USB: musb: disable double buffering for older RTL versions
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / kernel / kprobes.c
blobccec774c716d82d631d291e8c8693fb3da307b55
1 /*
2 * Kernel Probes (KProbes)
3 * kernel/kprobes.c
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation; either version 2 of the License, or
8 * (at your option) any later version.
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write to the Free Software
17 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19 * Copyright (C) IBM Corporation, 2002, 2004
21 * 2002-Oct Created by Vamsi Krishna S <vamsi_krishna@in.ibm.com> Kernel
22 * Probes initial implementation (includes suggestions from
23 * Rusty Russell).
24 * 2004-Aug Updated by Prasanna S Panchamukhi <prasanna@in.ibm.com> with
25 * hlists and exceptions notifier as suggested by Andi Kleen.
26 * 2004-July Suparna Bhattacharya <suparna@in.ibm.com> added jumper probes
27 * interface to access function arguments.
28 * 2004-Sep Prasanna S Panchamukhi <prasanna@in.ibm.com> Changed Kprobes
29 * exceptions notifier to be first on the priority list.
30 * 2005-May Hien Nguyen <hien@us.ibm.com>, Jim Keniston
31 * <jkenisto@us.ibm.com> and Prasanna S Panchamukhi
32 * <prasanna@in.ibm.com> added function-return probes.
34 #include <linux/kprobes.h>
35 #include <linux/hash.h>
36 #include <linux/init.h>
37 #include <linux/slab.h>
38 #include <linux/stddef.h>
39 #include <linux/module.h>
40 #include <linux/moduleloader.h>
41 #include <linux/kallsyms.h>
42 #include <linux/freezer.h>
43 #include <linux/seq_file.h>
44 #include <linux/debugfs.h>
45 #include <linux/kdebug.h>
46 #include <linux/memory.h>
47 #include <linux/ftrace.h>
49 #include <asm-generic/sections.h>
50 #include <asm/cacheflush.h>
51 #include <asm/errno.h>
52 #include <asm/uaccess.h>
54 #define KPROBE_HASH_BITS 6
55 #define KPROBE_TABLE_SIZE (1 << KPROBE_HASH_BITS)
59 * Some oddball architectures like 64bit powerpc have function descriptors
60 * so this must be overridable.
62 #ifndef kprobe_lookup_name
63 #define kprobe_lookup_name(name, addr) \
64 addr = ((kprobe_opcode_t *)(kallsyms_lookup_name(name)))
65 #endif
67 static int kprobes_initialized;
68 static struct hlist_head kprobe_table[KPROBE_TABLE_SIZE];
69 static struct hlist_head kretprobe_inst_table[KPROBE_TABLE_SIZE];
71 /* NOTE: change this value only with kprobe_mutex held */
72 static bool kprobes_all_disarmed;
74 static DEFINE_MUTEX(kprobe_mutex); /* Protects kprobe_table */
75 static DEFINE_PER_CPU(struct kprobe *, kprobe_instance) = NULL;
76 static struct {
77 spinlock_t lock ____cacheline_aligned_in_smp;
78 } kretprobe_table_locks[KPROBE_TABLE_SIZE];
80 static spinlock_t *kretprobe_table_lock_ptr(unsigned long hash)
82 return &(kretprobe_table_locks[hash].lock);
86 * Normally, functions that we'd want to prohibit kprobes in, are marked
87 * __kprobes. But, there are cases where such functions already belong to
88 * a different section (__sched for preempt_schedule)
90 * For such cases, we now have a blacklist
92 static struct kprobe_blackpoint kprobe_blacklist[] = {
93 {"preempt_schedule",},
94 {"native_get_debugreg",},
95 {"irq_entries_start",},
96 {"common_interrupt",},
97 {"mcount",}, /* mcount can be called from everywhere */
98 {NULL} /* Terminator */
101 #ifdef __ARCH_WANT_KPROBES_INSN_SLOT
103 * kprobe->ainsn.insn points to the copy of the instruction to be
104 * single-stepped. x86_64, POWER4 and above have no-exec support and
105 * stepping on the instruction on a vmalloced/kmalloced/data page
106 * is a recipe for disaster
108 #define INSNS_PER_PAGE (PAGE_SIZE/(MAX_INSN_SIZE * sizeof(kprobe_opcode_t)))
110 struct kprobe_insn_page {
111 struct list_head list;
112 kprobe_opcode_t *insns; /* Page of instruction slots */
113 char slot_used[INSNS_PER_PAGE];
114 int nused;
115 int ngarbage;
118 enum kprobe_slot_state {
119 SLOT_CLEAN = 0,
120 SLOT_DIRTY = 1,
121 SLOT_USED = 2,
124 static DEFINE_MUTEX(kprobe_insn_mutex); /* Protects kprobe_insn_pages */
125 static LIST_HEAD(kprobe_insn_pages);
126 static int kprobe_garbage_slots;
127 static int collect_garbage_slots(void);
130 * __get_insn_slot() - Find a slot on an executable page for an instruction.
131 * We allocate an executable page if there's no room on existing ones.
133 static kprobe_opcode_t __kprobes *__get_insn_slot(void)
135 struct kprobe_insn_page *kip;
137 retry:
138 list_for_each_entry(kip, &kprobe_insn_pages, list) {
139 if (kip->nused < INSNS_PER_PAGE) {
140 int i;
141 for (i = 0; i < INSNS_PER_PAGE; i++) {
142 if (kip->slot_used[i] == SLOT_CLEAN) {
143 kip->slot_used[i] = SLOT_USED;
144 kip->nused++;
145 return kip->insns + (i * MAX_INSN_SIZE);
148 /* Surprise! No unused slots. Fix kip->nused. */
149 kip->nused = INSNS_PER_PAGE;
153 /* If there are any garbage slots, collect it and try again. */
154 if (kprobe_garbage_slots && collect_garbage_slots() == 0) {
155 goto retry;
157 /* All out of space. Need to allocate a new page. Use slot 0. */
158 kip = kmalloc(sizeof(struct kprobe_insn_page), GFP_KERNEL);
159 if (!kip)
160 return NULL;
163 * Use module_alloc so this page is within +/- 2GB of where the
164 * kernel image and loaded module images reside. This is required
165 * so x86_64 can correctly handle the %rip-relative fixups.
