ACPI: handle battery notify event on broken BIOS
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / kernel / fork.c
blob9064bf9e131beed8295ec3656982fc4791a5c79c
1 /*
2 * linux/kernel/fork.c
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
7 /*
8 * 'fork.c' contains the help-routines for the 'fork' system call
9 * (see also entry.S and others).
10 * Fork is rather simple, once you get the hang of it, but the memory
11 * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
14 #include <linux/slab.h>
15 #include <linux/init.h>
16 #include <linux/unistd.h>
17 #include <linux/smp_lock.h>
18 #include <linux/module.h>
19 #include <linux/vmalloc.h>
20 #include <linux/completion.h>
21 #include <linux/namespace.h>
22 #include <linux/personality.h>
23 #include <linux/mempolicy.h>
24 #include <linux/sem.h>
25 #include <linux/file.h>
26 #include <linux/key.h>
27 #include <linux/binfmts.h>
28 #include <linux/mman.h>
29 #include <linux/fs.h>
30 #include <linux/capability.h>
31 #include <linux/cpu.h>
32 #include <linux/cpuset.h>
33 #include <linux/security.h>
34 #include <linux/swap.h>
35 #include <linux/syscalls.h>
36 #include <linux/jiffies.h>
37 #include <linux/futex.h>
38 #include <linux/rcupdate.h>
39 #include <linux/ptrace.h>
40 #include <linux/mount.h>
41 #include <linux/audit.h>
42 #include <linux/profile.h>
43 #include <linux/rmap.h>
44 #include <linux/acct.h>
45 #include <linux/cn_proc.h>
47 #include <asm/pgtable.h>
48 #include <asm/pgalloc.h>
49 #include <asm/uaccess.h>
50 #include <asm/mmu_context.h>
51 #include <asm/cacheflush.h>
52 #include <asm/tlbflush.h>
55 * Protected counters by write_lock_irq(&tasklist_lock)
57 unsigned long total_forks; /* Handle normal Linux uptimes. */
58 int nr_threads; /* The idle threads do not count.. */
60 int max_threads; /* tunable limit on nr_threads */
62 DEFINE_PER_CPU(unsigned long, process_counts) = 0;
64 __cacheline_aligned DEFINE_RWLOCK(tasklist_lock); /* outer */
66 EXPORT_SYMBOL(tasklist_lock);
68 int nr_processes(void)
70 int cpu;
71 int total = 0;
73 for_each_online_cpu(cpu)
74 total += per_cpu(process_counts, cpu);
76 return total;
79 #ifndef __HAVE_ARCH_TASK_STRUCT_ALLOCATOR
80 # define alloc_task_struct() kmem_cache_alloc(task_struct_cachep, GFP_KERNEL)
81 # define free_task_struct(tsk) kmem_cache_free(task_struct_cachep, (tsk))
82 static kmem_cache_t *task_struct_cachep;
83 #endif
85 /* SLAB cache for signal_struct structures (tsk->signal) */
86 static kmem_cache_t *signal_cachep;
88 /* SLAB cache for sighand_struct structures (tsk->sighand) */
89 kmem_cache_t *sighand_cachep;
91 /* SLAB cache for files_struct structures (tsk->files) */
92 kmem_cache_t *files_cachep;
94 /* SLAB cache for fs_struct structures (tsk->fs) */
95 kmem_cache_t *fs_cachep;
97 /* SLAB cache for vm_area_struct structures */
98 kmem_cache_t *vm_area_cachep;
100 /* SLAB cache for mm_struct structures (tsk->mm) */
101 static kmem_cache_t *mm_cachep;
103 void free_task(struct task_struct *tsk)
105 free_thread_info(tsk->thread_info);
106 rt_mutex_debug_task_free(tsk);
107 free_task_struct(tsk);
109 EXPORT_SYMBOL(free_task);
111 void __put_task_struct(struct task_struct *tsk)
113 WARN_ON(!(tsk->exit_state & (EXIT_DEAD | EXIT_ZOMBIE)));
114 WARN_ON(atomic_read(&tsk->usage));
115 WARN_ON(tsk == current);
117 security_task_free(tsk);
118 free_uid(tsk->user);
119 put_group_info(tsk->group_info);
121 if (!profile_handoff_task(tsk))
122 free_task(tsk);
125 void __init fork_init(unsigned long mempages)
127 #ifndef __HAVE_ARCH_TASK_STRUCT_ALLOCATOR
128 #ifndef ARCH_MIN_TASKALIGN
129 #define ARCH_MIN_TASKALIGN L1_CACHE_BYTES
130 #endif
131 /* create a slab on which task_structs can be allocated */
132 task_struct_cachep =
133 kmem_cache_create("task_struct", sizeof(struct task_struct),
134 ARCH_MIN_TASKALIGN, SLAB_PANIC, NULL, NULL);
135 #endif
138 * The default maximum number of threads is set to a safe
139 * value: the thread structures can take up at most half
140 * of memory.
