Merge commit master.kernel.org:/pub/scm/linux/kernel/git/gregkh/i2c-2.6 of HEAD
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / kernel / posix-cpu-timers.c
blobd38d9ec3276c3069c1259744496e9d2a05fef117
1 /*
2 * Implement CPU time clocks for the POSIX clock interface.
3 */
5 #include <linux/sched.h>
6 #include <linux/posix-timers.h>
7 #include <asm/uaccess.h>
8 #include <linux/errno.h>
10 static int check_clock(const clockid_t which_clock)
12 int error = 0;
13 struct task_struct *p;
14 const pid_t pid = CPUCLOCK_PID(which_clock);
16 if (CPUCLOCK_WHICH(which_clock) >= CPUCLOCK_MAX)
17 return -EINVAL;
19 if (pid == 0)
20 return 0;
22 read_lock(&tasklist_lock);
23 p = find_task_by_pid(pid);
24 if (!p || (CPUCLOCK_PERTHREAD(which_clock) ?
25 p->tgid != current->tgid : p->tgid != pid)) {
26 error = -EINVAL;
28 read_unlock(&tasklist_lock);
30 return error;
33 static inline union cpu_time_count
34 timespec_to_sample(const clockid_t which_clock, const struct timespec *tp)
36 union cpu_time_count ret;
37 ret.sched = 0; /* high half always zero when .cpu used */
38 if (CPUCLOCK_WHICH(which_clock) == CPUCLOCK_SCHED) {
39 ret.sched = (unsigned long long)tp->tv_sec * NSEC_PER_SEC + tp->tv_nsec;
40 } else {
41 ret.cpu = timespec_to_cputime(tp);
43 return ret;
46 static void sample_to_timespec(const clockid_t which_clock,
47 union cpu_time_count cpu,
48 struct timespec *tp)
50 if (CPUCLOCK_WHICH(which_clock) == CPUCLOCK_SCHED) {
51 tp->tv_sec = div_long_long_rem(cpu.sched,
52 NSEC_PER_SEC, &tp->tv_nsec);
53 } else {
54 cputime_to_timespec(cpu.cpu, tp);
58 static inline int cpu_time_before(const clockid_t which_clock,
59 union cpu_time_count now,
60 union cpu_time_count then)
62 if (CPUCLOCK_WHICH(which_clock) == CPUCLOCK_SCHED) {
63 return now.sched < then.sched;
64 } else {
65 return cputime_lt(now.cpu, then.cpu);
68 static inline void cpu_time_add(const clockid_t which_clock,
69 union cpu_time_count *acc,
70 union cpu_time_count val)
72 if (CPUCLOCK_WHICH(which_clock) == CPUCLOCK_SCHED) {
73 acc->sched += val.sched;
74 } else {
75 acc->cpu = cputime_add(acc->cpu, val.cpu);
78 static inline union cpu_time_count cpu_time_sub(const clockid_t which_clock,
79 union cpu_time_count a,
80 union cpu_time_count b)
82 if (CPUCLOCK_WHICH(which_clock) == CPUCLOCK_SCHED) {
83 a.sched -= b.sched;
84 } else {
85 a.cpu = cputime_sub(a.cpu, b.cpu);
87 return a;
91 * Update expiry time from increment, and increase overrun count,
92 * given the current clock sample.
94 static void bump_cpu_timer(struct k_itimer *timer,
95 union cpu_time_count now)
97 int i;
99 if (timer->it.cpu.incr.sched == 0)
100 return;
102 if (CPUCLOCK_WHICH(timer->it_clock) == CPUCLOCK_SCHED) {
103 unsigned long long delta, incr;
105 if (now.sched < timer->it.cpu.expires.sched)
106 return;
107 incr = timer->it.cpu.incr.sched;
108 delta = now.sched + incr - timer->it.cpu.expires.sched;
109 /* Don't use (incr*2 < delta), incr*2 might overflow. */
110 for (i = 0; incr < delta - incr; i++)
111 incr = incr << 1;
112 for (; i >= 0; incr >>= 1, i--) {
113 if (delta < incr)
114 continue;
115 timer->it.cpu.expires.sched += incr;
116 timer->it_overrun += 1 << i;
117 delta -= incr;
119 } else {
120 cputime_t delta, incr;
122 if (cputime_lt(now.cpu, timer->it.cpu.expires.cpu))
123 return;
124 incr = timer->it.cpu.incr.cpu;
125 delta = cputime_sub(cputime_add(now.cpu, incr),
126 timer->it.cpu.expires.cpu);
127 /* Don't use (incr*2 < delta), incr*2 might overflow. */
128 for (i = 0; cputime_lt(incr, cputime_sub(delta, incr)); i++)
129 incr = cputime_add(incr, incr);
130 for (; i >= 0; incr = cputime_halve(incr), i--) {
131 if (cputime_lt(delta, incr))
132 continue;
133 timer->it.cpu.expires.cpu =
134 cputime_add(timer->it.cpu.expires.cpu, incr);
135 timer->it_overrun += 1 << i;
136 delta = cputime_sub(delta, incr);
141 static inline cputime_t prof_ticks(struct task_struct *p)
143 return cputime_add(p->utime, p->stime);
145 static inline cputime_t virt_ticks(struct task_struct *p)
147 return p->utime;
149 static inline unsigned long long sched_ns(struct task_struct *p)
151 return (p == current) ? current_sched_time(p) : p->sched_time;
154 int posix_cpu_clock_getres(const clockid_t which_clock, struct timespec *tp)
156 int error = check_clock(which_clock);
157 if (!error) {
158 tp->tv_sec = 0;
159 tp->tv_nsec = ((NSEC_PER_SEC + HZ - 1) / HZ);
160 if (CPUCLOCK_WHICH(which_clock) == CPUCLOCK_SCHED) {
162 * If sched_clock is using a cycle counter, we
163 * don't have any idea of its true resolution
164 * exported, but it is much more than 1s/HZ.
166 tp->tv_nsec = 1;
169 return error;
172 int posix_cpu_clock_set(const clockid_t which_clock, const struct timespec *tp)
175 * You can never reset a CPU clock, but we check for other errors
176 * in the call before failing with EPERM.
178 int error = check_clock(which_clock);
179 if (error == 0) {
180 error = -EPERM;
182 return error;
187 * Sample a per-thread clock for the given task.