167 kip->insns = module_alloc(PAGE_SIZE);
168 if (!kip->insns) {
169 kfree(kip);
170 return NULL;
172 INIT_LIST_HEAD(&kip->list);
173 list_add(&kip->list, &kprobe_insn_pages);
174 memset(kip->slot_used, SLOT_CLEAN, INSNS_PER_PAGE);
175 kip->slot_used[0] = SLOT_USED;
176 kip->nused = 1;
177 kip->ngarbage = 0;
178 return kip->insns;
181 kprobe_opcode_t __kprobes *get_insn_slot(void)
183 kprobe_opcode_t *ret;
184 mutex_lock(&kprobe_insn_mutex);
185 ret = __get_insn_slot();
186 mutex_unlock(&kprobe_insn_mutex);
187 return ret;
190 /* Return 1 if all garbages are collected, otherwise 0. */
191 static int __kprobes collect_one_slot(struct kprobe_insn_page *kip, int idx)
193 kip->slot_used[idx] = SLOT_CLEAN;
194 kip->nused--;
195 if (kip->nused == 0) {
197 * Page is no longer in use. Free it unless
198 * it's the last one. We keep the last one
199 * so as not to have to set it up again the
200 * next time somebody inserts a probe.
202 if (!list_is_singular(&kprobe_insn_pages)) {
203 list_del(&kip->list);
204 module_free(NULL, kip->insns);
205 kfree(kip);
207 return 1;
209 return 0;
212 static int __kprobes collect_garbage_slots(void)
214 struct kprobe_insn_page *kip, *next;
216 /* Ensure no-one is interrupted on the garbages */
217 synchronize_sched();
219 list_for_each_entry_safe(kip, next, &kprobe_insn_pages, list) {
220 int i;
221 if (kip->ngarbage == 0)
222 continue;
223 kip->ngarbage = 0; /* we will collect all garbages */
224 for (i = 0; i < INSNS_PER_PAGE; i++) {
225 if (kip->slot_used[i] == SLOT_DIRTY &&
226 collect_one_slot(kip, i))
227 break;
230 kprobe_garbage_slots = 0;
231 return 0;
234 void __kprobes free_insn_slot(kprobe_opcode_t * slot, int dirty)
236 struct kprobe_insn_page *kip;
238 mutex_lock(&kprobe_insn_mutex);
239 list_for_each_entry(kip, &kprobe_insn_pages, list) {
240 if (kip->insns <= slot &&
241 slot < kip->insns + (INSNS_PER_PAGE * MAX_INSN_SIZE)) {
242 int i = (slot - kip->insns) / MAX_INSN_SIZE;
243 if (dirty) {
244 kip->slot_used[i] = SLOT_DIRTY;
245 kip->ngarbage++;
246 } else
247 collect_one_slot(kip, i);
248 break;
252 if (dirty && ++kprobe_garbage_slots > INSNS_PER_PAGE)
253 collect_garbage_slots();
255 mutex_unlock(&kprobe_insn_mutex);
257 #endif
259 /* We have preemption disabled.. so it is safe to use __ versions */
260 static inline void set_kprobe_instance(struct kprobe *kp)
262 __get_cpu_var(kprobe_instance) = kp;
265 static inline void reset_kprobe_instance(void)
267 __get_cpu_var(kprobe_instance) = NULL;
271 * This routine is called either:
272 * - under the kprobe_mutex - during kprobe_[un]register()
273 * OR
274 * - with preemption disabled - from arch/xxx/kernel/kprobes.c
276 struct kprobe __kprobes *get_kprobe(void *addr)
278 struct hlist_head *head;
279 struct hlist_node *node;
280 struct kprobe *p;
282 head = &kprobe_table[hash_ptr(addr, KPROBE_HASH_BITS)];
283 hlist_for_each_entry_rcu(p, node, head, hlist) {
284 if (p->addr == addr)
285 return p;
287 return NULL;
290 /* Arm a kprobe with text_mutex */
291 static void __kprobes arm_kprobe(struct kprobe *kp)
293 mutex_lock(&text_mutex);
294 arch_arm_kprobe(kp);
295 mutex_unlock(&text_mutex);
298 /* Disarm a kprobe with text_mutex */
299 static void __kprobes disarm_kprobe(struct kprobe *kp)
301 mutex_lock(&text_mutex);
302 arch_disarm_kprobe(kp);
303 mutex_unlock(&text_mutex);
307 * Aggregate handlers for multiple kprobes support - these handlers
308 * take care of invoking the individual kprobe handlers on p->list
310 static int __kprobes aggr_pre_handler(struct kprobe *p, struct pt_regs *regs)
312 struct kprobe *kp;
314 list_for_each_entry_rcu(kp, &p->list, list) {
315 if (kp->pre_handler && likely(!kprobe_disabled(kp))) {
316 set_kprobe_instance(kp);
317 if (kp->pre_handler(kp, regs))
318 return 1;
320 reset_kprobe_instance();
322 return 0;
325 static void __kprobes aggr_post_handler(struct kprobe *p, struct pt_regs *regs,
326 unsigned long flags)
328 struct kprobe *kp;
330 list_for_each_entry_rcu(kp, &p->list, list) {
331 if (kp->post_handler && likely(!kprobe_disabled(kp))) {
332 set_kprobe_instance(kp);
333 kp->post_handler(kp, regs, flags);
334 reset_kprobe_instance();
339 static int __kprobes aggr_fault_handler(struct kprobe *p, struct pt_regs *regs,
340 int trapnr)
342 struct kprobe *cur = __get_cpu_var(kprobe_instance);
345 * if we faulted "during" the execution of a user specified
346 * probe handler, invoke just that probe's fault handler
348 if (cur && cur->fault_handler) {
349 if (cur->fault_handler(cur, regs, trapnr))
350 return 1;
352 return 0;
355 static int __kprobes aggr_break_handler(struct kprobe *p, struct pt_regs *regs)
357 struct kprobe *cur = __get_cpu_var(kprobe_instance);
358 int ret = 0;
360 if (cur && cur->break_handler) {
361 if (cur->break_handler(cur, regs))
362 ret = 1;
364 reset_kprobe_instance();
365 return ret;
368 /* Walks the list and increments nmissed count for multiprobe case */
369 void __kprobes kprobes_inc_nmissed_count(struct kprobe *p)
371 struct kprobe *kp;
372 if (p->pre_handler != aggr_pre_handler) {
373 p->nmissed++;
374 } else {
375 list_for_each_entry_rcu(kp, &p->list, list)
376 kp->nmissed++;
378 return;
381 void __kprobes recycle_rp_inst(struct kretprobe_instance *ri,
382 struct hlist_head *head)
384 struct kretprobe *rp = ri->rp;
386 /* remove rp inst off the rprobe_inst_table */
387 hlist_del(&ri->hlist);
388 INIT_HLIST_NODE(&ri->hlist);
389 if (likely(rp)) {
