USB: make usbdevices export their device nodes instead of using a separate class
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / net / ipv4 / ip_output.c
blob534650cad3a82f0b4b65513cb839d1bf6a818451
1 /*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
6 * The Internet Protocol (IP) output module.
8 * Version: $Id: ip_output.c,v 1.100 2002/02/01 22:01:03 davem Exp $
10 * Authors: Ross Biro
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Donald Becker, <becker@super.org>
13 * Alan Cox, <Alan.Cox@linux.org>
14 * Richard Underwood
15 * Stefan Becker, <stefanb@yello.ping.de>
16 * Jorge Cwik, <jorge@laser.satlink.net>
17 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
18 * Hirokazu Takahashi, <taka@valinux.co.jp>
20 * See ip_input.c for original log
22 * Fixes:
23 * Alan Cox : Missing nonblock feature in ip_build_xmit.
24 * Mike Kilburn : htons() missing in ip_build_xmit.
25 * Bradford Johnson: Fix faulty handling of some frames when
26 * no route is found.
27 * Alexander Demenshin: Missing sk/skb free in ip_queue_xmit
28 * (in case if packet not accepted by
29 * output firewall rules)
30 * Mike McLagan : Routing by source
31 * Alexey Kuznetsov: use new route cache
32 * Andi Kleen: Fix broken PMTU recovery and remove
33 * some redundant tests.
34 * Vitaly E. Lavrov : Transparent proxy revived after year coma.
35 * Andi Kleen : Replace ip_reply with ip_send_reply.
36 * Andi Kleen : Split fast and slow ip_build_xmit path
37 * for decreased register pressure on x86
38 * and more readibility.
39 * Marc Boucher : When call_out_firewall returns FW_QUEUE,
40 * silently drop skb instead of failing with -EPERM.
41 * Detlev Wengorz : Copy protocol for fragments.
42 * Hirokazu Takahashi: HW checksumming for outgoing UDP
43 * datagrams.
44 * Hirokazu Takahashi: sendfile() on UDP works now.
47 #include <asm/uaccess.h>
48 #include <asm/system.h>
49 #include <linux/module.h>
50 #include <linux/types.h>
51 #include <linux/kernel.h>
52 #include <linux/mm.h>
53 #include <linux/string.h>
54 #include <linux/errno.h>
55 #include <linux/highmem.h>
57 #include <linux/socket.h>
58 #include <linux/sockios.h>
59 #include <linux/in.h>
60 #include <linux/inet.h>
61 #include <linux/netdevice.h>
62 #include <linux/etherdevice.h>
63 #include <linux/proc_fs.h>
64 #include <linux/stat.h>
65 #include <linux/init.h>
67 #include <net/snmp.h>
68 #include <net/ip.h>
69 #include <net/protocol.h>
70 #include <net/route.h>
71 #include <net/xfrm.h>
72 #include <linux/skbuff.h>
73 #include <net/sock.h>
74 #include <net/arp.h>
75 #include <net/icmp.h>
76 #include <net/checksum.h>
77 #include <net/inetpeer.h>
78 #include <net/checksum.h>
79 #include <linux/igmp.h>
80 #include <linux/netfilter_ipv4.h>
81 #include <linux/netfilter_bridge.h>
82 #include <linux/mroute.h>
83 #include <linux/netlink.h>
84 #include <linux/tcp.h>
86 int sysctl_ip_default_ttl __read_mostly = IPDEFTTL;
88 /* Generate a checksum for an outgoing IP datagram. */
89 __inline__ void ip_send_check(struct iphdr *iph)
91 iph->check = 0;
92 iph->check = ip_fast_csum((unsigned char *)iph, iph->ihl);
95 /* dev_loopback_xmit for use with netfilter. */
96 static int ip_dev_loopback_xmit(struct sk_buff *newskb)
98 skb_reset_mac_header(newskb);
99 __skb_pull(newskb, skb_network_offset(newskb));
100 newskb->pkt_type = PACKET_LOOPBACK;
101 newskb->ip_summed = CHECKSUM_UNNECESSARY;
102 BUG_TRAP(newskb->dst);
103 netif_rx(newskb);
104 return 0;
107 static inline int ip_select_ttl(struct inet_sock *inet, struct dst_entry *dst)
109 int ttl = inet->uc_ttl;
111 if (ttl < 0)
112 ttl = dst_metric(dst, RTAX_HOPLIMIT);
113 return ttl;
117 * Add an ip header to a skbuff and send it out.
120 int ip_build_and_send_pkt(struct sk_buff *skb, struct sock *sk,
121 __be32 saddr, __be32 daddr, struct ip_options *opt)
123 struct inet_sock *inet = inet_sk(sk);
124 struct rtable *rt = (struct rtable *)skb->dst;
125 struct iphdr *iph;
127 /* Build the IP header. */
128 skb_push(skb, sizeof(struct iphdr) + (opt ? opt->optlen : 0));
129 skb_reset_network_header(skb);
130 iph = ip_hdr(skb);
131 iph->version = 4;
132 iph->ihl = 5;
133 iph->tos = inet->tos;
134 if (ip_dont_fragment(sk, &rt->u.dst))
135 iph->frag_off = htons(IP_DF);
136 else
137 iph->frag_off = 0;
138 iph->ttl = ip_select_ttl(inet, &rt->u.dst);
139 iph->daddr = rt->rt_dst;
140 iph->saddr = rt->rt_src;
141 iph->protocol = sk->sk_protocol;
142 iph->tot_len = htons(skb->len);
143 ip_select_ident(iph, &rt->u.dst, sk);
145 if (opt && opt->optlen) {
146 iph->ihl += opt->optlen>>2;
147 ip_options_build(skb, opt, daddr, rt, 0);
149 ip_send_check(iph);
151 skb->priority = sk->sk_priority;
153 /* Send it out. */
154 return NF_HOOK(PF_INET, NF_IP_LOCAL_OUT, skb, NULL, rt->u.dst.dev,
155 dst_output);
158 EXPORT_SYMBOL_GPL(ip_build_and_send_pkt);
160 static inline int ip_finish_output2(struct sk_buff *skb)
162 struct dst_entry *dst = skb->dst;
163 struct net_device *dev = dst->dev;
164 int hh_len = LL_RESERVED_SPACE(dev);
166 /* Be paranoid, rather than too clever. */
167 if (unlikely(skb_headroom(skb) < hh_len && dev->hard_header)) {
168 struct sk_buff *skb2;
170 skb2 = skb_realloc_headroom(skb, LL_RESERVED_SPACE(dev));
171 if (skb2 == NULL) {
172 kfree_skb(skb);
173 return -ENOMEM;
175 if (skb->sk)
176 skb_set_owner_w(skb2, skb->sk);
177 kfree_skb(skb);
178 skb = skb2;
181 if (dst->hh)
182 return neigh_hh_output(dst->hh, skb);
183 else if (dst->neighbour)
184 return dst->neighbour->output(skb);
186 if (net_ratelimit())
187 printk(KERN_DEBUG "ip_finish_output2: No header cache and no neighbour!\n");
188 kfree_skb(skb);
189 return -EINVAL;
192 static inline int ip_skb_dst_mtu(struct sk_buff *skb)
194 struct inet_sock *inet = skb->sk ? inet_sk(skb->sk) : NULL;
196 return (inet && inet->pmtudisc == IP_PMTUDISC_PROBE) ?
