staging: rts_pstor: MSXC card power class
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / include / linux / percpu.h
blob27c3c6fcfad321a4915cba6b3ab6162cb10c19a1
1 #ifndef __LINUX_PERCPU_H
2 #define __LINUX_PERCPU_H
4 #include <linux/preempt.h>
5 #include <linux/smp.h>
6 #include <linux/cpumask.h>
7 #include <linux/pfn.h>
8 #include <linux/init.h>
10 #include <asm/percpu.h>
12 /* enough to cover all DEFINE_PER_CPUs in modules */
13 #ifdef CONFIG_MODULES
14 #define PERCPU_MODULE_RESERVE (8 << 10)
15 #else
16 #define PERCPU_MODULE_RESERVE 0
17 #endif
19 #ifndef PERCPU_ENOUGH_ROOM
20 #define PERCPU_ENOUGH_ROOM \
21 (ALIGN(__per_cpu_end - __per_cpu_start, SMP_CACHE_BYTES) + \
22 PERCPU_MODULE_RESERVE)
23 #endif
26 * Must be an lvalue. Since @var must be a simple identifier,
27 * we force a syntax error here if it isn't.
29 #define get_cpu_var(var) (*({ \
30 preempt_disable(); \
31 &__get_cpu_var(var); }))
34 * The weird & is necessary because sparse considers (void)(var) to be
35 * a direct dereference of percpu variable (var).
37 #define put_cpu_var(var) do { \
38 (void)&(var); \
39 preempt_enable(); \
40 } while (0)
42 #define get_cpu_ptr(var) ({ \
43 preempt_disable(); \
44 this_cpu_ptr(var); })
46 #define put_cpu_ptr(var) do { \
47 (void)(var); \
48 preempt_enable(); \
49 } while (0)
51 /* minimum unit size, also is the maximum supported allocation size */
52 #define PCPU_MIN_UNIT_SIZE PFN_ALIGN(32 << 10)
55 * Percpu allocator can serve percpu allocations before slab is
56 * initialized which allows slab to depend on the percpu allocator.
57 * The following two parameters decide how much resource to
58 * preallocate for this. Keep PERCPU_DYNAMIC_RESERVE equal to or
59 * larger than PERCPU_DYNAMIC_EARLY_SIZE.
61 #define PERCPU_DYNAMIC_EARLY_SLOTS 128
62 #define PERCPU_DYNAMIC_EARLY_SIZE (12 << 10)
65 * PERCPU_DYNAMIC_RESERVE indicates the amount of free area to piggy
66 * back on the first chunk for dynamic percpu allocation if arch is
67 * manually allocating and mapping it for faster access (as a part of
68 * large page mapping for example).
70 * The following values give between one and two pages of free space
71 * after typical minimal boot (2-way SMP, single disk and NIC) with
72 * both defconfig and a distro config on x86_64 and 32. More
73 * intelligent way to determine this would be nice.
75 #if BITS_PER_LONG > 32
76 #define PERCPU_DYNAMIC_RESERVE (20 << 10)
77 #else
78 #define PERCPU_DYNAMIC_RESERVE (12 << 10)
79 #endif
81 extern void *pcpu_base_addr;
82 extern const unsigned long *pcpu_unit_offsets;
84 struct pcpu_group_info {
85 int nr_units; /* aligned # of units */
86 unsigned long base_offset; /* base address offset */
87 unsigned int *cpu_map; /* unit->cpu map, empty
88 * entries contain NR_CPUS */
91 struct pcpu_alloc_info {
92 size_t static_size;
93 size_t reserved_size;
94 size_t dyn_size;
95 size_t unit_size;
96 size_t atom_size;
97 size_t alloc_size;
98 size_t __ai_size; /* internal, don't use */
99 int nr_groups; /* 0 if grouping unnecessary */
100 struct pcpu_group_info groups[];
103 enum pcpu_fc {
104 PCPU_FC_AUTO,
105 PCPU_FC_EMBED,
106 PCPU_FC_PAGE,
108 PCPU_FC_NR,
110 extern const char *pcpu_fc_names[PCPU_FC_NR];
112 extern enum pcpu_fc pcpu_chosen_fc;
114 typedef void * (*pcpu_fc_alloc_fn_t)(unsigned int cpu, size_t size,
115 size_t align);
116 typedef void (*pcpu_fc_free_fn_t)(void *ptr, size_t size);
117 typedef void (*pcpu_fc_populate_pte_fn_t)(unsigned long addr);
118 typedef int (pcpu_fc_cpu_distance_fn_t)(unsigned int from, unsigned int to);
120 extern struct pcpu_alloc_info * __init pcpu_alloc_alloc_info(int nr_groups,
121 int nr_units);
122 extern void __init pcpu_free_alloc_info(struct pcpu_alloc_info *ai);
124 extern int __init pcpu_setup_first_chunk(const struct pcpu_alloc_info *ai,
125 void *base_addr);
127 #ifdef CONFIG_NEED_PER_CPU_EMBED_FIRST_CHUNK
128 extern int __init pcpu_embed_first_chunk(size_t reserved_size, size_t dyn_size,
129 size_t atom_size,
130 pcpu_fc_cpu_distance_fn_t cpu_distance_fn,
131 pcpu_fc_alloc_fn_t alloc_fn,
132 pcpu_fc_free_fn_t free_fn);
133 #endif
135 #ifdef CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK
136 extern int __init pcpu_page_first_chunk(size_t reserved_size,
137 pcpu_fc_alloc_fn_t alloc_fn,
138 pcpu_fc_free_fn_t free_fn,
139 pcpu_fc_populate_pte_fn_t populate_pte_fn);
140 #endif
143 * Use this to get to a cpu's version of the per-cpu object
144 * dynamically allocated. Non-atomic access to the current CPU's
145 * version should probably be combined with get_cpu()/put_cpu().
