[GFS2] Remove unused counters
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / kernel / time / ntp.c
blob5fd9b946977038cbdc192dc5a11146696ad53947
1 /*
2 * linux/kernel/time/ntp.c
4 * NTP state machine interfaces and logic.
6 * This code was mainly moved from kernel/timer.c and kernel/time.c
7 * Please see those files for relevant copyright info and historical
8 * changelogs.
9 */
11 #include <linux/mm.h>
12 #include <linux/time.h>
13 #include <linux/timer.h>
14 #include <linux/timex.h>
15 #include <linux/jiffies.h>
16 #include <linux/hrtimer.h>
17 #include <linux/capability.h>
18 #include <asm/div64.h>
19 #include <asm/timex.h>
22 * Timekeeping variables
24 unsigned long tick_usec = TICK_USEC; /* USER_HZ period (usec) */
25 unsigned long tick_nsec; /* ACTHZ period (nsec) */
26 static u64 tick_length, tick_length_base;
28 #define MAX_TICKADJ 500 /* microsecs */
29 #define MAX_TICKADJ_SCALED (((u64)(MAX_TICKADJ * NSEC_PER_USEC) << \
30 TICK_LENGTH_SHIFT) / NTP_INTERVAL_FREQ)
33 * phase-lock loop variables
35 /* TIME_ERROR prevents overwriting the CMOS clock */
36 static int time_state = TIME_OK; /* clock synchronization status */
37 int time_status = STA_UNSYNC; /* clock status bits */
38 static s64 time_offset; /* time adjustment (ns) */
39 static long time_constant = 2; /* pll time constant */
40 long time_maxerror = NTP_PHASE_LIMIT; /* maximum error (us) */
41 long time_esterror = NTP_PHASE_LIMIT; /* estimated error (us) */
42 long time_freq; /* frequency offset (scaled ppm)*/
43 static long time_reftime; /* time at last adjustment (s) */
44 long time_adjust;
45 static long ntp_tick_adj;
47 static void ntp_update_frequency(void)
49 u64 second_length = (u64)(tick_usec * NSEC_PER_USEC * USER_HZ)
50 << TICK_LENGTH_SHIFT;
51 second_length += (s64)ntp_tick_adj << TICK_LENGTH_SHIFT;
52 second_length += (s64)time_freq << (TICK_LENGTH_SHIFT - SHIFT_NSEC);
54 tick_length_base = second_length;
56 do_div(second_length, HZ);
57 tick_nsec = second_length >> TICK_LENGTH_SHIFT;
59 do_div(tick_length_base, NTP_INTERVAL_FREQ);
62 /**
63 * ntp_clear - Clears the NTP state variables
65 * Must be called while holding a write on the xtime_lock
67 void ntp_clear(void)
69 time_adjust = 0; /* stop active adjtime() */
70 time_status |= STA_UNSYNC;
71 time_maxerror = NTP_PHASE_LIMIT;
72 time_esterror = NTP_PHASE_LIMIT;
74 ntp_update_frequency();
76 tick_length = tick_length_base;
77 time_offset = 0;
81 * this routine handles the overflow of the microsecond field
83 * The tricky bits of code to handle the accurate clock support
84 * were provided by Dave Mills (Mills@UDEL.EDU) of NTP fame.
85 * They were originally developed for SUN and DEC kernels.
86 * All the kudos should go to Dave for this stuff.
88 void second_overflow(void)
90 long time_adj;
92 /* Bump the maxerror field */
93 time_maxerror += MAXFREQ >> SHIFT_USEC;
94 if (time_maxerror > NTP_PHASE_LIMIT) {
95 time_maxerror = NTP_PHASE_LIMIT;
96 time_status |= STA_UNSYNC;
100 * Leap second processing. If in leap-insert state at the end of the
101 * day, the system clock is set back one second; if in leap-delete
102 * state, the system clock is set ahead one second. The microtime()
103 * routine or external clock driver will insure that reported time is
104 * always monotonic. The ugly divides should be replaced.