197 skb->dst->dev->mtu : dst_mtu(skb->dst);
200 static inline int ip_finish_output(struct sk_buff *skb)
202 #if defined(CONFIG_NETFILTER) && defined(CONFIG_XFRM)
203 /* Policy lookup after SNAT yielded a new policy */
204 if (skb->dst->xfrm != NULL) {
205 IPCB(skb)->flags |= IPSKB_REROUTED;
206 return dst_output(skb);
208 #endif
209 if (skb->len > ip_skb_dst_mtu(skb) && !skb_is_gso(skb))
210 return ip_fragment(skb, ip_finish_output2);
211 else
212 return ip_finish_output2(skb);
215 int ip_mc_output(struct sk_buff *skb)
217 struct sock *sk = skb->sk;
218 struct rtable *rt = (struct rtable*)skb->dst;
219 struct net_device *dev = rt->u.dst.dev;
222 * If the indicated interface is up and running, send the packet.
224 IP_INC_STATS(IPSTATS_MIB_OUTREQUESTS);
226 skb->dev = dev;
227 skb->protocol = htons(ETH_P_IP);
230 * Multicasts are looped back for other local users
233 if (rt->rt_flags&RTCF_MULTICAST) {
234 if ((!sk || inet_sk(sk)->mc_loop)
235 #ifdef CONFIG_IP_MROUTE
236 /* Small optimization: do not loopback not local frames,
237 which returned after forwarding; they will be dropped
238 by ip_mr_input in any case.
239 Note, that local frames are looped back to be delivered
240 to local recipients.
242 This check is duplicated in ip_mr_input at the moment.
244 && ((rt->rt_flags&RTCF_LOCAL) || !(IPCB(skb)->flags&IPSKB_FORWARDED))
245 #endif
247 struct sk_buff *newskb = skb_clone(skb, GFP_ATOMIC);
248 if (newskb)
249 NF_HOOK(PF_INET, NF_IP_POST_ROUTING, newskb, NULL,
250 newskb->dev,
251 ip_dev_loopback_xmit);
254 /* Multicasts with ttl 0 must not go beyond the host */
256 if (ip_hdr(skb)->ttl == 0) {
257 kfree_skb(skb);
258 return 0;
262 if (rt->rt_flags&RTCF_BROADCAST) {
263 struct sk_buff *newskb = skb_clone(skb, GFP_ATOMIC);
264 if (newskb)
265 NF_HOOK(PF_INET, NF_IP_POST_ROUTING, newskb, NULL,
266 newskb->dev, ip_dev_loopback_xmit);
269 return NF_HOOK_COND(PF_INET, NF_IP_POST_ROUTING, skb, NULL, skb->dev,
270 ip_finish_output,
271 !(IPCB(skb)->flags & IPSKB_REROUTED));
274 int ip_output(struct sk_buff *skb)
276 struct net_device *dev = skb->dst->dev;
278 IP_INC_STATS(IPSTATS_MIB_OUTREQUESTS);
280 skb->dev = dev;
281 skb->protocol = htons(ETH_P_IP);
283 return NF_HOOK_COND(PF_INET, NF_IP_POST_ROUTING, skb, NULL, dev,
284 ip_finish_output,
285 !(IPCB(skb)->flags & IPSKB_REROUTED));
288 int ip_queue_xmit(struct sk_buff *skb, int ipfragok)
290 struct sock *sk = skb->sk;
291 struct inet_sock *inet = inet_sk(sk);
292 struct ip_options *opt = inet->opt;
293 struct rtable *rt;
294 struct iphdr *iph;
296 /* Skip all of this if the packet is already routed,
297 * f.e. by something like SCTP.
299 rt = (struct rtable *) skb->dst;
300 if (rt != NULL)
301 goto packet_routed;
303 /* Make sure we can route this packet. */
304 rt = (struct rtable *)__sk_dst_check(sk, 0);
305 if (rt == NULL) {
306 __be32 daddr;
308 /* Use correct destination address if we have options. */
309 daddr = inet->daddr;
310 if(opt && opt->srr)
311 daddr = opt->faddr;
314 struct flowi fl = { .oif = sk->sk_bound_dev_if,
315 .nl_u = { .ip4_u =
316 { .daddr = daddr,
317 .saddr = inet->saddr,
318 .tos = RT_CONN_FLAGS(sk) } },
319 .proto = sk->sk_protocol,
320 .uli_u = { .ports =
321 { .sport = inet->sport,
322 .dport = inet->dport } } };
324 /* If this fails, retransmit mechanism of transport layer will
325 * keep trying until route appears or the connection times
326 * itself out.