147 #ifdef CONFIG_SMP
148 #define per_cpu_ptr(ptr, cpu) SHIFT_PERCPU_PTR((ptr), per_cpu_offset((cpu)))
149 #else
150 #define per_cpu_ptr(ptr, cpu) ({ (void)(cpu); VERIFY_PERCPU_PTR((ptr)); })
151 #endif
153 extern void __percpu *__alloc_reserved_percpu(size_t size, size_t align);
154 extern bool is_kernel_percpu_address(unsigned long addr);
156 #if !defined(CONFIG_SMP) || !defined(CONFIG_HAVE_SETUP_PER_CPU_AREA)
157 extern void __init setup_per_cpu_areas(void);
158 #endif
159 extern void __init percpu_init_late(void);
161 extern void __percpu *__alloc_percpu(size_t size, size_t align);
162 extern void free_percpu(void __percpu *__pdata);
163 extern phys_addr_t per_cpu_ptr_to_phys(void *addr);
165 #define alloc_percpu(type) \
166 (typeof(type) __percpu *)__alloc_percpu(sizeof(type), __alignof__(type))
169 * Optional methods for optimized non-lvalue per-cpu variable access.
171 * @var can be a percpu variable or a field of it and its size should
172 * equal char, int or long. percpu_read() evaluates to a lvalue and
173 * all others to void.
175 * These operations are guaranteed to be atomic w.r.t. preemption.
176 * The generic versions use plain get/put_cpu_var(). Archs are
177 * encouraged to implement single-instruction alternatives which don't
178 * require preemption protection.
180 #ifndef percpu_read
181 # define percpu_read(var) \
182 ({ \
183 typeof(var) *pr_ptr__ = &(var); \
184 typeof(var) pr_ret__; \
185 pr_ret__ = get_cpu_var(*pr_ptr__); \
186 put_cpu_var(*pr_ptr__); \
187 pr_ret__; \
189 #endif
191 #define __percpu_generic_to_op(var, val, op) \
192 do { \
193 typeof(var) *pgto_ptr__ = &(var); \
194 get_cpu_var(*pgto_ptr__) op val; \
195 put_cpu_var(*pgto_ptr__); \
196 } while (0)
198 #ifndef percpu_write
199 # define percpu_write(var, val) __percpu_generic_to_op(var, (val), =)
200 #endif
202 #ifndef percpu_add
203 # define percpu_add(var, val) __percpu_generic_to_op(var, (val), +=)
204 #endif
206 #ifndef percpu_sub
207 # define percpu_sub(var, val) __percpu_generic_to_op(var, (val), -=)
208 #endif
210 #ifndef percpu_and
211 # define percpu_and(var, val) __percpu_generic_to_op(var, (val), &=)
212 #endif
214 #ifndef percpu_or
215 # define percpu_or(var, val) __percpu_generic_to_op(var, (val), |=)
216 #endif
218 #ifndef percpu_xor
219 # define percpu_xor(var, val) __percpu_generic_to_op(var, (val), ^=)
220 #endif
223 * Branching function to split up a function into a set of functions that
224 * are called for different scalar sizes of the objects handled.