106 switch (time_state) {
107 case TIME_OK:
108 if (time_status & STA_INS)
109 time_state = TIME_INS;
110 else if (time_status & STA_DEL)
111 time_state = TIME_DEL;
112 break;
113 case TIME_INS:
114 if (xtime.tv_sec % 86400 == 0) {
115 xtime.tv_sec--;
116 wall_to_monotonic.tv_sec++;
117 time_state = TIME_OOP;
118 printk(KERN_NOTICE "Clock: inserting leap second "
119 "23:59:60 UTC\n");
121 break;
122 case TIME_DEL:
123 if ((xtime.tv_sec + 1) % 86400 == 0) {
124 xtime.tv_sec++;
125 wall_to_monotonic.tv_sec--;
126 time_state = TIME_WAIT;
127 printk(KERN_NOTICE "Clock: deleting leap second "
128 "23:59:59 UTC\n");
130 break;
131 case TIME_OOP:
132 time_state = TIME_WAIT;
133 break;
134 case TIME_WAIT:
135 if (!(time_status & (STA_INS | STA_DEL)))
136 time_state = TIME_OK;
140 * Compute the phase adjustment for the next second. The offset is
141 * reduced by a fixed factor times the time constant.
143 tick_length = tick_length_base;
144 time_adj = shift_right(time_offset, SHIFT_PLL + time_constant);
145 time_offset -= time_adj;
146 tick_length += (s64)time_adj << (TICK_LENGTH_SHIFT - SHIFT_UPDATE);
148 if (unlikely(time_adjust)) {
149 if (time_adjust > MAX_TICKADJ) {
150 time_adjust -= MAX_TICKADJ;
151 tick_length += MAX_TICKADJ_SCALED;
152 } else if (time_adjust < -MAX_TICKADJ) {
153 time_adjust += MAX_TICKADJ;
154 tick_length -= MAX_TICKADJ_SCALED;
155 } else {
156 tick_length += (s64)(time_adjust * NSEC_PER_USEC /
157 NTP_INTERVAL_FREQ) << TICK_LENGTH_SHIFT;
158 time_adjust = 0;
164 * Return how long ticks are at the moment, that is, how much time
165 * update_wall_time_one_tick will add to xtime next time we call it
166 * (assuming no calls to do_adjtimex in the meantime).
167 * The return value is in fixed-point nanoseconds shifted by the
168 * specified number of bits to the right of the binary point.
169 * This function has no side-effects.
171 u64 current_tick_length(void)
173 return tick_length;
176 #ifdef CONFIG_GENERIC_CMOS_UPDATE
178 /* Disable the cmos update - used by virtualization and embedded */
179 int no_sync_cmos_clock __read_mostly;
181 static void sync_cmos_clock(unsigned long dummy);
183 static DEFINE_TIMER(sync_cmos_timer, sync_cmos_clock, 0, 0);
185 static void sync_cmos_clock(unsigned long dummy)
187 struct timespec now, next;
188 int fail = 1;
191 * If we have an externally synchronized Linux clock, then update
192 * CMOS clock accordingly every ~11 minutes. Set_rtc_mmss() has to be
193 * called as close as possible to 500 ms before the new second starts.
194 * This code is run on a timer. If the clock is set, that timer
195 * may not expire at the correct time. Thus, we adjust...
197 if (!ntp_synced())
199 * Not synced, exit, do not restart a timer (if one is
200 * running, let it run out).