328 security_sk_classify_flow(sk, &fl);
329 if (ip_route_output_flow(&rt, &fl, sk, 0))
330 goto no_route;
332 sk_setup_caps(sk, &rt->u.dst);
334 skb->dst = dst_clone(&rt->u.dst);
336 packet_routed:
337 if (opt && opt->is_strictroute && rt->rt_dst != rt->rt_gateway)
338 goto no_route;
340 /* OK, we know where to send it, allocate and build IP header. */
341 skb_push(skb, sizeof(struct iphdr) + (opt ? opt->optlen : 0));
342 skb_reset_network_header(skb);
343 iph = ip_hdr(skb);
344 *((__be16 *)iph) = htons((4 << 12) | (5 << 8) | (inet->tos & 0xff));
345 iph->tot_len = htons(skb->len);
346 if (ip_dont_fragment(sk, &rt->u.dst) && !ipfragok)
347 iph->frag_off = htons(IP_DF);
348 else
349 iph->frag_off = 0;
350 iph->ttl = ip_select_ttl(inet, &rt->u.dst);
351 iph->protocol = sk->sk_protocol;
352 iph->saddr = rt->rt_src;
353 iph->daddr = rt->rt_dst;
354 /* Transport layer set skb->h.foo itself. */
356 if (opt && opt->optlen) {
357 iph->ihl += opt->optlen >> 2;
358 ip_options_build(skb, opt, inet->daddr, rt, 0);
361 ip_select_ident_more(iph, &rt->u.dst, sk,
362 (skb_shinfo(skb)->gso_segs ?: 1) - 1);
364 /* Add an IP checksum. */
365 ip_send_check(iph);
367 skb->priority = sk->sk_priority;
369 return NF_HOOK(PF_INET, NF_IP_LOCAL_OUT, skb, NULL, rt->u.dst.dev,
370 dst_output);
372 no_route:
373 IP_INC_STATS(IPSTATS_MIB_OUTNOROUTES);
374 kfree_skb(skb);
375 return -EHOSTUNREACH;
379 static void ip_copy_metadata(struct sk_buff *to, struct sk_buff *from)
381 to->pkt_type = from->pkt_type;
382 to->priority = from->priority;
383 to->protocol = from->protocol;
384 dst_release(to->dst);
385 to->dst = dst_clone(from->dst);
386 to->dev = from->dev;
387 to->mark = from->mark;
389 /* Copy the flags to each fragment. */
390 IPCB(to)->flags = IPCB(from)->flags;
392 #ifdef CONFIG_NET_SCHED
393 to->tc_index = from->tc_index;
394 #endif
395 nf_copy(to, from);
396 #if defined(CONFIG_IP_VS) || defined(CONFIG_IP_VS_MODULE)
397 to->ipvs_property = from->ipvs_property;
398 #endif
399 skb_copy_secmark(to, from);
403 * This IP datagram is too large to be sent in one piece. Break it up into
404 * smaller pieces (each of size equal to IP header plus
405 * a block of the data of the original IP data part) that will yet fit in a
406 * single device frame, and queue such a frame for sending.
409 int ip_fragment(struct sk_buff *skb, int (*output)(struct sk_buff*))
411 struct iphdr *iph;
412 int raw = 0;
413 int ptr;
414 struct net_device *dev;
415 struct sk_buff *skb2;
416 unsigned int mtu, hlen, left, len, ll_rs, pad;
417 int offset;
418 __be16 not_last_frag;
419 struct rtable *rt = (struct rtable*)skb->dst;
420 int err = 0;
422 dev = rt->u.dst.dev;
425 * Point into the IP datagram header.
428 iph = ip_hdr(skb);
430 if (unlikely((iph->frag_off & htons(IP_DF)) && !skb->local_df)) {
431 IP_INC_STATS(IPSTATS_MIB_FRAGFAILS);
432 icmp_send(skb, ICMP_DEST_UNREACH, ICMP_FRAG_NEEDED,
433 htonl(ip_skb_dst_mtu(skb)));
434 kfree_skb(skb);
435 return -EMSGSIZE;
439 * Setup starting values.
442 hlen = iph->ihl * 4;
443 mtu = dst_mtu(&rt->u.dst) - hlen; /* Size of data space */
444 IPCB(skb)->flags |= IPSKB_FRAG_COMPLETE;
446 /* When frag_list is given, use it. First, check its validity:
447 * some transformers could create wrong frag_list or break existing
448 * one, it is not prohibited. In this case fall back to copying.
450 * LATER: this step can be merged to real generation of fragments,
451 * we can switch to copy when see the first bad fragment.