142 max_threads = mempages / (8 * THREAD_SIZE / PAGE_SIZE);
145 * we need to allow at least 20 threads to boot a system
147 if(max_threads < 20)
148 max_threads = 20;
150 init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2;
151 init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2;
152 init_task.signal->rlim[RLIMIT_SIGPENDING] =
153 init_task.signal->rlim[RLIMIT_NPROC];
156 static struct task_struct *dup_task_struct(struct task_struct *orig)
158 struct task_struct *tsk;
159 struct thread_info *ti;
161 prepare_to_copy(orig);
163 tsk = alloc_task_struct();
164 if (!tsk)
165 return NULL;
167 ti = alloc_thread_info(tsk);
168 if (!ti) {
169 free_task_struct(tsk);
170 return NULL;
173 *tsk = *orig;
174 tsk->thread_info = ti;
175 setup_thread_stack(tsk, orig);
177 /* One for us, one for whoever does the "release_task()" (usually parent) */
178 atomic_set(&tsk->usage,2);
179 atomic_set(&tsk->fs_excl, 0);
180 tsk->btrace_seq = 0;
181 tsk->splice_pipe = NULL;
182 return tsk;
185 #ifdef CONFIG_MMU
186 static inline int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
188 struct vm_area_struct *mpnt, *tmp, **pprev;
189 struct rb_node **rb_link, *rb_parent;
190 int retval;
191 unsigned long charge;
192 struct mempolicy *pol;
194 down_write(&oldmm->mmap_sem);
195 flush_cache_mm(oldmm);
196 down_write(&mm->mmap_sem);
198 mm->locked_vm = 0;
199 mm->mmap = NULL;
200 mm->mmap_cache = NULL;
201 mm->free_area_cache = oldmm->mmap_base;
202 mm->cached_hole_size = ~0UL;
203 mm->map_count = 0;
204 cpus_clear(mm->cpu_vm_mask);
205 mm->mm_rb = RB_ROOT;
206 rb_link = &mm->mm_rb.rb_node;
207 rb_parent = NULL;
208 pprev = &mm->mmap;
210 for (mpnt = oldmm->mmap; mpnt; mpnt = mpnt->vm_next) {
211 struct file *file;
213 if (mpnt->vm_flags & VM_DONTCOPY) {
214 long pages = vma_pages(mpnt);
215 mm->total_vm -= pages;
216 vm_stat_account(mm, mpnt->vm_flags, mpnt->vm_file,
217 -pages);
218 continue;
220 charge = 0;
221 if (mpnt->vm_flags & VM_ACCOUNT) {
222 unsigned int len = (mpnt->vm_end - mpnt->vm_start) >> PAGE_SHIFT;
223 if (security_vm_enough_memory(len))
224 goto fail_nomem;
225 charge = len;
227 tmp = kmem_cache_alloc(vm_area_cachep, SLAB_KERNEL);
228 if (!tmp)
229 goto fail_nomem;
230 *tmp = *mpnt;
231 pol = mpol_copy(vma_policy(mpnt));
232 retval = PTR_ERR(pol);
233 if (IS_ERR(pol))
234 goto fail_nomem_policy;
235 vma_set_policy(tmp, pol);
236 tmp->vm_flags &= ~VM_LOCKED;
237 tmp->vm_mm = mm;
238 tmp->vm_next = NULL;
239 anon_vma_link(tmp);
240 file = tmp->vm_file;
241 if (file) {
242 struct inode *inode = file->f_dentry->d_inode;
243 get_file(file);
244 if (tmp->vm_flags & VM_DENYWRITE)
245 atomic_dec(&inode->i_writecount);
247 /* insert tmp into the share list, just after mpnt */
248 spin_lock(&file->f_mapping->i_mmap_lock);
249 tmp->vm_truncate_count = mpnt->vm_truncate_count;
250 flush_dcache_mmap_lock(file->f_mapping);
251 vma_prio_tree_add(tmp, mpnt);
252 flush_dcache_mmap_unlock(file->f_mapping);
253 spin_unlock(&file->f_mapping->i_mmap_lock);
257 * Link in the new vma and copy the page table entries.
259 *pprev = tmp;
260 pprev = &tmp->vm_next;
262 __vma_link_rb(mm, tmp, rb_link, rb_parent);
263 rb_link = &tmp->vm_rb.rb_right;
264 rb_parent = &tmp->vm_rb;
266 mm->map_count++;
267 retval = copy_page_range(mm, oldmm, mpnt);
269 if (tmp->vm_ops && tmp->vm_ops->open)
270 tmp->vm_ops->open(tmp);
272 if (retval)
273 goto out;
275 retval = 0;
276 out:
277 up_write(&mm->mmap_sem);
278 flush_tlb_mm(oldmm);
279 up_write(&oldmm->mmap_sem);
280 return retval;
281 fail_nomem_policy:
282 kmem_cache_free(vm_area_cachep, tmp);
283 fail_nomem:
284 retval = -ENOMEM;
285 vm_unacct_memory(charge);
286 goto out;
289 static inline int mm_alloc_pgd(struct mm_struct * mm)
291 mm->pgd = pgd_alloc(mm);
292 if (unlikely(!mm->pgd))
293 return -ENOMEM;
294 return 0;
297 static inline void mm_free_pgd(struct mm_struct * mm)
299 pgd_free(mm->pgd);
301 #else
302 #define dup_mmap(mm, oldmm) (0)
303 #define mm_alloc_pgd(mm) (0)
304 #define mm_free_pgd(mm)
305 #endif /* CONFIG_MMU */
307 __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock);
309 #define allocate_mm() (kmem_cache_alloc(mm_cachep, SLAB_KERNEL))
310 #define free_mm(mm) (kmem_cache_free(mm_cachep, (mm)))
312 #include <linux/init_task.h>
314 static struct mm_struct * mm_init(struct mm_struct * mm)
316 atomic_set(&mm->mm_users, 1);
317 atomic_set(&mm->mm_count, 1);
318 init_rwsem(&mm->mmap_sem);
319 INIT_LIST_HEAD(&mm->mmlist);
320 mm->core_waiters = 0;
321 mm->nr_ptes = 0;
322 set_mm_counter(mm, file_rss, 0);
323 set_mm_counter(mm, anon_rss, 0);
324 spin_lock_init(&mm->page_table_lock);
325 rwlock_init(&mm->ioctx_list_lock);
326 mm->ioctx_list = NULL;
327 mm->free_area_cache = TASK_UNMAPPED_BASE;
328 mm->cached_hole_size = ~0UL;
330 if (likely(!mm_alloc_pgd(mm))) {
331 mm->def_flags = 0;
332 return mm;
334 free_mm(mm);
335 return NULL;
339 * Allocate and initialize an mm_struct.
341 struct mm_struct * mm_alloc(void)
343 struct mm_struct * mm;
345 mm = allocate_mm();
346 if (mm) {
347 memset(mm, 0, sizeof(*mm));
348 mm = mm_init(mm);
350 return mm;
354 * Called when the last reference to the mm
355 * is dropped: either by a lazy thread or by
356 * mmput. Free the page directory and the mm.
358 void fastcall __mmdrop(struct mm_struct *mm)
360 BUG_ON(mm == &init_mm);
361 mm_free_pgd(mm);
362 destroy_context(mm);
363 free_mm(mm);
367 * Decrement the use count and release all resources for an mm.
369 void mmput(struct mm_struct *mm)
371 might_sleep();
373 if (atomic_dec_and_test(&mm->mm_users)) {
374 exit_aio(mm);
375 exit_mmap(mm);
376 if (!list_empty(&mm->mmlist)) {
377 spin_lock(&mmlist_lock);
378 list_del(&mm->mmlist);
379 spin_unlock(&mmlist_lock);
381 put_swap_token(mm);
382 mmdrop(mm);
385 EXPORT_SYMBOL_GPL(mmput);
388 * get_task_mm - acquire a reference to the task's mm
390 * Returns %NULL if the task has no mm. Checks PF_BORROWED_MM (meaning
391 * this kernel workthread has transiently adopted a user mm with use_mm,
392 * to do its AIO) is not set and if so returns a reference to it, after
393 * bumping up the use count. User must release the mm via mmput()
394 * after use. Typically used by /proc and ptrace.
396 struct mm_struct *get_task_mm(struct task_struct *task)
398 struct mm_struct *mm;
400 task_lock(task);
401 mm = task->mm;
402 if (mm) {
403 if (task->flags & PF_BORROWED_MM)
404 mm = NULL;
405 else
406 atomic_inc(&mm->mm_users);
408 task_unlock(task);
409 return mm;
411 EXPORT_SYMBOL_GPL(get_task_mm);
413 /* Please note the differences between mmput and mm_release.
