2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
6 * The Internet Protocol (IP) output module.
8 * Version: $Id: ip_output.c,v 1.100 2002/02/01 22:01:03 davem Exp $
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Donald Becker, <becker@super.org>
13 * Alan Cox, <Alan.Cox@linux.org>
15 * Stefan Becker, <stefanb@yello.ping.de>
16 * Jorge Cwik, <jorge@laser.satlink.net>
17 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
18 * Hirokazu Takahashi, <taka@valinux.co.jp>
20 * See ip_input.c for original log
23 * Alan Cox : Missing nonblock feature in ip_build_xmit.
24 * Mike Kilburn : htons() missing in ip_build_xmit.
25 * Bradford Johnson: Fix faulty handling of some frames when
27 * Alexander Demenshin: Missing sk/skb free in ip_queue_xmit
28 * (in case if packet not accepted by
29 * output firewall rules)
30 * Mike McLagan : Routing by source
31 * Alexey Kuznetsov: use new route cache
32 * Andi Kleen: Fix broken PMTU recovery and remove
33 * some redundant tests.
34 * Vitaly E. Lavrov : Transparent proxy revived after year coma.
35 * Andi Kleen : Replace ip_reply with ip_send_reply.
36 * Andi Kleen : Split fast and slow ip_build_xmit path
37 * for decreased register pressure on x86
38 * and more readibility.
39 * Marc Boucher : When call_out_firewall returns FW_QUEUE,
40 * silently drop skb instead of failing with -EPERM.
41 * Detlev Wengorz : Copy protocol for fragments.
42 * Hirokazu Takahashi: HW checksumming for outgoing UDP
44 * Hirokazu Takahashi: sendfile() on UDP works now.
47 #include <asm/uaccess.h>
48 #include <asm/system.h>
49 #include <linux/module.h>
50 #include <linux/types.h>
51 #include <linux/kernel.h>
52 #include <linux/sched.h>
54 #include <linux/string.h>
55 #include <linux/errno.h>
56 #include <linux/config.h>
58 #include <linux/socket.h>
59 #include <linux/sockios.h>
61 #include <linux/inet.h>
62 #include <linux/netdevice.h>
63 #include <linux/etherdevice.h>
64 #include <linux/proc_fs.h>
65 #include <linux/stat.h>
66 #include <linux/init.h>
70 #include <net/protocol.h>
71 #include <net/route.h>
72 #include <linux/skbuff.h>
76 #include <net/checksum.h>
77 #include <net/inetpeer.h>
78 #include <net/checksum.h>
79 #include <linux/igmp.h>
80 #include <linux/netfilter_ipv4.h>
81 #include <linux/netfilter_bridge.h>
82 #include <linux/mroute.h>
83 #include <linux/netlink.h>
84 #include <linux/tcp.h>
86 int sysctl_ip_default_ttl
= IPDEFTTL
;
88 /* Generate a checksum for an outgoing IP datagram. */
89 __inline__
void ip_send_check(struct iphdr
*iph
)
92 iph
->check
= ip_fast_csum((unsigned char *)iph
, iph
->ihl
);
95 /* dev_loopback_xmit for use with netfilter. */
96 static int ip_dev_loopback_xmit(struct sk_buff
*newskb
)
98 newskb
->mac
.raw
= newskb
->data
;
99 __skb_pull(newskb
, newskb
->nh
.raw
- newskb
->data
);
100 newskb
->pkt_type
= PACKET_LOOPBACK
;
101 newskb
->ip_summed
= CHECKSUM_UNNECESSARY
;
102 BUG_TRAP(newskb
->dst
);
107 static inline int ip_select_ttl(struct inet_sock
*inet
, struct dst_entry
*dst
)
109 int ttl
= inet
->uc_ttl
;
112 ttl
= dst_metric(dst
, RTAX_HOPLIMIT
);
117 * Add an ip header to a skbuff and send it out.