202 return;
204 getnstimeofday(&now);
205 if (abs(now.tv_nsec - (NSEC_PER_SEC / 2)) <= tick_nsec / 2)
206 fail = update_persistent_clock(now);
208 next.tv_nsec = (NSEC_PER_SEC / 2) - now.tv_nsec;
209 if (next.tv_nsec <= 0)
210 next.tv_nsec += NSEC_PER_SEC;
212 if (!fail)
213 next.tv_sec = 659;
214 else
215 next.tv_sec = 0;
217 if (next.tv_nsec >= NSEC_PER_SEC) {
218 next.tv_sec++;
219 next.tv_nsec -= NSEC_PER_SEC;
221 mod_timer(&sync_cmos_timer, jiffies + timespec_to_jiffies(&next));
224 static void notify_cmos_timer(void)
226 if (!no_sync_cmos_clock)
227 mod_timer(&sync_cmos_timer, jiffies + 1);
230 #else
231 static inline void notify_cmos_timer(void) { }
232 #endif
234 /* adjtimex mainly allows reading (and writing, if superuser) of
235 * kernel time-keeping variables. used by xntpd.
237 int do_adjtimex(struct timex *txc)
239 long mtemp, save_adjust, rem;
240 s64 freq_adj, temp64;
241 int result;
243 /* In order to modify anything, you gotta be super-user! */
244 if (txc->modes && !capable(CAP_SYS_TIME))
245 return -EPERM;
247 /* Now we validate the data before disabling interrupts */
249 if ((txc->modes & ADJ_OFFSET_SINGLESHOT) == ADJ_OFFSET_SINGLESHOT) {
250 /* singleshot must not be used with any other mode bits */
251 if (txc->modes != ADJ_OFFSET_SINGLESHOT &&
252 txc->modes != ADJ_OFFSET_SS_READ)
253 return -EINVAL;
256 if (txc->modes != ADJ_OFFSET_SINGLESHOT && (txc->modes & ADJ_OFFSET))
257 /* adjustment Offset limited to +- .512 seconds */
258 if (txc->offset <= - MAXPHASE || txc->offset >= MAXPHASE )
259 return -EINVAL;
261 /* if the quartz is off by more than 10% something is VERY wrong ! */
262 if (txc->modes & ADJ_TICK)
263 if (txc->tick < 900000/USER_HZ ||
264 txc->tick > 1100000/USER_HZ)
265 return -EINVAL;
267 write_seqlock_irq(&xtime_lock);
268 result = time_state; /* mostly `TIME_OK' */
270 /* Save for later - semantics of adjtime is to return old value */
271 save_adjust = time_adjust;
273 #if 0 /* STA_CLOCKERR is never set yet */
274 time_status &= ~STA_CLOCKERR; /* reset STA_CLOCKERR */
275 #endif
276 /* If there are input parameters, then process them */
277 if (txc->modes)
279 if (txc->modes & ADJ_STATUS) /* only set allowed bits */
280 time_status = (txc->status & ~STA_RONLY) |
281 (time_status & STA_RONLY);
283 if (txc->modes & ADJ_FREQUENCY) { /* p. 22 */
284 if (txc->freq > MAXFREQ || txc->freq < -MAXFREQ) {
285 result = -EINVAL;
286 goto leave;
288 time_freq = ((s64)txc->freq * NSEC_PER_USEC)
289 >> (SHIFT_USEC - SHIFT_NSEC);
292 if (txc->modes & ADJ_MAXERROR) {
293 if (txc->maxerror < 0 || txc->maxerror >= NTP_PHASE_LIMIT) {
294 result = -EINVAL;
295 goto leave;
297 time_maxerror = txc->maxerror;
300 if (txc->modes & ADJ_ESTERROR) {
301 if (txc->esterror < 0 || txc->esterror >= NTP_PHASE_LIMIT) {
302 result = -EINVAL;
303 goto leave;
305 time_esterror = txc->esterror;
308 if (txc->modes & ADJ_TIMECONST) { /* p. 24 */
309 if (txc->constant < 0) { /* NTP v4 uses values > 6 */
310 result = -EINVAL;
311 goto leave;
313 time_constant = min(txc->constant + 4, (long)MAXTC);
316 if (txc->modes & ADJ_OFFSET) { /* values checked earlier */
317 if (txc->modes == ADJ_OFFSET_SINGLESHOT) {
318 /* adjtime() is independent from ntp_adjtime() */
319 time_adjust = txc->offset;
321 else if (time_status & STA_PLL) {
322 time_offset = txc->offset * NSEC_PER_USEC;
325 * Scale the phase adjustment and
326 * clamp to the operating range.