414 * mmput is called whenever we stop holding onto a mm_struct,
415 * error success whatever.
417 * mm_release is called after a mm_struct has been removed
418 * from the current process.
420 * This difference is important for error handling, when we
421 * only half set up a mm_struct for a new process and need to restore
422 * the old one. Because we mmput the new mm_struct before
423 * restoring the old one. . .
424 * Eric Biederman 10 January 1998
426 void mm_release(struct task_struct *tsk, struct mm_struct *mm)
428 struct completion *vfork_done = tsk->vfork_done;
430 /* Get rid of any cached register state */
431 deactivate_mm(tsk, mm);
433 /* notify parent sleeping on vfork() */
434 if (vfork_done) {
435 tsk->vfork_done = NULL;
436 complete(vfork_done);
438 if (tsk->clear_child_tid && atomic_read(&mm->mm_users) > 1) {
439 u32 __user * tidptr = tsk->clear_child_tid;
440 tsk->clear_child_tid = NULL;
443 * We don't check the error code - if userspace has
444 * not set up a proper pointer then tough luck.
446 put_user(0, tidptr);
447 sys_futex(tidptr, FUTEX_WAKE, 1, NULL, NULL, 0);
452 * Allocate a new mm structure and copy contents from the
453 * mm structure of the passed in task structure.
455 static struct mm_struct *dup_mm(struct task_struct *tsk)
457 struct mm_struct *mm, *oldmm = current->mm;
458 int err;
460 if (!oldmm)
461 return NULL;
463 mm = allocate_mm();
464 if (!mm)
465 goto fail_nomem;
467 memcpy(mm, oldmm, sizeof(*mm));
469 if (!mm_init(mm))
470 goto fail_nomem;
472 if (init_new_context(tsk, mm))
473 goto fail_nocontext;
475 err = dup_mmap(mm, oldmm);
476 if (err)
477 goto free_pt;
479 mm->hiwater_rss = get_mm_rss(mm);
480 mm->hiwater_vm = mm->total_vm;
482 return mm;
484 free_pt:
485 mmput(mm);
487 fail_nomem:
488 return NULL;
490 fail_nocontext:
492 * If init_new_context() failed, we cannot use mmput() to free the mm
493 * because it calls destroy_context()
495 mm_free_pgd(mm);
496 free_mm(mm);
497 return NULL;
500 static int copy_mm(unsigned long clone_flags, struct task_struct * tsk)
502 struct mm_struct * mm, *oldmm;
503 int retval;
505 tsk->min_flt = tsk->maj_flt = 0;
506 tsk->nvcsw = tsk->nivcsw = 0;
508 tsk->mm = NULL;
509 tsk->active_mm = NULL;
512 * Are we cloning a kernel thread?
514 * We need to steal a active VM for that..
516 oldmm = current->mm;
517 if (!oldmm)
518 return 0;
520 if (clone_flags & CLONE_VM) {
521 atomic_inc(&oldmm->mm_users);
522 mm = oldmm;
523 goto good_mm;
526 retval = -ENOMEM;
527 mm = dup_mm(tsk);
528 if (!mm)
529 goto fail_nomem;
531 good_mm:
532 tsk->mm = mm;
533 tsk->active_mm = mm;
534 return 0;
536 fail_nomem:
537 return retval;
540 static inline struct fs_struct *__copy_fs_struct(struct fs_struct *old)
542 struct fs_struct *fs = kmem_cache_alloc(fs_cachep, GFP_KERNEL);
543 /* We don't need to lock fs - think why ;-) */
544 if (fs) {
545 atomic_set(&fs->count, 1);
546 rwlock_init(&fs->lock);
547 fs->umask = old->umask;
548 read_lock(&old->lock);
549 fs->rootmnt = mntget(old->rootmnt);
550 fs->root = dget(old->root);
551 fs->pwdmnt = mntget(old->pwdmnt);
552 fs->pwd = dget(old->pwd);
553 if (old->altroot) {
554 fs->altrootmnt = mntget(old->altrootmnt);
555 fs->altroot = dget(old->altroot);
556 } else {
557 fs->altrootmnt = NULL;
558 fs->altroot = NULL;
560 read_unlock(&old->lock);
562 return fs;
565 struct fs_struct *copy_fs_struct(struct fs_struct *old)
567 return __copy_fs_struct(old);
570 EXPORT_SYMBOL_GPL(copy_fs_struct);
572 static inline int copy_fs(unsigned long clone_flags, struct task_struct * tsk)
574 if (clone_flags & CLONE_FS) {
575 atomic_inc(&current->fs->count);
576 return 0;
578 tsk->fs = __copy_fs_struct(current->fs);
579 if (!tsk->fs)
580 return -ENOMEM;
581 return 0;
584 static int count_open_files(struct fdtable *fdt)
586 int size = fdt->max_fdset;
587 int i;
589 /* Find the last open fd */
590 for (i = size/(8*sizeof(long)); i > 0; ) {
591 if (fdt->open_fds->fds_bits[--i])
592 break;
594 i = (i+1) * 8 * sizeof(long);
595 return i;
598 static struct files_struct *alloc_files(void)
600 struct files_struct *newf;
601 struct fdtable *fdt;
603 newf = kmem_cache_alloc(files_cachep, SLAB_KERNEL);
604 if (!newf)
605 goto out;
607 atomic_set(&newf->count, 1);
609 spin_lock_init(&newf->file_lock);
610 newf->next_fd = 0;
611 fdt = &newf->fdtab;
612 fdt->max_fds = NR_OPEN_DEFAULT;
613 fdt->max_fdset = EMBEDDED_FD_SET_SIZE;
614 fdt->close_on_exec = (fd_set *)&newf->close_on_exec_init;
615 fdt->open_fds = (fd_set *)&newf->open_fds_init;
616 fdt->fd = &newf->fd_array[0];
617 INIT_RCU_HEAD(&fdt->rcu);
618 fdt->free_files = NULL;
619 fdt->next = NULL;
620 rcu_assign_pointer(newf->fdt, fdt);
621 out:
622 return newf;
626 * Allocate a new files structure and copy contents from the
627 * passed in files structure.
628 * errorp will be valid only when the returned files_struct is NULL.
630 static struct files_struct *dup_fd(struct files_struct *oldf, int *errorp)
632 struct files_struct *newf;
633 struct file **old_fds, **new_fds;
634 int open_files, size, i, expand;
635 struct fdtable *old_fdt, *new_fdt;
637 *errorp = -ENOMEM;
638 newf = alloc_files();
639 if (!newf)
640 goto out;
642 spin_lock(&oldf->file_lock);
643 old_fdt = files_fdtable(oldf);
644 new_fdt = files_fdtable(newf);
645 size = old_fdt->max_fdset;
646 open_files = count_open_files(old_fdt);
647 expand = 0;
650 * Check whether we need to allocate a larger fd array or fd set.
