KVM: x86 emulator: change address linearization to return an error code
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / drivers / net / cris / eth_v10.c
blob9d267d3a6892b5290814962c21d1242f45d1debb
1 /*
2 * e100net.c: A network driver for the ETRAX 100LX network controller.
4 * Copyright (c) 1998-2002 Axis Communications AB.
6 * The outline of this driver comes from skeleton.c.
8 */
11 #include <linux/module.h>
13 #include <linux/kernel.h>
14 #include <linux/delay.h>
15 #include <linux/types.h>
16 #include <linux/fcntl.h>
17 #include <linux/interrupt.h>
18 #include <linux/ptrace.h>
19 #include <linux/ioport.h>
20 #include <linux/in.h>
21 #include <linux/string.h>
22 #include <linux/spinlock.h>
23 #include <linux/errno.h>
24 #include <linux/init.h>
25 #include <linux/bitops.h>
27 #include <linux/if.h>
28 #include <linux/mii.h>
29 #include <linux/netdevice.h>
30 #include <linux/etherdevice.h>
31 #include <linux/skbuff.h>
32 #include <linux/ethtool.h>
34 #include <arch/svinto.h>/* DMA and register descriptions */
35 #include <asm/io.h> /* CRIS_LED_* I/O functions */
36 #include <asm/irq.h>
37 #include <asm/dma.h>
38 #include <asm/system.h>
39 #include <asm/ethernet.h>
40 #include <asm/cache.h>
41 #include <arch/io_interface_mux.h>
43 //#define ETHDEBUG
44 #define D(x)
47 * The name of the card. Is used for messages and in the requests for
48 * io regions, irqs and dma channels
51 static const char* cardname = "ETRAX 100LX built-in ethernet controller";
53 /* A default ethernet address. Highlevel SW will set the real one later */
55 static struct sockaddr default_mac = {
57 { 0x00, 0x40, 0x8C, 0xCD, 0x00, 0x00 }
60 /* Information that need to be kept for each board. */
61 struct net_local {
62 struct mii_if_info mii_if;
64 /* Tx control lock. This protects the transmit buffer ring
65 * state along with the "tx full" state of the driver. This
66 * means all netif_queue flow control actions are protected
67 * by this lock as well.
69 spinlock_t lock;
71 spinlock_t led_lock; /* Protect LED state */
72 spinlock_t transceiver_lock; /* Protect transceiver state. */
75 typedef struct etrax_eth_descr
77 etrax_dma_descr descr;
78 struct sk_buff* skb;
79 } etrax_eth_descr;
81 /* Some transceivers requires special handling */
82 struct transceiver_ops
84 unsigned int oui;
85 void (*check_speed)(struct net_device* dev);
86 void (*check_duplex)(struct net_device* dev);
89 /* Duplex settings */
90 enum duplex
92 half,
93 full,
94 autoneg
97 /* Dma descriptors etc. */
99 #define MAX_MEDIA_DATA_SIZE 1522
101 #define MIN_PACKET_LEN 46
102 #define ETHER_HEAD_LEN 14
105 ** MDIO constants.
107 #define MDIO_START 0x1
108 #define MDIO_READ 0x2
109 #define MDIO_WRITE 0x1
110 #define MDIO_PREAMBLE 0xfffffffful
112 /* Broadcom specific */
113 #define MDIO_AUX_CTRL_STATUS_REG 0x18
114 #define MDIO_BC_FULL_DUPLEX_IND 0x1
115 #define MDIO_BC_SPEED 0x2
117 /* TDK specific */
118 #define MDIO_TDK_DIAGNOSTIC_REG 18
119 #define MDIO_TDK_DIAGNOSTIC_RATE 0x400
120 #define MDIO_TDK_DIAGNOSTIC_DPLX 0x800
122 /*Intel LXT972A specific*/
123 #define MDIO_INT_STATUS_REG_2 0x0011
124 #define MDIO_INT_FULL_DUPLEX_IND (1 << 9)
125 #define MDIO_INT_SPEED (1 << 14)
127 /* Network flash constants */
128 #define NET_FLASH_TIME (HZ/50) /* 20 ms */
129 #define NET_FLASH_PAUSE (HZ/100) /* 10 ms */
130 #define NET_LINK_UP_CHECK_INTERVAL (2*HZ) /* 2 s */
131 #define NET_DUPLEX_CHECK_INTERVAL (2*HZ) /* 2 s */
133 #define NO_NETWORK_ACTIVITY 0
134 #define NETWORK_ACTIVITY 1
136 #define NBR_OF_RX_DESC 32
137 #define NBR_OF_TX_DESC 16
139 /* Large packets are sent directly to upper layers while small packets are */
140 /* copied (to reduce memory waste). The following constant decides the breakpoint */
141 #define RX_COPYBREAK 256
143 /* Due to a chip bug we need to flush the cache when descriptors are returned */
144 /* to the DMA. To decrease performance impact we return descriptors in chunks. */
145 /* The following constant determines the number of descriptors to return. */
146 #define RX_QUEUE_THRESHOLD NBR_OF_RX_DESC/2
148 #define GET_BIT(bit,val) (((val) >> (bit)) & 0x01)
150 /* Define some macros to access ETRAX 100 registers */
151 #define SETF(var, reg, field, val) var = (var & ~IO_MASK_(reg##_, field##_)) | \
152 IO_FIELD_(reg##_, field##_, val)
153 #define SETS(var, reg, field, val) var = (var & ~IO_MASK_(reg##_, field##_)) | \
154 IO_STATE_(reg##_, field##_, _##val)
156 static etrax_eth_descr *myNextRxDesc; /* Points to the next descriptor to
157 to be processed */
158 static etrax_eth_descr *myLastRxDesc; /* The last processed descriptor */
160 static etrax_eth_descr RxDescList[NBR_OF_RX_DESC] __attribute__ ((aligned(32)));
162 static etrax_eth_descr* myFirstTxDesc; /* First packet not yet sent */
163 static etrax_eth_descr* myLastTxDesc; /* End of send queue */
164 static etrax_eth_descr* myNextTxDesc; /* Next descriptor to use */
165 static etrax_eth_descr TxDescList[NBR_OF_TX_DESC] __attribute__ ((aligned(32)));
167 static unsigned int network_rec_config_shadow = 0;
169 static unsigned int network_tr_ctrl_shadow = 0;
171 /* Network speed indication. */
172 static DEFINE_TIMER(speed_timer, NULL, 0, 0);
173 static DEFINE_TIMER(clear_led_timer, NULL, 0, 0);
174 static int current_speed; /* Speed read from transceiver */
175 static int current_speed_selection; /* Speed selected by user */
176 static unsigned long led_next_time;
177 static int led_active;
178 static int rx_queue_len;
180 /* Duplex */
181 static DEFINE_TIMER(duplex_timer, NULL, 0, 0);
182 static int full_duplex;
183 static enum duplex current_duplex;
185 /* Index to functions, as function prototypes. */
187 static int etrax_ethernet_init(void);
189 static int e100_open(struct net_device *dev);
190 static int e100_set_mac_address(struct net_device *dev, void *addr);
191 static int e100_send_packet(struct sk_buff *skb, struct net_device *dev);
192 static irqreturn_t e100rxtx_interrupt(int irq, void *dev_id);
193 static irqreturn_t e100nw_interrupt(int irq, void *dev_id);
194 static void e100_rx(struct net_device *dev);
195 static int e100_close(struct net_device *dev);
196 static int e100_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd);
197 static int e100_set_config(struct net_device* dev, struct ifmap* map);
198 static void e100_tx_timeout(struct net_device *dev);
199 static struct net_device_stats *e100_get_stats(struct net_device *dev);
200 static void set_multicast_list(struct net_device *dev);
201 static void e100_hardware_send_packet(struct net_local* np, char *buf, int length);
202 static void update_rx_stats(struct net_device_stats *);
203 static void update_tx_stats(struct net_device_stats *);
204 static int e100_probe_transceiver(struct net_device* dev);
206 static void e100_check_speed(unsigned long priv);
207 static void e100_set_speed(struct net_device* dev, unsigned long speed);
208 static void e100_check_duplex(unsigned long priv);
209 static void e100_set_duplex(struct net_device* dev, enum duplex);
210 static void e100_negotiate(struct net_device* dev);