120 int ip_build_and_send_pkt(struct sk_buff
*skb
, struct sock
*sk
,
121 u32 saddr
, u32 daddr
, struct ip_options
*opt
)
123 struct inet_sock
*inet
= inet_sk(sk
);
124 struct rtable
*rt
= (struct rtable
*)skb
->dst
;
127 /* Build the IP header. */
129 iph
=(struct iphdr
*)skb_push(skb
,sizeof(struct iphdr
) + opt
->optlen
);
131 iph
=(struct iphdr
*)skb_push(skb
,sizeof(struct iphdr
));
135 iph
->tos
= inet
->tos
;
136 if (ip_dont_fragment(sk
, &rt
->u
.dst
))
137 iph
->frag_off
= htons(IP_DF
);
140 iph
->ttl
= ip_select_ttl(inet
, &rt
->u
.dst
);
141 iph
->daddr
= rt
->rt_dst
;
142 iph
->saddr
= rt
->rt_src
;
143 iph
->protocol
= sk
->sk_protocol
;
144 iph
->tot_len
= htons(skb
->len
);
145 ip_select_ident(iph
, &rt
->u
.dst
, sk
);
148 if (opt
&& opt
->optlen
) {
149 iph
->ihl
+= opt
->optlen
>>2;
150 ip_options_build(skb
, opt
, daddr
, rt
, 0);
154 skb
->priority
= sk
->sk_priority
;
157 return NF_HOOK(PF_INET
, NF_IP_LOCAL_OUT
, skb
, NULL
, rt
->u
.dst
.dev
,
161 EXPORT_SYMBOL_GPL(ip_build_and_send_pkt
);
163 static inline int ip_finish_output2(struct sk_buff
*skb
)
165 struct dst_entry
*dst
= skb
->dst
;
166 struct hh_cache
*hh
= dst
->hh
;
167 struct net_device
*dev
= dst
->dev
;
168 int hh_len
= LL_RESERVED_SPACE(dev
);
170 /* Be paranoid, rather than too clever. */
171 if (unlikely(skb_headroom(skb
) < hh_len
&& dev
->hard_header
)) {
172 struct sk_buff
*skb2
;
174 skb2
= skb_realloc_headroom(skb
, LL_RESERVED_SPACE(dev
));
180 skb_set_owner_w(skb2
, skb
->sk
);
188 read_lock_bh(&hh
->hh_lock
);
189 hh_alen
= HH_DATA_ALIGN(hh
->hh_len
);
190 memcpy(skb
->data
- hh_alen
, hh
->hh_data
, hh_alen
);
191 read_unlock_bh(&hh
->hh_lock
);
192 skb_push(skb
, hh
->hh_len
);
193 return hh
->hh_output(skb
);
194 } else if (dst
->neighbour
)
195 return dst
->neighbour
->output(skb
);
198 printk(KERN_DEBUG
"ip_finish_output2: No header cache and no neighbour!\n");
203 static inline int ip_finish_output(struct sk_buff
*skb
)
205 struct net_device
*dev
= skb
->dst
->dev
;
208 skb
->protocol
= htons(ETH_P_IP
);
210 return NF_HOOK(PF_INET
, NF_IP_POST_ROUTING
, skb
, NULL
, dev
,
214 int ip_mc_output(struct sk_buff
*skb
)
216 struct sock
*sk
= skb
->sk
;
217 struct rtable
*rt
= (struct rtable
*)skb
->dst
;
218 struct net_device
*dev
= rt
->u
.dst
.dev
;
221 * If the indicated interface is up and running, send the packet.
223 IP_INC_STATS(IPSTATS_MIB_OUTREQUESTS
);
226 skb
->protocol
= htons(ETH_P_IP
);
229 * Multicasts are looped back for other local users
232 if (rt
->rt_flags
&RTCF_MULTICAST
) {
233 if ((!sk
|| inet_sk(sk
)->mc_loop
)
234 #ifdef CONFIG_IP_MROUTE
235 /* Small optimization: do not loopback not local frames,
236 which returned after forwarding; they will be dropped
237 by ip_mr_input in any case.
238 Note, that local frames are looped back to be delivered
241 This check is duplicated in ip_mr_input at the moment.
243 && ((rt
->rt_flags
&RTCF_LOCAL
) || !(IPCB(skb
)->flags
&IPSKB_FORWARDED
))
246 struct sk_buff
*newskb
= skb_clone(skb
, GFP_ATOMIC
);
248 NF_HOOK(PF_INET
, NF_IP_POST_ROUTING
, newskb
, NULL
,
250 ip_dev_loopback_xmit
);
253 /* Multicasts with ttl 0 must not go beyond the host */
255 if (skb
->nh
.iph
->ttl
== 0) {
261 if (rt
->rt_flags
&RTCF_BROADCAST
) {
262 struct sk_buff
*newskb
= skb_clone(skb
, GFP_ATOMIC
);
264 NF_HOOK(PF_INET
, NF_IP_POST_ROUTING
, newskb
, NULL
,
265 newskb
->dev
, ip_dev_loopback_xmit
);
268 if (skb
->len
> dst_mtu(&rt
->u
.dst
))
269 return ip_fragment(skb
, ip_finish_output
);
271 return ip_finish_output(skb
);
274 int ip_output(struct sk_buff
*skb
)
276 IP_INC_STATS(IPSTATS_MIB_OUTREQUESTS
);
278 if (skb
->len
> dst_mtu(skb
->dst
) && !skb_shinfo(skb
)->tso_size
)
279 return ip_fragment(skb
, ip_finish_output
);
281 return ip_finish_output(skb
);
284 int ip_queue_xmit(struct sk_buff
*skb
, int ipfragok
)
286 struct sock
*sk
= skb
->sk
;
287 struct inet_sock
*inet
= inet_sk(sk
);
288 struct ip_options
*opt
= inet
->opt
;
292 /* Skip all of this if the packet is already routed,
293 * f.e. by something like SCTP.