390 spin_lock(&rp->lock);
391 hlist_add_head(&ri->hlist, &rp->free_instances);
392 spin_unlock(&rp->lock);
393 } else
394 /* Unregistering */
395 hlist_add_head(&ri->hlist, head);
398 void __kprobes kretprobe_hash_lock(struct task_struct *tsk,
399 struct hlist_head **head, unsigned long *flags)
401 unsigned long hash = hash_ptr(tsk, KPROBE_HASH_BITS);
402 spinlock_t *hlist_lock;
404 *head = &kretprobe_inst_table[hash];
405 hlist_lock = kretprobe_table_lock_ptr(hash);
406 spin_lock_irqsave(hlist_lock, *flags);
409 static void __kprobes kretprobe_table_lock(unsigned long hash,
410 unsigned long *flags)
412 spinlock_t *hlist_lock = kretprobe_table_lock_ptr(hash);
413 spin_lock_irqsave(hlist_lock, *flags);
416 void __kprobes kretprobe_hash_unlock(struct task_struct *tsk,
417 unsigned long *flags)
419 unsigned long hash = hash_ptr(tsk, KPROBE_HASH_BITS);
420 spinlock_t *hlist_lock;
422 hlist_lock = kretprobe_table_lock_ptr(hash);
423 spin_unlock_irqrestore(hlist_lock, *flags);
426 void __kprobes kretprobe_table_unlock(unsigned long hash, unsigned long *flags)
428 spinlock_t *hlist_lock = kretprobe_table_lock_ptr(hash);
429 spin_unlock_irqrestore(hlist_lock, *flags);
433 * This function is called from finish_task_switch when task tk becomes dead,
434 * so that we can recycle any function-return probe instances associated
435 * with this task. These left over instances represent probed functions
436 * that have been called but will never return.
438 void __kprobes kprobe_flush_task(struct task_struct *tk)
440 struct kretprobe_instance *ri;
441 struct hlist_head *head, empty_rp;
442 struct hlist_node *node, *tmp;
443 unsigned long hash, flags = 0;
445 if (unlikely(!kprobes_initialized))
446 /* Early boot. kretprobe_table_locks not yet initialized. */
447 return;
449 hash = hash_ptr(tk, KPROBE_HASH_BITS);
450 head = &kretprobe_inst_table[hash];
451 kretprobe_table_lock(hash, &flags);
452 hlist_for_each_entry_safe(ri, node, tmp, head, hlist) {
453 if (ri->task == tk)
454 recycle_rp_inst(ri, &empty_rp);
456 kretprobe_table_unlock(hash, &flags);
457 INIT_HLIST_HEAD(&empty_rp);
458 hlist_for_each_entry_safe(ri, node, tmp, &empty_rp, hlist) {
459 hlist_del(&ri->hlist);
460 kfree(ri);
464 static inline void free_rp_inst(struct kretprobe *rp)
466 struct kretprobe_instance *ri;
467 struct hlist_node *pos, *next;
469 hlist_for_each_entry_safe(ri, pos, next, &rp->free_instances, hlist) {
470 hlist_del(&ri->hlist);
471 kfree(ri);
475 static void __kprobes cleanup_rp_inst(struct kretprobe *rp)
477 unsigned long flags, hash;
478 struct kretprobe_instance *ri;
479 struct hlist_node *pos, *next;
480 struct hlist_head *head;
482 /* No race here */
483 for (hash = 0; hash < KPROBE_TABLE_SIZE; hash++) {
484 kretprobe_table_lock(hash, &flags);
485 head = &kretprobe_inst_table[hash];
486 hlist_for_each_entry_safe(ri, pos, next, head, hlist) {
487 if (ri->rp == rp)
488 ri->rp = NULL;
490 kretprobe_table_unlock(hash, &flags);
492 free_rp_inst(rp);
496 * Keep all fields in the kprobe consistent
498 static inline void copy_kprobe(struct kprobe *old_p, struct kprobe *p)
500 memcpy(&p->opcode, &old_p->opcode, sizeof(kprobe_opcode_t));
501 memcpy(&p->ainsn, &old_p->ainsn, sizeof(struct arch_specific_insn));
505 * Add the new probe to ap->list. Fail if this is the
506 * second jprobe at the address - two jprobes can't coexist
508 static int __kprobes add_new_kprobe(struct kprobe *ap, struct kprobe *p)
510 BUG_ON(kprobe_gone(ap) || kprobe_gone(p));
511 if (p->break_handler) {
512 if (ap->break_handler)
513 return -EEXIST;
514 list_add_tail_rcu(&p->list, &ap->list);
515 ap->break_handler = aggr_break_handler;
516 } else
517 list_add_rcu(&p->list, &ap->list);
518 if (p->post_handler && !ap->post_handler)
519 ap->post_handler = aggr_post_handler;
521 if (kprobe_disabled(ap) && !kprobe_disabled(p)) {
522 ap->flags &= ~KPROBE_FLAG_DISABLED;
523 if (!kprobes_all_disarmed)
524 /* Arm the breakpoint again. */
525 arm_kprobe(ap);
527 return 0;
531 * Fill in the required fields of the "manager kprobe". Replace the
532 * earlier kprobe in the hlist with the manager kprobe
534 static inline void add_aggr_kprobe(struct kprobe *ap, struct kprobe *p)
536 copy_kprobe(p, ap);
537 flush_insn_slot(ap);
538 ap->addr = p->addr;
539 ap->flags = p->flags;
540 ap->pre_handler = aggr_pre_handler;
541 ap->fault_handler = aggr_fault_handler;
542 /* We don't care the kprobe which has gone. */
543 if (p->post_handler && !kprobe_gone(p))
544 ap->post_handler = aggr_post_handler;
545 if (p->break_handler && !kprobe_gone(p))
546 ap->break_handler = aggr_break_handler;
548 INIT_LIST_HEAD(&ap->list);
549 list_add_rcu(&p->list, &ap->list);
551 hlist_replace_rcu(&p->hlist, &ap->hlist);
555 * This is the second or subsequent kprobe at the address - handle
556 * the intricacies
558 static int __kprobes register_aggr_kprobe(struct kprobe *old_p,
559 struct kprobe *p)
561 int ret = 0;
562 struct kprobe *ap = old_p;
564 if (old_p->pre_handler != aggr_pre_handler) {
565 /* If old_p is not an aggr_probe, create new aggr_kprobe. */
566 ap = kzalloc(sizeof(struct kprobe), GFP_KERNEL);
567 if (!ap)
568 return -ENOMEM;
569 add_aggr_kprobe(ap, old_p);
572 if (kprobe_gone(ap)) {
574 * Attempting to insert new probe at the same location that
575 * had a probe in the module vaddr area which already
576 * freed. So, the instruction slot has already been
577 * released. We need a new slot for the new probe.
