1076 return rdev->desc->ops->enable_time(rdev);
1079 /* Internal regulator request function */
1080 static struct regulator *_regulator_get(struct device *dev, const char *id,
1081 int exclusive)
1083 struct regulator_dev *rdev;
1084 struct regulator_map *map;
1085 struct regulator *regulator = ERR_PTR(-ENODEV);
1086 const char *devname = NULL;
1087 int ret;
1089 if (id == NULL) {
1090 printk(KERN_ERR "regulator: get() with no identifier\n");
1091 return regulator;
1094 if (dev)
1095 devname = dev_name(dev);
1097 mutex_lock(&regulator_list_mutex);
1099 list_for_each_entry(map, &regulator_map_list, list) {
1100 /* If the mapping has a device set up it must match */
1101 if (map->dev_name &&
1102 (!devname || strcmp(map->dev_name, devname)))
1103 continue;
1105 if (strcmp(map->supply, id) == 0) {
1106 rdev = map->regulator;
1107 goto found;
1111 #ifdef CONFIG_REGULATOR_DUMMY
1112 if (!devname)
1113 devname = "deviceless";
1115 /* If the board didn't flag that it was fully constrained then
1116 * substitute in a dummy regulator so consumers can continue.
1118 if (!has_full_constraints) {
1119 pr_warning("%s supply %s not found, using dummy regulator\n",
1120 devname, id);
1121 rdev = dummy_regulator_rdev;
1122 goto found;
1124 #endif
1126 mutex_unlock(&regulator_list_mutex);
1127 return regulator;
1129 found:
1130 if (rdev->exclusive) {
1131 regulator = ERR_PTR(-EPERM);
1132 goto out;
1135 if (exclusive && rdev->open_count) {
1136 regulator = ERR_PTR(-EBUSY);
1137 goto out;
1140 if (!try_module_get(rdev->owner))
1141 goto out;
1143 regulator = create_regulator(rdev, dev, id);
1144 if (regulator == NULL) {
1145 regulator = ERR_PTR(-ENOMEM);
1146 module_put(rdev->owner);
1149 rdev->open_count++;
1150 if (exclusive) {
1151 rdev->exclusive = 1;
1153 ret = _regulator_is_enabled(rdev);
1154 if (ret > 0)
1155 rdev->use_count = 1;
1156 else
1157 rdev->use_count = 0;
1160 out:
1161 mutex_unlock(&regulator_list_mutex);
1163 return regulator;
1167 * regulator_get - lookup and obtain a reference to a regulator.
1168 * @dev: device for regulator "consumer"
1169 * @id: Supply name or regulator ID.
1171 * Returns a struct regulator corresponding to the regulator producer,
1172 * or IS_ERR() condition containing errno.
1174 * Use of supply names configured via regulator_set_device_supply() is
1175 * strongly encouraged. It is recommended that the supply name used
1176 * should match the name used for the supply and/or the relevant
1177 * device pins in the datasheet.
1179 struct regulator *regulator_get(struct device *dev, const char *id)
1181 return _regulator_get(dev, id, 0);
1183 EXPORT_SYMBOL_GPL(regulator_get);
1186 * regulator_get_exclusive - obtain exclusive access to a regulator.
1187 * @dev: device for regulator "consumer"
1188 * @id: Supply name or regulator ID.
1190 * Returns a struct regulator corresponding to the regulator producer,
1191 * or IS_ERR() condition containing errno. Other consumers will be
1192 * unable to obtain this reference is held and the use count for the
1193 * regulator will be initialised to reflect the current state of the
1194 * regulator.
1196 * This is intended for use by consumers which cannot tolerate shared
1197 * use of the regulator such as those which need to force the
1198 * regulator off for correct operation of the hardware they are
1199 * controlling.
1201 * Use of supply names configured via regulator_set_device_supply() is
1202 * strongly encouraged. It is recommended that the supply name used
1203 * should match the name used for the supply and/or the relevant
1204 * device pins in the datasheet.
1206 struct regulator *regulator_get_exclusive(struct device *dev, const char *id)
1208 return _regulator_get(dev, id, 1);
1210 EXPORT_SYMBOL_GPL(regulator_get_exclusive);
1213 * regulator_put - "free" the regulator source
1214 * @regulator: regulator source
1216 * Note: drivers must ensure that all regulator_enable calls made on this
1217 * regulator source are balanced by regulator_disable calls prior to calling
1218 * this function.