295 rt
= (struct rtable
*) skb
->dst
;
299 /* Make sure we can route this packet. */
300 rt
= (struct rtable
*)__sk_dst_check(sk
, 0);
304 /* Use correct destination address if we have options. */
310 struct flowi fl
= { .oif
= sk
->sk_bound_dev_if
,
313 .saddr
= inet
->saddr
,
314 .tos
= RT_CONN_FLAGS(sk
) } },
315 .proto
= sk
->sk_protocol
,
317 { .sport
= inet
->sport
,
318 .dport
= inet
->dport
} } };
320 /* If this fails, retransmit mechanism of transport layer will
321 * keep trying until route appears or the connection times
324 if (ip_route_output_flow(&rt
, &fl
, sk
, 0))
327 sk_setup_caps(sk
, &rt
->u
.dst
);
329 skb
->dst
= dst_clone(&rt
->u
.dst
);
332 if (opt
&& opt
->is_strictroute
&& rt
->rt_dst
!= rt
->rt_gateway
)
335 /* OK, we know where to send it, allocate and build IP header. */
336 iph
= (struct iphdr
*) skb_push(skb
, sizeof(struct iphdr
) + (opt
? opt
->optlen
: 0));
337 *((__u16
*)iph
) = htons((4 << 12) | (5 << 8) | (inet
->tos
& 0xff));
338 iph
->tot_len
= htons(skb
->len
);
339 if (ip_dont_fragment(sk
, &rt
->u
.dst
) && !ipfragok
)
340 iph
->frag_off
= htons(IP_DF
);
343 iph
->ttl
= ip_select_ttl(inet
, &rt
->u
.dst
);
344 iph
->protocol
= sk
->sk_protocol
;
345 iph
->saddr
= rt
->rt_src
;
346 iph
->daddr
= rt
->rt_dst
;
348 /* Transport layer set skb->h.foo itself. */
350 if (opt
&& opt
->optlen
) {
351 iph
->ihl
+= opt
->optlen
>> 2;
352 ip_options_build(skb
, opt
, inet
->daddr
, rt
, 0);
355 ip_select_ident_more(iph
, &rt
->u
.dst
, sk
, skb_shinfo(skb
)->tso_segs
);
357 /* Add an IP checksum. */
360 skb
->priority
= sk
->sk_priority
;
362 return NF_HOOK(PF_INET
, NF_IP_LOCAL_OUT
, skb
, NULL
, rt
->u
.dst
.dev
,
366 IP_INC_STATS(IPSTATS_MIB_OUTNOROUTES
);
368 return -EHOSTUNREACH
;
372 static void ip_copy_metadata(struct sk_buff
*to
, struct sk_buff
*from
)
374 to
->pkt_type
= from
->pkt_type
;
375 to
->priority
= from
->priority
;
376 to
->protocol
= from
->protocol
;
377 dst_release(to
->dst
);
378 to
->dst
= dst_clone(from
->dst
);
381 /* Copy the flags to each fragment. */
382 IPCB(to
)->flags
= IPCB(from
)->flags
;
384 #ifdef CONFIG_NET_SCHED
385 to
->tc_index
= from
->tc_index
;
387 #ifdef CONFIG_NETFILTER
388 to
->nfmark
= from
->nfmark
;
389 /* Connection association is same as pre-frag packet */
390 nf_conntrack_put(to
->nfct
);
391 to
->nfct
= from
->nfct
;
392 nf_conntrack_get(to
->nfct
);
393 to
->nfctinfo
= from
->nfctinfo
;
394 #ifdef CONFIG_BRIDGE_NETFILTER
395 nf_bridge_put(to
->nf_bridge
);
396 to
->nf_bridge
= from
->nf_bridge
;
397 nf_bridge_get(to
->nf_bridge
);
403 * This IP datagram is too large to be sent in one piece. Break it up into
404 * smaller pieces (each of size equal to IP header plus
405 * a block of the data of the original IP data part) that will yet fit in a
406 * single device frame, and queue such a frame for sending.
409 int ip_fragment(struct sk_buff
*skb
, int (*output
)(struct sk_buff
*))
414 struct net_device
*dev
;
415 struct sk_buff
*skb2
;
416 unsigned int mtu
, hlen
, left
, len
, ll_rs
;
419 struct rtable
*rt
= (struct rtable
*)skb
->dst
;
425 * Point into the IP datagram header.
430 if (unlikely((iph
->frag_off
& htons(IP_DF
)) && !skb
->local_df
)) {
431 icmp_send(skb
, ICMP_DEST_UNREACH
, ICMP_FRAG_NEEDED
,
432 htonl(dst_mtu(&rt
->u
.dst
)));
438 * Setup starting values.
442 mtu
= dst_mtu(&rt
->u
.dst
) - hlen
; /* Size of data space */
444 /* When frag_list is given, use it. First, check its validity:
445 * some transformers could create wrong frag_list or break existing
446 * one, it is not prohibited. In this case fall back to copying.
448 * LATER: this step can be merged to real generation of fragments,
449 * we can switch to copy when see the first bad fragment.