212 static int e100_get_mdio_reg(struct net_device *dev, int phy_id, int location);
213 static void e100_set_mdio_reg(struct net_device *dev, int phy_id, int location, int value);
215 static void e100_send_mdio_cmd(unsigned short cmd, int write_cmd);
216 static void e100_send_mdio_bit(unsigned char bit);
217 static unsigned char e100_receive_mdio_bit(void);
218 static void e100_reset_transceiver(struct net_device* net);
220 static void e100_clear_network_leds(unsigned long dummy);
221 static void e100_set_network_leds(int active);
223 static const struct ethtool_ops e100_ethtool_ops;
224 #if defined(CONFIG_ETRAX_NO_PHY)
225 static void dummy_check_speed(struct net_device* dev);
226 static void dummy_check_duplex(struct net_device* dev);
227 #else
228 static void broadcom_check_speed(struct net_device* dev);
229 static void broadcom_check_duplex(struct net_device* dev);
230 static void tdk_check_speed(struct net_device* dev);
231 static void tdk_check_duplex(struct net_device* dev);
232 static void intel_check_speed(struct net_device* dev);
233 static void intel_check_duplex(struct net_device* dev);
234 static void generic_check_speed(struct net_device* dev);
235 static void generic_check_duplex(struct net_device* dev);
236 #endif
237 #ifdef CONFIG_NET_POLL_CONTROLLER
238 static void e100_netpoll(struct net_device* dev);
239 #endif
241 static int autoneg_normal = 1;
243 struct transceiver_ops transceivers[] =
245 #if defined(CONFIG_ETRAX_NO_PHY)
246 {0x0000, dummy_check_speed, dummy_check_duplex} /* Dummy */
247 #else
248 {0x1018, broadcom_check_speed, broadcom_check_duplex}, /* Broadcom */
249 {0xC039, tdk_check_speed, tdk_check_duplex}, /* TDK 2120 */
250 {0x039C, tdk_check_speed, tdk_check_duplex}, /* TDK 2120C */
251 {0x04de, intel_check_speed, intel_check_duplex}, /* Intel LXT972A*/
252 {0x0000, generic_check_speed, generic_check_duplex} /* Generic, must be last */
253 #endif
256 struct transceiver_ops* transceiver = &transceivers[0];
258 static const struct net_device_ops e100_netdev_ops = {
259 .ndo_open = e100_open,
260 .ndo_stop = e100_close,
261 .ndo_start_xmit = e100_send_packet,
262 .ndo_tx_timeout = e100_tx_timeout,
263 .ndo_get_stats = e100_get_stats,
264 .ndo_set_multicast_list = set_multicast_list,
265 .ndo_do_ioctl = e100_ioctl,
266 .ndo_set_mac_address = e100_set_mac_address,
267 .ndo_validate_addr = eth_validate_addr,
268 .ndo_change_mtu = eth_change_mtu,
269 .ndo_set_config = e100_set_config,
270 #ifdef CONFIG_NET_POLL_CONTROLLER
271 .ndo_poll_controller = e100_netpoll,
272 #endif
275 #define tx_done(dev) (*R_DMA_CH0_CMD == 0)
278 * Check for a network adaptor of this type, and return '0' if one exists.
279 * If dev->base_addr == 0, probe all likely locations.
280 * If dev->base_addr == 1, always return failure.
281 * If dev->base_addr == 2, allocate space for the device and return success
282 * (detachable devices only).
285 static int __init
286 etrax_ethernet_init(void)
288 struct net_device *dev;
289 struct net_local* np;
290 int i, err;
292 printk(KERN_INFO
293 "ETRAX 100LX 10/100MBit ethernet v2.0 (c) 1998-2007 Axis Communications AB\n");
295 if (cris_request_io_interface(if_eth, cardname)) {
296 printk(KERN_CRIT "etrax_ethernet_init failed to get IO interface\n");
297 return -EBUSY;
300 dev = alloc_etherdev(sizeof(struct net_local));
301 if (!dev)
302 return -ENOMEM;
304 np = netdev_priv(dev);
306 /* we do our own locking */
307 dev->features |= NETIF_F_LLTX;
309 dev->base_addr = (unsigned int)R_NETWORK_SA_0; /* just to have something to show */
311 /* now setup our etrax specific stuff */
313 dev->irq = NETWORK_DMA_RX_IRQ_NBR; /* we really use DMATX as well... */
314 dev->dma = NETWORK_RX_DMA_NBR;
316 /* fill in our handlers so the network layer can talk to us in the future */
318 dev->ethtool_ops = &e100_ethtool_ops;
319 dev->netdev_ops = &e100_netdev_ops;
321 spin_lock_init(&np->lock);
322 spin_lock_init(&np->led_lock);
323 spin_lock_init(&np->transceiver_lock);
325 /* Initialise the list of Etrax DMA-descriptors */
327 /* Initialise receive descriptors */
329 for (i = 0; i < NBR_OF_RX_DESC; i++) {
330 /* Allocate two extra cachelines to make sure that buffer used
331 * by DMA does not share cacheline with any other data (to
332 * avoid cache bug)
334 RxDescList[i].skb = dev_alloc_skb(MAX_MEDIA_DATA_SIZE + 2 * L1_CACHE_BYTES);
335 if (!RxDescList[i].skb)
336 return -ENOMEM;
337 RxDescList[i].descr.ctrl = 0;
338 RxDescList[i].descr.sw_len = MAX_MEDIA_DATA_SIZE;
339 RxDescList[i].descr.next = virt_to_phys(&RxDescList[i + 1]);
340 RxDescList[i].descr.buf = L1_CACHE_ALIGN(virt_to_phys(RxDescList[i].skb->data));
341 RxDescList[i].descr.status = 0;
342 RxDescList[i].descr.hw_len = 0;
343 prepare_rx_descriptor(&RxDescList[i].descr);
346 RxDescList[NBR_OF_RX_DESC - 1].descr.ctrl = d_eol;
347 RxDescList[NBR_OF_RX_DESC - 1].descr.next = virt_to_phys(&RxDescList[0]);
348 rx_queue_len = 0;
350 /* Initialize transmit descriptors */
351 for (i = 0; i < NBR_OF_TX_DESC; i++) {
352 TxDescList[i].descr.ctrl = 0;
353 TxDescList[i].descr.sw_len = 0;
354 TxDescList[i].descr.next = virt_to_phys(&TxDescList[i + 1].descr);
355 TxDescList[i].descr.buf = 0;
356 TxDescList[i].descr.status = 0;
357 TxDescList[i].descr.hw_len = 0;
358 TxDescList[i].skb = 0;
361 TxDescList[NBR_OF_TX_DESC - 1].descr.ctrl = d_eol;
362 TxDescList[NBR_OF_TX_DESC - 1].descr.next = virt_to_phys(&TxDescList[0].descr);
364 /* Initialise initial pointers */
366 myNextRxDesc = &RxDescList[0];
367 myLastRxDesc = &RxDescList[NBR_OF_RX_DESC - 1];
368 myFirstTxDesc = &TxDescList[0];
369 myNextTxDesc = &TxDescList[0];
370 myLastTxDesc = &TxDescList[NBR_OF_TX_DESC - 1];
372 /* Register device */
373 err = register_netdev(dev);
374 if (err) {
375 free_netdev(dev);
376 return err;
379 /* set the default MAC address */
381 e100_set_mac_address(dev, &default_mac);
383 /* Initialize speed indicator stuff. */
385 current_speed = 10;
386 current_speed_selection = 0; /* Auto */
387 speed_timer.expires = jiffies + NET_LINK_UP_CHECK_INTERVAL;
388 speed_timer.data = (unsigned long)dev;
389 speed_timer.function = e100_check_speed;
391 clear_led_timer.function = e100_clear_network_leds;
392 clear_led_timer.data = (unsigned long)dev;
394 full_duplex = 0;
395 current_duplex = autoneg;
396 duplex_timer.expires = jiffies + NET_DUPLEX_CHECK_INTERVAL;
397 duplex_timer.data = (unsigned long)dev;
398 duplex_timer.function = e100_check_duplex;
400 /* Initialize mii interface */
401 np->mii_if.phy_id_mask = 0x1f;
402 np->mii_if.reg_num_mask = 0x1f;
403 np->mii_if.dev = dev;
404 np->mii_if.mdio_read = e100_get_mdio_reg;
405 np->mii_if.mdio_write = e100_set_mdio_reg;
407 /* Initialize group address registers to make sure that no */
408 /* unwanted addresses are matched */
409 *R_NETWORK_GA_0 = 0x00000000;
410 *R_NETWORK_GA_1 = 0x00000000;
412 /* Initialize next time the led can flash */
413 led_next_time = jiffies;
414 return 0;
417 /* set MAC address of the interface. called from the core after a
418 * SIOCSIFADDR ioctl, and from the bootup above.