1220 void regulator_put(struct regulator *regulator)
1222 struct regulator_dev *rdev;
1224 if (regulator == NULL || IS_ERR(regulator))
1225 return;
1227 mutex_lock(&regulator_list_mutex);
1228 rdev = regulator->rdev;
1230 /* remove any sysfs entries */
1231 if (regulator->dev) {
1232 sysfs_remove_link(&rdev->dev.kobj, regulator->supply_name);
1233 kfree(regulator->supply_name);
1234 device_remove_file(regulator->dev, &regulator->dev_attr);
1235 kfree(regulator->dev_attr.attr.name);
1237 list_del(&regulator->list);
1238 kfree(regulator);
1240 rdev->open_count--;
1241 rdev->exclusive = 0;
1243 module_put(rdev->owner);
1244 mutex_unlock(&regulator_list_mutex);
1246 EXPORT_SYMBOL_GPL(regulator_put);
1248 static int _regulator_can_change_status(struct regulator_dev *rdev)
1250 if (!rdev->constraints)
1251 return 0;
1253 if (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_STATUS)
1254 return 1;
1255 else
1256 return 0;
1259 /* locks held by regulator_enable() */
1260 static int _regulator_enable(struct regulator_dev *rdev)
1262 int ret, delay;
1264 /* do we need to enable the supply regulator first */
1265 if (rdev->supply) {
1266 ret = _regulator_enable(rdev->supply);
1267 if (ret < 0) {
1268 printk(KERN_ERR "%s: failed to enable %s: %d\n",
1269 __func__, rdev_get_name(rdev), ret);
1270 return ret;
1274 /* check voltage and requested load before enabling */
1275 if (rdev->constraints &&
1276 (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS))
1277 drms_uA_update(rdev);
1279 if (rdev->use_count == 0) {
1280 /* The regulator may on if it's not switchable or left on */
1281 ret = _regulator_is_enabled(rdev);
1282 if (ret == -EINVAL || ret == 0) {
1283 if (!_regulator_can_change_status(rdev))
1284 return -EPERM;
1286 if (!rdev->desc->ops->enable)
1287 return -EINVAL;
1289 /* Query before enabling in case configuration
1290 * dependant. */
1291 ret = _regulator_get_enable_time(rdev);
1292 if (ret >= 0) {
1293 delay = ret;
1294 } else {
1295 printk(KERN_WARNING
1296 "%s: enable_time() failed for %s: %d\n",
1297 __func__, rdev_get_name(rdev),
1298 ret);
1299 delay = 0;
1302 /* Allow the regulator to ramp; it would be useful
1303 * to extend this for bulk operations so that the
1304 * regulators can ramp together. */
1305 ret = rdev->desc->ops->enable(rdev);
1306 if (ret < 0)
1307 return ret;
1309 if (delay >= 1000)
1310 mdelay(delay / 1000);
1311 else if (delay)
1312 udelay(delay);
1314 } else if (ret < 0) {
1315 printk(KERN_ERR "%s: is_enabled() failed for %s: %d\n",
1316 __func__, rdev_get_name(rdev), ret);
1317 return ret;
1319 /* Fallthrough on positive return values - already enabled */
1322 rdev->use_count++;
1324 return 0;
1328 * regulator_enable - enable regulator output
1329 * @regulator: regulator source
1331 * Request that the regulator be enabled with the regulator output at
1332 * the predefined voltage or current value. Calls to regulator_enable()
1333 * must be balanced with calls to regulator_disable().
1335 * NOTE: the output value can be set by other drivers, boot loader or may be
1336 * hardwired in the regulator.
1338 int regulator_enable(struct regulator *regulator)
1340 struct regulator_dev *rdev = regulator->rdev;
1341 int ret = 0;
1343 mutex_lock(&rdev->mutex);
1344 ret = _regulator_enable(rdev);
1345 mutex_unlock(&rdev->mutex);
1346 return ret;
1348 EXPORT_SYMBOL_GPL(regulator_enable);
1350 /* locks held by regulator_disable() */
1351 static int _regulator_disable(struct regulator_dev *rdev)
1353 int ret = 0;
1355 if (WARN(rdev->use_count <= 0,
1356 "unbalanced disables for %s\n",
1357 rdev_get_name(rdev)))
1358 return -EIO;
1360 /* are we the last user and permitted to disable ? */
1361 if (rdev->use_count == 1 &&
1362 (rdev->constraints && !rdev->constraints->always_on)) {
1364 /* we are last user */
1365 if (_regulator_can_change_status(rdev) &&
1366 rdev->desc->ops->disable) {
1367 ret = rdev->desc->ops->disable(rdev);
1368 if (ret < 0) {
1369 printk(KERN_ERR "%s: failed to disable %s\n",
1370 __func__, rdev_get_name(rdev));
1371 return ret;
1374 _notifier_call_chain(rdev, REGULATOR_EVENT_DISABLE,
1375 NULL);
1378 /* decrease our supplies ref count and disable if required */
1379 if (rdev->supply)
1380 _regulator_disable(rdev->supply);
1382 rdev->use_count = 0;
1383 } else if (rdev->use_count > 1) {
1385 if (rdev->constraints &&
1386 (rdev->constraints->valid_ops_mask &
1387 REGULATOR_CHANGE_DRMS))
1388 drms_uA_update(rdev);
1390 rdev->use_count--;
1392 return ret;
1396 * regulator_disable - disable regulator output
1397 * @regulator: regulator source
1399 * Disable the regulator output voltage or current. Calls to
1400 * regulator_enable() must be balanced with calls to
1401 * regulator_disable().
1403 * NOTE: this will only disable the regulator output if no other consumer
1404 * devices have it enabled, the regulator device supports disabling and
1405 * machine constraints permit this operation.
1407 int regulator_disable(struct regulator *regulator)
1409 struct regulator_dev *rdev = regulator->rdev;
1410 int ret = 0;
1412 mutex_lock(&rdev->mutex);
1413 ret = _regulator_disable(rdev);
1414 mutex_unlock(&rdev->mutex);
1415 return ret;
1417 EXPORT_SYMBOL_GPL(regulator_disable);
1419 /* locks held by regulator_force_disable() */
1420 static int _regulator_force_disable(struct regulator_dev *rdev)
1422 int ret = 0;
1424 /* force disable */
1425 if (rdev->desc->ops->disable) {
1426 /* ah well, who wants to live forever... */
1427 ret = rdev->desc->ops->disable(rdev);
1428 if (ret < 0) {
1429 printk(KERN_ERR "%s: failed to force disable %s\n",
1430 __func__, rdev_get_name(rdev));
1431 return ret;
1433 /* notify other consumers that power has been forced off */
1434 _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
1435 REGULATOR_EVENT_DISABLE, NULL);
1438 /* decrease our supplies ref count and disable if required */
1439 if (rdev->supply)
1440 _regulator_disable(rdev->supply);
1442 rdev->use_count = 0;
1443 return ret;
1447 * regulator_force_disable - force disable regulator output
1448 * @regulator: regulator source
1450 * Forcibly disable the regulator output voltage or current.
1451 * NOTE: this *will* disable the regulator output even if other consumer
1452 * devices have it enabled. This should be used for situations when device
1453 * damage will likely occur if the regulator is not disabled (e.g. over temp).