451 if (skb_shinfo(skb
)->frag_list
) {
452 struct sk_buff
*frag
;
453 int first_len
= skb_pagelen(skb
);
455 if (first_len
- hlen
> mtu
||
456 ((first_len
- hlen
) & 7) ||
457 (iph
->frag_off
& htons(IP_MF
|IP_OFFSET
)) ||
461 for (frag
= skb_shinfo(skb
)->frag_list
; frag
; frag
= frag
->next
) {
462 /* Correct geometry. */
463 if (frag
->len
> mtu
||
464 ((frag
->len
& 7) && frag
->next
) ||
465 skb_headroom(frag
) < hlen
)
468 /* Partially cloned skb? */
469 if (skb_shared(frag
))
476 frag
->destructor
= sock_wfree
;
477 skb
->truesize
-= frag
->truesize
;
481 /* Everything is OK. Generate! */
485 frag
= skb_shinfo(skb
)->frag_list
;
486 skb_shinfo(skb
)->frag_list
= NULL
;
487 skb
->data_len
= first_len
- skb_headlen(skb
);
488 skb
->len
= first_len
;
489 iph
->tot_len
= htons(first_len
);
490 iph
->frag_off
= htons(IP_MF
);
494 /* Prepare header of the next frame,
495 * before previous one went down. */
497 frag
->ip_summed
= CHECKSUM_NONE
;
498 frag
->h
.raw
= frag
->data
;
499 frag
->nh
.raw
= __skb_push(frag
, hlen
);
500 memcpy(frag
->nh
.raw
, iph
, hlen
);
502 iph
->tot_len
= htons(frag
->len
);
503 ip_copy_metadata(frag
, skb
);
505 ip_options_fragment(frag
);
506 offset
+= skb
->len
- hlen
;
507 iph
->frag_off
= htons(offset
>>3);
508 if (frag
->next
!= NULL
)
509 iph
->frag_off
|= htons(IP_MF
);
510 /* Ready, complete checksum */
525 IP_INC_STATS(IPSTATS_MIB_FRAGOKS
);
534 IP_INC_STATS(IPSTATS_MIB_FRAGFAILS
);
539 left
= skb
->len
- hlen
; /* Space per frame */
540 ptr
= raw
+ hlen
; /* Where to start from */
542 #ifdef CONFIG_BRIDGE_NETFILTER
543 /* for bridged IP traffic encapsulated inside f.e. a vlan header,
544 * we need to make room for the encapsulating header */
545 ll_rs
= LL_RESERVED_SPACE_EXTRA(rt
->u
.dst
.dev
, nf_bridge_pad(skb
));
546 mtu
-= nf_bridge_pad(skb
);
548 ll_rs
= LL_RESERVED_SPACE(rt
->u
.dst
.dev
);
551 * Fragment the datagram.
554 offset
= (ntohs(iph
->frag_off
) & IP_OFFSET
) << 3;
555 not_last_frag
= iph
->frag_off
& htons(IP_MF
);
558 * Keep copying data until we run out.
563 /* IF: it doesn't fit, use 'mtu' - the data space left */
566 /* IF: we are not sending upto and including the packet end
567 then align the next start on an eight byte boundary */
575 if ((skb2
= alloc_skb(len
+hlen
+ll_rs
, GFP_ATOMIC
)) == NULL
) {
576 NETDEBUG(KERN_INFO
"IP: frag: no memory for new fragment!\n");
582 * Set up data on packet
585 ip_copy_metadata(skb2
, skb
);
586 skb_reserve(skb2
, ll_rs
);
587 skb_put(skb2
, len
+ hlen
);
588 skb2
->nh
.raw
= skb2
->data
;
589 skb2
->h
.raw
= skb2
->data
+ hlen
;
592 * Charge the memory for the fragment to any owner
597 skb_set_owner_w(skb2
, skb
->sk
);
600 * Copy the packet header into the new buffer.
603 memcpy(skb2
->nh
.raw
, skb
->data
, hlen
);
606 * Copy a block of the IP datagram.
608 if (skb_copy_bits(skb
, ptr
, skb2
->h
.raw
, len
))
613 * Fill in the new header fields.
616 iph
->frag_off
= htons((offset
>> 3));
618 /* ANK: dirty, but effective trick. Upgrade options only if
619 * the segment to be fragmented was THE FIRST (otherwise,
620 * options are already fixed) and make it ONCE
621 * on the initial skb, so that all the following fragments
622 * will inherit fixed options.
625 ip_options_fragment(skb
);
628 * Added AC : If we are fragmenting a fragment that's not the
629 * last fragment then keep MF on each bit
631 if (left
> 0 || not_last_frag
)
632 iph
->frag_off
|= htons(IP_MF
);
637 * Put this fragment into the sending queue.