579 ret = arch_prepare_kprobe(ap);
580 if (ret)
582 * Even if fail to allocate new slot, don't need to
583 * free aggr_probe. It will be used next time, or
584 * freed by unregister_kprobe.
586 return ret;
589 * Clear gone flag to prevent allocating new slot again, and
590 * set disabled flag because it is not armed yet.
592 ap->flags = (ap->flags & ~KPROBE_FLAG_GONE)
593 | KPROBE_FLAG_DISABLED;
596 copy_kprobe(ap, p);
597 return add_new_kprobe(ap, p);
600 /* Try to disable aggr_kprobe, and return 1 if succeeded.*/
601 static int __kprobes try_to_disable_aggr_kprobe(struct kprobe *p)
603 struct kprobe *kp;
605 list_for_each_entry_rcu(kp, &p->list, list) {
606 if (!kprobe_disabled(kp))
608 * There is an active probe on the list.
609 * We can't disable aggr_kprobe.
611 return 0;
613 p->flags |= KPROBE_FLAG_DISABLED;
614 return 1;
617 static int __kprobes in_kprobes_functions(unsigned long addr)
619 struct kprobe_blackpoint *kb;
621 if (addr >= (unsigned long)__kprobes_text_start &&
622 addr < (unsigned long)__kprobes_text_end)
623 return -EINVAL;
625 * If there exists a kprobe_blacklist, verify and
626 * fail any probe registration in the prohibited area
628 for (kb = kprobe_blacklist; kb->name != NULL; kb++) {
629 if (kb->start_addr) {
630 if (addr >= kb->start_addr &&
631 addr < (kb->start_addr + kb->range))
632 return -EINVAL;
635 return 0;
639 * If we have a symbol_name argument, look it up and add the offset field
640 * to it. This way, we can specify a relative address to a symbol.
642 static kprobe_opcode_t __kprobes *kprobe_addr(struct kprobe *p)
644 kprobe_opcode_t *addr = p->addr;
645 if (p->symbol_name) {
646 if (addr)
647 return NULL;
648 kprobe_lookup_name(p->symbol_name, addr);
651 if (!addr)
652 return NULL;
653 return (kprobe_opcode_t *)(((char *)addr) + p->offset);
656 /* Check passed kprobe is valid and return kprobe in kprobe_table. */
657 static struct kprobe * __kprobes __get_valid_kprobe(struct kprobe *p)
659 struct kprobe *old_p, *list_p;
661 old_p = get_kprobe(p->addr);
662 if (unlikely(!old_p))
663 return NULL;
665 if (p != old_p) {
666 list_for_each_entry_rcu(list_p, &old_p->list, list)
667 if (list_p == p)
668 /* kprobe p is a valid probe */
669 goto valid;
670 return NULL;
672 valid:
673 return old_p;
676 /* Return error if the kprobe is being re-registered */
677 static inline int check_kprobe_rereg(struct kprobe *p)
679 int ret = 0;
680 struct kprobe *old_p;
682 mutex_lock(&kprobe_mutex);
683 old_p = __get_valid_kprobe(p);
684 if (old_p)
685 ret = -EINVAL;
686 mutex_unlock(&kprobe_mutex);
687 return ret;
690 int __kprobes register_kprobe(struct kprobe *p)
692 int ret = 0;
693 struct kprobe *old_p;
694 struct module *probed_mod;
695 kprobe_opcode_t *addr;
697 addr = kprobe_addr(p);
698 if (!addr)
699 return -EINVAL;
700 p->addr = addr;
702 ret = check_kprobe_rereg(p);
703 if (ret)
704 return ret;
706 preempt_disable();
707 if (!kernel_text_address((unsigned long) p->addr) ||
708 in_kprobes_functions((unsigned long) p->addr) ||
709 ftrace_text_reserved(p->addr, p->addr)) {
710 preempt_enable();
711 return -EINVAL;
714 /* User can pass only KPROBE_FLAG_DISABLED to register_kprobe */
715 p->flags &= KPROBE_FLAG_DISABLED;
718 * Check if are we probing a module.
720 probed_mod = __module_text_address((unsigned long) p->addr);
721 if (probed_mod) {
723 * We must hold a refcount of the probed module while updating
724 * its code to prohibit unexpected unloading.
726 if (unlikely(!try_module_get(probed_mod))) {
727 preempt_enable();
728 return -EINVAL;
731 * If the module freed .init.text, we couldn't insert
732 * kprobes in there.
734 if (within_module_init((unsigned long)p->addr, probed_mod) &&
735 probed_mod->state != MODULE_STATE_COMING) {
736 module_put(probed_mod);
737 preempt_enable();
738 return -EINVAL;
741 preempt_enable();
743 p->nmissed = 0;
744 INIT_LIST_HEAD(&p->list);
745 mutex_lock(&kprobe_mutex);
746 old_p = get_kprobe(p->addr);
747 if (old_p) {
748 ret = register_aggr_kprobe(old_p, p);
749 goto out;
752 mutex_lock(&text_mutex);
753 ret = arch_prepare_kprobe(p);
754 if (ret)
755 goto out_unlock_text;
757 INIT_HLIST_NODE(&p->hlist);
758 hlist_add_head_rcu(&p->hlist,
759 &kprobe_table[hash_ptr(p->addr, KPROBE_HASH_BITS)]);
761 if (!kprobes_all_disarmed && !kprobe_disabled(p))
762 arch_arm_kprobe(p);
764 out_unlock_text:
765 mutex_unlock(&text_mutex);
766 out:
767 mutex_unlock(&kprobe_mutex);
769 if (probed_mod)
770 module_put(probed_mod);
772 return ret;
774 EXPORT_SYMBOL_GPL(register_kprobe);
777 * Unregister a kprobe without a scheduler synchronization.