189 static int cpu_clock_sample(const clockid_t which_clock, struct task_struct *p,
190 union cpu_time_count *cpu)
192 switch (CPUCLOCK_WHICH(which_clock)) {
193 default:
194 return -EINVAL;
195 case CPUCLOCK_PROF:
196 cpu->cpu = prof_ticks(p);
197 break;
198 case CPUCLOCK_VIRT:
199 cpu->cpu = virt_ticks(p);
200 break;
201 case CPUCLOCK_SCHED:
202 cpu->sched = sched_ns(p);
203 break;
205 return 0;
209 * Sample a process (thread group) clock for the given group_leader task.
210 * Must be called with tasklist_lock held for reading.
211 * Must be called with tasklist_lock held for reading, and p->sighand->siglock.
213 static int cpu_clock_sample_group_locked(unsigned int clock_idx,
214 struct task_struct *p,
215 union cpu_time_count *cpu)
217 struct task_struct *t = p;
218 switch (clock_idx) {
219 default:
220 return -EINVAL;
221 case CPUCLOCK_PROF:
222 cpu->cpu = cputime_add(p->signal->utime, p->signal->stime);
223 do {
224 cpu->cpu = cputime_add(cpu->cpu, prof_ticks(t));
225 t = next_thread(t);
226 } while (t != p);
227 break;
228 case CPUCLOCK_VIRT:
229 cpu->cpu = p->signal->utime;
230 do {
231 cpu->cpu = cputime_add(cpu->cpu, virt_ticks(t));
232 t = next_thread(t);
233 } while (t != p);
234 break;
235 case CPUCLOCK_SCHED:
236 cpu->sched = p->signal->sched_time;
237 /* Add in each other live thread. */
238 while ((t = next_thread(t)) != p) {
239 cpu->sched += t->sched_time;
241 cpu->sched += sched_ns(p);
242 break;
244 return 0;
248 * Sample a process (thread group) clock for the given group_leader task.
249 * Must be called with tasklist_lock held for reading.
251 static int cpu_clock_sample_group(const clockid_t which_clock,
252 struct task_struct *p,
253 union cpu_time_count *cpu)
255 int ret;
256 unsigned long flags;
257 spin_lock_irqsave(&p->sighand->siglock, flags);
258 ret = cpu_clock_sample_group_locked(CPUCLOCK_WHICH(which_clock), p,
259 cpu);
260 spin_unlock_irqrestore(&p->sighand->siglock, flags);
261 return ret;
265 int posix_cpu_clock_get(const clockid_t which_clock, struct timespec *tp)
267 const pid_t pid = CPUCLOCK_PID(which_clock);
268 int error = -EINVAL;
269 union cpu_time_count rtn;
271 if (pid == 0) {
273 * Special case constant value for our own clocks.
274 * We don't have to do any lookup to find ourselves.
276 if (CPUCLOCK_PERTHREAD(which_clock)) {
278 * Sampling just ourselves we can do with no locking.
280 error = cpu_clock_sample(which_clock,
281 current, &rtn);
282 } else {
283 read_lock(&tasklist_lock);
284 error = cpu_clock_sample_group(which_clock,
285 current, &rtn);
286 read_unlock(&tasklist_lock);
288 } else {
290 * Find the given PID, and validate that the caller
291 * should be able to see it.
293 struct task_struct *p;
294 read_lock(&tasklist_lock);
295 p = find_task_by_pid(pid);
296 if (p) {
297 if (CPUCLOCK_PERTHREAD(which_clock)) {
298 if (p->tgid == current->tgid) {
299 error = cpu_clock_sample(which_clock,
300 p, &rtn);
302 } else if (p->tgid == pid && p->signal) {
303 error = cpu_clock_sample_group(which_clock,
304 p, &rtn);
307 read_unlock(&tasklist_lock);
310 if (error)
311 return error;
312 sample_to_timespec(which_clock, rtn, tp);
313 return 0;
318 * Validate the clockid_t for a new CPU-clock timer, and initialize the timer.
319 * This is called from sys_timer_create with the new timer already locked.
321 int posix_cpu_timer_create(struct k_itimer *new_timer)
323 int ret = 0;
324 const pid_t pid = CPUCLOCK_PID(new_timer->it_clock);
325 struct task_struct *p;
327 if (CPUCLOCK_WHICH(new_timer->it_clock) >= CPUCLOCK_MAX)
328 return -EINVAL;
330 INIT_LIST_HEAD(&new_timer->it.cpu.entry);
331 new_timer->it.cpu.incr.sched = 0;
332 new_timer->it.cpu.expires.sched = 0;
334 read_lock(&tasklist_lock);
335 if (CPUCLOCK_PERTHREAD(new_timer->it_clock)) {
336 if (pid == 0) {
337 p = current;
338 } else {
339 p = find_task_by_pid(pid);
340 if (p && p->tgid != current->tgid)
341 p = NULL;
343 } else {
344 if (pid == 0) {
345 p = current->group_leader;
346 } else {
347 p = find_task_by_pid(pid);
348 if (p && p->tgid != pid)
349 p = NULL;
352 new_timer->it.cpu.task = p;
353 if (p) {
354 get_task_struct(p);
355 } else {
356 ret = -EINVAL;
358 read_unlock(&tasklist_lock);
360 return ret;
364 * Clean up a CPU-clock timer that is about to be destroyed.
365 * This is called from timer deletion with the timer already locked.
366 * If we return TIMER_RETRY, it's necessary to release the timer's lock
367 * and try again. (This happens when the timer is in the middle of firing.)
369 int posix_cpu_timer_del(struct k_itimer *timer)
371 struct task_struct *p = timer->it.cpu.task;
372 int ret = 0;
374 if (likely(p != NULL)) {
375 read_lock(&tasklist_lock);
376 if (unlikely(p->signal == NULL)) {
378 * We raced with the reaping of the task.
379 * The deletion should have cleared us off the list.
381 BUG_ON(!list_empty(&timer->it.cpu.entry));
382 } else {
383 spin_lock(&p->sighand->siglock);
384 if (timer->it.cpu.firing)
385 ret = TIMER_RETRY;
386 else
387 list_del(&timer->it.cpu.entry);
388 spin_unlock(&p->sighand->siglock);
390 read_unlock(&tasklist_lock);
392 if (!ret)
393 put_task_struct(p);
396 return ret;
400 * Clean out CPU timers still ticking when a thread exited. The task
401 * pointer is cleared, and the expiry time is replaced with the residual
402 * time for later timer_gettime calls to return.
403 * This must be called with the siglock held.