651 * Note: we're not a clone task, so the open count won't change.
653 if (open_files > new_fdt->max_fdset) {
654 new_fdt->max_fdset = 0;
655 expand = 1;
657 if (open_files > new_fdt->max_fds) {
658 new_fdt->max_fds = 0;
659 expand = 1;
662 /* if the old fdset gets grown now, we'll only copy up to "size" fds */
663 if (expand) {
664 spin_unlock(&oldf->file_lock);
665 spin_lock(&newf->file_lock);
666 *errorp = expand_files(newf, open_files-1);
667 spin_unlock(&newf->file_lock);
668 if (*errorp < 0)
669 goto out_release;
670 new_fdt = files_fdtable(newf);
672 * Reacquire the oldf lock and a pointer to its fd table
673 * who knows it may have a new bigger fd table. We need
674 * the latest pointer.
676 spin_lock(&oldf->file_lock);
677 old_fdt = files_fdtable(oldf);
680 old_fds = old_fdt->fd;
681 new_fds = new_fdt->fd;
683 memcpy(new_fdt->open_fds->fds_bits, old_fdt->open_fds->fds_bits, open_files/8);
684 memcpy(new_fdt->close_on_exec->fds_bits, old_fdt->close_on_exec->fds_bits, open_files/8);
686 for (i = open_files; i != 0; i--) {
687 struct file *f = *old_fds++;
688 if (f) {
689 get_file(f);
690 } else {
692 * The fd may be claimed in the fd bitmap but not yet
693 * instantiated in the files array if a sibling thread
694 * is partway through open(). So make sure that this
695 * fd is available to the new process.
697 FD_CLR(open_files - i, new_fdt->open_fds);
699 rcu_assign_pointer(*new_fds++, f);
701 spin_unlock(&oldf->file_lock);
703 /* compute the remainder to be cleared */
704 size = (new_fdt->max_fds - open_files) * sizeof(struct file *);
706 /* This is long word aligned thus could use a optimized version */
707 memset(new_fds, 0, size);
709 if (new_fdt->max_fdset > open_files) {
710 int left = (new_fdt->max_fdset-open_files)/8;
711 int start = open_files / (8 * sizeof(unsigned long));
713 memset(&new_fdt->open_fds->fds_bits[start], 0, left);
714 memset(&new_fdt->close_on_exec->fds_bits[start], 0, left);
717 out:
718 return newf;
720 out_release:
721 free_fdset (new_fdt->close_on_exec, new_fdt->max_fdset);
722 free_fdset (new_fdt->open_fds, new_fdt->max_fdset);
723 free_fd_array(new_fdt->fd, new_fdt->max_fds);
724 kmem_cache_free(files_cachep, newf);
725 return NULL;
728 static int copy_files(unsigned long clone_flags, struct task_struct * tsk)
730 struct files_struct *oldf, *newf;
731 int error = 0;
734 * A background process may not have any files ...
736 oldf = current->files;
737 if (!oldf)
738 goto out;
740 if (clone_flags & CLONE_FILES) {
741 atomic_inc(&oldf->count);
742 goto out;
746 * Note: we may be using current for both targets (See exec.c)
747 * This works because we cache current->files (old) as oldf. Don't
748 * break this.
750 tsk->files = NULL;
751 newf = dup_fd(oldf, &error);
752 if (!newf)
753 goto out;
755 tsk->files = newf;
756 error = 0;
757 out:
758 return error;
762 * Helper to unshare the files of the current task.
763 * We don't want to expose copy_files internals to
764 * the exec layer of the kernel.
767 int unshare_files(void)
769 struct files_struct *files = current->files;
770 int rc;
772 BUG_ON(!files);
774 /* This can race but the race causes us to copy when we don't
775 need to and drop the copy */
776 if(atomic_read(&files->count) == 1)
778 atomic_inc(&files->count);
779 return 0;
781 rc = copy_files(0, current);
782 if(rc)
783 current->files = files;
784 return rc;
787 EXPORT_SYMBOL(unshare_files);
789 static inline int copy_sighand(unsigned long clone_flags, struct task_struct * tsk)
791 struct sighand_struct *sig;
793 if (clone_flags & (CLONE_SIGHAND | CLONE_THREAD)) {
794 atomic_inc(&current->sighand->count);
795 return 0;
797 sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
798 rcu_assign_pointer(tsk->sighand, sig);
799 if (!sig)
800 return -ENOMEM;
801 atomic_set(&sig->count, 1);
802 memcpy(sig->action, current->sighand->action, sizeof(sig->action));
803 return 0;
806 void __cleanup_sighand(struct sighand_struct *sighand)
808 if (atomic_dec_and_test(&sighand->count))
809 kmem_cache_free(sighand_cachep, sighand);
812 static inline int copy_signal(unsigned long clone_flags, struct task_struct * tsk)
814 struct signal_struct *sig;
815 int ret;
817 if (clone_flags & CLONE_THREAD) {
818 atomic_inc(&current->signal->count);
819 atomic_inc(&current->signal->live);
820 return 0;
822 sig = kmem_cache_alloc(signal_cachep, GFP_KERNEL);
823 tsk->signal = sig;
824 if (!sig)
825 return -ENOMEM;
827 ret = copy_thread_group_keys(tsk);
828 if (ret < 0) {
829 kmem_cache_free(signal_cachep, sig);
830 return ret;
833 atomic_set(&sig->count, 1);
834 atomic_set(&sig->live, 1);
835 init_waitqueue_head(&sig->wait_chldexit);
836 sig->flags = 0;
837 sig->group_exit_code = 0;
838 sig->group_exit_task = NULL;
839 sig->group_stop_count = 0;
840 sig->curr_target = NULL;
841 init_sigpending(&sig->shared_pending);
842 INIT_LIST_HEAD(&sig->posix_timers);
844 hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_REL);
845 sig->it_real_incr.tv64 = 0;
846 sig->real_timer.function = it_real_fn;
847 sig->tsk = tsk;
849 sig->it_virt_expires = cputime_zero;
850 sig->it_virt_incr = cputime_zero;
851 sig->it_prof_expires = cputime_zero;
852 sig->it_prof_incr = cputime_zero;
854 sig->leader = 0; /* session leadership doesn't inherit */
855 sig->tty_old_pgrp = 0;
857 sig->utime = sig->stime = sig->cutime = sig->cstime = cputime_zero;
858 sig->nvcsw = sig->nivcsw = sig->cnvcsw = sig->cnivcsw = 0;
859 sig->min_flt = sig->maj_flt = sig->cmin_flt = sig->cmaj_flt = 0;
860 sig->sched_time = 0;
861 INIT_LIST_HEAD(&sig->cpu_timers[0]);
862 INIT_LIST_HEAD(&sig->cpu_timers[1]);
863 INIT_LIST_HEAD(&sig->cpu_timers[2]);
865 task_lock(current->group_leader);
866 memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim);
867 task_unlock(current->group_leader);
869 if (sig->rlim[RLIMIT_CPU].rlim_cur != RLIM_INFINITY) {
871 * New sole thread in the process gets an expiry time
872 * of the whole CPU time limit.