1455 int regulator_force_disable(struct regulator *regulator)
1457 int ret;
1459 mutex_lock(&regulator->rdev->mutex);
1460 regulator->uA_load = 0;
1461 ret = _regulator_force_disable(regulator->rdev);
1462 mutex_unlock(&regulator->rdev->mutex);
1463 return ret;
1465 EXPORT_SYMBOL_GPL(regulator_force_disable);
1467 static int _regulator_is_enabled(struct regulator_dev *rdev)
1469 /* If we don't know then assume that the regulator is always on */
1470 if (!rdev->desc->ops->is_enabled)
1471 return 1;
1473 return rdev->desc->ops->is_enabled(rdev);
1477 * regulator_is_enabled - is the regulator output enabled
1478 * @regulator: regulator source
1480 * Returns positive if the regulator driver backing the source/client
1481 * has requested that the device be enabled, zero if it hasn't, else a
1482 * negative errno code.
1484 * Note that the device backing this regulator handle can have multiple
1485 * users, so it might be enabled even if regulator_enable() was never
1486 * called for this particular source.
1488 int regulator_is_enabled(struct regulator *regulator)
1490 int ret;
1492 mutex_lock(&regulator->rdev->mutex);
1493 ret = _regulator_is_enabled(regulator->rdev);
1494 mutex_unlock(&regulator->rdev->mutex);
1496 return ret;
1498 EXPORT_SYMBOL_GPL(regulator_is_enabled);
1501 * regulator_count_voltages - count regulator_list_voltage() selectors
1502 * @regulator: regulator source
1504 * Returns number of selectors, or negative errno. Selectors are
1505 * numbered starting at zero, and typically correspond to bitfields
1506 * in hardware registers.
1508 int regulator_count_voltages(struct regulator *regulator)
1510 struct regulator_dev *rdev = regulator->rdev;
1512 return rdev->desc->n_voltages ? : -EINVAL;
1514 EXPORT_SYMBOL_GPL(regulator_count_voltages);
1517 * regulator_list_voltage - enumerate supported voltages
1518 * @regulator: regulator source
1519 * @selector: identify voltage to list
1520 * Context: can sleep
1522 * Returns a voltage that can be passed to @regulator_set_voltage(),
1523 * zero if this selector code can't be used on this system, or a
1524 * negative errno.
1526 int regulator_list_voltage(struct regulator *regulator, unsigned selector)
1528 struct regulator_dev *rdev = regulator->rdev;
1529 struct regulator_ops *ops = rdev->desc->ops;
1530 int ret;
1532 if (!ops->list_voltage || selector >= rdev->desc->n_voltages)
1533 return -EINVAL;
1535 mutex_lock(&rdev->mutex);
1536 ret = ops->list_voltage(rdev, selector);
1537 mutex_unlock(&rdev->mutex);
1539 if (ret > 0) {
1540 if (ret < rdev->constraints->min_uV)
1541 ret = 0;
1542 else if (ret > rdev->constraints->max_uV)
1543 ret = 0;
1546 return ret;
1548 EXPORT_SYMBOL_GPL(regulator_list_voltage);
1551 * regulator_is_supported_voltage - check if a voltage range can be supported
1553 * @regulator: Regulator to check.
1554 * @min_uV: Minimum required voltage in uV.
1555 * @max_uV: Maximum required voltage in uV.
1557 * Returns a boolean or a negative error code.
1559 int regulator_is_supported_voltage(struct regulator *regulator,
1560 int min_uV, int max_uV)
1562 int i, voltages, ret;
1564 ret = regulator_count_voltages(regulator);
1565 if (ret < 0)
1566 return ret;
1567 voltages = ret;
1569 for (i = 0; i < voltages; i++) {
1570 ret = regulator_list_voltage(regulator, i);
1572 if (ret >= min_uV && ret <= max_uV)
1573 return 1;
1576 return 0;
1580 * regulator_set_voltage - set regulator output voltage
1581 * @regulator: regulator source
1582 * @min_uV: Minimum required voltage in uV
1583 * @max_uV: Maximum acceptable voltage in uV
1585 * Sets a voltage regulator to the desired output voltage. This can be set
1586 * during any regulator state. IOW, regulator can be disabled or enabled.
1588 * If the regulator is enabled then the voltage will change to the new value
1589 * immediately otherwise if the regulator is disabled the regulator will
1590 * output at the new voltage when enabled.
1592 * NOTE: If the regulator is shared between several devices then the lowest
1593 * request voltage that meets the system constraints will be used.
1594 * Regulator system constraints must be set for this regulator before
1595 * calling this function otherwise this call will fail.
1597 int regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV)
1599 struct regulator_dev *rdev = regulator->rdev;
1600 int ret;
1602 mutex_lock(&rdev->mutex);
1604 /* sanity check */
1605 if (!rdev->desc->ops->set_voltage) {
1606 ret = -EINVAL;
1607 goto out;
1610 /* constraints check */
1611 ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
1612 if (ret < 0)
1613 goto out;
1614 regulator->min_uV = min_uV;
1615 regulator->max_uV = max_uV;
1616 ret = rdev->desc->ops->set_voltage(rdev, min_uV, max_uV);
1618 out:
1619 _notifier_call_chain(rdev, REGULATOR_EVENT_VOLTAGE_CHANGE, NULL);
1620 mutex_unlock(&rdev->mutex);
1621 return ret;
1623 EXPORT_SYMBOL_GPL(regulator_set_voltage);
1625 static int _regulator_get_voltage(struct regulator_dev *rdev)
1627 /* sanity check */
1628 if (rdev->desc->ops->get_voltage)
1629 return rdev->desc->ops->get_voltage(rdev);
1630 else
1631 return -EINVAL;
1635 * regulator_get_voltage - get regulator output voltage
1636 * @regulator: regulator source
1638 * This returns the current regulator voltage in uV.
1640 * NOTE: If the regulator is disabled it will return the voltage value. This
1641 * function should not be used to determine regulator state.