405 static void cleanup_timers(struct list_head *head,
406 cputime_t utime, cputime_t stime,
407 unsigned long long sched_time)
409 struct cpu_timer_list *timer, *next;
410 cputime_t ptime = cputime_add(utime, stime);
412 list_for_each_entry_safe(timer, next, head, entry) {
413 list_del_init(&timer->entry);
414 if (cputime_lt(timer->expires.cpu, ptime)) {
415 timer->expires.cpu = cputime_zero;
416 } else {
417 timer->expires.cpu = cputime_sub(timer->expires.cpu,
418 ptime);
422 ++head;
423 list_for_each_entry_safe(timer, next, head, entry) {
424 list_del_init(&timer->entry);
425 if (cputime_lt(timer->expires.cpu, utime)) {
426 timer->expires.cpu = cputime_zero;
427 } else {
428 timer->expires.cpu = cputime_sub(timer->expires.cpu,
429 utime);
433 ++head;
434 list_for_each_entry_safe(timer, next, head, entry) {
435 list_del_init(&timer->entry);
436 if (timer->expires.sched < sched_time) {
437 timer->expires.sched = 0;
438 } else {
439 timer->expires.sched -= sched_time;
445 * These are both called with the siglock held, when the current thread
446 * is being reaped. When the final (leader) thread in the group is reaped,
447 * posix_cpu_timers_exit_group will be called after posix_cpu_timers_exit.
449 void posix_cpu_timers_exit(struct task_struct *tsk)
451 cleanup_timers(tsk->cpu_timers,
452 tsk->utime, tsk->stime, tsk->sched_time);
455 void posix_cpu_timers_exit_group(struct task_struct *tsk)
457 cleanup_timers(tsk->signal->cpu_timers,
458 cputime_add(tsk->utime, tsk->signal->utime),
459 cputime_add(tsk->stime, tsk->signal->stime),
460 tsk->sched_time + tsk->signal->sched_time);
465 * Set the expiry times of all the threads in the process so one of them
466 * will go off before the process cumulative expiry total is reached.
468 static void process_timer_rebalance(struct task_struct *p,
469 unsigned int clock_idx,
470 union cpu_time_count expires,
471 union cpu_time_count val)
473 cputime_t ticks, left;
474 unsigned long long ns, nsleft;
475 struct task_struct *t = p;
476 unsigned int nthreads = atomic_read(&p->signal->live);
478 if (!nthreads)
479 return;
481 switch (clock_idx) {
482 default:
483 BUG();
484 break;
485 case CPUCLOCK_PROF:
486 left = cputime_div(cputime_sub(expires.cpu, val.cpu),
487 nthreads);
488 do {
489 if (likely(!(t->flags & PF_EXITING))) {
490 ticks = cputime_add(prof_ticks(t), left);
491 if (cputime_eq(t->it_prof_expires,
492 cputime_zero) ||
493 cputime_gt(t->it_prof_expires, ticks)) {
494 t->it_prof_expires = ticks;
497 t = next_thread(t);
498 } while (t != p);
499 break;
500 case CPUCLOCK_VIRT:
501 left = cputime_div(cputime_sub(expires.cpu, val.cpu),
502 nthreads);
503 do {
504 if (likely(!(t->flags & PF_EXITING))) {
505 ticks = cputime_add(virt_ticks(t), left);
506 if (cputime_eq(t->it_virt_expires,
507 cputime_zero) ||
508 cputime_gt(t->it_virt_expires, ticks)) {
509 t->it_virt_expires = ticks;
512 t = next_thread(t);
513 } while (t != p);
514 break;
515 case CPUCLOCK_SCHED:
516 nsleft = expires.sched - val.sched;
517 do_div(nsleft, nthreads);
518 do {
519 if (likely(!(t->flags & PF_EXITING))) {
520 ns = t->sched_time + nsleft;
521 if (t->it_sched_expires == 0 ||
522 t->it_sched_expires > ns) {
523 t->it_sched_expires = ns;
526 t = next_thread(t);
527 } while (t != p);
528 break;
532 static void clear_dead_task(struct k_itimer *timer, union cpu_time_count now)
535 * That's all for this thread or process.
536 * We leave our residual in expires to be reported.
538 put_task_struct(timer->it.cpu.task);
539 timer->it.cpu.task = NULL;
540 timer->it.cpu.expires = cpu_time_sub(timer->it_clock,
541 timer->it.cpu.expires,
542 now);
546 * Insert the timer on the appropriate list before any timers that
547 * expire later. This must be called with the tasklist_lock held
548 * for reading, and interrupts disabled.
550 static void arm_timer(struct k_itimer *timer, union cpu_time_count now)
552 struct task_struct *p = timer->it.cpu.task;
553 struct list_head *head, *listpos;
554 struct cpu_timer_list *const nt = &timer->it.cpu;
555 struct cpu_timer_list *next;
556 unsigned long i;
558 head = (CPUCLOCK_PERTHREAD(timer->it_clock) ?
559 p->cpu_timers : p->signal->cpu_timers);
560 head += CPUCLOCK_WHICH(timer->it_clock);
562 BUG_ON(!irqs_disabled());
563 spin_lock(&p->sighand->siglock);
565 listpos = head;
566 if (CPUCLOCK_WHICH(timer->it_clock) == CPUCLOCK_SCHED) {
567 list_for_each_entry(next, head, entry) {
568 if (next->expires.sched > nt->expires.sched)
569 break;
570 listpos = &next->entry;
572 } else {
573 list_for_each_entry(next, head, entry) {
574 if (cputime_gt(next->expires.cpu, nt->expires.cpu))
575 break;
576 listpos = &next->entry;
579 list_add(&nt->entry, listpos);
581 if (listpos == head) {
583 * We are the new earliest-expiring timer.
584 * If we are a thread timer, there can always
585 * be a process timer telling us to stop earlier.
588 if (CPUCLOCK_PERTHREAD(timer->it_clock)) {
589 switch (CPUCLOCK_WHICH(timer->it_clock)) {
590 default:
591 BUG();
592 case CPUCLOCK_PROF:
593 if (cputime_eq(p->it_prof_expires,
594 cputime_zero) ||
595 cputime_gt(p->it_prof_expires,
596 nt->expires.cpu))
597 p->it_prof_expires = nt->expires.cpu;
598 break;
599 case CPUCLOCK_VIRT:
600 if (cputime_eq(p->it_virt_expires,
601 cputime_zero) ||
602 cputime_gt(p->it_virt_expires,
603 nt->expires.cpu))
604 p->it_virt_expires = nt->expires.cpu;
605 break;
606 case CPUCLOCK_SCHED:
607 if (p->it_sched_expires == 0 ||
608 p->it_sched_expires > nt->expires.sched)
609 p->it_sched_expires = nt->expires.sched;
610 break;
612 } else {
614 * For a process timer, we must balance
615 * all the live threads' expirations.