421 static int
422 e100_set_mac_address(struct net_device *dev, void *p)
424 struct net_local *np = netdev_priv(dev);
425 struct sockaddr *addr = p;
427 spin_lock(&np->lock); /* preemption protection */
429 /* remember it */
431 memcpy(dev->dev_addr, addr->sa_data, dev->addr_len);
433 /* Write it to the hardware.
434 * Note the way the address is wrapped:
435 * *R_NETWORK_SA_0 = a0_0 | (a0_1 << 8) | (a0_2 << 16) | (a0_3 << 24);
436 * *R_NETWORK_SA_1 = a0_4 | (a0_5 << 8);
439 *R_NETWORK_SA_0 = dev->dev_addr[0] | (dev->dev_addr[1] << 8) |
440 (dev->dev_addr[2] << 16) | (dev->dev_addr[3] << 24);
441 *R_NETWORK_SA_1 = dev->dev_addr[4] | (dev->dev_addr[5] << 8);
442 *R_NETWORK_SA_2 = 0;
444 /* show it in the log as well */
446 printk(KERN_INFO "%s: changed MAC to %pM\n", dev->name, dev->dev_addr);
448 spin_unlock(&np->lock);
450 return 0;
454 * Open/initialize the board. This is called (in the current kernel)
455 * sometime after booting when the 'ifconfig' program is run.
457 * This routine should set everything up anew at each open, even
458 * registers that "should" only need to be set once at boot, so that
459 * there is non-reboot way to recover if something goes wrong.
462 static int
463 e100_open(struct net_device *dev)
465 unsigned long flags;
467 /* enable the MDIO output pin */
469 *R_NETWORK_MGM_CTRL = IO_STATE(R_NETWORK_MGM_CTRL, mdoe, enable);
471 *R_IRQ_MASK0_CLR =
472 IO_STATE(R_IRQ_MASK0_CLR, overrun, clr) |
473 IO_STATE(R_IRQ_MASK0_CLR, underrun, clr) |
474 IO_STATE(R_IRQ_MASK0_CLR, excessive_col, clr);
476 /* clear dma0 and 1 eop and descr irq masks */
477 *R_IRQ_MASK2_CLR =
478 IO_STATE(R_IRQ_MASK2_CLR, dma0_descr, clr) |
479 IO_STATE(R_IRQ_MASK2_CLR, dma0_eop, clr) |
480 IO_STATE(R_IRQ_MASK2_CLR, dma1_descr, clr) |
481 IO_STATE(R_IRQ_MASK2_CLR, dma1_eop, clr);
483 /* Reset and wait for the DMA channels */
485 RESET_DMA(NETWORK_TX_DMA_NBR);
486 RESET_DMA(NETWORK_RX_DMA_NBR);
487 WAIT_DMA(NETWORK_TX_DMA_NBR);
488 WAIT_DMA(NETWORK_RX_DMA_NBR);
490 /* Initialise the etrax network controller */
492 /* allocate the irq corresponding to the receiving DMA */
494 if (request_irq(NETWORK_DMA_RX_IRQ_NBR, e100rxtx_interrupt,
495 IRQF_SAMPLE_RANDOM, cardname, (void *)dev)) {
496 goto grace_exit0;
499 /* allocate the irq corresponding to the transmitting DMA */
501 if (request_irq(NETWORK_DMA_TX_IRQ_NBR, e100rxtx_interrupt, 0,
502 cardname, (void *)dev)) {
503 goto grace_exit1;
506 /* allocate the irq corresponding to the network errors etc */
508 if (request_irq(NETWORK_STATUS_IRQ_NBR, e100nw_interrupt, 0,
509 cardname, (void *)dev)) {
510 goto grace_exit2;
514 * Always allocate the DMA channels after the IRQ,
515 * and clean up on failure.
518 if (cris_request_dma(NETWORK_TX_DMA_NBR,
519 cardname,
520 DMA_VERBOSE_ON_ERROR,
521 dma_eth)) {
522 goto grace_exit3;
525 if (cris_request_dma(NETWORK_RX_DMA_NBR,
526 cardname,
527 DMA_VERBOSE_ON_ERROR,
528 dma_eth)) {
529 goto grace_exit4;
532 /* give the HW an idea of what MAC address we want */
534 *R_NETWORK_SA_0 = dev->dev_addr[0] | (dev->dev_addr[1] << 8) |
535 (dev->dev_addr[2] << 16) | (dev->dev_addr[3] << 24);
536 *R_NETWORK_SA_1 = dev->dev_addr[4] | (dev->dev_addr[5] << 8);
537 *R_NETWORK_SA_2 = 0;
539 #if 0
540 /* use promiscuous mode for testing */
541 *R_NETWORK_GA_0 = 0xffffffff;
542 *R_NETWORK_GA_1 = 0xffffffff;
544 *R_NETWORK_REC_CONFIG = 0xd; /* broadcast rec, individ. rec, ma0 enabled */
545 #else
546 SETS(network_rec_config_shadow, R_NETWORK_REC_CONFIG, max_size, size1522);
547 SETS(network_rec_config_shadow, R_NETWORK_REC_CONFIG, broadcast, receive);
548 SETS(network_rec_config_shadow, R_NETWORK_REC_CONFIG, ma0, enable);
549 SETF(network_rec_config_shadow, R_NETWORK_REC_CONFIG, duplex, full_duplex);
550 *R_NETWORK_REC_CONFIG = network_rec_config_shadow;
551 #endif
553 *R_NETWORK_GEN_CONFIG =
554 IO_STATE(R_NETWORK_GEN_CONFIG, phy, mii_clk) |
555 IO_STATE(R_NETWORK_GEN_CONFIG, enable, on);
557 SETS(network_tr_ctrl_shadow, R_NETWORK_TR_CTRL, clr_error, clr);
558 SETS(network_tr_ctrl_shadow, R_NETWORK_TR_CTRL, delay, none);
559 SETS(network_tr_ctrl_shadow, R_NETWORK_TR_CTRL, cancel, dont);
560 SETS(network_tr_ctrl_shadow, R_NETWORK_TR_CTRL, cd, enable);
561 SETS(network_tr_ctrl_shadow, R_NETWORK_TR_CTRL, retry, enable);
562 SETS(network_tr_ctrl_shadow, R_NETWORK_TR_CTRL, pad, enable);
563 SETS(network_tr_ctrl_shadow, R_NETWORK_TR_CTRL, crc, enable);
564 *R_NETWORK_TR_CTRL = network_tr_ctrl_shadow;
566 local_irq_save(flags);
568 /* enable the irq's for ethernet DMA */
570 *R_IRQ_MASK2_SET =
571 IO_STATE(R_IRQ_MASK2_SET, dma0_eop, set) |
572 IO_STATE(R_IRQ_MASK2_SET, dma1_eop, set);
574 *R_IRQ_MASK0_SET =
575 IO_STATE(R_IRQ_MASK0_SET, overrun, set) |
576 IO_STATE(R_IRQ_MASK0_SET, underrun, set) |
577 IO_STATE(R_IRQ_MASK0_SET, excessive_col, set);
579 /* make sure the irqs are cleared */
581 *R_DMA_CH0_CLR_INTR = IO_STATE(R_DMA_CH0_CLR_INTR, clr_eop, do);
582 *R_DMA_CH1_CLR_INTR = IO_STATE(R_DMA_CH1_CLR_INTR, clr_eop, do);
584 /* make sure the rec and transmit error counters are cleared */
586 (void)*R_REC_COUNTERS; /* dummy read */
587 (void)*R_TR_COUNTERS; /* dummy read */
589 /* start the receiving DMA channel so we can receive packets from now on */
591 *R_DMA_CH1_FIRST = virt_to_phys(myNextRxDesc);
592 *R_DMA_CH1_CMD = IO_STATE(R_DMA_CH1_CMD, cmd, start);
594 /* Set up transmit DMA channel so it can be restarted later */
596 *R_DMA_CH0_FIRST = 0;
597 *R_DMA_CH0_DESCR = virt_to_phys(myLastTxDesc);
598 netif_start_queue(dev);
600 local_irq_restore(flags);
602 /* Probe for transceiver */
603 if (e100_probe_transceiver(dev))
604 goto grace_exit5;
606 /* Start duplex/speed timers */
607 add_timer(&speed_timer);
608 add_timer(&duplex_timer);
610 /* We are now ready to accept transmit requeusts from
611 * the queueing layer of the networking.