874 tsk->it_prof_expires =
875 secs_to_cputime(sig->rlim[RLIMIT_CPU].rlim_cur);
877 acct_init_pacct(&sig->pacct);
879 return 0;
882 void __cleanup_signal(struct signal_struct *sig)
884 exit_thread_group_keys(sig);
885 kmem_cache_free(signal_cachep, sig);
888 static inline void cleanup_signal(struct task_struct *tsk)
890 struct signal_struct *sig = tsk->signal;
892 atomic_dec(&sig->live);
894 if (atomic_dec_and_test(&sig->count))
895 __cleanup_signal(sig);
898 static inline void copy_flags(unsigned long clone_flags, struct task_struct *p)
900 unsigned long new_flags = p->flags;
902 new_flags &= ~(PF_SUPERPRIV | PF_NOFREEZE);
903 new_flags |= PF_FORKNOEXEC;
904 if (!(clone_flags & CLONE_PTRACE))
905 p->ptrace = 0;
906 p->flags = new_flags;
909 asmlinkage long sys_set_tid_address(int __user *tidptr)
911 current->clear_child_tid = tidptr;
913 return current->pid;
916 static inline void rt_mutex_init_task(struct task_struct *p)
918 #ifdef CONFIG_RT_MUTEXES
919 spin_lock_init(&p->pi_lock);
920 plist_head_init(&p->pi_waiters, &p->pi_lock);
921 p->pi_blocked_on = NULL;
922 # ifdef CONFIG_DEBUG_RT_MUTEXES
923 spin_lock_init(&p->held_list_lock);
924 INIT_LIST_HEAD(&p->held_list_head);
925 # endif
926 #endif
930 * This creates a new process as a copy of the old one,
931 * but does not actually start it yet.
933 * It copies the registers, and all the appropriate
934 * parts of the process environment (as per the clone
935 * flags). The actual kick-off is left to the caller.
937 static task_t *copy_process(unsigned long clone_flags,
938 unsigned long stack_start,
939 struct pt_regs *regs,
940 unsigned long stack_size,
941 int __user *parent_tidptr,
942 int __user *child_tidptr,
943 int pid)
945 int retval;
946 struct task_struct *p = NULL;
948 if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
949 return ERR_PTR(-EINVAL);
952 * Thread groups must share signals as well, and detached threads
953 * can only be started up within the thread group.
955 if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))
956 return ERR_PTR(-EINVAL);
959 * Shared signal handlers imply shared VM. By way of the above,
960 * thread groups also imply shared VM. Blocking this case allows
961 * for various simplifications in other code.
963 if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))
964 return ERR_PTR(-EINVAL);
966 retval = security_task_create(clone_flags);
967 if (retval)
968 goto fork_out;
970 retval = -ENOMEM;
971 p = dup_task_struct(current);
972 if (!p)
973 goto fork_out;
975 retval = -EAGAIN;
976 if (atomic_read(&p->user->processes) >=
977 p->signal->rlim[RLIMIT_NPROC].rlim_cur) {
978 if (!capable(CAP_SYS_ADMIN) && !capable(CAP_SYS_RESOURCE) &&
979 p->user != &root_user)
980 goto bad_fork_free;
983 atomic_inc(&p->user->__count);
984 atomic_inc(&p->user->processes);
985 get_group_info(p->group_info);
988 * If multiple threads are within copy_process(), then this check
989 * triggers too late. This doesn't hurt, the check is only there
990 * to stop root fork bombs.
992 if (nr_threads >= max_threads)
993 goto bad_fork_cleanup_count;
995 if (!try_module_get(task_thread_info(p)->exec_domain->module))
996 goto bad_fork_cleanup_count;
998 if (p->binfmt && !try_module_get(p->binfmt->module))
999 goto bad_fork_cleanup_put_domain;
1001 p->did_exec = 0;
1002 copy_flags(clone_flags, p);
1003 p->pid = pid;
1004 retval = -EFAULT;
1005 if (clone_flags & CLONE_PARENT_SETTID)
1006 if (put_user(p->pid, parent_tidptr))
1007 goto bad_fork_cleanup;
1009 INIT_LIST_HEAD(&p->children);
1010 INIT_LIST_HEAD(&p->sibling);
1011 p->vfork_done = NULL;
1012 spin_lock_init(&p->alloc_lock);
1014 clear_tsk_thread_flag(p, TIF_SIGPENDING);
1015 init_sigpending(&p->pending);
1017 p->utime = cputime_zero;
1018 p->stime = cputime_zero;
1019 p->sched_time = 0;
1020 p->rchar = 0; /* I/O counter: bytes read */
1021 p->wchar = 0; /* I/O counter: bytes written */
1022 p->syscr = 0; /* I/O counter: read syscalls */
1023 p->syscw = 0; /* I/O counter: write syscalls */
1024 acct_clear_integrals(p);
1026 p->it_virt_expires = cputime_zero;
1027 p->it_prof_expires = cputime_zero;
1028 p->it_sched_expires = 0;
1029 INIT_LIST_HEAD(&p->cpu_timers[0]);
1030 INIT_LIST_HEAD(&p->cpu_timers[1]);
1031 INIT_LIST_HEAD(&p->cpu_timers[2]);
1033 p->lock_depth = -1; /* -1 = no lock */
1034 do_posix_clock_monotonic_gettime(&p->start_time);
1035 p->security = NULL;
1036 p->io_context = NULL;
1037 p->io_wait = NULL;
1038 p->audit_context = NULL;
1039 cpuset_fork(p);
1040 #ifdef CONFIG_NUMA
1041 p->mempolicy = mpol_copy(p->mempolicy);
1042 if (IS_ERR(p->mempolicy)) {
1043 retval = PTR_ERR(p->mempolicy);
1044 p->mempolicy = NULL;
1045 goto bad_fork_cleanup_cpuset;
1047 mpol_fix_fork_child_flag(p);
1048 #endif
1050 rt_mutex_init_task(p);
1052 #ifdef CONFIG_DEBUG_MUTEXES
1053 p->blocked_on = NULL; /* not blocked yet */
1054 #endif
1056 p->tgid = p->pid;
1057 if (clone_flags & CLONE_THREAD)
1058 p->tgid = current->tgid;
1060 if ((retval = security_task_alloc(p)))
1061 goto bad_fork_cleanup_policy;
1062 if ((retval = audit_alloc(p)))
1063 goto bad_fork_cleanup_security;
1064 /* copy all the process information */
1065 if ((retval = copy_semundo(clone_flags, p)))
1066 goto bad_fork_cleanup_audit;
1067 if ((retval = copy_files(clone_flags, p)))
1068 goto bad_fork_cleanup_semundo;
1069 if ((retval = copy_fs(clone_flags, p)))
1070 goto bad_fork_cleanup_files;
1071 if ((retval = copy_sighand(clone_flags, p)))
1072 goto bad_fork_cleanup_fs;
1073 if ((retval = copy_signal(clone_flags, p)))
1074 goto bad_fork_cleanup_sighand;
1075 if ((retval = copy_mm(clone_flags, p)))
1076 goto bad_fork_cleanup_signal;
1077 if ((retval = copy_keys(clone_flags, p)))
1078 goto bad_fork_cleanup_mm;
1079 if ((retval = copy_namespace(clone_flags, p)))
1080 goto bad_fork_cleanup_keys;
1081 retval = copy_thread(0, clone_flags, stack_start, stack_size, p, regs);
1082 if (retval)
1083 goto bad_fork_cleanup_namespace;
1085 p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? child_tidptr : NULL;
1087 * Clear TID on mm_release()?