640 IP_INC_STATS(IPSTATS_MIB_FRAGCREATES
);
642 iph
->tot_len
= htons(len
+ hlen
);
651 IP_INC_STATS(IPSTATS_MIB_FRAGOKS
);
656 IP_INC_STATS(IPSTATS_MIB_FRAGFAILS
);
661 ip_generic_getfrag(void *from
, char *to
, int offset
, int len
, int odd
, struct sk_buff
*skb
)
663 struct iovec
*iov
= from
;
665 if (skb
->ip_summed
== CHECKSUM_HW
) {
666 if (memcpy_fromiovecend(to
, iov
, offset
, len
) < 0)
669 unsigned int csum
= 0;
670 if (csum_partial_copy_fromiovecend(to
, iov
, offset
, len
, &csum
) < 0)
672 skb
->csum
= csum_block_add(skb
->csum
, csum
, odd
);
677 static inline unsigned int
678 csum_page(struct page
*page
, int offset
, int copy
)
683 csum
= csum_partial(kaddr
+ offset
, copy
, 0);
689 * ip_append_data() and ip_append_page() can make one large IP datagram
690 * from many pieces of data. Each pieces will be holded on the socket
691 * until ip_push_pending_frames() is called. Each piece can be a page
694 * Not only UDP, other transport protocols - e.g. raw sockets - can use
695 * this interface potentially.
697 * LATER: length must be adjusted by pad at tail, when it is required.
699 int ip_append_data(struct sock
*sk
,
700 int getfrag(void *from
, char *to
, int offset
, int len
,
701 int odd
, struct sk_buff
*skb
),
702 void *from
, int length
, int transhdrlen
,
703 struct ipcm_cookie
*ipc
, struct rtable
*rt
,
706 struct inet_sock
*inet
= inet_sk(sk
);
709 struct ip_options
*opt
= NULL
;
716 unsigned int maxfraglen
, fragheaderlen
;
717 int csummode
= CHECKSUM_NONE
;
722 if (skb_queue_empty(&sk
->sk_write_queue
)) {
728 if (inet
->cork
.opt
== NULL
) {
729 inet
->cork
.opt
= kmalloc(sizeof(struct ip_options
) + 40, sk
->sk_allocation
);
730 if (unlikely(inet
->cork
.opt
== NULL
))
733 memcpy(inet
->cork
.opt
, opt
, sizeof(struct ip_options
)+opt
->optlen
);
734 inet
->cork
.flags
|= IPCORK_OPT
;
735 inet
->cork
.addr
= ipc
->addr
;
737 dst_hold(&rt
->u
.dst
);
738 inet
->cork
.fragsize
= mtu
= dst_mtu(rt
->u
.dst
.path
);
740 inet
->cork
.length
= 0;
741 sk
->sk_sndmsg_page
= NULL
;
742 sk
->sk_sndmsg_off
= 0;
743 if ((exthdrlen
= rt
->u
.dst
.header_len
) != 0) {
745 transhdrlen
+= exthdrlen
;
749 if (inet
->cork
.flags
& IPCORK_OPT
)
750 opt
= inet
->cork
.opt
;
754 mtu
= inet
->cork
.fragsize
;
756 hh_len
= LL_RESERVED_SPACE(rt
->u
.dst
.dev
);
758 fragheaderlen
= sizeof(struct iphdr
) + (opt
? opt
->optlen
: 0);
759 maxfraglen
= ((mtu
- fragheaderlen
) & ~7) + fragheaderlen
;
761 if (inet
->cork
.length
+ length
> 0xFFFF - fragheaderlen
) {
762 ip_local_error(sk
, EMSGSIZE
, rt
->rt_dst
, inet
->dport
, mtu
-exthdrlen
);
767 * transhdrlen > 0 means that this is the first fragment and we wish
768 * it won't be fragmented in the future.
771 length
+ fragheaderlen
<= mtu
&&
772 rt
->u
.dst
.dev
->features
&(NETIF_F_IP_CSUM
|NETIF_F_NO_CSUM
|NETIF_F_HW_CSUM
) &&
774 csummode
= CHECKSUM_HW
;
776 inet
->cork
.length
+= length
;
778 /* So, what's going on in the loop below?
780 * We use calculated fragment length to generate chained skb,
781 * each of segments is IP fragment ready for sending to network after
782 * adding appropriate IP header.
785 if ((skb
= skb_peek_tail(&sk
->sk_write_queue
)) == NULL
)
789 /* Check if the remaining data fits into current packet. */
790 copy
= mtu
- skb
->len
;
792 copy
= maxfraglen
- skb
->len
;
795 unsigned int datalen
;
796 unsigned int fraglen
;
797 unsigned int fraggap
;
798 unsigned int alloclen
;
799 struct sk_buff
*skb_prev
;
803 fraggap
= skb_prev
->len
- maxfraglen
;
808 * If remaining data exceeds the mtu,
809 * we know we need more fragment(s).
811 datalen
= length
+ fraggap
;
812 if (datalen
> mtu
- fragheaderlen
)
813 datalen
= maxfraglen
- fragheaderlen
;
814 fraglen
= datalen
+ fragheaderlen
;
816 if ((flags
& MSG_MORE
) &&
817 !(rt
->u
.dst
.dev
->features
&NETIF_F_SG
))
820 alloclen
= datalen
+ fragheaderlen
;
822 /* The last fragment gets additional space at tail.
