mmc: block: improve error recovery from command channel errors
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / drivers / mmc / card / block.c
blobff347319ff807b19dffd4344003079d5c579644f
1 /*
2 * Block driver for media (i.e., flash cards)
4 * Copyright 2002 Hewlett-Packard Company
5 * Copyright 2005-2008 Pierre Ossman
7 * Use consistent with the GNU GPL is permitted,
8 * provided that this copyright notice is
9 * preserved in its entirety in all copies and derived works.
11 * HEWLETT-PACKARD COMPANY MAKES NO WARRANTIES, EXPRESSED OR IMPLIED,
12 * AS TO THE USEFULNESS OR CORRECTNESS OF THIS CODE OR ITS
13 * FITNESS FOR ANY PARTICULAR PURPOSE.
15 * Many thanks to Alessandro Rubini and Jonathan Corbet!
17 * Author: Andrew Christian
18 * 28 May 2002
20 #include <linux/moduleparam.h>
21 #include <linux/module.h>
22 #include <linux/init.h>
24 #include <linux/kernel.h>
25 #include <linux/fs.h>
26 #include <linux/slab.h>
27 #include <linux/errno.h>
28 #include <linux/hdreg.h>
29 #include <linux/kdev_t.h>
30 #include <linux/blkdev.h>
31 #include <linux/mutex.h>
32 #include <linux/scatterlist.h>
33 #include <linux/string_helpers.h>
34 #include <linux/delay.h>
35 #include <linux/capability.h>
36 #include <linux/compat.h>
38 #include <linux/mmc/ioctl.h>
39 #include <linux/mmc/card.h>
40 #include <linux/mmc/host.h>
41 #include <linux/mmc/mmc.h>
42 #include <linux/mmc/sd.h>
44 #include <asm/system.h>
45 #include <asm/uaccess.h>
47 #include "queue.h"
49 MODULE_ALIAS("mmc:block");
50 #ifdef MODULE_PARAM_PREFIX
51 #undef MODULE_PARAM_PREFIX
52 #endif
53 #define MODULE_PARAM_PREFIX "mmcblk."
55 #define INAND_CMD38_ARG_EXT_CSD 113
56 #define INAND_CMD38_ARG_ERASE 0x00
57 #define INAND_CMD38_ARG_TRIM 0x01
58 #define INAND_CMD38_ARG_SECERASE 0x80
59 #define INAND_CMD38_ARG_SECTRIM1 0x81
60 #define INAND_CMD38_ARG_SECTRIM2 0x88
62 static DEFINE_MUTEX(block_mutex);
65 * The defaults come from config options but can be overriden by module
66 * or bootarg options.
68 static int perdev_minors = CONFIG_MMC_BLOCK_MINORS;
71 * We've only got one major, so number of mmcblk devices is
72 * limited to 256 / number of minors per device.
74 static int max_devices;
76 /* 256 minors, so at most 256 separate devices */
77 static DECLARE_BITMAP(dev_use, 256);
78 static DECLARE_BITMAP(name_use, 256);
81 * There is one mmc_blk_data per slot.
83 struct mmc_blk_data {
84 spinlock_t lock;
85 struct gendisk *disk;
86 struct mmc_queue queue;
87 struct list_head part;
89 unsigned int flags;
90 #define MMC_BLK_CMD23 (1 << 0) /* Can do SET_BLOCK_COUNT for multiblock */
91 #define MMC_BLK_REL_WR (1 << 1) /* MMC Reliable write support */
93 unsigned int usage;
94 unsigned int read_only;
95 unsigned int part_type;
96 unsigned int name_idx;
99 * Only set in main mmc_blk_data associated
100 * with mmc_card with mmc_set_drvdata, and keeps
101 * track of the current selected device partition.
103 unsigned int part_curr;
104 struct device_attribute force_ro;
107 static DEFINE_MUTEX(open_lock);
109 module_param(perdev_minors, int, 0444);
110 MODULE_PARM_DESC(perdev_minors, "Minors numbers to allocate per device");
112 static struct mmc_blk_data *mmc_blk_get(struct gendisk *disk)
114 struct mmc_blk_data *md;
116 mutex_lock(&open_lock);
117 md = disk->private_data;
118 if (md && md->usage == 0)
119 md = NULL;
120 if (md)
121 md->usage++;
122 mutex_unlock(&open_lock);
124 return md;
127 static inline int mmc_get_devidx(struct gendisk *disk)
129 int devmaj = MAJOR(disk_devt(disk));
130 int devidx = MINOR(disk_devt(disk)) / perdev_minors;
132 if (!devmaj)
133 devidx = disk->first_minor / perdev_minors;
134 return devidx;
137 static void mmc_blk_put(struct mmc_blk_data *md)
139 mutex_lock(&open_lock);
140 md->usage--;
141 if (md->usage == 0) {
142 int devidx = mmc_get_devidx(md->disk);
143 blk_cleanup_queue(md->queue.queue);
145 __clear_bit(devidx, dev_use);
147 put_disk(md->disk);
148 kfree(md);
150 mutex_unlock(&open_lock);
153 static ssize_t force_ro_show(struct device *dev, struct device_attribute *attr,
154 char *buf)
156 int ret;
157 struct mmc_blk_data *md = mmc_blk_get(dev_to_disk(dev));
159 ret = snprintf(buf, PAGE_SIZE, "%d",
160 get_disk_ro(dev_to_disk(dev)) ^
161 md->read_only);
162 mmc_blk_put(md);
163 return ret;
166 static ssize_t force_ro_store(struct device *dev, struct device_attribute *attr,
167 const char *buf, size_t count)
169 int ret;
170 char *end;
171 struct mmc_blk_data *md = mmc_blk_get(dev_to_disk(dev));