1643 int regulator_get_voltage(struct regulator *regulator)
1645 int ret;
1647 mutex_lock(&regulator->rdev->mutex);
1649 ret = _regulator_get_voltage(regulator->rdev);
1651 mutex_unlock(&regulator->rdev->mutex);
1653 return ret;
1655 EXPORT_SYMBOL_GPL(regulator_get_voltage);
1658 * regulator_set_current_limit - set regulator output current limit
1659 * @regulator: regulator source
1660 * @min_uA: Minimuum supported current in uA
1661 * @max_uA: Maximum supported current in uA
1663 * Sets current sink to the desired output current. This can be set during
1664 * any regulator state. IOW, regulator can be disabled or enabled.
1666 * If the regulator is enabled then the current will change to the new value
1667 * immediately otherwise if the regulator is disabled the regulator will
1668 * output at the new current when enabled.
1670 * NOTE: Regulator system constraints must be set for this regulator before
1671 * calling this function otherwise this call will fail.
1673 int regulator_set_current_limit(struct regulator *regulator,
1674 int min_uA, int max_uA)
1676 struct regulator_dev *rdev = regulator->rdev;
1677 int ret;
1679 mutex_lock(&rdev->mutex);
1681 /* sanity check */
1682 if (!rdev->desc->ops->set_current_limit) {
1683 ret = -EINVAL;
1684 goto out;
1687 /* constraints check */
1688 ret = regulator_check_current_limit(rdev, &min_uA, &max_uA);
1689 if (ret < 0)
1690 goto out;
1692 ret = rdev->desc->ops->set_current_limit(rdev, min_uA, max_uA);
1693 out:
1694 mutex_unlock(&rdev->mutex);
1695 return ret;
1697 EXPORT_SYMBOL_GPL(regulator_set_current_limit);
1699 static int _regulator_get_current_limit(struct regulator_dev *rdev)
1701 int ret;
1703 mutex_lock(&rdev->mutex);
1705 /* sanity check */
1706 if (!rdev->desc->ops->get_current_limit) {
1707 ret = -EINVAL;
1708 goto out;
1711 ret = rdev->desc->ops->get_current_limit(rdev);
1712 out:
1713 mutex_unlock(&rdev->mutex);
1714 return ret;
1718 * regulator_get_current_limit - get regulator output current
1719 * @regulator: regulator source
1721 * This returns the current supplied by the specified current sink in uA.
1723 * NOTE: If the regulator is disabled it will return the current value. This
1724 * function should not be used to determine regulator state.
1726 int regulator_get_current_limit(struct regulator *regulator)
1728 return _regulator_get_current_limit(regulator->rdev);
1730 EXPORT_SYMBOL_GPL(regulator_get_current_limit);
1733 * regulator_set_mode - set regulator operating mode
1734 * @regulator: regulator source
1735 * @mode: operating mode - one of the REGULATOR_MODE constants
1737 * Set regulator operating mode to increase regulator efficiency or improve
1738 * regulation performance.
1740 * NOTE: Regulator system constraints must be set for this regulator before
1741 * calling this function otherwise this call will fail.
1743 int regulator_set_mode(struct regulator *regulator, unsigned int mode)
1745 struct regulator_dev *rdev = regulator->rdev;
1746 int ret;
1747 int regulator_curr_mode;
1749 mutex_lock(&rdev->mutex);
1751 /* sanity check */
1752 if (!rdev->desc->ops->set_mode) {
1753 ret = -EINVAL;
1754 goto out;
1757 /* return if the same mode is requested */
1758 if (rdev->desc->ops->get_mode) {
1759 regulator_curr_mode = rdev->desc->ops->get_mode(rdev);
1760 if (regulator_curr_mode == mode) {
1761 ret = 0;
1762 goto out;
1766 /* constraints check */
1767 ret = regulator_check_mode(rdev, mode);
1768 if (ret < 0)
1769 goto out;
1771 ret = rdev->desc->ops->set_mode(rdev, mode);
1772 out:
1773 mutex_unlock(&rdev->mutex);
1774 return ret;
1776 EXPORT_SYMBOL_GPL(regulator_set_mode);
1778 static unsigned int _regulator_get_mode(struct regulator_dev *rdev)
1780 int ret;
1782 mutex_lock(&rdev->mutex);
1784 /* sanity check */
1785 if (!rdev->desc->ops->get_mode) {
1786 ret = -EINVAL;
1787 goto out;
1790 ret = rdev->desc->ops->get_mode(rdev);
1791 out:
1792 mutex_unlock(&rdev->mutex);
1793 return ret;
1797 * regulator_get_mode - get regulator operating mode
1798 * @regulator: regulator source
1800 * Get the current regulator operating mode.
1802 unsigned int regulator_get_mode(struct regulator *regulator)
1804 return _regulator_get_mode(regulator->rdev);
1806 EXPORT_SYMBOL_GPL(regulator_get_mode);
1809 * regulator_set_optimum_mode - set regulator optimum operating mode
1810 * @regulator: regulator source
1811 * @uA_load: load current
1813 * Notifies the regulator core of a new device load. This is then used by
1814 * DRMS (if enabled by constraints) to set the most efficient regulator
1815 * operating mode for the new regulator loading.
1817 * Consumer devices notify their supply regulator of the maximum power
1818 * they will require (can be taken from device datasheet in the power
1819 * consumption tables) when they change operational status and hence power
1820 * state. Examples of operational state changes that can affect power
1821 * consumption are :-
1823 * o Device is opened / closed.
1824 * o Device I/O is about to begin or has just finished.
1825 * o Device is idling in between work.
1827 * This information is also exported via sysfs to userspace.
1829 * DRMS will sum the total requested load on the regulator and change
1830 * to the most efficient operating mode if platform constraints allow.
1832 * Returns the new regulator mode or error.