617 switch (CPUCLOCK_WHICH(timer->it_clock)) {
618 default:
619 BUG();
620 case CPUCLOCK_VIRT:
621 if (!cputime_eq(p->signal->it_virt_expires,
622 cputime_zero) &&
623 cputime_lt(p->signal->it_virt_expires,
624 timer->it.cpu.expires.cpu))
625 break;
626 goto rebalance;
627 case CPUCLOCK_PROF:
628 if (!cputime_eq(p->signal->it_prof_expires,
629 cputime_zero) &&
630 cputime_lt(p->signal->it_prof_expires,
631 timer->it.cpu.expires.cpu))
632 break;
633 i = p->signal->rlim[RLIMIT_CPU].rlim_cur;
634 if (i != RLIM_INFINITY &&
635 i <= cputime_to_secs(timer->it.cpu.expires.cpu))
636 break;
637 goto rebalance;
638 case CPUCLOCK_SCHED:
639 rebalance:
640 process_timer_rebalance(
641 timer->it.cpu.task,
642 CPUCLOCK_WHICH(timer->it_clock),
643 timer->it.cpu.expires, now);
644 break;
649 spin_unlock(&p->sighand->siglock);
653 * The timer is locked, fire it and arrange for its reload.
655 static void cpu_timer_fire(struct k_itimer *timer)
657 if (unlikely(timer->sigq == NULL)) {
659 * This a special case for clock_nanosleep,
660 * not a normal timer from sys_timer_create.
662 wake_up_process(timer->it_process);
663 timer->it.cpu.expires.sched = 0;
664 } else if (timer->it.cpu.incr.sched == 0) {
666 * One-shot timer. Clear it as soon as it's fired.
668 posix_timer_event(timer, 0);
669 timer->it.cpu.expires.sched = 0;
670 } else if (posix_timer_event(timer, ++timer->it_requeue_pending)) {
672 * The signal did not get queued because the signal
673 * was ignored, so we won't get any callback to
674 * reload the timer. But we need to keep it
675 * ticking in case the signal is deliverable next time.
677 posix_cpu_timer_schedule(timer);
682 * Guts of sys_timer_settime for CPU timers.
683 * This is called with the timer locked and interrupts disabled.
684 * If we return TIMER_RETRY, it's necessary to release the timer's lock
685 * and try again. (This happens when the timer is in the middle of firing.)
687 int posix_cpu_timer_set(struct k_itimer *timer, int flags,
688 struct itimerspec *new, struct itimerspec *old)
690 struct task_struct *p = timer->it.cpu.task;
691 union cpu_time_count old_expires, new_expires, val;
692 int ret;
694 if (unlikely(p == NULL)) {
696 * Timer refers to a dead task's clock.
698 return -ESRCH;
701 new_expires = timespec_to_sample(timer->it_clock, &new->it_value);
703 read_lock(&tasklist_lock);
705 * We need the tasklist_lock to protect against reaping that
706 * clears p->signal. If p has just been reaped, we can no
707 * longer get any information about it at all.
709 if (unlikely(p->signal == NULL)) {
710 read_unlock(&tasklist_lock);
711 put_task_struct(p);
712 timer->it.cpu.task = NULL;
713 return -ESRCH;
717 * Disarm any old timer after extracting its expiry time.
719 BUG_ON(!irqs_disabled());
721 ret = 0;
722 spin_lock(&p->sighand->siglock);
723 old_expires = timer->it.cpu.expires;
724 if (unlikely(timer->it.cpu.firing)) {
725 timer->it.cpu.firing = -1;
726 ret = TIMER_RETRY;
727 } else
728 list_del_init(&timer->it.cpu.entry);
729 spin_unlock(&p->sighand->siglock);
732 * We need to sample the current value to convert the new
733 * value from to relative and absolute, and to convert the
734 * old value from absolute to relative. To set a process
735 * timer, we need a sample to balance the thread expiry
736 * times (in arm_timer). With an absolute time, we must
737 * check if it's already passed. In short, we need a sample.
739 if (CPUCLOCK_PERTHREAD(timer->it_clock)) {
740 cpu_clock_sample(timer->it_clock, p, &val);
741 } else {
742 cpu_clock_sample_group(timer->it_clock, p, &val);
745 if (old) {
746 if (old_expires.sched == 0) {
747 old->it_value.tv_sec = 0;
748 old->it_value.tv_nsec = 0;
749 } else {
751 * Update the timer in case it has
752 * overrun already. If it has,
753 * we'll report it as having overrun
754 * and with the next reloaded timer
755 * already ticking, though we are
756 * swallowing that pending
757 * notification here to install the
758 * new setting.
760 bump_cpu_timer(timer, val);
761 if (cpu_time_before(timer->it_clock, val,
762 timer->it.cpu.expires)) {
763 old_expires = cpu_time_sub(
764 timer->it_clock,
765 timer->it.cpu.expires, val);
766 sample_to_timespec(timer->it_clock,
767 old_expires,
768 &old->it_value);
769 } else {
770 old->it_value.tv_nsec = 1;
771 old->it_value.tv_sec = 0;
776 if (unlikely(ret)) {
778 * We are colliding with the timer actually firing.
779 * Punt after filling in the timer's old value, and
780 * disable this firing since we are already reporting
781 * it as an overrun (thanks to bump_cpu_timer above).
783 read_unlock(&tasklist_lock);
784 goto out;
787 if (new_expires.sched != 0 && !(flags & TIMER_ABSTIME)) {
788 cpu_time_add(timer->it_clock, &new_expires, val);
792 * Install the new expiry time (or zero).
793 * For a timer with no notification action, we don't actually
794 * arm the timer (we'll just fake it for timer_gettime).
796 timer->it.cpu.expires = new_expires;
797 if (new_expires.sched != 0 &&
798 (timer->it_sigev_notify & ~SIGEV_THREAD_ID) != SIGEV_NONE &&
799 cpu_time_before(timer->it_clock, val, new_expires)) {
800 arm_timer(timer, val);
803 read_unlock(&tasklist_lock);
806 * Install the new reload setting, and
807 * set up the signal and overrun bookkeeping.
809 timer->it.cpu.incr = timespec_to_sample(timer->it_clock,
810 &new->it_interval);
813 * This acts as a modification timestamp for the timer,
814 * so any automatic reload attempt will punt on seeing
815 * that we have reset the timer manually.