823 * Note, with MSG_MORE we overallocate on fragments,
824 * because we have no idea what fragment will be
827 if (datalen
== length
)
828 alloclen
+= rt
->u
.dst
.trailer_len
;
831 skb
= sock_alloc_send_skb(sk
,
832 alloclen
+ hh_len
+ 15,
833 (flags
& MSG_DONTWAIT
), &err
);
836 if (atomic_read(&sk
->sk_wmem_alloc
) <=
838 skb
= sock_wmalloc(sk
,
839 alloclen
+ hh_len
+ 15, 1,
841 if (unlikely(skb
== NULL
))
848 * Fill in the control structures
850 skb
->ip_summed
= csummode
;
852 skb_reserve(skb
, hh_len
);
855 * Find where to start putting bytes.
857 data
= skb_put(skb
, fraglen
);
858 skb
->nh
.raw
= data
+ exthdrlen
;
859 data
+= fragheaderlen
;
860 skb
->h
.raw
= data
+ exthdrlen
;
863 skb
->csum
= skb_copy_and_csum_bits(
864 skb_prev
, maxfraglen
,
865 data
+ transhdrlen
, fraggap
, 0);
866 skb_prev
->csum
= csum_sub(skb_prev
->csum
,
869 skb_trim(skb_prev
, maxfraglen
);
872 copy
= datalen
- transhdrlen
- fraggap
;
873 if (copy
> 0 && getfrag(from
, data
+ transhdrlen
, offset
, copy
, fraggap
, skb
) < 0) {
880 length
-= datalen
- fraggap
;
883 csummode
= CHECKSUM_NONE
;
886 * Put the packet on the pending queue.
888 __skb_queue_tail(&sk
->sk_write_queue
, skb
);
895 if (!(rt
->u
.dst
.dev
->features
&NETIF_F_SG
)) {
899 if (getfrag(from
, skb_put(skb
, copy
),
900 offset
, copy
, off
, skb
) < 0) {
901 __skb_trim(skb
, off
);
906 int i
= skb_shinfo(skb
)->nr_frags
;
907 skb_frag_t
*frag
= &skb_shinfo(skb
)->frags
[i
-1];
908 struct page
*page
= sk
->sk_sndmsg_page
;
909 int off
= sk
->sk_sndmsg_off
;
912 if (page
&& (left
= PAGE_SIZE
- off
) > 0) {
915 if (page
!= frag
->page
) {
916 if (i
== MAX_SKB_FRAGS
) {
921 skb_fill_page_desc(skb
, i
, page
, sk
->sk_sndmsg_off
, 0);
922 frag
= &skb_shinfo(skb
)->frags
[i
];
924 } else if (i
< MAX_SKB_FRAGS
) {
925 if (copy
> PAGE_SIZE
)
927 page
= alloc_pages(sk
->sk_allocation
, 0);
932 sk
->sk_sndmsg_page
= page
;
933 sk
->sk_sndmsg_off
= 0;
935 skb_fill_page_desc(skb
, i
, page
, 0, 0);
936 frag
= &skb_shinfo(skb
)->frags
[i
];
937 skb
->truesize
+= PAGE_SIZE
;
938 atomic_add(PAGE_SIZE
, &sk
->sk_wmem_alloc
);
943 if (getfrag(from
, page_address(frag
->page
)+frag
->page_offset
+frag
->size
, offset
, copy
, skb
->len
, skb
) < 0) {
947 sk
->sk_sndmsg_off
+= copy
;
950 skb
->data_len
+= copy
;
959 inet
->cork
.length
-= length
;
960 IP_INC_STATS(IPSTATS_MIB_OUTDISCARDS
);
964 ssize_t
ip_append_page(struct sock
*sk
, struct page
*page
,
965 int offset
, size_t size
, int flags
)
967 struct inet_sock
*inet
= inet_sk(sk
);
970 struct ip_options
*opt
= NULL
;
975 unsigned int maxfraglen
, fragheaderlen
, fraggap
;
983 if (skb_queue_empty(&sk
->sk_write_queue
))
987 if (inet
->cork
.flags
& IPCORK_OPT
)
988 opt
= inet
->cork
.opt
;
990 if (!(rt
->u
.dst
.dev
->features
&NETIF_F_SG
))
993 hh_len
= LL_RESERVED_SPACE(rt
->u
.dst
.dev
);
994 mtu
= inet
->cork
.fragsize
;
996 fragheaderlen
= sizeof(struct iphdr
) + (opt
? opt
->optlen
: 0);
997 maxfraglen
= ((mtu
- fragheaderlen
) & ~7) + fragheaderlen
;
999 if (inet
->cork
.length
+ size
> 0xFFFF - fragheaderlen
) {
1000 ip_local_error(sk
, EMSGSIZE
, rt
->rt_dst
, inet
->dport
, mtu
);
1004 if ((skb
= skb_peek_tail(&sk
->sk_write_queue
)) == NULL
)
1007 inet
->cork
.length
+= size
;
1012 /* Check if the remaining data fits into current packet. */
1013 len
= mtu
- skb
->len
;
1015 len
= maxfraglen
- skb
->len
;
1017 struct sk_buff
*skb_prev
;
1024 fraggap
= skb_prev
->len
- maxfraglen
;
1028 alloclen
= fragheaderlen
+ hh_len
+ fraggap
+ 15;
1029 skb
= sock_wmalloc(sk
, alloclen
, 1, sk
->sk_allocation
);
1030 if (unlikely(!skb
)) {
1036 * Fill in the control structures
1038 skb
->ip_summed
= CHECKSUM_NONE
;
1040 skb_reserve(skb
, hh_len
);
1043 * Find where to start putting bytes.