227 extern void __bad_size_call_parameter(void);
229 #define __pcpu_size_call_return(stem, variable) \
230 ({ typeof(variable) pscr_ret__; \
231 __verify_pcpu_ptr(&(variable)); \
232 switch(sizeof(variable)) { \
233 case 1: pscr_ret__ = stem##1(variable);break; \
234 case 2: pscr_ret__ = stem##2(variable);break; \
235 case 4: pscr_ret__ = stem##4(variable);break; \
236 case 8: pscr_ret__ = stem##8(variable);break; \
237 default: \
238 __bad_size_call_parameter();break; \
240 pscr_ret__; \
243 #define __pcpu_size_call_return2(stem, variable, ...) \
244 ({ \
245 typeof(variable) pscr2_ret__; \
246 __verify_pcpu_ptr(&(variable)); \
247 switch(sizeof(variable)) { \
248 case 1: pscr2_ret__ = stem##1(variable, __VA_ARGS__); break; \
249 case 2: pscr2_ret__ = stem##2(variable, __VA_ARGS__); break; \
250 case 4: pscr2_ret__ = stem##4(variable, __VA_ARGS__); break; \
251 case 8: pscr2_ret__ = stem##8(variable, __VA_ARGS__); break; \
252 default: \
253 __bad_size_call_parameter(); break; \
255 pscr2_ret__; \
258 #define __pcpu_size_call(stem, variable, ...) \
259 do { \
260 __verify_pcpu_ptr(&(variable)); \
261 switch(sizeof(variable)) { \
262 case 1: stem##1(variable, __VA_ARGS__);break; \
263 case 2: stem##2(variable, __VA_ARGS__);break; \
264 case 4: stem##4(variable, __VA_ARGS__);break; \
265 case 8: stem##8(variable, __VA_ARGS__);break; \
266 default: \
267 __bad_size_call_parameter();break; \
269 } while (0)
272 * Optimized manipulation for memory allocated through the per cpu
273 * allocator or for addresses of per cpu variables.
275 * These operation guarantee exclusivity of access for other operations
276 * on the *same* processor. The assumption is that per cpu data is only
277 * accessed by a single processor instance (the current one).
279 * The first group is used for accesses that must be done in a
280 * preemption safe way since we know that the context is not preempt
281 * safe. Interrupts may occur. If the interrupt modifies the variable
282 * too then RMW actions will not be reliable.
284 * The arch code can provide optimized functions in two ways:
286 * 1. Override the function completely. F.e. define this_cpu_add().
287 * The arch must then ensure that the various scalar format passed
288 * are handled correctly.
290 * 2. Provide functions for certain scalar sizes. F.e. provide
291 * this_cpu_add_2() to provide per cpu atomic operations for 2 byte
292 * sized RMW actions. If arch code does not provide operations for
293 * a scalar size then the fallback in the generic code will be
294 * used.
297 #define _this_cpu_generic_read(pcp) \
298 ({ typeof(pcp) ret__; \
299 preempt_disable(); \
300 ret__ = *this_cpu_ptr(&(pcp)); \
301 preempt_enable(); \
302 ret__; \
305 #ifndef this_cpu_read
306 # ifndef this_cpu_read_1
307 # define this_cpu_read_1(pcp) _this_cpu_generic_read(pcp)
308 # endif
309 # ifndef this_cpu_read_2
310 # define this_cpu_read_2(pcp) _this_cpu_generic_read(pcp)
311 # endif
312 # ifndef this_cpu_read_4
313 # define this_cpu_read_4(pcp) _this_cpu_generic_read(pcp)
314 # endif
315 # ifndef this_cpu_read_8
316 # define this_cpu_read_8(pcp) _this_cpu_generic_read(pcp)
317 # endif
318 # define this_cpu_read(pcp) __pcpu_size_call_return(this_cpu_read_, (pcp))
319 #endif
321 #define _this_cpu_generic_to_op(pcp, val, op) \
322 do { \
323 preempt_disable(); \
324 *__this_cpu_ptr(&(pcp)) op val; \
325 preempt_enable(); \
326 } while (0)
328 #ifndef this_cpu_write
329 # ifndef this_cpu_write_1
330 # define this_cpu_write_1(pcp, val) _this_cpu_generic_to_op((pcp), (val), =)
331 # endif
332 # ifndef this_cpu_write_2