328 time_offset = min(time_offset, (s64)MAXPHASE * NSEC_PER_USEC);
329 time_offset = max(time_offset, (s64)-MAXPHASE * NSEC_PER_USEC);
332 * Select whether the frequency is to be controlled
333 * and in which mode (PLL or FLL). Clamp to the operating
334 * range. Ugly multiply/divide should be replaced someday.
337 if (time_status & STA_FREQHOLD || time_reftime == 0)
338 time_reftime = xtime.tv_sec;
339 mtemp = xtime.tv_sec - time_reftime;
340 time_reftime = xtime.tv_sec;
342 freq_adj = time_offset * mtemp;
343 freq_adj = shift_right(freq_adj, time_constant * 2 +
344 (SHIFT_PLL + 2) * 2 - SHIFT_NSEC);
345 if (mtemp >= MINSEC && (time_status & STA_FLL || mtemp > MAXSEC)) {
346 u64 utemp64;
347 temp64 = time_offset << (SHIFT_NSEC - SHIFT_FLL);
348 if (time_offset < 0) {
349 utemp64 = -temp64;
350 do_div(utemp64, mtemp);
351 freq_adj -= utemp64;
352 } else {
353 utemp64 = temp64;
354 do_div(utemp64, mtemp);
355 freq_adj += utemp64;
358 freq_adj += time_freq;
359 freq_adj = min(freq_adj, (s64)MAXFREQ_NSEC);
360 time_freq = max(freq_adj, (s64)-MAXFREQ_NSEC);
361 time_offset = div_long_long_rem_signed(time_offset,
362 NTP_INTERVAL_FREQ,
363 &rem);
364 time_offset <<= SHIFT_UPDATE;
365 } /* STA_PLL */
366 } /* txc->modes & ADJ_OFFSET */
367 if (txc->modes & ADJ_TICK)
368 tick_usec = txc->tick;
370 if (txc->modes & (ADJ_TICK|ADJ_FREQUENCY|ADJ_OFFSET))
371 ntp_update_frequency();
372 } /* txc->modes */
373 leave: if ((time_status & (STA_UNSYNC|STA_CLOCKERR)) != 0)
374 result = TIME_ERROR;
376 if ((txc->modes == ADJ_OFFSET_SINGLESHOT) ||
377 (txc->modes == ADJ_OFFSET_SS_READ))
378 txc->offset = save_adjust;
379 else
380 txc->offset = ((long)shift_right(time_offset, SHIFT_UPDATE)) *
381 NTP_INTERVAL_FREQ / 1000;
382 txc->freq = (time_freq / NSEC_PER_USEC) <<
383 (SHIFT_USEC - SHIFT_NSEC);
384 txc->maxerror = time_maxerror;
385 txc->esterror = time_esterror;
386 txc->status = time_status;
387 txc->constant = time_constant;
388 txc->precision = 1;
389 txc->tolerance = MAXFREQ;
390 txc->tick = tick_usec;
392 /* PPS is not implemented, so these are zero */
393 txc->ppsfreq = 0;
394 txc->jitter = 0;
395 txc->shift = 0;
396 txc->stabil = 0;
397 txc->jitcnt = 0;
398 txc->calcnt = 0;
399 txc->errcnt = 0;
400 txc->stbcnt = 0;
401 write_sequnlock_irq(&xtime_lock);
402 do_gettimeofday(&txc->time);
403 notify_cmos_timer();
404 return(result);
407 static int __init ntp_tick_adj_setup(char *str)
409 ntp_tick_adj = simple_strtol(str, NULL, 0);
410 return 1;
413 __setup("ntp_tick_adj=", ntp_tick_adj_setup);