1045 data
= skb_put(skb
, fragheaderlen
+ fraggap
);
1046 skb
->nh
.iph
= iph
= (struct iphdr
*)data
;
1047 data
+= fragheaderlen
;
1051 skb
->csum
= skb_copy_and_csum_bits(
1052 skb_prev
, maxfraglen
,
1054 skb_prev
->csum
= csum_sub(skb_prev
->csum
,
1056 skb_trim(skb_prev
, maxfraglen
);
1060 * Put the packet on the pending queue.
1062 __skb_queue_tail(&sk
->sk_write_queue
, skb
);
1066 i
= skb_shinfo(skb
)->nr_frags
;
1069 if (skb_can_coalesce(skb
, i
, page
, offset
)) {
1070 skb_shinfo(skb
)->frags
[i
-1].size
+= len
;
1071 } else if (i
< MAX_SKB_FRAGS
) {
1073 skb_fill_page_desc(skb
, i
, page
, offset
, len
);
1079 if (skb
->ip_summed
== CHECKSUM_NONE
) {
1081 csum
= csum_page(page
, offset
, len
);
1082 skb
->csum
= csum_block_add(skb
->csum
, csum
, skb
->len
);
1086 skb
->data_len
+= len
;
1093 inet
->cork
.length
-= size
;
1094 IP_INC_STATS(IPSTATS_MIB_OUTDISCARDS
);
1099 * Combined all pending IP fragments on the socket as one IP datagram
1100 * and push them out.
1102 int ip_push_pending_frames(struct sock
*sk
)
1104 struct sk_buff
*skb
, *tmp_skb
;
1105 struct sk_buff
**tail_skb
;
1106 struct inet_sock
*inet
= inet_sk(sk
);
1107 struct ip_options
*opt
= NULL
;
1108 struct rtable
*rt
= inet
->cork
.rt
;
1114 if ((skb
= __skb_dequeue(&sk
->sk_write_queue
)) == NULL
)
1116 tail_skb
= &(skb_shinfo(skb
)->frag_list
);
1118 /* move skb->data to ip header from ext header */
1119 if (skb
->data
< skb
->nh
.raw
)
1120 __skb_pull(skb
, skb
->nh
.raw
- skb
->data
);
1121 while ((tmp_skb
= __skb_dequeue(&sk
->sk_write_queue
)) != NULL
) {
1122 __skb_pull(tmp_skb
, skb
->h
.raw
- skb
->nh
.raw
);
1123 *tail_skb
= tmp_skb
;
1124 tail_skb
= &(tmp_skb
->next
);
1125 skb
->len
+= tmp_skb
->len
;
1126 skb
->data_len
+= tmp_skb
->len
;
1127 skb
->truesize
+= tmp_skb
->truesize
;
1128 __sock_put(tmp_skb
->sk
);
1129 tmp_skb
->destructor
= NULL
;
1133 /* Unless user demanded real pmtu discovery (IP_PMTUDISC_DO), we allow
1134 * to fragment the frame generated here. No matter, what transforms
1135 * how transforms change size of the packet, it will come out.
1137 if (inet
->pmtudisc
!= IP_PMTUDISC_DO
)
1140 /* DF bit is set when we want to see DF on outgoing frames.
1141 * If local_df is set too, we still allow to fragment this frame
1143 if (inet
->pmtudisc
== IP_PMTUDISC_DO
||
1144 (skb
->len
<= dst_mtu(&rt
->u
.dst
) &&
1145 ip_dont_fragment(sk
, &rt
->u
.dst
)))
1148 if (inet
->cork
.flags
& IPCORK_OPT
)
1149 opt
= inet
->cork
.opt
;
1151 if (rt
->rt_type
== RTN_MULTICAST
)
1154 ttl
= ip_select_ttl(inet
, &rt
->u
.dst
);
1156 iph
= (struct iphdr
*)skb
->data
;
1160 iph
->ihl
+= opt
->optlen
>>2;
1161 ip_options_build(skb
, opt
, inet
->cork
.addr
, rt
, 0);
1163 iph
->tos
= inet
->tos
;
1164 iph
->tot_len
= htons(skb
->len
);
1167 __ip_select_ident(iph
, &rt
->u
.dst
, 0);
1169 iph
->id
= htons(inet
->id
++);
1172 iph
->protocol
= sk
->sk_protocol
;
1173 iph
->saddr
= rt
->rt_src
;
1174 iph
->daddr
= rt
->rt_dst
;
1177 skb
->priority
= sk
->sk_priority
;
1178 skb
->dst
= dst_clone(&rt
->u
.dst
);
1180 /* Netfilter gets whole the not fragmented skb. */
1181 err
= NF_HOOK(PF_INET
, NF_IP_LOCAL_OUT
, skb
, NULL
,
1182 skb
->dst
->dev
, dst_output
);
1185 err
= inet
->recverr
? net_xmit_errno(err
) : 0;
1191 inet
->cork
.flags
&= ~IPCORK_OPT
;
1192 if (inet
->cork
.opt
) {
1193 kfree(inet
->cork
.opt
);
1194 inet
->cork
.opt
= NULL
;
1196 if (inet
->cork
.rt
) {
1197 ip_rt_put(inet
->cork
.rt
);
1198 inet
->cork
.rt
= NULL
;
1203 IP_INC_STATS(IPSTATS_MIB_OUTDISCARDS
);
1208 * Throw away all pending data on the socket.