1834 int regulator_set_optimum_mode(struct regulator *regulator, int uA_load)
1836 struct regulator_dev *rdev = regulator->rdev;
1837 struct regulator *consumer;
1838 int ret, output_uV, input_uV, total_uA_load = 0;
1839 unsigned int mode;
1841 mutex_lock(&rdev->mutex);
1843 regulator->uA_load = uA_load;
1844 ret = regulator_check_drms(rdev);
1845 if (ret < 0)
1846 goto out;
1847 ret = -EINVAL;
1849 /* sanity check */
1850 if (!rdev->desc->ops->get_optimum_mode)
1851 goto out;
1853 /* get output voltage */
1854 output_uV = rdev->desc->ops->get_voltage(rdev);
1855 if (output_uV <= 0) {
1856 printk(KERN_ERR "%s: invalid output voltage found for %s\n",
1857 __func__, rdev_get_name(rdev));
1858 goto out;
1861 /* get input voltage */
1862 if (rdev->supply && rdev->supply->desc->ops->get_voltage)
1863 input_uV = rdev->supply->desc->ops->get_voltage(rdev->supply);
1864 else
1865 input_uV = rdev->constraints->input_uV;
1866 if (input_uV <= 0) {
1867 printk(KERN_ERR "%s: invalid input voltage found for %s\n",
1868 __func__, rdev_get_name(rdev));
1869 goto out;
1872 /* calc total requested load for this regulator */
1873 list_for_each_entry(consumer, &rdev->consumer_list, list)
1874 total_uA_load += consumer->uA_load;
1876 mode = rdev->desc->ops->get_optimum_mode(rdev,
1877 input_uV, output_uV,
1878 total_uA_load);
1879 ret = regulator_check_mode(rdev, mode);
1880 if (ret < 0) {
1881 printk(KERN_ERR "%s: failed to get optimum mode for %s @"
1882 " %d uA %d -> %d uV\n", __func__, rdev_get_name(rdev),
1883 total_uA_load, input_uV, output_uV);
1884 goto out;
1887 ret = rdev->desc->ops->set_mode(rdev, mode);
1888 if (ret < 0) {
1889 printk(KERN_ERR "%s: failed to set optimum mode %x for %s\n",
1890 __func__, mode, rdev_get_name(rdev));
1891 goto out;
1893 ret = mode;
1894 out:
1895 mutex_unlock(&rdev->mutex);
1896 return ret;
1898 EXPORT_SYMBOL_GPL(regulator_set_optimum_mode);
1901 * regulator_register_notifier - register regulator event notifier
1902 * @regulator: regulator source
1903 * @nb: notifier block
1905 * Register notifier block to receive regulator events.
1907 int regulator_register_notifier(struct regulator *regulator,
1908 struct notifier_block *nb)
1910 return blocking_notifier_chain_register(&regulator->rdev->notifier,
1911 nb);
1913 EXPORT_SYMBOL_GPL(regulator_register_notifier);
1916 * regulator_unregister_notifier - unregister regulator event notifier
1917 * @regulator: regulator source
1918 * @nb: notifier block
1920 * Unregister regulator event notifier block.
1922 int regulator_unregister_notifier(struct regulator *regulator,
1923 struct notifier_block *nb)
1925 return blocking_notifier_chain_unregister(&regulator->rdev->notifier,
1926 nb);
1928 EXPORT_SYMBOL_GPL(regulator_unregister_notifier);
1930 /* notify regulator consumers and downstream regulator consumers.
1931 * Note mutex must be held by caller.
1933 static void _notifier_call_chain(struct regulator_dev *rdev,
1934 unsigned long event, void *data)
1936 struct regulator_dev *_rdev;
1938 /* call rdev chain first */
1939 blocking_notifier_call_chain(&rdev->notifier, event, NULL);
1941 /* now notify regulator we supply */
1942 list_for_each_entry(_rdev, &rdev->supply_list, slist) {
1943 mutex_lock(&_rdev->mutex);
1944 _notifier_call_chain(_rdev, event, data);
1945 mutex_unlock(&_rdev->mutex);
1950 * regulator_bulk_get - get multiple regulator consumers
1952 * @dev: Device to supply
1953 * @num_consumers: Number of consumers to register
1954 * @consumers: Configuration of consumers; clients are stored here.
1956 * @return 0 on success, an errno on failure.
1958 * This helper function allows drivers to get several regulator
1959 * consumers in one operation. If any of the regulators cannot be
1960 * acquired then any regulators that were allocated will be freed
1961 * before returning to the caller.
1963 int regulator_bulk_get(struct device *dev, int num_consumers,
1964 struct regulator_bulk_data *consumers)
1966 int i;
1967 int ret;
1969 for (i = 0; i < num_consumers; i++)
1970 consumers[i].consumer = NULL;
1972 for (i = 0; i < num_consumers; i++) {
1973 consumers[i].consumer = regulator_get(dev,
1974 consumers[i].supply);
1975 if (IS_ERR(consumers[i].consumer)) {
1976 ret = PTR_ERR(consumers[i].consumer);
1977 dev_err(dev, "Failed to get supply '%s': %d\n",
1978 consumers[i].supply, ret);
1979 consumers[i].consumer = NULL;
1980 goto err;
1984 return 0;
1986 err:
1987 for (i = 0; i < num_consumers && consumers[i].consumer; i++)
1988 regulator_put(consumers[i].consumer);
1990 return ret;
1992 EXPORT_SYMBOL_GPL(regulator_bulk_get);
1995 * regulator_bulk_enable - enable multiple regulator consumers
1997 * @num_consumers: Number of consumers
1998 * @consumers: Consumer data; clients are stored here.
1999 * @return 0 on success, an errno on failure
2001 * This convenience API allows consumers to enable multiple regulator
2002 * clients in a single API call. If any consumers cannot be enabled
2003 * then any others that were enabled will be disabled again prior to
2004 * return.
2006 int regulator_bulk_enable(int num_consumers,
2007 struct regulator_bulk_data *consumers)
2009 int i;
2010 int ret;
2012 for (i = 0; i < num_consumers; i++) {
2013 ret = regulator_enable(consumers[i].consumer);
2014 if (ret != 0)
2015 goto err;
2018 return 0;
2020 err:
2021 printk(KERN_ERR "Failed to enable %s: %d\n", consumers[i].supply, ret);
2022 for (--i; i >= 0; --i)
2023 regulator_disable(consumers[i].consumer);
2025 return ret;
2027 EXPORT_SYMBOL_GPL(regulator_bulk_enable);
2030 * regulator_bulk_disable - disable multiple regulator consumers
2032 * @num_consumers: Number of consumers
2033 * @consumers: Consumer data; clients are stored here.