613 netif_carrier_on(dev);
615 return 0;
617 grace_exit5:
618 cris_free_dma(NETWORK_RX_DMA_NBR, cardname);
619 grace_exit4:
620 cris_free_dma(NETWORK_TX_DMA_NBR, cardname);
621 grace_exit3:
622 free_irq(NETWORK_STATUS_IRQ_NBR, (void *)dev);
623 grace_exit2:
624 free_irq(NETWORK_DMA_TX_IRQ_NBR, (void *)dev);
625 grace_exit1:
626 free_irq(NETWORK_DMA_RX_IRQ_NBR, (void *)dev);
627 grace_exit0:
628 return -EAGAIN;
631 #if defined(CONFIG_ETRAX_NO_PHY)
632 static void
633 dummy_check_speed(struct net_device* dev)
635 current_speed = 100;
637 #else
638 static void
639 generic_check_speed(struct net_device* dev)
641 unsigned long data;
642 struct net_local *np = netdev_priv(dev);
644 data = e100_get_mdio_reg(dev, np->mii_if.phy_id, MII_ADVERTISE);
645 if ((data & ADVERTISE_100FULL) ||
646 (data & ADVERTISE_100HALF))
647 current_speed = 100;
648 else
649 current_speed = 10;
652 static void
653 tdk_check_speed(struct net_device* dev)
655 unsigned long data;
656 struct net_local *np = netdev_priv(dev);
658 data = e100_get_mdio_reg(dev, np->mii_if.phy_id,
659 MDIO_TDK_DIAGNOSTIC_REG);
660 current_speed = (data & MDIO_TDK_DIAGNOSTIC_RATE ? 100 : 10);
663 static void
664 broadcom_check_speed(struct net_device* dev)
666 unsigned long data;
667 struct net_local *np = netdev_priv(dev);
669 data = e100_get_mdio_reg(dev, np->mii_if.phy_id,
670 MDIO_AUX_CTRL_STATUS_REG);
671 current_speed = (data & MDIO_BC_SPEED ? 100 : 10);
674 static void
675 intel_check_speed(struct net_device* dev)
677 unsigned long data;
678 struct net_local *np = netdev_priv(dev);
680 data = e100_get_mdio_reg(dev, np->mii_if.phy_id,
681 MDIO_INT_STATUS_REG_2);
682 current_speed = (data & MDIO_INT_SPEED ? 100 : 10);
684 #endif
685 static void
686 e100_check_speed(unsigned long priv)
688 struct net_device* dev = (struct net_device*)priv;
689 struct net_local *np = netdev_priv(dev);
690 static int led_initiated = 0;
691 unsigned long data;
692 int old_speed = current_speed;
694 spin_lock(&np->transceiver_lock);
696 data = e100_get_mdio_reg(dev, np->mii_if.phy_id, MII_BMSR);
697 if (!(data & BMSR_LSTATUS)) {
698 current_speed = 0;
699 } else {
700 transceiver->check_speed(dev);
703 spin_lock(&np->led_lock);
704 if ((old_speed != current_speed) || !led_initiated) {
705 led_initiated = 1;
706 e100_set_network_leds(NO_NETWORK_ACTIVITY);
707 if (current_speed)
708 netif_carrier_on(dev);
709 else
710 netif_carrier_off(dev);
712 spin_unlock(&np->led_lock);
714 /* Reinitialize the timer. */
715 speed_timer.expires = jiffies + NET_LINK_UP_CHECK_INTERVAL;
716 add_timer(&speed_timer);
718 spin_unlock(&np->transceiver_lock);
721 static void
722 e100_negotiate(struct net_device* dev)
724 struct net_local *np = netdev_priv(dev);
725 unsigned short data = e100_get_mdio_reg(dev, np->mii_if.phy_id,
726 MII_ADVERTISE);
728 /* Discard old speed and duplex settings */
729 data &= ~(ADVERTISE_100HALF | ADVERTISE_100FULL |
730 ADVERTISE_10HALF | ADVERTISE_10FULL);
732 switch (current_speed_selection) {
733 case 10:
734 if (current_duplex == full)
735 data |= ADVERTISE_10FULL;
736 else if (current_duplex == half)
737 data |= ADVERTISE_10HALF;
738 else
739 data |= ADVERTISE_10HALF | ADVERTISE_10FULL;
740 break;
742 case 100:
743 if (current_duplex == full)
744 data |= ADVERTISE_100FULL;
745 else if (current_duplex == half)
746 data |= ADVERTISE_100HALF;
747 else
748 data |= ADVERTISE_100HALF | ADVERTISE_100FULL;
749 break;
751 case 0: /* Auto */
752 if (current_duplex == full)
753 data |= ADVERTISE_100FULL | ADVERTISE_10FULL;
754 else if (current_duplex == half)
755 data |= ADVERTISE_100HALF | ADVERTISE_10HALF;
756 else
757 data |= ADVERTISE_10HALF | ADVERTISE_10FULL |
758 ADVERTISE_100HALF | ADVERTISE_100FULL;
759 break;
761 default: /* assume autoneg speed and duplex */
762 data |= ADVERTISE_10HALF | ADVERTISE_10FULL |
763 ADVERTISE_100HALF | ADVERTISE_100FULL;
764 break;
767 e100_set_mdio_reg(dev, np->mii_if.phy_id, MII_ADVERTISE, data);
769 data = e100_get_mdio_reg(dev, np->mii_if.phy_id, MII_BMCR);
770 if (autoneg_normal) {
771 /* Renegotiate with link partner */
772 data |= BMCR_ANENABLE | BMCR_ANRESTART;
773 } else {
774 /* Don't negotiate speed or duplex */
775 data &= ~(BMCR_ANENABLE | BMCR_ANRESTART);
777 /* Set speed and duplex static */
778 if (current_speed_selection == 10)
779 data &= ~BMCR_SPEED100;
780 else
781 data |= BMCR_SPEED100;
783 if (current_duplex != full)
784 data &= ~BMCR_FULLDPLX;
785 else
786 data |= BMCR_FULLDPLX;
788 e100_set_mdio_reg(dev, np->mii_if.phy_id, MII_BMCR, data);
791 static void
792 e100_set_speed(struct net_device* dev, unsigned long speed)
794 struct net_local *np = netdev_priv(dev);
796 spin_lock(&np->transceiver_lock);
797 if (speed != current_speed_selection) {
798 current_speed_selection = speed;
799 e100_negotiate(dev);
801 spin_unlock(&np->transceiver_lock);
804 static void
805 e100_check_duplex(unsigned long priv)
807 struct net_device *dev = (struct net_device *)priv;
808 struct net_local *np = netdev_priv(dev);
809 int old_duplex;
811 spin_lock(&np->transceiver_lock);
812 old_duplex = full_duplex;
813 transceiver->check_duplex(dev);
814 if (old_duplex != full_duplex) {
815 /* Duplex changed */
816 SETF(network_rec_config_shadow, R_NETWORK_REC_CONFIG, duplex, full_duplex);
817 *R_NETWORK_REC_CONFIG = network_rec_config_shadow;
820 /* Reinitialize the timer. */
821 duplex_timer.expires = jiffies + NET_DUPLEX_CHECK_INTERVAL;
822 add_timer(&duplex_timer);
823 np->mii_if.full_duplex = full_duplex;
824 spin_unlock(&np->transceiver_lock);
826 #if defined(CONFIG_ETRAX_NO_PHY)
827 static void
828 dummy_check_duplex(struct net_device* dev)
830 full_duplex = 1;
832 #else
833 static void
834 generic_check_duplex(struct net_device* dev)
836 unsigned long data;
837 struct net_local *np = netdev_priv(dev);
839 data = e100_get_mdio_reg(dev, np->mii_if.phy_id, MII_ADVERTISE);
840 if ((data & ADVERTISE_10FULL) ||
841 (data & ADVERTISE_100FULL))
842 full_duplex = 1;
843 else
844 full_duplex = 0;
847 static void
848 tdk_check_duplex(struct net_device* dev)
850 unsigned long data;
851 struct net_local *np = netdev_priv(dev);
853 data = e100_get_mdio_reg(dev, np->mii_if.phy_id,
854 MDIO_TDK_DIAGNOSTIC_REG);
855 full_duplex = (data & MDIO_TDK_DIAGNOSTIC_DPLX) ? 1 : 0;
858 static void
859 broadcom_check_duplex(struct net_device* dev)
861 unsigned long data;
862 struct net_local *np = netdev_priv(dev);
864 data = e100_get_mdio_reg(dev, np->mii_if.phy_id,
865 MDIO_AUX_CTRL_STATUS_REG);
866 full_duplex = (data & MDIO_BC_FULL_DUPLEX_IND) ? 1 : 0;
869 static void