1210 void ip_flush_pending_frames(struct sock
*sk
)
1212 struct inet_sock
*inet
= inet_sk(sk
);
1213 struct sk_buff
*skb
;
1215 while ((skb
= __skb_dequeue_tail(&sk
->sk_write_queue
)) != NULL
)
1218 inet
->cork
.flags
&= ~IPCORK_OPT
;
1219 if (inet
->cork
.opt
) {
1220 kfree(inet
->cork
.opt
);
1221 inet
->cork
.opt
= NULL
;
1223 if (inet
->cork
.rt
) {
1224 ip_rt_put(inet
->cork
.rt
);
1225 inet
->cork
.rt
= NULL
;
1231 * Fetch data from kernel space and fill in checksum if needed.
1233 static int ip_reply_glue_bits(void *dptr
, char *to
, int offset
,
1234 int len
, int odd
, struct sk_buff
*skb
)
1238 csum
= csum_partial_copy_nocheck(dptr
+offset
, to
, len
, 0);
1239 skb
->csum
= csum_block_add(skb
->csum
, csum
, odd
);
1244 * Generic function to send a packet as reply to another packet.
1245 * Used to send TCP resets so far. ICMP should use this function too.
1247 * Should run single threaded per socket because it uses the sock
1248 * structure to pass arguments.
1250 * LATER: switch from ip_build_xmit to ip_append_*
1252 void ip_send_reply(struct sock
*sk
, struct sk_buff
*skb
, struct ip_reply_arg
*arg
,
1255 struct inet_sock
*inet
= inet_sk(sk
);
1257 struct ip_options opt
;
1260 struct ipcm_cookie ipc
;
1262 struct rtable
*rt
= (struct rtable
*)skb
->dst
;
1264 if (ip_options_echo(&replyopts
.opt
, skb
))
1267 daddr
= ipc
.addr
= rt
->rt_src
;
1270 if (replyopts
.opt
.optlen
) {
1271 ipc
.opt
= &replyopts
.opt
;
1274 daddr
= replyopts
.opt
.faddr
;
1278 struct flowi fl
= { .nl_u
= { .ip4_u
=
1280 .saddr
= rt
->rt_spec_dst
,
1281 .tos
= RT_TOS(skb
->nh
.iph
->tos
) } },
1282 /* Not quite clean, but right. */
1284 { .sport
= skb
->h
.th
->dest
,
1285 .dport
= skb
->h
.th
->source
} },
1286 .proto
= sk
->sk_protocol
};
1287 if (ip_route_output_key(&rt
, &fl
))
1291 /* And let IP do all the hard work.
1293 This chunk is not reenterable, hence spinlock.
1294 Note that it uses the fact, that this function is called
1295 with locally disabled BH and that sk cannot be already spinlocked.
1298 inet
->tos
= skb
->nh
.iph
->tos
;
1299 sk
->sk_priority
= skb
->priority
;
1300 sk
->sk_protocol
= skb
->nh
.iph
->protocol
;
1301 ip_append_data(sk
, ip_reply_glue_bits
, arg
->iov
->iov_base
, len
, 0,
1302 &ipc
, rt
, MSG_DONTWAIT
);
1303 if ((skb
= skb_peek(&sk
->sk_write_queue
)) != NULL
) {
1304 if (arg
->csumoffset
>= 0)
1305 *((u16
*)skb
->h
.raw
+ arg
->csumoffset
) = csum_fold(csum_add(skb
->csum
, arg
->csum
));
1306 skb
->ip_summed
= CHECKSUM_NONE
;
1307 ip_push_pending_frames(sk
);
1315 void __init
ip_init(void)
1320 #if defined(CONFIG_IP_MULTICAST) && defined(CONFIG_PROC_FS)
1321 igmp_mc_proc_init();
1325 EXPORT_SYMBOL(ip_fragment
);
1326 EXPORT_SYMBOL(ip_generic_getfrag
);
1327 EXPORT_SYMBOL(ip_queue_xmit
);
1328 EXPORT_SYMBOL(ip_send_check
);