817 timer->it_requeue_pending = (timer->it_requeue_pending + 2) &
818 ~REQUEUE_PENDING;
819 timer->it_overrun_last = 0;
820 timer->it_overrun = -1;
822 if (new_expires.sched != 0 &&
823 (timer->it_sigev_notify & ~SIGEV_THREAD_ID) != SIGEV_NONE &&
824 !cpu_time_before(timer->it_clock, val, new_expires)) {
826 * The designated time already passed, so we notify
827 * immediately, even if the thread never runs to
828 * accumulate more time on this clock.
830 cpu_timer_fire(timer);
833 ret = 0;
834 out:
835 if (old) {
836 sample_to_timespec(timer->it_clock,
837 timer->it.cpu.incr, &old->it_interval);
839 return ret;
842 void posix_cpu_timer_get(struct k_itimer *timer, struct itimerspec *itp)
844 union cpu_time_count now;
845 struct task_struct *p = timer->it.cpu.task;
846 int clear_dead;
849 * Easy part: convert the reload time.
851 sample_to_timespec(timer->it_clock,
852 timer->it.cpu.incr, &itp->it_interval);
854 if (timer->it.cpu.expires.sched == 0) { /* Timer not armed at all. */
855 itp->it_value.tv_sec = itp->it_value.tv_nsec = 0;
856 return;
859 if (unlikely(p == NULL)) {
861 * This task already died and the timer will never fire.
862 * In this case, expires is actually the dead value.
864 dead:
865 sample_to_timespec(timer->it_clock, timer->it.cpu.expires,
866 &itp->it_value);
867 return;
871 * Sample the clock to take the difference with the expiry time.
873 if (CPUCLOCK_PERTHREAD(timer->it_clock)) {
874 cpu_clock_sample(timer->it_clock, p, &now);
875 clear_dead = p->exit_state;
876 } else {
877 read_lock(&tasklist_lock);
878 if (unlikely(p->signal == NULL)) {
880 * The process has been reaped.
881 * We can't even collect a sample any more.
882 * Call the timer disarmed, nothing else to do.
884 put_task_struct(p);
885 timer->it.cpu.task = NULL;
886 timer->it.cpu.expires.sched = 0;
887 read_unlock(&tasklist_lock);
888 goto dead;
889 } else {
890 cpu_clock_sample_group(timer->it_clock, p, &now);
891 clear_dead = (unlikely(p->exit_state) &&
892 thread_group_empty(p));
894 read_unlock(&tasklist_lock);
897 if ((timer->it_sigev_notify & ~SIGEV_THREAD_ID) == SIGEV_NONE) {
898 if (timer->it.cpu.incr.sched == 0 &&
899 cpu_time_before(timer->it_clock,
900 timer->it.cpu.expires, now)) {
902 * Do-nothing timer expired and has no reload,
903 * so it's as if it was never set.
905 timer->it.cpu.expires.sched = 0;
906 itp->it_value.tv_sec = itp->it_value.tv_nsec = 0;
907 return;
910 * Account for any expirations and reloads that should
911 * have happened.
913 bump_cpu_timer(timer, now);
916 if (unlikely(clear_dead)) {
918 * We've noticed that the thread is dead, but
919 * not yet reaped. Take this opportunity to
920 * drop our task ref.
922 clear_dead_task(timer, now);
923 goto dead;
926 if (cpu_time_before(timer->it_clock, now, timer->it.cpu.expires)) {
927 sample_to_timespec(timer->it_clock,
928 cpu_time_sub(timer->it_clock,
929 timer->it.cpu.expires, now),
930 &itp->it_value);
931 } else {
933 * The timer should have expired already, but the firing
934 * hasn't taken place yet. Say it's just about to expire.
936 itp->it_value.tv_nsec = 1;
937 itp->it_value.tv_sec = 0;
942 * Check for any per-thread CPU timers that have fired and move them off
943 * the tsk->cpu_timers[N] list onto the firing list. Here we update the
944 * tsk->it_*_expires values to reflect the remaining thread CPU timers.
946 static void check_thread_timers(struct task_struct *tsk,
947 struct list_head *firing)
949 int maxfire;
950 struct list_head *timers = tsk->cpu_timers;
952 maxfire = 20;
953 tsk->it_prof_expires = cputime_zero;
954 while (!list_empty(timers)) {
955 struct cpu_timer_list *t = list_entry(timers->next,
956 struct cpu_timer_list,
957 entry);
958 if (!--maxfire || cputime_lt(prof_ticks(tsk), t->expires.cpu)) {
959 tsk->it_prof_expires = t->expires.cpu;
960 break;
962 t->firing = 1;
963 list_move_tail(&t->entry, firing);
966 ++timers;
967 maxfire = 20;
968 tsk->it_virt_expires = cputime_zero;
969 while (!list_empty(timers)) {
970 struct cpu_timer_list *t = list_entry(timers->next,
971 struct cpu_timer_list,
972 entry);
973 if (!--maxfire || cputime_lt(virt_ticks(tsk), t->expires.cpu)) {
974 tsk->it_virt_expires = t->expires.cpu;
975 break;
977 t->firing = 1;
978 list_move_tail(&t->entry, firing);
981 ++timers;
982 maxfire = 20;
983 tsk->it_sched_expires = 0;
984 while (!list_empty(timers)) {
985 struct cpu_timer_list *t = list_entry(timers->next,
986 struct cpu_timer_list,
987 entry);
988 if (!--maxfire || tsk->sched_time < t->expires.sched) {
989 tsk->it_sched_expires = t->expires.sched;
990 break;
992 t->firing = 1;
993 list_move_tail(&t->entry, firing);
998 * Check for any per-thread CPU timers that have fired and move them
999 * off the tsk->*_timers list onto the firing list. Per-thread timers
1000 * have already been taken off.
1002 static void check_process_timers(struct task_struct *tsk,
1003 struct list_head *firing)
1005 int maxfire;
1006 struct signal_struct *const sig = tsk->signal;
1007 cputime_t utime, stime, ptime, virt_expires, prof_expires;
1008 unsigned long long sched_time, sched_expires;
1009 struct task_struct *t;
1010 struct list_head *timers = sig->cpu_timers;
1013 * Don't sample the current process CPU clocks if there are no timers.
1015 if (list_empty(&timers[CPUCLOCK_PROF]) &&
1016 cputime_eq(sig->it_prof_expires, cputime_zero) &&
1017 sig->rlim[RLIMIT_CPU].rlim_cur == RLIM_INFINITY &&
1018 list_empty(&timers[CPUCLOCK_VIRT]) &&
1019 cputime_eq(sig->it_virt_expires, cputime_zero) &&
1020 list_empty(&timers[CPUCLOCK_SCHED]))
1021 return;
1024 * Collect the current process totals.