1089 p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? child_tidptr: NULL;
1090 p->robust_list = NULL;
1091 #ifdef CONFIG_COMPAT
1092 p->compat_robust_list = NULL;
1093 #endif
1094 INIT_LIST_HEAD(&p->pi_state_list);
1095 p->pi_state_cache = NULL;
1098 * sigaltstack should be cleared when sharing the same VM
1100 if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM)
1101 p->sas_ss_sp = p->sas_ss_size = 0;
1104 * Syscall tracing should be turned off in the child regardless
1105 * of CLONE_PTRACE.
1107 clear_tsk_thread_flag(p, TIF_SYSCALL_TRACE);
1108 #ifdef TIF_SYSCALL_EMU
1109 clear_tsk_thread_flag(p, TIF_SYSCALL_EMU);
1110 #endif
1112 /* Our parent execution domain becomes current domain
1113 These must match for thread signalling to apply */
1115 p->parent_exec_id = p->self_exec_id;
1117 /* ok, now we should be set up.. */
1118 p->exit_signal = (clone_flags & CLONE_THREAD) ? -1 : (clone_flags & CSIGNAL);
1119 p->pdeath_signal = 0;
1120 p->exit_state = 0;
1123 * Ok, make it visible to the rest of the system.
1124 * We dont wake it up yet.
1126 p->group_leader = p;
1127 INIT_LIST_HEAD(&p->thread_group);
1128 INIT_LIST_HEAD(&p->ptrace_children);
1129 INIT_LIST_HEAD(&p->ptrace_list);
1131 /* Perform scheduler related setup. Assign this task to a CPU. */
1132 sched_fork(p, clone_flags);
1134 /* Need tasklist lock for parent etc handling! */
1135 write_lock_irq(&tasklist_lock);
1138 * The task hasn't been attached yet, so its cpus_allowed mask will
1139 * not be changed, nor will its assigned CPU.
1141 * The cpus_allowed mask of the parent may have changed after it was
1142 * copied first time - so re-copy it here, then check the child's CPU
1143 * to ensure it is on a valid CPU (and if not, just force it back to
1144 * parent's CPU). This avoids alot of nasty races.
1146 p->cpus_allowed = current->cpus_allowed;
1147 if (unlikely(!cpu_isset(task_cpu(p), p->cpus_allowed) ||
1148 !cpu_online(task_cpu(p))))
1149 set_task_cpu(p, smp_processor_id());
1151 /* CLONE_PARENT re-uses the old parent */
1152 if (clone_flags & (CLONE_PARENT|CLONE_THREAD))
1153 p->real_parent = current->real_parent;
1154 else
1155 p->real_parent = current;
1156 p->parent = p->real_parent;
1158 spin_lock(&current->sighand->siglock);
1161 * Process group and session signals need to be delivered to just the
1162 * parent before the fork or both the parent and the child after the
1163 * fork. Restart if a signal comes in before we add the new process to
1164 * it's process group.
1165 * A fatal signal pending means that current will exit, so the new
1166 * thread can't slip out of an OOM kill (or normal SIGKILL).
1168 recalc_sigpending();
1169 if (signal_pending(current)) {
1170 spin_unlock(&current->sighand->siglock);
1171 write_unlock_irq(&tasklist_lock);
1172 retval = -ERESTARTNOINTR;
1173 goto bad_fork_cleanup_namespace;
1176 if (clone_flags & CLONE_THREAD) {
1177 p->group_leader = current->group_leader;
1178 list_add_tail_rcu(&p->thread_group, &p->group_leader->thread_group);
1180 if (!cputime_eq(current->signal->it_virt_expires,
1181 cputime_zero) ||
1182 !cputime_eq(current->signal->it_prof_expires,
1183 cputime_zero) ||
1184 current->signal->rlim[RLIMIT_CPU].rlim_cur != RLIM_INFINITY ||
1185 !list_empty(&current->signal->cpu_timers[0]) ||
1186 !list_empty(&current->signal->cpu_timers[1]) ||
1187 !list_empty(&current->signal->cpu_timers[2])) {
1189 * Have child wake up on its first tick to check
1190 * for process CPU timers.