172 unsigned long set = simple_strtoul(buf, &end, 0);
173 if (end == buf) {
174 ret = -EINVAL;
175 goto out;
178 set_disk_ro(dev_to_disk(dev), set || md->read_only);
179 ret = count;
180 out:
181 mmc_blk_put(md);
182 return ret;
185 static int mmc_blk_open(struct block_device *bdev, fmode_t mode)
187 struct mmc_blk_data *md = mmc_blk_get(bdev->bd_disk);
188 int ret = -ENXIO;
190 mutex_lock(&block_mutex);
191 if (md) {
192 if (md->usage == 2)
193 check_disk_change(bdev);
194 ret = 0;
196 if ((mode & FMODE_WRITE) && md->read_only) {
197 mmc_blk_put(md);
198 ret = -EROFS;
201 mutex_unlock(&block_mutex);
203 return ret;
206 static int mmc_blk_release(struct gendisk *disk, fmode_t mode)
208 struct mmc_blk_data *md = disk->private_data;
210 mutex_lock(&block_mutex);
211 mmc_blk_put(md);
212 mutex_unlock(&block_mutex);
213 return 0;
216 static int
217 mmc_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo)
219 geo->cylinders = get_capacity(bdev->bd_disk) / (4 * 16);
220 geo->heads = 4;
221 geo->sectors = 16;
222 return 0;
225 struct mmc_blk_ioc_data {
226 struct mmc_ioc_cmd ic;
227 unsigned char *buf;
228 u64 buf_bytes;
231 static struct mmc_blk_ioc_data *mmc_blk_ioctl_copy_from_user(
232 struct mmc_ioc_cmd __user *user)
234 struct mmc_blk_ioc_data *idata;
235 int err;
237 idata = kzalloc(sizeof(*idata), GFP_KERNEL);
238 if (!idata) {
239 err = -ENOMEM;
240 goto out;
243 if (copy_from_user(&idata->ic, user, sizeof(idata->ic))) {
244 err = -EFAULT;
245 goto idata_err;
248 idata->buf_bytes = (u64) idata->ic.blksz * idata->ic.blocks;
249 if (idata->buf_bytes > MMC_IOC_MAX_BYTES) {
250 err = -EOVERFLOW;
251 goto idata_err;
254 idata->buf = kzalloc(idata->buf_bytes, GFP_KERNEL);
255 if (!idata->buf) {
256 err = -ENOMEM;
257 goto idata_err;
260 if (copy_from_user(idata->buf, (void __user *)(unsigned long)
261 idata->ic.data_ptr, idata->buf_bytes)) {
262 err = -EFAULT;
263 goto copy_err;
266 return idata;
268 copy_err:
269 kfree(idata->buf);
270 idata_err:
271 kfree(idata);
272 out:
273 return ERR_PTR(err);
276 static int mmc_blk_ioctl_cmd(struct block_device *bdev,
277 struct mmc_ioc_cmd __user *ic_ptr)
279 struct mmc_blk_ioc_data *idata;
280 struct mmc_blk_data *md;
281 struct mmc_card *card;
282 struct mmc_command cmd = {0};
283 struct mmc_data data = {0};
284 struct mmc_request mrq = {0};
285 struct scatterlist sg;
286 int err;
289 * The caller must have CAP_SYS_RAWIO, and must be calling this on the
290 * whole block device, not on a partition. This prevents overspray
291 * between sibling partitions.
293 if ((!capable(CAP_SYS_RAWIO)) || (bdev != bdev->bd_contains))
294 return -EPERM;
296 idata = mmc_blk_ioctl_copy_from_user(ic_ptr);
297 if (IS_ERR(idata))
298 return PTR_ERR(idata);
300 cmd.opcode = idata->ic.opcode;
301 cmd.arg = idata->ic.arg;
302 cmd.flags = idata->ic.flags;
304 data.sg = &sg;
305 data.sg_len = 1;
306 data.blksz = idata->ic.blksz;
307 data.blocks = idata->ic.blocks;
309 sg_init_one(data.sg, idata->buf, idata->buf_bytes);
311 if (idata->ic.write_flag)
312 data.flags = MMC_DATA_WRITE;
313 else
314 data.flags = MMC_DATA_READ;
316 mrq.cmd = &cmd;
317 mrq.data = &data;
319 md = mmc_blk_get(bdev->bd_disk);
320 if (!md) {
321 err = -EINVAL;
322 goto cmd_done;
325 card = md->queue.card;
326 if (IS_ERR(card)) {
327 err = PTR_ERR(card);
328 goto cmd_done;
331 mmc_claim_host(card->host);
333 if (idata->ic.is_acmd) {
334 err = mmc_app_cmd(card->host, card);
335 if (err)
336 goto cmd_rel_host;
339 /* data.flags must already be set before doing this. */
340 mmc_set_data_timeout(&data, card);
341 /* Allow overriding the timeout_ns for empirical tuning. */
342 if (idata->ic.data_timeout_ns)
343 data.timeout_ns = idata->ic.data_timeout_ns;
345 if ((cmd.flags & MMC_RSP_R1B) == MMC_RSP_R1B) {
347 * Pretend this is a data transfer and rely on the host driver
348 * to compute timeout. When all host drivers support
349 * cmd.cmd_timeout for R1B, this can be changed to:
351 * mrq.data = NULL;
352 * cmd.cmd_timeout = idata->ic.cmd_timeout_ms;
354 data.timeout_ns = idata->ic.cmd_timeout_ms * 1000000;
357 mmc_wait_for_req(card->host, &mrq);
359 if (cmd.error) {
360 dev_err(mmc_dev(card->host), "%s: cmd error %d\n",
361 __func__, cmd.error);
362 err = cmd.error;
363 goto cmd_rel_host;
365 if (data.error) {
366 dev_err(mmc_dev(card->host), "%s: data error %d\n",
367 __func__, data.error);
368 err = data.error;
369 goto cmd_rel_host;
373 * According to the SD specs, some commands require a delay after
374 * issuing the command.