2034 * @return 0 on success, an errno on failure
2036 * This convenience API allows consumers to disable multiple regulator
2037 * clients in a single API call. If any consumers cannot be enabled
2038 * then any others that were disabled will be disabled again prior to
2039 * return.
2041 int regulator_bulk_disable(int num_consumers,
2042 struct regulator_bulk_data *consumers)
2044 int i;
2045 int ret;
2047 for (i = 0; i < num_consumers; i++) {
2048 ret = regulator_disable(consumers[i].consumer);
2049 if (ret != 0)
2050 goto err;
2053 return 0;
2055 err:
2056 printk(KERN_ERR "Failed to disable %s: %d\n", consumers[i].supply,
2057 ret);
2058 for (--i; i >= 0; --i)
2059 regulator_enable(consumers[i].consumer);
2061 return ret;
2063 EXPORT_SYMBOL_GPL(regulator_bulk_disable);
2066 * regulator_bulk_free - free multiple regulator consumers
2068 * @num_consumers: Number of consumers
2069 * @consumers: Consumer data; clients are stored here.
2071 * This convenience API allows consumers to free multiple regulator
2072 * clients in a single API call.
2074 void regulator_bulk_free(int num_consumers,
2075 struct regulator_bulk_data *consumers)
2077 int i;
2079 for (i = 0; i < num_consumers; i++) {
2080 regulator_put(consumers[i].consumer);
2081 consumers[i].consumer = NULL;
2084 EXPORT_SYMBOL_GPL(regulator_bulk_free);
2087 * regulator_notifier_call_chain - call regulator event notifier
2088 * @rdev: regulator source
2089 * @event: notifier block
2090 * @data: callback-specific data.
2092 * Called by regulator drivers to notify clients a regulator event has
2093 * occurred. We also notify regulator clients downstream.
2094 * Note lock must be held by caller.
2096 int regulator_notifier_call_chain(struct regulator_dev *rdev,
2097 unsigned long event, void *data)
2099 _notifier_call_chain(rdev, event, data);
2100 return NOTIFY_DONE;
2103 EXPORT_SYMBOL_GPL(regulator_notifier_call_chain);
2106 * regulator_mode_to_status - convert a regulator mode into a status
2108 * @mode: Mode to convert
2110 * Convert a regulator mode into a status.
2112 int regulator_mode_to_status(unsigned int mode)
2114 switch (mode) {
2115 case REGULATOR_MODE_FAST:
2116 return REGULATOR_STATUS_FAST;
2117 case REGULATOR_MODE_NORMAL:
2118 return REGULATOR_STATUS_NORMAL;
2119 case REGULATOR_MODE_IDLE:
2120 return REGULATOR_STATUS_IDLE;
2121 case REGULATOR_STATUS_STANDBY:
2122 return REGULATOR_STATUS_STANDBY;
2123 default:
2124 return 0;
2127 EXPORT_SYMBOL_GPL(regulator_mode_to_status);
2130 * To avoid cluttering sysfs (and memory) with useless state, only
2131 * create attributes that can be meaningfully displayed.
2133 static int add_regulator_attributes(struct regulator_dev *rdev)
2135 struct device *dev = &rdev->dev;
2136 struct regulator_ops *ops = rdev->desc->ops;
2137 int status = 0;
2139 /* some attributes need specific methods to be displayed */
2140 if (ops->get_voltage) {
2141 status = device_create_file(dev, &dev_attr_microvolts);
2142 if (status < 0)
2143 return status;
2145 if (ops->get_current_limit) {
2146 status = device_create_file(dev, &dev_attr_microamps);
2147 if (status < 0)
2148 return status;
2150 if (ops->get_mode) {
2151 status = device_create_file(dev, &dev_attr_opmode);
2152 if (status < 0)
2153 return status;
2155 if (ops->is_enabled) {
2156 status = device_create_file(dev, &dev_attr_state);
2157 if (status < 0)
2158 return status;
2160 if (ops->get_status) {
2161 status = device_create_file(dev, &dev_attr_status);
2162 if (status < 0)
2163 return status;
2166 /* some attributes are type-specific */
2167 if (rdev->desc->type == REGULATOR_CURRENT) {
2168 status = device_create_file(dev, &dev_attr_requested_microamps);
2169 if (status < 0)
2170 return status;
2173 /* all the other attributes exist to support constraints;
2174 * don't show them if there are no constraints, or if the
2175 * relevant supporting methods are missing.
2177 if (!rdev->constraints)
2178 return status;
2180 /* constraints need specific supporting methods */
2181 if (ops->set_voltage) {
2182 status = device_create_file(dev, &dev_attr_min_microvolts);
2183 if (status < 0)
2184 return status;
2185 status = device_create_file(dev, &dev_attr_max_microvolts);
2186 if (status < 0)
2187 return status;
2189 if (ops->set_current_limit) {
2190 status = device_create_file(dev, &dev_attr_min_microamps);
2191 if (status < 0)
2192 return status;
2193 status = device_create_file(dev, &dev_attr_max_microamps);
2194 if (status < 0)
2195 return status;
2198 /* suspend mode constraints need multiple supporting methods */
2199 if (!(ops->set_suspend_enable && ops->set_suspend_disable))
2200 return status;
2202 status = device_create_file(dev, &dev_attr_suspend_standby_state);
2203 if (status < 0)
2204 return status;
2205 status = device_create_file(dev, &dev_attr_suspend_mem_state);
2206 if (status < 0)
2207 return status;
2208 status = device_create_file(dev, &dev_attr_suspend_disk_state);
2209 if (status < 0)
2210 return status;
2212 if (ops->set_suspend_voltage) {
2213 status = device_create_file(dev,
2214 &dev_attr_suspend_standby_microvolts);
2215 if (status < 0)
2216 return status;
2217 status = device_create_file(dev,
2218 &dev_attr_suspend_mem_microvolts);
2219 if (status < 0)
2220 return status;
2221 status = device_create_file(dev,
2222 &dev_attr_suspend_disk_microvolts);
2223 if (status < 0)
2224 return status;
2227 if (ops->set_suspend_mode) {
2228 status = device_create_file(dev,
2229 &dev_attr_suspend_standby_mode);
2230 if (status < 0)
2231 return status;
2232 status = device_create_file(dev,
2233 &dev_attr_suspend_mem_mode);
2234 if (status < 0)
2235 return status;
2236 status = device_create_file(dev,
2237 &dev_attr_suspend_disk_mode);
2238 if (status < 0)
2239 return status;
2242 return status;
2246 * regulator_register - register regulator
2247 * @regulator_desc: regulator to register
2248 * @dev: struct device for the regulator
2249 * @init_data: platform provided init data, passed through by driver
2250 * @driver_data: private regulator data
2252 * Called by regulator drivers to register a regulator.