779 static int __kprobes __unregister_kprobe_top(struct kprobe *p)
781 struct kprobe *old_p, *list_p;
783 old_p = __get_valid_kprobe(p);
784 if (old_p == NULL)
785 return -EINVAL;
787 if (old_p == p ||
788 (old_p->pre_handler == aggr_pre_handler &&
789 list_is_singular(&old_p->list))) {
791 * Only probe on the hash list. Disarm only if kprobes are
792 * enabled and not gone - otherwise, the breakpoint would
793 * already have been removed. We save on flushing icache.
795 if (!kprobes_all_disarmed && !kprobe_disabled(old_p))
796 disarm_kprobe(p);
797 hlist_del_rcu(&old_p->hlist);
798 } else {
799 if (p->break_handler && !kprobe_gone(p))
800 old_p->break_handler = NULL;
801 if (p->post_handler && !kprobe_gone(p)) {
802 list_for_each_entry_rcu(list_p, &old_p->list, list) {
803 if ((list_p != p) && (list_p->post_handler))
804 goto noclean;
806 old_p->post_handler = NULL;
808 noclean:
809 list_del_rcu(&p->list);
810 if (!kprobe_disabled(old_p)) {
811 try_to_disable_aggr_kprobe(old_p);
812 if (!kprobes_all_disarmed && kprobe_disabled(old_p))
813 disarm_kprobe(old_p);
816 return 0;
819 static void __kprobes __unregister_kprobe_bottom(struct kprobe *p)
821 struct kprobe *old_p;
823 if (list_empty(&p->list))
824 arch_remove_kprobe(p);
825 else if (list_is_singular(&p->list)) {
826 /* "p" is the last child of an aggr_kprobe */
827 old_p = list_entry(p->list.next, struct kprobe, list);
828 list_del(&p->list);
829 arch_remove_kprobe(old_p);
830 kfree(old_p);
834 int __kprobes register_kprobes(struct kprobe **kps, int num)
836 int i, ret = 0;
838 if (num <= 0)
839 return -EINVAL;
840 for (i = 0; i < num; i++) {
841 ret = register_kprobe(kps[i]);
842 if (ret < 0) {
843 if (i > 0)
844 unregister_kprobes(kps, i);
845 break;
848 return ret;
850 EXPORT_SYMBOL_GPL(register_kprobes);
852 void __kprobes unregister_kprobe(struct kprobe *p)
854 unregister_kprobes(&p, 1);
856 EXPORT_SYMBOL_GPL(unregister_kprobe);
858 void __kprobes unregister_kprobes(struct kprobe **kps, int num)
860 int i;
862 if (num <= 0)
863 return;
864 mutex_lock(&kprobe_mutex);
865 for (i = 0; i < num; i++)
866 if (__unregister_kprobe_top(kps[i]) < 0)
867 kps[i]->addr = NULL;
868 mutex_unlock(&kprobe_mutex);
870 synchronize_sched();
871 for (i = 0; i < num; i++)
872 if (kps[i]->addr)
873 __unregister_kprobe_bottom(kps[i]);
875 EXPORT_SYMBOL_GPL(unregister_kprobes);
877 static struct notifier_block kprobe_exceptions_nb = {
878 .notifier_call = kprobe_exceptions_notify,
879 .priority = 0x7fffffff /* we need to be notified first */
882 unsigned long __weak arch_deref_entry_point(void *entry)
884 return (unsigned long)entry;
887 int __kprobes register_jprobes(struct jprobe **jps, int num)
889 struct jprobe *jp;
890 int ret = 0, i;
892 if (num <= 0)
893 return -EINVAL;
894 for (i = 0; i < num; i++) {
895 unsigned long addr;
896 jp = jps[i];
897 addr = arch_deref_entry_point(jp->entry);
899 if (!kernel_text_address(addr))
900 ret = -EINVAL;
901 else {
902 /* Todo: Verify probepoint is a function entry point */
903 jp->kp.pre_handler = setjmp_pre_handler;
904 jp->kp.break_handler = longjmp_break_handler;
905 ret = register_kprobe(&jp->kp);
907 if (ret < 0) {
908 if (i > 0)
909 unregister_jprobes(jps, i);
910 break;
913 return ret;
915 EXPORT_SYMBOL_GPL(register_jprobes);
917 int __kprobes register_jprobe(struct jprobe *jp)
919 return register_jprobes(&jp, 1);
921 EXPORT_SYMBOL_GPL(register_jprobe);
923 void __kprobes unregister_jprobe(struct jprobe *jp)
925 unregister_jprobes(&jp, 1);
927 EXPORT_SYMBOL_GPL(unregister_jprobe);
929 void __kprobes unregister_jprobes(struct jprobe **jps, int num)
931 int i;
933 if (num <= 0)
934 return;
935 mutex_lock(&kprobe_mutex);
936 for (i = 0; i < num; i++)
937 if (__unregister_kprobe_top(&jps[i]->kp) < 0)
938 jps[i]->kp.addr = NULL;
939 mutex_unlock(&kprobe_mutex);
941 synchronize_sched();
942 for (i = 0; i < num; i++) {
943 if (jps[i]->kp.addr)
944 __unregister_kprobe_bottom(&jps[i]->kp);
947 EXPORT_SYMBOL_GPL(unregister_jprobes);
949 #ifdef CONFIG_KRETPROBES
951 * This kprobe pre_handler is registered with every kretprobe. When probe
952 * hits it will set up the return probe.