376 if (idata->ic.postsleep_min_us)
377 usleep_range(idata->ic.postsleep_min_us, idata->ic.postsleep_max_us);
379 if (copy_to_user(&(ic_ptr->response), cmd.resp, sizeof(cmd.resp))) {
380 err = -EFAULT;
381 goto cmd_rel_host;
384 if (!idata->ic.write_flag) {
385 if (copy_to_user((void __user *)(unsigned long) idata->ic.data_ptr,
386 idata->buf, idata->buf_bytes)) {
387 err = -EFAULT;
388 goto cmd_rel_host;
392 cmd_rel_host:
393 mmc_release_host(card->host);
395 cmd_done:
396 mmc_blk_put(md);
397 kfree(idata->buf);
398 kfree(idata);
399 return err;
402 static int mmc_blk_ioctl(struct block_device *bdev, fmode_t mode,
403 unsigned int cmd, unsigned long arg)
405 int ret = -EINVAL;
406 if (cmd == MMC_IOC_CMD)
407 ret = mmc_blk_ioctl_cmd(bdev, (struct mmc_ioc_cmd __user *)arg);
408 return ret;
411 #ifdef CONFIG_COMPAT
412 static int mmc_blk_compat_ioctl(struct block_device *bdev, fmode_t mode,
413 unsigned int cmd, unsigned long arg)
415 return mmc_blk_ioctl(bdev, mode, cmd, (unsigned long) compat_ptr(arg));
417 #endif
419 static const struct block_device_operations mmc_bdops = {
420 .open = mmc_blk_open,
421 .release = mmc_blk_release,
422 .getgeo = mmc_blk_getgeo,
423 .owner = THIS_MODULE,
424 .ioctl = mmc_blk_ioctl,
425 #ifdef CONFIG_COMPAT
426 .compat_ioctl = mmc_blk_compat_ioctl,
427 #endif
430 struct mmc_blk_request {
431 struct mmc_request mrq;
432 struct mmc_command sbc;
433 struct mmc_command cmd;
434 struct mmc_command stop;
435 struct mmc_data data;
438 static inline int mmc_blk_part_switch(struct mmc_card *card,
439 struct mmc_blk_data *md)
441 int ret;
442 struct mmc_blk_data *main_md = mmc_get_drvdata(card);
443 if (main_md->part_curr == md->part_type)
444 return 0;
446 if (mmc_card_mmc(card)) {
447 card->ext_csd.part_config &= ~EXT_CSD_PART_CONFIG_ACC_MASK;
448 card->ext_csd.part_config |= md->part_type;
450 ret = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
451 EXT_CSD_PART_CONFIG, card->ext_csd.part_config,
452 card->ext_csd.part_time);
453 if (ret)
454 return ret;
457 main_md->part_curr = md->part_type;
458 return 0;
461 static u32 mmc_sd_num_wr_blocks(struct mmc_card *card)
463 int err;
464 u32 result;
465 __be32 *blocks;
467 struct mmc_request mrq = {0};
468 struct mmc_command cmd = {0};
469 struct mmc_data data = {0};
470 unsigned int timeout_us;
472 struct scatterlist sg;
474 cmd.opcode = MMC_APP_CMD;
475 cmd.arg = card->rca << 16;
476 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
478 err = mmc_wait_for_cmd(card->host, &cmd, 0);
479 if (err)
480 return (u32)-1;
481 if (!mmc_host_is_spi(card->host) && !(cmd.resp[0] & R1_APP_CMD))
482 return (u32)-1;
484 memset(&cmd, 0, sizeof(struct mmc_command));
486 cmd.opcode = SD_APP_SEND_NUM_WR_BLKS;
487 cmd.arg = 0;
488 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_ADTC;
490 data.timeout_ns = card->csd.tacc_ns * 100;
491 data.timeout_clks = card->csd.tacc_clks * 100;
493 timeout_us = data.timeout_ns / 1000;
494 timeout_us += data.timeout_clks * 1000 /
495 (card->host->ios.clock / 1000);
497 if (timeout_us > 100000) {
498 data.timeout_ns = 100000000;
499 data.timeout_clks = 0;
502 data.blksz = 4;
503 data.blocks = 1;
504 data.flags = MMC_DATA_READ;
505 data.sg = &sg;
506 data.sg_len = 1;
508 mrq.cmd = &cmd;
509 mrq.data = &data;
511 blocks = kmalloc(4, GFP_KERNEL);
512 if (!blocks)
513 return (u32)-1;
515 sg_init_one(&sg, blocks, 4);
517 mmc_wait_for_req(card->host, &mrq);
519 result = ntohl(*blocks);
520 kfree(blocks);
522 if (cmd.error || data.error)
523 result = (u32)-1;
525 return result;
528 static int send_stop(struct mmc_card *card, u32 *status)
530 struct mmc_command cmd = {0};
531 int err;
533 cmd.opcode = MMC_STOP_TRANSMISSION;
534 cmd.flags = MMC_RSP_SPI_R1B | MMC_RSP_R1B | MMC_CMD_AC;
535 err = mmc_wait_for_cmd(card->host, &cmd, 5);
536 if (err == 0)
537 *status = cmd.resp[0];
538 return err;
541 static int get_card_status(struct mmc_card *card, u32 *status, int retries)
543 struct mmc_command cmd = {0};
544 int err;
546 cmd.opcode = MMC_SEND_STATUS;
547 if (!mmc_host_is_spi(card->host))
548 cmd.arg = card->rca << 16;
549 cmd.flags = MMC_RSP_SPI_R2 | MMC_RSP_R1 | MMC_CMD_AC;
550 err = mmc_wait_for_cmd(card->host, &cmd, retries);
551 if (err == 0)
552 *status = cmd.resp[0];
553 return err;
556 #define ERR_RETRY 2
557 #define ERR_ABORT 1
558 #define ERR_CONTINUE 0
560 static int mmc_blk_cmd_error(struct request *req, const char *name, int error,
561 bool status_valid, u32 status)
563 switch (error) {
564 case -EILSEQ:
565 /* response crc error, retry the r/w cmd */
566 pr_err("%s: %s sending %s command, card status %#x\n",
567 req->rq_disk->disk_name, "response CRC error",
568 name, status);
569 return ERR_RETRY;
571 case -ETIMEDOUT:
572 pr_err("%s: %s sending %s command, card status %#x\n",
573 req->rq_disk->disk_name, "timed out", name, status);
575 /* If the status cmd initially failed, retry the r/w cmd */
576 if (!status_valid)
577 return ERR_RETRY;
580 * If it was a r/w cmd crc error, or illegal command
581 * (eg, issued in wrong state) then retry - we should
582 * have corrected the state problem above.
584 if (status & (R1_COM_CRC_ERROR | R1_ILLEGAL_COMMAND))
585 return ERR_RETRY;
587 /* Otherwise abort the command */
588 return ERR_ABORT;
590 default:
591 /* We don't understand the error code the driver gave us */
592 pr_err("%s: unknown error %d sending read/write command, card status %#x\n",
593 req->rq_disk->disk_name, error, status);
594 return ERR_ABORT;
599 * Initial r/w and stop cmd error recovery.