870 intel_check_duplex(struct net_device* dev)
872 unsigned long data;
873 struct net_local *np = netdev_priv(dev);
875 data = e100_get_mdio_reg(dev, np->mii_if.phy_id,
876 MDIO_INT_STATUS_REG_2);
877 full_duplex = (data & MDIO_INT_FULL_DUPLEX_IND) ? 1 : 0;
879 #endif
880 static void
881 e100_set_duplex(struct net_device* dev, enum duplex new_duplex)
883 struct net_local *np = netdev_priv(dev);
885 spin_lock(&np->transceiver_lock);
886 if (new_duplex != current_duplex) {
887 current_duplex = new_duplex;
888 e100_negotiate(dev);
890 spin_unlock(&np->transceiver_lock);
893 static int
894 e100_probe_transceiver(struct net_device* dev)
896 int ret = 0;
898 #if !defined(CONFIG_ETRAX_NO_PHY)
899 unsigned int phyid_high;
900 unsigned int phyid_low;
901 unsigned int oui;
902 struct transceiver_ops* ops = NULL;
903 struct net_local *np = netdev_priv(dev);
905 spin_lock(&np->transceiver_lock);
907 /* Probe MDIO physical address */
908 for (np->mii_if.phy_id = 0; np->mii_if.phy_id <= 31;
909 np->mii_if.phy_id++) {
910 if (e100_get_mdio_reg(dev,
911 np->mii_if.phy_id, MII_BMSR) != 0xffff)
912 break;
914 if (np->mii_if.phy_id == 32) {
915 ret = -ENODEV;
916 goto out;
919 /* Get manufacturer */
920 phyid_high = e100_get_mdio_reg(dev, np->mii_if.phy_id, MII_PHYSID1);
921 phyid_low = e100_get_mdio_reg(dev, np->mii_if.phy_id, MII_PHYSID2);
922 oui = (phyid_high << 6) | (phyid_low >> 10);
924 for (ops = &transceivers[0]; ops->oui; ops++) {
925 if (ops->oui == oui)
926 break;
928 transceiver = ops;
929 out:
930 spin_unlock(&np->transceiver_lock);
931 #endif
932 return ret;
935 static int
936 e100_get_mdio_reg(struct net_device *dev, int phy_id, int location)
938 unsigned short cmd; /* Data to be sent on MDIO port */
939 int data; /* Data read from MDIO */
940 int bitCounter;
942 /* Start of frame, OP Code, Physical Address, Register Address */
943 cmd = (MDIO_START << 14) | (MDIO_READ << 12) | (phy_id << 7) |
944 (location << 2);
946 e100_send_mdio_cmd(cmd, 0);
948 data = 0;
950 /* Data... */
951 for (bitCounter=15; bitCounter>=0 ; bitCounter--) {
952 data |= (e100_receive_mdio_bit() << bitCounter);
955 return data;
958 static void
959 e100_set_mdio_reg(struct net_device *dev, int phy_id, int location, int value)
961 int bitCounter;
962 unsigned short cmd;
964 cmd = (MDIO_START << 14) | (MDIO_WRITE << 12) | (phy_id << 7) |
965 (location << 2);
967 e100_send_mdio_cmd(cmd, 1);
969 /* Data... */
970 for (bitCounter=15; bitCounter>=0 ; bitCounter--) {
971 e100_send_mdio_bit(GET_BIT(bitCounter, value));
976 static void
977 e100_send_mdio_cmd(unsigned short cmd, int write_cmd)
979 int bitCounter;
980 unsigned char data = 0x2;
982 /* Preamble */
983 for (bitCounter = 31; bitCounter>= 0; bitCounter--)
984 e100_send_mdio_bit(GET_BIT(bitCounter, MDIO_PREAMBLE));
986 for (bitCounter = 15; bitCounter >= 2; bitCounter--)
987 e100_send_mdio_bit(GET_BIT(bitCounter, cmd));
989 /* Turnaround */
990 for (bitCounter = 1; bitCounter >= 0 ; bitCounter--)
991 if (write_cmd)
992 e100_send_mdio_bit(GET_BIT(bitCounter, data));
993 else
994 e100_receive_mdio_bit();
997 static void
998 e100_send_mdio_bit(unsigned char bit)
1000 *R_NETWORK_MGM_CTRL =
1001 IO_STATE(R_NETWORK_MGM_CTRL, mdoe, enable) |
1002 IO_FIELD(R_NETWORK_MGM_CTRL, mdio, bit);
1003 udelay(1);
1004 *R_NETWORK_MGM_CTRL =
1005 IO_STATE(R_NETWORK_MGM_CTRL, mdoe, enable) |
1006 IO_MASK(R_NETWORK_MGM_CTRL, mdck) |
1007 IO_FIELD(R_NETWORK_MGM_CTRL, mdio, bit);
1008 udelay(1);
1011 static unsigned char
1012 e100_receive_mdio_bit()
1014 unsigned char bit;
1015 *R_NETWORK_MGM_CTRL = 0;
1016 bit = IO_EXTRACT(R_NETWORK_STAT, mdio, *R_NETWORK_STAT);
1017 udelay(1);
1018 *R_NETWORK_MGM_CTRL = IO_MASK(R_NETWORK_MGM_CTRL, mdck);
1019 udelay(1);
1020 return bit;
1023 static void
1024 e100_reset_transceiver(struct net_device* dev)
1026 struct net_local *np = netdev_priv(dev);
1027 unsigned short cmd;
1028 unsigned short data;
1029 int bitCounter;
1031 data = e100_get_mdio_reg(dev, np->mii_if.phy_id, MII_BMCR);
1033 cmd = (MDIO_START << 14) | (MDIO_WRITE << 12) | (np->mii_if.phy_id << 7) | (MII_BMCR << 2);
1035 e100_send_mdio_cmd(cmd, 1);
1037 data |= 0x8000;
1039 for (bitCounter = 15; bitCounter >= 0 ; bitCounter--) {
1040 e100_send_mdio_bit(GET_BIT(bitCounter, data));
1044 /* Called by upper layers if they decide it took too long to complete
1045 * sending a packet - we need to reset and stuff.
1048 static void
1049 e100_tx_timeout(struct net_device *dev)
1051 struct net_local *np = netdev_priv(dev);
1052 unsigned long flags;
1054 spin_lock_irqsave(&np->lock, flags);
1056 printk(KERN_WARNING "%s: transmit timed out, %s?\n", dev->name,
1057 tx_done(dev) ? "IRQ problem" : "network cable problem");
1059 /* remember we got an error */
1061 dev->stats.tx_errors++;
1063 /* reset the TX DMA in case it has hung on something */
1065 RESET_DMA(NETWORK_TX_DMA_NBR);
1066 WAIT_DMA(NETWORK_TX_DMA_NBR);
1068 /* Reset the transceiver. */
1070 e100_reset_transceiver(dev);
1072 /* and get rid of the packets that never got an interrupt */
1073 while (myFirstTxDesc != myNextTxDesc) {
1074 dev_kfree_skb(myFirstTxDesc->skb);
1075 myFirstTxDesc->skb = 0;
1076 myFirstTxDesc = phys_to_virt(myFirstTxDesc->descr.next);
1079 /* Set up transmit DMA channel so it can be restarted later */
1080 *R_DMA_CH0_FIRST = 0;
1081 *R_DMA_CH0_DESCR = virt_to_phys(myLastTxDesc);
1083 /* tell the upper layers we're ok again */
1085 netif_wake_queue(dev);
1086 spin_unlock_irqrestore(&np->lock, flags);
1090 /* This will only be invoked if the driver is _not_ in XOFF state.
1091 * What this means is that we need not check it, and that this
1092 * invariant will hold if we make sure that the netif_*_queue()
1093 * calls are done at the proper times.
1096 static int
1097 e100_send_packet(struct sk_buff *skb, struct net_device *dev)
1099 struct net_local *np = netdev_priv(dev);
1100 unsigned char *buf = skb->data;
1101 unsigned long flags;
1103 #ifdef ETHDEBUG
1104 printk("send packet len %d\n", length);
1105 #endif
1106 spin_lock_irqsave(&np->lock, flags); /* protect from tx_interrupt and ourself */
1108 myNextTxDesc->skb = skb;
1110 dev->trans_start = jiffies; /* NETIF_F_LLTX driver :( */
1112 e100_hardware_send_packet(np, buf, skb->len);
1114 myNextTxDesc = phys_to_virt(myNextTxDesc->descr.next);
1116 /* Stop queue if full */
1117 if (myNextTxDesc == myFirstTxDesc) {
1118 netif_stop_queue(dev);
1121 spin_unlock_irqrestore(&np->lock, flags);
1123 return NETDEV_TX_OK;
1127 * The typical workload of the driver:
1128 * Handle the network interface interrupts.