954 static int __kprobes pre_handler_kretprobe(struct kprobe *p,
955 struct pt_regs *regs)
957 struct kretprobe *rp = container_of(p, struct kretprobe, kp);
958 unsigned long hash, flags = 0;
959 struct kretprobe_instance *ri;
961 /*TODO: consider to only swap the RA after the last pre_handler fired */
962 hash = hash_ptr(current, KPROBE_HASH_BITS);
963 spin_lock_irqsave(&rp->lock, flags);
964 if (!hlist_empty(&rp->free_instances)) {
965 ri = hlist_entry(rp->free_instances.first,
966 struct kretprobe_instance, hlist);
967 hlist_del(&ri->hlist);
968 spin_unlock_irqrestore(&rp->lock, flags);
970 ri->rp = rp;
971 ri->task = current;
973 if (rp->entry_handler && rp->entry_handler(ri, regs))
974 return 0;
976 arch_prepare_kretprobe(ri, regs);
978 /* XXX(hch): why is there no hlist_move_head? */
979 INIT_HLIST_NODE(&ri->hlist);
980 kretprobe_table_lock(hash, &flags);
981 hlist_add_head(&ri->hlist, &kretprobe_inst_table[hash]);
982 kretprobe_table_unlock(hash, &flags);
983 } else {
984 rp->nmissed++;
985 spin_unlock_irqrestore(&rp->lock, flags);
987 return 0;
990 int __kprobes register_kretprobe(struct kretprobe *rp)
992 int ret = 0;
993 struct kretprobe_instance *inst;
994 int i;
995 void *addr;
997 if (kretprobe_blacklist_size) {
998 addr = kprobe_addr(&rp->kp);
999 if (!addr)
1000 return -EINVAL;
1002 for (i = 0; kretprobe_blacklist[i].name != NULL; i++) {
1003 if (kretprobe_blacklist[i].addr == addr)
1004 return -EINVAL;
1008 rp->kp.pre_handler = pre_handler_kretprobe;
1009 rp->kp.post_handler = NULL;
1010 rp->kp.fault_handler = NULL;
1011 rp->kp.break_handler = NULL;
1013 /* Pre-allocate memory for max kretprobe instances */
1014 if (rp->maxactive <= 0) {
1015 #ifdef CONFIG_PREEMPT
1016 rp->maxactive = max_t(unsigned int, 10, 2*num_possible_cpus());
1017 #else
1018 rp->maxactive = num_possible_cpus();
1019 #endif
1021 spin_lock_init(&rp->lock);
1022 INIT_HLIST_HEAD(&rp->free_instances);
1023 for (i = 0; i < rp->maxactive; i++) {
1024 inst = kmalloc(sizeof(struct kretprobe_instance) +
1025 rp->data_size, GFP_KERNEL);
1026 if (inst == NULL) {
1027 free_rp_inst(rp);
1028 return -ENOMEM;
1030 INIT_HLIST_NODE(&inst->hlist);
1031 hlist_add_head(&inst->hlist, &rp->free_instances);
1034 rp->nmissed = 0;
1035 /* Establish function entry probe point */
1036 ret = register_kprobe(&rp->kp);
1037 if (ret != 0)
1038 free_rp_inst(rp);
1039 return ret;
1041 EXPORT_SYMBOL_GPL(register_kretprobe);
1043 int __kprobes register_kretprobes(struct kretprobe **rps, int num)
1045 int ret = 0, i;
1047 if (num <= 0)
1048 return -EINVAL;
1049 for (i = 0; i < num; i++) {
1050 ret = register_kretprobe(rps[i]);
1051 if (ret < 0) {
1052 if (i > 0)
1053 unregister_kretprobes(rps, i);
1054 break;
1057 return ret;
1059 EXPORT_SYMBOL_GPL(register_kretprobes);
1061 void __kprobes unregister_kretprobe(struct kretprobe *rp)
1063 unregister_kretprobes(&rp, 1);
1065 EXPORT_SYMBOL_GPL(unregister_kretprobe);
1067 void __kprobes unregister_kretprobes(struct kretprobe **rps, int num)
1069 int i;
1071 if (num <= 0)
1072 return;
1073 mutex_lock(&kprobe_mutex);
1074 for (i = 0; i < num; i++)
1075 if (__unregister_kprobe_top(&rps[i]->kp) < 0)
1076 rps[i]->kp.addr = NULL;
1077 mutex_unlock(&kprobe_mutex);
1079 synchronize_sched();
1080 for (i = 0; i < num; i++) {
1081 if (rps[i]->kp.addr) {
1082 __unregister_kprobe_bottom(&rps[i]->kp);
1083 cleanup_rp_inst(rps[i]);
1087 EXPORT_SYMBOL_GPL(unregister_kretprobes);
1089 #else /* CONFIG_KRETPROBES */
1090 int __kprobes register_kretprobe(struct kretprobe *rp)
1092 return -ENOSYS;
1094 EXPORT_SYMBOL_GPL(register_kretprobe);
1096 int __kprobes register_kretprobes(struct kretprobe **rps, int num)
1098 return -ENOSYS;
1100 EXPORT_SYMBOL_GPL(register_kretprobes);
1102 void __kprobes unregister_kretprobe(struct kretprobe *rp)
1105 EXPORT_SYMBOL_GPL(unregister_kretprobe);
1107 void __kprobes unregister_kretprobes(struct kretprobe **rps, int num)
1110 EXPORT_SYMBOL_GPL(unregister_kretprobes);
1112 static int __kprobes pre_handler_kretprobe(struct kprobe *p,
1113 struct pt_regs *regs)
1115 return 0;
1118 #endif /* CONFIG_KRETPROBES */
1120 /* Set the kprobe gone and remove its instruction buffer. */
1121 static void __kprobes kill_kprobe(struct kprobe *p)
1123 struct kprobe *kp;
1125 p->flags |= KPROBE_FLAG_GONE;
1126 if (p->pre_handler == aggr_pre_handler) {
1128 * If this is an aggr_kprobe, we have to list all the
1129 * chained probes and mark them GONE.
1131 list_for_each_entry_rcu(kp, &p->list, list)
1132 kp->flags |= KPROBE_FLAG_GONE;
1133 p->post_handler = NULL;
1134 p->break_handler = NULL;
1137 * Here, we can remove insn_slot safely, because no thread calls
1138 * the original probed function (which will be freed soon) any more.
1140 arch_remove_kprobe(p);
1143 void __kprobes dump_kprobe(struct kprobe *kp)
1145 printk(KERN_WARNING "Dumping kprobe:\n");
1146 printk(KERN_WARNING "Name: %s\nAddress: %p\nOffset: %x\n",
1147 kp->symbol_name, kp->addr, kp->offset);
1150 /* Module notifier call back, checking kprobes on the module */
1151 static int __kprobes kprobes_module_callback(struct notifier_block *nb,
1152 unsigned long val, void *data)
1154 struct module *mod = data;
1155 struct hlist_head *head;
1156 struct hlist_node *node;
1157 struct kprobe *p;
1158 unsigned int i;
1159 int checkcore = (val == MODULE_STATE_GOING);
1161 if (val != MODULE_STATE_GOING && val != MODULE_STATE_LIVE)
1162 return NOTIFY_DONE;
1165 * When MODULE_STATE_GOING was notified, both of module .text and
1166 * .init.text sections would be freed. When MODULE_STATE_LIVE was
1167 * notified, only .init.text section would be freed. We need to
1168 * disable kprobes which have been inserted in the sections.