333 # define this_cpu_write_2(pcp, val) _this_cpu_generic_to_op((pcp), (val), =)
334 # endif
335 # ifndef this_cpu_write_4
336 # define this_cpu_write_4(pcp, val) _this_cpu_generic_to_op((pcp), (val), =)
337 # endif
338 # ifndef this_cpu_write_8
339 # define this_cpu_write_8(pcp, val) _this_cpu_generic_to_op((pcp), (val), =)
340 # endif
341 # define this_cpu_write(pcp, val) __pcpu_size_call(this_cpu_write_, (pcp), (val))
342 #endif
344 #ifndef this_cpu_add
345 # ifndef this_cpu_add_1
346 # define this_cpu_add_1(pcp, val) _this_cpu_generic_to_op((pcp), (val), +=)
347 # endif
348 # ifndef this_cpu_add_2
349 # define this_cpu_add_2(pcp, val) _this_cpu_generic_to_op((pcp), (val), +=)
350 # endif
351 # ifndef this_cpu_add_4
352 # define this_cpu_add_4(pcp, val) _this_cpu_generic_to_op((pcp), (val), +=)
353 # endif
354 # ifndef this_cpu_add_8
355 # define this_cpu_add_8(pcp, val) _this_cpu_generic_to_op((pcp), (val), +=)
356 # endif
357 # define this_cpu_add(pcp, val) __pcpu_size_call(this_cpu_add_, (pcp), (val))
358 #endif
360 #ifndef this_cpu_sub
361 # define this_cpu_sub(pcp, val) this_cpu_add((pcp), -(val))
362 #endif
364 #ifndef this_cpu_inc
365 # define this_cpu_inc(pcp) this_cpu_add((pcp), 1)
366 #endif
368 #ifndef this_cpu_dec
369 # define this_cpu_dec(pcp) this_cpu_sub((pcp), 1)
370 #endif
372 #ifndef this_cpu_and
373 # ifndef this_cpu_and_1
374 # define this_cpu_and_1(pcp, val) _this_cpu_generic_to_op((pcp), (val), &=)
375 # endif
376 # ifndef this_cpu_and_2
377 # define this_cpu_and_2(pcp, val) _this_cpu_generic_to_op((pcp), (val), &=)
378 # endif
379 # ifndef this_cpu_and_4
380 # define this_cpu_and_4(pcp, val) _this_cpu_generic_to_op((pcp), (val), &=)
381 # endif
382 # ifndef this_cpu_and_8
383 # define this_cpu_and_8(pcp, val) _this_cpu_generic_to_op((pcp), (val), &=)
384 # endif
385 # define this_cpu_and(pcp, val) __pcpu_size_call(this_cpu_and_, (pcp), (val))
386 #endif
388 #ifndef this_cpu_or
389 # ifndef this_cpu_or_1
390 # define this_cpu_or_1(pcp, val) _this_cpu_generic_to_op((pcp), (val), |=)
391 # endif
392 # ifndef this_cpu_or_2
393 # define this_cpu_or_2(pcp, val) _this_cpu_generic_to_op((pcp), (val), |=)
394 # endif
395 # ifndef this_cpu_or_4
396 # define this_cpu_or_4(pcp, val) _this_cpu_generic_to_op((pcp), (val), |=)
397 # endif
398 # ifndef this_cpu_or_8
399 # define this_cpu_or_8(pcp, val) _this_cpu_generic_to_op((pcp), (val), |=)
400 # endif
401 # define this_cpu_or(pcp, val) __pcpu_size_call(this_cpu_or_, (pcp), (val))
402 #endif
404 #ifndef this_cpu_xor
405 # ifndef this_cpu_xor_1
406 # define this_cpu_xor_1(pcp, val) _this_cpu_generic_to_op((pcp), (val), ^=)
407 # endif
408 # ifndef this_cpu_xor_2
409 # define this_cpu_xor_2(pcp, val) _this_cpu_generic_to_op((pcp), (val), ^=)
410 # endif
411 # ifndef this_cpu_xor_4
412 # define this_cpu_xor_4(pcp, val) _this_cpu_generic_to_op((pcp), (val), ^=)
413 # endif
414 # ifndef this_cpu_xor_8
415 # define this_cpu_xor_8(pcp, val) _this_cpu_generic_to_op((pcp), (val), ^=)
416 # endif
417 # define this_cpu_xor(pcp, val) __pcpu_size_call(this_cpu_or_, (pcp), (val))
418 #endif
420 #define _this_cpu_generic_add_return(pcp, val) \
421 ({ \
422 typeof(pcp) ret__; \
423 preempt_disable(); \
424 __this_cpu_add(pcp, val); \
425 ret__ = __this_cpu_read(pcp); \
426 preempt_enable(); \
427 ret__; \
430 #ifndef this_cpu_add_return
431 # ifndef this_cpu_add_return_1
432 # define this_cpu_add_return_1(pcp, val) _this_cpu_generic_add_return(pcp, val)
433 # endif
434 # ifndef this_cpu_add_return_2
435 # define this_cpu_add_return_2(pcp, val) _this_cpu_generic_add_return(pcp, val)