453 if (skb_shinfo(skb)->frag_list) {
454 struct sk_buff *frag;
455 int first_len = skb_pagelen(skb);
457 if (first_len - hlen > mtu ||
458 ((first_len - hlen) & 7) ||
459 (iph->frag_off & htons(IP_MF|IP_OFFSET)) ||
460 skb_cloned(skb))
461 goto slow_path;
463 for (frag = skb_shinfo(skb)->frag_list; frag; frag = frag->next) {
464 /* Correct geometry. */
465 if (frag->len > mtu ||
466 ((frag->len & 7) && frag->next) ||
467 skb_headroom(frag) < hlen)
468 goto slow_path;
470 /* Partially cloned skb? */
471 if (skb_shared(frag))
472 goto slow_path;
474 BUG_ON(frag->sk);
475 if (skb->sk) {
476 sock_hold(skb->sk);
477 frag->sk = skb->sk;
478 frag->destructor = sock_wfree;
479 skb->truesize -= frag->truesize;
483 /* Everything is OK. Generate! */
485 err = 0;
486 offset = 0;
487 frag = skb_shinfo(skb)->frag_list;
488 skb_shinfo(skb)->frag_list = NULL;
489 skb->data_len = first_len - skb_headlen(skb);
490 skb->len = first_len;
491 iph->tot_len = htons(first_len);
492 iph->frag_off = htons(IP_MF);
493 ip_send_check(iph);
495 for (;;) {
496 /* Prepare header of the next frame,
497 * before previous one went down. */
498 if (frag) {
499 frag->ip_summed = CHECKSUM_NONE;
500 skb_reset_transport_header(frag);
501 __skb_push(frag, hlen);
502 skb_reset_network_header(frag);
503 memcpy(skb_network_header(frag), iph, hlen);
504 iph = ip_hdr(frag);
505 iph->tot_len = htons(frag->len);
506 ip_copy_metadata(frag, skb);
507 if (offset == 0)
508 ip_options_fragment(frag);
509 offset += skb->len - hlen;
510 iph->frag_off = htons(offset>>3);
511 if (frag->next != NULL)
512 iph->frag_off |= htons(IP_MF);
513 /* Ready, complete checksum */
514 ip_send_check(iph);
517 err = output(skb);
519 if (!err)
520 IP_INC_STATS(IPSTATS_MIB_FRAGCREATES);
521 if (err || !frag)
522 break;
524 skb = frag;
525 frag = skb->next;
526 skb->next = NULL;
529 if (err == 0) {
530 IP_INC_STATS(IPSTATS_MIB_FRAGOKS);
531 return 0;
534 while (frag) {
535 skb = frag->next;
536 kfree_skb(frag);
537 frag = skb;
539 IP_INC_STATS(IPSTATS_MIB_FRAGFAILS);
540 return err;
543 slow_path:
544 left = skb->len - hlen; /* Space per frame */
545 ptr = raw + hlen; /* Where to start from */
547 /* for bridged IP traffic encapsulated inside f.e. a vlan header,
548 * we need to make room for the encapsulating header
550 pad = nf_bridge_pad(skb);
551 ll_rs = LL_RESERVED_SPACE_EXTRA(rt->u.dst.dev, pad);
552 mtu -= pad;
555 * Fragment the datagram.
558 offset = (ntohs(iph->frag_off) & IP_OFFSET) << 3;
559 not_last_frag = iph->frag_off & htons(IP_MF);
562 * Keep copying data until we run out.
565 while (left > 0) {
566 len = left;
567 /* IF: it doesn't fit, use 'mtu' - the data space left */
568 if (len > mtu)
569 len = mtu;
570 /* IF: we are not sending upto and including the packet end
571 then align the next start on an eight byte boundary */
572 if (len < left) {
573 len &= ~7;
576 * Allocate buffer.
579 if ((skb2 = alloc_skb(len+hlen+ll_rs, GFP_ATOMIC)) == NULL) {
580 NETDEBUG(KERN_INFO "IP: frag: no memory for new fragment!\n");
581 err = -ENOMEM;
582 goto fail;
586 * Set up data on packet
589 ip_copy_metadata(skb2, skb);
590 skb_reserve(skb2, ll_rs);
591 skb_put(skb2, len + hlen);
592 skb_reset_network_header(skb2);
593 skb2->transport_header = skb2->network_header + hlen;
596 * Charge the memory for the fragment to any owner
597 * it might possess
600 if (skb->sk)
601 skb_set_owner_w(skb2, skb->sk);
604 * Copy the packet header into the new buffer.
607 skb_copy_from_linear_data(skb, skb_network_header(skb2), hlen);
610 * Copy a block of the IP datagram.
612 if (skb_copy_bits(skb, ptr, skb_transport_header(skb2), len))
613 BUG();
614 left -= len;
617 * Fill in the new header fields.
619 iph = ip_hdr(skb2);
620 iph->frag_off = htons((offset >> 3));
622 /* ANK: dirty, but effective trick. Upgrade options only if
623 * the segment to be fragmented was THE FIRST (otherwise,
624 * options are already fixed) and make it ONCE
625 * on the initial skb, so that all the following fragments
626 * will inherit fixed options.
628 if (offset == 0)
629 ip_options_fragment(skb);
632 * Added AC : If we are fragmenting a fragment that's not the
633 * last fragment then keep MF on each bit
635 if (left > 0 || not_last_frag)
636 iph->frag_off |= htons(IP_MF);
637 ptr += len;
638 offset += len;
641 * Put this fragment into the sending queue.
643 iph->tot_len = htons(len + hlen);
645 ip_send_check(iph);
647 err = output(skb2);
648 if (err)
649 goto fail;
651 IP_INC_STATS(IPSTATS_MIB_FRAGCREATES);
653 kfree_skb(skb);
654 IP_INC_STATS(IPSTATS_MIB_FRAGOKS);
655 return err;
657 fail:
658 kfree_skb(skb);
659 IP_INC_STATS(IPSTATS_MIB_FRAGFAILS);
660 return err;
663 EXPORT_SYMBOL(ip_fragment);
666 ip_generic_getfrag(void *from, char *to, int offset, int len, int odd, struct sk_buff *skb)
668 struct iovec *iov = from;
670 if (skb->ip_summed == CHECKSUM_PARTIAL) {
671 if (memcpy_fromiovecend(to, iov, offset, len) < 0)
672 return -EFAULT;
673 } else {
674 __wsum csum = 0;
675 if (csum_partial_copy_fromiovecend(to, iov, offset, len, &csum) < 0)
676 return -EFAULT;
677 skb->csum = csum_block_add(skb->csum, csum, odd);
679 return 0;
682 static inline __wsum
683 csum_page(struct page *page, int offset, int copy)
685 char *kaddr;
686 __wsum csum;
687 kaddr = kmap(page);
688 csum = csum_partial(kaddr + offset, copy, 0);
689 kunmap(page);
690 return csum;
693 static inline int ip_ufo_append_data(struct sock *sk,
694 int getfrag(void *from, char *to, int offset, int len,
695 int odd, struct sk_buff *skb),
696 void *from, int length, int hh_len, int fragheaderlen,
697 int transhdrlen, int mtu,unsigned int flags)
699 struct sk_buff *skb;
700 int err;
702 /* There is support for UDP fragmentation offload by network
703 * device, so create one single skb packet containing complete
704 * udp datagram
706 if ((skb = skb_peek_tail(&sk->sk_write_queue)) == NULL) {
707 skb = sock_alloc_send_skb(sk,
708 hh_len + fragheaderlen + transhdrlen + 20,
709 (flags & MSG_DONTWAIT), &err);
711 if (skb == NULL)
712 return err;
714 /* reserve space for Hardware header */
715 skb_reserve(skb, hh_len);
717 /* create space for UDP/IP header */
718 skb_put(skb,fragheaderlen + transhdrlen);
720 /* initialize network header pointer */
721 skb_reset_network_header(skb);
723 /* initialize protocol header pointer */
724 skb->transport_header = skb->network_header + fragheaderlen;
726 skb->ip_summed = CHECKSUM_PARTIAL;
727 skb->csum = 0;
728 sk->sk_sndmsg_off = 0;
731 err = skb_append_datato_frags(sk,skb, getfrag, from,
732 (length - transhdrlen));
733 if (!err) {
734 /* specify the length of each IP datagram fragment*/
735 skb_shinfo(skb)->gso_size = mtu - fragheaderlen;
736 skb_shinfo(skb)->gso_type = SKB_GSO_UDP;
737 __skb_queue_tail(&sk->sk_write_queue, skb);
739 return 0;
741 /* There is not enough support do UFO ,
742 * so follow normal path
744 kfree_skb(skb);
745 return err;
749 * ip_append_data() and ip_append_page() can make one large IP datagram
750 * from many pieces of data. Each pieces will be holded on the socket
751 * until ip_push_pending_frames() is called. Each piece can be a page
752 * or non-page data.