600 * We don't know whether the card received the r/w cmd or not, so try to
601 * restore things back to a sane state. Essentially, we do this as follows:
602 * - Obtain card status. If the first attempt to obtain card status fails,
603 * the status word will reflect the failed status cmd, not the failed
604 * r/w cmd. If we fail to obtain card status, it suggests we can no
605 * longer communicate with the card.
606 * - Check the card state. If the card received the cmd but there was a
607 * transient problem with the response, it might still be in a data transfer
608 * mode. Try to send it a stop command. If this fails, we can't recover.
609 * - If the r/w cmd failed due to a response CRC error, it was probably
610 * transient, so retry the cmd.
611 * - If the r/w cmd timed out, but we didn't get the r/w cmd status, retry.
612 * - If the r/w cmd timed out, and the r/w cmd failed due to CRC error or
613 * illegal cmd, retry.
614 * Otherwise we don't understand what happened, so abort.
616 static int mmc_blk_cmd_recovery(struct mmc_card *card, struct request *req,
617 struct mmc_blk_request *brq)
619 bool prev_cmd_status_valid = true;
620 u32 status, stop_status = 0;
621 int err, retry;
624 * Try to get card status which indicates both the card state
625 * and why there was no response. If the first attempt fails,
626 * we can't be sure the returned status is for the r/w command.
628 for (retry = 2; retry >= 0; retry--) {
629 err = get_card_status(card, &status, 0);
630 if (!err)
631 break;
633 prev_cmd_status_valid = false;
634 pr_err("%s: error %d sending status command, %sing\n",
635 req->rq_disk->disk_name, err, retry ? "retry" : "abort");
638 /* We couldn't get a response from the card. Give up. */
639 if (err)
640 return ERR_ABORT;
643 * Check the current card state. If it is in some data transfer
644 * mode, tell it to stop (and hopefully transition back to TRAN.)
646 if (R1_CURRENT_STATE(status) == R1_STATE_DATA ||
647 R1_CURRENT_STATE(status) == R1_STATE_RCV) {
648 err = send_stop(card, &stop_status);
649 if (err)
650 pr_err("%s: error %d sending stop command\n",
651 req->rq_disk->disk_name, err);
654 * If the stop cmd also timed out, the card is probably
655 * not present, so abort. Other errors are bad news too.
657 if (err)
658 return ERR_ABORT;
661 /* Check for set block count errors */
662 if (brq->sbc.error)
663 return mmc_blk_cmd_error(req, "SET_BLOCK_COUNT", brq->sbc.error,
664 prev_cmd_status_valid, status);
666 /* Check for r/w command errors */
667 if (brq->cmd.error)
668 return mmc_blk_cmd_error(req, "r/w cmd", brq->cmd.error,
669 prev_cmd_status_valid, status);
671 /* Now for stop errors. These aren't fatal to the transfer. */
672 pr_err("%s: error %d sending stop command, original cmd response %#x, card status %#x\n",
673 req->rq_disk->disk_name, brq->stop.error,
674 brq->cmd.resp[0], status);
677 * Subsitute in our own stop status as this will give the error
678 * state which happened during the execution of the r/w command.
680 if (stop_status) {
681 brq->stop.resp[0] = stop_status;
682 brq->stop.error = 0;
684 return ERR_CONTINUE;
687 static int mmc_blk_issue_discard_rq(struct mmc_queue *mq, struct request *req)
689 struct mmc_blk_data *md = mq->data;
690 struct mmc_card *card = md->queue.card;
691 unsigned int from, nr, arg;
692 int err = 0;
694 if (!mmc_can_erase(card)) {
695 err = -EOPNOTSUPP;
696 goto out;
699 from = blk_rq_pos(req);
700 nr = blk_rq_sectors(req);
702 if (mmc_can_trim(card))
703 arg = MMC_TRIM_ARG;
704 else
705 arg = MMC_ERASE_ARG;
707 if (card->quirks & MMC_QUIRK_INAND_CMD38) {
708 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
709 INAND_CMD38_ARG_EXT_CSD,
710 arg == MMC_TRIM_ARG ?
711 INAND_CMD38_ARG_TRIM :
712 INAND_CMD38_ARG_ERASE,
714 if (err)
715 goto out;
717 err = mmc_erase(card, from, nr, arg);
718 out:
719 spin_lock_irq(&md->lock);
720 __blk_end_request(req, err, blk_rq_bytes(req));
721 spin_unlock_irq(&md->lock);
723 return err ? 0 : 1;
726 static int mmc_blk_issue_secdiscard_rq(struct mmc_queue *mq,
727 struct request *req)
729 struct mmc_blk_data *md = mq->data;
730 struct mmc_card *card = md->queue.card;
731 unsigned int from, nr, arg;
732 int err = 0;
734 if (!mmc_can_secure_erase_trim(card)) {
735 err = -EOPNOTSUPP;
736 goto out;
739 from = blk_rq_pos(req);
740 nr = blk_rq_sectors(req);
742 if (mmc_can_trim(card) && !mmc_erase_group_aligned(card, from, nr))
743 arg = MMC_SECURE_TRIM1_ARG;
744 else
745 arg = MMC_SECURE_ERASE_ARG;
747 if (card->quirks & MMC_QUIRK_INAND_CMD38) {
748 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
749 INAND_CMD38_ARG_EXT_CSD,
750 arg == MMC_SECURE_TRIM1_ARG ?
751 INAND_CMD38_ARG_SECTRIM1 :
752 INAND_CMD38_ARG_SECERASE,
754 if (err)
755 goto out;
757 err = mmc_erase(card, from, nr, arg);
758 if (!err && arg == MMC_SECURE_TRIM1_ARG) {
759 if (card->quirks & MMC_QUIRK_INAND_CMD38) {
760 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
761 INAND_CMD38_ARG_EXT_CSD,
762 INAND_CMD38_ARG_SECTRIM2,
764 if (err)
765 goto out;
767 err = mmc_erase(card, from, nr, MMC_SECURE_TRIM2_ARG);
769 out:
770 spin_lock_irq(&md->lock);
771 __blk_end_request(req, err, blk_rq_bytes(req));
772 spin_unlock_irq(&md->lock);
774 return err ? 0 : 1;
777 static int mmc_blk_issue_flush(struct mmc_queue *mq, struct request *req)
779 struct mmc_blk_data *md = mq->data;
782 * No-op, only service this because we need REQ_FUA for reliable
783 * writes.