436 # endif
437 # ifndef this_cpu_add_return_4
438 # define this_cpu_add_return_4(pcp, val) _this_cpu_generic_add_return(pcp, val)
439 # endif
440 # ifndef this_cpu_add_return_8
441 # define this_cpu_add_return_8(pcp, val) _this_cpu_generic_add_return(pcp, val)
442 # endif
443 # define this_cpu_add_return(pcp, val) __pcpu_size_call_return2(this_cpu_add_return_, pcp, val)
444 #endif
446 #define this_cpu_sub_return(pcp, val) this_cpu_add_return(pcp, -(val))
447 #define this_cpu_inc_return(pcp) this_cpu_add_return(pcp, 1)
448 #define this_cpu_dec_return(pcp) this_cpu_add_return(pcp, -1)
450 #define _this_cpu_generic_xchg(pcp, nval) \
451 ({ typeof(pcp) ret__; \
452 preempt_disable(); \
453 ret__ = __this_cpu_read(pcp); \
454 __this_cpu_write(pcp, nval); \
455 preempt_enable(); \
456 ret__; \
459 #ifndef this_cpu_xchg
460 # ifndef this_cpu_xchg_1
461 # define this_cpu_xchg_1(pcp, nval) _this_cpu_generic_xchg(pcp, nval)
462 # endif
463 # ifndef this_cpu_xchg_2
464 # define this_cpu_xchg_2(pcp, nval) _this_cpu_generic_xchg(pcp, nval)
465 # endif
466 # ifndef this_cpu_xchg_4
467 # define this_cpu_xchg_4(pcp, nval) _this_cpu_generic_xchg(pcp, nval)
468 # endif
469 # ifndef this_cpu_xchg_8
470 # define this_cpu_xchg_8(pcp, nval) _this_cpu_generic_xchg(pcp, nval)
471 # endif
472 # define this_cpu_xchg(pcp, nval) \
473 __pcpu_size_call_return2(this_cpu_xchg_, (pcp), nval)
474 #endif
476 #define _this_cpu_generic_cmpxchg(pcp, oval, nval) \
477 ({ typeof(pcp) ret__; \
478 preempt_disable(); \
479 ret__ = __this_cpu_read(pcp); \
480 if (ret__ == (oval)) \
481 __this_cpu_write(pcp, nval); \
482 preempt_enable(); \
483 ret__; \
486 #ifndef this_cpu_cmpxchg
487 # ifndef this_cpu_cmpxchg_1
488 # define this_cpu_cmpxchg_1(pcp, oval, nval) _this_cpu_generic_cmpxchg(pcp, oval, nval)
489 # endif
490 # ifndef this_cpu_cmpxchg_2
491 # define this_cpu_cmpxchg_2(pcp, oval, nval) _this_cpu_generic_cmpxchg(pcp, oval, nval)
492 # endif
493 # ifndef this_cpu_cmpxchg_4
494 # define this_cpu_cmpxchg_4(pcp, oval, nval) _this_cpu_generic_cmpxchg(pcp, oval, nval)
495 # endif
496 # ifndef this_cpu_cmpxchg_8
497 # define this_cpu_cmpxchg_8(pcp, oval, nval) _this_cpu_generic_cmpxchg(pcp, oval, nval)
498 # endif
499 # define this_cpu_cmpxchg(pcp, oval, nval) \
500 __pcpu_size_call_return2(this_cpu_cmpxchg_, pcp, oval, nval)
501 #endif
504 * Generic percpu operations that do not require preemption handling.
505 * Either we do not care about races or the caller has the
506 * responsibility of handling preemptions issues. Arch code can still
507 * override these instructions since the arch per cpu code may be more
508 * efficient and may actually get race freeness for free (that is the
509 * case for x86 for example).
511 * If there is no other protection through preempt disable and/or
512 * disabling interupts then one of these RMW operations can show unexpected
513 * behavior because the execution thread was rescheduled on another processor
514 * or an interrupt occurred and the same percpu variable was modified from
515 * the interrupt context.
517 #ifndef __this_cpu_read
518 # ifndef __this_cpu_read_1
519 # define __this_cpu_read_1(pcp) (*__this_cpu_ptr(&(pcp)))
520 # endif
521 # ifndef __this_cpu_read_2
522 # define __this_cpu_read_2(pcp) (*__this_cpu_ptr(&(pcp)))
523 # endif
524 # ifndef __this_cpu_read_4
525 # define __this_cpu_read_4(pcp) (*__this_cpu_ptr(&(pcp)))
526 # endif
527 # ifndef __this_cpu_read_8
528 # define __this_cpu_read_8(pcp) (*__this_cpu_ptr(&(pcp)))
529 # endif
530 # define __this_cpu_read(pcp) __pcpu_size_call_return(__this_cpu_read_, (pcp))