1170 mutex_lock(&kprobe_mutex);
1171 for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
1172 head = &kprobe_table[i];
1173 hlist_for_each_entry_rcu(p, node, head, hlist)
1174 if (within_module_init((unsigned long)p->addr, mod) ||
1175 (checkcore &&
1176 within_module_core((unsigned long)p->addr, mod))) {
1178 * The vaddr this probe is installed will soon
1179 * be vfreed buy not synced to disk. Hence,
1180 * disarming the breakpoint isn't needed.
1182 kill_kprobe(p);
1185 mutex_unlock(&kprobe_mutex);
1186 return NOTIFY_DONE;
1189 static struct notifier_block kprobe_module_nb = {
1190 .notifier_call = kprobes_module_callback,
1191 .priority = 0
1194 static int __init init_kprobes(void)
1196 int i, err = 0;
1197 unsigned long offset = 0, size = 0;
1198 char *modname, namebuf[128];
1199 const char *symbol_name;
1200 void *addr;
1201 struct kprobe_blackpoint *kb;
1203 /* FIXME allocate the probe table, currently defined statically */
1204 /* initialize all list heads */
1205 for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
1206 INIT_HLIST_HEAD(&kprobe_table[i]);
1207 INIT_HLIST_HEAD(&kretprobe_inst_table[i]);
1208 spin_lock_init(&(kretprobe_table_locks[i].lock));
1212 * Lookup and populate the kprobe_blacklist.
1214 * Unlike the kretprobe blacklist, we'll need to determine
1215 * the range of addresses that belong to the said functions,
1216 * since a kprobe need not necessarily be at the beginning
1217 * of a function.
1219 for (kb = kprobe_blacklist; kb->name != NULL; kb++) {
1220 kprobe_lookup_name(kb->name, addr);
1221 if (!addr)
1222 continue;
1224 kb->start_addr = (unsigned long)addr;
1225 symbol_name = kallsyms_lookup(kb->start_addr,
1226 &size, &offset, &modname, namebuf);
1227 if (!symbol_name)
1228 kb->range = 0;
1229 else
1230 kb->range = size;
1233 if (kretprobe_blacklist_size) {
1234 /* lookup the function address from its name */
1235 for (i = 0; kretprobe_blacklist[i].name != NULL; i++) {
1236 kprobe_lookup_name(kretprobe_blacklist[i].name,
1237 kretprobe_blacklist[i].addr);
1238 if (!kretprobe_blacklist[i].addr)
1239 printk("kretprobe: lookup failed: %s\n",
1240 kretprobe_blacklist[i].name);
1244 /* By default, kprobes are armed */
1245 kprobes_all_disarmed = false;
1247 err = arch_init_kprobes();
1248 if (!err)
1249 err = register_die_notifier(&kprobe_exceptions_nb);
1250 if (!err)
1251 err = register_module_notifier(&kprobe_module_nb);
1253 kprobes_initialized = (err == 0);
1255 if (!err)
1256 init_test_probes();
1257 return err;
1260 #ifdef CONFIG_DEBUG_FS
1261 static void __kprobes report_probe(struct seq_file *pi, struct kprobe *p,
1262 const char *sym, int offset,char *modname)
1264 char *kprobe_type;
1266 if (p->pre_handler == pre_handler_kretprobe)
1267 kprobe_type = "r";
1268 else if (p->pre_handler == setjmp_pre_handler)
1269 kprobe_type = "j";
1270 else
1271 kprobe_type = "k";
1272 if (sym)
1273 seq_printf(pi, "%p %s %s+0x%x %s %s%s\n",
1274 p->addr, kprobe_type, sym, offset,
1275 (modname ? modname : " "),
1276 (kprobe_gone(p) ? "[GONE]" : ""),
1277 ((kprobe_disabled(p) && !kprobe_gone(p)) ?
1278 "[DISABLED]" : ""));
1279 else
1280 seq_printf(pi, "%p %s %p %s%s\n",
1281 p->addr, kprobe_type, p->addr,
1282 (kprobe_gone(p) ? "[GONE]" : ""),
1283 ((kprobe_disabled(p) && !kprobe_gone(p)) ?
1284 "[DISABLED]" : ""));
1287 static void __kprobes *kprobe_seq_start(struct seq_file *f, loff_t *pos)
1289 return (*pos < KPROBE_TABLE_SIZE) ? pos : NULL;
1292 static void __kprobes *kprobe_seq_next(struct seq_file *f, void *v, loff_t *pos)
1294 (*pos)++;
1295 if (*pos >= KPROBE_TABLE_SIZE)
1296 return NULL;
1297 return pos;
1300 static void __kprobes kprobe_seq_stop(struct seq_file *f, void *v)
1302 /* Nothing to do */
1305 static int __kprobes show_kprobe_addr(struct seq_file *pi, void *v)
1307 struct hlist_head *head;
1308 struct hlist_node *node;
1309 struct kprobe *p, *kp;
1310 const char *sym = NULL;
1311 unsigned int i = *(loff_t *) v;
1312 unsigned long offset = 0;
1313 char *modname, namebuf[128];
1315 head = &kprobe_table[i];
1316 preempt_disable();
1317 hlist_for_each_entry_rcu(p, node, head, hlist) {
1318 sym = kallsyms_lookup((unsigned long)p->addr, NULL,
1319 &offset, &modname, namebuf);
1320 if (p->pre_handler == aggr_pre_handler) {
1321 list_for_each_entry_rcu(kp, &p->list, list)
1322 report_probe(pi, kp, sym, offset, modname);
1323 } else
1324 report_probe(pi, p, sym, offset, modname);
1326 preempt_enable();
1327 return 0;
1330 static const struct seq_operations kprobes_seq_ops = {
1331 .start = kprobe_seq_start,
1332 .next = kprobe_seq_next,
1333 .stop = kprobe_seq_stop,
1334 .show = show_kprobe_addr
1337 static int __kprobes kprobes_open(struct inode *inode, struct file *filp)
1339 return seq_open(filp, &kprobes_seq_ops);
1342 static const struct file_operations debugfs_kprobes_operations = {
1343 .open = kprobes_open,
1344 .read = seq_read,