785 spin_lock_irq(&md->lock);
786 __blk_end_request_all(req, 0);
787 spin_unlock_irq(&md->lock);
789 return 1;
793 * Reformat current write as a reliable write, supporting
794 * both legacy and the enhanced reliable write MMC cards.
795 * In each transfer we'll handle only as much as a single
796 * reliable write can handle, thus finish the request in
797 * partial completions.
799 static inline void mmc_apply_rel_rw(struct mmc_blk_request *brq,
800 struct mmc_card *card,
801 struct request *req)
803 if (!(card->ext_csd.rel_param & EXT_CSD_WR_REL_PARAM_EN)) {
804 /* Legacy mode imposes restrictions on transfers. */
805 if (!IS_ALIGNED(brq->cmd.arg, card->ext_csd.rel_sectors))
806 brq->data.blocks = 1;
808 if (brq->data.blocks > card->ext_csd.rel_sectors)
809 brq->data.blocks = card->ext_csd.rel_sectors;
810 else if (brq->data.blocks < card->ext_csd.rel_sectors)
811 brq->data.blocks = 1;
815 static int mmc_blk_issue_rw_rq(struct mmc_queue *mq, struct request *req)
817 struct mmc_blk_data *md = mq->data;
818 struct mmc_card *card = md->queue.card;
819 struct mmc_blk_request brq;
820 int ret = 1, disable_multi = 0, retry = 0;
823 * Reliable writes are used to implement Forced Unit Access and
824 * REQ_META accesses, and are supported only on MMCs.
826 bool do_rel_wr = ((req->cmd_flags & REQ_FUA) ||
827 (req->cmd_flags & REQ_META)) &&
828 (rq_data_dir(req) == WRITE) &&
829 (md->flags & MMC_BLK_REL_WR);
831 do {
832 u32 readcmd, writecmd;
834 memset(&brq, 0, sizeof(struct mmc_blk_request));
835 brq.mrq.cmd = &brq.cmd;
836 brq.mrq.data = &brq.data;
838 brq.cmd.arg = blk_rq_pos(req);
839 if (!mmc_card_blockaddr(card))
840 brq.cmd.arg <<= 9;
841 brq.cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_ADTC;
842 brq.data.blksz = 512;
843 brq.stop.opcode = MMC_STOP_TRANSMISSION;
844 brq.stop.arg = 0;
845 brq.stop.flags = MMC_RSP_SPI_R1B | MMC_RSP_R1B | MMC_CMD_AC;
846 brq.data.blocks = blk_rq_sectors(req);
849 * The block layer doesn't support all sector count
850 * restrictions, so we need to be prepared for too big
851 * requests.
853 if (brq.data.blocks > card->host->max_blk_count)
854 brq.data.blocks = card->host->max_blk_count;
857 * After a read error, we redo the request one sector at a time
858 * in order to accurately determine which sectors can be read
859 * successfully.
861 if (disable_multi && brq.data.blocks > 1)
862 brq.data.blocks = 1;
864 if (brq.data.blocks > 1 || do_rel_wr) {
865 /* SPI multiblock writes terminate using a special
866 * token, not a STOP_TRANSMISSION request.
868 if (!mmc_host_is_spi(card->host) ||
869 rq_data_dir(req) == READ)
870 brq.mrq.stop = &brq.stop;
871 readcmd = MMC_READ_MULTIPLE_BLOCK;
872 writecmd = MMC_WRITE_MULTIPLE_BLOCK;
873 } else {
874 brq.mrq.stop = NULL;
875 readcmd = MMC_READ_SINGLE_BLOCK;
876 writecmd = MMC_WRITE_BLOCK;
878 if (rq_data_dir(req) == READ) {
879 brq.cmd.opcode = readcmd;
880 brq.data.flags |= MMC_DATA_READ;
881 } else {
882 brq.cmd.opcode = writecmd;
883 brq.data.flags |= MMC_DATA_WRITE;
886 if (do_rel_wr)
887 mmc_apply_rel_rw(&brq, card, req);
890 * Pre-defined multi-block transfers are preferable to
891 * open ended-ones (and necessary for reliable writes).
892 * However, it is not sufficient to just send CMD23,
893 * and avoid the final CMD12, as on an error condition
894 * CMD12 (stop) needs to be sent anyway. This, coupled
895 * with Auto-CMD23 enhancements provided by some
896 * hosts, means that the complexity of dealing
897 * with this is best left to the host. If CMD23 is
898 * supported by card and host, we'll fill sbc in and let
899 * the host deal with handling it correctly. This means
900 * that for hosts that don't expose MMC_CAP_CMD23, no
901 * change of behavior will be observed.
903 * N.B: Some MMC cards experience perf degradation.
904 * We'll avoid using CMD23-bounded multiblock writes for
905 * these, while retaining features like reliable writes.
908 if ((md->flags & MMC_BLK_CMD23) &&
909 mmc_op_multi(brq.cmd.opcode) &&
910 (do_rel_wr || !(card->quirks & MMC_QUIRK_BLK_NO_CMD23))) {
911 brq.sbc.opcode = MMC_SET_BLOCK_COUNT;
912 brq.sbc.arg = brq.data.blocks |
913 (do_rel_wr ? (1 << 31) : 0);
914 brq.sbc.flags = MMC_RSP_R1 | MMC_CMD_AC;
915 brq.mrq.sbc = &brq.sbc;
918 mmc_set_data_timeout(&brq.data, card);
920 brq.data.sg = mq->sg;
921 brq.data.sg_len = mmc_queue_map_sg(mq);
924 * Adjust the sg list so it is the same size as the
925 * request.
927 if (brq.data.blocks != blk_rq_sectors(req)) {
928 int i, data_size = brq.data.blocks << 9;
929 struct scatterlist *sg;
931 for_each_sg(brq.data.sg, sg, brq.data.sg_len, i) {
932 data_size -= sg->length;
933 if (data_size <= 0) {
934 sg->length += data_size;
935 i++;
936 break;
939 brq.data.sg_len = i;
942 mmc_queue_bounce_pre(mq);
944 mmc_wait_for_req(card->host, &brq.mrq);
946 mmc_queue_bounce_post(mq);
949 * sbc.error indicates a problem with the set block count
950 * command. No data will have been transferred.