2253 * Returns 0 on success.
2255 struct regulator_dev *regulator_register(struct regulator_desc *regulator_desc,
2256 struct device *dev, struct regulator_init_data *init_data,
2257 void *driver_data)
2259 static atomic_t regulator_no = ATOMIC_INIT(0);
2260 struct regulator_dev *rdev;
2261 int ret, i;
2263 if (regulator_desc == NULL)
2264 return ERR_PTR(-EINVAL);
2266 if (regulator_desc->name == NULL || regulator_desc->ops == NULL)
2267 return ERR_PTR(-EINVAL);
2269 if (regulator_desc->type != REGULATOR_VOLTAGE &&
2270 regulator_desc->type != REGULATOR_CURRENT)
2271 return ERR_PTR(-EINVAL);
2273 if (!init_data)
2274 return ERR_PTR(-EINVAL);
2276 rdev = kzalloc(sizeof(struct regulator_dev), GFP_KERNEL);
2277 if (rdev == NULL)
2278 return ERR_PTR(-ENOMEM);
2280 mutex_lock(&regulator_list_mutex);
2282 mutex_init(&rdev->mutex);
2283 rdev->reg_data = driver_data;
2284 rdev->owner = regulator_desc->owner;
2285 rdev->desc = regulator_desc;
2286 INIT_LIST_HEAD(&rdev->consumer_list);
2287 INIT_LIST_HEAD(&rdev->supply_list);
2288 INIT_LIST_HEAD(&rdev->list);
2289 INIT_LIST_HEAD(&rdev->slist);
2290 BLOCKING_INIT_NOTIFIER_HEAD(&rdev->notifier);
2292 /* preform any regulator specific init */
2293 if (init_data->regulator_init) {
2294 ret = init_data->regulator_init(rdev->reg_data);
2295 if (ret < 0)
2296 goto clean;
2299 /* register with sysfs */
2300 rdev->dev.class = &regulator_class;
2301 rdev->dev.parent = dev;
2302 dev_set_name(&rdev->dev, "regulator.%d",
2303 atomic_inc_return(&regulator_no) - 1);
2304 ret = device_register(&rdev->dev);
2305 if (ret != 0)
2306 goto clean;
2308 dev_set_drvdata(&rdev->dev, rdev);
2310 /* set regulator constraints */
2311 ret = set_machine_constraints(rdev, &init_data->constraints);
2312 if (ret < 0)
2313 goto scrub;
2315 /* add attributes supported by this regulator */
2316 ret = add_regulator_attributes(rdev);
2317 if (ret < 0)
2318 goto scrub;
2320 /* set supply regulator if it exists */
2321 if (init_data->supply_regulator && init_data->supply_regulator_dev) {
2322 dev_err(dev,
2323 "Supply regulator specified by both name and dev\n");
2324 goto scrub;
2327 if (init_data->supply_regulator) {
2328 struct regulator_dev *r;
2329 int found = 0;
2331 list_for_each_entry(r, &regulator_list, list) {
2332 if (strcmp(rdev_get_name(r),
2333 init_data->supply_regulator) == 0) {
2334 found = 1;
2335 break;
2339 if (!found) {
2340 dev_err(dev, "Failed to find supply %s\n",
2341 init_data->supply_regulator);
2342 goto scrub;
2345 ret = set_supply(rdev, r);
2346 if (ret < 0)
2347 goto scrub;
2350 if (init_data->supply_regulator_dev) {
2351 dev_warn(dev, "Uses supply_regulator_dev instead of regulator_supply\n");
2352 ret = set_supply(rdev,
2353 dev_get_drvdata(init_data->supply_regulator_dev));
2354 if (ret < 0)
2355 goto scrub;
2358 /* add consumers devices */
2359 for (i = 0; i < init_data->num_consumer_supplies; i++) {
2360 ret = set_consumer_device_supply(rdev,
2361 init_data->consumer_supplies[i].dev,
2362 init_data->consumer_supplies[i].dev_name,
2363 init_data->consumer_supplies[i].supply);
2364 if (ret < 0)
2365 goto unset_supplies;
2368 list_add(&rdev->list, &regulator_list);
2369 out:
2370 mutex_unlock(&regulator_list_mutex);
2371 return rdev;
2373 unset_supplies:
2374 unset_regulator_supplies(rdev);
2376 scrub:
2377 device_unregister(&rdev->dev);
2378 /* device core frees rdev */
2379 rdev = ERR_PTR(ret);
2380 goto out;
2382 clean:
2383 kfree(rdev);
2384 rdev = ERR_PTR(ret);
2385 goto out;
2387 EXPORT_SYMBOL_GPL(regulator_register);
2390 * regulator_unregister - unregister regulator
2391 * @rdev: regulator to unregister
2393 * Called by regulator drivers to unregister a regulator.