1345 .llseek = seq_lseek,
1346 .release = seq_release,
1349 /* Disable one kprobe */
1350 int __kprobes disable_kprobe(struct kprobe *kp)
1352 int ret = 0;
1353 struct kprobe *p;
1355 mutex_lock(&kprobe_mutex);
1357 /* Check whether specified probe is valid. */
1358 p = __get_valid_kprobe(kp);
1359 if (unlikely(p == NULL)) {
1360 ret = -EINVAL;
1361 goto out;
1364 /* If the probe is already disabled (or gone), just return */
1365 if (kprobe_disabled(kp))
1366 goto out;
1368 kp->flags |= KPROBE_FLAG_DISABLED;
1369 if (p != kp)
1370 /* When kp != p, p is always enabled. */
1371 try_to_disable_aggr_kprobe(p);
1373 if (!kprobes_all_disarmed && kprobe_disabled(p))
1374 disarm_kprobe(p);
1375 out:
1376 mutex_unlock(&kprobe_mutex);
1377 return ret;
1379 EXPORT_SYMBOL_GPL(disable_kprobe);
1381 /* Enable one kprobe */
1382 int __kprobes enable_kprobe(struct kprobe *kp)
1384 int ret = 0;
1385 struct kprobe *p;
1387 mutex_lock(&kprobe_mutex);
1389 /* Check whether specified probe is valid. */
1390 p = __get_valid_kprobe(kp);
1391 if (unlikely(p == NULL)) {
1392 ret = -EINVAL;
1393 goto out;
1396 if (kprobe_gone(kp)) {
1397 /* This kprobe has gone, we couldn't enable it. */
1398 ret = -EINVAL;
1399 goto out;
1402 if (!kprobes_all_disarmed && kprobe_disabled(p))
1403 arm_kprobe(p);
1405 p->flags &= ~KPROBE_FLAG_DISABLED;
1406 if (p != kp)
1407 kp->flags &= ~KPROBE_FLAG_DISABLED;
1408 out:
1409 mutex_unlock(&kprobe_mutex);
1410 return ret;
1412 EXPORT_SYMBOL_GPL(enable_kprobe);
1414 static void __kprobes arm_all_kprobes(void)
1416 struct hlist_head *head;
1417 struct hlist_node *node;
1418 struct kprobe *p;
1419 unsigned int i;
1421 mutex_lock(&kprobe_mutex);
1423 /* If kprobes are armed, just return */
1424 if (!kprobes_all_disarmed)
1425 goto already_enabled;
1427 mutex_lock(&text_mutex);
1428 for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
1429 head = &kprobe_table[i];
1430 hlist_for_each_entry_rcu(p, node, head, hlist)
1431 if (!kprobe_disabled(p))
1432 arch_arm_kprobe(p);
1434 mutex_unlock(&text_mutex);
1436 kprobes_all_disarmed = false;
1437 printk(KERN_INFO "Kprobes globally enabled\n");
1439 already_enabled:
1440 mutex_unlock(&kprobe_mutex);
1441 return;
1444 static void __kprobes disarm_all_kprobes(void)
1446 struct hlist_head *head;
1447 struct hlist_node *node;
1448 struct kprobe *p;
1449 unsigned int i;
1451 mutex_lock(&kprobe_mutex);
1453 /* If kprobes are already disarmed, just return */
1454 if (kprobes_all_disarmed)
1455 goto already_disabled;
1457 kprobes_all_disarmed = true;
1458 printk(KERN_INFO "Kprobes globally disabled\n");
1459 mutex_lock(&text_mutex);
1460 for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
1461 head = &kprobe_table[i];
1462 hlist_for_each_entry_rcu(p, node, head, hlist) {
1463 if (!arch_trampoline_kprobe(p) && !kprobe_disabled(p))
1464 arch_disarm_kprobe(p);
1468 mutex_unlock(&text_mutex);
1469 mutex_unlock(&kprobe_mutex);
1470 /* Allow all currently running kprobes to complete */
1471 synchronize_sched();
1472 return;
1474 already_disabled:
1475 mutex_unlock(&kprobe_mutex);
1476 return;
1480 * XXX: The debugfs bool file interface doesn't allow for callbacks
1481 * when the bool state is switched. We can reuse that facility when
1482 * available
1484 static ssize_t read_enabled_file_bool(struct file *file,
1485 char __user *user_buf, size_t count, loff_t *ppos)
1487 char buf[3];
1489 if (!kprobes_all_disarmed)
1490 buf[0] = '1';
1491 else
1492 buf[0] = '0';
1493 buf[1] = '\n';
1494 buf[2] = 0x00;
1495 return simple_read_from_buffer(user_buf, count, ppos, buf, 2);
1498 static ssize_t write_enabled_file_bool(struct file *file,
1499 const char __user *user_buf, size_t count, loff_t *ppos)
1501 char buf[32];
1502 int buf_size;
1504 buf_size = min(count, (sizeof(buf)-1));
1505 if (copy_from_user(buf, user_buf, buf_size))
1506 return -EFAULT;
1508 switch (buf[0]) {
1509 case 'y':
1510 case 'Y':
1511 case '1':
1512 arm_all_kprobes();
1513 break;
1514 case 'n':
1515 case 'N':
1516 case '0':
1517 disarm_all_kprobes();
1518 break;
1521 return count;
1524 static const struct file_operations fops_kp = {
1525 .read = read_enabled_file_bool,
1526 .write = write_enabled_file_bool,
1529 static int __kprobes debugfs_kprobe_init(void)
1531 struct dentry *dir, *file;
1532 unsigned int value = 1;
1534 dir = debugfs_create_dir("kprobes", NULL);
1535 if (!dir)
1536 return -ENOMEM;
1538 file = debugfs_create_file("list", 0444, dir, NULL,
1539 &debugfs_kprobes_operations);
1540 if (!file) {
1541 debugfs_remove(dir);
1542 return -ENOMEM;
1545 file = debugfs_create_file("enabled", 0600, dir,
1546 &value, &fops_kp);
1547 if (!file) {
1548 debugfs_remove(dir);
1549 return -ENOMEM;
1552 return 0;
1555 late_initcall(debugfs_kprobe_init);
1556 #endif /* CONFIG_DEBUG_FS */
1558 module_init(init_kprobes);
1560 /* defined in arch/.../kernel/kprobes.c */
1561 EXPORT_SYMBOL_GPL(jprobe_return);