952 * cmd.error indicates a problem with the r/w command. No
953 * data will have been transferred.
955 * stop.error indicates a problem with the stop command. Data
956 * may have been transferred, or may still be transferring.
958 if (brq.sbc.error || brq.cmd.error || brq.stop.error) {
959 switch (mmc_blk_cmd_recovery(card, req, &brq)) {
960 case ERR_RETRY:
961 if (retry++ < 5)
962 continue;
963 case ERR_ABORT:
964 goto cmd_abort;
965 case ERR_CONTINUE:
966 break;
970 if (!mmc_host_is_spi(card->host) && rq_data_dir(req) != READ) {
971 u32 status;
972 do {
973 int err = get_card_status(card, &status, 5);
974 if (err) {
975 printk(KERN_ERR "%s: error %d requesting status\n",
976 req->rq_disk->disk_name, err);
977 goto cmd_err;
980 * Some cards mishandle the status bits,
981 * so make sure to check both the busy
982 * indication and the card state.
984 } while (!(status & R1_READY_FOR_DATA) ||
985 (R1_CURRENT_STATE(status) == R1_STATE_PRG));
988 if (brq.data.error) {
989 pr_err("%s: error %d transferring data, sector %u nr %u, cmd response %#x card status %#x\n",
990 req->rq_disk->disk_name, brq.data.error,
991 (unsigned)blk_rq_pos(req),
992 (unsigned)blk_rq_sectors(req),
993 brq.cmd.resp[0], brq.stop.resp[0]);
995 if (rq_data_dir(req) == READ) {
996 if (brq.data.blocks > 1) {
997 /* Redo read one sector at a time */
998 pr_warning("%s: retrying using single block read\n",
999 req->rq_disk->disk_name);
1000 disable_multi = 1;
1001 continue;
1005 * After an error, we redo I/O one sector at a
1006 * time, so we only reach here after trying to
1007 * read a single sector.
1009 spin_lock_irq(&md->lock);
1010 ret = __blk_end_request(req, -EIO, brq.data.blksz);
1011 spin_unlock_irq(&md->lock);
1012 continue;
1013 } else {
1014 goto cmd_err;
1019 * A block was successfully transferred.
1021 spin_lock_irq(&md->lock);
1022 ret = __blk_end_request(req, 0, brq.data.bytes_xfered);
1023 spin_unlock_irq(&md->lock);
1024 } while (ret);
1026 return 1;
1028 cmd_err:
1030 * If this is an SD card and we're writing, we can first
1031 * mark the known good sectors as ok.
1033 * If the card is not SD, we can still ok written sectors
1034 * as reported by the controller (which might be less than
1035 * the real number of written sectors, but never more).
1037 if (mmc_card_sd(card)) {
1038 u32 blocks;
1040 blocks = mmc_sd_num_wr_blocks(card);
1041 if (blocks != (u32)-1) {
1042 spin_lock_irq(&md->lock);
1043 ret = __blk_end_request(req, 0, blocks << 9);
1044 spin_unlock_irq(&md->lock);
1046 } else {
1047 spin_lock_irq(&md->lock);
1048 ret = __blk_end_request(req, 0, brq.data.bytes_xfered);
1049 spin_unlock_irq(&md->lock);
1052 cmd_abort:
1053 spin_lock_irq(&md->lock);
1054 while (ret)
1055 ret = __blk_end_request(req, -EIO, blk_rq_cur_bytes(req));
1056 spin_unlock_irq(&md->lock);
1058 return 0;
1061 static int mmc_blk_issue_rq(struct mmc_queue *mq, struct request *req)
1063 int ret;
1064 struct mmc_blk_data *md = mq->data;
1065 struct mmc_card *card = md->queue.card;
1067 mmc_claim_host(card->host);
1068 ret = mmc_blk_part_switch(card, md);
1069 if (ret) {
1070 ret = 0;
1071 goto out;
1074 if (req->cmd_flags & REQ_DISCARD) {
1075 if (req->cmd_flags & REQ_SECURE)
1076 ret = mmc_blk_issue_secdiscard_rq(mq, req);
1077 else
1078 ret = mmc_blk_issue_discard_rq(mq, req);
1079 } else if (req->cmd_flags & REQ_FLUSH) {
1080 ret = mmc_blk_issue_flush(mq, req);
1081 } else {
1082 ret = mmc_blk_issue_rw_rq(mq, req);
1085 out:
1086 mmc_release_host(card->host);
1087 return ret;
1090 static inline int mmc_blk_readonly(struct mmc_card *card)
1092 return mmc_card_readonly(card) ||
1093 !(card->csd.cmdclass & CCC_BLOCK_WRITE);
1096 static struct mmc_blk_data *mmc_blk_alloc_req(struct mmc_card *card,
1097 struct device *parent,
1098 sector_t size,
1099 bool default_ro,
1100 const char *subname)
1102 struct mmc_blk_data *md;
1103 int devidx, ret;
1105 devidx = find_first_zero_bit(dev_use, max_devices);
1106 if (devidx >= max_devices)
1107 return ERR_PTR(-ENOSPC);
1108 __set_bit(devidx, dev_use);
1110 md = kzalloc(sizeof(struct mmc_blk_data), GFP_KERNEL);
1111 if (!md) {
1112 ret = -ENOMEM;
1113 goto out;
1117 * !subname implies we are creating main mmc_blk_data that will be
1118 * associated with mmc_card with mmc_set_drvdata. Due to device
1119 * partitions, devidx will not coincide with a per-physical card
1120 * index anymore so we keep track of a name index.
1122 if (!subname) {
1123 md->name_idx = find_first_zero_bit(name_use, max_devices);
1124 __set_bit(md->name_idx, name_use);
1126 else
1127 md->name_idx = ((struct mmc_blk_data *)
1128 dev_to_disk(parent)->private_data)->name_idx;
1131 * Set the read-only status based on the supported commands
1132 * and the write protect switch.