1192 p->it_prof_expires = jiffies_to_cputime(1);
1197 * inherit ioprio
1199 p->ioprio = current->ioprio;
1201 if (likely(p->pid)) {
1202 add_parent(p);
1203 if (unlikely(p->ptrace & PT_PTRACED))
1204 __ptrace_link(p, current->parent);
1206 if (thread_group_leader(p)) {
1207 p->signal->tty = current->signal->tty;
1208 p->signal->pgrp = process_group(current);
1209 p->signal->session = current->signal->session;
1210 attach_pid(p, PIDTYPE_PGID, process_group(p));
1211 attach_pid(p, PIDTYPE_SID, p->signal->session);
1213 list_add_tail_rcu(&p->tasks, &init_task.tasks);
1214 __get_cpu_var(process_counts)++;
1216 attach_pid(p, PIDTYPE_PID, p->pid);
1217 nr_threads++;
1220 total_forks++;
1221 spin_unlock(&current->sighand->siglock);
1222 write_unlock_irq(&tasklist_lock);
1223 proc_fork_connector(p);
1224 return p;
1226 bad_fork_cleanup_namespace:
1227 exit_namespace(p);
1228 bad_fork_cleanup_keys:
1229 exit_keys(p);
1230 bad_fork_cleanup_mm:
1231 if (p->mm)
1232 mmput(p->mm);
1233 bad_fork_cleanup_signal:
1234 cleanup_signal(p);
1235 bad_fork_cleanup_sighand:
1236 __cleanup_sighand(p->sighand);
1237 bad_fork_cleanup_fs:
1238 exit_fs(p); /* blocking */
1239 bad_fork_cleanup_files:
1240 exit_files(p); /* blocking */
1241 bad_fork_cleanup_semundo:
1242 exit_sem(p);
1243 bad_fork_cleanup_audit:
1244 audit_free(p);
1245 bad_fork_cleanup_security:
1246 security_task_free(p);
1247 bad_fork_cleanup_policy:
1248 #ifdef CONFIG_NUMA
1249 mpol_free(p->mempolicy);
1250 bad_fork_cleanup_cpuset:
1251 #endif
1252 cpuset_exit(p);
1253 bad_fork_cleanup:
1254 if (p->binfmt)
1255 module_put(p->binfmt->module);
1256 bad_fork_cleanup_put_domain:
1257 module_put(task_thread_info(p)->exec_domain->module);
1258 bad_fork_cleanup_count:
1259 put_group_info(p->group_info);
1260 atomic_dec(&p->user->processes);
1261 free_uid(p->user);
1262 bad_fork_free:
1263 free_task(p);
1264 fork_out:
1265 return ERR_PTR(retval);
1268 struct pt_regs * __devinit __attribute__((weak)) idle_regs(struct pt_regs *regs)
1270 memset(regs, 0, sizeof(struct pt_regs));
1271 return regs;
1274 task_t * __devinit fork_idle(int cpu)
1276 task_t *task;
1277 struct pt_regs regs;
1279 task = copy_process(CLONE_VM, 0, idle_regs(&regs), 0, NULL, NULL, 0);
1280 if (!task)
1281 return ERR_PTR(-ENOMEM);
1282 init_idle(task, cpu);
1284 return task;
1287 static inline int fork_traceflag (unsigned clone_flags)
1289 if (clone_flags & CLONE_UNTRACED)
1290 return 0;
1291 else if (clone_flags & CLONE_VFORK) {
1292 if (current->ptrace & PT_TRACE_VFORK)
1293 return PTRACE_EVENT_VFORK;
1294 } else if ((clone_flags & CSIGNAL) != SIGCHLD) {
1295 if (current->ptrace & PT_TRACE_CLONE)
1296 return PTRACE_EVENT_CLONE;
1297 } else if (current->ptrace & PT_TRACE_FORK)
1298 return PTRACE_EVENT_FORK;
1300 return 0;
1304 * Ok, this is the main fork-routine.
1306 * It copies the process, and if successful kick-starts
1307 * it and waits for it to finish using the VM if required.
1309 long do_fork(unsigned long clone_flags,
1310 unsigned long stack_start,
1311 struct pt_regs *regs,
1312 unsigned long stack_size,
1313 int __user *parent_tidptr,
1314 int __user *child_tidptr)
1316 struct task_struct *p;
1317 int trace = 0;
1318 struct pid *pid = alloc_pid();
1319 long nr;
1321 if (!pid)
1322 return -EAGAIN;
1323 nr = pid->nr;
1324 if (unlikely(current->ptrace)) {
1325 trace = fork_traceflag (clone_flags);
1326 if (trace)
1327 clone_flags |= CLONE_PTRACE;
1330 p = copy_process(clone_flags, stack_start, regs, stack_size, parent_tidptr, child_tidptr, nr);
1332 * Do this prior waking up the new thread - the thread pointer
1333 * might get invalid after that point, if the thread exits quickly.
1335 if (!IS_ERR(p)) {
1336 struct completion vfork;
1338 if (clone_flags & CLONE_VFORK) {
1339 p->vfork_done = &vfork;
1340 init_completion(&vfork);
1343 if ((p->ptrace & PT_PTRACED) || (clone_flags & CLONE_STOPPED)) {
1345 * We'll start up with an immediate SIGSTOP.
1347 sigaddset(&p->pending.signal, SIGSTOP);
1348 set_tsk_thread_flag(p, TIF_SIGPENDING);
1351 if (!(clone_flags & CLONE_STOPPED))
1352 wake_up_new_task(p, clone_flags);
1353 else
1354 p->state = TASK_STOPPED;
1356 if (unlikely (trace)) {
1357 current->ptrace_message = nr;
1358 ptrace_notify ((trace << 8) | SIGTRAP);
1361 if (clone_flags & CLONE_VFORK) {
1362 wait_for_completion(&vfork);
1363 if (unlikely (current->ptrace & PT_TRACE_VFORK_DONE))
1364 ptrace_notify ((PTRACE_EVENT_VFORK_DONE << 8) | SIGTRAP);
1366 } else {
1367 free_pid(pid);
1368 nr = PTR_ERR(p);
1370 return nr;
1373 #ifndef ARCH_MIN_MMSTRUCT_ALIGN
1374 #define ARCH_MIN_MMSTRUCT_ALIGN 0
1375 #endif
1377 static void sighand_ctor(void *data, kmem_cache_t *cachep, unsigned long flags)
1379 struct sighand_struct *sighand = data;
1381 if ((flags & (SLAB_CTOR_VERIFY | SLAB_CTOR_CONSTRUCTOR)) ==
1382 SLAB_CTOR_CONSTRUCTOR)
1383 spin_lock_init(&sighand->siglock);
1386 void __init proc_caches_init(void)
1388 sighand_cachep = kmem_cache_create("sighand_cache",
1389 sizeof(struct sighand_struct), 0,
1390 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_DESTROY_BY_RCU,
1391 sighand_ctor, NULL);
1392 signal_cachep = kmem_cache_create("signal_cache",
1393 sizeof(struct signal_struct), 0,
1394 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL, NULL);
1395 files_cachep = kmem_cache_create("files_cache",
1396 sizeof(struct files_struct), 0,
1397 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL, NULL);
1398 fs_cachep = kmem_cache_create("fs_cache",
1399 sizeof(struct fs_struct), 0,
1400 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL, NULL);
1401 vm_area_cachep = kmem_cache_create("vm_area_struct",
1402 sizeof(struct vm_area_struct), 0,
1403 SLAB_PANIC, NULL, NULL);
1404 mm_cachep = kmem_cache_create("mm_struct",
1405 sizeof(struct mm_struct), ARCH_MIN_MMSTRUCT_ALIGN,
1406 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL, NULL);
1411 * Check constraints on flags passed to the unshare system call and
1412 * force unsharing of additional process context as appropriate.
1414 static inline void check_unshare_flags(unsigned long *flags_ptr)
1417 * If unsharing a thread from a thread group, must also
1418 * unshare vm.
1420 if (*flags_ptr & CLONE_THREAD)
1421 *flags_ptr |= CLONE_VM;
1424 * If unsharing vm, must also unshare signal handlers.
1426 if (*flags_ptr & CLONE_VM)
1427 *flags_ptr |= CLONE_SIGHAND;
1430 * If unsharing signal handlers and the task was created
1431 * using CLONE_THREAD, then must unshare the thread
1433 if ((*flags_ptr & CLONE_SIGHAND) &&
1434 (atomic_read(&current->signal->count) > 1))
1435 *flags_ptr |= CLONE_THREAD;
1438 * If unsharing namespace, must also unshare filesystem information.