531 #endif
533 #define __this_cpu_generic_to_op(pcp, val, op) \
534 do { \
535 *__this_cpu_ptr(&(pcp)) op val; \
536 } while (0)
538 #ifndef __this_cpu_write
539 # ifndef __this_cpu_write_1
540 # define __this_cpu_write_1(pcp, val) __this_cpu_generic_to_op((pcp), (val), =)
541 # endif
542 # ifndef __this_cpu_write_2
543 # define __this_cpu_write_2(pcp, val) __this_cpu_generic_to_op((pcp), (val), =)
544 # endif
545 # ifndef __this_cpu_write_4
546 # define __this_cpu_write_4(pcp, val) __this_cpu_generic_to_op((pcp), (val), =)
547 # endif
548 # ifndef __this_cpu_write_8
549 # define __this_cpu_write_8(pcp, val) __this_cpu_generic_to_op((pcp), (val), =)
550 # endif
551 # define __this_cpu_write(pcp, val) __pcpu_size_call(__this_cpu_write_, (pcp), (val))
552 #endif
554 #ifndef __this_cpu_add
555 # ifndef __this_cpu_add_1
556 # define __this_cpu_add_1(pcp, val) __this_cpu_generic_to_op((pcp), (val), +=)
557 # endif
558 # ifndef __this_cpu_add_2
559 # define __this_cpu_add_2(pcp, val) __this_cpu_generic_to_op((pcp), (val), +=)
560 # endif
561 # ifndef __this_cpu_add_4
562 # define __this_cpu_add_4(pcp, val) __this_cpu_generic_to_op((pcp), (val), +=)
563 # endif
564 # ifndef __this_cpu_add_8
565 # define __this_cpu_add_8(pcp, val) __this_cpu_generic_to_op((pcp), (val), +=)
566 # endif
567 # define __this_cpu_add(pcp, val) __pcpu_size_call(__this_cpu_add_, (pcp), (val))
568 #endif
570 #ifndef __this_cpu_sub
571 # define __this_cpu_sub(pcp, val) __this_cpu_add((pcp), -(val))
572 #endif
574 #ifndef __this_cpu_inc
575 # define __this_cpu_inc(pcp) __this_cpu_add((pcp), 1)
576 #endif
578 #ifndef __this_cpu_dec
579 # define __this_cpu_dec(pcp) __this_cpu_sub((pcp), 1)
580 #endif
582 #ifndef __this_cpu_and
583 # ifndef __this_cpu_and_1
584 # define __this_cpu_and_1(pcp, val) __this_cpu_generic_to_op((pcp), (val), &=)
585 # endif
586 # ifndef __this_cpu_and_2
587 # define __this_cpu_and_2(pcp, val) __this_cpu_generic_to_op((pcp), (val), &=)
588 # endif
589 # ifndef __this_cpu_and_4
590 # define __this_cpu_and_4(pcp, val) __this_cpu_generic_to_op((pcp), (val), &=)
591 # endif
592 # ifndef __this_cpu_and_8
593 # define __this_cpu_and_8(pcp, val) __this_cpu_generic_to_op((pcp), (val), &=)
594 # endif
595 # define __this_cpu_and(pcp, val) __pcpu_size_call(__this_cpu_and_, (pcp), (val))
596 #endif
598 #ifndef __this_cpu_or
599 # ifndef __this_cpu_or_1
600 # define __this_cpu_or_1(pcp, val) __this_cpu_generic_to_op((pcp), (val), |=)
601 # endif
602 # ifndef __this_cpu_or_2
603 # define __this_cpu_or_2(pcp, val) __this_cpu_generic_to_op((pcp), (val), |=)
604 # endif
605 # ifndef __this_cpu_or_4
606 # define __this_cpu_or_4(pcp, val) __this_cpu_generic_to_op((pcp), (val), |=)
607 # endif
608 # ifndef __this_cpu_or_8
609 # define __this_cpu_or_8(pcp, val) __this_cpu_generic_to_op((pcp), (val), |=)
610 # endif
611 # define __this_cpu_or(pcp, val) __pcpu_size_call(__this_cpu_or_, (pcp), (val))
612 #endif
614 #ifndef __this_cpu_xor
615 # ifndef __this_cpu_xor_1
616 # define __this_cpu_xor_1(pcp, val) __this_cpu_generic_to_op((pcp), (val), ^=)
617 # endif
618 # ifndef __this_cpu_xor_2
619 # define __this_cpu_xor_2(pcp, val) __this_cpu_generic_to_op((pcp), (val), ^=)
620 # endif
621 # ifndef __this_cpu_xor_4
622 # define __this_cpu_xor_4(pcp, val) __this_cpu_generic_to_op((pcp), (val), ^=)
623 # endif
624 # ifndef __this_cpu_xor_8
625 # define __this_cpu_xor_8(pcp, val) __this_cpu_generic_to_op((pcp), (val), ^=)
626 # endif
627 # define __this_cpu_xor(pcp, val) __pcpu_size_call(__this_cpu_xor_, (pcp), (val))