1134 md->read_only = mmc_blk_readonly(card);
1136 md->disk = alloc_disk(perdev_minors);
1137 if (md->disk == NULL) {
1138 ret = -ENOMEM;
1139 goto err_kfree;
1142 spin_lock_init(&md->lock);
1143 INIT_LIST_HEAD(&md->part);
1144 md->usage = 1;
1146 ret = mmc_init_queue(&md->queue, card, &md->lock, subname);
1147 if (ret)
1148 goto err_putdisk;
1150 md->queue.issue_fn = mmc_blk_issue_rq;
1151 md->queue.data = md;
1153 md->disk->major = MMC_BLOCK_MAJOR;
1154 md->disk->first_minor = devidx * perdev_minors;
1155 md->disk->fops = &mmc_bdops;
1156 md->disk->private_data = md;
1157 md->disk->queue = md->queue.queue;
1158 md->disk->driverfs_dev = parent;
1159 set_disk_ro(md->disk, md->read_only || default_ro);
1162 * As discussed on lkml, GENHD_FL_REMOVABLE should:
1164 * - be set for removable media with permanent block devices
1165 * - be unset for removable block devices with permanent media
1167 * Since MMC block devices clearly fall under the second
1168 * case, we do not set GENHD_FL_REMOVABLE. Userspace
1169 * should use the block device creation/destruction hotplug
1170 * messages to tell when the card is present.
1173 snprintf(md->disk->disk_name, sizeof(md->disk->disk_name),
1174 "mmcblk%d%s", md->name_idx, subname ? subname : "");
1176 blk_queue_logical_block_size(md->queue.queue, 512);
1177 set_capacity(md->disk, size);
1179 if (mmc_host_cmd23(card->host)) {
1180 if (mmc_card_mmc(card) ||
1181 (mmc_card_sd(card) &&
1182 card->scr.cmds & SD_SCR_CMD23_SUPPORT))
1183 md->flags |= MMC_BLK_CMD23;
1186 if (mmc_card_mmc(card) &&
1187 md->flags & MMC_BLK_CMD23 &&
1188 ((card->ext_csd.rel_param & EXT_CSD_WR_REL_PARAM_EN) ||
1189 card->ext_csd.rel_sectors)) {
1190 md->flags |= MMC_BLK_REL_WR;
1191 blk_queue_flush(md->queue.queue, REQ_FLUSH | REQ_FUA);
1194 return md;
1196 err_putdisk:
1197 put_disk(md->disk);
1198 err_kfree:
1199 kfree(md);
1200 out:
1201 return ERR_PTR(ret);
1204 static struct mmc_blk_data *mmc_blk_alloc(struct mmc_card *card)
1206 sector_t size;
1207 struct mmc_blk_data *md;
1209 if (!mmc_card_sd(card) && mmc_card_blockaddr(card)) {
1211 * The EXT_CSD sector count is in number or 512 byte
1212 * sectors.
1214 size = card->ext_csd.sectors;
1215 } else {
1217 * The CSD capacity field is in units of read_blkbits.
1218 * set_capacity takes units of 512 bytes.
1220 size = card->csd.capacity << (card->csd.read_blkbits - 9);
1223 md = mmc_blk_alloc_req(card, &card->dev, size, false, NULL);
1224 return md;
1227 static int mmc_blk_alloc_part(struct mmc_card *card,
1228 struct mmc_blk_data *md,
1229 unsigned int part_type,
1230 sector_t size,
1231 bool default_ro,
1232 const char *subname)
1234 char cap_str[10];
1235 struct mmc_blk_data *part_md;
1237 part_md = mmc_blk_alloc_req(card, disk_to_dev(md->disk), size, default_ro,
1238 subname);
1239 if (IS_ERR(part_md))
1240 return PTR_ERR(part_md);
1241 part_md->part_type = part_type;
1242 list_add(&part_md->part, &md->part);
1244 string_get_size((u64)get_capacity(part_md->disk) << 9, STRING_UNITS_2,
1245 cap_str, sizeof(cap_str));
1246 printk(KERN_INFO "%s: %s %s partition %u %s\n",
1247 part_md->disk->disk_name, mmc_card_id(card),
1248 mmc_card_name(card), part_md->part_type, cap_str);
1249 return 0;
1252 static int mmc_blk_alloc_parts(struct mmc_card *card, struct mmc_blk_data *md)
1254 int ret = 0;
1256 if (!mmc_card_mmc(card))
1257 return 0;
1259 if (card->ext_csd.boot_size) {
1260 ret = mmc_blk_alloc_part(card, md, EXT_CSD_PART_CONFIG_ACC_BOOT0,
1261 card->ext_csd.boot_size >> 9,
1262 true,
1263 "boot0");
1264 if (ret)
1265 return ret;
1266 ret = mmc_blk_alloc_part(card, md, EXT_CSD_PART_CONFIG_ACC_BOOT1,
1267 card->ext_csd.boot_size >> 9,
1268 true,
1269 "boot1");
1270 if (ret)
1271 return ret;
1274 return ret;
1277 static int
1278 mmc_blk_set_blksize(struct mmc_blk_data *md, struct mmc_card *card)
1280 int err;
1282 mmc_claim_host(card->host);
1283 err = mmc_set_blocklen(card, 512);
1284 mmc_release_host(card->host);
1286 if (err) {
1287 printk(KERN_ERR "%s: unable to set block size to 512: %d\n",
1288 md->disk->disk_name, err);
1289 return -EINVAL;
1292 return 0;
1295 static void mmc_blk_remove_req(struct mmc_blk_data *md)
1297 if (md) {
1298 if (md->disk->flags & GENHD_FL_UP) {
1299 device_remove_file(disk_to_dev(md->disk), &md->force_ro);
1301 /* Stop new requests from getting into the queue */
1302 del_gendisk(md->disk);
1305 /* Then flush out any already in there */
1306 mmc_cleanup_queue(&md->queue);
1307 mmc_blk_put(md);
1311 static void mmc_blk_remove_parts(struct mmc_card *card,
1312 struct mmc_blk_data *md)
1314 struct list_head *pos, *q;
1315 struct mmc_blk_data *part_md;
1317 __clear_bit(md->name_idx, name_use);
1318 list_for_each_safe(pos, q, &md->part) {
1319 part_md = list_entry(pos, struct mmc_blk_data, part);
1320 list_del(pos);
1321 mmc_blk_remove_req(part_md);
1325 static int mmc_add_disk(struct mmc_blk_data *md)
1327 int ret;
1329 add_disk(md->disk);
1330 md->force_ro.show = force_ro_show;
1331 md->force_ro.store = force_ro_store;
1332 sysfs_attr_init(&md->force_ro.attr);
1333 md->force_ro.attr.name = "force_ro";
1334 md->force_ro.attr.mode = S_IRUGO | S_IWUSR;
1335 ret = device_create_file(disk_to_dev(md->disk), &md->force_ro);
1336 if (ret)
1337 del_gendisk(md->disk);
1339 return ret;
1342 static const struct mmc_fixup blk_fixups[] =
1344 MMC_FIXUP("SEM02G", 0x2, 0x100, add_quirk, MMC_QUIRK_INAND_CMD38),
1345 MMC_FIXUP("SEM04G", 0x2, 0x100, add_quirk, MMC_QUIRK_INAND_CMD38),
1346 MMC_FIXUP("SEM08G", 0x2, 0x100, add_quirk, MMC_QUIRK_INAND_CMD38),
1347 MMC_FIXUP("SEM16G", 0x2, 0x100, add_quirk, MMC_QUIRK_INAND_CMD38),
1348 MMC_FIXUP("SEM32G", 0x2, 0x100, add_quirk, MMC_QUIRK_INAND_CMD38),
1351 * Some MMC cards experience performance degradation with CMD23
1352 * instead of CMD12-bounded multiblock transfers. For now we'll
1353 * black list what's bad...