1131 static irqreturn_t
1132 e100rxtx_interrupt(int irq, void *dev_id)
1134 struct net_device *dev = (struct net_device *)dev_id;
1135 struct net_local *np = netdev_priv(dev);
1136 unsigned long irqbits;
1139 * Note that both rx and tx interrupts are blocked at this point,
1140 * regardless of which got us here.
1143 irqbits = *R_IRQ_MASK2_RD;
1145 /* Handle received packets */
1146 if (irqbits & IO_STATE(R_IRQ_MASK2_RD, dma1_eop, active)) {
1147 /* acknowledge the eop interrupt */
1149 *R_DMA_CH1_CLR_INTR = IO_STATE(R_DMA_CH1_CLR_INTR, clr_eop, do);
1151 /* check if one or more complete packets were indeed received */
1153 while ((*R_DMA_CH1_FIRST != virt_to_phys(myNextRxDesc)) &&
1154 (myNextRxDesc != myLastRxDesc)) {
1155 /* Take out the buffer and give it to the OS, then
1156 * allocate a new buffer to put a packet in.
1158 e100_rx(dev);
1159 dev->stats.rx_packets++;
1160 /* restart/continue on the channel, for safety */
1161 *R_DMA_CH1_CMD = IO_STATE(R_DMA_CH1_CMD, cmd, restart);
1162 /* clear dma channel 1 eop/descr irq bits */
1163 *R_DMA_CH1_CLR_INTR =
1164 IO_STATE(R_DMA_CH1_CLR_INTR, clr_eop, do) |
1165 IO_STATE(R_DMA_CH1_CLR_INTR, clr_descr, do);
1167 /* now, we might have gotten another packet
1168 so we have to loop back and check if so */
1172 /* Report any packets that have been sent */
1173 while (virt_to_phys(myFirstTxDesc) != *R_DMA_CH0_FIRST &&
1174 (netif_queue_stopped(dev) || myFirstTxDesc != myNextTxDesc)) {
1175 dev->stats.tx_bytes += myFirstTxDesc->skb->len;
1176 dev->stats.tx_packets++;
1178 /* dma is ready with the transmission of the data in tx_skb, so now
1179 we can release the skb memory */
1180 dev_kfree_skb_irq(myFirstTxDesc->skb);
1181 myFirstTxDesc->skb = 0;
1182 myFirstTxDesc = phys_to_virt(myFirstTxDesc->descr.next);
1183 /* Wake up queue. */
1184 netif_wake_queue(dev);
1187 if (irqbits & IO_STATE(R_IRQ_MASK2_RD, dma0_eop, active)) {
1188 /* acknowledge the eop interrupt. */
1189 *R_DMA_CH0_CLR_INTR = IO_STATE(R_DMA_CH0_CLR_INTR, clr_eop, do);
1192 return IRQ_HANDLED;
1195 static irqreturn_t
1196 e100nw_interrupt(int irq, void *dev_id)
1198 struct net_device *dev = (struct net_device *)dev_id;
1199 unsigned long irqbits = *R_IRQ_MASK0_RD;
1201 /* check for underrun irq */
1202 if (irqbits & IO_STATE(R_IRQ_MASK0_RD, underrun, active)) {
1203 SETS(network_tr_ctrl_shadow, R_NETWORK_TR_CTRL, clr_error, clr);
1204 *R_NETWORK_TR_CTRL = network_tr_ctrl_shadow;
1205 SETS(network_tr_ctrl_shadow, R_NETWORK_TR_CTRL, clr_error, nop);
1206 dev->stats.tx_errors++;
1207 D(printk("ethernet receiver underrun!\n"));
1210 /* check for overrun irq */
1211 if (irqbits & IO_STATE(R_IRQ_MASK0_RD, overrun, active)) {
1212 update_rx_stats(&dev->stats); /* this will ack the irq */
1213 D(printk("ethernet receiver overrun!\n"));
1215 /* check for excessive collision irq */
1216 if (irqbits & IO_STATE(R_IRQ_MASK0_RD, excessive_col, active)) {
1217 SETS(network_tr_ctrl_shadow, R_NETWORK_TR_CTRL, clr_error, clr);
1218 *R_NETWORK_TR_CTRL = network_tr_ctrl_shadow;
1219 SETS(network_tr_ctrl_shadow, R_NETWORK_TR_CTRL, clr_error, nop);
1220 dev->stats.tx_errors++;
1221 D(printk("ethernet excessive collisions!\n"));
1223 return IRQ_HANDLED;
1226 /* We have a good packet(s), get it/them out of the buffers. */
1227 static void
1228 e100_rx(struct net_device *dev)
1230 struct sk_buff *skb;
1231 int length = 0;
1232 struct net_local *np = netdev_priv(dev);
1233 unsigned char *skb_data_ptr;
1234 #ifdef ETHDEBUG
1235 int i;
1236 #endif
1237 etrax_eth_descr *prevRxDesc; /* The descriptor right before myNextRxDesc */
1238 spin_lock(&np->led_lock);
1239 if (!led_active && time_after(jiffies, led_next_time)) {
1240 /* light the network leds depending on the current speed. */
1241 e100_set_network_leds(NETWORK_ACTIVITY);
1243 /* Set the earliest time we may clear the LED */
1244 led_next_time = jiffies + NET_FLASH_TIME;
1245 led_active = 1;
1246 mod_timer(&clear_led_timer, jiffies + HZ/10);
1248 spin_unlock(&np->led_lock);
1250 length = myNextRxDesc->descr.hw_len - 4;
1251 dev->stats.rx_bytes += length;
1253 #ifdef ETHDEBUG
1254 printk("Got a packet of length %d:\n", length);
1255 /* dump the first bytes in the packet */
1256 skb_data_ptr = (unsigned char *)phys_to_virt(myNextRxDesc->descr.buf);
1257 for (i = 0; i < 8; i++) {
1258 printk("%d: %.2x %.2x %.2x %.2x %.2x %.2x %.2x %.2x\n", i * 8,
1259 skb_data_ptr[0],skb_data_ptr[1],skb_data_ptr[2],skb_data_ptr[3],
1260 skb_data_ptr[4],skb_data_ptr[5],skb_data_ptr[6],skb_data_ptr[7]);
1261 skb_data_ptr += 8;
1263 #endif
1265 if (length < RX_COPYBREAK) {
1266 /* Small packet, copy data */
1267 skb = dev_alloc_skb(length - ETHER_HEAD_LEN);
1268 if (!skb) {
1269 dev->stats.rx_errors++;
1270 printk(KERN_NOTICE "%s: Memory squeeze, dropping packet.\n", dev->name);
1271 goto update_nextrxdesc;
1274 skb_put(skb, length - ETHER_HEAD_LEN); /* allocate room for the packet body */
1275 skb_data_ptr = skb_push(skb, ETHER_HEAD_LEN); /* allocate room for the header */
1277 #ifdef ETHDEBUG
1278 printk("head = 0x%x, data = 0x%x, tail = 0x%x, end = 0x%x\n",
1279 skb->head, skb->data, skb_tail_pointer(skb),
1280 skb_end_pointer(skb));
1281 printk("copying packet to 0x%x.\n", skb_data_ptr);
1282 #endif
1284 memcpy(skb_data_ptr, phys_to_virt(myNextRxDesc->descr.buf), length);
1286 else {
1287 /* Large packet, send directly to upper layers and allocate new
1288 * memory (aligned to cache line boundary to avoid bug).
1289 * Before sending the skb to upper layers we must make sure
1290 * that skb->data points to the aligned start of the packet.