754 * Not only UDP, other transport protocols - e.g. raw sockets - can use
755 * this interface potentially.
757 * LATER: length must be adjusted by pad at tail, when it is required.
759 int ip_append_data(struct sock *sk,
760 int getfrag(void *from, char *to, int offset, int len,
761 int odd, struct sk_buff *skb),
762 void *from, int length, int transhdrlen,
763 struct ipcm_cookie *ipc, struct rtable *rt,
764 unsigned int flags)
766 struct inet_sock *inet = inet_sk(sk);
767 struct sk_buff *skb;
769 struct ip_options *opt = NULL;
770 int hh_len;
771 int exthdrlen;
772 int mtu;
773 int copy;
774 int err;
775 int offset = 0;
776 unsigned int maxfraglen, fragheaderlen;
777 int csummode = CHECKSUM_NONE;
779 if (flags&MSG_PROBE)
780 return 0;
782 if (skb_queue_empty(&sk->sk_write_queue)) {
784 * setup for corking.
786 opt = ipc->opt;
787 if (opt) {
788 if (inet->cork.opt == NULL) {
789 inet->cork.opt = kmalloc(sizeof(struct ip_options) + 40, sk->sk_allocation);
790 if (unlikely(inet->cork.opt == NULL))
791 return -ENOBUFS;
793 memcpy(inet->cork.opt, opt, sizeof(struct ip_options)+opt->optlen);
794 inet->cork.flags |= IPCORK_OPT;
795 inet->cork.addr = ipc->addr;
797 dst_hold(&rt->u.dst);
798 inet->cork.fragsize = mtu = inet->pmtudisc == IP_PMTUDISC_PROBE ?
799 rt->u.dst.dev->mtu :
800 dst_mtu(rt->u.dst.path);
801 inet->cork.rt = rt;
802 inet->cork.length = 0;
803 sk->sk_sndmsg_page = NULL;
804 sk->sk_sndmsg_off = 0;
805 if ((exthdrlen = rt->u.dst.header_len) != 0) {
806 length += exthdrlen;
807 transhdrlen += exthdrlen;
809 } else {
810 rt = inet->cork.rt;
811 if (inet->cork.flags & IPCORK_OPT)
812 opt = inet->cork.opt;
814 transhdrlen = 0;
815 exthdrlen = 0;
816 mtu = inet->cork.fragsize;
818 hh_len = LL_RESERVED_SPACE(rt->u.dst.dev);
820 fragheaderlen = sizeof(struct iphdr) + (opt ? opt->optlen : 0);
821 maxfraglen = ((mtu - fragheaderlen) & ~7) + fragheaderlen;
823 if (inet->cork.length + length > 0xFFFF - fragheaderlen) {
824 ip_local_error(sk, EMSGSIZE, rt->rt_dst, inet->dport, mtu-exthdrlen);
825 return -EMSGSIZE;
829 * transhdrlen > 0 means that this is the first fragment and we wish
830 * it won't be fragmented in the future.
832 if (transhdrlen &&
833 length + fragheaderlen <= mtu &&
834 rt->u.dst.dev->features & NETIF_F_ALL_CSUM &&
835 !exthdrlen)
836 csummode = CHECKSUM_PARTIAL;
838 inet->cork.length += length;
839 if (((length > mtu) && (sk->sk_protocol == IPPROTO_UDP)) &&
840 (rt->u.dst.dev->features & NETIF_F_UFO)) {
842 err = ip_ufo_append_data(sk, getfrag, from, length, hh_len,
843 fragheaderlen, transhdrlen, mtu,
844 flags);
845 if (err)
846 goto error;
847 return 0;
850 /* So, what's going on in the loop below?
852 * We use calculated fragment length to generate chained skb,
853 * each of segments is IP fragment ready for sending to network after
854 * adding appropriate IP header.
857 if ((skb = skb_peek_tail(&sk->sk_write_queue)) == NULL)
858 goto alloc_new_skb;
860 while (length > 0) {
861 /* Check if the remaining data fits into current packet. */
862 copy = mtu - skb->len;
863 if (copy < length)
864 copy = maxfraglen - skb->len;
865 if (copy <= 0) {
866 char *data;
867 unsigned int datalen;
868 unsigned int fraglen;
869 unsigned int fraggap;
870 unsigned int alloclen;
871 struct sk_buff *skb_prev;
872 alloc_new_skb:
873 skb_prev = skb;
874 if (skb_prev)
875 fraggap = skb_prev->len - maxfraglen;
876 else
877 fraggap = 0;
880 * If remaining data exceeds the mtu,
881 * we know we need more fragment(s).