2395 void regulator_unregister(struct regulator_dev *rdev)
2397 if (rdev == NULL)
2398 return;
2400 mutex_lock(&regulator_list_mutex);
2401 WARN_ON(rdev->open_count);
2402 unset_regulator_supplies(rdev);
2403 list_del(&rdev->list);
2404 if (rdev->supply)
2405 sysfs_remove_link(&rdev->dev.kobj, "supply");
2406 device_unregister(&rdev->dev);
2407 mutex_unlock(&regulator_list_mutex);
2409 EXPORT_SYMBOL_GPL(regulator_unregister);
2412 * regulator_suspend_prepare - prepare regulators for system wide suspend
2413 * @state: system suspend state
2415 * Configure each regulator with it's suspend operating parameters for state.
2416 * This will usually be called by machine suspend code prior to supending.
2418 int regulator_suspend_prepare(suspend_state_t state)
2420 struct regulator_dev *rdev;
2421 int ret = 0;
2423 /* ON is handled by regulator active state */
2424 if (state == PM_SUSPEND_ON)
2425 return -EINVAL;
2427 mutex_lock(&regulator_list_mutex);
2428 list_for_each_entry(rdev, &regulator_list, list) {
2430 mutex_lock(&rdev->mutex);
2431 ret = suspend_prepare(rdev, state);
2432 mutex_unlock(&rdev->mutex);
2434 if (ret < 0) {
2435 printk(KERN_ERR "%s: failed to prepare %s\n",
2436 __func__, rdev_get_name(rdev));
2437 goto out;
2440 out:
2441 mutex_unlock(&regulator_list_mutex);
2442 return ret;
2444 EXPORT_SYMBOL_GPL(regulator_suspend_prepare);
2447 * regulator_has_full_constraints - the system has fully specified constraints
2449 * Calling this function will cause the regulator API to disable all
2450 * regulators which have a zero use count and don't have an always_on
2451 * constraint in a late_initcall.
2453 * The intention is that this will become the default behaviour in a
2454 * future kernel release so users are encouraged to use this facility
2455 * now.
2457 void regulator_has_full_constraints(void)
2459 has_full_constraints = 1;
2461 EXPORT_SYMBOL_GPL(regulator_has_full_constraints);
2464 * rdev_get_drvdata - get rdev regulator driver data
2465 * @rdev: regulator
2467 * Get rdev regulator driver private data. This call can be used in the
2468 * regulator driver context.
2470 void *rdev_get_drvdata(struct regulator_dev *rdev)
2472 return rdev->reg_data;
2474 EXPORT_SYMBOL_GPL(rdev_get_drvdata);
2477 * regulator_get_drvdata - get regulator driver data
2478 * @regulator: regulator
2480 * Get regulator driver private data. This call can be used in the consumer
2481 * driver context when non API regulator specific functions need to be called.
2483 void *regulator_get_drvdata(struct regulator *regulator)
2485 return regulator->rdev->reg_data;
2487 EXPORT_SYMBOL_GPL(regulator_get_drvdata);
2490 * regulator_set_drvdata - set regulator driver data
2491 * @regulator: regulator
2492 * @data: data
2494 void regulator_set_drvdata(struct regulator *regulator, void *data)
2496 regulator->rdev->reg_data = data;
2498 EXPORT_SYMBOL_GPL(regulator_set_drvdata);
2501 * regulator_get_id - get regulator ID
2502 * @rdev: regulator
2504 int rdev_get_id(struct regulator_dev *rdev)
2506 return rdev->desc->id;
2508 EXPORT_SYMBOL_GPL(rdev_get_id);
2510 struct device *rdev_get_dev(struct regulator_dev *rdev)
2512 return &rdev->dev;
2514 EXPORT_SYMBOL_GPL(rdev_get_dev);
2516 void *regulator_get_init_drvdata(struct regulator_init_data *reg_init_data)
2518 return reg_init_data->driver_data;
2520 EXPORT_SYMBOL_GPL(regulator_get_init_drvdata);
2522 static int __init regulator_init(void)
2524 int ret;
2526 printk(KERN_INFO "regulator: core version %s\n", REGULATOR_VERSION);
2528 ret = class_register(&regulator_class);
2530 regulator_dummy_init();
2532 return ret;
2535 /* init early to allow our consumers to complete system booting */
2536 core_initcall(regulator_init);
2538 static int __init regulator_init_complete(void)
2540 struct regulator_dev *rdev;
2541 struct regulator_ops *ops;
2542 struct regulation_constraints *c;
2543 int enabled, ret;
2544 const char *name;
2546 mutex_lock(&regulator_list_mutex);
2548 /* If we have a full configuration then disable any regulators
2549 * which are not in use or always_on. This will become the
2550 * default behaviour in the future.
2552 list_for_each_entry(rdev, &regulator_list, list) {
2553 ops = rdev->desc->ops;
2554 c = rdev->constraints;
2556 name = rdev_get_name(rdev);
2558 if (!ops->disable || (c && c->always_on))
2559 continue;
2561 mutex_lock(&rdev->mutex);
2563 if (rdev->use_count)
2564 goto unlock;
2566 /* If we can't read the status assume it's on. */
2567 if (ops->is_enabled)
2568 enabled = ops->is_enabled(rdev);
2569 else
2570 enabled = 1;
2572 if (!enabled)
2573 goto unlock;
2575 if (has_full_constraints) {
2576 /* We log since this may kill the system if it
2577 * goes wrong. */
2578 printk(KERN_INFO "%s: disabling %s\n",
2579 __func__, name);
2580 ret = ops->disable(rdev);
2581 if (ret != 0) {
2582 printk(KERN_ERR
2583 "%s: couldn't disable %s: %d\n",
2584 __func__, name, ret);
2586 } else {
2587 /* The intention is that in future we will
2588 * assume that full constraints are provided
2589 * so warn even if we aren't going to do
2590 * anything here.
2592 printk(KERN_WARNING
2593 "%s: incomplete constraints, leaving %s on\n",
2594 __func__, name);
2597 unlock:
2598 mutex_unlock(&rdev->mutex);
2601 mutex_unlock(&regulator_list_mutex);
2603 return 0;
2605 late_initcall(regulator_init_complete);