628 #endif
630 #define __this_cpu_generic_add_return(pcp, val) \
631 ({ \
632 __this_cpu_add(pcp, val); \
633 __this_cpu_read(pcp); \
636 #ifndef __this_cpu_add_return
637 # ifndef __this_cpu_add_return_1
638 # define __this_cpu_add_return_1(pcp, val) __this_cpu_generic_add_return(pcp, val)
639 # endif
640 # ifndef __this_cpu_add_return_2
641 # define __this_cpu_add_return_2(pcp, val) __this_cpu_generic_add_return(pcp, val)
642 # endif
643 # ifndef __this_cpu_add_return_4
644 # define __this_cpu_add_return_4(pcp, val) __this_cpu_generic_add_return(pcp, val)
645 # endif
646 # ifndef __this_cpu_add_return_8
647 # define __this_cpu_add_return_8(pcp, val) __this_cpu_generic_add_return(pcp, val)
648 # endif
649 # define __this_cpu_add_return(pcp, val) __pcpu_size_call_return2(this_cpu_add_return_, pcp, val)
650 #endif
652 #define __this_cpu_sub_return(pcp, val) this_cpu_add_return(pcp, -(val))
653 #define __this_cpu_inc_return(pcp) this_cpu_add_return(pcp, 1)
654 #define __this_cpu_dec_return(pcp) this_cpu_add_return(pcp, -1)
656 #define __this_cpu_generic_xchg(pcp, nval) \
657 ({ typeof(pcp) ret__; \
658 ret__ = __this_cpu_read(pcp); \
659 __this_cpu_write(pcp, nval); \
660 ret__; \
663 #ifndef __this_cpu_xchg
664 # ifndef __this_cpu_xchg_1
665 # define __this_cpu_xchg_1(pcp, nval) __this_cpu_generic_xchg(pcp, nval)
666 # endif
667 # ifndef __this_cpu_xchg_2
668 # define __this_cpu_xchg_2(pcp, nval) __this_cpu_generic_xchg(pcp, nval)
669 # endif
670 # ifndef __this_cpu_xchg_4
671 # define __this_cpu_xchg_4(pcp, nval) __this_cpu_generic_xchg(pcp, nval)
672 # endif
673 # ifndef __this_cpu_xchg_8
674 # define __this_cpu_xchg_8(pcp, nval) __this_cpu_generic_xchg(pcp, nval)
675 # endif
676 # define __this_cpu_xchg(pcp, nval) \
677 __pcpu_size_call_return2(__this_cpu_xchg_, (pcp), nval)
678 #endif
680 #define __this_cpu_generic_cmpxchg(pcp, oval, nval) \
681 ({ \
682 typeof(pcp) ret__; \
683 ret__ = __this_cpu_read(pcp); \
684 if (ret__ == (oval)) \
685 __this_cpu_write(pcp, nval); \
686 ret__; \
689 #ifndef __this_cpu_cmpxchg
690 # ifndef __this_cpu_cmpxchg_1
691 # define __this_cpu_cmpxchg_1(pcp, oval, nval) __this_cpu_generic_cmpxchg(pcp, oval, nval)
692 # endif
693 # ifndef __this_cpu_cmpxchg_2
694 # define __this_cpu_cmpxchg_2(pcp, oval, nval) __this_cpu_generic_cmpxchg(pcp, oval, nval)
695 # endif
696 # ifndef __this_cpu_cmpxchg_4
697 # define __this_cpu_cmpxchg_4(pcp, oval, nval) __this_cpu_generic_cmpxchg(pcp, oval, nval)
698 # endif
699 # ifndef __this_cpu_cmpxchg_8
700 # define __this_cpu_cmpxchg_8(pcp, oval, nval) __this_cpu_generic_cmpxchg(pcp, oval, nval)
701 # endif
702 # define __this_cpu_cmpxchg(pcp, oval, nval) \
703 __pcpu_size_call_return2(__this_cpu_cmpxchg_, pcp, oval, nval)
704 #endif
707 * IRQ safe versions of the per cpu RMW operations. Note that these operations
708 * are *not* safe against modification of the same variable from another
709 * processors (which one gets when using regular atomic operations)
710 * They are guaranteed to be atomic vs. local interrupts and
711 * preemption only.
713 #define irqsafe_cpu_generic_to_op(pcp, val, op) \
714 do { \
715 unsigned long flags; \
716 local_irq_save(flags); \
717 *__this_cpu_ptr(&(pcp)) op val; \
718 local_irq_restore(flags); \
719 } while (0)
721 #ifndef irqsafe_cpu_add
722 # ifndef irqsafe_cpu_add_1
723 # define irqsafe_cpu_add_1(pcp, val) irqsafe_cpu_generic_to_op((pcp), (val), +=)
724 # endif
725 # ifndef irqsafe_cpu_add_2
726 # define irqsafe_cpu_add_2(pcp, val) irqsafe_cpu_generic_to_op((pcp), (val), +=)
727 # endif
728 # ifndef irqsafe_cpu_add_4