1292 int align;
1293 struct sk_buff *new_skb = dev_alloc_skb(MAX_MEDIA_DATA_SIZE + 2 * L1_CACHE_BYTES);
1294 if (!new_skb) {
1295 dev->stats.rx_errors++;
1296 printk(KERN_NOTICE "%s: Memory squeeze, dropping packet.\n", dev->name);
1297 goto update_nextrxdesc;
1299 skb = myNextRxDesc->skb;
1300 align = (int)phys_to_virt(myNextRxDesc->descr.buf) - (int)skb->data;
1301 skb_put(skb, length + align);
1302 skb_pull(skb, align); /* Remove alignment bytes */
1303 myNextRxDesc->skb = new_skb;
1304 myNextRxDesc->descr.buf = L1_CACHE_ALIGN(virt_to_phys(myNextRxDesc->skb->data));
1307 skb->protocol = eth_type_trans(skb, dev);
1309 /* Send the packet to the upper layers */
1310 netif_rx(skb);
1312 update_nextrxdesc:
1313 /* Prepare for next packet */
1314 myNextRxDesc->descr.status = 0;
1315 prevRxDesc = myNextRxDesc;
1316 myNextRxDesc = phys_to_virt(myNextRxDesc->descr.next);
1318 rx_queue_len++;
1320 /* Check if descriptors should be returned */
1321 if (rx_queue_len == RX_QUEUE_THRESHOLD) {
1322 flush_etrax_cache();
1323 prevRxDesc->descr.ctrl |= d_eol;
1324 myLastRxDesc->descr.ctrl &= ~d_eol;
1325 myLastRxDesc = prevRxDesc;
1326 rx_queue_len = 0;
1330 /* The inverse routine to net_open(). */
1331 static int
1332 e100_close(struct net_device *dev)
1334 printk(KERN_INFO "Closing %s.\n", dev->name);
1336 netif_stop_queue(dev);
1338 *R_IRQ_MASK0_CLR =
1339 IO_STATE(R_IRQ_MASK0_CLR, overrun, clr) |
1340 IO_STATE(R_IRQ_MASK0_CLR, underrun, clr) |
1341 IO_STATE(R_IRQ_MASK0_CLR, excessive_col, clr);
1343 *R_IRQ_MASK2_CLR =
1344 IO_STATE(R_IRQ_MASK2_CLR, dma0_descr, clr) |
1345 IO_STATE(R_IRQ_MASK2_CLR, dma0_eop, clr) |
1346 IO_STATE(R_IRQ_MASK2_CLR, dma1_descr, clr) |
1347 IO_STATE(R_IRQ_MASK2_CLR, dma1_eop, clr);
1349 /* Stop the receiver and the transmitter */
1351 RESET_DMA(NETWORK_TX_DMA_NBR);
1352 RESET_DMA(NETWORK_RX_DMA_NBR);
1354 /* Flush the Tx and disable Rx here. */
1356 free_irq(NETWORK_DMA_RX_IRQ_NBR, (void *)dev);
1357 free_irq(NETWORK_DMA_TX_IRQ_NBR, (void *)dev);
1358 free_irq(NETWORK_STATUS_IRQ_NBR, (void *)dev);
1360 cris_free_dma(NETWORK_TX_DMA_NBR, cardname);
1361 cris_free_dma(NETWORK_RX_DMA_NBR, cardname);
1363 /* Update the statistics here. */
1365 update_rx_stats(&dev->stats);
1366 update_tx_stats(&dev->stats);
1368 /* Stop speed/duplex timers */
1369 del_timer(&speed_timer);
1370 del_timer(&duplex_timer);
1372 return 0;
1375 static int
1376 e100_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
1378 struct mii_ioctl_data *data = if_mii(ifr);
1379 struct net_local *np = netdev_priv(dev);
1380 int rc = 0;
1381 int old_autoneg;
1383 spin_lock(&np->lock); /* Preempt protection */
1384 switch (cmd) {
1385 /* The ioctls below should be considered obsolete but are */
1386 /* still present for compatibility with old scripts/apps */
1387 case SET_ETH_SPEED_10: /* 10 Mbps */
1388 e100_set_speed(dev, 10);
1389 break;
1390 case SET_ETH_SPEED_100: /* 100 Mbps */
1391 e100_set_speed(dev, 100);
1392 break;
1393 case SET_ETH_SPEED_AUTO: /* Auto-negotiate speed */
1394 e100_set_speed(dev, 0);
1395 break;
1396 case SET_ETH_DUPLEX_HALF: /* Half duplex */
1397 e100_set_duplex(dev, half);
1398 break;
1399 case SET_ETH_DUPLEX_FULL: /* Full duplex */
1400 e100_set_duplex(dev, full);
1401 break;
1402 case SET_ETH_DUPLEX_AUTO: /* Auto-negotiate duplex */
1403 e100_set_duplex(dev, autoneg);
1404 break;
1405 case SET_ETH_AUTONEG:
1406 old_autoneg = autoneg_normal;
1407 autoneg_normal = *(int*)data;
1408 if (autoneg_normal != old_autoneg)
1409 e100_negotiate(dev);
1410 break;
1411 default:
1412 rc = generic_mii_ioctl(&np->mii_if, if_mii(ifr),
1413 cmd, NULL);
1414 break;
1416 spin_unlock(&np->lock);
1417 return rc;
1420 static int e100_get_settings(struct net_device *dev,
1421 struct ethtool_cmd *cmd)
1423 struct net_local *np = netdev_priv(dev);
1424 int err;
1426 spin_lock_irq(&np->lock);
1427 err = mii_ethtool_gset(&np->mii_if, cmd);
1428 spin_unlock_irq(&np->lock);
1430 /* The PHY may support 1000baseT, but the Etrax100 does not. */
1431 cmd->supported &= ~(SUPPORTED_1000baseT_Half
1432 | SUPPORTED_1000baseT_Full);
1433 return err;
1436 static int e100_set_settings(struct net_device *dev,
1437 struct ethtool_cmd *ecmd)
1439 if (ecmd->autoneg == AUTONEG_ENABLE) {
1440 e100_set_duplex(dev, autoneg);
1441 e100_set_speed(dev, 0);
1442 } else {
1443 e100_set_duplex(dev, ecmd->duplex == DUPLEX_HALF ? half : full);
1444 e100_set_speed(dev, ecmd->speed == SPEED_10 ? 10: 100);
1447 return 0;
1450 static void e100_get_drvinfo(struct net_device *dev,
1451 struct ethtool_drvinfo *info)
1453 strncpy(info->driver, "ETRAX 100LX", sizeof(info->driver) - 1);
1454 strncpy(info->version, "$Revision: 1.31 $", sizeof(info->version) - 1);
1455 strncpy(info->fw_version, "N/A", sizeof(info->fw_version) - 1);
1456 strncpy(info->bus_info, "N/A", sizeof(info->bus_info) - 1);
1459 static int e100_nway_reset(struct net_device *dev)
1461 if (current_duplex == autoneg && current_speed_selection == 0)
1462 e100_negotiate(dev);
1463 return 0;
1466 static const struct ethtool_ops e100_ethtool_ops = {
1467 .get_settings = e100_get_settings,
1468 .set_settings = e100_set_settings,
1469 .get_drvinfo = e100_get_drvinfo,
1470 .nway_reset = e100_nway_reset,
1471 .get_link = ethtool_op_get_link,
1474 static int
1475 e100_set_config(struct net_device *dev, struct ifmap *map)
1477 struct net_local *np = netdev_priv(dev);
1479 spin_lock(&np->lock); /* Preempt protection */
1481 switch(map->port) {
1482 case IF_PORT_UNKNOWN:
1483 /* Use autoneg */
1484 e100_set_speed(dev, 0);
1485 e100_set_duplex(dev, autoneg);
1486 break;
1487 case IF_PORT_10BASET:
1488 e100_set_speed(dev, 10);
1489 e100_set_duplex(dev, autoneg);
1490 break;
1491 case IF_PORT_100BASET:
1492 case IF_PORT_100BASETX:
1493 e100_set_speed(dev, 100);
1494 e100_set_duplex(dev, autoneg);
1495 break;
1496 case IF_PORT_100BASEFX:
1497 case IF_PORT_10BASE2:
1498 case IF_PORT_AUI:
1499 spin_unlock(&np->lock);
1500 return -EOPNOTSUPP;
1501 break;
1502 default:
1503 printk(KERN_ERR "%s: Invalid media selected", dev->name);
1504 spin_unlock(&np->lock);
1505 return -EINVAL;
1507 spin_unlock(&np->lock);
1508 return 0;
1511 static void
1512 update_rx_stats(struct net_device_stats *es)
1514 unsigned long r = *R_REC_COUNTERS;
1515 /* update stats relevant to reception errors */
1516 es->rx_fifo_errors += IO_EXTRACT(R_REC_COUNTERS, congestion, r);
1517 es->rx_crc_errors += IO_EXTRACT(R_REC_COUNTERS, crc_error, r);
1518 es->rx_frame_errors += IO_EXTRACT(R_REC_COUNTERS, alignment_error, r);
1519 es->rx_length_errors += IO_EXTRACT(R_REC_COUNTERS, oversize, r);
1522 static void
1523 update_tx_stats(struct net_device_stats *es)
1525 unsigned long r = *R_TR_COUNTERS;
1526 /* update stats relevant to transmission errors */
1527 es->collisions +=
1528 IO_EXTRACT(R_TR_COUNTERS, single_col, r) +
1529 IO_EXTRACT(R_TR_COUNTERS, multiple_col, r);
1533 * Get the current statistics.