883 datalen = length + fraggap;
884 if (datalen > mtu - fragheaderlen)
885 datalen = maxfraglen - fragheaderlen;
886 fraglen = datalen + fragheaderlen;
888 if ((flags & MSG_MORE) &&
889 !(rt->u.dst.dev->features&NETIF_F_SG))
890 alloclen = mtu;
891 else
892 alloclen = datalen + fragheaderlen;
894 /* The last fragment gets additional space at tail.
895 * Note, with MSG_MORE we overallocate on fragments,
896 * because we have no idea what fragment will be
897 * the last.
899 if (datalen == length + fraggap)
900 alloclen += rt->u.dst.trailer_len;
902 if (transhdrlen) {
903 skb = sock_alloc_send_skb(sk,
904 alloclen + hh_len + 15,
905 (flags & MSG_DONTWAIT), &err);
906 } else {
907 skb = NULL;
908 if (atomic_read(&sk->sk_wmem_alloc) <=
909 2 * sk->sk_sndbuf)
910 skb = sock_wmalloc(sk,
911 alloclen + hh_len + 15, 1,
912 sk->sk_allocation);
913 if (unlikely(skb == NULL))
914 err = -ENOBUFS;
916 if (skb == NULL)
917 goto error;
920 * Fill in the control structures
922 skb->ip_summed = csummode;
923 skb->csum = 0;
924 skb_reserve(skb, hh_len);
927 * Find where to start putting bytes.
929 data = skb_put(skb, fraglen);
930 skb_set_network_header(skb, exthdrlen);
931 skb->transport_header = (skb->network_header +
932 fragheaderlen);
933 data += fragheaderlen;
935 if (fraggap) {
936 skb->csum = skb_copy_and_csum_bits(
937 skb_prev, maxfraglen,
938 data + transhdrlen, fraggap, 0);
939 skb_prev->csum = csum_sub(skb_prev->csum,
940 skb->csum);
941 data += fraggap;
942 pskb_trim_unique(skb_prev, maxfraglen);
945 copy = datalen - transhdrlen - fraggap;
946 if (copy > 0 && getfrag(from, data + transhdrlen, offset, copy, fraggap, skb) < 0) {
947 err = -EFAULT;
948 kfree_skb(skb);
949 goto error;
952 offset += copy;
953 length -= datalen - fraggap;
954 transhdrlen = 0;
955 exthdrlen = 0;
956 csummode = CHECKSUM_NONE;
959 * Put the packet on the pending queue.
961 __skb_queue_tail(&sk->sk_write_queue, skb);
962 continue;
965 if (copy > length)
966 copy = length;
968 if (!(rt->u.dst.dev->features&NETIF_F_SG)) {
969 unsigned int off;
971 off = skb->len;
972 if (getfrag(from, skb_put(skb, copy),
973 offset, copy, off, skb) < 0) {
974 __skb_trim(skb, off);
975 err = -EFAULT;
976 goto error;
978 } else {
979 int i = skb_shinfo(skb)->nr_frags;
980 skb_frag_t *frag = &skb_shinfo(skb)->frags[i-1];
981 struct page *page = sk->sk_sndmsg_page;
982 int off = sk->sk_sndmsg_off;
983 unsigned int left;
985 if (page && (left = PAGE_SIZE - off) > 0) {
986 if (copy >= left)
987 copy = left;
988 if (page != frag->page) {
989 if (i == MAX_SKB_FRAGS) {
990 err = -EMSGSIZE;
991 goto error;
993 get_page(page);
994 skb_fill_page_desc(skb, i, page, sk->sk_sndmsg_off, 0);
995 frag = &skb_shinfo(skb)->frags[i];
997 } else if (i < MAX_SKB_FRAGS) {
998 if (copy > PAGE_SIZE)
999 copy = PAGE_SIZE;
1000 page = alloc_pages(sk->sk_allocation, 0);
1001 if (page == NULL) {
1002 err = -ENOMEM;
1003 goto error;
1005 sk->sk_sndmsg_page = page;
1006 sk->sk_sndmsg_off = 0;
1008 skb_fill_page_desc(skb, i, page, 0, 0);
1009 frag = &skb_shinfo(skb)->frags[i];
1010 skb->truesize += PAGE_SIZE;
1011 atomic_add(PAGE_SIZE, &sk->sk_wmem_alloc);
1012 } else {
1013 err = -EMSGSIZE;
1014 goto error;
1016 if (getfrag(from, page_address(frag->page)+frag->page_offset+frag->size, offset, copy, skb->len, skb) < 0) {
1017 err = -EFAULT;
1018 goto error;
1020 sk->sk_sndmsg_off += copy;
1021 frag->size += copy;
1022 skb->len += copy;
1023 skb->data_len += copy;
1025 offset += copy;
1026 length -= copy;
1029 return 0;
1031 error:
1032 inet->cork.length -= length;
1033 IP_INC_STATS(IPSTATS_MIB_OUTDISCARDS);
1034 return err;
1037 ssize_t ip_append_page(struct sock *sk, struct page *page,
1038 int offset, size_t size, int flags)
1040 struct inet_sock *inet = inet_sk(sk);
1041 struct sk_buff *skb;
1042 struct rtable *rt;
1043 struct ip_options *opt = NULL;
1044 int hh_len;
1045 int mtu;
1046 int len;
1047 int err;
1048 unsigned int maxfraglen, fragheaderlen, fraggap;
1050 if (inet->hdrincl)
1051 return -EPERM;
1053 if (flags&MSG_PROBE)
1054 return 0;
1056 if (skb_queue_empty(&sk->sk_write_queue))
1057 return -EINVAL;
1059 rt = inet->cork.rt;