729 # define irqsafe_cpu_add_4(pcp, val) irqsafe_cpu_generic_to_op((pcp), (val), +=)
730 # endif
731 # ifndef irqsafe_cpu_add_8
732 # define irqsafe_cpu_add_8(pcp, val) irqsafe_cpu_generic_to_op((pcp), (val), +=)
733 # endif
734 # define irqsafe_cpu_add(pcp, val) __pcpu_size_call(irqsafe_cpu_add_, (pcp), (val))
735 #endif
737 #ifndef irqsafe_cpu_sub
738 # define irqsafe_cpu_sub(pcp, val) irqsafe_cpu_add((pcp), -(val))
739 #endif
741 #ifndef irqsafe_cpu_inc
742 # define irqsafe_cpu_inc(pcp) irqsafe_cpu_add((pcp), 1)
743 #endif
745 #ifndef irqsafe_cpu_dec
746 # define irqsafe_cpu_dec(pcp) irqsafe_cpu_sub((pcp), 1)
747 #endif
749 #ifndef irqsafe_cpu_and
750 # ifndef irqsafe_cpu_and_1
751 # define irqsafe_cpu_and_1(pcp, val) irqsafe_cpu_generic_to_op((pcp), (val), &=)
752 # endif
753 # ifndef irqsafe_cpu_and_2
754 # define irqsafe_cpu_and_2(pcp, val) irqsafe_cpu_generic_to_op((pcp), (val), &=)
755 # endif
756 # ifndef irqsafe_cpu_and_4
757 # define irqsafe_cpu_and_4(pcp, val) irqsafe_cpu_generic_to_op((pcp), (val), &=)
758 # endif
759 # ifndef irqsafe_cpu_and_8
760 # define irqsafe_cpu_and_8(pcp, val) irqsafe_cpu_generic_to_op((pcp), (val), &=)
761 # endif
762 # define irqsafe_cpu_and(pcp, val) __pcpu_size_call(irqsafe_cpu_and_, (val))
763 #endif
765 #ifndef irqsafe_cpu_or
766 # ifndef irqsafe_cpu_or_1
767 # define irqsafe_cpu_or_1(pcp, val) irqsafe_cpu_generic_to_op((pcp), (val), |=)
768 # endif
769 # ifndef irqsafe_cpu_or_2
770 # define irqsafe_cpu_or_2(pcp, val) irqsafe_cpu_generic_to_op((pcp), (val), |=)
771 # endif
772 # ifndef irqsafe_cpu_or_4
773 # define irqsafe_cpu_or_4(pcp, val) irqsafe_cpu_generic_to_op((pcp), (val), |=)
774 # endif
775 # ifndef irqsafe_cpu_or_8
776 # define irqsafe_cpu_or_8(pcp, val) irqsafe_cpu_generic_to_op((pcp), (val), |=)
777 # endif
778 # define irqsafe_cpu_or(pcp, val) __pcpu_size_call(irqsafe_cpu_or_, (val))
779 #endif
781 #ifndef irqsafe_cpu_xor
782 # ifndef irqsafe_cpu_xor_1
783 # define irqsafe_cpu_xor_1(pcp, val) irqsafe_cpu_generic_to_op((pcp), (val), ^=)
784 # endif
785 # ifndef irqsafe_cpu_xor_2
786 # define irqsafe_cpu_xor_2(pcp, val) irqsafe_cpu_generic_to_op((pcp), (val), ^=)
787 # endif
788 # ifndef irqsafe_cpu_xor_4
789 # define irqsafe_cpu_xor_4(pcp, val) irqsafe_cpu_generic_to_op((pcp), (val), ^=)
790 # endif
791 # ifndef irqsafe_cpu_xor_8
792 # define irqsafe_cpu_xor_8(pcp, val) irqsafe_cpu_generic_to_op((pcp), (val), ^=)
793 # endif
794 # define irqsafe_cpu_xor(pcp, val) __pcpu_size_call(irqsafe_cpu_xor_, (val))
795 #endif
797 #define irqsafe_cpu_generic_cmpxchg(pcp, oval, nval) \
798 ({ \
799 typeof(pcp) ret__; \
800 unsigned long flags; \
801 local_irq_save(flags); \
802 ret__ = __this_cpu_read(pcp); \
803 if (ret__ == (oval)) \
804 __this_cpu_write(pcp, nval); \
805 local_irq_restore(flags); \
806 ret__; \
809 #ifndef irqsafe_cpu_cmpxchg
810 # ifndef irqsafe_cpu_cmpxchg_1
811 # define irqsafe_cpu_cmpxchg_1(pcp, oval, nval) irqsafe_cpu_generic_cmpxchg(pcp, oval, nval)
812 # endif
813 # ifndef irqsafe_cpu_cmpxchg_2
814 # define irqsafe_cpu_cmpxchg_2(pcp, oval, nval) irqsafe_cpu_generic_cmpxchg(pcp, oval, nval)
815 # endif
816 # ifndef irqsafe_cpu_cmpxchg_4
817 # define irqsafe_cpu_cmpxchg_4(pcp, oval, nval) irqsafe_cpu_generic_cmpxchg(pcp, oval, nval)
818 # endif
819 # ifndef irqsafe_cpu_cmpxchg_8
820 # define irqsafe_cpu_cmpxchg_8(pcp, oval, nval) irqsafe_cpu_generic_cmpxchg(pcp, oval, nval)
821 # endif
822 # define irqsafe_cpu_cmpxchg(pcp, oval, nval) \
823 __pcpu_size_call_return2(irqsafe_cpu_cmpxchg_, (pcp), oval, nval)
824 #endif
826 #endif /* __LINUX_PERCPU_H */