1534 * This may be called with the card open or closed.
1536 static struct net_device_stats *
1537 e100_get_stats(struct net_device *dev)
1539 struct net_local *lp = netdev_priv(dev);
1540 unsigned long flags;
1542 spin_lock_irqsave(&lp->lock, flags);
1544 update_rx_stats(&dev->stats);
1545 update_tx_stats(&dev->stats);
1547 spin_unlock_irqrestore(&lp->lock, flags);
1548 return &dev->stats;
1552 * Set or clear the multicast filter for this adaptor.
1553 * num_addrs == -1 Promiscuous mode, receive all packets
1554 * num_addrs == 0 Normal mode, clear multicast list
1555 * num_addrs > 0 Multicast mode, receive normal and MC packets,
1556 * and do best-effort filtering.
1558 static void
1559 set_multicast_list(struct net_device *dev)
1561 struct net_local *lp = netdev_priv(dev);
1562 int num_addr = netdev_mc_count(dev);
1563 unsigned long int lo_bits;
1564 unsigned long int hi_bits;
1566 spin_lock(&lp->lock);
1567 if (dev->flags & IFF_PROMISC) {
1568 /* promiscuous mode */
1569 lo_bits = 0xfffffffful;
1570 hi_bits = 0xfffffffful;
1572 /* Enable individual receive */
1573 SETS(network_rec_config_shadow, R_NETWORK_REC_CONFIG, individual, receive);
1574 *R_NETWORK_REC_CONFIG = network_rec_config_shadow;
1575 } else if (dev->flags & IFF_ALLMULTI) {
1576 /* enable all multicasts */
1577 lo_bits = 0xfffffffful;
1578 hi_bits = 0xfffffffful;
1580 /* Disable individual receive */
1581 SETS(network_rec_config_shadow, R_NETWORK_REC_CONFIG, individual, discard);
1582 *R_NETWORK_REC_CONFIG = network_rec_config_shadow;
1583 } else if (num_addr == 0) {
1584 /* Normal, clear the mc list */
1585 lo_bits = 0x00000000ul;
1586 hi_bits = 0x00000000ul;
1588 /* Disable individual receive */
1589 SETS(network_rec_config_shadow, R_NETWORK_REC_CONFIG, individual, discard);
1590 *R_NETWORK_REC_CONFIG = network_rec_config_shadow;
1591 } else {
1592 /* MC mode, receive normal and MC packets */
1593 char hash_ix;
1594 struct netdev_hw_addr *ha;
1595 char *baddr;
1597 lo_bits = 0x00000000ul;
1598 hi_bits = 0x00000000ul;
1599 netdev_for_each_mc_addr(ha, dev) {
1600 /* Calculate the hash index for the GA registers */
1602 hash_ix = 0;
1603 baddr = ha->addr;
1604 hash_ix ^= (*baddr) & 0x3f;
1605 hash_ix ^= ((*baddr) >> 6) & 0x03;
1606 ++baddr;
1607 hash_ix ^= ((*baddr) << 2) & 0x03c;
1608 hash_ix ^= ((*baddr) >> 4) & 0xf;
1609 ++baddr;
1610 hash_ix ^= ((*baddr) << 4) & 0x30;
1611 hash_ix ^= ((*baddr) >> 2) & 0x3f;
1612 ++baddr;
1613 hash_ix ^= (*baddr) & 0x3f;
1614 hash_ix ^= ((*baddr) >> 6) & 0x03;
1615 ++baddr;
1616 hash_ix ^= ((*baddr) << 2) & 0x03c;
1617 hash_ix ^= ((*baddr) >> 4) & 0xf;
1618 ++baddr;
1619 hash_ix ^= ((*baddr) << 4) & 0x30;
1620 hash_ix ^= ((*baddr) >> 2) & 0x3f;
1622 hash_ix &= 0x3f;
1624 if (hash_ix >= 32) {
1625 hi_bits |= (1 << (hash_ix-32));
1626 } else {
1627 lo_bits |= (1 << hash_ix);
1630 /* Disable individual receive */
1631 SETS(network_rec_config_shadow, R_NETWORK_REC_CONFIG, individual, discard);
1632 *R_NETWORK_REC_CONFIG = network_rec_config_shadow;
1634 *R_NETWORK_GA_0 = lo_bits;
1635 *R_NETWORK_GA_1 = hi_bits;
1636 spin_unlock(&lp->lock);
1639 void
1640 e100_hardware_send_packet(struct net_local *np, char *buf, int length)
1642 D(printk("e100 send pack, buf 0x%x len %d\n", buf, length));
1644 spin_lock(&np->led_lock);
1645 if (!led_active && time_after(jiffies, led_next_time)) {
1646 /* light the network leds depending on the current speed. */
1647 e100_set_network_leds(NETWORK_ACTIVITY);
1649 /* Set the earliest time we may clear the LED */
1650 led_next_time = jiffies + NET_FLASH_TIME;
1651 led_active = 1;
1652 mod_timer(&clear_led_timer, jiffies + HZ/10);
1654 spin_unlock(&np->led_lock);
1656 /* configure the tx dma descriptor */
1657 myNextTxDesc->descr.sw_len = length;
1658 myNextTxDesc->descr.ctrl = d_eop | d_eol | d_wait;
1659 myNextTxDesc->descr.buf = virt_to_phys(buf);
1661 /* Move end of list */
1662 myLastTxDesc->descr.ctrl &= ~d_eol;
1663 myLastTxDesc = myNextTxDesc;
1665 /* Restart DMA channel */
1666 *R_DMA_CH0_CMD = IO_STATE(R_DMA_CH0_CMD, cmd, restart);
1669 static void
1670 e100_clear_network_leds(unsigned long dummy)
1672 struct net_device *dev = (struct net_device *)dummy;
1673 struct net_local *np = netdev_priv(dev);
1675 spin_lock(&np->led_lock);
1677 if (led_active && time_after(jiffies, led_next_time)) {
1678 e100_set_network_leds(NO_NETWORK_ACTIVITY);
1680 /* Set the earliest time we may set the LED */
1681 led_next_time = jiffies + NET_FLASH_PAUSE;
1682 led_active = 0;
1685 spin_unlock(&np->led_lock);
1688 static void
1689 e100_set_network_leds(int active)
1691 #if defined(CONFIG_ETRAX_NETWORK_LED_ON_WHEN_LINK)
1692 int light_leds = (active == NO_NETWORK_ACTIVITY);
1693 #elif defined(CONFIG_ETRAX_NETWORK_LED_ON_WHEN_ACTIVITY)
1694 int light_leds = (active == NETWORK_ACTIVITY);
1695 #else
1696 #error "Define either CONFIG_ETRAX_NETWORK_LED_ON_WHEN_LINK or CONFIG_ETRAX_NETWORK_LED_ON_WHEN_ACTIVITY"
1697 #endif
1699 if (!current_speed) {
1700 /* Make LED red, link is down */
1701 CRIS_LED_NETWORK_SET(CRIS_LED_OFF);
1702 } else if (light_leds) {
1703 if (current_speed == 10) {
1704 CRIS_LED_NETWORK_SET(CRIS_LED_ORANGE);
1705 } else {
1706 CRIS_LED_NETWORK_SET(CRIS_LED_GREEN);
1708 } else {
1709 CRIS_LED_NETWORK_SET(CRIS_LED_OFF);
1713 #ifdef CONFIG_NET_POLL_CONTROLLER
1714 static void
1715 e100_netpoll(struct net_device* netdev)
1717 e100rxtx_interrupt(NETWORK_DMA_TX_IRQ_NBR, netdev, NULL);
1719 #endif
1721 static int
1722 etrax_init_module(void)
1724 return etrax_ethernet_init();
1727 static int __init
1728 e100_boot_setup(char* str)
1730 struct sockaddr sa = {0};
1731 int i;
1733 /* Parse the colon separated Ethernet station address */
1734 for (i = 0; i < ETH_ALEN; i++) {
1735 unsigned int tmp;
1736 if (sscanf(str + 3*i, "%2x", &tmp) != 1) {
1737 printk(KERN_WARNING "Malformed station address");
1738 return 0;
1740 sa.sa_data[i] = (char)tmp;
1743 default_mac = sa;
1744 return 1;
1747 __setup("etrax100_eth=", e100_boot_setup);
1749 module_init(etrax_init_module);