1060 if (inet->cork.flags & IPCORK_OPT)
1061 opt = inet->cork.opt;
1063 if (!(rt->u.dst.dev->features&NETIF_F_SG))
1064 return -EOPNOTSUPP;
1066 hh_len = LL_RESERVED_SPACE(rt->u.dst.dev);
1067 mtu = inet->cork.fragsize;
1069 fragheaderlen = sizeof(struct iphdr) + (opt ? opt->optlen : 0);
1070 maxfraglen = ((mtu - fragheaderlen) & ~7) + fragheaderlen;
1072 if (inet->cork.length + size > 0xFFFF - fragheaderlen) {
1073 ip_local_error(sk, EMSGSIZE, rt->rt_dst, inet->dport, mtu);
1074 return -EMSGSIZE;
1077 if ((skb = skb_peek_tail(&sk->sk_write_queue)) == NULL)
1078 return -EINVAL;
1080 inet->cork.length += size;
1081 if ((sk->sk_protocol == IPPROTO_UDP) &&
1082 (rt->u.dst.dev->features & NETIF_F_UFO)) {
1083 skb_shinfo(skb)->gso_size = mtu - fragheaderlen;
1084 skb_shinfo(skb)->gso_type = SKB_GSO_UDP;
1088 while (size > 0) {
1089 int i;
1091 if (skb_is_gso(skb))
1092 len = size;
1093 else {
1095 /* Check if the remaining data fits into current packet. */
1096 len = mtu - skb->len;
1097 if (len < size)
1098 len = maxfraglen - skb->len;
1100 if (len <= 0) {
1101 struct sk_buff *skb_prev;
1102 int alloclen;
1104 skb_prev = skb;
1105 fraggap = skb_prev->len - maxfraglen;
1107 alloclen = fragheaderlen + hh_len + fraggap + 15;
1108 skb = sock_wmalloc(sk, alloclen, 1, sk->sk_allocation);
1109 if (unlikely(!skb)) {
1110 err = -ENOBUFS;
1111 goto error;
1115 * Fill in the control structures
1117 skb->ip_summed = CHECKSUM_NONE;
1118 skb->csum = 0;
1119 skb_reserve(skb, hh_len);
1122 * Find where to start putting bytes.
1124 skb_put(skb, fragheaderlen + fraggap);
1125 skb_reset_network_header(skb);
1126 skb->transport_header = (skb->network_header +
1127 fragheaderlen);
1128 if (fraggap) {
1129 skb->csum = skb_copy_and_csum_bits(skb_prev,
1130 maxfraglen,
1131 skb_transport_header(skb),
1132 fraggap, 0);
1133 skb_prev->csum = csum_sub(skb_prev->csum,
1134 skb->csum);
1135 pskb_trim_unique(skb_prev, maxfraglen);
1139 * Put the packet on the pending queue.
1141 __skb_queue_tail(&sk->sk_write_queue, skb);
1142 continue;
1145 i = skb_shinfo(skb)->nr_frags;
1146 if (len > size)
1147 len = size;
1148 if (skb_can_coalesce(skb, i, page, offset)) {
1149 skb_shinfo(skb)->frags[i-1].size += len;
1150 } else if (i < MAX_SKB_FRAGS) {
1151 get_page(page);
1152 skb_fill_page_desc(skb, i, page, offset, len);
1153 } else {
1154 err = -EMSGSIZE;
1155 goto error;
1158 if (skb->ip_summed == CHECKSUM_NONE) {
1159 __wsum csum;
1160 csum = csum_page(page, offset, len);
1161 skb->csum = csum_block_add(skb->csum, csum, skb->len);
1164 skb->len += len;
1165 skb->data_len += len;
1166 offset += len;
1167 size -= len;
1169 return 0;
1171 error:
1172 inet->cork.length -= size;
1173 IP_INC_STATS(IPSTATS_MIB_OUTDISCARDS);
1174 return err;
1178 * Combined all pending IP fragments on the socket as one IP datagram
1179 * and push them out.
1181 int ip_push_pending_frames(struct sock *sk)
1183 struct sk_buff *skb, *tmp_skb;
1184 struct sk_buff **tail_skb;
1185 struct inet_sock *inet = inet_sk(sk);
1186 struct ip_options *opt = NULL;
1187 struct rtable *rt = inet->cork.rt;
1188 struct iphdr *iph;
1189 __be16 df = 0;
1190 __u8 ttl;
1191 int err = 0;
1193 if ((skb = __skb_dequeue(&sk->sk_write_queue)) == NULL)
1194 goto out;
1195 tail_skb = &(skb_shinfo(skb)->frag_list);
1197 /* move skb->data to ip header from ext header */
1198 if (skb->data < skb_network_header(skb))
1199 __skb_pull(skb, skb_network_offset(skb));
1200 while ((tmp_skb = __skb_dequeue(&sk->sk_write_queue)) != NULL) {
1201 __skb_pull(tmp_skb, skb_network_header_len(skb));
1202 *tail_skb = tmp_skb;
1203 tail_skb = &(tmp_skb->next);
1204 skb->len += tmp_skb->len;
1205 skb->data_len += tmp_skb->len;
1206 skb->truesize += tmp_skb->truesize;
1207 __sock_put(tmp_skb->sk);
1208 tmp_skb->destructor = NULL;
1209 tmp_skb->sk = NULL;
1212 /* Unless user demanded real pmtu discovery (IP_PMTUDISC_DO), we allow
1213 * to fragment the frame generated here. No matter, what transforms
1214 * how transforms change size of the packet, it will come out.
1216 if (inet->pmtudisc < IP_PMTUDISC_DO)
1217 skb->local_df = 1;
1219 /* DF bit is set when we want to see DF on outgoing frames.