1440 if (*flags_ptr & CLONE_NEWNS)
1441 *flags_ptr |= CLONE_FS;
1445 * Unsharing of tasks created with CLONE_THREAD is not supported yet
1447 static int unshare_thread(unsigned long unshare_flags)
1449 if (unshare_flags & CLONE_THREAD)
1450 return -EINVAL;
1452 return 0;
1456 * Unshare the filesystem structure if it is being shared
1458 static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp)
1460 struct fs_struct *fs = current->fs;
1462 if ((unshare_flags & CLONE_FS) &&
1463 (fs && atomic_read(&fs->count) > 1)) {
1464 *new_fsp = __copy_fs_struct(current->fs);
1465 if (!*new_fsp)
1466 return -ENOMEM;
1469 return 0;
1473 * Unshare the namespace structure if it is being shared
1475 static int unshare_namespace(unsigned long unshare_flags, struct namespace **new_nsp, struct fs_struct *new_fs)
1477 struct namespace *ns = current->namespace;
1479 if ((unshare_flags & CLONE_NEWNS) &&
1480 (ns && atomic_read(&ns->count) > 1)) {
1481 if (!capable(CAP_SYS_ADMIN))
1482 return -EPERM;
1484 *new_nsp = dup_namespace(current, new_fs ? new_fs : current->fs);
1485 if (!*new_nsp)
1486 return -ENOMEM;
1489 return 0;
1493 * Unsharing of sighand for tasks created with CLONE_SIGHAND is not
1494 * supported yet
1496 static int unshare_sighand(unsigned long unshare_flags, struct sighand_struct **new_sighp)
1498 struct sighand_struct *sigh = current->sighand;
1500 if ((unshare_flags & CLONE_SIGHAND) &&
1501 (sigh && atomic_read(&sigh->count) > 1))
1502 return -EINVAL;
1503 else
1504 return 0;
1508 * Unshare vm if it is being shared
1510 static int unshare_vm(unsigned long unshare_flags, struct mm_struct **new_mmp)
1512 struct mm_struct *mm = current->mm;
1514 if ((unshare_flags & CLONE_VM) &&
1515 (mm && atomic_read(&mm->mm_users) > 1)) {
1516 return -EINVAL;
1519 return 0;
1523 * Unshare file descriptor table if it is being shared
1525 static int unshare_fd(unsigned long unshare_flags, struct files_struct **new_fdp)
1527 struct files_struct *fd = current->files;
1528 int error = 0;
1530 if ((unshare_flags & CLONE_FILES) &&
1531 (fd && atomic_read(&fd->count) > 1)) {
1532 *new_fdp = dup_fd(fd, &error);
1533 if (!*new_fdp)
1534 return error;
1537 return 0;
1541 * Unsharing of semundo for tasks created with CLONE_SYSVSEM is not
1542 * supported yet
1544 static int unshare_semundo(unsigned long unshare_flags, struct sem_undo_list **new_ulistp)
1546 if (unshare_flags & CLONE_SYSVSEM)
1547 return -EINVAL;
1549 return 0;
1553 * unshare allows a process to 'unshare' part of the process
1554 * context which was originally shared using clone. copy_*
1555 * functions used by do_fork() cannot be used here directly
1556 * because they modify an inactive task_struct that is being
1557 * constructed. Here we are modifying the current, active,
1558 * task_struct.
1560 asmlinkage long sys_unshare(unsigned long unshare_flags)
1562 int err = 0;
1563 struct fs_struct *fs, *new_fs = NULL;
1564 struct namespace *ns, *new_ns = NULL;
1565 struct sighand_struct *sigh, *new_sigh = NULL;
1566 struct mm_struct *mm, *new_mm = NULL, *active_mm = NULL;
1567 struct files_struct *fd, *new_fd = NULL;
1568 struct sem_undo_list *new_ulist = NULL;
1570 check_unshare_flags(&unshare_flags);
1572 /* Return -EINVAL for all unsupported flags */
1573 err = -EINVAL;
1574 if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND|
1575 CLONE_VM|CLONE_FILES|CLONE_SYSVSEM))
1576 goto bad_unshare_out;
1578 if ((err = unshare_thread(unshare_flags)))
1579 goto bad_unshare_out;
1580 if ((err = unshare_fs(unshare_flags, &new_fs)))
1581 goto bad_unshare_cleanup_thread;
1582 if ((err = unshare_namespace(unshare_flags, &new_ns, new_fs)))
1583 goto bad_unshare_cleanup_fs;
1584 if ((err = unshare_sighand(unshare_flags, &new_sigh)))
1585 goto bad_unshare_cleanup_ns;
1586 if ((err = unshare_vm(unshare_flags, &new_mm)))
1587 goto bad_unshare_cleanup_sigh;
1588 if ((err = unshare_fd(unshare_flags, &new_fd)))
1589 goto bad_unshare_cleanup_vm;
1590 if ((err = unshare_semundo(unshare_flags, &new_ulist)))
1591 goto bad_unshare_cleanup_fd;
1593 if (new_fs || new_ns || new_sigh || new_mm || new_fd || new_ulist) {
1595 task_lock(current);
1597 if (new_fs) {
1598 fs = current->fs;
1599 current->fs = new_fs;
1600 new_fs = fs;
1603 if (new_ns) {
1604 ns = current->namespace;
1605 current->namespace = new_ns;
1606 new_ns = ns;
1609 if (new_sigh) {
1610 sigh = current->sighand;
1611 rcu_assign_pointer(current->sighand, new_sigh);
1612 new_sigh = sigh;
1615 if (new_mm) {
1616 mm = current->mm;
1617 active_mm = current->active_mm;
1618 current->mm = new_mm;
1619 current->active_mm = new_mm;
1620 activate_mm(active_mm, new_mm);
1621 new_mm = mm;
1624 if (new_fd) {
1625 fd = current->files;
1626 current->files = new_fd;
1627 new_fd = fd;
1630 task_unlock(current);
1633 bad_unshare_cleanup_fd:
1634 if (new_fd)
1635 put_files_struct(new_fd);
1637 bad_unshare_cleanup_vm:
1638 if (new_mm)
1639 mmput(new_mm);
1641 bad_unshare_cleanup_sigh:
1642 if (new_sigh)
1643 if (atomic_dec_and_test(&new_sigh->count))
1644 kmem_cache_free(sighand_cachep, new_sigh);
1646 bad_unshare_cleanup_ns:
1647 if (new_ns)
1648 put_namespace(new_ns);
1650 bad_unshare_cleanup_fs:
1651 if (new_fs)
1652 put_fs_struct(new_fs);
1654 bad_unshare_cleanup_thread:
1655 bad_unshare_out:
1656 return err;