1026 utime = sig->utime;
1027 stime = sig->stime;
1028 sched_time = sig->sched_time;
1029 t = tsk;
1030 do {
1031 utime = cputime_add(utime, t->utime);
1032 stime = cputime_add(stime, t->stime);
1033 sched_time += t->sched_time;
1034 t = next_thread(t);
1035 } while (t != tsk);
1036 ptime = cputime_add(utime, stime);
1038 maxfire = 20;
1039 prof_expires = cputime_zero;
1040 while (!list_empty(timers)) {
1041 struct cpu_timer_list *t = list_entry(timers->next,
1042 struct cpu_timer_list,
1043 entry);
1044 if (!--maxfire || cputime_lt(ptime, t->expires.cpu)) {
1045 prof_expires = t->expires.cpu;
1046 break;
1048 t->firing = 1;
1049 list_move_tail(&t->entry, firing);
1052 ++timers;
1053 maxfire = 20;
1054 virt_expires = cputime_zero;
1055 while (!list_empty(timers)) {
1056 struct cpu_timer_list *t = list_entry(timers->next,
1057 struct cpu_timer_list,
1058 entry);
1059 if (!--maxfire || cputime_lt(utime, t->expires.cpu)) {
1060 virt_expires = t->expires.cpu;
1061 break;
1063 t->firing = 1;
1064 list_move_tail(&t->entry, firing);
1067 ++timers;
1068 maxfire = 20;
1069 sched_expires = 0;
1070 while (!list_empty(timers)) {
1071 struct cpu_timer_list *t = list_entry(timers->next,
1072 struct cpu_timer_list,
1073 entry);
1074 if (!--maxfire || sched_time < t->expires.sched) {
1075 sched_expires = t->expires.sched;
1076 break;
1078 t->firing = 1;
1079 list_move_tail(&t->entry, firing);
1083 * Check for the special case process timers.
1085 if (!cputime_eq(sig->it_prof_expires, cputime_zero)) {
1086 if (cputime_ge(ptime, sig->it_prof_expires)) {
1087 /* ITIMER_PROF fires and reloads. */
1088 sig->it_prof_expires = sig->it_prof_incr;
1089 if (!cputime_eq(sig->it_prof_expires, cputime_zero)) {
1090 sig->it_prof_expires = cputime_add(
1091 sig->it_prof_expires, ptime);
1093 __group_send_sig_info(SIGPROF, SEND_SIG_PRIV, tsk);
1095 if (!cputime_eq(sig->it_prof_expires, cputime_zero) &&
1096 (cputime_eq(prof_expires, cputime_zero) ||
1097 cputime_lt(sig->it_prof_expires, prof_expires))) {
1098 prof_expires = sig->it_prof_expires;
1101 if (!cputime_eq(sig->it_virt_expires, cputime_zero)) {
1102 if (cputime_ge(utime, sig->it_virt_expires)) {
1103 /* ITIMER_VIRTUAL fires and reloads. */
1104 sig->it_virt_expires = sig->it_virt_incr;
1105 if (!cputime_eq(sig->it_virt_expires, cputime_zero)) {
1106 sig->it_virt_expires = cputime_add(
1107 sig->it_virt_expires, utime);
1109 __group_send_sig_info(SIGVTALRM, SEND_SIG_PRIV, tsk);
1111 if (!cputime_eq(sig->it_virt_expires, cputime_zero) &&
1112 (cputime_eq(virt_expires, cputime_zero) ||
1113 cputime_lt(sig->it_virt_expires, virt_expires))) {
1114 virt_expires = sig->it_virt_expires;
1117 if (sig->rlim[RLIMIT_CPU].rlim_cur != RLIM_INFINITY) {
1118 unsigned long psecs = cputime_to_secs(ptime);
1119 cputime_t x;
1120 if (psecs >= sig->rlim[RLIMIT_CPU].rlim_max) {
1122 * At the hard limit, we just die.
1123 * No need to calculate anything else now.
1125 __group_send_sig_info(SIGKILL, SEND_SIG_PRIV, tsk);
1126 return;
1128 if (psecs >= sig->rlim[RLIMIT_CPU].rlim_cur) {
1130 * At the soft limit, send a SIGXCPU every second.
1132 __group_send_sig_info(SIGXCPU, SEND_SIG_PRIV, tsk);
1133 if (sig->rlim[RLIMIT_CPU].rlim_cur
1134 < sig->rlim[RLIMIT_CPU].rlim_max) {
1135 sig->rlim[RLIMIT_CPU].rlim_cur++;
1138 x = secs_to_cputime(sig->rlim[RLIMIT_CPU].rlim_cur);
1139 if (cputime_eq(prof_expires, cputime_zero) ||
1140 cputime_lt(x, prof_expires)) {
1141 prof_expires = x;
1145 if (!cputime_eq(prof_expires, cputime_zero) ||
1146 !cputime_eq(virt_expires, cputime_zero) ||
1147 sched_expires != 0) {
1149 * Rebalance the threads' expiry times for the remaining
1150 * process CPU timers.
1153 cputime_t prof_left, virt_left, ticks;
1154 unsigned long long sched_left, sched;
1155 const unsigned int nthreads = atomic_read(&sig->live);
1157 if (!nthreads)
1158 return;
1160 prof_left = cputime_sub(prof_expires, utime);
1161 prof_left = cputime_sub(prof_left, stime);
1162 prof_left = cputime_div(prof_left, nthreads);
1163 virt_left = cputime_sub(virt_expires, utime);
1164 virt_left = cputime_div(virt_left, nthreads);
1165 if (sched_expires) {
1166 sched_left = sched_expires - sched_time;
1167 do_div(sched_left, nthreads);
1168 } else {
1169 sched_left = 0;
1171 t = tsk;
1172 do {
1173 if (unlikely(t->flags & PF_EXITING))
1174 continue;
1176 ticks = cputime_add(cputime_add(t->utime, t->stime),
1177 prof_left);
1178 if (!cputime_eq(prof_expires, cputime_zero) &&
1179 (cputime_eq(t->it_prof_expires, cputime_zero) ||
1180 cputime_gt(t->it_prof_expires, ticks))) {
1181 t->it_prof_expires = ticks;
1184 ticks = cputime_add(t->utime, virt_left);
1185 if (!cputime_eq(virt_expires, cputime_zero) &&
1186 (cputime_eq(t->it_virt_expires, cputime_zero) ||
1187 cputime_gt(t->it_virt_expires, ticks))) {
1188 t->it_virt_expires = ticks;
1191 sched = t->sched_time + sched_left;
1192 if (sched_expires && (t->it_sched_expires == 0 ||
1193 t->it_sched_expires > sched)) {
1194 t->it_sched_expires = sched;
1196 } while ((t = next_thread(t)) != tsk);
1201 * This is called from the signal code (via do_schedule_next_timer)
1202 * when the last timer signal was delivered and we have to reload the timer.