1354 * - Certain Toshiba cards.
1356 * N.B. This doesn't affect SD cards.
1358 MMC_FIXUP("MMC08G", 0x11, CID_OEMID_ANY, add_quirk_mmc,
1359 MMC_QUIRK_BLK_NO_CMD23),
1360 MMC_FIXUP("MMC16G", 0x11, CID_OEMID_ANY, add_quirk_mmc,
1361 MMC_QUIRK_BLK_NO_CMD23),
1362 MMC_FIXUP("MMC32G", 0x11, CID_OEMID_ANY, add_quirk_mmc,
1363 MMC_QUIRK_BLK_NO_CMD23),
1364 END_FIXUP
1367 static int mmc_blk_probe(struct mmc_card *card)
1369 struct mmc_blk_data *md, *part_md;
1370 int err;
1371 char cap_str[10];
1374 * Check that the card supports the command class(es) we need.
1376 if (!(card->csd.cmdclass & CCC_BLOCK_READ))
1377 return -ENODEV;
1379 md = mmc_blk_alloc(card);
1380 if (IS_ERR(md))
1381 return PTR_ERR(md);
1383 err = mmc_blk_set_blksize(md, card);
1384 if (err)
1385 goto out;
1387 string_get_size((u64)get_capacity(md->disk) << 9, STRING_UNITS_2,
1388 cap_str, sizeof(cap_str));
1389 printk(KERN_INFO "%s: %s %s %s %s\n",
1390 md->disk->disk_name, mmc_card_id(card), mmc_card_name(card),
1391 cap_str, md->read_only ? "(ro)" : "");
1393 if (mmc_blk_alloc_parts(card, md))
1394 goto out;
1396 mmc_set_drvdata(card, md);
1397 mmc_fixup_device(card, blk_fixups);
1399 if (mmc_add_disk(md))
1400 goto out;
1402 list_for_each_entry(part_md, &md->part, part) {
1403 if (mmc_add_disk(part_md))
1404 goto out;
1406 return 0;
1408 out:
1409 mmc_blk_remove_parts(card, md);
1410 mmc_blk_remove_req(md);
1411 return err;
1414 static void mmc_blk_remove(struct mmc_card *card)
1416 struct mmc_blk_data *md = mmc_get_drvdata(card);
1418 mmc_blk_remove_parts(card, md);
1419 mmc_claim_host(card->host);
1420 mmc_blk_part_switch(card, md);
1421 mmc_release_host(card->host);
1422 mmc_blk_remove_req(md);
1423 mmc_set_drvdata(card, NULL);
1426 #ifdef CONFIG_PM
1427 static int mmc_blk_suspend(struct mmc_card *card, pm_message_t state)
1429 struct mmc_blk_data *part_md;
1430 struct mmc_blk_data *md = mmc_get_drvdata(card);
1432 if (md) {
1433 mmc_queue_suspend(&md->queue);
1434 list_for_each_entry(part_md, &md->part, part) {
1435 mmc_queue_suspend(&part_md->queue);
1438 return 0;
1441 static int mmc_blk_resume(struct mmc_card *card)
1443 struct mmc_blk_data *part_md;
1444 struct mmc_blk_data *md = mmc_get_drvdata(card);
1446 if (md) {
1447 mmc_blk_set_blksize(md, card);
1450 * Resume involves the card going into idle state,
1451 * so current partition is always the main one.
1453 md->part_curr = md->part_type;
1454 mmc_queue_resume(&md->queue);
1455 list_for_each_entry(part_md, &md->part, part) {
1456 mmc_queue_resume(&part_md->queue);
1459 return 0;
1461 #else
1462 #define mmc_blk_suspend NULL
1463 #define mmc_blk_resume NULL
1464 #endif
1466 static struct mmc_driver mmc_driver = {
1467 .drv = {
1468 .name = "mmcblk",
1470 .probe = mmc_blk_probe,
1471 .remove = mmc_blk_remove,
1472 .suspend = mmc_blk_suspend,
1473 .resume = mmc_blk_resume,
1476 static int __init mmc_blk_init(void)
1478 int res;
1480 if (perdev_minors != CONFIG_MMC_BLOCK_MINORS)
1481 pr_info("mmcblk: using %d minors per device\n", perdev_minors);
1483 max_devices = 256 / perdev_minors;
1485 res = register_blkdev(MMC_BLOCK_MAJOR, "mmc");
1486 if (res)
1487 goto out;
1489 res = mmc_register_driver(&mmc_driver);
1490 if (res)
1491 goto out2;
1493 return 0;
1494 out2:
1495 unregister_blkdev(MMC_BLOCK_MAJOR, "mmc");
1496 out:
1497 return res;
1500 static void __exit mmc_blk_exit(void)
1502 mmc_unregister_driver(&mmc_driver);
1503 unregister_blkdev(MMC_BLOCK_MAJOR, "mmc");
1506 module_init(mmc_blk_init);
1507 module_exit(mmc_blk_exit);
1509 MODULE_LICENSE("GPL");
1510 MODULE_DESCRIPTION("Multimedia Card (MMC) block device driver");