1220 * If local_df is set too, we still allow to fragment this frame
1221 * locally. */
1222 if (inet->pmtudisc >= IP_PMTUDISC_DO ||
1223 (skb->len <= dst_mtu(&rt->u.dst) &&
1224 ip_dont_fragment(sk, &rt->u.dst)))
1225 df = htons(IP_DF);
1227 if (inet->cork.flags & IPCORK_OPT)
1228 opt = inet->cork.opt;
1230 if (rt->rt_type == RTN_MULTICAST)
1231 ttl = inet->mc_ttl;
1232 else
1233 ttl = ip_select_ttl(inet, &rt->u.dst);
1235 iph = (struct iphdr *)skb->data;
1236 iph->version = 4;
1237 iph->ihl = 5;
1238 if (opt) {
1239 iph->ihl += opt->optlen>>2;
1240 ip_options_build(skb, opt, inet->cork.addr, rt, 0);
1242 iph->tos = inet->tos;
1243 iph->tot_len = htons(skb->len);
1244 iph->frag_off = df;
1245 ip_select_ident(iph, &rt->u.dst, sk);
1246 iph->ttl = ttl;
1247 iph->protocol = sk->sk_protocol;
1248 iph->saddr = rt->rt_src;
1249 iph->daddr = rt->rt_dst;
1250 ip_send_check(iph);
1252 skb->priority = sk->sk_priority;
1253 skb->dst = dst_clone(&rt->u.dst);
1255 /* Netfilter gets whole the not fragmented skb. */
1256 err = NF_HOOK(PF_INET, NF_IP_LOCAL_OUT, skb, NULL,
1257 skb->dst->dev, dst_output);
1258 if (err) {
1259 if (err > 0)
1260 err = inet->recverr ? net_xmit_errno(err) : 0;
1261 if (err)
1262 goto error;
1265 out:
1266 inet->cork.flags &= ~IPCORK_OPT;
1267 kfree(inet->cork.opt);
1268 inet->cork.opt = NULL;
1269 if (inet->cork.rt) {
1270 ip_rt_put(inet->cork.rt);
1271 inet->cork.rt = NULL;
1273 return err;
1275 error:
1276 IP_INC_STATS(IPSTATS_MIB_OUTDISCARDS);
1277 goto out;
1281 * Throw away all pending data on the socket.
1283 void ip_flush_pending_frames(struct sock *sk)
1285 struct inet_sock *inet = inet_sk(sk);
1286 struct sk_buff *skb;
1288 while ((skb = __skb_dequeue_tail(&sk->sk_write_queue)) != NULL)
1289 kfree_skb(skb);
1291 inet->cork.flags &= ~IPCORK_OPT;
1292 kfree(inet->cork.opt);
1293 inet->cork.opt = NULL;
1294 if (inet->cork.rt) {
1295 ip_rt_put(inet->cork.rt);
1296 inet->cork.rt = NULL;
1302 * Fetch data from kernel space and fill in checksum if needed.
1304 static int ip_reply_glue_bits(void *dptr, char *to, int offset,
1305 int len, int odd, struct sk_buff *skb)
1307 __wsum csum;
1309 csum = csum_partial_copy_nocheck(dptr+offset, to, len, 0);
1310 skb->csum = csum_block_add(skb->csum, csum, odd);
1311 return 0;
1315 * Generic function to send a packet as reply to another packet.
1316 * Used to send TCP resets so far. ICMP should use this function too.
1318 * Should run single threaded per socket because it uses the sock
1319 * structure to pass arguments.
1321 * LATER: switch from ip_build_xmit to ip_append_*
1323 void ip_send_reply(struct sock *sk, struct sk_buff *skb, struct ip_reply_arg *arg,
1324 unsigned int len)
1326 struct inet_sock *inet = inet_sk(sk);
1327 struct {
1328 struct ip_options opt;
1329 char data[40];
1330 } replyopts;
1331 struct ipcm_cookie ipc;
1332 __be32 daddr;
1333 struct rtable *rt = (struct rtable*)skb->dst;
1335 if (ip_options_echo(&replyopts.opt, skb))
1336 return;
1338 daddr = ipc.addr = rt->rt_src;
1339 ipc.opt = NULL;
1341 if (replyopts.opt.optlen) {
1342 ipc.opt = &replyopts.opt;
1344 if (ipc.opt->srr)
1345 daddr = replyopts.opt.faddr;
1349 struct flowi fl = { .nl_u = { .ip4_u =
1350 { .daddr = daddr,
1351 .saddr = rt->rt_spec_dst,
1352 .tos = RT_TOS(ip_hdr(skb)->tos) } },
1353 /* Not quite clean, but right. */
1354 .uli_u = { .ports =
1355 { .sport = tcp_hdr(skb)->dest,
1356 .dport = tcp_hdr(skb)->source } },
1357 .proto = sk->sk_protocol };
1358 security_skb_classify_flow(skb, &fl);
1359 if (ip_route_output_key(&rt, &fl))
1360 return;
1363 /* And let IP do all the hard work.
1365 This chunk is not reenterable, hence spinlock.
1366 Note that it uses the fact, that this function is called
1367 with locally disabled BH and that sk cannot be already spinlocked.
1369 bh_lock_sock(sk);
1370 inet->tos = ip_hdr(skb)->tos;
1371 sk->sk_priority = skb->priority;
1372 sk->sk_protocol = ip_hdr(skb)->protocol;
1373 ip_append_data(sk, ip_reply_glue_bits, arg->iov->iov_base, len, 0,
1374 &ipc, rt, MSG_DONTWAIT);
1375 if ((skb = skb_peek(&sk->sk_write_queue)) != NULL) {
1376 if (arg->csumoffset >= 0)
1377 *((__sum16 *)skb_transport_header(skb) +
1378 arg->csumoffset) = csum_fold(csum_add(skb->csum,
1379 arg->csum));
1380 skb->ip_summed = CHECKSUM_NONE;
1381 ip_push_pending_frames(sk);
1384 bh_unlock_sock(sk);
1386 ip_rt_put(rt);
1389 void __init ip_init(void)
1391 ip_rt_init();
1392 inet_initpeers();
1394 #if defined(CONFIG_IP_MULTICAST) && defined(CONFIG_PROC_FS)
1395 igmp_mc_proc_init();
1396 #endif
1399 EXPORT_SYMBOL(ip_generic_getfrag);
1400 EXPORT_SYMBOL(ip_queue_xmit);
1401 EXPORT_SYMBOL(ip_send_check);