1204 void posix_cpu_timer_schedule(struct k_itimer *timer)
1206 struct task_struct *p = timer->it.cpu.task;
1207 union cpu_time_count now;
1209 if (unlikely(p == NULL))
1211 * The task was cleaned up already, no future firings.
1213 goto out;
1216 * Fetch the current sample and update the timer's expiry time.
1218 if (CPUCLOCK_PERTHREAD(timer->it_clock)) {
1219 cpu_clock_sample(timer->it_clock, p, &now);
1220 bump_cpu_timer(timer, now);
1221 if (unlikely(p->exit_state)) {
1222 clear_dead_task(timer, now);
1223 goto out;
1225 read_lock(&tasklist_lock); /* arm_timer needs it. */
1226 } else {
1227 read_lock(&tasklist_lock);
1228 if (unlikely(p->signal == NULL)) {
1230 * The process has been reaped.
1231 * We can't even collect a sample any more.
1233 put_task_struct(p);
1234 timer->it.cpu.task = p = NULL;
1235 timer->it.cpu.expires.sched = 0;
1236 goto out_unlock;
1237 } else if (unlikely(p->exit_state) && thread_group_empty(p)) {
1239 * We've noticed that the thread is dead, but
1240 * not yet reaped. Take this opportunity to
1241 * drop our task ref.
1243 clear_dead_task(timer, now);
1244 goto out_unlock;
1246 cpu_clock_sample_group(timer->it_clock, p, &now);
1247 bump_cpu_timer(timer, now);
1248 /* Leave the tasklist_lock locked for the call below. */
1252 * Now re-arm for the new expiry time.
1254 arm_timer(timer, now);
1256 out_unlock:
1257 read_unlock(&tasklist_lock);
1259 out:
1260 timer->it_overrun_last = timer->it_overrun;
1261 timer->it_overrun = -1;
1262 ++timer->it_requeue_pending;
1266 * This is called from the timer interrupt handler. The irq handler has
1267 * already updated our counts. We need to check if any timers fire now.
1268 * Interrupts are disabled.
1270 void run_posix_cpu_timers(struct task_struct *tsk)
1272 LIST_HEAD(firing);
1273 struct k_itimer *timer, *next;
1275 BUG_ON(!irqs_disabled());
1277 #define UNEXPIRED(clock) \
1278 (cputime_eq(tsk->it_##clock##_expires, cputime_zero) || \
1279 cputime_lt(clock##_ticks(tsk), tsk->it_##clock##_expires))
1281 if (UNEXPIRED(prof) && UNEXPIRED(virt) &&
1282 (tsk->it_sched_expires == 0 ||
1283 tsk->sched_time < tsk->it_sched_expires))
1284 return;
1286 #undef UNEXPIRED
1289 * Double-check with locks held.
1291 read_lock(&tasklist_lock);
1292 if (likely(tsk->signal != NULL)) {
1293 spin_lock(&tsk->sighand->siglock);
1296 * Here we take off tsk->cpu_timers[N] and tsk->signal->cpu_timers[N]
1297 * all the timers that are firing, and put them on the firing list.
1299 check_thread_timers(tsk, &firing);
1300 check_process_timers(tsk, &firing);
1303 * We must release these locks before taking any timer's lock.
1304 * There is a potential race with timer deletion here, as the
1305 * siglock now protects our private firing list. We have set
1306 * the firing flag in each timer, so that a deletion attempt
1307 * that gets the timer lock before we do will give it up and
1308 * spin until we've taken care of that timer below.
1310 spin_unlock(&tsk->sighand->siglock);
1312 read_unlock(&tasklist_lock);
1315 * Now that all the timers on our list have the firing flag,
1316 * noone will touch their list entries but us. We'll take
1317 * each timer's lock before clearing its firing flag, so no
1318 * timer call will interfere.
1320 list_for_each_entry_safe(timer, next, &firing, it.cpu.entry) {
1321 int firing;
1322 spin_lock(&timer->it_lock);
1323 list_del_init(&timer->it.cpu.entry);
1324 firing = timer->it.cpu.firing;
1325 timer->it.cpu.firing = 0;
1327 * The firing flag is -1 if we collided with a reset
1328 * of the timer, which already reported this
1329 * almost-firing as an overrun. So don't generate an event.
1331 if (likely(firing >= 0)) {
1332 cpu_timer_fire(timer);
1334 spin_unlock(&timer->it_lock);
1339 * Set one of the process-wide special case CPU timers.
1340 * The tasklist_lock and tsk->sighand->siglock must be held by the caller.
1341 * The oldval argument is null for the RLIMIT_CPU timer, where *newval is
1342 * absolute; non-null for ITIMER_*, where *newval is relative and we update
1343 * it to be absolute, *oldval is absolute and we update it to be relative.
1345 void set_process_cpu_timer(struct task_struct *tsk, unsigned int clock_idx,
1346 cputime_t *newval, cputime_t *oldval)
1348 union cpu_time_count now;
1349 struct list_head *head;
1351 BUG_ON(clock_idx == CPUCLOCK_SCHED);
1352 cpu_clock_sample_group_locked(clock_idx, tsk, &now);
1354 if (oldval) {
1355 if (!cputime_eq(*oldval, cputime_zero)) {
1356 if (cputime_le(*oldval, now.cpu)) {
1357 /* Just about to fire. */
1358 *oldval = jiffies_to_cputime(1);
1359 } else {
1360 *oldval = cputime_sub(*oldval, now.cpu);
1364 if (cputime_eq(*newval, cputime_zero))
1365 return;
1366 *newval = cputime_add(*newval, now.cpu);
1369 * If the RLIMIT_CPU timer will expire before the
1370 * ITIMER_PROF timer, we have nothing else to do.
1372 if (tsk->signal->rlim[RLIMIT_CPU].rlim_cur
1373 < cputime_to_secs(*newval))
1374 return;
1378 * Check whether there are any process timers already set to fire
1379 * before this one. If so, we don't have anything more to do.
1381 head = &tsk->signal->cpu_timers[clock_idx];
1382 if (list_empty(head) ||
1383 cputime_ge(list_entry(head->next,
1384 struct cpu_timer_list, entry)->expires.cpu,
1385 *newval)) {
1387 * Rejigger each thread's expiry time so that one will
1388 * notice before we hit the process-cumulative expiry time.
1390 union cpu_time_count expires = { .sched = 0 };
1391 expires.cpu = *newval;
1392 process_timer_rebalance(tsk, clock_idx, expires, now);
1396 static long posix_cpu_clock_nanosleep_restart(struct restart_block *);
1398 int posix_cpu_nsleep(const clockid_t which_clock, int flags,
1399 struct timespec *rqtp, struct timespec __user *rmtp)
1401 struct restart_block *restart_block =
1402 &current_thread_info()->restart_block;
1403 struct k_itimer timer;
1404 int error;
1407 * Diagnose required errors first.
1409 if (CPUCLOCK_PERTHREAD(which_clock) &&
1410 (CPUCLOCK_PID(which_clock) == 0 ||
1411 CPUCLOCK_PID(which_clock) == current->pid))
1412 return -EINVAL;
1415 * Set up a temporary timer and then wait for it to go off.
1417 memset(&timer, 0, sizeof timer);
1418 spin_lock_init(&timer.it_lock);
1419 timer.it_clock = which_clock;
1420 timer.it_overrun = -1;
1421 error = posix_cpu_timer_create(&timer);
1422 timer.it_process = current;
1423 if (!error) {
1424 static struct itimerspec zero_it;
1425 struct itimerspec it = { .it_value = *rqtp,
1426 .it_interval = {} };
1428 spin_lock_irq(&timer.it_lock);
1429 error = posix_cpu_timer_set(&timer, flags, &it, NULL);
1430 if (error) {
1431 spin_unlock_irq(&timer.it_lock);
1432 return error;
1435 while (!signal_pending(current)) {
1436 if (timer.it.cpu.expires.sched == 0) {
1438 * Our timer fired and was reset.
1440 spin_unlock_irq(&timer.it_lock);
1441 return 0;
1445 * Block until cpu_timer_fire (or a signal) wakes us.
1447 __set_current_state(TASK_INTERRUPTIBLE);
1448 spin_unlock_irq(&timer.it_lock);
1449 schedule();
1450 spin_lock_irq(&timer.it_lock);
1454 * We were interrupted by a signal.
1456 sample_to_timespec(which_clock, timer.it.cpu.expires, rqtp);
1457 posix_cpu_timer_set(&timer, 0, &zero_it, &it);
1458 spin_unlock_irq(&timer.it_lock);
1460 if ((it.it_value.tv_sec | it.it_value.tv_nsec) == 0) {
1462 * It actually did fire already.
1464 return 0;
1468 * Report back to the user the time still remaining.
1470 if (rmtp != NULL && !(flags & TIMER_ABSTIME) &&
1471 copy_to_user(rmtp, &it.it_value, sizeof *rmtp))
1472 return -EFAULT;
1474 restart_block->fn = posix_cpu_clock_nanosleep_restart;
1475 /* Caller already set restart_block->arg1 */
1476 restart_block->arg0 = which_clock;
1477 restart_block->arg1 = (unsigned long) rmtp;
1478 restart_block->arg2 = rqtp->tv_sec;
1479 restart_block->arg3 = rqtp->tv_nsec;
1481 error = -ERESTART_RESTARTBLOCK;
1484 return error;
1487 static long
1488 posix_cpu_clock_nanosleep_restart(struct restart_block *restart_block)
1490 clockid_t which_clock = restart_block->arg0;
1491 struct timespec __user *rmtp;
1492 struct timespec t;
1494 rmtp = (struct timespec __user *) restart_block->arg1;
1495 t.tv_sec = restart_block->arg2;
1496 t.tv_nsec = restart_block->arg3;
1498 restart_block->fn = do_no_restart_syscall;
1499 return posix_cpu_nsleep(which_clock, TIMER_ABSTIME, &t, rmtp);
1503 #define PROCESS_CLOCK MAKE_PROCESS_CPUCLOCK(0, CPUCLOCK_SCHED)
1504 #define THREAD_CLOCK MAKE_THREAD_CPUCLOCK(0, CPUCLOCK_SCHED)
1506 static int process_cpu_clock_getres(const clockid_t which_clock,
1507 struct timespec *tp)
1509 return posix_cpu_clock_getres(PROCESS_CLOCK, tp);
1511 static int process_cpu_clock_get(const clockid_t which_clock,
1512 struct timespec *tp)
1514 return posix_cpu_clock_get(PROCESS_CLOCK, tp);
1516 static int process_cpu_timer_create(struct k_itimer *timer)
1518 timer->it_clock = PROCESS_CLOCK;
1519 return posix_cpu_timer_create(timer);
1521 static int process_cpu_nsleep(const clockid_t which_clock, int flags,
1522 struct timespec *rqtp,
1523 struct timespec __user *rmtp)
1525 return posix_cpu_nsleep(PROCESS_CLOCK, flags, rqtp, rmtp);
1527 static int thread_cpu_clock_getres(const clockid_t which_clock,
1528 struct timespec *tp)
1530 return posix_cpu_clock_getres(THREAD_CLOCK, tp);
1532 static int thread_cpu_clock_get(const clockid_t which_clock,
1533 struct timespec *tp)
1535 return posix_cpu_clock_get(THREAD_CLOCK, tp);
1537 static int thread_cpu_timer_create(struct k_itimer *timer)
1539 timer->it_clock = THREAD_CLOCK;
1540 return posix_cpu_timer_create(timer);
1542 static int thread_cpu_nsleep(const clockid_t which_clock, int flags,
1543 struct timespec *rqtp, struct timespec __user *rmtp)
1545 return -EINVAL;
1548 static __init int init_posix_cpu_timers(void)
1550 struct k_clock process = {
1551 .clock_getres = process_cpu_clock_getres,
1552 .clock_get = process_cpu_clock_get,
1553 .clock_set = do_posix_clock_nosettime,
1554 .timer_create = process_cpu_timer_create,
1555 .nsleep = process_cpu_nsleep,
1557 struct k_clock thread = {
1558 .clock_getres = thread_cpu_clock_getres,
1559 .clock_get = thread_cpu_clock_get,
1560 .clock_set = do_posix_clock_nosettime,
1561 .timer_create = thread_cpu_timer_create,
1562 .nsleep = thread_cpu_nsleep,
1565 register_posix_clock(CLOCK_PROCESS_CPUTIME_ID, &process);
1566 register_posix_clock(CLOCK_THREAD_CPUTIME_ID, &thread);
1568 return 0;
1570 __initcall(init_posix_cpu_timers);